WO2023003446A1 - Method for manufacturing group iii-nitride semiconductor light-emitting device - Google Patents

Method for manufacturing group iii-nitride semiconductor light-emitting device Download PDF

Info

Publication number
WO2023003446A1
WO2023003446A1 PCT/KR2022/010859 KR2022010859W WO2023003446A1 WO 2023003446 A1 WO2023003446 A1 WO 2023003446A1 KR 2022010859 W KR2022010859 W KR 2022010859W WO 2023003446 A1 WO2023003446 A1 WO 2023003446A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
light emitting
emitting device
barrier layer
layer
Prior art date
Application number
PCT/KR2022/010859
Other languages
French (fr)
Korean (ko)
Inventor
홍영준
최중훈
정준석
Original Assignee
주식회사 소프트에피
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 소프트에피 filed Critical 주식회사 소프트에피
Publication of WO2023003446A1 publication Critical patent/WO2023003446A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen

Definitions

  • the present disclosure relates to a method for manufacturing a group 3 nitride semiconductor light emitting device as a whole (METHOD FOR MANUFACTURING A III-NITRIDE SEMICONDUCTOR LIGHT EMITTING DEVICE), in particular, a group 3 capable of effectively preventing volatilization of indium (In). It relates to a method of manufacturing a nitride semiconductor light emitting device.
  • LEDs Light Emitting Devices, LEDs
  • OLEDs organic light emitting devices
  • light-emitting devices based on inorganic semiconductors are used not only for long-life and high-efficiency lighting, but also as light source materials for micro-LEDs, which are next-generation displays.
  • the light emitting device is a p-n junction diode based on a III-V compound semiconductor.
  • the light emitting device emits light through current injection, and a blue, green, or red light emitting device is manufactured by adjusting band gap energy of a semiconductor.
  • a quantum well layer containing a large amount of indium must be grown and then a quantum barrier layer must be grown at a higher temperature.
  • a large amount of indium is released from the quantum well layer, resulting in phase separation and compositional non-uniformity, so that a light emitting device having a wavelength shorter than a planned wavelength and having low brightness may be manufactured.
  • a method for manufacturing a group III nitride semiconductor light emitting device comprising: growing a first semiconductor region; growing a first high-temperature quantum barrier layer over the first semiconductor region; growing a quantum well layer made of In x Ga 1-x N (0.1 ⁇ x ⁇ 0.5) on the first high-temperature quantum barrier layer; growing a low-temperature quantum barrier layer having a thickness of 0.5 nm to 2 nm on the quantum well layer; Growing a second high-temperature quantum barrier layer on the low-temperature quantum barrier layer; there is provided a method for manufacturing a group III nitride semiconductor light emitting device comprising the.
  • FIG. 1 is a schematic cross-sectional view of a light emitting device according to an embodiment of the present invention.
  • FIG. 2 is a schematic flow chart of a manufacturing method of the light emitting device of FIG. 1 .
  • FIG. 3 is a process temperature profile graph of some steps of the manufacturing method of the light emitting device of FIG. 1 .
  • FIG. 4 is a schematic conceptual diagram showing the volatility of indium atoms of a light emitting device according to the presence or absence of a low-temperature quantum barrier layer.
  • FIG. 6 is a graph showing an electroluminescence spectrum of a light emitting device according to Experimental Example 3 of the present invention and a comparative example of the prior art according to the presence or absence of a low-temperature quantum barrier layer and coordinate values in the CIE 1931 color space.
  • FIG. 7 is an electroluminescence spectrum graph of a light emitting device according to a growth time of a low-temperature quantum barrier layer in a light emitting device according to an experimental example of the present invention.
  • FIG. 1 schematically shows a cross-sectional structure of a light emitting device 100 according to an embodiment of the present invention.
  • the structure of the light emitting device of FIG. 1 is only for exemplifying the present invention, and the present invention is not limited thereto. Therefore, the structure of the light emitting device can be transformed into other forms.
  • the light emitting device 100 of FIG. 1 is applied to emit red light when a voltage is applied. That is, the light emitting device 100 can implement high-purity red with a uniform color wavelength.
  • the light emitting device 100 includes a single crystal substrate 10, a first semiconductor layer 20, a second semiconductor layer 30, a first electrode 70, a quantum well structure light emitting active layer 40 ), a third semiconductor layer 50, a transparent electrode 60 and a second electrode 75.
  • the quantum well structure light emitting active layer 40 includes a first high-temperature quantum barrier layer 401, a quantum well layer 403, a low-temperature quantum barrier layer 405, and a second high-temperature quantum barrier layer 407.
  • the light emitting device 100 may further include other layers.
  • the single crystal substrate 10 is GaN, AlGaN, InAlGaN, AlGaAs, GaP, GaAs, GaAsP, AlGaInP, InAs, InAsP, InGaAs, InP, ZnO, ZnMgO, ZnCdO, MgO, CdO, Ga-doped ZnO (GZO), IZO ( In-doped ZnO), AZO (Al-doped ZnO), Al 2 O 3 , Si or SiC may be included.
  • the single crystal substrate 10 may be made of a compound obtained by mixing two or more of these materials.
  • the first semiconductor layer 20 is located on the single crystal substrate 10 .
  • the first semiconductor layer 20 may be an undoped intrinsic semiconductor, for example, GaN.
  • the two may be in a relationship of crystal mismatch or lattice constant mismatch.
  • a low-temperature buffer layer may be inserted between the two in order to mitigate the large difference in thermal expansion coefficient between the two.
  • the second semiconductor layer 30 is located on the first semiconductor layer 20 .
  • the second semiconductor layer 30 may be n-type doped and has conductivity.
  • the second semiconductor layer 30 may be made of GaN doped with silicon, and other materials may also be used.
  • the first electrode 70 is positioned on the second semiconductor layer 30 .
  • the first electrode 70 does not contact the high-temperature quantum barrier layer 401 and is spaced apart from the high-temperature quantum barrier layer 401 in the x-axis direction to form a pad shape.
  • the first electrode 70 functions as a cathode and can be made of a Ti/Au alloy.
  • a quantum well structure light emitting active layer (Quantum Well active layer) 40 is positioned on the second semiconductor layer 30 .
  • the quantum well structure light emitting active layer 40 includes two high temperature quantum barriers (HT-QBs) 401 and 407, a quantum well layer (QW) 403 and a low temperature quantum barrier layer ( Low Temperature Quantum Barrier, LT-QB) (405). That is, the quantum well structure light emitting active layer 40 is composed of a plurality of layers.
  • the quantum well structure light emitting active layer 40 itself may be formed in multiple layers. For example, the quantum well structure light emitting active layer 40 is fabricated by repeating one to ten times.
  • the quantum well structure light emitting active layer 40 As the number of stacking increases, the light emitting intensity and light emitting efficiency of the light emitting device 100 increase. However, when the number of quantum well structure light emitting active layers 40 exceeds 10 layers, process cost and material cost increase to lower cost performance, so the quantum well structure light emitting active layer 40 is stacked within the above range.
  • the low-temperature quantum barrier layer 405 and the high-temperature quantum barrier layers 401 and 407 may contain GaN, InGaN, AlInN, InAlGaN, AlN, or AlGaN, or two or more of these materials. Materials of the low-temperature quantum barrier layer 405 and the high-temperature quantum barrier layers 401 and 407 may be the same or different from each other.
  • the low-temperature quantum barrier layer 405 is GaN, In y Ga 1-y N, Al 1-y In y N, In y Al z Ga 1-yz N (0.1 ⁇ y ⁇ x ⁇ 0.5, 0 ⁇ z ⁇ 1), AlN or AlGaN, or two or more of these materials.
  • the quantum well layer 403 may include In x Ga 1-x N (0.1 ⁇ x ⁇ 0.5).
  • x is greater than 0.5, defects such as segregation due to a large amount of indium, a rich region, and an in disk are formed, thereby degrading the performance of the device and the purity of the emission color.
  • x is less than 0.1, LEDs ranging from green light to red light cannot be implemented. Therefore, x is adjusted to the above range.
  • y is less than x in other words, The amount of indium contained in the low-temperature quantum barrier layer 405 is smaller than the amount of indium contained in the quantum well layer 403 .
  • the thickness t405 of the low-temperature quantum barrier layer 405 may be 0.5 nm to 2 nm. More preferably, the thickness t405 may be 0.68 nm to 1.82 nm. If the thickness t405 is too large, the manufactured device does not operate or has very low efficiency due to the deterioration of the quality of the quantum barrier layer. Also, if the thickness t405 is too small, decomposition, volatilization and separation of indium cannot be prevented. Accordingly, the thickness t405 is adjusted within the aforementioned range. Also, the thickness t403 of the quantum well layer 403 may be 1 nm to 10 nm.
  • the thickness t403 is adjusted within the aforementioned range.
  • Thicknesses t401 and t407 of the high-temperature quantum barrier layers 401 and 407 may range from 1 nm to 20 nm.
  • the thicknesses t401 and t407 are too large, the compositions of the quantum well layer 403 and the low-temperature quantum barrier layer 405 containing indium, respectively, and the high-temperature quantum barrier layers 401 and 407 are different. Accordingly, threading dislocations are formed to partially relieve the stress, defects are formed in the quantum well structure, and the formed dislocations act as a diffusion movement path of indium atoms. Therefore, the quantum well structure may collapse, additional defects may be formed, and the efficiency of the light emitting device may decrease.
  • the thicknesses t401 and t407 are adjusted within the aforementioned range.
  • the bandgap energy of the low-temperature quantum barrier layer 405 and the high-temperature quantum barrier layers 401 and 407 must be higher than that of the quantum well layer 403 .
  • luminous efficiency can be maximized by their recombination.
  • the multilayer structure of the low-temperature quantum barrier layer 403 and the high-temperature quantum barrier layers 401 and 407 surrounds the quantum well layer 403 from above and below.
  • the low-temperature quantum barrier layer 403 can prevent volatilization of indium from the quantum well layer 403 during a high-temperature process of the light emitting device 100 .
  • the low-temperature quantum barrier layer 405 may be formed by stacking a plurality of low-temperature quantum barriers. Through this structure, indium volatilization in the quantum well layer 403 can be prevented more efficiently.
  • the third semiconductor layer 50 is positioned on the quantum well structure light emitting active layer 40 . More specifically, the third semiconductor layer 50 is positioned over the high-temperature quantum barrier layer 407 .
  • the third semiconductor layer 50 has conductivity and may be a p-type doped semiconductor material.
  • the third semiconductor layer 50 may be made of a p-type GaN material doped with magnesium (Mg). That is, the third semiconductor layer 50 is doped with a polarity opposite to that of the second semiconductor layer 30 .
  • the transparent electrode 60 may be positioned on the third semiconductor layer 50 .
  • the transparent electrode 50 functions as a current spreading layer. Current can be injected uniformly over the entire surface of the third semiconductor layer 50 through the transparent electrode 50 .
  • the transparent electrode 50 has high transmittance in the visible light region. Accordingly, light emitted from the quantum well structure light emitting active layer 40 is well discharged to the outside of the light emitting device 100 through the transparent electrode 50 .
  • the second electrode 75 is positioned on the transparent electrode 60 .
  • the second electrode 75 functions as a pad for current injection.
  • the second electrode 75 does not completely cover the transparent electrode 50 .
  • light emitted from the quantum well structure light emitting active layer 40 escapes well to the outside through the transparent electrode 50 . Accordingly, the luminous efficiency of the light emitting device 100 can be maximized.
  • a method of manufacturing the light emitting device 100 of FIG. 1 will be described in detail with reference to FIG. 2 .
  • FIG. 2 schematically shows a flow chart of a manufacturing method of the light emitting device 100 of FIG. 1 .
  • the manufacturing method of the light emitting device of FIG. 2 is only for exemplifying the present invention, and the present invention is not limited thereto. Therefore, the manufacturing method of the light emitting device can be modified into other forms.
  • the manufacturing method of the light emitting device includes providing a single crystal substrate (S10), providing an undoped first semiconductor layer on the single crystal substrate (S20), and a conductive agent on the first semiconductor layer.
  • the manufacturing method of the light emitting device may further include other steps.
  • step S10 may be performed by Metal Organic Chemical Vapor Deposition (MOVCVD) or Molecular Beam Epitaxy (MBE). Since these processes can be easily understood by those skilled in the art, a detailed description thereof will be omitted.
  • MOVCVD Metal Organic Chemical Vapor Deposition
  • MBE Molecular Beam Epitaxy
  • the first electrode provided in step S50 is formed after manufacturing the second semiconductor layer S30 provided in step S30.
  • the second semiconductor layer is partially exposed through a lithography process and an etching process. Then, a first electrode is formed on the exposed surface of the second semiconductor layer.
  • the quantum well structure light emitting active layer formed in steps S40 to S80 differs in temperature gradient during formation of each layer. This will be described in detail below with reference to FIG. 3 .
  • FIG. 3 is a process temperature profile graph of some steps of the manufacturing method of the light emitting device of FIG. 1 . That is, FIG. 3 shows a temperature condition change for each process step for the quantum well structure light emitting active layer.
  • a quantum well structure light emitting active layer is formed on the second semiconductor layer of n-GaN.
  • the quantum barrier layers HT-QB and LT-QB formed on the quantum well layer QW are formed through a two-step process of low temperature and high temperature.
  • a difference between the growth temperature of the quantum well layer (QW) and the growth temperature of the low-temperature quantum barrier layer (LT-QB) may be in the range of 0°C to 50°C. If the growth temperature difference described above is too large, volatilization or decomposition of indium occurs in the same manner as in the formation of the high-temperature quantum barrier layer (HT-QB), thereby reducing the separation prevention rate or reducing the efficiency of the light emitting device due to low-quality crystal quality. . Therefore, it is desirable to maintain the difference in growth temperature within the aforementioned range.
  • the low-temperature quantum barrier layer (LT-QB) is deposited at a temperature equal to or lower than the deposition temperature of the quantum well layer (QW).
  • the low-temperature quantum barrier layer (LT-QB) prevents volatilization of indium element in the lower quantum well layer (QW) during temperature rise to form the high-temperature quantum barrier layer (HT-QB).
  • the quantum well layer QW may be formed of a plurality of quantum well parts.
  • T QW single temperature
  • T QW single temperature
  • T QW single temperature
  • the quantum well parts are stacked while growing each, the growth temperature is gradually increased to greater than 0 and less than 10° C. as the number of quantum well parts increases one by one. If the temperature increase is too large, the color purity and uniformity of the light emitting device to be manufactured is lowered. Therefore, the increasing temperature is adjusted within the above range.
  • the quantum well layer QW may be manufactured by forming each quantum well part while gradually increasing the temperature to 700°C, 710°C, and 720°C.
  • the quantum well layer QW may be fabricated by sequentially decreasing the growth temperature of the quantum well portions from greater than 0 to 10° C. or less.
  • the quantum well layer QW may be manufactured by sequentially stacking the quantum well parts while gradually lowering the process temperature to 720 °C, 710 °C, and 700 °C. A light emitting device having high color purity can be manufactured using this process. Accordingly, the growth temperature is gradually decreased to manufacture a plurality of quantum well parts.
  • the high-temperature quantum barrier layers are provided by growing them at 750°C to 900°C. If the growth temperature is too low, the crystalline quality of the quantum barrier layer deteriorates, resulting in lower efficiency of the light emitting device. In addition, if the growth temperature is too high, damage to all of the already stacked lower layers causes the structure of the light emitting device to be damaged or the efficiency to decrease. Accordingly, the growth temperature of the high-temperature quantum barrier layers is controlled within the above range.
  • volatilization of indium in the quantum well layer can be prevented by using the low-temperature quantum barrier layer (LT-QB) when manufacturing the light emitting device.
  • LT-QB low-temperature quantum barrier layer
  • FIG. 4 shows a conceptual diagram of indium atom volatility of a light emitting device according to the presence or absence of a low-temperature quantum barrier layer according to an embodiment of the present invention.
  • FIG. 4(a) conceptually shows a state in which indium is preserved
  • FIG. 4(b) conceptually shows a state in which indium is decomposed and volatilized.
  • the deposition temperature of the InGaN quantum well layer is lowered to increase the indium content.
  • the high vapor pressure of indium that is, the high temperature process for depositing the quantum barrier layer, which is generally performed at a high temperature after forming the quantum well layer, or high temperature
  • indium atoms in the quantum well layer are diffused to the outside and volatilized. Therefore, in the prior art, it was not easy to manufacture an InGaN layer having a high indium content in an InGaN-based light emitting device. As a result, it is very difficult to implement red light in the light emitting device.
  • the light emitting device according to an embodiment of the present invention solves this problem and can implement excellent red light.
  • the low-temperature quantum barrier layer functions as an indium volatilization prevention layer that prevents volatilization of indium atoms in the quantum well layer below it. That is, as described above, volatilization of indium in the quantum well layer is prevented by depositing a low-temperature quantum barrier layer on the quantum well layer at a temperature equal to or lower than the quantum well layer. As a result, it is possible to keep indium well at a high content.
  • indium atoms in the quantum well layer volatilize during a temperature increase process for forming a high-temperature quantum barrier layer.
  • the indium content of the quantum well layer decreases, making it difficult to emit long-wavelength light.
  • a light emitting device having the structure of FIG. 1 was manufactured according to the manufacturing method of the light emitting device of FIG. 2 .
  • the quantum well structure light emitting active layer of FIG. 1 was grown according to the process profile of FIG. 3 .
  • the quantum well layer was made of InGaN, grown at 720°C, and consisted of 5 quantum well structure light emitting active layers (plural well layers).
  • the c-sapphire single crystal substrate was washed with acetone, methanol, isopropyl alcohol, and pure water in an ultrasonic cleaner for 5 minutes, respectively. Between each step, the residue attached to the single-crystal substrate was removed by blowing with high-purity nitrogen. And the single crystal substrate was loaded into the MOCVD equipment. And, before growing the semiconductor layer on the single crystal substrate, all impurities remaining on the single crystal substrate were removed through a heat treatment process at an ultra-high temperature of 1100° C. for 5 minutes in a high purity hydrogen atmosphere. Then, a semiconductor layer was laminated. All semiconductor layers were grown in stages, and all semiconductor layers were deposited after temperature stabilization.
  • All semiconductor layers containing GaN were fabricated using TMGa (tri-methyl-gallium) or TEGa (tri-ethyle-gallium) organometallic compounds as the Ga source and ultra-high purity ammonia gas as the N source.
  • Ultra-high purity silane gas was used for n-type doping
  • Cp 2 Mg (bis(cyclopentadienyl)magnesium) organometallic compound was used for p-type doping.
  • TMIn tri-methyl-gallium
  • metal electrodes of Ti/Au and Ni/Au are deposited in a square shape with a size of 5mmX5mm using electron beam evaporation equipment on the n-type and p-type doped GaN semiconductor layers, respectively, to form a light emitting element. was manufactured. Details of experiments for each layer of the light emitting device will be described again below.
  • a low-temperature quantum barrier layer was grown for 20 seconds.
  • the rest of the experimental conditions were the same as in the aforementioned experimental example.
  • a low-temperature quantum barrier layer was grown for 40 seconds.
  • the rest of the experimental conditions were the same as in the aforementioned experimental example.
  • a low-temperature quantum barrier layer was grown for 60 seconds.
  • the rest of the experimental conditions were the same as in the aforementioned experimental example.
  • a light emitting device in which the low-temperature quantum barrier layer was not formed was manufactured. Except for the low-temperature quantum barrier layer, the rest of the experimental process was the same as in the above-described experimental example.
  • FIG. 5 is a current-voltage graph and an electroluminescence spectrum graph according to voltage increase of a light emitting device according to Experimental Example 3 of the present invention. More specifically, FIG. 5(a) shows a current-voltage graph of the light emitting device, and FIG. 5(b) shows an electroluminescence spectrum graph according to voltage increase. In (b) of FIG. 5, an electroluminescence image is inserted and shown.
  • the light emitting device exhibited diode characteristics of a threshold voltage of about 1.9 V.
  • a linear current-voltage characteristic was shown above the turn-on voltage.
  • FIG. 6 shows an electroluminescence spectrum of a light emitting device according to Experimental Example 3 and Comparative Example with or without a low-temperature quantum barrier layer and coordinate values in the CIE 1931 color space. More specifically, (a) of FIG. 6 shows an electroluminescence spectrum of a light emitting device with and without a low-temperature quantum barrier layer. 6(b) shows a color coordinate graph on the CIE 1931 color space. In FIG. 6(a) and FIG. 6(b), emission images according to the presence or absence of the low-temperature quantum barrier layer are inserted and shown, respectively.
  • the light emitting device manufactured according to Experimental Example 3 generated red light with a wavelength of 629 nm due to the presence of the low-temperature quantum barrier layer.
  • the low-temperature quantum barrier layer was not present in the light emitting device manufactured according to Comparative Example, green light with a wavelength of 527 nm was generated.
  • a wavelength deviation of about 100 nm occurred depending on the presence or absence of the low-temperature quantum barrier layer. Therefore, it was found that it is difficult to emit red light without the low-temperature quantum barrier layer.
  • the color coordinate values of the light emitted from the light emitting device manufactured according to the experimental example were (0.627, 0.356), indicating red light having a considerably high color purity.
  • the color coordinate values of the light emitted from the light emitting device manufactured according to the comparative example were (0.217, 0.698).
  • This result means that it is possible to manufacture a red light emitting device based on an InGaN quantum well structure layer by inserting a low-temperature quantum barrier layer into existing blue light emitting devices and green light emitting devices. Furthermore, not limited to the red light emitting device, it was possible to manufacture an InGaN quantum well structure layer having the same emission wavelength even at a temperature relatively higher than the manufacturing temperature of the InGaN quantum well layer. Accordingly, a high-quality and high-efficiency light emitting device could be manufactured.
  • FIG. 7 shows an electroluminescence spectrum graph of the light emitting device according to Experimental Examples 1 to 3 according to the growth time of the low temperature quantum barrier layer in the light emitting device according to Experimental Examples 1 to 3 of the present invention.
  • An electroluminescence image of the light emitting device is shown inset in FIG. 7 .
  • the light emitting devices of Experimental Examples 1 to 3 were analyzed using the growth time as a variable. Due to the characteristics of InGaN-based LEDs, the operating voltage and efficiency of each device are different depending on the content of indium. Therefore, the experiment was performed at the same current density of 10 mA.
  • the emission wavelengths for each condition of the growth time variable of the low-temperature quantum barrier layer were 555.9 nm, 628.9 nm, and 644.2 nm in Experimental Example 1, Experimental Example 2, and Experimental Example 3, respectively.
  • the light emission intensity of the light emitting device decreased in proportion to the increase of the growth time. Therefore, it was found that in order to manufacture a light emitting device that emits red light with high efficiency, it is necessary to optimize a specific growth time condition of the thickness.
  • the thickness was 0.68 nm to 1.82 nm.
  • the thickness and wavelength of the low-temperature quantum barrier layer showed a proportional relationship.
  • the thickness of the low-temperature quantum barrier layer and the emission intensity were inversely proportional to each other. That is, it was confirmed that it is difficult to manufacture a long-wavelength light emitting device with a thin low-temperature quantum barrier layer.
  • the performance of the light emitting device is poor. Therefore, it was found that a low-temperature quantum barrier layer having an appropriate thickness should be manufactured in consideration of this trade-off relationship.
  • a method of manufacturing a Group III nitride semiconductor light emitting device comprising: growing a first semiconductor region; growing a first high-temperature quantum barrier layer over the first semiconductor region; growing a quantum well layer made of In x Ga 1-x N (0.1 ⁇ x ⁇ 0.5) on the first high-temperature quantum barrier layer; growing a low-temperature quantum barrier layer having a thickness of 0.5 nm to 2 nm on the quantum well layer; Growing a second high-temperature quantum barrier layer on the low-temperature quantum barrier layer; Method for manufacturing a group III nitride semiconductor light emitting device comprising the.
  • the first semiconductor region corresponds to the first semiconductor layer 20 and the second semiconductor layer 30 , and the first semiconductor layer 20 may be omitted although not preferred.
  • the second semiconductor region corresponds to the third semiconductor layer 50 , and an electron blocking layer (EBL) is generally provided prior to formation of the third semiconductor layer 50 .
  • EBL electron blocking layer
  • the lateral chip has been described in the present disclosure, it can be applied to a flip chip or a vertical chip, and various configurations are possible except for the configuration of the active regions 401 , 403 , 405 , and 406 , and the present disclosure is not particularly limited. .
  • a method for manufacturing a group III nitride semiconductor light emitting device in which the thickness of the low-temperature quantum barrier layer is 0.68 nm to 1.82 nm and the thickness of the quantum well layer is 1 nm to 10 nm.
  • a method of manufacturing a group III nitride semiconductor light emitting device wherein each of the first high-temperature quantum barrier layer and the second high-temperature quantum barrier layer is grown at 750° C. to 900° C.
  • a group III nitride semiconductor light emitting device in which the quantum well layer is formed by stacking a plurality of quantum well parts, and the growth temperature thereof is gradually increased from 0 to 10° C. as the number of the plurality of quantum well parts increases one by one. How to manufacture.
  • a method for manufacturing a group III nitride semiconductor light emitting device in which the quantum well layer is formed by stacking a plurality of quantum well parts, and the indium content of each quantum well part is gradually increased as the number of the plurality of quantum well parts increases one by one.
  • a group III nitride semiconductor light emitting device According to the method for manufacturing a group III nitride semiconductor light emitting device according to the present disclosure, it is possible to manufacture a light emitting device capable of efficiently preventing volatilization of indium (In).

Abstract

The present disclosure relates to a method for manufacturing a group III-nitride semiconductor light-emitting device, the method comprising the steps of: growing a first semiconductor area; growing a first high-temperature quantum barrier layer on the first semiconductor area; growing a quantum well layer comprising InxGa1-xN (0.1<x<0.5) on the first high-temperature quantum barrier layer; growing a low-temperature quantum barrier layer with a thickness of 0.5nm to 2nm on the quantum well layer; and growing a second high-temperature quantum barrier layer on the low-temperature quantum barrier layer.

Description

3족 질화물 반도체 발광 소자를 제조하는 방법Method for manufacturing a group III nitride semiconductor light emitting device
본 개시(Disclosure)는 전체적으로 3족 질화물 반도체 발광 소자를 제조하는 방법(METHOD FOR MANUFACTURING A III-NITRIDE SEMICONDUCTOR LIGHT EMITTING DEVICE)에 관한 것으로, 특히 인듐(In)의 휘발을 효율적으로 방지할 수 있는 3족 질화물 반도체 발광 소자를 제조하는 방법에 관한 것이다.The present disclosure relates to a method for manufacturing a group 3 nitride semiconductor light emitting device as a whole (METHOD FOR MANUFACTURING A III-NITRIDE SEMICONDUCTOR LIGHT EMITTING DEVICE), in particular, a group 3 capable of effectively preventing volatilization of indium (In). It relates to a method of manufacturing a nitride semiconductor light emitting device.
여기서는, 본 개시에 관한 배경기술이 제공되며, 이들이 반드시 공지기술을 의미하는 것은 아니다(This section provides background information related to the present disclosure which is not necessarily prior art).Here, background art related to the present disclosure is provided, and they do not necessarily mean prior art (This section provides background information related to the present disclosure which is not necessarily prior art).
무기물 반도체 기반의 발광 소자(Light Emitting Device, LED)는 유기물 기반 발광 소자(Organic Light Emitting device, OLED)에 비해 수명, 휘도, 반응속도, 전력, 안정성 등의 측면에서 우수한 특성을 나타낸다. 따라서 무기물 반도체 기반의 발광 소자는 장수명 고효율의 조명뿐만 아니라 차세대 디스플레이인 마이크로 LED의 광원 소재로도 사용된다.Inorganic semiconductor-based light emitting devices (Light Emitting Devices, LEDs) exhibit superior characteristics in terms of lifespan, luminance, reaction speed, power, stability, and the like, compared to organic light emitting devices (OLEDs). Therefore, light-emitting devices based on inorganic semiconductors are used not only for long-life and high-efficiency lighting, but also as light source materials for micro-LEDs, which are next-generation displays.
발광 소자는 Ⅲ-Ⅴ 화합물 반도체 기반의 p-n 접합 다이오드이다. 발광 소자는 전류 주입을 통해 발광하며, 반도체의 밴드 갭 에너지 조절을 통해 청색, 녹색 또는 적색 발광 소자를 제조한다. 고품질의 발광 소자를 제조하기 위해 다량의 인듐을 함유한 양자 우물층을 성장시킨 후 좀더 높은 온도에서 양자 장벽층을 성장시켜야 한다. 그러나 승온시 양자 우물층에서 다량의 인듐이 이탈하여 상분리 및 조성 불균일이 생겨서 계획한 파장보다 짧은 영역의 파장을 가지고 낮은 선명도의 발광 소자가 제조될 수 있다.The light emitting device is a p-n junction diode based on a III-V compound semiconductor. The light emitting device emits light through current injection, and a blue, green, or red light emitting device is manufactured by adjusting band gap energy of a semiconductor. In order to manufacture a high-quality light emitting device, a quantum well layer containing a large amount of indium must be grown and then a quantum barrier layer must be grown at a higher temperature. However, when the temperature is raised, a large amount of indium is released from the quantum well layer, resulting in phase separation and compositional non-uniformity, so that a light emitting device having a wavelength shorter than a planned wavelength and having low brightness may be manufactured.
이에 대하여 '발명을 실시하기 위한 구체적인 내용'의 후단에 기술한다.This will be described at the end of 'Specific Contents for Carrying Out the Invention'.
여기서는, 본 개시의 전체적인 요약(Summary)이 제공되며, 이것이 본 개시의 외연을 제한하는 것으로 이해되어서는 아니된다(This section provides a general summary of the disclosure and is not a comprehensive disclosure of its full scope or all of its features).This section provides a general summary of the disclosure and is not a comprehensive disclosure of its full scope or all of its features).
본 개시에 따른 일 태양에 의하면(According to one aspect of the present disclosure), 3족 질화물 반도체 발광소자를 제조하는 방법에 있어서, 제1 반도체 영역을 성장하는 단계; 제1 반도체 영역 위에 제1 고온 양자 장벽층을 성장하는 단계; 제1 고온 양자 장벽층 위에 InxGa1-xN (0.1<x<0.5)으로 이루어진 양자 우물층을 성장하는 단계; 양자 우물층 위에 0.5nm 내지 2nm의 두께를 가지는 저온 양자 장벽층을 성장하는 단계; 저온 양자 장벽층 위에 제2 고온 양자 장벽층을 성장하는 단계;를 포함하는, 3족 질화물 반도체 발광소자를 제조하는 방법이 제공된다.According to one aspect according to the present disclosure (According to one aspect of the present disclosure), a method for manufacturing a group III nitride semiconductor light emitting device, comprising: growing a first semiconductor region; growing a first high-temperature quantum barrier layer over the first semiconductor region; growing a quantum well layer made of In x Ga 1-x N (0.1<x<0.5) on the first high-temperature quantum barrier layer; growing a low-temperature quantum barrier layer having a thickness of 0.5 nm to 2 nm on the quantum well layer; Growing a second high-temperature quantum barrier layer on the low-temperature quantum barrier layer; there is provided a method for manufacturing a group III nitride semiconductor light emitting device comprising the.
이에 대하여 '발명을 실시하기 위한 구체적인 내용'의 후단에 기술한다.This will be described at the end of 'Specific Contents for Carrying Out the Invention'.
도 1은 본 발명의 일 실시예에 따른 발광 소자의 개략적인 단면도이다.1 is a schematic cross-sectional view of a light emitting device according to an embodiment of the present invention.
도 2는 도 1의 발광 소자의 제조 방법의 개략적인 순서도이다.2 is a schematic flow chart of a manufacturing method of the light emitting device of FIG. 1 .
도 3은 도 1의 발광 소자의 제조 방법의 일부 단계들의 공정 온도 프로파일 그래프이다.3 is a process temperature profile graph of some steps of the manufacturing method of the light emitting device of FIG. 1 .
도 4는 저온 양자 장벽층의 유무에 따른 발광 소자의 인듐 원자의 휘발성을 나타낸 개략적인 개념도이다.4 is a schematic conceptual diagram showing the volatility of indium atoms of a light emitting device according to the presence or absence of a low-temperature quantum barrier layer.
도 5는 본 발명의 실험예 3에 따른 발광 소자의 전류-전압 그래프와 전압 증가에 따른 전계발광 스펙트럼 그래프이다.5 is a current-voltage graph and an electroluminescence spectrum graph according to voltage increase of a light emitting device according to Experimental Example 3 of the present invention.
도 6은 본 발명의 실험예 3과 종래기술의 비교예에 따른 저온 양자 장벽층 유무에 따른 발광 소자의 전계발광 스펙트럼과 CIE 1931 색공간상에서의 좌표값을 나타낸 그래프이다.6 is a graph showing an electroluminescence spectrum of a light emitting device according to Experimental Example 3 of the present invention and a comparative example of the prior art according to the presence or absence of a low-temperature quantum barrier layer and coordinate values in the CIE 1931 color space.
도 7은 본 발명의 실험예에 따른 발광 소자에서 저온 양자 장벽층의 성장 시간에 따른 발광 소자의 전계발광 스펙트럼 그래프이다.7 is an electroluminescence spectrum graph of a light emitting device according to a growth time of a low-temperature quantum barrier layer in a light emitting device according to an experimental example of the present invention.
이하, 본 개시를 첨부된 도면을 참고로 하여 자세하게 설명한다(The present disclosure will now be described in detail with reference to the accompanying drawing(s)).Hereinafter, the present disclosure will now be described in detail with reference to the accompanying drawing(s).
도 1은 본 발명의 일 실시예에 따른 발광 소자(100)의 단면 구조를 개략적으로 나타낸다. 도 1의 발광 소자의 구조는 단지 본 발명을 예시하기 위한 것이며, 본 발명이 여기에 한정되는 것은 아니다. 따라서 발광 소자의 구조를 다른 형태로 변형할 수 있다. 1 schematically shows a cross-sectional structure of a light emitting device 100 according to an embodiment of the present invention. The structure of the light emitting device of FIG. 1 is only for exemplifying the present invention, and the present invention is not limited thereto. Therefore, the structure of the light emitting device can be transformed into other forms.
도 1의 발광 소자(100)는 전압을 인가시 적색광을 발산하도록 적용된다. 즉, 발광 소자(100)는 색 파장이 균일한 고순도의 적색을 구현할 수 있다.The light emitting device 100 of FIG. 1 is applied to emit red light when a voltage is applied. That is, the light emitting device 100 can implement high-purity red with a uniform color wavelength.
도 1에 도시한 바와 같이, 발광 소자(100)는 단결정 기판(10), 제1 반도체층(20), 제2 반도체층(30), 제1 전극(70), 양자 우물 구조 발광 활성층(40), 제3 반도체층(50), 투명 전극(60) 및 제2 전극(75)을 포함한다. 여기서, 양자 우물 구조 발광 활성층(40)은 제1 고온 양자 장벽층(401), 양자 우물층(403), 저온 양자 장벽층(405), 및 제2 고온 양자 장벽층(407)을 포함한다. 이외에, 발광 소자(100)는 다른 층들을 더 포함할 수 있다.As shown in FIG. 1, the light emitting device 100 includes a single crystal substrate 10, a first semiconductor layer 20, a second semiconductor layer 30, a first electrode 70, a quantum well structure light emitting active layer 40 ), a third semiconductor layer 50, a transparent electrode 60 and a second electrode 75. Here, the quantum well structure light emitting active layer 40 includes a first high-temperature quantum barrier layer 401, a quantum well layer 403, a low-temperature quantum barrier layer 405, and a second high-temperature quantum barrier layer 407. In addition, the light emitting device 100 may further include other layers.
단결정 기판(10)은 GaN, AlGaN, InAlGaN, AlGaAs, GaP, GaAs, GaAsP, AlGaInP, InAs, InAsP, InGaAs, InP, ZnO, ZnMgO, ZnCdO, MgO, CdO, GZO(Ga-doped ZnO), IZO(In-doped ZnO), AZO(Al-doped ZnO), Al2O3, Si 또는 SiC를 포함할 수 있다. 또는 단결정 기판(10)은 이들 소재들을 둘 이상 혼합한 화합물로 제조될 수 있다.The single crystal substrate 10 is GaN, AlGaN, InAlGaN, AlGaAs, GaP, GaAs, GaAsP, AlGaInP, InAs, InAsP, InGaAs, InP, ZnO, ZnMgO, ZnCdO, MgO, CdO, Ga-doped ZnO (GZO), IZO ( In-doped ZnO), AZO (Al-doped ZnO), Al 2 O 3 , Si or SiC may be included. Alternatively, the single crystal substrate 10 may be made of a compound obtained by mixing two or more of these materials.
제1 반도체층(20)은 단결정 기판(10) 위에 위치한다. 제1 반도체층(20)은 도핑 되지 않은 진성 반도체, 예를 들면 GaN일 수 있다. 단결정 기판(10)과 제1 반도체층(20)을 형성하는 물질이 상이한 경우, 양자가 결정 부정합 또는 격자상수 불일치의 관계에 놓일 수 있다. 또한, 양자간의 열팽창 계수 차이가 큰 경우 이를 완화하기 위해 양자 사이에 저온 버퍼층을 삽입할 수 있다. The first semiconductor layer 20 is located on the single crystal substrate 10 . The first semiconductor layer 20 may be an undoped intrinsic semiconductor, for example, GaN. When materials forming the single crystal substrate 10 and the first semiconductor layer 20 are different, the two may be in a relationship of crystal mismatch or lattice constant mismatch. In addition, a low-temperature buffer layer may be inserted between the two in order to mitigate the large difference in thermal expansion coefficient between the two.
제2 반도체층(30)은 제1 반도체층(20) 위에 위치한다. 제2 반도체층(30)은 n-형 도핑될 수 있고 도전성을 가진다. 예를 들면, 제2 반도체층(30)은 실리콘 도핑된 GaN으로 제조할 수 있으며, 이와 다른 소재도 사용할 수 있다. The second semiconductor layer 30 is located on the first semiconductor layer 20 . The second semiconductor layer 30 may be n-type doped and has conductivity. For example, the second semiconductor layer 30 may be made of GaN doped with silicon, and other materials may also be used.
제1 전극(70)은 제2 반도체층(30) 위에 위치한다. 제1 전극(70)은 고온 양자 장벽층(401)과 접촉하지 않고 x축 방향으로 이와 이격되어 패드 형태로 형성된다. 제1 전극(70)은 음극으로서 기능하며, Ti/Au 합금으로 제조할 수 있다.The first electrode 70 is positioned on the second semiconductor layer 30 . The first electrode 70 does not contact the high-temperature quantum barrier layer 401 and is spaced apart from the high-temperature quantum barrier layer 401 in the x-axis direction to form a pad shape. The first electrode 70 functions as a cathode and can be made of a Ti/Au alloy.
도 1에 도시한 바와 같이, 양자 우물 구조 발광 활성층(Quantum Well active layer)(40)은 제2 반도체층(30) 위에 위치한다. 양자 우물 구조 발광 활성층(40)은 2개의 고온 양자 장벽층들(High Temperature Quantum Barriers, HT-QBs)(401, 407), 양자 우물층(Quantum Well, QW)(403) 및 저온 양자 장벽층(Low Temperature Quantum Barrier, LT-QB)(405)을 포함한다. 즉, 양자 우물 구조 발광 활성층(40)은 복수의 층들로 이루어진다. 도 1에는 도시하지 않았지만, 양자 우물 구조 발광 활성층(40) 자체를 다층으로 형성할 수도 있다. 예를 들면, 양자 우물 구조 발광 활성층(40)을 1회 내지 10회 반복하여 제조한다. 적층 회수가 증가할수록 발광 소자(100)의 발광 세기 및 발광 효율은 증가한다. 다만, 양자 우물 구조 발광 활성층(40)이 10층을 초과하는 경우, 공정 비용 및 소재 비용이 증가하여 가성비가 낮아지므로, 전술한 범위로 양자 우물 구조 발광 활성층(40)을 적층한다.As shown in FIG. 1 , a quantum well structure light emitting active layer (Quantum Well active layer) 40 is positioned on the second semiconductor layer 30 . The quantum well structure light emitting active layer 40 includes two high temperature quantum barriers (HT-QBs) 401 and 407, a quantum well layer (QW) 403 and a low temperature quantum barrier layer ( Low Temperature Quantum Barrier, LT-QB) (405). That is, the quantum well structure light emitting active layer 40 is composed of a plurality of layers. Although not shown in FIG. 1 , the quantum well structure light emitting active layer 40 itself may be formed in multiple layers. For example, the quantum well structure light emitting active layer 40 is fabricated by repeating one to ten times. As the number of stacking increases, the light emitting intensity and light emitting efficiency of the light emitting device 100 increase. However, when the number of quantum well structure light emitting active layers 40 exceeds 10 layers, process cost and material cost increase to lower cost performance, so the quantum well structure light emitting active layer 40 is stacked within the above range.
저온 양자 장벽층(405)과 고온 양자 장벽층들(401, 407)은 GaN, InGaN, AlInN, InAlGaN, AlN 또는 AlGaN을 함유하거나 이들 중 둘 이상의 소재를 함유할 수 있다. 저온 양자 장벽층(405)과 고온 양자 장벽층들(401, 407)의 소재는 상호 동일하거나 상이할 수 있다.The low-temperature quantum barrier layer 405 and the high-temperature quantum barrier layers 401 and 407 may contain GaN, InGaN, AlInN, InAlGaN, AlN, or AlGaN, or two or more of these materials. Materials of the low-temperature quantum barrier layer 405 and the high-temperature quantum barrier layers 401 and 407 may be the same or different from each other.
좀더 구체적으로, 저온 양자 장벽층(405)은 GaN, InyGa1-yN, Al1-yInyN, InyAlzGa1-y-zN (0.1<y<x<0.5, 0<z<1), AlN 또는 AlGaN을 포함하거나 이들 중 둘 이상의 소재를 포함할 수 있다. 한편, 양자 우물층(403)은 InxGa1-xN (0.1<x<0.5)을 포함할 수 있다. x가 0.5 이상인 경우, 다량의 인듐으로 인한 편석, 풍부 영역(rich region), 인 디스크(In disk) 등의 결함이 형성되어 소자의 성능이나 발광색의 순도가 저하된다. 또한, x가 0.1 이하인 경우, 녹색광부터 적색광까지의 LED를 구현할 수 없다. 따라서 x를 전술한 범위로 조절한다. 한편, y는 x보다 작다. 즉, 저온 양자 장벽층(405)에 함유된 인듐의 양은 양자 우물층(403)에 함유된 인듐의 양보다 작다.More specifically, the low-temperature quantum barrier layer 405 is GaN, In y Ga 1-y N, Al 1-y In y N, In y Al z Ga 1-yz N (0.1<y<x<0.5, 0<z<1), AlN or AlGaN, or two or more of these materials. Meanwhile, the quantum well layer 403 may include In x Ga 1-x N (0.1<x<0.5). When x is greater than 0.5, defects such as segregation due to a large amount of indium, a rich region, and an in disk are formed, thereby degrading the performance of the device and the purity of the emission color. In addition, when x is less than 0.1, LEDs ranging from green light to red light cannot be implemented. Therefore, x is adjusted to the above range. Meanwhile, y is less than x in other words, The amount of indium contained in the low-temperature quantum barrier layer 405 is smaller than the amount of indium contained in the quantum well layer 403 .
한편, 저온 양자 장벽층(405)의 두께(t405)는 0.5nm 내지 2nm일 수 있다. 좀더 바람직하게는, 두께(t405)는 0.68nm 내지 1.82nm일 수 있다. 두께(t405)가 너무 큰 경우, 양자 장벽층의 품질 저하로 제조한 소자가 작동하지 않거나 효율이 매우 낮다. 또한, 두께(t405)가 너무 작은 경우, 인듐의 분해, 휘발 및 이탈을 방지할 수 없다. 따라서 두께(t405)를 전술한 범위로 조절한다. 그리고 양자 우물층(403)의 두께(t403)는 1nm 내지 10nm일 수 있다. 두께(t403)가 너무 큰 경우, 양자구속효과가 작용하지 않아 양자우물 구조층으로서의 역할을 하지 못해 발광 효율이 저하된다. 그리고 두께(t403)가 너무 작은 경우, 장파장의 발광 소자를 제조하기 위해 양자구속효과 크기에 따라 고함량의 인듐 조성을 가진 InGaN를 형성해야 하므로 전술한 문제점이 발생한다. 따라서 두께(t403)를 전술한 범위로 조절한다.Meanwhile, the thickness t405 of the low-temperature quantum barrier layer 405 may be 0.5 nm to 2 nm. More preferably, the thickness t405 may be 0.68 nm to 1.82 nm. If the thickness t405 is too large, the manufactured device does not operate or has very low efficiency due to the deterioration of the quality of the quantum barrier layer. Also, if the thickness t405 is too small, decomposition, volatilization and separation of indium cannot be prevented. Accordingly, the thickness t405 is adjusted within the aforementioned range. Also, the thickness t403 of the quantum well layer 403 may be 1 nm to 10 nm. If the thickness t403 is too large, the quantum confinement effect does not work and the light emitting efficiency is lowered because it does not play a role as a quantum well structure layer. Also, if the thickness t403 is too small, InGaN having a high content of indium should be formed according to the size of the quantum confinement effect in order to manufacture a long-wavelength light emitting device, resulting in the aforementioned problem. Accordingly, the thickness t403 is adjusted within the aforementioned range.
고온 양자 장벽층들(401, 407)의 각 두께(t401, t407)은 1nm 내지 20nm일 수 있다. 두께(t401, t407)가 너무 큰 경우, 인듐이 각각 함유된 양자 우물층(403) 및 저온 양자 장벽층(405)과 고온 양자 장벽층들(401,407)간의 조성이 다르다. 따라서 부분적으로 응력을 해소하기 위해 스레딩 전위(threading dislocation)가 형성되며 양자우물구조내에 결함이 형성되고 형성된 전위가 인듐 원자의 확산 이동 경로로 작용한다. 따라서 양자 우물 구조가 무너지고, 추가적인 결함이 형성되며, 발광 소자의 효율이 저하될 수 있다. 그리고 두께(t401, t407)가 너무 작은 경우, 전자나 정공이 얇은 장벽으로 인한 터널링 현상을 통해 양자 우물간의 원하지 않는 누설 이동으로 효율이 감소한다. 따라서 두께(t401, t407)를 전술한 범위로 조절한다.Thicknesses t401 and t407 of the high-temperature quantum barrier layers 401 and 407 may range from 1 nm to 20 nm. When the thicknesses t401 and t407 are too large, the compositions of the quantum well layer 403 and the low-temperature quantum barrier layer 405 containing indium, respectively, and the high-temperature quantum barrier layers 401 and 407 are different. Accordingly, threading dislocations are formed to partially relieve the stress, defects are formed in the quantum well structure, and the formed dislocations act as a diffusion movement path of indium atoms. Therefore, the quantum well structure may collapse, additional defects may be formed, and the efficiency of the light emitting device may decrease. Also, when the thicknesses t401 and t407 are too small, the efficiency is reduced due to unwanted leakage movement between quantum wells through a tunneling phenomenon caused by the thin barrier of electrons or holes. Accordingly, the thicknesses t401 and t407 are adjusted within the aforementioned range.
저온 양자 장벽층(405)과 고온 양자 장벽층들(401, 407)의 밴드갭 에너지는 양자 우물층(403)의 밴드갭 에너지보다 높아야 한다. 그 결과, 전자와 정공들을 양자 우물층(403)에 구속할 수 있어서 이들의 재결합에 의해 발광 효율을 극대화할 수 있다.The bandgap energy of the low-temperature quantum barrier layer 405 and the high-temperature quantum barrier layers 401 and 407 must be higher than that of the quantum well layer 403 . As a result, since electrons and holes can be confined to the quantum well layer 403, luminous efficiency can be maximized by their recombination.
저온 양자 장벽층(403)과 고온 양자 장벽층들(401, 407)의 다층 구조물은 양자 우물층(403)을 상하로 둘러싼다. 그 결과, 저온 양자 장벽층(403)은 발광 소자(100)의 고온 공정시 양자 우물층(403)에서 인듐이 휘발하는 것을 방지할 수 있다. 도 1에는 도시하지 않았지만, 저온 양자 장벽층(405)은 복수의 저온 양자 장벽부들을 상호 적층하여 형성할 수 있다. 이러한 구조를 통해 양자 우물층(403)에서의 인듐 휘발을 더욱 효율적으로 방지할 수 있다.The multilayer structure of the low-temperature quantum barrier layer 403 and the high-temperature quantum barrier layers 401 and 407 surrounds the quantum well layer 403 from above and below. As a result, the low-temperature quantum barrier layer 403 can prevent volatilization of indium from the quantum well layer 403 during a high-temperature process of the light emitting device 100 . Although not shown in FIG. 1 , the low-temperature quantum barrier layer 405 may be formed by stacking a plurality of low-temperature quantum barriers. Through this structure, indium volatilization in the quantum well layer 403 can be prevented more efficiently.
제3 반도체층(50)은 양자 우물 구조 발광 활성층(40) 위에 위치한다. 좀더 구체적으로, 제3 반도체층(50)은 고온 양자 장벽층(407) 위에 위치한다. 제3 반도체층(50)은 도전성을 가지며, p형 도핑된 반도체 물질일 수 있다. 예를 들면, 제3 반도체층(50)은 마그네슘(Mg)으로 도핑한 p형의 GaN 소재로 제조될 수 있다. 즉, 제3 반도체층(50)은 제2 반도체층(30)과 반대 극성으로 도핑된다.The third semiconductor layer 50 is positioned on the quantum well structure light emitting active layer 40 . More specifically, the third semiconductor layer 50 is positioned over the high-temperature quantum barrier layer 407 . The third semiconductor layer 50 has conductivity and may be a p-type doped semiconductor material. For example, the third semiconductor layer 50 may be made of a p-type GaN material doped with magnesium (Mg). That is, the third semiconductor layer 50 is doped with a polarity opposite to that of the second semiconductor layer 30 .
도 1에 도시한 바와 같이, 투명 전극(60)은 제3 반도체층(50) 위에 위치할 수 있다. 투명 전극(50)은 전류 확산층(current spreading layer)으로서 기능한다. 투명 전극(50)을 통해 제3 반도체층(50) 전면에 고르게 전류를 주입할 수 있다. 투명 전극(50)은 가시광선 영역에서 높은 투과율을 가진다. 따라서 양자 우물 구조 발광 활성층(40)에서 발광한 빛이 투명 전극(50)을 통해 발광 소자(100)의 외부로 잘 토출된다.As shown in FIG. 1 , the transparent electrode 60 may be positioned on the third semiconductor layer 50 . The transparent electrode 50 functions as a current spreading layer. Current can be injected uniformly over the entire surface of the third semiconductor layer 50 through the transparent electrode 50 . The transparent electrode 50 has high transmittance in the visible light region. Accordingly, light emitted from the quantum well structure light emitting active layer 40 is well discharged to the outside of the light emitting device 100 through the transparent electrode 50 .
제2 전극(75)는 투명 전극(60) 위에 위치한다. 제2 전극(75)은 전류 주입을 위한 패드로서 기능한다. 제2 전극(75)은 투명 전극(50)을 완전히 덮지 않는다. 그 결과, 양자 우물 구조 발광 활성층(40)에서 발산된 광은 투명 전극(50)을 통해 외부로 잘 빠져나온다. 따라서 발광 소자(100)의 발광 효율을 극대화할 수 있다. 이하에서는 도 2를 통하여 도 1의 발광 소자(100)의 제조 방법을 상세하게 설명한다.The second electrode 75 is positioned on the transparent electrode 60 . The second electrode 75 functions as a pad for current injection. The second electrode 75 does not completely cover the transparent electrode 50 . As a result, light emitted from the quantum well structure light emitting active layer 40 escapes well to the outside through the transparent electrode 50 . Accordingly, the luminous efficiency of the light emitting device 100 can be maximized. Hereinafter, a method of manufacturing the light emitting device 100 of FIG. 1 will be described in detail with reference to FIG. 2 .
도 2는 도 1의 발광 소자(100)의 제조 방법의 순서도를 개략적으로 나타낸다. 도 2의 발광 소자의 제조 방법은 단지 본 발명을 예시하기 위한 것이며, 본 발명이 여기에 한정되는 것은 아니다. 따라서 발광 소자의 제조 방법을 다른 형태로 변형할 수 있다.FIG. 2 schematically shows a flow chart of a manufacturing method of the light emitting device 100 of FIG. 1 . The manufacturing method of the light emitting device of FIG. 2 is only for exemplifying the present invention, and the present invention is not limited thereto. Therefore, the manufacturing method of the light emitting device can be modified into other forms.
도 2에 도시한 바와 같이, 발광 소자의 제조 방법은, 단결정 기판을 제공하는 단계(S10), 단결정 기판 위에 도핑되지 않은 제1 반도체층을 제공하는 단계(S20), 제1 반도체층 위에 도전성 제2 반도체층을 제공하는 단계(S30), 제2 반도체층 위에 제1 고온 양자 장벽층을 제공하는 단계(S40), 제2 반도체층 위에 제1 고온 양자 장벽층과 이격된 제1 전극을 제공하는 단계(S50), 제1 고온 양자 장벽층 위에 양자 우물층을 제공하는 단계(S60), 양자 우물층 위에 저온 양자 장벽층을 제공하는 단계(S70), 저온 양자 장벽층 위에 제2 고온 양자 장벽층을 제공하는 단계(S80), 제2 고온 양자 장벽층 위에 도전성 제3 반도체층을 제공하는 단계(S90), 제3 반도체층 위에 투명 전극을 제공하는 단계(S100), 그리고 투명 전극 위에 제2 전극을 제공하는 단계(S110)를 포함한다. 이외에, 발광 소자의 제조 방법은 다른 단계들을 더 포함할 수 있다.As shown in FIG. 2, the manufacturing method of the light emitting device includes providing a single crystal substrate (S10), providing an undoped first semiconductor layer on the single crystal substrate (S20), and a conductive agent on the first semiconductor layer. Providing two semiconductor layers (S30), providing a first high-temperature quantum barrier layer on the second semiconductor layer (S40), providing a first electrode spaced apart from the first high-temperature quantum barrier layer on the second semiconductor layer Step (S50), providing a quantum well layer on the first high-temperature quantum barrier layer (S60), providing a low-temperature quantum barrier layer on the quantum well layer (S70), and a second high-temperature quantum barrier layer on the low-temperature quantum barrier layer providing a step (S80), providing a third conductive semiconductor layer on the second high-temperature quantum barrier layer (S90), providing a transparent electrode on the third semiconductor layer (S100), and a second electrode on the transparent electrode It includes the step of providing (S110). In addition, the manufacturing method of the light emitting device may further include other steps.
단계(S10)을 제외한 각 단계들은 유기금속 화학기상증착법(Metal Organic Chemical Vapor Deposition, MOVCVD) 또는 분자빔 에피택시법(Molecular Beam Epitaxy, MBE)에 의해 이루어질 수 있다. 이러한 공정은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 이해할 수 있으므로, 그 상세한 설명을 생략한다.Each of the steps except step S10 may be performed by Metal Organic Chemical Vapor Deposition (MOVCVD) or Molecular Beam Epitaxy (MBE). Since these processes can be easily understood by those skilled in the art, a detailed description thereof will be omitted.
단계(S50)에서 제공되는 제1 전극은 단계(S30)에서 제공되는 제2 반도체층(S30)의 제조 후에 이루어진다. 예를 들면, 제2 반도체층(S30)을 제조한 후에 리소그래피 공정 및 식각 공정에 의해 제2 반도체층을 부분적으로 노출시킨다. 그리고 노출된 제2 반도체층 표면 위에 제1 전극을 형성한다.The first electrode provided in step S50 is formed after manufacturing the second semiconductor layer S30 provided in step S30. For example, after manufacturing the second semiconductor layer S30, the second semiconductor layer is partially exposed through a lithography process and an etching process. Then, a first electrode is formed on the exposed surface of the second semiconductor layer.
한편, 단계(S40) 내지 단계(S80)에서 형성되는 양자 우물 구조 발광 활성층은 각 층 형성시에 온도 구배를 달리한다. 이를 도 3을 통하여 이하에서 상세하게 설명한다.On the other hand, the quantum well structure light emitting active layer formed in steps S40 to S80 differs in temperature gradient during formation of each layer. This will be described in detail below with reference to FIG. 3 .
도 3은 도 1의 발광 소자의 제조 방법의 일부 단계들의 공정 온도 프로파일 그래프이다. 즉, 도 3은 양자 우물 구조 발광 활성층에 대한 공정 단계별 온도 조건 변화를 나타낸다.3 is a process temperature profile graph of some steps of the manufacturing method of the light emitting device of FIG. 1 . That is, FIG. 3 shows a temperature condition change for each process step for the quantum well structure light emitting active layer.
도 3에 도시한 바와 같이, n-GaN의 제2 반도체층 위에 양자 우물 구조 발광 활성층(Quantum Well active layer)을 형성한다. 양자 우물층(QW) 위에 형성되는 양자 장벽층(HT-QB, LT-QB)은 저온 및 고온의 2단계 공정을 통해 형성한다.As shown in FIG. 3, a quantum well structure light emitting active layer is formed on the second semiconductor layer of n-GaN. The quantum barrier layers HT-QB and LT-QB formed on the quantum well layer QW are formed through a two-step process of low temperature and high temperature.
양자 우물층(QW)의 성장 온도와 저온 양자 장벽층(LT-QB)의 성장 온도의 차는 0℃ 내지 50℃일 수 있다. 전술한 성장 온도차가 너무 큰 경우, 고온 양자 장벽층(HT-QB)의 형성시와 동일하게 인듐의 휘발 또는 분해가 발생하여 이탈 방지율이 감소하거나 저품질의 결정질로 인해 발광 소자의 효율이 감소한다. 따라서 성장 온도의 차를 전술한 범위로 유지하는 것이 바람직하다.A difference between the growth temperature of the quantum well layer (QW) and the growth temperature of the low-temperature quantum barrier layer (LT-QB) may be in the range of 0°C to 50°C. If the growth temperature difference described above is too large, volatilization or decomposition of indium occurs in the same manner as in the formation of the high-temperature quantum barrier layer (HT-QB), thereby reducing the separation prevention rate or reducing the efficiency of the light emitting device due to low-quality crystal quality. . Therefore, it is desirable to maintain the difference in growth temperature within the aforementioned range.
예를 들면, 도 3에 도시한 바와 같이, 저온 양자 장벽층(LT-QB)을 양자 우물층(QW) 증착 온도 이하의 온도에서 증착한다. 저온 양자 장벽층(LT-QB)은 고온 양자 장벽층(HT-QB)을 형성하기 위한 승온 중에 그 하부의 양자 우물층(QW) 내의 인듐 원소의 휘발을 방지한다.For example, as shown in FIG. 3, the low-temperature quantum barrier layer (LT-QB) is deposited at a temperature equal to or lower than the deposition temperature of the quantum well layer (QW). The low-temperature quantum barrier layer (LT-QB) prevents volatilization of indium element in the lower quantum well layer (QW) during temperature rise to form the high-temperature quantum barrier layer (HT-QB).
한편, 도 3에는 하나의 양자 우물층(QW)만을 형성하는 것으로 도시하였지만, 이와는 달리 양자 우물층(QW)을 복수의 양자 우물부로 형성할 수 있다. 하나의 양자 우물층(QW)을 형성하는 경우, 단일 온도(TQW)에서 형성하며, 복수의 양자 우물부들을 형성하는 경우도 단일 온도(TQW)에서 가능하다. 양자 우물부를 각각 성장시키면서 적층하는 경우 그 수가 하나씩 증가함에 따라 그 성장 온도를 0 보다 크고 10℃ 이하로 점차 증가시킨다. 증가 온도가 너무 큰 경우, 제조되는 발광 소자의 색순도 및 균일성이 저하된다. 따라서 증가 온도를 전술한 범위로 조절한다. 예를 들면, 700℃, 710℃, 720℃로 점차 증가시키면서 각 양자 우물부를 형성하여 양자 우물층(QW)을 제조할 수 있다.Meanwhile, although only one quantum well layer QW is illustrated in FIG. 3 , the quantum well layer QW may be formed of a plurality of quantum well parts. When forming one quantum well layer QW, it is formed at a single temperature (T QW ), and when forming a plurality of quantum well portions, it is also possible at a single temperature (T QW ). When the quantum well parts are stacked while growing each, the growth temperature is gradually increased to greater than 0 and less than 10° C. as the number of quantum well parts increases one by one. If the temperature increase is too large, the color purity and uniformity of the light emitting device to be manufactured is lowered. Therefore, the increasing temperature is adjusted within the above range. For example, the quantum well layer QW may be manufactured by forming each quantum well part while gradually increasing the temperature to 700°C, 710°C, and 720°C.
반대로, 복수의 양자 우물부들의 인듐 함량이 점차 증가하는 경우, 양자 우물부의 성장 온도를 차례차례 0 보다 크고 10℃ 이하로 점차 감소시켜서 양자 우물층(QW)을 제조할 수 있다. 예를 들면, 720℃, 710℃, 700℃로 공정 온도를 점차 낮추면서 양자 우물부를 차례로 적층해 양자 우물층(QW)을 제조할 수 있다. 이러한 공정을 사용하여 고순도의 색순도를 지니는 발광 소자를 제조할 수 있다. 따라서 성장 온도를 점차 감소시켜서 복수의 양자 우물부를 제조한다.Conversely, when the indium content of the plurality of quantum well portions gradually increases, the quantum well layer QW may be fabricated by sequentially decreasing the growth temperature of the quantum well portions from greater than 0 to 10° C. or less. For example, the quantum well layer QW may be manufactured by sequentially stacking the quantum well parts while gradually lowering the process temperature to 720 °C, 710 °C, and 700 °C. A light emitting device having high color purity can be manufactured using this process. Accordingly, the growth temperature is gradually decreased to manufacture a plurality of quantum well parts.
한편, 고온 양자 장벽층들(HT-QB)은 750℃ 내지 900℃에서 성장시켜서 제공한다. 성장 온도가 너무 낮은 경우, 양자 장벽층의 결정질 품질이 저하되어 발광 소자의 효율이 저하된다. 또한, 성장 온도가 너무 큰 경우, 이미 적층된 하부의 모든 층들의 손상을 유발해 발광 소자 구조가 망가지거나 효율이 저하된다. 따라서 고온 양자 장벽층들의 성장 온도를 전술한 범위로 조절한다.Meanwhile, the high-temperature quantum barrier layers (HT-QB) are provided by growing them at 750°C to 900°C. If the growth temperature is too low, the crystalline quality of the quantum barrier layer deteriorates, resulting in lower efficiency of the light emitting device. In addition, if the growth temperature is too high, damage to all of the already stacked lower layers causes the structure of the light emitting device to be damaged or the efficiency to decrease. Accordingly, the growth temperature of the high-temperature quantum barrier layers is controlled within the above range.
도 3에 도시한 바와 같이, 발광 소자의 제조시에 저온 양자 장벽층(LT-QB)을 이용하여 양자 우물층(QW)에서의 인듐의 휘발을 방지할 수 있다. 이러한 원리를 도 4를 통하여 이하에서 좀더 상세하게 설명한다.As shown in FIG. 3 , volatilization of indium in the quantum well layer (QW) can be prevented by using the low-temperature quantum barrier layer (LT-QB) when manufacturing the light emitting device. This principle will be described in more detail below with reference to FIG. 4 .
도 4는 본 발명의 일 실시예에 따른 저온 양자 장벽층의 유무에 따른 발광 소자의 인듐 원자 휘발성의 개념도를 나타낸다. 도 4의 (a)는 인듐이 보존되는 상태를 개념적으로 나타내고, 도 4의 (b)는 인듐이 분해 및 휘발되는 상태를 개념적으로 나타낸다.4 shows a conceptual diagram of indium atom volatility of a light emitting device according to the presence or absence of a low-temperature quantum barrier layer according to an embodiment of the present invention. FIG. 4(a) conceptually shows a state in which indium is preserved, and FIG. 4(b) conceptually shows a state in which indium is decomposed and volatilized.
InGaN계 발광 소자에서는 인듐의 조성이 증가할수록 장파장의 빛이 발생한다. 따라서 일반적으로는 인듐의 함량을 증가시키기 위해 InGaN 양자 우물층의 증착 온도를 낮춘다. 그러나 이로 인해 양자 우물층과 양자 장벽층 사이의 증착 온도 차이가 커지는 경우, 인듐의 높은 증기압, 즉 휘발성으로 인해 InGaN 양자 우물층 형성 후 일반적으로 고온에서 실시되는 양자 장벽층 증착을 위한 승온 공정 또는 고온 증착 공정에서 양자 우물층내의 인듐 원자가 외부로 확산되어 휘발된다. 따라서 종래에는 InGaN계 발광 소자에서 높은 인듐 함량을 가지는 InGaN 층의 제조가 쉽지 않았다. 그 결과, 발광 소자의 적색광 구현이 매우 어려웠다. 그러나 본 발명의 일 실시예에 따른 발광 소자는 이러한 문제점을 해결하여 발광 소자가 우수한 적색광을 구현할 수 있다.In the InGaN-based light emitting device, as the composition of indium increases, long-wavelength light is generated. Therefore, in general, the deposition temperature of the InGaN quantum well layer is lowered to increase the indium content. However, when the difference in deposition temperature between the quantum well layer and the quantum barrier layer increases due to this, the high vapor pressure of indium, that is, the high temperature process for depositing the quantum barrier layer, which is generally performed at a high temperature after forming the quantum well layer, or high temperature In the deposition process, indium atoms in the quantum well layer are diffused to the outside and volatilized. Therefore, in the prior art, it was not easy to manufacture an InGaN layer having a high indium content in an InGaN-based light emitting device. As a result, it is very difficult to implement red light in the light emitting device. However, the light emitting device according to an embodiment of the present invention solves this problem and can implement excellent red light.
즉, 도 4의 (a)를 참조하면, 저온 양자 장벽층은 그 아래의 양자 우물층 내의 인듐 원자의 휘발을 막는 인듐 휘발 방지층으로서 기능한다. 즉, 전술한 바와 같이, 양자 우물층 위에 양자 우물층 이하의 온도에서 저온 양자 장벽층을 증착해 양자 우물층 내 인듐의 휘발을 방지한다. 그 결과, 인듐을 높은 함량으로 잘 유지할 수 있다.That is, referring to FIG. 4(a), the low-temperature quantum barrier layer functions as an indium volatilization prevention layer that prevents volatilization of indium atoms in the quantum well layer below it. That is, as described above, volatilization of indium in the quantum well layer is prevented by depositing a low-temperature quantum barrier layer on the quantum well layer at a temperature equal to or lower than the quantum well layer. As a result, it is possible to keep indium well at a high content.
도 4의 (a)와는 대조적으로, 도 4의 (b)에 도시한 바와 같이, 저온 양자 장벽층이 없는 경우 고온 양자 장벽층 형성을 위한 온도 상승 과정에서 양자 우물층내 인듐 원자가 휘발한다. 그 결과, 양자 우물층의 인듐 함량이 감소하여 장파장의 빛을 내기 어렵다. In contrast to (a) of FIG. 4 , as shown in (b) of FIG. 4 , in the absence of a low-temperature quantum barrier layer, indium atoms in the quantum well layer volatilize during a temperature increase process for forming a high-temperature quantum barrier layer. As a result, the indium content of the quantum well layer decreases, making it difficult to emit long-wavelength light.
이하에서는 실험예를 통하여 본 발명을 좀더 상세하게 설명한다. 이러한 실험예는 단지 본 발명을 예시하기 위한 것이며, 본 발명이 여기에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through experimental examples. These experimental examples are only for exemplifying the present invention, and the present invention is not limited thereto.
실험예Experimental example
도 2의 발광 소자의 제조 방법에 따라 도 1의 구조를 가진 발광 소자를 제조하였다. 도 1의 양자 우물 구조 발광 활성층은 도 3의 공정 프로파일에 따라 성장되었다. 양자 우물층은 InGaN를 소재로 하였으며, 720℃에서 성장시켰고 5개의 양자우물구조 발광 활성층(복수의 우물층)으로 구성되었다.A light emitting device having the structure of FIG. 1 was manufactured according to the manufacturing method of the light emitting device of FIG. 2 . The quantum well structure light emitting active layer of FIG. 1 was grown according to the process profile of FIG. 3 . The quantum well layer was made of InGaN, grown at 720°C, and consisted of 5 quantum well structure light emitting active layers (plural well layers).
발광 소자를 제조하기 위해 c-사파이어 단결정 기판을 아세톤, 메탄올, 이소프로필알코올 및 순수를 이용해 각각 초음파 세척기에서 5분 동안 세척하였다. 각 단계 사이에는 고순도 질소를 이용하여 단결정 기판에 붙은 잔여물을 불어서 제거하였다. 그리고 단결정 기판을 MOCVD 장비에 장입하였다. 그리고 단결정 기판 위에 반도체층을 성장시키기 전에 고순도 수소 분위기의 1100℃의 초고온에서 5분간 열처리 과정을 통해 단결정 기판 위에 잔존하는 모든 불순물을 제거하였다. 그리고 반도체층을 적층하였다. 모든 반도체층의 성장은 단계별로 진행하였고, 모든 반도체 층은 온도 안정화 후에 적층되었다.To manufacture a light emitting device, the c-sapphire single crystal substrate was washed with acetone, methanol, isopropyl alcohol, and pure water in an ultrasonic cleaner for 5 minutes, respectively. Between each step, the residue attached to the single-crystal substrate was removed by blowing with high-purity nitrogen. And the single crystal substrate was loaded into the MOCVD equipment. And, before growing the semiconductor layer on the single crystal substrate, all impurities remaining on the single crystal substrate were removed through a heat treatment process at an ultra-high temperature of 1100° C. for 5 minutes in a high purity hydrogen atmosphere. Then, a semiconductor layer was laminated. All semiconductor layers were grown in stages, and all semiconductor layers were deposited after temperature stabilization.
Ga의 소스로서 TMGa (tri-methyl-gallium) 또는 TEGa (tri-ethyle-gallium) 유기금속화합물을 사용하고, N의 소스로서 초고순도 암모니아 가스를 사용해 GaN가 함유된 모든 반도체층을 제조하였다. n형 도핑시에는 초고순도의 실레인(silane) 가스를 사용하였고, p형 도핑시에는 Cp2Mg (bis(cyclopentadienyl)magnesium) 유기금속 화합물을 사용하였다. 인듐이 함유된 InGaN 양자우물층에는 TMIn(tri-methyl-gallium) 유기금속 화합물을 GaN 형성용 소스와 함께 사용하였다. 모든 소스는 초고순도 질소 또는 수소를 캐리어 가스로 이용해 반응챔버 내로 유입시켰다.All semiconductor layers containing GaN were fabricated using TMGa (tri-methyl-gallium) or TEGa (tri-ethyle-gallium) organometallic compounds as the Ga source and ultra-high purity ammonia gas as the N source. Ultra-high purity silane gas was used for n-type doping, and Cp 2 Mg (bis(cyclopentadienyl)magnesium) organometallic compound was used for p-type doping. For the InGaN quantum well layer containing indium, a tri-methyl-gallium (TMIn) organometallic compound was used along with a source for forming GaN. All sources were introduced into the reaction chamber using ultra-high purity nitrogen or hydrogen as a carrier gas.
모든 반도체층이 MOCVD를 통해 성장한 직후, n형 도핑 및 p형 도핑된 GaN 반도체층 위에 각각 Ti/Au 및 Ni/Au의 금속 전극을 전자빔 증착 장비를 이용해 5mmX5 mm 크기의 정사각형 모양으로 증착시켜 발광 소자를 제조하였다. 발광 소자의 각 층별 세부 실험 내용은 아래에서 다시 설명한다.Immediately after all the semiconductor layers are grown through MOCVD, metal electrodes of Ti/Au and Ni/Au are deposited in a square shape with a size of 5mmX5mm using electron beam evaporation equipment on the n-type and p-type doped GaN semiconductor layers, respectively, to form a light emitting element. was manufactured. Details of experiments for each layer of the light emitting device will be described again below.
실험예 1Experimental Example 1
저온 양자 장벽층을 20초 동안 성장시켰다. 나머지 실험 조건은 전술한 실험예와 동일하였다.A low-temperature quantum barrier layer was grown for 20 seconds. The rest of the experimental conditions were the same as in the aforementioned experimental example.
실험예 2Experimental Example 2
저온 양자 장벽층을 40초 동안 성장시켰다. 나머지 실험 조건은 전술한 실험예와 동일하였다.A low-temperature quantum barrier layer was grown for 40 seconds. The rest of the experimental conditions were the same as in the aforementioned experimental example.
실험예 3Experimental Example 3
저온 양자 장벽층을 60초 동안 성장시켰다. 나머지 실험 조건은 전술한 실험예와 동일하였다.A low-temperature quantum barrier layer was grown for 60 seconds. The rest of the experimental conditions were the same as in the aforementioned experimental example.
비교예comparative example
저온 양자 장벽층이 형성되지 않은 발광 소자를 제조하였다. 저온 양자 장벽층을 제외한 나머지 실험 과정은 전술한 실험예와 동일하였다.A light emitting device in which the low-temperature quantum barrier layer was not formed was manufactured. Except for the low-temperature quantum barrier layer, the rest of the experimental process was the same as in the above-described experimental example.
전류-전압 및 전계발광 실험 결과Results of current-voltage and electroluminescence experiments
도 5는 본 발명의 실험예 3에 따른 발광 소자의 전류-전압 그래프와 전압 증가에 따른 전계발광 스펙트럼 그래프이다. 좀더 구체적으로, 도 5의 (a)에는 발광 소자의 전류-전압 그래프를 나타내고, 도 5의 (b)에는 전압 증가에 따른 전계발광 스펙트럼 그래프를 나타낸다. 도 5의 (b)에는 전계발광 이미지를 삽입해 나타낸다.5 is a current-voltage graph and an electroluminescence spectrum graph according to voltage increase of a light emitting device according to Experimental Example 3 of the present invention. More specifically, FIG. 5(a) shows a current-voltage graph of the light emitting device, and FIG. 5(b) shows an electroluminescence spectrum graph according to voltage increase. In (b) of FIG. 5, an electroluminescence image is inserted and shown.
도 5의 (a)에 도시한 바와 같이, 발광 소자는 약 1.9 V의 문턱 전압의 다이오드 특성 나타내었다. 또한, 턴-온 전압 이상에서 선형의 전류-전압 특성을 보였다.As shown in (a) of FIG. 5 , the light emitting device exhibited diode characteristics of a threshold voltage of about 1.9 V. In addition, a linear current-voltage characteristic was shown above the turn-on voltage.
한편, 도 5의 (b)의 그래프내 사진으로 도시한 바와 같이, 발광 소자에서는 강한 적색광이 발광되었다. 즉, 순방향 전압하에서 640nm 내지 680nm 파장의 전계 발광 스펙트럼이 나타났다. 발광 소자는 약 1.9V부터 발광을 시작해 인가 전압이 증가할수록 전계 발광 세기가 점차 증가하였다. 이러한 결과는 적색광이 p-n 접합을 통해 이동한 전자들의 발광 재결합에 의해 발생한 것임을 의미한다.On the other hand, as shown in the photo in the graph of FIG. 5(b), strong red light was emitted from the light emitting device. That is, an electroluminescence spectrum of a wavelength of 640 nm to 680 nm was shown under a forward voltage. The light emitting device started to emit light at about 1.9V, and the electroluminescence intensity gradually increased as the applied voltage increased. This result means that the red light is generated by luminous recombination of electrons that have moved through the p-n junction.
전계발광 스펙트럼 및 색공간 좌표값 실험 결과Experimental results of electroluminescence spectrum and color space coordinate values
도 6은 실험예 3과 비교예에 따른 저온 양자 장벽층 유무에 따른 발광 소자의 전계발광 스펙트럼과 CIE 1931 색공간상에서의 좌표값을 나타낸다. 좀더 구체적으로, 도 6의 (a)는 저온 양자 장벽층 유무에 따른 발광 소자의 전계발광 스펙트럼을 나타낸다. 도 6의 (b)는 CIE 1931 색공간상에서의 색좌표 그래프를 나타낸다. 도 6의 (a) 및 도 6의 (b)에는 각각 저온 양자 장벽층 유무에 따른 발광 이미지를 삽입해 나타낸다.6 shows an electroluminescence spectrum of a light emitting device according to Experimental Example 3 and Comparative Example with or without a low-temperature quantum barrier layer and coordinate values in the CIE 1931 color space. More specifically, (a) of FIG. 6 shows an electroluminescence spectrum of a light emitting device with and without a low-temperature quantum barrier layer. 6(b) shows a color coordinate graph on the CIE 1931 color space. In FIG. 6(a) and FIG. 6(b), emission images according to the presence or absence of the low-temperature quantum barrier layer are inserted and shown, respectively.
도 6의 (a)에 도시한 바와 같이, 실험예 3에 따라 제조한 발광 소자는 저온 양자 장벽층의 존재로 인해 629nm 파장의 적색광이 발생하였다. 이와는 대조적으로, 비교예에 따라 제조한 발광 소자는 저온 양자 장벽층이 존재하지 않으므로, 527nm 파장의 녹색광이 발생하였다. 저온 양자 장벽층의 유무에 따라 약 100nm의 파장 편차가 발생하였다. 따라서 저온 양자 장벽층이 없으면, 적색광의 발광이 어렵다는 것을 알 수 있었다.As shown in (a) of FIG. 6, the light emitting device manufactured according to Experimental Example 3 generated red light with a wavelength of 629 nm due to the presence of the low-temperature quantum barrier layer. In contrast, since the low-temperature quantum barrier layer was not present in the light emitting device manufactured according to Comparative Example, green light with a wavelength of 527 nm was generated. A wavelength deviation of about 100 nm occurred depending on the presence or absence of the low-temperature quantum barrier layer. Therefore, it was found that it is difficult to emit red light without the low-temperature quantum barrier layer.
한편, 도 6의 (b)에 도시한 바와 같이, 실험예에 따라 제조한 발광 소자에서 발광하는 빛의 색좌표값은 (0.627, 0.356)로 상당히 높은 색순도를 가지는 적색광으로 나타났다. 이와는 대조적으로, 비교예에 따라 제조한 발광 소자에서 발광하는 빛의 색좌표값은 (0.217, 0.698)로 나타났다. 따라서 저온 양자 장벽층이 InGaN 양자 우물층 내의 인듐 원자의 휘발을 효과적으로 방지한다는 것이 입증되었다. 즉, 발광 소자 제조시의 고온 양자 장벽층의 증착 과정에서도 인듐 조성을 지속적으로 높게 보존시켜 줄 수 있다는 것이 확인되었다. 이러한 결과는 기존의 청색 발광 소자 및 녹색 발광 소자에도 저온 양자 장벽층을 삽입해 InGaN 양자 우물 구조층 기반의 적색 발광 소자 제조가 가능하다는 것을 의미한다. 나아가, 적색 발광 소자에 한정되지 않고, InGaN 양자 우물층 제조 온도보다 상대적으로 높은 온도에서도 동일한 발광 파장을 가지는 InGaN 양자 우물 구조층을 제조할 수 있었다. 따라서 고품질 및 고효율의 발광 소자를 제조할 수 있었다.On the other hand, as shown in (b) of FIG. 6, the color coordinate values of the light emitted from the light emitting device manufactured according to the experimental example were (0.627, 0.356), indicating red light having a considerably high color purity. In contrast, the color coordinate values of the light emitted from the light emitting device manufactured according to the comparative example were (0.217, 0.698). Thus, it was demonstrated that the low-temperature quantum barrier layer effectively prevents volatilization of indium atoms in the InGaN quantum well layer. That is, it was confirmed that the indium composition can be continuously maintained at a high level even during the deposition process of the high-temperature quantum barrier layer in manufacturing the light emitting device. This result means that it is possible to manufacture a red light emitting device based on an InGaN quantum well structure layer by inserting a low-temperature quantum barrier layer into existing blue light emitting devices and green light emitting devices. Furthermore, not limited to the red light emitting device, it was possible to manufacture an InGaN quantum well structure layer having the same emission wavelength even at a temperature relatively higher than the manufacturing temperature of the InGaN quantum well layer. Accordingly, a high-quality and high-efficiency light emitting device could be manufactured.
저온 양자 장벽층의 성장 시간 실험 결과Growth time test result of low-temperature quantum barrier layer
도 7은 본 발명의 실험예 1 내지 실험예 3에 따른 발광 소자에서 저온 양자 장벽층의 성장 시간에 따른 발광 소자의 전계발광 스펙트럼 그래프를 나타낸다. 발광 소자의 전계발광 이미지는 도 7에 삽입해 나타낸다.7 shows an electroluminescence spectrum graph of the light emitting device according to Experimental Examples 1 to 3 according to the growth time of the low temperature quantum barrier layer in the light emitting device according to Experimental Examples 1 to 3 of the present invention. An electroluminescence image of the light emitting device is shown inset in FIG. 7 .
저온 양자 장벽층의 실제 두께를 측정하기 어려우므로, 성장 시간을 변수로 하여 실험예 1 내지 실험예 3의 발광 소자를 분석하였다. InGaN계 LED의 특성상 인듐의 함유량에 따라 소자별 작동하는 전압과 소자의 효율이 다르다. 따라서 10mA의 동일한 전류 밀도에서 실험하였다. Since it is difficult to measure the actual thickness of the low-temperature quantum barrier layer, the light emitting devices of Experimental Examples 1 to 3 were analyzed using the growth time as a variable. Due to the characteristics of InGaN-based LEDs, the operating voltage and efficiency of each device are different depending on the content of indium. Therefore, the experiment was performed at the same current density of 10 mA.
도 7에 도시한 바와 같이, 저온 양자 장벽층의 성장 시간 변수의 조건별 발광 파장은 실험예 1, 실험예 2 및 실험예 3이 각각 555.9nm, 628.9nm 및 644.2nm로 나타났다. 이는 저온 양자 장벽층의 성장 시간이 증가할수록, 즉 저온 양자 장벽층이 두꺼울수록 제조된 발광 소자가 더 긴 파장에서 발광하는 것을 의미하고, 인듐의 휘발 및 이탈을 효율적으로 방지함을 의미한다. 그러나 성장 시간이 늘어남에 비례해 발광 소자의 발광 세기도 감소하였다. 따라서 적색광을 발광하는 발광 소자를 고효율로 제조하기 위해 그 두께의 특정 성장 시간 조건을 최적화해야 한다는 것을 알 수 있었다. 본 실험 결과, 인듐의 분해 및 휘발을 방지하기 위한 저온 양자 장벽층의 공정 조건은 그 성장 속도가 0.228Å/s(=0.0228nm/s)인 경우, 성장 시간은 30초 내지 80초이었으며, 그 두께는 0.68nm 내지 1.82nm이었다.As shown in FIG. 7, the emission wavelengths for each condition of the growth time variable of the low-temperature quantum barrier layer were 555.9 nm, 628.9 nm, and 644.2 nm in Experimental Example 1, Experimental Example 2, and Experimental Example 3, respectively. This means that as the growth time of the low-temperature quantum barrier layer increases, that is, as the low-temperature quantum barrier layer becomes thicker, the manufactured light emitting device emits light at a longer wavelength and effectively prevents volatilization and separation of indium. However, the light emission intensity of the light emitting device decreased in proportion to the increase of the growth time. Therefore, it was found that in order to manufacture a light emitting device that emits red light with high efficiency, it is necessary to optimize a specific growth time condition of the thickness. As a result of this experiment, the process conditions for the low-temperature quantum barrier layer to prevent decomposition and volatilization of indium were when the growth rate was 0.228 Å / s (= 0.0228 nm / s) and the growth time was 30 seconds to 80 seconds. The thickness was 0.68 nm to 1.82 nm.
실험 결과, 저온 양자 장벽층의 두께와 파장은 비례 관계를 나타내었다. 또한, 저온 양자 장벽층의 두께와 발광 세기는 상호 반비례하였다. 즉, 얇은 저온 양자 장벽층으로는 장파장의 발광 소자를 제조하기 어렵다는 것을 확인하였다. 또한, 두꺼운 저온 양자 장벽층으로는 발광 소자의 발광 세기가 크게 감소하므로, 발광 소자의 성능이 불량하였다. 따라서 이러한 트레이드 오프 관계를 고려해 적절한 두께의 저온 양자 장벽층을 제조해야 한다는 것을 알 수 있었다.As a result of the experiment, the thickness and wavelength of the low-temperature quantum barrier layer showed a proportional relationship. In addition, the thickness of the low-temperature quantum barrier layer and the emission intensity were inversely proportional to each other. That is, it was confirmed that it is difficult to manufacture a long-wavelength light emitting device with a thin low-temperature quantum barrier layer. In addition, since the light emitting intensity of the light emitting device is greatly reduced with the thick low-temperature quantum barrier layer, the performance of the light emitting device is poor. Therefore, it was found that a low-temperature quantum barrier layer having an appropriate thickness should be manufactured in consideration of this trade-off relationship.
이하 본 개시의 다양한 실시 형태에 대하여 설명한다.Hereinafter, various embodiments of the present disclosure will be described.
(1) 3족 질화물 반도체 발광소자를 제조하는 방법에 있어서, 제1 반도체 영역을 성장하는 단계; 제1 반도체 영역 위에 제1 고온 양자 장벽층을 성장하는 단계; 제1 고온 양자 장벽층 위에 InxGa1-xN (0.1<x<0.5)으로 이루어진 양자 우물층을 성장하는 단계; 양자 우물층 위에 0.5nm 내지 2nm의 두께를 가지는 저온 양자 장벽층을 성장하는 단계; 저온 양자 장벽층 위에 제2 고온 양자 장벽층을 성장하는 단계;를 포함하는, 3족 질화물 반도체 발광소자를 제조하는 방법. 제1 반도체 영역은 제1 반도체층(20) 및 제2 반도체층(30)이 해당하며, 제1 반도체층(20) 바람직하지는 않지만 생략될 수 있다. 제2 반도체 영역은 제3 반도체층(50)이 해당하며, 제3 반도체층(50)의 형성에 앞서 전자 차단층(EBL; Electron Blocking Layer)이 구비되는 것이 일반적이다. 본 개시에서 래터럴 칩을 중심으로 설명되었지만, 플립 칩이나 수직형 칩에 적용될 수 있음은 물론이며, 본 개시는 활성 영역(401,403,405,406)의 구성을 제외하고는, 다양한 구성이 가능하며, 특별히 제한되지 않는다.(1) A method of manufacturing a Group III nitride semiconductor light emitting device, comprising: growing a first semiconductor region; growing a first high-temperature quantum barrier layer over the first semiconductor region; growing a quantum well layer made of In x Ga 1-x N (0.1<x<0.5) on the first high-temperature quantum barrier layer; growing a low-temperature quantum barrier layer having a thickness of 0.5 nm to 2 nm on the quantum well layer; Growing a second high-temperature quantum barrier layer on the low-temperature quantum barrier layer; Method for manufacturing a group III nitride semiconductor light emitting device comprising the. The first semiconductor region corresponds to the first semiconductor layer 20 and the second semiconductor layer 30 , and the first semiconductor layer 20 may be omitted although not preferred. The second semiconductor region corresponds to the third semiconductor layer 50 , and an electron blocking layer (EBL) is generally provided prior to formation of the third semiconductor layer 50 . Although the lateral chip has been described in the present disclosure, it can be applied to a flip chip or a vertical chip, and various configurations are possible except for the configuration of the active regions 401 , 403 , 405 , and 406 , and the present disclosure is not particularly limited. .
(2) 양자 우물층의 성장 온도와 저온 양자 장벽층의 성장 온도의 차는 0 내지 50℃인, 3족 질화물 반도체 발광소자를 제조하는 방법.(2) A method for manufacturing a group III nitride semiconductor light-emitting device, wherein the difference between the growth temperature of the quantum well layer and the growth temperature of the low-temperature quantum barrier layer is 0 to 50°C.
(3) 저온 양자 장벽층의 성장 시간은 30초 내지 80초인, 3족 질화물 반도체 발광소자를 제조하는 방법.(3) A method for manufacturing a group III nitride semiconductor light emitting device in which the growth time of the low-temperature quantum barrier layer is 30 seconds to 80 seconds.
(4) 저온 양자 장벽층의 두께는 0.68nm 내지 1.82nm이며, 양자 우물층의 두께는 1nm 내지 10nm인, 3족 질화물 반도체 발광소자를 제조하는 방법.(4) A method for manufacturing a group III nitride semiconductor light emitting device in which the thickness of the low-temperature quantum barrier layer is 0.68 nm to 1.82 nm and the thickness of the quantum well layer is 1 nm to 10 nm.
(5) 제1 고온 양자 장벽층 및 제2 고온 양자 장벽층 각각은 750℃ 내지 900℃에서 성장되는, 3족 질화물 반도체 발광소자를 제조하는 방법.(5) A method of manufacturing a group III nitride semiconductor light emitting device, wherein each of the first high-temperature quantum barrier layer and the second high-temperature quantum barrier layer is grown at 750° C. to 900° C.
(6) 양자 우물층은 복수의 양자 우물부가 상호 적층되어 형성되며, 복수의 양자 우물부의 수가 하나씩 증가함에 따라 그 성장 온도를 0보다 크고 10℃ 이하로 점차 증가시키는, 3족 질화물 반도체 발광소자를 제조하는 방법.(6) A group III nitride semiconductor light emitting device in which the quantum well layer is formed by stacking a plurality of quantum well parts, and the growth temperature thereof is gradually increased from 0 to 10° C. as the number of the plurality of quantum well parts increases one by one. How to manufacture.
(7) 양자 우물층은 복수의 양자 우물부가 상호 적층되어 형성되며, 복수의 양자 우물부의 수가 하나씩 증가함에 따라 각 양자 우물부의 인듐 함량은 점차 증가시키는, 3족 질화물 반도체 발광소자를 제조하는 방법.(7) A method for manufacturing a group III nitride semiconductor light emitting device in which the quantum well layer is formed by stacking a plurality of quantum well parts, and the indium content of each quantum well part is gradually increased as the number of the plurality of quantum well parts increases one by one.
(8) 양자 우물층은 적색 광을 발광하는, 3족 질화물 반도체 발광소자를 제조하는 방법.(8) A method for producing a group III nitride semiconductor light emitting device in which the quantum well layer emits red light.
본 개시에 따른 3족 질화물 반도체 발광소자를 제조하는 방법에 의하면, 인듐(In)의 휘발을 효율적으로 방지할 수 있는 발광 소자를 제조할 수 있게 된다. According to the method for manufacturing a group III nitride semiconductor light emitting device according to the present disclosure, it is possible to manufacture a light emitting device capable of efficiently preventing volatilization of indium (In).

Claims (8)

  1. 3족 질화물 반도체 발광소자를 제조하는 방법에 있어서,In the method for manufacturing a group III nitride semiconductor light emitting device,
    제1 반도체 영역을 성장하는 단계;growing a first semiconductor region;
    제1 반도체 영역 위에 제1 고온 양자 장벽층을 성장하는 단계;growing a first high-temperature quantum barrier layer over the first semiconductor region;
    제1 고온 양자 장벽층 위에 InxGa1-xN (0.1<x<0.5)으로 이루어진 양자 우물층을 성장하는 단계;growing a quantum well layer made of In x Ga 1-x N (0.1<x<0.5) on the first high-temperature quantum barrier layer;
    양자 우물층 위에 0.5nm 내지 2nm의 두께를 가지는 저온 양자 장벽층을 성장하는 단계;growing a low-temperature quantum barrier layer having a thickness of 0.5 nm to 2 nm on the quantum well layer;
    저온 양자 장벽층 위에 제2 고온 양자 장벽층을 성장하는 단계;를 포함하는, 3족 질화물 반도체 발광소자를 제조하는 방법.Growing a second high-temperature quantum barrier layer on the low-temperature quantum barrier layer; Method for manufacturing a group III nitride semiconductor light emitting device comprising the.
  2. 청구항 1에 있어서,The method of claim 1,
    양자 우물층의 성장 온도와 저온 양자 장벽층의 성장 온도의 차는 0 내지 50℃인, 3족 질화물 반도체 발광소자를 제조하는 방법.A method for manufacturing a group III nitride semiconductor light emitting device, wherein the difference between the growth temperature of the quantum well layer and the growth temperature of the low temperature quantum barrier layer is 0 to 50 ° C.
  3. 청구항 1에 있어서,The method of claim 1,
    저온 양자 장벽층의 성장 시간은 30초 내지 80초인, 3족 질화물 반도체 발광소자를 제조하는 방법.The growth time of the low-temperature quantum barrier layer is 30 seconds to 80 seconds, a method for manufacturing a group III nitride semiconductor light emitting device.
  4. 청구항 1에 있어서,The method of claim 1,
    저온 양자 장벽층의 두께는 0.68nm 내지 1.82nm이며,The thickness of the low-temperature quantum barrier layer is 0.68 nm to 1.82 nm,
    양자 우물층의 두께는 1nm 내지 10nm인, 3족 질화물 반도체 발광소자를 제조하는 방법.The thickness of the quantum well layer is 1 nm to 10 nm, a method for manufacturing a group III nitride semiconductor light emitting device.
  5. 청구항 1에 있어서,The method of claim 1,
    제1 고온 양자 장벽층 및 제2 고온 양자 장벽층 각각은 750℃ 내지 900℃에서 성장되는, 3족 질화물 반도체 발광소자를 제조하는 방법.The first high-temperature quantum barrier layer and the second high-temperature quantum barrier layer are each grown at 750 ° C to 900 ° C, a method for manufacturing a group III nitride semiconductor light emitting device.
  6. 청구항 1에 있어서,The method of claim 1,
    양자 우물층은 복수의 양자 우물부가 상호 적층되어 형성되며,The quantum well layer is formed by mutually stacking a plurality of quantum well parts,
    복수의 양자 우물부의 수가 하나씩 증가함에 따라 그 성장 온도를 0보다 크고 10℃ 이하로 점차 증가시키는, 3족 질화물 반도체 발광소자를 제조하는 방법.A method of manufacturing a group III nitride semiconductor light emitting device, wherein the growth temperature thereof is gradually increased to greater than 0 and less than 10° C. as the number of the plurality of quantum well portions increases one by one.
  7. 청구항 1에 있어서,The method of claim 1,
    양자 우물층은 복수의 양자 우물부가 상호 적층되어 형성되며,The quantum well layer is formed by mutually stacking a plurality of quantum well parts,
    복수의 양자 우물부의 수가 하나씩 증가함에 따라 각 양자 우물부의 인듐 함량은 점차 증가시키는, 3족 질화물 반도체 발광소자를 제조하는 방법.A method of manufacturing a group III nitride semiconductor light emitting device, wherein the indium content of each quantum well portion is gradually increased as the number of the plurality of quantum well portions increases one by one.
  8. 청구항 1에 있어서,The method of claim 1,
    양자 우물층은 적색 광을 발광하는, 3족 질화물 반도체 발광소자를 제조하는 방법.A method of manufacturing a group III nitride semiconductor light emitting device, wherein the quantum well layer emits red light.
PCT/KR2022/010859 2021-07-23 2022-07-25 Method for manufacturing group iii-nitride semiconductor light-emitting device WO2023003446A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210097233A KR20230015734A (en) 2021-07-23 2021-07-23 Light emitting device and method for manufacturing the same
KR10-2021-0097233 2021-07-23

Publications (1)

Publication Number Publication Date
WO2023003446A1 true WO2023003446A1 (en) 2023-01-26

Family

ID=84979412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/010859 WO2023003446A1 (en) 2021-07-23 2022-07-25 Method for manufacturing group iii-nitride semiconductor light-emitting device

Country Status (2)

Country Link
KR (1) KR20230015734A (en)
WO (1) WO2023003446A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000074447A (en) * 1999-05-21 2000-12-15 조장연 GaN Semiconductor Light Emitting Device
KR100482511B1 (en) * 2004-02-05 2005-04-14 에피밸리 주식회사 Ⅲ-Nitride compound semiconductor light emitting device
JP2005129923A (en) * 2003-10-02 2005-05-19 Showa Denko Kk Nitride semiconductor, light emitting element using it, light emitting diode, laser element, lamp, and manufacturing method for those
KR20160039754A (en) * 2014-10-01 2016-04-12 삼성전자주식회사 Method of fabricating semiconductor light emitting device
KR20170024620A (en) * 2015-08-25 2017-03-08 일진엘이디(주) Method for manufacturing the nitride based light emitting device with excellent crystal quality

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000074447A (en) * 1999-05-21 2000-12-15 조장연 GaN Semiconductor Light Emitting Device
JP2005129923A (en) * 2003-10-02 2005-05-19 Showa Denko Kk Nitride semiconductor, light emitting element using it, light emitting diode, laser element, lamp, and manufacturing method for those
KR100482511B1 (en) * 2004-02-05 2005-04-14 에피밸리 주식회사 Ⅲ-Nitride compound semiconductor light emitting device
KR20160039754A (en) * 2014-10-01 2016-04-12 삼성전자주식회사 Method of fabricating semiconductor light emitting device
KR20170024620A (en) * 2015-08-25 2017-03-08 일진엘이디(주) Method for manufacturing the nitride based light emitting device with excellent crystal quality

Also Published As

Publication number Publication date
KR20230015734A (en) 2023-01-31

Similar Documents

Publication Publication Date Title
US8502266B2 (en) Nitride semiconductor light emitting device
WO2013018937A1 (en) Semiconductor light-emitting device
WO2014168339A1 (en) Ultraviolet light-emitting device
WO2011083940A2 (en) Light-emitting diode and method for manufacturing same
JP5568009B2 (en) Semiconductor light emitting device and manufacturing method thereof
WO2016018010A1 (en) Light-emitting device and lighting system
KR20160013552A (en) Light emitting device and lighting system
KR20150048337A (en) Near uv light emitting device
JPH0653549A (en) Semiconductor light emitting element and fabrication thereof
WO2016072661A1 (en) Ultraviolet light emitting element and lighting system
WO2023003446A1 (en) Method for manufacturing group iii-nitride semiconductor light-emitting device
KR100998234B1 (en) Nitride semiconductor light emitting device and method for fabricating the same
WO2022240179A1 (en) Multi-band light emitting diode
WO2021158016A1 (en) Single-chip multi-band light-emitting diode
WO2016195342A1 (en) Ultraviolet light emitting device
CN108550676A (en) A kind of LED epitaxial slice and its manufacturing method
KR20140094807A (en) Light Emitting device using electron barrier layer
WO2017204522A1 (en) High-efficiency long-wavelength light-emitting device
KR100881053B1 (en) Nitride based light emitting device
KR20100077264A (en) Light emitting diode having indium nitride
WO2014092320A1 (en) Method of growing gallium nitride based semiconductor layers and method of fabricating light emitting device therewith
KR102224109B1 (en) Light emitting device, Method for fabricating the same and Lighting system
KR20150017103A (en) Method of grawing electron blocking layer and method of fabricating nitride semiconductor device having the same
KR20210005737A (en) Light emitting diode
CN116632137B (en) Antistatic capability improvement layer, preparation method thereof, epitaxial wafer and light-emitting diode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22846316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE