WO2023002992A1 - Moisture-curable polyurethane hot-melt adhesive - Google Patents

Moisture-curable polyurethane hot-melt adhesive Download PDF

Info

Publication number
WO2023002992A1
WO2023002992A1 PCT/JP2022/028089 JP2022028089W WO2023002992A1 WO 2023002992 A1 WO2023002992 A1 WO 2023002992A1 JP 2022028089 W JP2022028089 W JP 2022028089W WO 2023002992 A1 WO2023002992 A1 WO 2023002992A1
Authority
WO
WIPO (PCT)
Prior art keywords
moisture
melt adhesive
polyurethane hot
curable polyurethane
diisocyanate
Prior art date
Application number
PCT/JP2022/028089
Other languages
French (fr)
Japanese (ja)
Inventor
明佳 眞田
寛女 奥泉
一弥 佐々木
Original Assignee
大日精化工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日精化工業株式会社 filed Critical 大日精化工業株式会社
Priority to CN202280049923.9A priority Critical patent/CN117651749A/en
Publication of WO2023002992A1 publication Critical patent/WO2023002992A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes

Definitions

  • the present invention relates to a moisture-curable polyurethane hot-melt adhesive.
  • Moisture-curing polyurethane hot-melt adhesives are non-solvent adhesives that are solid at room temperature. They are heated and melted, applied to a base material, bonded to another base material, and then hardened by moisture. Although it is an environmentally friendly adhesive because it does not use a solvent, the light-resistant non-yellowing polyurethane hot-melt resin has a problem of odor caused by the raw material isocyanate remaining in the adhesive.
  • Patent Document 1 uses an allophanate group-containing polyisocyanate produced by a specific production method, so that storage stability, weather resistance, etc. are good, and especially less odor during adhesion work.
  • a solventless moisture cure adhesive is disclosed.
  • Patent Document 2 discloses a one-pack curing solution containing at least one polyisocyanate component and titanium oxide selected from the group consisting of aliphatic polyisocyanates, araliphatic polyisocyanates, and derivatives thereof.
  • a mold solventless adhesive is disclosed.
  • Patent Document 3 discloses a method for producing a moisture-curable polyurethane prepolymer in which the residual monomer content is reduced and foaming of the cured product is suppressed.
  • Patent Document 1 the heat-resistant creep resistance was not sufficient, and the performance was insufficient as an adhesive mainly for synthetic imitation leather.
  • the heat creep resistance is poor, for example, when post-processing shoes, the sole and upper are bonded together under the conditions of a load of 3 kg and 150 to 160 ° C., and when processing clothing, they are bonded together with seam tape. Since it is necessary to perform at 160 to 170 ° C., there is a problem that the synthetic leather is easily peeled off.
  • Patent Document 2 the breaking elongation tends to be relatively small, and when it is used as an adhesive for synthetic imitation leather, the texture of the leather, as well as the cold bending resistance and flexibility, may be inferior.
  • Patent Document 3 there is a problem that not only heat creep resistance but also workability (for example, initial hardening property) is low.
  • the present invention has excellent heat resistance, workability, stability over time, and adhesive strength, while premised on the fact that it has excellent light resistance and little odor during work, and is used for synthetic imitation leather.
  • the purpose of the present invention is to provide a moisture-curing polyurethane hot-melt adhesive excellent in leather-like texture and flexibility.
  • a moisture-curable polyurethane hot-melt adhesive obtained from a reaction between a polyisocyanate component containing at least a modified aliphatic diisocyanate and a polyol component and containing a urethane prepolymer having terminal isocyanate groups, wherein the polyisocyanate
  • a moisture-curable polyurethane hot melt wherein the average functional number of isocyanate groups in the component is 2.0 to 3.0, and the polyol component contains 1 to 8% by mass of a trifunctional or higher polyfunctional polyol in the polyol component. glue.
  • the present invention it is premised that it is excellent in light resistance and has little odor during work, and is excellent in heat creep resistance, workability (initial solidification property), stability over time, and adhesive strength. It is possible to provide a moisture-curable polyurethane hot-melt adhesive that is excellent in leather texture and flexibility when used for leather.
  • FIG. 4 is a schematic explanatory diagram illustrating the form of a sample used in evaluation of Examples. It is an explanation explaining the form of the gear oven used in the evaluation of the examples.
  • a moisture-curable polyurethane hot-melt adhesive according to one embodiment (this embodiment) of the present invention is obtained by reacting a polyisocyanate component containing at least a modified aliphatic diisocyanate with a polyol component, and has an isocyanate group at its end.
  • a polyisocyanate component containing at least a modified aliphatic diisocyanate with a polyol component, and has an isocyanate group at its end.
  • Contains urethane prepolymer urethane prepolymer.
  • the average functionality of the isocyanate groups in the polyisocyanate component is 2.0 to 3.0
  • the polyol component contains 1 to 8% by mass of trifunctional or higher polyfunctional polyol.
  • the urethane prepolymer is a reaction product obtained by reacting the polyisocyanate component and the polyol component, and may contain other components during the reaction.
  • a modified aliphatic diisocyanate is included as a polyisocyanate component.
  • a modified aliphatic diisocyanate By containing the modified aliphatic diisocyanate, good light resistance and odor reduction can be achieved.
  • the modified aliphatic diisocyanate in the present embodiment means an isocyanurate of an aliphatic diisocyanate (nurate-type polyisocyanate: for example, "TKA100” manufactured by Asahi Kasei Corporation, “D376N” manufactured by Mitsui Chemicals, Inc., “D376N” manufactured by Vencolex Co., Ltd.
  • allophanate derivatives of aliphatic diisocyanates allophanate-type diisocyanates: for example, “A201H” manufactured by Asahi Kasei Corporation, “C-2770” manufactured by Tosoh Corporation, etc.
  • aliphatic diisocyanates Biuret form biuret type diisocyanate: for example, "24A-100” manufactured by Asahi Kasei Corp.
  • adduct form of aliphatic diisocyanate and polyol adduct type diisocyanate: for example, "D201” manufactured by Asahi Kasei Corp.
  • a diisocyanate adduct of a diol such as “D-160N” manufactured by Mitsui Chemicals, Inc.
  • aliphatic diisocyanate which is a raw material component of the modified aliphatic diisocyanate
  • examples of the aliphatic diisocyanate include 1,6-hexamethylene diisocyanate, isophorone diisocyanate, and 1,5-pentamethylene diisocyanate.
  • an unmodified polyisocyanate can be used in combination as long as there is no problem with the effect of the present invention.
  • the isocyanurate is a trimer of diisocyanate.
  • An allophanate compound is obtained by adding a diisocyanate to a urethane group formed by the reaction of a diisocyanate and an alcohol.
  • a buret form is obtained by adding a diisocyanate to a urea group formed by a reaction of a diisocyanate with water or an amine.
  • Adducts are obtained by adding diisocyanates to polyhydric alcohols.
  • the average functionality of the isocyanate groups in the polyisocyanate component is 2.0 to 3.0, preferably 2.0 to 2.8, and preferably 2.0 to 2.4. more preferred. If the average functional group number is less than 2.0, sufficient physical properties of the film cannot be obtained after curing. inferior in quality.
  • the modified aliphatic diisocyanate it is more preferable to include any one of the following combinations from the viewpoint of more reliably exhibiting the effects attributed to the modified aliphatic diisocyanate.
  • an allophanate-type diisocyanate and/or an adduct-type diisocyanate In particular, a combination of a diol diisocyanate adduct) and a nurate-type polyisocyanate
  • allophanate-type diisocyanates e.g., "A201H”, “C-2770", etc. described above
  • adduct-type diisocyanates in particular, diisocyanate adducts of diols, e.g. , the already described "D201", etc.
  • 60:40 to 40:60 molar ratio
  • the nurate-type polyisocyanate is preferably 10 to 37 mol %, more preferably 15 to 32 mol %, of the total polyisocyanate component.
  • the mixing ratio of the nurate-type polyisocyanate is 10 to 37 mol %, the desired leather texture and cold bending resistance can be easily obtained.
  • Nurate-type polyisocyanates include those using 1,6-hexamethylene diisocyanate and 1,5-pentamethylene diisocyanate. 1,5-pentamethylene diisocyanate nurate-type polyisocyanate is preferred in view of the fact that the heat resistance is increased and high durability is obtained.
  • the proportion of the aliphatic diisocyanate modified product in the total polyisocyanate component is preferably 95 mol% or more, and 98 mol%. is more preferable.
  • the amount is 95 mol % or more, the effect (particularly, the odor reduction effect) attributed to the modified aliphatic diisocyanate can be exhibited more reliably.
  • the polyol component contains 1 to 8% by mass of tri- or higher polyfunctional polyol. If the polyfunctional polyol is less than 1% by mass, sufficient heat creep resistance required as an adhesive for synthetic leather applications cannot be obtained, and if it exceeds 8% by mass, stability over time, leather texture and flexibility decreases.
  • the content of polyfunctional polyol is preferably 1 to 5% by mass, more preferably 2 to 4% by mass. In this way, a specific amount of trifunctional or higher polyol component is blended in any of the combinations (1) to (3) of the polyisocyanate components in which the modified aliphatic diisocyanate is blended in an appropriate ratio as described above. As a result, the effect of improving the thermal softening point can be satisfactorily expressed, and as a result, an adhesive having both heat resistant creep resistance and texture (cold flex resistance) can be obtained.
  • Trifunctional or higher polyfunctional polyols include glycerin, trimethylolpropane, 1,2,5-hexanetriol, 1,2,6-hexanetriol, pentaerythritol, polyethylenetriol, polypropylenetriol, polyoxypropylenetriol, polyoxy Ethylene triol, polyoxyethylene propylene triol and the like can be mentioned. Among them, trimethylolpropane and polyoxypropylenetriol are preferred, and trimethylolpropane is more preferred, from the viewpoint of good gel fraction or heat resistant creep resistance.
  • the polyfunctional polyol preferably has a number average molecular weight of 100 to 1,000, more preferably 100 to 200, from the viewpoint of good heat-resistant creep resistance, gel fraction, and the like.
  • the number average molecular weight is 100 to 1000, good synthesis stability is maintained, and expected effects can be easily obtained.
  • Polyols other than trifunctional or higher polyfunctional polyols include bifunctional polyols used in polyurethanes, examples of which include polycarbonate polyols, polyether polyols, polyester polyols, polylactone polyols, polyolefin polyols, polymethacrylate diols, and polysiloxane polyols. is mentioned.
  • the bifunctional polyol preferably has a number average molecular weight of 500 to 6000, more preferably 700 to 4000. Examples thereof include the following.
  • Polycarbonate Polyol Polycarbonate polyols include polytetramethylene carbonate diol, polypentamethylene carbonate diol, polyneopentyl carbonate diol, polyhexamethylene carbonate diol, poly(1,4-cyclohexanedimethylene carbonate) diol, and these diols. Random/block copolymers and the like are included.
  • Polyether polyols include those obtained by polymerizing or copolymerizing any of alkylene oxides (ethylene oxide, propylene oxide, butylene oxide, etc.) and heterocyclic ethers (tetrahydrofuran, etc.). . Specific examples include polyethylene glycol, polypropylene glycol, polyethylene glycol-polytetramethylene glycol (block or random), polytetramethylene ether glycol and polyhexamethylene glycol.
  • Polyester polyols include aliphatic dicarboxylic acids (e.g., succinic acid, adipic acid, sebacic acid, glutaric acid and azelaic acid), and aromatic dicarboxylic acids (e.g., isophthalic acid and terephthalic acid). ) and low molecular weight glycols (e.g., ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,3-butylene glycol, 1,4-butylene glycol, 1,6-hexamethylene glycol, neopentyl glycol and 1,4-bishydroxymethylcyclohexane).
  • aliphatic dicarboxylic acids e.g., succinic acid, adipic acid, sebacic acid, glutaric acid and azelaic acid
  • aromatic dicarboxylic acids e.g., isophthalic acid and terephthalic acid
  • low molecular weight glycols e.g.
  • Polylactone polyol examples include polycaprolactone diol and poly-3-methylvalerolactone diol.
  • Polyolefin Polyol examples include polybutadiene glycol, polyisoprene glycol, and hydrogenated products thereof.
  • Polymethacrylate Diol Polymethacrylate diols include ⁇ , ⁇ -polymethyl methacrylate diol and ⁇ , ⁇ -polybutyl methacrylate diol.
  • Polysiloxane polyol As the polysiloxane polyol, dimethylpolysiloxane is preferred. Since it can impart lubricity, it is particularly useful when used as a coating agent.
  • polyols can be used alone or in combination of two or more.
  • the "number average molecular weight” is the polystyrene-equivalent number average molecular weight (Mn), which can be usually determined by gel permeation chromatography (GPC).
  • the moisture-curable polyurethane hot-melt adhesive is a urethane preform having an isocyanate group at its end, which is obtained by reacting a polyisocyanate component containing at least the above-mentioned modified aliphatic diisocyanate with the above-mentioned polyol component.
  • the urethane prepolymer specifically contains these polyisocyanate component and polyol component, and if necessary, a chain extender and the like, and the equivalent ratio of the isocyanate group to the hydroxyl group (NCO/OH) is 1.
  • Manufactured by reacting at 40 to 150° C. (preferably 60 to 110° C.) with a formulation of 5 to 2.0 by a one-shot method or a multistage method until the reaction product reaches the theoretical NCO%. be able to.
  • the equivalent ratio (NCO/OH) between the isocyanate group of the isocyanate component and the hydroxyl group of the polyol component is preferably 1.5 to 2.0, more preferably 1.3 to 2.2.
  • the equivalent ratio (NCO/OH) is from 1.5 to 2.0, gels do not occur and the viscosity suitable for processing can be obtained.
  • the short-chain diol is a compound having a number average molecular weight of less than 500, and includes ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,3-butylene glycol, 1,4-butylene glycol, 1,4-butylene glycol, Aliphatic glycols such as 6-hexamethylene glycol and neopentyl glycol and their alkylene oxide low molar adducts (number average molecular weight less than 500), 1,4-bishydroxymethylcyclohexane and 2-methyl-1,1-cyclohexane di Alicyclic glycols such as methanol and their alkylene oxide low molar adducts (number average molecular weight less than 500), aromatic glycols such as xylylene glycol and their alkylene oxide low molar adducts (number average average
  • Short chain diamines include aliphatic diamine compounds such as ethylenediamine, trimethylenediamine, hexamethylenediamine and octamethylenediamine, phenylenediamine, 3,3′-dichloro-4,4′-diaminodiphenylmethane, 4,4′-methylenebis (phenylamine), aromatic diamine compounds such as 4,4′-diaminodiphenyl ether and 4,4′-diaminodiphenyl sulfone, cyclopentanediamine, cyclohexyldiamine, 4,4-diaminodicyclohexylmethane, 1,4-diaminocyclohexane and Alicyclic diamine compounds such as isophorone diamine, hydrazines such as hydrazine, carbodihydrazide, adipic acid dihydrazide, sebacic acid dihydrazide, phthalic acid dihydrazide,
  • a catalyst can be used as necessary.
  • salts of metals and organic and inorganic acids such as dibutyltin laurate, dioctyltin laurate, stannus octoate, lead octoate, tetra-n-butyl titanate, and organometallic derivatives, organic amines such as triethylamine, diaza bicycloundecene-based catalysts, and the like.
  • the urethane prepolymer according to this embodiment is preferably reacted without using an organic solvent. Thereby, a solventless urethane prepolymer can be obtained.
  • the NCO% (isocyanate group content) of the resin component (urethane prepolymer) according to the present embodiment is preferably 2 to 4%, and 2.5 to 3.5% from the viewpoint of workability and leather texture. 7% is more preferred.
  • the moisture-curable polyurethane hot-melt adhesive of the present embodiment preferably contains 90% by mass or more of the urethane prepolymer described above, and more preferably consists of polyurethane prepolymer (that is, 100% by mass).
  • the moisture-curable polyurethane hot-melt adhesive of this embodiment preferably contains 90% by mass or more of the urethane prepolymer described above, and if it is less than 100% by mass, it further contains an isocyanate-based cross-linking agent.
  • an isocyanate-based cross-linking agent By including an isocyanate-based cross-linking agent, it is possible to prevent delamination between adherends due to the adhesive, compared to the case where the isocyanate-based cross-linking agent is not included.
  • the content of the isocyanate-based cross-linking agent in the moisture-curable polyurethane hot-melt adhesive of the present embodiment is preferably 10% by mass or less with respect to the urethane prepolymer. It is more preferably up to 7% by mass, and even more preferably 1 to 5% by mass.
  • the isocyanate-based cross-linking agent is preferably a modified aliphatic diisocyanate, and specific examples thereof include the above-described modified aliphatic diisocyanate.
  • the modified aliphatic diisocyanate of the urethane prepolymer described above and the isocyanate-based cross-linking agent of the present embodiment may be the same or different.
  • the NCO% (isocyanate group content) of the resin component (when it contains a urethane prepolymer and a cross-linking agent) according to the present embodiment is preferably 2 to 4% from the viewpoint of workability and leather texture. More preferably 2.5 to 3.7%.
  • the NCO% when the urethane prepolymer and the cross-linking agent are contained is a theoretical value obtained by calculation, and can be obtained by the following formula.
  • a moisture-curable polyurethane hot-melt adhesive containing an isocyanate-based cross-linking agent can be prepared by adding a predetermined amount of an isocyanate-based cross-linking agent after preparing the urethane prepolymer described above and mixing by stirring or the like.
  • thermoplastic polymer e.g., polyethylene glycol dimethacrylate copolymer
  • tackifying resin e.g., polyethylene glycol dimethacrylate copolymer
  • a catalyst e.g., polyethylene glycol dimethacrylate copolymer
  • a pigment e.g., polyethylene glycol dimethacrylate
  • an antioxidant e.g., polybenzyl sulfate
  • light stabilizer e.g., polyethylene glycol dimethacrylate
  • ultraviolet absorber e.g., polyethylene glycol dimethacrylate copolymer
  • surfactant e.g., polyethylene glycol dimethacrylate copolymer
  • Flame retardants e.g., polyethylene glycol dimethacrylate copolymer
  • fillers e.g., polyethylene glycol dimethacrylate copolymer
  • foaming agents e.g., polystyrenethacrylate copolymer
  • hindered amine light stabilizers are preferred.
  • a specific amount of a hindered amine light stabilizer is added to the urethane prepolymer of the present invention as described above, excellent effects such as improvement in gel fraction and shortening of curing time can be obtained.
  • Hindered amine light stabilizers include, for example, bis(2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis(1,2,2,6,6-pentamethylpiperidine-4- yl), tetrakis(2,2,6,6-tetramethyl-4-piperidyl) 1,2,3,4-butane tetracarboxylate, tetrakis(1,2,2,6,6-pentamethyl-4-piperidyl) ) 1,2,3,4-butane tetracarboxylate, (mixed 2,2,6,6-tetramethyl-4-piperidyl/tridecyl) 1,2,3,4-butane tetracarboxylate, (mixed 1, 2,2,6,6-pentamethyl-4-piperidyl/tridecyl) 1,2,3,4-butanetetracarboxylate, 8-acetyl-3-dodecyl-7,7,9,9-tetramethyl-1, 3,
  • the moisture-curable polyurethane hot-melt adhesive of the present embodiment is preferably for synthetic imitation leather, that is, an adhesive for synthetic imitation leather.
  • the moisture-curable polyurethane hot-melt adhesive of this embodiment can easily bond adherends together by applying it to the surfaces of adherends.
  • adherends include substrates of metals and non-metals (polycarbonate, glass, etc.) in addition to the above substrates for synthetic imitation leather.
  • the gel fraction of the moisture-curable polyurethane hot-melt adhesive of this embodiment is preferably 85% or more, more preferably 90% or more.
  • the gel fraction When the gel fraction is 85% or more, heat creep resistance, alcohol resistance, and workability (curing speed) can be improved.
  • the aforementioned hindered amine light stabilizer can be added to the urethane prepolymer. From the viewpoint of obtaining the desired effect (high gel fraction, shortening of curing time, etc.), the amount added is preferably 0.2 to 1.0% by mass, more preferably 0.2 to 0.5%, relative to the urethane prepolymer. % by mass is more preferred.
  • the gel fraction can be measured by the method described in Examples.
  • the heat softening point (thermosetting temperature) of the moisture-curable polyurethane hot-melt adhesive of this embodiment after curing is preferably 175°C or higher, more preferably 185 to 220°C.
  • the heat softening point after curing is 175° C. or higher, the heat creep resistance, weather resistance, heat resistance, and resistance to industrial washing are improved.
  • the improved weather resistance and heat resistance make it possible to use it as an adhesive for vehicle exterior members, and the improved industrial washing resistance makes it possible to use it for sanitary materials that require high-temperature sterilization.
  • the thermal softening point can be measured by the method described in Examples. In the present specification, the heat softening point and the elongation at break described below are measured after heat curing, and "after curing" means after disappearance of NCO is confirmed by IR measurement.
  • the breaking elongation at 25° C. after curing of the moisture-curable polyurethane hot-melt adhesive of this embodiment is preferably 300 to 1000%, more preferably 400 to 800%. If the elongation at break is 300% or more, the synthetic leather can have good flexibility. When the elongation at break is 1,000% or less, deterioration in heat creep resistance and adhesive strength is suppressed, and good functions as an adhesive are likely to be exhibited.
  • the breaking elongation can be measured by the method described in Examples.
  • Polyester polyol TPEP85 adipic acid/1,4-butanediol (60/40 mol%) (number average molecular weight 2000, manufactured by Daisei Chemical
  • Polyether polyol PTMG1000 number average molecular weight 1000, Mitsubishi Chemical ( Co., Ltd.
  • PPG1000 number average molecular weight 1000, Asahi Glass Co., Ltd.
  • trifunctional polyol T-700 polyoxypropylene triol, number average molecular weight 700, Mitsui Chemicals Co., Ltd.
  • TMP trimethylolpropane, Number average molecular weight 134, manufactured by Mitsubishi Gas Chemical Company, Inc.
  • TKA100 Nurate polyisocyanate of hexamethylene diisocyanate, weight average Molecular weight 578, Asahi Kasei Co., Ltd.
  • C-2770 Allophanate-type diisocyanate of hexamethylene diisocyanate, weight average molecular weight 437.5, Tosoh Corporation D376N: Nurate-type polyisocyanate of 1,5-pentane diisocyanate, weight average Molecular weight 536.1, manufactured by Mitsui Chemicals Co., Ltd. HDI: hexamethylene diisocyanate, manufactured by Asahi Kasei Co., Ltd. Note that the above “A201H” and "C-2770" are both allophanate-type diisocyanates of hexamethylene diisocyanate. They differ from each other in average molecular weight, structure, and the like.
  • Light stabilizer HALS hindered amine light stabilizer: CHISORB770 (LS770, bis(2,2,6,6-tetramethyl-4-piperidyl) sebacate)
  • Example 1 Into a glass reaction vessel equipped with a stirrer, a thermometer, a gas inlet, etc., 55 parts of polyester polyol (TPEP85), 45 parts of polyether polyol (PTMG1000), and a trifunctional or higher polyfunctional polyol ( T-700) 3.0 parts, 30 parts of Duranate A201H and 30 parts of Duranate D201 as polyisocyanate components are mixed, dehydration treatment is performed by heating and depressurizing the inside of the reaction vessel, and nitrogen gas is further introduced. The mixture was sealed and the internal temperature was kept at 110° C., and the mixture was stirred for 120 minutes for reaction to obtain a urethane prepolymer having an NCO/OH ratio of 1.7. Next, a light stabilizer was added so as to be 0.3% (0.3% relative to the resin) with respect to the obtained urethane prepolymer, and the mixture was stirred for 30 minutes.
  • TPEP85 polyester polyol
  • PTMG1000 polyether polyol
  • Examples 2 to 10, Comparative Examples 1 to 10 A urethane prepolymer was obtained in the same manner as in Example 1 except that the types and formulations of the polyol component and the polyisocyanate component were as shown in Tables 1 and 2 below. In Examples 3 to 8 and 10 and Comparative Examples 1 to 10, no light stabilizer was added after synthesizing the urethane polymer.
  • ⁇ Gel fraction> A film for evaluation obtained by peeling off the release paper was cut into a size of 8 cm ⁇ 8 cm, and the weight (Wa) was measured. The weighed film was immersed in each of MEK (methyl ethyl ketone) and toluene, sealed with a lid, left at 25°C for 2 hours, and then completely dried at 70°C. The weight (Wb) of the completely dried film was measured. The gel fraction was calculated by the formula (Wb)/(Wa) ⁇ 100. 85% or more for both MEK and toluene is acceptable.
  • MEK methyl ethyl ketone
  • the thermal softening point was measured using an evaluation film (width 1.5 cm, length 6 cm) obtained by peeling off the release paper. Specifically, first, as shown in FIG. 1, clips 12 are attached to the top and bottom of the evaluation film 10, and the clips 12 are further fixed with Sellotape (registered trademark). A sample 16 was prepared by attaching a weight 14 that applies a load of cm 2 . In addition, 2 cm in the central longitudinal direction of the evaluation film 10 is not covered with Sellotape (registered trademark).
  • the clip 12 of the sample 16 to which the weight 14 was not attached was attached to the rotating disk 22 of the gear oven 20 .
  • the temperature inside the gear oven 20 was raised from room temperature at a rate of 3° C./min.
  • the temperature (° C.) at which the evaluation film 10 was cut or stretched twice was taken as the thermal softening point.
  • a polyurethane resin compound liquid (Rezamin CU-4340NS (PU resin solid content 30%, large manufactured by Nissei Kagaku Kogyo Co., Ltd.) is diluted with DMF to a solid content of 15%) is applied, solidified in a water tank, DMF is removed, and then dried.
  • the bonded product was cut to a width of 3 cm and a length of 12 cm or more to obtain a test piece.
  • the end of the test piece was peeled off at the bonded surface, clamps were attached and fixed to the wet film-formed cloth (A) side and the wet film-formed cloth (B) side, respectively, and a weight of 3 kg was hung on one side.
  • the test piece was immediately taken out and left at 170°C for 5 minutes to observe the peeled length and peeled state, and evaluated according to the following evaluation criteria.
  • 0 is a pass.
  • ⁇ Processing performance (initial hardening property)> The urethane prepolymers obtained in Examples and Comparative Examples were melted at 100° C. and coated on release paper so as to have a film thickness of 50 to 70 ⁇ m. At 40° C., the uncoated surface of the same substrate was adhered every 30 seconds for up to 5 minutes. The processing (initial solidification) performance was evaluated based on the feeling of resistance when peeling off the bonded base material by hand and the amount of resin adhered to the base material. ⁇ : No resistance during peeling and no adhesion, passing the test. ⁇ : There is resistance during peeling, but there is no adhesion. The evaluation is inferior to ⁇ . x: There is resistance at the time of peeling, and there is also adhesion, so it is disqualified.
  • ⁇ Stability over time Pot Life>
  • the urethane prepolymers obtained in Examples and Comparative Examples were melted at 100° C., and the change in viscosity over time and sedimentation were visually evaluated under the conditions of 100° C. for 24 hours (useable level is ⁇ ).
  • No sediment, viscosity change less than +100%.
  • x Presence of sediment, viscosity change of +100% or more.
  • the viscosity was measured under the following conditions. (Viscosity measurement) Using a BM type viscometer (Tokyo Keiki Seisakusho), rotor No. The viscosity of each urethane prepolymer was measured under the conditions of 4/30 rpm/100°C.
  • ⁇ Odor> The urethane prepolymers obtained in Examples and Comparative Examples were placed in 250 ml pound cans, heated at 100° C. for 2 hours, and then each of the 10 panelists opened the lid and checked the odor.
  • the evaluation criteria are as follows ( ⁇ indicates a practical level). ⁇ : All 10 people did not sense an odor. x: 5 or more out of 10 people felt the odor.
  • ⁇ Film Formability> The urethane prepolymers obtained in Examples and Comparative Examples were heated to 100° C. and coated on release paper K8P(01) to a coating thickness of 100 ⁇ m. Immediately after coating, the film was kept at 40°C for 10 minutes. The film-forming property was evaluated based on the presence or absence of continuity of the coating film after 10 minutes ( ⁇ indicates a practical level). ⁇ : Continuity of coating film maintained ⁇ : Repelling or shrinkage of coating film
  • ⁇ Curing time> The urethane prepolymers obtained in Examples and Comparative Examples were melted at 100° C., coated on release paper so as to give a film thickness of 50 to 70 ⁇ m after coating, and then stored under conditions of 40° C./60 RH%. IR measurement was performed every 12 hours, and the time at which NCO disappeared was taken as the curing time. The curing time was measured only for Examples 1, 3 and 8-10.
  • ⁇ Adhesion strength> On the resin layer surface, which is the upper surface of the skin layer of the evaluation synthetic imitation leather used in the evaluation of ⁇ leather texture> described above, press a hot melt tape for 1 minute with an iron at 140 ° C., 1 hour. After cooling to room temperature, the base fabric was peeled off from the skin adhered to the hot-melt tape, and the strength was measured with an autograph to determine the adhesive strength.
  • an adhesive for synthetic imitation leather a measured value of 1.2 kgf/cm or more is preferable.
  • NCO % in resin component in Tables 1 and 2 is NCO % in the obtained urethane prepolymer.
  • Example 11 Into a glass reaction vessel equipped with a stirrer, a thermometer, a gas inlet, etc., 55 parts of polyester polyol (TPEP85), 45 parts of polyether polyol (PTMG1000), and a trifunctional or higher polyfunctional polyol ( T-700) 3.0 parts, 30 parts of Duranate A201H and 30 parts of Duranate D201 as polyisocyanate components are mixed, dehydration treatment is performed by heating and depressurizing the inside of the reaction vessel, and nitrogen gas is further introduced. The mixture was sealed and the internal temperature was kept at 110° C., and the mixture was stirred for 120 minutes for reaction to obtain a urethane prepolymer having an NCO/OH ratio of 1.7.
  • TPEP85 polyester polyol
  • PTMG1000 polyether polyol
  • T-700 trifunctional or higher polyfunctional polyol
  • a light stabilizer is added to the obtained urethane prepolymer so as to be 0.3% (0.3% relative to the resin), and further to 2.0% (2.0% relative to the resin).
  • TKA-100 HDI nurate
  • Moisture-curable polyurethane hot-melt adhesives were subjected to the evaluation described above and the delamination test described below. Table 3 shows the results.
  • ⁇ Delamination test> 1 The moisture-curable PUR-HM resin to be tested (the moisture-curable polyurethane hot-melt adhesives of Example 11 and Examples 12-15 below) and the coated bar were preheated in an oven at 110°C. 2) PUR-HM resin is applied at 200 ⁇ Gap (thickness 200 ⁇ m) on the skin layer obtained in (Formation of skin layer) of (Preparation and evaluation of synthetic imitation leather), and immediately the already described After bonding to the PU resin surface of the wet film-formed cloth (B), the bonded product was cured at 40° C./60% RH for 48 hours.
  • a hot-melt tape is crimped to the resin layer surface, which is the upper surface of the skin layer of the laminated product, with an iron at 140 ° C. for 1 minute, and after cooling to room temperature for 1 hour, the base fabric and the skin adhered to the hot-melt tape. was peeled off, and the strength was measured with an autograph. Further, as a reference for peel strength, strength was measured in the same manner for Example 1 as well.
  • Example 3 Each example was evaluated for delamination strength using the following evaluation index. Table 3 shows the results.
  • Example 12 A moisture-curable polyurethane hot-melt adhesive was prepared in the same manner as in Example 11, except that the isocyanate-based cross-linking agent was changed to the following cross-linking agent.
  • Example 12 uses “24A-100” manufactured by Asahi Kasei Co., Ltd.
  • Example 13 uses “D376N” manufactured by Mitsui Chemicals, Inc., manufactured by Vencolex.
  • Example 14 uses "IDT-70B”
  • Example 15 uses “D-160N” manufactured by Mitsui Chemicals, Inc.
  • Table 3 shows the results.
  • NCO% in the resin component in Table 3 is the NCO% when the obtained urethane prepolymer and the cross-linking agent are included.
  • the moisture-curable polyurethane hot-melt adhesive of this embodiment can be used for synthetic imitation leather, that is, for synthetic imitation leather substrates. It can also be used for substrates (polycarbonate, glass, etc.). In addition, due to its excellent heat resistance, it can be expected to be applied to vehicle exterior parts and sanitary materials that require high-temperature sterilization.

Abstract

A moisture-curable polyurethane hot-melt adhesive which comprises a urethane prepolymer having terminal isocyanate groups and obtained by reacting a polyisocyanate ingredient at least including a modification of an aliphatic diisocyanate with a polyol ingredient, wherein the average number of isocyanate functional groups in the polyisocyanate ingredient is 2.0-3.0 and the polyol ingredient contains a tri- or higher-functional polyol in an amount of 1-8 mass% with respect to the polyol ingredient.

Description

湿気硬化型ポリウレタンホットメルト接着剤Moisture curable polyurethane hot melt adhesive
 本発明は、湿気硬化型ポリウレタンホットメルト接着剤に関する。 The present invention relates to a moisture-curable polyurethane hot-melt adhesive.
 湿気硬化型ポリウレタンホットメルト接着剤は常温固体の無溶剤接着剤であり、加熱溶融して基材に塗工し、他の基材を貼り合わせた後、湿気により硬化する接着剤である。溶剤を用いないため環境に配慮した接着剤であるが、耐光性のある無黄変型のポリウレタンホットメルト樹脂は、接着剤に残留する原料イソシアネートに起因する臭気の問題がある。 Moisture-curing polyurethane hot-melt adhesives are non-solvent adhesives that are solid at room temperature. They are heated and melted, applied to a base material, bonded to another base material, and then hardened by moisture. Although it is an environmentally friendly adhesive because it does not use a solvent, the light-resistant non-yellowing polyurethane hot-melt resin has a problem of odor caused by the raw material isocyanate remaining in the adhesive.
 この問題を解決するため、特許文献1は、特定の製造方法で製造されたアロファネート基含有ポリイソシアネートを用いることにより、貯蔵安定性や耐候性等が良好であり、特に接着作業時の臭気の少ない無溶剤系湿気硬化接着剤を開示している。 In order to solve this problem, Patent Document 1 uses an allophanate group-containing polyisocyanate produced by a specific production method, so that storage stability, weather resistance, etc. are good, and especially less odor during adhesion work. A solventless moisture cure adhesive is disclosed.
 この他に、特許文献2は、脂肪族ポリイソシアネート、芳香脂肪族ポリイソシアネート、および、それらの誘導体からなる群から選択される少なくとも1種のポリイソシアネート成分と酸化チタンを含有している一液硬化型無溶剤接着剤を開示する。 In addition, Patent Document 2 discloses a one-pack curing solution containing at least one polyisocyanate component and titanium oxide selected from the group consisting of aliphatic polyisocyanates, araliphatic polyisocyanates, and derivatives thereof. A mold solventless adhesive is disclosed.
 また、特許文献3は、残存モノマー含有量の低減が図られ且つ硬化物の発泡が抑止された湿気硬化型ポリウレタンプレポリマーの製造方法を開示する。 In addition, Patent Document 3 discloses a method for producing a moisture-curable polyurethane prepolymer in which the residual monomer content is reduced and foaming of the cured product is suppressed.
特開2003-201460号公報Japanese Patent Application Laid-Open No. 2003-201460 特開2009-280735号公報JP 2009-280735 A 特許第5853295号公報Japanese Patent No. 5853295
 しかし、特許文献1では、耐熱クリープ性が十分ではなく、主に合成擬革用途の接着剤としては性能が不十分であった。このように、耐熱クリープ性が乏しいと、例えば、靴の後加工時においては、ソールとアッパーとの接着を荷重3kg、150~160℃の条件で、衣類の加工時には、シームテープでの貼り合わせを160~170℃の条件などで行う必要があることから、合皮が剥がれやすい問題がある。 However, in Patent Document 1, the heat-resistant creep resistance was not sufficient, and the performance was insufficient as an adhesive mainly for synthetic imitation leather. In this way, if the heat creep resistance is poor, for example, when post-processing shoes, the sole and upper are bonded together under the conditions of a load of 3 kg and 150 to 160 ° C., and when processing clothing, they are bonded together with seam tape. Since it is necessary to perform at 160 to 170 ° C., there is a problem that the synthetic leather is easily peeled off.
 また、特許文献2では、破断伸度が比較的小さい傾向があり、やはり合成擬革用途の接着剤として用いた場合に、レザーの風合いはもとより、耐寒屈曲性や柔軟性に劣ることがあった。
 さらに、特許文献3では、耐熱クリープ性のみならず、加工性(例えば、初期固化性)が低いという問題があった。
In addition, in Patent Document 2, the breaking elongation tends to be relatively small, and when it is used as an adhesive for synthetic imitation leather, the texture of the leather, as well as the cold bending resistance and flexibility, may be inferior. .
Furthermore, in Patent Document 3, there is a problem that not only heat creep resistance but also workability (for example, initial hardening property) is low.
 従って、本発明は、耐光性に優れ、かつ、作業中の臭気が少ないことを前提としながら、耐熱クリープ性、加工性、経時安定性、及び接着強度に優れ、合成擬革用途とした場合にレザーの風合い及び柔軟性に優れた湿気硬化型ポリウレタンホットメルト接着剤を提供することを目的とする。 Therefore, the present invention has excellent heat resistance, workability, stability over time, and adhesive strength, while premised on the fact that it has excellent light resistance and little odor during work, and is used for synthetic imitation leather. The purpose of the present invention is to provide a moisture-curing polyurethane hot-melt adhesive excellent in leather-like texture and flexibility.
 上記の課題は、下記の本発明によって達成される。すなわち、本発明は下記のとおりである。
[1] 少なくとも脂肪族ジイソシアネート変性体を含むポリイソシアネート成分とポリオール成分との反応から得られ、末端にイソシアネート基を有するウレタンプレポリマーを含む湿気硬化型ポリウレタンホットメルト接着剤であって、前記ポリイソシアネート成分におけるイソシアネート基の平均官能基数が2.0~3.0であり、前記ポリオール成分が、3官能以上の多官能ポリオールを前記ポリオール成分中に1~8質量%含む、湿気硬化型ポリウレタンホットメルト接着剤。
[2] ゲル分率が85%以上である[1]記載の湿気硬化型ポリウレタンホットメルト接着剤。
[3] 前記脂肪族ジイソシアネート変性体がアロファネート型ジイソシアネートを含む[1]又は[2]に記載の湿気硬化型ポリウレタンホットメルト接着剤。
[4] 前記脂肪族ジイソシアネート変性体がジオールのジイソシアネートアダクト体を含む[1]~[3]に記載のいずれかに記載の湿気硬化型ポリウレタンホットメルト接着剤。
[5] 前記脂肪族ジイソシアネート変性体がヌレート型ポリイソシアネートを含む[1]~[4]に記載のいずれかに記載の湿気硬化型ポリウレタンホットメルト接着剤。
[6] 前記ヌレート型ポリイソシアネートを、前記ポリイソシアネート成分中10~37モル%含む[5]に記載の湿気硬化型ポリウレタンホットメルト接着剤。
[7] 硬化後の熱軟化点が175℃以上である[1]~[6]のいずれかに記載の湿気硬化型ポリウレタンホットメルト接着剤。
[8] 硬化後の25℃における破断伸度が300~1,000%である[1]~[7]のいずれかに記載の湿気硬化型ポリウレタンホットメルト接着剤。
[9] さらに、イソシアネート系架橋剤を含む[1]~[8]のいずれかに記載の湿気硬化型ポリウレタンホットメルト接着剤。
[10] 前記イソシアネート系架橋剤が、脂肪族ジイソシアネート変性体である[9]に記載の湿気硬化型ポリウレタンホットメルト接着剤。
The above objects are achieved by the present invention described below. That is, the present invention is as follows.
[1] A moisture-curable polyurethane hot-melt adhesive obtained from a reaction between a polyisocyanate component containing at least a modified aliphatic diisocyanate and a polyol component and containing a urethane prepolymer having terminal isocyanate groups, wherein the polyisocyanate A moisture-curable polyurethane hot melt wherein the average functional number of isocyanate groups in the component is 2.0 to 3.0, and the polyol component contains 1 to 8% by mass of a trifunctional or higher polyfunctional polyol in the polyol component. glue.
[2] The moisture-curable polyurethane hot-melt adhesive according to [1], which has a gel fraction of 85% or more.
[3] The moisture-curable polyurethane hot-melt adhesive according to [1] or [2], wherein the modified aliphatic diisocyanate contains an allophanate-type diisocyanate.
[4] The moisture-curable polyurethane hot-melt adhesive according to any one of [1] to [3], wherein the modified aliphatic diisocyanate includes a diisocyanate adduct of a diol.
[5] The moisture-curable polyurethane hot-melt adhesive according to any one of [1] to [4], wherein the modified aliphatic diisocyanate contains a nurate-type polyisocyanate.
[6] The moisture-curable polyurethane hot-melt adhesive according to [5], containing 10 to 37 mol % of the nurate-type polyisocyanate in the polyisocyanate component.
[7] The moisture-curable polyurethane hot-melt adhesive according to any one of [1] to [6], which has a thermal softening point of 175° C. or higher after curing.
[8] The moisture-curable polyurethane hot melt adhesive according to any one of [1] to [7], which has a breaking elongation at 25° C. of 300 to 1,000% after curing.
[9] The moisture-curable polyurethane hot-melt adhesive according to any one of [1] to [8], further comprising an isocyanate cross-linking agent.
[10] The moisture-curable polyurethane hot-melt adhesive according to [9], wherein the isocyanate-based cross-linking agent is a modified aliphatic diisocyanate.
 本発明によれば、耐光性に優れ、かつ、作業中の臭気が少ないことを前提としながら、耐熱クリープ性、加工性(初期固化性)、経時安定性、及び接着強度に優れ、特に合成擬革用途とした場合にレザーの風合い及び柔軟性に優れた湿気硬化型ポリウレタンホットメルト接着剤を提供することができる。 According to the present invention, it is premised that it is excellent in light resistance and has little odor during work, and is excellent in heat creep resistance, workability (initial solidification property), stability over time, and adhesive strength. It is possible to provide a moisture-curable polyurethane hot-melt adhesive that is excellent in leather texture and flexibility when used for leather.
実施例の評価で使用した試料の形態を説明する模式的な説明図である。FIG. 4 is a schematic explanatory diagram illustrating the form of a sample used in evaluation of Examples. 実施例の評価で使用したギアオーブンの形態を説明する説明である。It is an explanation explaining the form of the gear oven used in the evaluation of the examples.
 本発明の一実施形態(本実施形態)に係る湿気硬化型ポリウレタンホットメルト接着剤は、少なくとも脂肪族ジイソシアネート変性体を含むポリイソシアネート成分とポリオール成分との反応から得られ、末端にイソシアネート基を有するウレタンプレポリマーを含む。
 ここで、上記ポリイソシアネート成分におけるイソシアネート基の平均官能基数が2.0~3.0であり、上記ポリオール成分は、3官能以上の多官能ポリオールを当該ポリオール成分中に1~8質量%含む。
 当該ウレタンプレポリマーは、上記ポリイソシアネート成分と上記ポリオール成分とが反応した反応生成物であり、当該反応の際に他の成分が含まれていてもよい。
A moisture-curable polyurethane hot-melt adhesive according to one embodiment (this embodiment) of the present invention is obtained by reacting a polyisocyanate component containing at least a modified aliphatic diisocyanate with a polyol component, and has an isocyanate group at its end. Contains urethane prepolymer.
Here, the average functionality of the isocyanate groups in the polyisocyanate component is 2.0 to 3.0, and the polyol component contains 1 to 8% by mass of trifunctional or higher polyfunctional polyol.
The urethane prepolymer is a reaction product obtained by reacting the polyisocyanate component and the polyol component, and may contain other components during the reaction.
 本実施形態では、後述するような特定の脂肪族ジイソシアネート変性体を使用することで、耐光性に優れ、作業中の臭気が削減でき、かつ3官能以上の多官能ポリオールの導入により、レザーの風合いを保持しつつ、優れた種々の特性(耐熱クリープ性、加工性、経時安定性、柔軟性、耐寒屈曲性及び接着強度等)を有する無黄変無臭型の湿気硬化型ポリウレタンホットメルト接着剤を提供できることを見出した。
 以下、本実施形態に係る湿気硬化型ポリウレタンホットメルト接着剤について詳細に説明する。
In this embodiment, by using a specific modified aliphatic diisocyanate as described later, it has excellent light resistance, can reduce odor during work, and introduces a trifunctional or higher polyfunctional polyol to improve the leather texture. A non-yellowing, odorless, moisture-curing polyurethane hot-melt adhesive that maintains the I found what I can offer.
Hereinafter, the moisture-curable polyurethane hot-melt adhesive according to this embodiment will be described in detail.
(ポリイソシアネート成分)
 既述のとおり、本実施形態では、ポリイソシアネート成分として、脂肪族ジイソシアネート変性体を含む。脂肪族ジイソシアネート変性体を含むことで、良好な耐光性と臭気低減を図ることができる。
(Polyisocyanate component)
As described above, in the present embodiment, a modified aliphatic diisocyanate is included as a polyisocyanate component. By containing the modified aliphatic diisocyanate, good light resistance and odor reduction can be achieved.
 本実施形態における脂肪族ジイソシアネート変性体とは、脂肪族ジイソシアネートのイソシアヌレート体(ヌレート型ポリイソシアネート:例えば、旭化成(株)製「TKA100」、三井化学(株)製「D376N」、Vencolex社製「IDT-70B」などをさす)、脂肪族ジイソシアネートのアロファネート体(アロファネート型ジイソシアネート:例えば、旭化成(株)製「A201H」、東ソー(株)製「C-2770」などをさす)、脂肪族ジイソシアネートのビウレット体(ビウレット型ジイソシアネート:例えば、旭化成(株)製「24A-100」などをさす)、又は、脂肪族ジイソシアネートとポリオールとのアダクト体(アダクト型ジイソシアネート:例えば、旭化成(株)製「D201」、三井化学(株)製「D-160N」などのジオールのジイソシアネートアダクト体をさす)を意味する。
 本実施形態では、脂肪族ジイソシアネート変性体として、アロファネート型ジイソシアネート単独、又は少なくともアロファネート型ジイソシアネートを含むことが実用的な観点から好ましい。
The modified aliphatic diisocyanate in the present embodiment means an isocyanurate of an aliphatic diisocyanate (nurate-type polyisocyanate: for example, "TKA100" manufactured by Asahi Kasei Corporation, "D376N" manufactured by Mitsui Chemicals, Inc., "D376N" manufactured by Vencolex Co., Ltd. IDT-70B”, etc.), allophanate derivatives of aliphatic diisocyanates (allophanate-type diisocyanates: for example, “A201H” manufactured by Asahi Kasei Corporation, “C-2770” manufactured by Tosoh Corporation, etc.), aliphatic diisocyanates Biuret form (biuret type diisocyanate: for example, "24A-100" manufactured by Asahi Kasei Corp.), or adduct form of aliphatic diisocyanate and polyol (adduct type diisocyanate: for example, "D201" manufactured by Asahi Kasei Corp.) , a diisocyanate adduct of a diol such as “D-160N” manufactured by Mitsui Chemicals, Inc.).
In the present embodiment, as the modified aliphatic diisocyanate, allophanate-type diisocyanate alone or at least containing allophanate-type diisocyanate is preferable from a practical viewpoint.
 脂肪族ジイソシアネート変性体の原料成分である脂肪族ジイソシアネートとしては、1,6-ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、1,5-ペンタメチレンジイソシアネートが挙げられる。
 なお、本発明の効果に問題ない範囲で、変性していないポリイソシアネートを併用できる。
Examples of the aliphatic diisocyanate, which is a raw material component of the modified aliphatic diisocyanate, include 1,6-hexamethylene diisocyanate, isophorone diisocyanate, and 1,5-pentamethylene diisocyanate.
In addition, an unmodified polyisocyanate can be used in combination as long as there is no problem with the effect of the present invention.
 ここで、イソシアヌレート体は、ジイソシアネートの3量体である。アロファネート体は、ジイソシアネートとアルコールとの反応により形成されたウレタン基にジイソシアネートを付加させることにより得られる。ビュレット体は、ジイソシアネートと水またはアミンとの反応により形成されたウレア基にジイソシアネートを付加させることにより得られる。アダクト体は、ジイソアネートを多価アルコールに付加させることにより得られる。 Here, the isocyanurate is a trimer of diisocyanate. An allophanate compound is obtained by adding a diisocyanate to a urethane group formed by the reaction of a diisocyanate and an alcohol. A buret form is obtained by adding a diisocyanate to a urea group formed by a reaction of a diisocyanate with water or an amine. Adducts are obtained by adding diisocyanates to polyhydric alcohols.
 本実施形態において、ポリイソシアネート成分におけるイソシアネート基の平均官能基数は2.0~3.0であり、2.0~2.8であることが好ましく、2.0~2.4であることがより好ましい。平均官能基数は2.0未満では硬化後に十分な皮膜物性が発現しない、3.0を超えると、経時安定性が劣ったり、合成擬革用途とした場合にレザーの風合い、耐寒屈曲性若しくは柔軟性が劣ったりする。 In the present embodiment, the average functionality of the isocyanate groups in the polyisocyanate component is 2.0 to 3.0, preferably 2.0 to 2.8, and preferably 2.0 to 2.4. more preferred. If the average functional group number is less than 2.0, sufficient physical properties of the film cannot be obtained after curing. inferior in quality.
 上記ポリイソシアネート成分におけるイソシアネート基の平均官能基数とは、1種類の脂肪族ジイソシアネート変性体を用いた場合はそのイソシアネート官能基数を表し、複数の脂肪族ジイソシアネート変性体を用いた場合は各脂肪族ジイソシアネート変性体の官能基数にポリイソシアネート成分中のモル比率(モル%)を乗じた数の合計を表す。
 例えば、2官能の脂肪族ジイソシアネート変性体50モル%と3官能の脂肪族ジイソシアネート変性体50モル%を組み合わせた場合、平均官能基数は、2×0.5+3×0.5=2.5となる。なお、計算結果が小数第二位以下の数値を含む場合、小数第二位を四捨五入する。
The average functional number of isocyanate groups in the polyisocyanate component represents the number of isocyanate functional groups when using one type of modified aliphatic diisocyanate, and when using a plurality of modified aliphatic diisocyanates, each aliphatic diisocyanate It represents the total number obtained by multiplying the number of functional groups of the modified product by the molar ratio (mol%) in the polyisocyanate component.
For example, when 50 mol% of a bifunctional aliphatic diisocyanate modified product and 50 mol% of a trifunctional aliphatic diisocyanate modified product are combined, the average number of functional groups is 2 × 0.5 + 3 × 0.5 = 2.5. . In addition, when the calculation result includes a number below the second decimal place, the second decimal place is rounded off.
 本実施形態に係る脂肪族ジイソシアネート変性体の好ましい態様としては、脂肪族ジイソシアネート変性体に起因する効果をより確実に発揮させる観点から、下記のいずれかの組み合わせを含むことがより好ましい。
(1)アロファネート型ジイソシアネートとアダクト型ジイソシアネート(特に、ジオールのジイソシアネートアダクト体)との組み合わせ
(2)2種以上の構造の異なるアロファネート型ジイソシアネートの組み合わせ
(3)アロファネート型ジイソシアネート及び/又はアダクト型ジイソシアネート(特に、ジオールのジイソシアネートアダクト体)と、ヌレート型ポリイソシアネートとの組み合わせ
As a preferred aspect of the modified aliphatic diisocyanate according to the present embodiment, it is more preferable to include any one of the following combinations from the viewpoint of more reliably exhibiting the effects attributed to the modified aliphatic diisocyanate.
(1) a combination of an allophanate-type diisocyanate and an adduct-type diisocyanate (especially a diol diisocyanate adduct) (2) a combination of two or more different allophanate-type diisocyanates (3) an allophanate-type diisocyanate and/or an adduct-type diisocyanate ( In particular, a combination of a diol diisocyanate adduct) and a nurate-type polyisocyanate
 上記の(1)と(2)の組み合わせの場合、すなわち、アロファネート型ジイソシアネート(例えば、既述の「A201H」、「C-2770」など)とアダクト型ジイソシアネート(特に、ジオールのジイソシアネートアダクト体、例えば、既述の「D201」など)とを組み合わせる場合、あるいは、2種以上の構造の異なるアロファネート型ジイソシアネートを含む(例えば、既述の「A201H」と「C-2770」とを組み合わせる)場合には、30:70~70:30(ポリイソシアネート成分の配合比率=モル比)が好ましく、より好ましくは、60:40~40:60(モル比)である。 In the case of the combination of (1) and (2) above, that is, allophanate-type diisocyanates (e.g., "A201H", "C-2770", etc. described above) and adduct-type diisocyanates (in particular, diisocyanate adducts of diols, e.g. , the already described "D201", etc.), or when combining two or more different allophanate-type diisocyanates in structure (for example, the previously described "A201H" and "C-2770" are combined) , 30:70 to 70:30 (mixing ratio of polyisocyanate components=molar ratio), more preferably 60:40 to 40:60 (molar ratio).
 また、上記の(3)の組み合わせの場合、すなわち、アロファネート型ジイソシアネート及び/又はアダクト型ジイソシアネート(特に、ジオールのジイソシアネートアダクト体)に、ヌレート型ポリイソシアネート(例えば、既述の「TKA100」、「D376N」など)を組み合わせる場合は、ヌレート型ポリイソシアネートは、全ポリイソシアネート成分中10~37モル%とすることが好ましく、15~32モル%とすることがより好ましい。ヌレート型ポリイソシアネートの配合比率が10~37モル%であることで、所望のレザー風合いや耐寒屈曲性が得られやすくなる。
 なお、ヌレート型ポリイソシアネートとしては、1,6-ヘキサメチレンジイソシアネートや1,5-ペンタメチレンジイソシアネートを用いたものが挙げられるが、低粘度で良好なハンドリング性や加工適性を得られること、架橋密度が上がり高耐久性が得られることを考慮すると、1,5-ペンタメチレンジイソシアネートのヌレート型ポリイソシアネートが好ましい。
In addition, in the case of the combination of (3) above, that is, allophanate-type diisocyanate and/or adduct-type diisocyanate (especially diol diisocyanate adduct), nurate-type polyisocyanate (e.g., the above-mentioned "TKA100", "D376N etc.), the nurate-type polyisocyanate is preferably 10 to 37 mol %, more preferably 15 to 32 mol %, of the total polyisocyanate component. When the mixing ratio of the nurate-type polyisocyanate is 10 to 37 mol %, the desired leather texture and cold bending resistance can be easily obtained.
Nurate-type polyisocyanates include those using 1,6-hexamethylene diisocyanate and 1,5-pentamethylene diisocyanate. 1,5-pentamethylene diisocyanate nurate-type polyisocyanate is preferred in view of the fact that the heat resistance is increased and high durability is obtained.
 なお、本発明の効果に問題ない範囲で変性していないポリイソシアネートを併用できるが、全ポリイソシアネート成分中、脂肪族ジイソシアネート変性体の割合は、95モル%以上であることが好ましく、98モル%であることがより好ましい。95モル%以上であることで、脂肪族ジイソシアネート変性体に起因する効果(特に、臭気低減効果)をより確実に発揮させることができる。 In addition, although unmodified polyisocyanate can be used in combination to the extent that there is no problem with the effect of the present invention, the proportion of the aliphatic diisocyanate modified product in the total polyisocyanate component is preferably 95 mol% or more, and 98 mol%. is more preferable. When the amount is 95 mol % or more, the effect (particularly, the odor reduction effect) attributed to the modified aliphatic diisocyanate can be exhibited more reliably.
(ポリオール成分)
 既述のとおりポリオール成分は、3官能以上の多官能ポリオールを当該ポリオール成分中に1~8質量%含む。多官能ポリオールが1質量%未満では、合成擬革用途の接着剤として必要とされる十分な耐熱クリープ性が得られず、8質量%を超えると、経時安定性や、レザーの風合い及び柔軟性が低下してしまう。多官能ポリオールは、1~5質量%であることが好ましく、2~4質量%であることがより好ましい。
 このように、前述したような脂肪族ジイソシアネート変性体を適切な比率で配合したポリイソシアネート成分の組み合わせ(1)~(3)のいずれかに、ポリオール成分として3官能以上のものを特定量配合することで、熱軟化点が向上する作用が良好に発現する結果、耐熱クリープ性と風合い(耐寒屈曲性)とを兼ね備えた接着剤を得ることができる。
(Polyol component)
As described above, the polyol component contains 1 to 8% by mass of tri- or higher polyfunctional polyol. If the polyfunctional polyol is less than 1% by mass, sufficient heat creep resistance required as an adhesive for synthetic leather applications cannot be obtained, and if it exceeds 8% by mass, stability over time, leather texture and flexibility decreases. The content of polyfunctional polyol is preferably 1 to 5% by mass, more preferably 2 to 4% by mass.
In this way, a specific amount of trifunctional or higher polyol component is blended in any of the combinations (1) to (3) of the polyisocyanate components in which the modified aliphatic diisocyanate is blended in an appropriate ratio as described above. As a result, the effect of improving the thermal softening point can be satisfactorily expressed, and as a result, an adhesive having both heat resistant creep resistance and texture (cold flex resistance) can be obtained.
 3官能以上の多官能ポリオールとしては、グリセリン、トリメチロールプロパン、1,2,5-ヘキサントリオール、1,2,6-ヘキサントリオール、ペンタエリスリトール、ポリエチレントリオール、ポリプロピレントリオール、ポリオキシプロピレントリオール、ポリオキシエチレントリオール、ポリオキシエチレンプロピレントリオール等が挙げられる。
 なかでも、良好なゲル分率若しくは耐熱クリープ性の観点から、トリメチロールプロパン、ポリオキシプロピレントリオールが好ましく、更に好ましくはトリメチロールプロパンである。
Trifunctional or higher polyfunctional polyols include glycerin, trimethylolpropane, 1,2,5-hexanetriol, 1,2,6-hexanetriol, pentaerythritol, polyethylenetriol, polypropylenetriol, polyoxypropylenetriol, polyoxy Ethylene triol, polyoxyethylene propylene triol and the like can be mentioned.
Among them, trimethylolpropane and polyoxypropylenetriol are preferred, and trimethylolpropane is more preferred, from the viewpoint of good gel fraction or heat resistant creep resistance.
 良好な耐熱クリープ性、ゲル分率などの観点から、多官能ポリオールの数平均分子量は100~1000であることが好ましく、100~200であることがより好ましい。
 数平均分子量が100~1000であることで良好な合成安定性を維持し、期待した効果が得られやすくなる。
The polyfunctional polyol preferably has a number average molecular weight of 100 to 1,000, more preferably 100 to 200, from the viewpoint of good heat-resistant creep resistance, gel fraction, and the like.
When the number average molecular weight is 100 to 1000, good synthesis stability is maintained, and expected effects can be easily obtained.
 3官能以上の多官能ポリオール以外のポリオールとしてはポリウレタンに使用される2官能ポリオールであり、例としてポリカーボネートポリオール、ポリエーテルポリオール、ポリエステルポリオール、ポリラクトンポリオール、ポリオレフィンポリオール、ポリメタクリレートジオール、ポリシロキサンポリオール等が挙げられる。
 なお2官能ポリオールとしては、数平均分子量が500~6000であることが好ましく、700~4000であることがより好ましく、例えば、以下のものが挙げられる。
Polyols other than trifunctional or higher polyfunctional polyols include bifunctional polyols used in polyurethanes, examples of which include polycarbonate polyols, polyether polyols, polyester polyols, polylactone polyols, polyolefin polyols, polymethacrylate diols, and polysiloxane polyols. is mentioned.
The bifunctional polyol preferably has a number average molecular weight of 500 to 6000, more preferably 700 to 4000. Examples thereof include the following.
(1)ポリカーボネートポリオール
 ポリカーボネートポリオールとしては、ポリテトラメチレンカーボネートジオール、ポリペンタメチレンカーボネートジオール、ポリネオペンチルカーボネートジオール、ポリヘキサメチレンカーボネートジオール、ポリ(1,4-シクロヘキサンジメチレンカーボネート)ジオール、及びこれらのランダム/ブロック共重合体などが挙げられる。
(1) Polycarbonate Polyol Polycarbonate polyols include polytetramethylene carbonate diol, polypentamethylene carbonate diol, polyneopentyl carbonate diol, polyhexamethylene carbonate diol, poly(1,4-cyclohexanedimethylene carbonate) diol, and these diols. Random/block copolymers and the like are included.
(2)ポリエーテルポリオール
 ポリエーテルポリオールとしては、アルキレンオキサイド(エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイドなど)および複素環式エーテル(テトラヒドロフランなど)のいずれかを重合または共重合して得られるものが挙げられる。具体的にはポリエチレングリコール、ポリプロピレングリコール、ポリエチレングリコール-ポリテトラメチレングリコール(ブロックまたはランダム)、ポリテトラメチレンエーテルグリコールおよびポリヘキサメチレングリコールなどが挙げられる。
(2) Polyether polyol Polyether polyols include those obtained by polymerizing or copolymerizing any of alkylene oxides (ethylene oxide, propylene oxide, butylene oxide, etc.) and heterocyclic ethers (tetrahydrofuran, etc.). . Specific examples include polyethylene glycol, polypropylene glycol, polyethylene glycol-polytetramethylene glycol (block or random), polytetramethylene ether glycol and polyhexamethylene glycol.
(3)ポリエステルポリオール
 ポリエステルポリオールとしては、脂肪族系ジカルボン酸類(例えば、コハク酸、アジピン酸、セバシン酸、グルタル酸およびアゼライン酸など)、及び芳香族系ジカルボン酸(例えば、イソフタル酸およびテレフタル酸など)の少なくともいずれかと、低分子量グリコール類(例えば、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,3-ブチレングリコール、1,4-ブチレングリコール、1,6-ヘキサメチレングリコール、ネオペンチルグリコールおよび1,4-ビスヒドロキシメチルシクロヘキサンなど)と、を縮重合したものが挙げられる。
 具体的にはポリエチレンアジペートジオール、ポリブチレンアジペートジオール、ポリヘキサメチレンアジペートジオール、ポリネオペンチルアジペートジオール、ポリエチレン/ブチレンアジペートジオール、ポリネオペンチル/ヘキシルアジペートジオール、ポリ-3-メチルペンタンアジペートジオールおよびポリブチレンイソフタレートジオールなどが挙げられる。
(3) Polyester polyol Polyester polyols include aliphatic dicarboxylic acids (e.g., succinic acid, adipic acid, sebacic acid, glutaric acid and azelaic acid), and aromatic dicarboxylic acids (e.g., isophthalic acid and terephthalic acid). ) and low molecular weight glycols (e.g., ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,3-butylene glycol, 1,4-butylene glycol, 1,6-hexamethylene glycol, neopentyl glycol and 1,4-bishydroxymethylcyclohexane).
Specifically polyethylene adipate diol, polybutylene adipate diol, polyhexamethylene adipate diol, polyneopentyl adipate diol, polyethylene/butylene adipate diol, polyneopentyl/hexyl adipate diol, poly-3-methylpentane adipate diol and polybutylene and isophthalate diol.
(4)ポリラクトンポリオール
 ポリラクトンポリオールとしては、ポリカプロラクトンジオール及びポリ-3-メチルバレロラクトンジオールなどが挙げられる。
(5)ポリオレフィンポリオール
 ポリオレフィンポリオールとしては、ポリブタジエングリコールおよびポリイソプレングリコール、または、その水素化物などが挙げられる。
(6)ポリメタクリレートジオール
 ポリメタクリレートジオールとしては、α,ω-ポリメチルメタクリレートジオールおよびα,ω-ポリブチルメタクリレートジオールなどが挙げられる。
(7)ポリシロキサンポリオール
 ポリシロキサンポリオールとしてジメチルポリシロキサンが好ましい。滑性を付与することができるため、特に塗工剤として使用する場合に有用である。
(4) Polylactone polyol Examples of polylactone polyol include polycaprolactone diol and poly-3-methylvalerolactone diol.
(5) Polyolefin Polyol Examples of polyolefin polyol include polybutadiene glycol, polyisoprene glycol, and hydrogenated products thereof.
(6) Polymethacrylate Diol Polymethacrylate diols include α,ω-polymethyl methacrylate diol and α,ω-polybutyl methacrylate diol.
(7) Polysiloxane polyol As the polysiloxane polyol, dimethylpolysiloxane is preferred. Since it can impart lubricity, it is particularly useful when used as a coating agent.
 これらのポリオールは単独或いは2種類以上を組み合わせて使用することができる。 These polyols can be used alone or in combination of two or more.
 なお、本明細書において「数平均分子量」は、ポリスチレン換算の数平均分子量(Mn)であり、通常ゲルパーミエーションクロマトグラフィー(GPC)の測定により求めることができる。 In this specification, the "number average molecular weight" is the polystyrene-equivalent number average molecular weight (Mn), which can be usually determined by gel permeation chromatography (GPC).
 本実施形態に係る湿気硬化型ポリウレタンホットメルト接着剤は、少なくとも既述の脂肪族ジイソシアネート変性体を含むポリイソシアネート成分と既述のポリオール成分との反応から得られる、末端にイソシアネート基を有するウレタンプレポリマーを含むものであるが、当該ウレタンプレポリマーは、具体的には、これらポリイソシアネート成分とポリオール成分と、必要により鎖伸長剤等とを、イソシアネート基と水酸基との当量比(NCO/OH)が1.5~2.0となる配合で、ワンショット法、又は多段法により、40~150℃(好ましくは60~110℃)で、反応生成物が理論NCO%となるまで反応させることで製造することができる。 The moisture-curable polyurethane hot-melt adhesive according to the present embodiment is a urethane preform having an isocyanate group at its end, which is obtained by reacting a polyisocyanate component containing at least the above-mentioned modified aliphatic diisocyanate with the above-mentioned polyol component. Although it contains a polymer, the urethane prepolymer specifically contains these polyisocyanate component and polyol component, and if necessary, a chain extender and the like, and the equivalent ratio of the isocyanate group to the hydroxyl group (NCO/OH) is 1. Manufactured by reacting at 40 to 150° C. (preferably 60 to 110° C.) with a formulation of 5 to 2.0 by a one-shot method or a multistage method until the reaction product reaches the theoretical NCO%. be able to.
 上記のとおり、イソシアネート成分のイソシアネート基とポリオール成分の水酸基の当量比(NCO/OH)は1.5~2.0であることが好ましく1.3~2.2であることがより好ましい。当量比(NCO/OH)が1.5~2.0であることで、ゲル物が生じなく、加工に適した粘度にすることができる。 As described above, the equivalent ratio (NCO/OH) between the isocyanate group of the isocyanate component and the hydroxyl group of the polyol component is preferably 1.5 to 2.0, more preferably 1.3 to 2.2. When the equivalent ratio (NCO/OH) is from 1.5 to 2.0, gels do not occur and the viscosity suitable for processing can be obtained.
 また、鎖伸長剤としては、短鎖ジオール及び短鎖ジアミン等が挙げられる。
 短鎖ジオールとしては、数平均分子量が500未満の化合物であり、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,3-ブチレングリコール、1,4-ブチレングリコール、1,6-ヘキサメチレングリコールおよびネオペンチルグリコールなどの脂肪族グリコール類およびそのアルキレンオキサイド低モル付加物(数平均分子量500未満)、1,4-ビスヒドロキシメチルシクロヘキサンおよび2-メチル-1,1-シクロヘキサンジメタノールなどの脂環式系グリコール類およびそのアルキレンオキサイド低モル付加物(数平均分子量500未満)、キシリレングリコールなどの芳香族グリコール類およびそのアルキレンオキサイド低モル付加物(数平均分子量500未満)、ビスフェノールA、チオビスフェノールおよびスルホンビスフェノールなどのビスフェノール類およびそのアルキレンオキサイド低モル付加物(数平均分子量500未満)、およびC1~C18のアルキルジエタノールアミンなどのアルキルジアルカノールアミン類などの化合物が挙げられる。また、カルボキシル基、スルホ基、燐酸基、アミノ基などのイオン性基を含むジオールを使用することができる。
Moreover, a short-chain diol, a short-chain diamine, etc. are mentioned as a chain extender.
The short-chain diol is a compound having a number average molecular weight of less than 500, and includes ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,3-butylene glycol, 1,4-butylene glycol, 1,4-butylene glycol, Aliphatic glycols such as 6-hexamethylene glycol and neopentyl glycol and their alkylene oxide low molar adducts (number average molecular weight less than 500), 1,4-bishydroxymethylcyclohexane and 2-methyl-1,1-cyclohexane di Alicyclic glycols such as methanol and their alkylene oxide low molar adducts (number average molecular weight less than 500), aromatic glycols such as xylylene glycol and their alkylene oxide low molar adducts (number average molecular weight less than 500), Compounds such as bisphenols such as bisphenol A, thiobisphenols and sulfonebisphenols and their alkylene oxide low molar adducts (number average molecular weight less than 500), and alkyldialkanolamines such as C1-C18 alkyldiethanolamines. Diols containing ionic groups such as carboxyl groups, sulfo groups, phosphoric acid groups and amino groups can also be used.
 短鎖ジアミンとしては、エチレンジアミン、トリメチレンジアミン、ヘキサメチレンジアミンおよびオクタメチレンジアミンなどの脂肪族ジアミン化合物、フェニレンジアミン、3,3’-ジクロロ-4,4’-ジアミノジフェニルメタン、4,4’-メチレンビス(フェニルアミン)、4,4’-ジアミノジフェニルエーテルおよび4,4’-ジアミノジフェニルスルホンなどの芳香族ジアミン化合物、シクロペンタンジアミン、シクロヘキシルジアミン、4,4-ジアミノジシクロヘキシルメタン、1,4-ジアミノシクロヘキサンおよびイソホロンジアミンなどの脂環式ジアミン化合物、ヒドラジン、カルボジヒドラジド、アジピン酸ジヒドラジド、セバシン酸ジヒドラジド、フタル酸ジヒドラジドなどのヒドラジン類などが挙げられる。 Short chain diamines include aliphatic diamine compounds such as ethylenediamine, trimethylenediamine, hexamethylenediamine and octamethylenediamine, phenylenediamine, 3,3′-dichloro-4,4′-diaminodiphenylmethane, 4,4′-methylenebis (phenylamine), aromatic diamine compounds such as 4,4′-diaminodiphenyl ether and 4,4′-diaminodiphenyl sulfone, cyclopentanediamine, cyclohexyldiamine, 4,4-diaminodicyclohexylmethane, 1,4-diaminocyclohexane and Alicyclic diamine compounds such as isophorone diamine, hydrazines such as hydrazine, carbodihydrazide, adipic acid dihydrazide, sebacic acid dihydrazide, phthalic acid dihydrazide, and the like.
 また、上記製造方法においては、必要に応じて触媒を使用できる。例えば、ジブチルチンラウレート、ジオクチルチンラウレート、スタナスオクトエート、オクチル酸鉛、テトラn-ブチルチタネートなどの金属と有機および無機酸の塩、および有機金属誘導体、トリエチルアミンなどの有機アミン、ジアザビシクロウンデセン系触媒などが挙げられる。 Also, in the above production method, a catalyst can be used as necessary. For example, salts of metals and organic and inorganic acids such as dibutyltin laurate, dioctyltin laurate, stannus octoate, lead octoate, tetra-n-butyl titanate, and organometallic derivatives, organic amines such as triethylamine, diaza bicycloundecene-based catalysts, and the like.
 本実施形態に係るウレタンプレポリマーは、有機溶媒を使用しない無溶剤で反応させることが好ましい。これにより、無溶剤ウレタンプレポリマーとすることができる。 The urethane prepolymer according to this embodiment is preferably reacted without using an organic solvent. Thereby, a solventless urethane prepolymer can be obtained.
 本実施形態に係る樹脂成分(ウレタンプレポリマー)のNCO%(イソシアネート基の含有量)は、加工性、レザーの風合いの観点から、2~4%であることが好ましく、2.5~3.7%であることがより好ましい。
 なお、NCO%は計算によって得られる理論値であり、下記式により求めることができる。
 NCO%(理論値)=[(イソシアネートの配合量)×(イソシアネートのNCO%)×(1-NCO/OH)/(NCO/OH)]/[イソシアネートの配合量+ポリオールの配合量+添加剤の配合量]
The NCO% (isocyanate group content) of the resin component (urethane prepolymer) according to the present embodiment is preferably 2 to 4%, and 2.5 to 3.5% from the viewpoint of workability and leather texture. 7% is more preferred.
The NCO % is a theoretical value obtained by calculation and can be obtained by the following formula.
NCO% (theoretical value) = [(mixed amount of isocyanate) x (NCO% of isocyanate) x (1-NCO/OH)/(NCO/OH)]/[mixed amount of isocyanate + blended amount of polyol + additive Amount of]
 本実施形態の湿気硬化型ポリウレタンホットメルト接着剤は、既述のウレタンプレポリマーを90質量%以上含むことが好ましく、ポリウレタンプレポリマーからなる(すなわち、100質量%である)ことがより好ましい。 The moisture-curable polyurethane hot-melt adhesive of the present embodiment preferably contains 90% by mass or more of the urethane prepolymer described above, and more preferably consists of polyurethane prepolymer (that is, 100% by mass).
 ここで、本実施形態の湿気硬化型ポリウレタンホットメルト接着剤は、既述のウレタンプレポリマーを90質量%以上含み、100質量%未満の場合、さらに、イソシアネート系架橋剤を含むことが好ましい。イソシアネート系架橋剤を含むことで、イソシアネート系架橋剤を含まない場合に比べて、当該接着剤による被着材同士の層間剥離を防ぐことができる。 Here, the moisture-curable polyurethane hot-melt adhesive of this embodiment preferably contains 90% by mass or more of the urethane prepolymer described above, and if it is less than 100% by mass, it further contains an isocyanate-based cross-linking agent. By including an isocyanate-based cross-linking agent, it is possible to prevent delamination between adherends due to the adhesive, compared to the case where the isocyanate-based cross-linking agent is not included.
 イソシアネート系架橋剤を含有させる場合、本実施形態の湿気硬化型ポリウレタンホットメルト接着剤における、当該イソシアネート系架橋剤の含有量は、ウレタンプレポリマーに対して10質量%以下であることが好ましく、1~7質量%であることがより好ましく、1~5質量%であることがさらに好ましい。 When an isocyanate-based cross-linking agent is contained, the content of the isocyanate-based cross-linking agent in the moisture-curable polyurethane hot-melt adhesive of the present embodiment is preferably 10% by mass or less with respect to the urethane prepolymer. It is more preferably up to 7% by mass, and even more preferably 1 to 5% by mass.
 上記イソシアネート系架橋剤としては、脂肪族ジイソシアネート変性体であることが好ましく、具体的には、既述の脂肪族ジイソシアネート変性体等が挙げられる。
 なお、既述のウレタンプレポリマーに係る脂肪族ジイソシアネート変性体と本実施形態に係るイソシアネート系架橋剤とは、同一でも異なっていてもよい。
The isocyanate-based cross-linking agent is preferably a modified aliphatic diisocyanate, and specific examples thereof include the above-described modified aliphatic diisocyanate.
The modified aliphatic diisocyanate of the urethane prepolymer described above and the isocyanate-based cross-linking agent of the present embodiment may be the same or different.
 本実施形態に係る樹脂成分(ウレタンプレポリマーと架橋剤を含む場合)のNCO%(イソシアネート基の含有量)は、加工性、レザーの風合いの観点から、2~4%であることが好ましく、2.5~3.7%であることがより好ましい。
 なお、ウレタンプレポリマーと架橋剤を含む場合のNCO%は計算によって得られる理論値であり、下記式により求めることができる。
 NCO%(理論値)=[(ウレタンプレポリマーのNCO%)×(ウレタンプレポリマーの量)+(架橋剤のNCO%)×(架橋剤の量)]/[(ウレタンプレポリマーの量+架橋剤の量)]
The NCO% (isocyanate group content) of the resin component (when it contains a urethane prepolymer and a cross-linking agent) according to the present embodiment is preferably 2 to 4% from the viewpoint of workability and leather texture. More preferably 2.5 to 3.7%.
Incidentally, the NCO% when the urethane prepolymer and the cross-linking agent are contained is a theoretical value obtained by calculation, and can be obtained by the following formula.
NCO% (theoretical value) = [(NCO% of urethane prepolymer) x (amount of urethane prepolymer) + (NCO% of cross-linking agent) x (amount of cross-linking agent)]/[(amount of urethane prepolymer + cross-linking) amount of agent)]
 イソシアネート系架橋剤を含有する湿気硬化型ポリウレタンホットメルト接着剤は、既述のウレタンプレポリマーを作製した後に、イソシアネート系架橋剤を所定量添加し撹拌等によって混合して作製することができる。 A moisture-curable polyurethane hot-melt adhesive containing an isocyanate-based cross-linking agent can be prepared by adding a predetermined amount of an isocyanate-based cross-linking agent after preparing the urethane prepolymer described above and mixing by stirring or the like.
 また、本実施形態の湿気硬化型ポリウレタンホットメルト接着剤においては、必要に応じて、熱可塑性ポリマー、粘着付与樹脂、触媒、顔料、酸化防止剤、光安定剤、紫外線吸収剤、界面活性剤、難燃剤、充填剤、発泡剤等を適量配合してもよい。 Further, in the moisture-curable polyurethane hot-melt adhesive of the present embodiment, if necessary, a thermoplastic polymer, a tackifying resin, a catalyst, a pigment, an antioxidant, a light stabilizer, an ultraviolet absorber, a surfactant, Flame retardants, fillers, foaming agents, etc. may be blended in appropriate amounts.
 ここで、光安定剤としては、種々ものが使用できるが、ヒンダードアミン系光安定剤等が好ましく挙げられる。
 前述したような本発明のウレタンプレポリマーに対し、ヒンダードアミン系光安定剤を特定量添加すると、ゲル分率の向上、養生時間の短縮などの優れた効果が得られる。
Various light stabilizers can be used here, and hindered amine light stabilizers are preferred.
When a specific amount of a hindered amine light stabilizer is added to the urethane prepolymer of the present invention as described above, excellent effects such as improvement in gel fraction and shortening of curing time can be obtained.
 ヒンダードアミン系光安定剤としては、例えば、セバシン酸ビス(2,2,6,6-テトラメチル-4-ピペリジル)、セバシン酸ビス(1,2,2,6,6-ペンタメチルピペリジン-4-イル)、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)1,2,3,4-ブタンテトラカルボキシレート、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)1,2,3,4-ブタンテトラカルボキシレート、(混合2,2,6,6-テトラメチル-4-ピペリジル/トリデシル)1,2,3,4-ブタンテトラカルボキシレート、(混合1,2,2,6,6-ペンタメチル-4-ピペリジル/トリデシル)1,2,3,4-ブタンテトラカルボキシレート、8-アセチル-3-ドデシル-7,7,9,9-テトラメチル-1,3,8-トリアザスピロ〔4.5〕デカン-2,4-ジオン等を用いることができる。なかでも、セバシン酸ビス(2,2,6,6-テトラメチル-4-ピペリジル)が好ましい。
 なお、これらの化合物は単独で用いても2種以上を併用してもよい。
Hindered amine light stabilizers include, for example, bis(2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis(1,2,2,6,6-pentamethylpiperidine-4- yl), tetrakis(2,2,6,6-tetramethyl-4-piperidyl) 1,2,3,4-butane tetracarboxylate, tetrakis(1,2,2,6,6-pentamethyl-4-piperidyl) ) 1,2,3,4-butane tetracarboxylate, (mixed 2,2,6,6-tetramethyl-4-piperidyl/tridecyl) 1,2,3,4-butane tetracarboxylate, (mixed 1, 2,2,6,6-pentamethyl-4-piperidyl/tridecyl) 1,2,3,4-butanetetracarboxylate, 8-acetyl-3-dodecyl-7,7,9,9-tetramethyl-1, 3,8-Triazaspiro[4.5]decane-2,4-dione and the like can be used. Among them, bis(2,2,6,6-tetramethyl-4-piperidyl) sebacate is preferred.
In addition, these compounds may be used independently or may be used in combination of 2 or more types.
 また、本実施形態の湿気硬化型ポリウレタンホットメルト接着剤は合成擬革用、すなわち、合成擬革用接着剤であることが好ましい。 Also, the moisture-curable polyurethane hot-melt adhesive of the present embodiment is preferably for synthetic imitation leather, that is, an adhesive for synthetic imitation leather.
 本実施形態の湿気硬化型ポリウレタンホットメルト接着剤は、被着体表面に塗布することにより被着体同士を容易に接着させることができる。被着体としては、上記の合成擬革用の基材以外に例えば、金属、非金属(ポリカーボネート、ガラス等)の基材が挙げられる。 The moisture-curable polyurethane hot-melt adhesive of this embodiment can easily bond adherends together by applying it to the surfaces of adherends. Examples of the adherend include substrates of metals and non-metals (polycarbonate, glass, etc.) in addition to the above substrates for synthetic imitation leather.
 ここで、本実施形態の湿気硬化型ポリウレタンホットメルト接着剤のゲル分率は85%以上であることが好ましく、90%以上であることがより好ましい。 Here, the gel fraction of the moisture-curable polyurethane hot-melt adhesive of this embodiment is preferably 85% or more, more preferably 90% or more.
 ゲル分率が85%以上であると、耐熱クリープ性、耐アルコール性、加工性(硬化速度)を向上させることができる。ゲル分率を高めるには、例えば、ウレタンプレポリマーへ、既述のヒンダードアミン系光安定剤を添加することができる。その添加量は、所望の効果(高いゲル分率、養生時間短縮化など)を得る観点から、ウレタンプレポリマーに対して0.2~1.0質量%が好ましく、0.2~0.5質量%がより好ましい。ゲル分率は、実施例に記載の方法により測定することができる。 When the gel fraction is 85% or more, heat creep resistance, alcohol resistance, and workability (curing speed) can be improved. To increase the gel fraction, for example, the aforementioned hindered amine light stabilizer can be added to the urethane prepolymer. From the viewpoint of obtaining the desired effect (high gel fraction, shortening of curing time, etc.), the amount added is preferably 0.2 to 1.0% by mass, more preferably 0.2 to 0.5%, relative to the urethane prepolymer. % by mass is more preferred. The gel fraction can be measured by the method described in Examples.
 本実施形態の湿気硬化型ポリウレタンホットメルト接着剤の硬化後の熱軟化点(熱硬化温度)は175℃以上であることが好ましく、185~220℃であることがより好ましい。 The heat softening point (thermosetting temperature) of the moisture-curable polyurethane hot-melt adhesive of this embodiment after curing is preferably 175°C or higher, more preferably 185 to 220°C.
 硬化後の熱軟化点が175℃以上であると、耐熱クリープ性、耐候性、耐熱性、耐工業洗濯性が向上する。耐候性、耐熱性が向上することにより車輛用外装部材の接着剤として使用可能であり、耐工業洗濯性が向上することにより高温滅菌を必要とする衛生資材に使用可能となる。
 熱軟化点は、実施例に記載の方法により測定することができる。なお、本明細書において、熱軟化点や後述の破断伸度は熱硬化後に測定するが、この硬化後とはIR測定によりNCOの消失が確認された後を意味する。
When the heat softening point after curing is 175° C. or higher, the heat creep resistance, weather resistance, heat resistance, and resistance to industrial washing are improved. The improved weather resistance and heat resistance make it possible to use it as an adhesive for vehicle exterior members, and the improved industrial washing resistance makes it possible to use it for sanitary materials that require high-temperature sterilization.
The thermal softening point can be measured by the method described in Examples. In the present specification, the heat softening point and the elongation at break described below are measured after heat curing, and "after curing" means after disappearance of NCO is confirmed by IR measurement.
 本実施形態の湿気硬化型ポリウレタンホットメルト接着剤の硬化後の25℃における破断伸度は300~1000%であることが好ましく、400~800%であることがより好ましい。破断伸度が300%以上であると合成皮革にした場合、屈曲性を良好にすることができる。破断伸度が1,000%以下であると、耐熱クリープ性及び接着強度の低下が抑えられ、接着剤としての良好な機能が発揮されやすくなる。
 破断伸度は、実施例に記載の方法により測定することができる。
The breaking elongation at 25° C. after curing of the moisture-curable polyurethane hot-melt adhesive of this embodiment is preferably 300 to 1000%, more preferably 400 to 800%. If the elongation at break is 300% or more, the synthetic leather can have good flexibility. When the elongation at break is 1,000% or less, deterioration in heat creep resistance and adhesive strength is suppressed, and good functions as an adhesive are likely to be exhibited.
The breaking elongation can be measured by the method described in Examples.
 以下に実施例及び比較例を挙げて本発明をさらに具体的に説明するが、本発明はこれらに限定されるものではない。また、以下にある「部」は質量部、「%」は質量%を示す。表中、(カッコ書きの数字)は、「ポリイソシアネート成分におけるモル比(モル%)」を示す。 The present invention will be described in more detail with examples and comparative examples below, but the present invention is not limited to these. In addition, "parts" below indicate parts by mass, and "%" indicates mass%. In the table, (numbers in parentheses) indicate "molar ratio (mol%) in the polyisocyanate component".
 使用した材料は下記のとおりである。
(1)ポリエステルポリオール
・TPEP85:アジピン酸/1,4-ブタンジオール(60/40mol%)(数平均分子量2000、台精化学製
(2)ポリエーテルポリオール
・PTMG1000:数平均分子量1000、三菱ケミカル(株)製
・PPG1000:数平均分子量1000、旭硝子(株)製
(3)3官能ポリオール
・T-700:ポリオキシプロピレントリオール、数平均分子量700、三井化学(株)製
・TMP:トリメチロールプロパン、数平均分子量134、三菱ガス化学(株)製
The materials used are as follows.
(1) Polyester polyol TPEP85: adipic acid/1,4-butanediol (60/40 mol%) (number average molecular weight 2000, manufactured by Daisei Chemical (2) Polyether polyol PTMG1000: number average molecular weight 1000, Mitsubishi Chemical ( Co., Ltd. PPG1000: number average molecular weight 1000, Asahi Glass Co., Ltd. (3) trifunctional polyol T-700: polyoxypropylene triol, number average molecular weight 700, Mitsui Chemicals Co., Ltd. TMP: trimethylolpropane, Number average molecular weight 134, manufactured by Mitsubishi Gas Chemical Company, Inc.
(4)ポリイソシアネート成分
・A201H:デュラネートA201H、1,6-ヘキサメチレンジイソシアネート変性体でアロファネート型ジイソシアネート、重量平均分子量488.4、NCO%=17.2、旭化成(株)製
・D201:デュラネートD201、1,6-ヘキサメチレンジイソシアネート変性体でジオールのジイソシアネートアダクト体、重量平均分子量558.2、NCO%=15.9、旭化成(株)製
・TKA100:ヘキサメチレンジイソシアネートのヌレート型ポリイソシアネート、重量平均分子量578、旭化成(株)製
・C-2770:ヘキサメチレンジイソシアネートのアロファネート型ジイソシアネート、重量平均分子量437.5、東ソー(株)製
・D376N:1,5-ペンタンジイソシアネートのヌレート型ポリイソシアネート、重量平均分子量536.1、三井化学(株)製
・HDI:ヘキサメチレンジイソシアネート、旭化成(株)製
 なお、上記「A201H」と「C-2770」とは、いずれもヘキサメチレンジイソシアネートのアロファネート型ジイソシアネートだが、重量平均分子量、構造などにおいて互いに相違する。
(4) Polyisocyanate component A201H: Duranate A201H, 1,6-hexamethylene diisocyanate modified allophanate-type diisocyanate, weight average molecular weight 488.4, NCO% = 17.2, Asahi Kasei Co., Ltd. D201: Duranate D201 , 1,6-hexamethylene diisocyanate modified diisocyanate adduct of diol, weight average molecular weight 558.2, NCO% = 15.9, manufactured by Asahi Kasei Co., Ltd. TKA100: Nurate polyisocyanate of hexamethylene diisocyanate, weight average Molecular weight 578, Asahi Kasei Co., Ltd. C-2770: Allophanate-type diisocyanate of hexamethylene diisocyanate, weight average molecular weight 437.5, Tosoh Corporation D376N: Nurate-type polyisocyanate of 1,5-pentane diisocyanate, weight average Molecular weight 536.1, manufactured by Mitsui Chemicals Co., Ltd. HDI: hexamethylene diisocyanate, manufactured by Asahi Kasei Co., Ltd. Note that the above "A201H" and "C-2770" are both allophanate-type diisocyanates of hexamethylene diisocyanate. They differ from each other in average molecular weight, structure, and the like.
(5)光安定剤
・HALS(ヒンダードアミン系光安定剤):CHISORB770(LS770、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート)
(5) Light stabilizer HALS (hindered amine light stabilizer): CHISORB770 (LS770, bis(2,2,6,6-tetramethyl-4-piperidyl) sebacate)
[実施例1]
 撹拌機、温度計、ガス導入口等を付与したガラス製反応容器に、ポリオール成分として、ポリエステルポリオール(TPEP85)55部、ポリエーテルポリオール(PTMG1000)45部、及び、3官能以上の多官能ポリオール(T-700)3.0部と、ポリイソシアネート成分として、デュラネートA201Hを30部、及び、デュラネートD201を30部とを混合し、反応容器内を加熱減圧して脱水処理を行い、更に窒素ガスを封入して内温を110℃とした状態で120分間撹拌して反応させ、NCO/OH=1.7のウレタンプレポリマーを得た。次いで、得られたウレタンプレポリマーに対して0.3%(対樹脂0.3%)となるように光安定剤を加え、30分間攪拌を行った。
[Example 1]
Into a glass reaction vessel equipped with a stirrer, a thermometer, a gas inlet, etc., 55 parts of polyester polyol (TPEP85), 45 parts of polyether polyol (PTMG1000), and a trifunctional or higher polyfunctional polyol ( T-700) 3.0 parts, 30 parts of Duranate A201H and 30 parts of Duranate D201 as polyisocyanate components are mixed, dehydration treatment is performed by heating and depressurizing the inside of the reaction vessel, and nitrogen gas is further introduced. The mixture was sealed and the internal temperature was kept at 110° C., and the mixture was stirred for 120 minutes for reaction to obtain a urethane prepolymer having an NCO/OH ratio of 1.7. Next, a light stabilizer was added so as to be 0.3% (0.3% relative to the resin) with respect to the obtained urethane prepolymer, and the mixture was stirred for 30 minutes.
[実施例2~10、比較例1~10]
 ポリオール成分及びポリイソシアネート成分等の種類や配合を下記表1及び表2に示すようにした以外は実施例1と同様にしてウレタンプレポリマーを得た。なお、実施例3~8、10、比較例1~10については、ウレタンポリマー合成後に光安定剤を加えていない。
[Examples 2 to 10, Comparative Examples 1 to 10]
A urethane prepolymer was obtained in the same manner as in Example 1 except that the types and formulations of the polyol component and the polyisocyanate component were as shown in Tables 1 and 2 below. In Examples 3 to 8 and 10 and Comparative Examples 1 to 10, no light stabilizer was added after synthesizing the urethane polymer.
 実施例及び比較例で得られたウレタンプレポリマーを用いて下記の評価を行った。結果を表1及び表2に示す。 The following evaluations were performed using the urethane prepolymers obtained in Examples and Comparative Examples. The results are shown in Tables 1 and 2.
[ゲル分率と樹脂物性]
(評価用フィルムの作製)
 各例のウレタンプレポリマーを100℃で溶融し、塗布後の膜厚が50~70μmとなるように離型紙上に塗工した。その後、熟成工程として温度40℃、相対湿度60%の環境下で60時間熟成、更に室温(20℃)で1日保管して離型紙付きの評価用フィルムを得た。
 この評価用フィルムは、ゲル分率と樹脂物性を評価するために用いる。
[Gel fraction and resin physical properties]
(Production of film for evaluation)
The urethane prepolymer of each example was melted at 100° C. and coated on release paper so that the film thickness after coating would be 50 to 70 μm. Thereafter, as an aging step, the film was aged for 60 hours under an environment of a temperature of 40° C. and a relative humidity of 60%, and further stored at room temperature (20° C.) for 1 day to obtain an evaluation film with release paper.
This evaluation film is used to evaluate the gel fraction and the physical properties of the resin.
<ゲル分率>
 離型紙を剥がして得られた評価用フィルムを8cm×8cmに切り出し、重量(W-a)を測定した。重量測定したフィルムをMEK(メチルエチルケトン)及びトルエンのそれぞれの中に浸し、蓋をして密封したものを作製し、25℃条件下で2時間放置した後、70℃で完全乾燥させた。完全乾燥させたフィルムの重量(W-b)を測定した。(W-b)/(W-a)×100の算式によりゲル分率を算定した。MEK及びトルエンのいずれの場合も85%以上であれば合格である。
<Gel fraction>
A film for evaluation obtained by peeling off the release paper was cut into a size of 8 cm×8 cm, and the weight (Wa) was measured. The weighed film was immersed in each of MEK (methyl ethyl ketone) and toluene, sealed with a lid, left at 25°C for 2 hours, and then completely dried at 70°C. The weight (Wb) of the completely dried film was measured. The gel fraction was calculated by the formula (Wb)/(Wa)×100. 85% or more for both MEK and toluene is acceptable.
<20%モジュラス、100%モジュラス、300%モジュラス、破断強度及び破断伸度>
 離型紙を剥がして得られた評価用フィルムについて、JIS3に準じてダンベル状試験片を打ち抜き、島津製作所製オートグラフAGS-Jを用いて、JIS K-6251に準拠した測定方法によって、室温(25℃)における20%モジュラス、100%モジュラス、300%モジュラス(ML(MPa))、破断強度(MPa)及び破断伸度(%)を測定した。本評価において、破断強度が高いほどフィルムの強度が高いことを示す。また、破断伸度は、合成擬革用の接着剤としては、300~1000%が好ましい。
 なお、比較例3,5の300%モジュラスは、300%までフィルムが伸びていない(硬い)為、測定値が無いので、表2中「-」と表記している。
<20% modulus, 100% modulus, 300% modulus, breaking strength and breaking elongation>
For the film for evaluation obtained by peeling off the release paper, a dumbbell-shaped test piece was punched according to JIS3, and an Autograph AGS-J manufactured by Shimadzu Corporation was used to measure the temperature at room temperature (25 ° C.), 20% modulus, 100% modulus, 300% modulus (ML (MPa)), breaking strength (MPa) and breaking elongation (%) were measured. In this evaluation, the higher the breaking strength, the higher the strength of the film. Further, the elongation at break is preferably 300 to 1000% as an adhesive for synthetic imitation leather.
The 300% modulus of Comparative Examples 3 and 5 are indicated by "-" in Table 2 because the films did not stretch to 300% (hard) and there are no measured values.
<熱軟化点>
 離型紙を剥がして得られた評価用フィルム(幅1.5cm、長さ6cm)を用いて熱軟化点を測定した。
 具体的には、まず図1に示すように、評価用フィルム10の上下にクリップ12を取り付け、セロテープ(登録商標)でさらにクリップ12を固定し、一方のクリップ12に吊り下げたときに450g/cmの荷重がかかるような重り14を取り付けて試料16を作製した。なお、評価用フィルム10の中央部長手方向2cmはセロテープ(登録商標)で覆われていない。
<Thermal softening point>
The thermal softening point was measured using an evaluation film (width 1.5 cm, length 6 cm) obtained by peeling off the release paper.
Specifically, first, as shown in FIG. 1, clips 12 are attached to the top and bottom of the evaluation film 10, and the clips 12 are further fixed with Sellotape (registered trademark). A sample 16 was prepared by attaching a weight 14 that applies a load of cm 2 . In addition, 2 cm in the central longitudinal direction of the evaluation film 10 is not covered with Sellotape (registered trademark).
 次に、図2に示すように、試料16の重り14が取り付けられていないクリップ12をギアオーブン20の回転盤22に取り付けた。その後、回転盤22を5rpmで回転させながら、室温から3℃/minの速度でギアオーブン20内を昇温した。評価用フィルム10が切断したとき、もしくは2倍に伸長したときの温度(℃)を熱軟化点とした。
 本評価において、熱軟化点(熱軟化温度)が高いほど、フィルムとしての耐性(耐熱性)が高いことを示す。
Next, as shown in FIG. 2, the clip 12 of the sample 16 to which the weight 14 was not attached was attached to the rotating disk 22 of the gear oven 20 . After that, while rotating the rotating disk 22 at 5 rpm, the temperature inside the gear oven 20 was raised from room temperature at a rate of 3° C./min. The temperature (° C.) at which the evaluation film 10 was cut or stretched twice was taken as the thermal softening point.
In this evaluation, the higher the thermal softening point (thermal softening temperature), the higher the resistance (heat resistance) as a film.
[接着剤の評価]
<耐熱クリープ性>
 クリープ試験として、高温状態で試験片に一定の荷重を長時間加え、変形量や破断するまでの時間を測定する試験を行った。具体的には下記1)~8)のようにして行った。
[Evaluation of Adhesive]
<Heat resistant creep resistance>
As a creep test, a constant load was applied to the test piece for a long time at high temperature, and the amount of deformation and the time until fracture were measured. Specifically, the following 1) to 8) were carried out.
 1)試験対象の湿気硬化型PUR-HM樹脂(各例のウレタンプレポリマー)とコーティング棒を110℃のオーブンに入れて予熱した。
 2)湿式成膜布(A)のPU樹脂面にPUR-HM樹脂を200μGap(厚さ200μm)にて塗工し、直ちに湿式成膜布(B)のPU樹脂面と貼り合わせを行った。
 なお、湿式成膜布(A)及び湿式成膜布(B)としては、基材として用いる不織布上にDMFを媒体としたポリウレタン樹脂配合液(レザミンCU-4340NS(PU樹脂固形分30%、大日精化工業(株)製)をDMFで固形分15%に希釈した配合液)を塗工し、水槽中で凝固・脱DMFを行った後、乾燥を行うことで得られるもので、基材上に乾燥後の厚みが800~1000μmのポーラス層が形成されている合成擬革を用いた。
 3)上記貼り合わせ品を25℃/60%RHで24時間硬化させた後、下記手順で耐熱性を測定した。
 4)オーブンを170℃に設定した。また、貼り合わせ品を幅3cm、長さ12cm以上で切り取り、試験片とした。
 5)試験片端部を貼り合わせ面で剥離させ、湿式成膜布(A)側と湿式成膜布(B)側にそれぞれクランプを取り付け固定し、片側に3kgの重りを吊るした。
 6)170℃のオーブンに入れ試験試料を吊るした後、素早くオーブンのドアを閉めた。
 7)ドアを閉めた後、5分間放置した。
 8)5分間経過後、直ちに試験片を取り出し、170℃/5分間放置にて剥離した長さ及び剥離状態を観察し下記評価基準にて評価した。なお、〇が合格である。
1) The moisture-curable PUR-HM resin (urethane prepolymer in each example) to be tested and the coated bar were preheated in an oven at 110°C.
2) PUR-HM resin was applied to the PU resin surface of the wet film-formed cloth (A) at a 200 μgap (thickness of 200 μm), and immediately bonded to the PU resin surface of the wet film-formed cloth (B).
As the wet film-forming fabric (A) and the wet film-forming fabric (B), a polyurethane resin compound liquid (Rezamin CU-4340NS (PU resin solid content 30%, large manufactured by Nissei Kagaku Kogyo Co., Ltd.) is diluted with DMF to a solid content of 15%) is applied, solidified in a water tank, DMF is removed, and then dried. A synthetic imitation leather having a porous layer having a thickness of 800 to 1000 μm after drying formed thereon was used.
3) After curing the laminated product at 25° C./60% RH for 24 hours, the heat resistance was measured according to the following procedure.
4) The oven was set to 170°C. Also, the bonded product was cut to a width of 3 cm and a length of 12 cm or more to obtain a test piece.
5) The end of the test piece was peeled off at the bonded surface, clamps were attached and fixed to the wet film-formed cloth (A) side and the wet film-formed cloth (B) side, respectively, and a weight of 3 kg was hung on one side.
6) After placing the test sample in an oven at 170°C and hanging the test sample, the oven door was quickly closed.
7) After closing the door, let stand for 5 minutes.
8) After 5 minutes had passed, the test piece was immediately taken out and left at 170°C for 5 minutes to observe the peeled length and peeled state, and evaluated according to the following evaluation criteria. In addition, 0 is a pass.
[評価基準]
 ○:剥離した長さ2cm未満、剥離状態は基材破壊
 △:剥離した長さ2cm以上5cm未満、剥離状態は基材破壊
 ×:剥離した長さ5cm以上、または湿式PU樹脂層面々剥離
[Evaluation criteria]
○: Peeled length of less than 2 cm, peeled state is substrate destruction △: Peeled length of 2 cm or more and less than 5 cm, peeled state is substrate destruction ×: Peeled length of 5 cm or more, or wet PU resin layer peeled off
<加工性能(初期固化性)>
 実施例及び比較例で得られたウレタンプレポリマーを100℃で溶融し、膜厚50~70μmとなるように離型紙上に塗工した。40℃条件下で、30秒ごとに同じ基材の非塗工面を貼り合わる作業を5分まで行った。貼り合わせた基材を手で剥す際の抵抗感及び基材への樹脂の付着量によって加工(初期固化)性能の評価を行った。
 〇:剥離時に抵抗がなく、付着もなく合格である。
 △:剥離時に抵抗はあるが、付着なし。○よりも評価は劣る。
 ×:剥離時に抵抗があり、付着もあり不合格である。
<Processing performance (initial hardening property)>
The urethane prepolymers obtained in Examples and Comparative Examples were melted at 100° C. and coated on release paper so as to have a film thickness of 50 to 70 μm. At 40° C., the uncoated surface of the same substrate was adhered every 30 seconds for up to 5 minutes. The processing (initial solidification) performance was evaluated based on the feeling of resistance when peeling off the bonded base material by hand and the amount of resin adhered to the base material.
◯: No resistance during peeling and no adhesion, passing the test.
Δ: There is resistance during peeling, but there is no adhesion. The evaluation is inferior to ○.
x: There is resistance at the time of peeling, and there is also adhesion, so it is disqualified.
(合成擬革の作製及び評価)
(表皮層の形成)
 合成擬革表皮用として、溶剤型ウレタン樹脂であるレザミンNE-8875-30(大日精化工業(株)製)と、合成擬革用着色剤としてセイカセブンBS-780(大日精化工業(株)製)と、希釈溶剤としてメチルエチルケトン(MEK)及びジメチルホルムアミド(DMF)とを混合し、離型紙上にバーコーターで250μm/wetの塗布量を均一に塗工した後、120℃で5分乾燥させ膜厚40~50μmの表皮層を得た。
(Production and evaluation of synthetic imitation leather)
(Formation of epidermis layer)
For synthetic imitation leather skin, Rezamin NE-8875-30 (manufactured by Dainichiseika Kogyo Co., Ltd.), a solvent-type urethane resin, and Seika Seven BS-780 (Dainichiseika Kogyo Co., Ltd.) as a coloring agent for synthetic imitation leather )), and methyl ethyl ketone (MEK) and dimethylformamide (DMF) as diluent solvents. After uniformly applying a coating amount of 250 μm / wet on release paper with a bar coater, dry at 120 ° C. for 5 minutes. A skin layer having a thickness of 40 to 50 μm was obtained.
(レザー風合い評価のための標準合成擬革の作製)
 上記離型紙上に形成された表皮層に、レザミンUD-8351NT(ポリウレタン樹脂接着剤、大日精化工業(株)製)100質量部、C-50架橋剤(イソシアネート系架橋剤、大日精化工業(株)製)10質量部の配合で調整した接着剤を厚み100μmの接着剤層を形成するように塗工し、80℃/2分の予備乾燥後得られた接着層と基材(織物)とをラミネートロール温度40℃にて加圧圧着した。その後、50℃/48時間での条件で熟成を行い柔軟性評価のための標準合成擬革を得た。
(Preparation of standard synthetic imitation leather for evaluation of leather texture)
100 parts by mass of Lezamin UD-8351NT (polyurethane resin adhesive, manufactured by Dainichiseika Kogyo Co., Ltd.), C-50 cross-linking agent (isocyanate cross-linking agent, Dainichiseika Kogyo Co., Ltd.) is added to the skin layer formed on the release paper. Co., Ltd.) was coated so as to form an adhesive layer having a thickness of 100 μm and was pre-dried at 80° C. for 2 minutes. ) were pressure-bonded at a laminate roll temperature of 40°C. Then, it was aged at 50° C./48 hours to obtain a standard synthetic imitation leather for flexibility evaluation.
(実施例1~10及び比較例1~10に係る合成擬革の作製)
 上記離型紙上に形成された表皮層上に、実施例及び比較例で得られたポリウレタンプレポリマーを100℃に熱して、塗布膜厚100μmとなるよう塗工し、基布(織物)をラミネートロール温度30℃にて加圧圧着した。熟成工程として温度40℃、相対湿度60%の環境下で5日間熟成した。離型紙から剥離しポリウレタンプレポリマーを使用した評価用合成擬革を作製した。
(Production of synthetic imitation leather according to Examples 1 to 10 and Comparative Examples 1 to 10)
The polyurethane prepolymers obtained in Examples and Comparative Examples are heated to 100° C. and coated on the skin layer formed on the release paper so that the coating thickness is 100 μm, and the base fabric (fabric) is laminated. Pressure bonding was performed at a roll temperature of 30°C. As an aging step, the mixture was aged for 5 days under an environment of a temperature of 40° C. and a relative humidity of 60%. A synthetic imitation leather for evaluation was prepared by peeling from the release paper and using a polyurethane prepolymer.
<レザー風合い>
 得られた各評価用合成擬革の柔軟性について、標準合成擬革を基準とし、手で触った感触で比較し、評価指標は下記のとおりとした。なお、評価が○であれば合格である。
○:標準合成擬革と同程度に柔らかい(レザー風合いとして合格)
×:標準合成擬革よりも大幅に硬い(レザー風合いとして不合格)
<Leather texture>
The softness of each synthetic imitation leather obtained for evaluation was compared with the standard synthetic imitation leather as a reference, and the evaluation index was as follows. In addition, if the evaluation is ◯, it is acceptable.
○: As soft as standard synthetic imitation leather (accepted as leather texture)
×: Significantly harder than standard synthetic imitation leather (failed as leather texture)
<耐寒屈曲性試験>
 上記得られた各合成擬革を幅50mm、長さ150mm(評価範囲100mm)の試験シートとし、当該試験シートを用いてデマッチャ試験機(安田精機製作所製、型番:NO.119-L DEMATTIA FLEXING TESTER)により、-10℃環境下、伸縮屈曲範囲72~108%、-10℃低温下にて屈曲試験を行った。評価指標は下記のとおりとした。なお、評価が○であれば合格である。
○:-10℃、30,000回以上
×:-10℃、30,000回未満
<Cold Flexibility Test>
Each synthetic imitation leather obtained above was used as a test sheet with a width of 50 mm and a length of 150 mm (evaluation range: 100 mm). ), a bending test was performed under a -10°C environment, with a stretching and bending range of 72 to 108%, and at a low temperature of -10°C. The evaluation indices were as follows. In addition, if the evaluation is ◯, it is acceptable.
○: -10°C, 30,000 times or more ×: -10°C, less than 30,000 times
<経時安定性:Pot Life>
 実施例及び比較例で得られたウレタンプレポリマーを100℃で溶融し、100℃、24時間の条件下で粘度の経時変化と目視で沈降物を評価した(使用可能レベルは〇)。
〇:沈降物なし、粘度変化が+100%未満である。
×:沈降物あり、粘度変化が+100%以上である。
なお、粘度は下記条件で測定した。
(粘度測定)
 BM型粘度計(東京計器製造所)を用い、ローターNo.4/30rpm/100℃の条件で、各ウレタンプレポリマーの粘度を測定した。
<Stability over time: Pot Life>
The urethane prepolymers obtained in Examples and Comparative Examples were melted at 100° C., and the change in viscosity over time and sedimentation were visually evaluated under the conditions of 100° C. for 24 hours (useable level is ◯).
◯: No sediment, viscosity change less than +100%.
x: Presence of sediment, viscosity change of +100% or more.
The viscosity was measured under the following conditions.
(Viscosity measurement)
Using a BM type viscometer (Tokyo Keiki Seisakusho), rotor No. The viscosity of each urethane prepolymer was measured under the conditions of 4/30 rpm/100°C.
<臭気>
 実施例及び比較例で得られたウレタンプレポリマーを250mlポンド缶に入れ、100℃で2時間加熱した後、10人のパネリストのそれぞれが蓋を開けて臭気を確認した。評価基準は下記の通りである(〇が実用可能レベルとなる)。
 〇:10名全員、臭気を感じなかった。
 ×:10人中、5名以上が臭気を感じた。
<Odor>
The urethane prepolymers obtained in Examples and Comparative Examples were placed in 250 ml pound cans, heated at 100° C. for 2 hours, and then each of the 10 panelists opened the lid and checked the odor. The evaluation criteria are as follows (○ indicates a practical level).
◯: All 10 people did not sense an odor.
x: 5 or more out of 10 people felt the odor.
<造膜性>
 実施例及び比較例で得られたウレタンプレポリマーを、100℃に熱し、離型紙K8P(01)上に、塗布膜厚100μmとなるよう塗工した。塗工直後に40℃で10分間保温した。10分後の塗膜の連続性の有無で造膜性を評価した(〇が実用可能レベルとなる)。
 〇:塗膜の連続性を維持
 ×:塗膜のハジキ又は収縮あり
<Film Formability>
The urethane prepolymers obtained in Examples and Comparative Examples were heated to 100° C. and coated on release paper K8P(01) to a coating thickness of 100 μm. Immediately after coating, the film was kept at 40°C for 10 minutes. The film-forming property was evaluated based on the presence or absence of continuity of the coating film after 10 minutes (◯ indicates a practical level).
○: Continuity of coating film maintained ×: Repelling or shrinkage of coating film
<養生時間>
 実施例及び比較例で得られたウレタンプレポリマーを100℃で溶融し、塗布後に膜厚50~70μmとなるように離型紙上に塗工後、40℃/60RH%の条件下に保管した。12時間ごとにIR測定を行い、NCOが消滅した時間を養生時間とした。なお、養生時間の測定は、実施例1、3、8~10だけに対して行った。
<Curing time>
The urethane prepolymers obtained in Examples and Comparative Examples were melted at 100° C., coated on release paper so as to give a film thickness of 50 to 70 μm after coating, and then stored under conditions of 40° C./60 RH%. IR measurement was performed every 12 hours, and the time at which NCO disappeared was taken as the curing time. The curing time was measured only for Examples 1, 3 and 8-10.
<接着強度>
 既述の<レザー風合い>の評価の際に使用した各例に係る評価用合成擬革の表皮層の上面である樹脂層面に、140℃のアイロンにて1分間ホットメルトテープを圧着、1時間室温冷却した後に、基布と、ホットメルトテープに密着した表皮とを剥離させ、その強度をオートグラフにて測定することで接着強度とした。なお、合成擬革用の接着剤としては、測定値が1.2kgf/cm以上が好ましい。
<Adhesion strength>
On the resin layer surface, which is the upper surface of the skin layer of the evaluation synthetic imitation leather used in the evaluation of <leather texture> described above, press a hot melt tape for 1 minute with an iron at 140 ° C., 1 hour. After cooling to room temperature, the base fabric was peeled off from the skin adhered to the hot-melt tape, and the strength was measured with an autograph to determine the adhesive strength. In addition, as an adhesive for synthetic imitation leather, a measured value of 1.2 kgf/cm or more is preferable.
Figure JPOXMLDOC01-appb-T000001

 
Figure JPOXMLDOC01-appb-T000001

 
Figure JPOXMLDOC01-appb-T000002

 
Figure JPOXMLDOC01-appb-T000002

 
 なお、表1,2中の「樹脂成分におけるNCO%」は、得られたウレタンプレポリマーにおけるNCO%である。 "NCO % in resin component" in Tables 1 and 2 is NCO % in the obtained urethane prepolymer.
[実施例11]
 撹拌機、温度計、ガス導入口等を付与したガラス製反応容器に、ポリオール成分として、ポリエステルポリオール(TPEP85)55部、ポリエーテルポリオール(PTMG1000)45部、及び、3官能以上の多官能ポリオール(T-700)3.0部と、ポリイソシアネート成分として、デュラネートA201Hを30部、及び、デュラネートD201を30部とを混合し、反応容器内を加熱減圧して脱水処理を行い、更に窒素ガスを封入して内温を110℃とした状態で120分間撹拌して反応させ、NCO/OH=1.7のウレタンプレポリマーを得た。次いで、得られたウレタンプレポリマーに対して、0.3%(対樹脂0.3%)となるように光安定剤を加え、さらに、2.0%(対樹脂2.0%)となるようにイソシアネート系架橋剤としてのTKA-100(HDIヌレート体)を加え、30分間攪拌を行い、湿気硬化型ポリウレタンホットメルト接着剤を作製した。
 湿気硬化型ポリウレタンホットメルト接着剤について、既述の評価と、さらに下記の層間剥離試験を行った。結果を表3に示す。
[Example 11]
Into a glass reaction vessel equipped with a stirrer, a thermometer, a gas inlet, etc., 55 parts of polyester polyol (TPEP85), 45 parts of polyether polyol (PTMG1000), and a trifunctional or higher polyfunctional polyol ( T-700) 3.0 parts, 30 parts of Duranate A201H and 30 parts of Duranate D201 as polyisocyanate components are mixed, dehydration treatment is performed by heating and depressurizing the inside of the reaction vessel, and nitrogen gas is further introduced. The mixture was sealed and the internal temperature was kept at 110° C., and the mixture was stirred for 120 minutes for reaction to obtain a urethane prepolymer having an NCO/OH ratio of 1.7. Next, a light stabilizer is added to the obtained urethane prepolymer so as to be 0.3% (0.3% relative to the resin), and further to 2.0% (2.0% relative to the resin). TKA-100 (HDI nurate) was added as an isocyanate-based cross-linking agent and stirred for 30 minutes to prepare a moisture-curable polyurethane hot-melt adhesive.
Moisture-curable polyurethane hot-melt adhesives were subjected to the evaluation described above and the delamination test described below. Table 3 shows the results.
<層間剥離試験>
 1)試験対象の湿気硬化型PUR-HM樹脂(実施例11及び後述の実施例12~15の湿気硬化型ポリウレタンホットメルト接着剤)とコーティング棒を110℃のオーブンに入れて予熱した。
 2)既述の(合成擬革の作製及び評価)の(表皮層の形成)で得られた表皮層上にPUR-HM樹脂を200μGap(厚さ200μm)にて塗工し、直ちに既述の湿式成膜布(B)のPU樹脂面と貼り合わせを行った後、貼り合わせ品を40℃/60%RHで48時間硬化させた。
 3)上記貼り合わせ品の表皮層の上面である樹脂層面に、140℃のアイロンにて1分間ホットメルトテープを圧着、1時間室温冷却した後に、基布と、ホットメルトテープに密着した表皮とを剥離させ、オートグラフにて強度を測定した。
 また、剥離強度の基準として、実施例1についても同様にして、強度を測定した。
<Delamination test>
1) The moisture-curable PUR-HM resin to be tested (the moisture-curable polyurethane hot-melt adhesives of Example 11 and Examples 12-15 below) and the coated bar were preheated in an oven at 110°C.
2) PUR-HM resin is applied at 200 μ Gap (thickness 200 μm) on the skin layer obtained in (Formation of skin layer) of (Preparation and evaluation of synthetic imitation leather), and immediately the already described After bonding to the PU resin surface of the wet film-formed cloth (B), the bonded product was cured at 40° C./60% RH for 48 hours.
3) A hot-melt tape is crimped to the resin layer surface, which is the upper surface of the skin layer of the laminated product, with an iron at 140 ° C. for 1 minute, and after cooling to room temperature for 1 hour, the base fabric and the skin adhered to the hot-melt tape. was peeled off, and the strength was measured with an autograph.
Further, as a reference for peel strength, strength was measured in the same manner for Example 1 as well.
 層間剥離強度について、下記の評価指標を用いて各実施例の評価を行った。結果を表3に示す。
A:実施例1よりも層間剥離強度が10%以上向上した。
B:実施例1と層間剥離強度が同じか向上しても10%未満であった
C:実施例1よりも層間剥離強度が低くなった。
Each example was evaluated for delamination strength using the following evaluation index. Table 3 shows the results.
A: The delamination strength was improved by 10% or more compared to Example 1.
B: The delamination strength was the same as in Example 1 or less than 10% even if improved. C: The delamination strength was lower than in Example 1.
[実施例12~15]
 イソシアネート系架橋剤の種類を以下に示す架橋剤に変更した以外は、実施例11と同様にして、湿気硬化型ポリウレタンホットメルト接着剤を作製した。
 なお、イソシアネート系架橋剤として、旭化成(株)製「24A-100」を用いたものを実施例12とし、三井化学(株)製「D376N」を用いたものを実施例13とし、Vencolex社製「IDT-70B」を用いたものを実施例14とし、三井化学(株)製「D-160N」を用いたものを実施例15とした。
 当該湿気硬化型ポリウレタンホットメルト接着剤を用いて、実施例11と同様の評価及び試験を行った。結果を表3に示す。
[Examples 12 to 15]
A moisture-curable polyurethane hot-melt adhesive was prepared in the same manner as in Example 11, except that the isocyanate-based cross-linking agent was changed to the following cross-linking agent.
As the isocyanate-based cross-linking agent, Example 12 uses "24A-100" manufactured by Asahi Kasei Co., Ltd., and Example 13 uses "D376N" manufactured by Mitsui Chemicals, Inc., manufactured by Vencolex. Example 14 uses "IDT-70B", and Example 15 uses "D-160N" manufactured by Mitsui Chemicals, Inc.
The same evaluations and tests as in Example 11 were performed using the moisture-curable polyurethane hot-melt adhesive. Table 3 shows the results.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 なお、表3中の「樹脂成分におけるNCO%」は、得られたウレタンプレポリマーと架橋剤を含む場合におけるNCO%である。 "NCO% in the resin component" in Table 3 is the NCO% when the obtained urethane prepolymer and the cross-linking agent are included.
 本実施形態の湿気硬化型ポリウレタンホットメルト接着剤は合成擬革用、すなわち、合成擬革用の基材に対して利用可能であり、合成擬革用の基材以外に例えば、金属、非金属(ポリカーボネート、ガラス等)の基材に対しても利用することができる。また、優れた耐熱性を有するため、車輛用外装部材や高温滅菌を必要とする衛生資材への展開も期待できる。 The moisture-curable polyurethane hot-melt adhesive of this embodiment can be used for synthetic imitation leather, that is, for synthetic imitation leather substrates. It can also be used for substrates (polycarbonate, glass, etc.). In addition, due to its excellent heat resistance, it can be expected to be applied to vehicle exterior parts and sanitary materials that require high-temperature sterilization.
10 評価用フィルム
12 クリップ
14 重り
16 試料
20 ギアオーブン
22 回転盤
10 evaluation film 12 clip 14 weight 16 sample 20 gear oven 22 turntable

Claims (10)

  1.  少なくとも脂肪族ジイソシアネート変性体を含むポリイソシアネート成分とポリオール成分との反応から得られ、末端にイソシアネート基を有するウレタンプレポリマーを含む湿気硬化型ポリウレタンホットメルト接着剤であって、
     前記ポリイソシアネート成分におけるイソシアネート基の平均官能基数が2.0~3.0であり、
     前記ポリオール成分が、3官能以上の多官能ポリオールを前記ポリオール成分中に1~8質量%含む、湿気硬化型ポリウレタンホットメルト接着剤。
    A moisture-curable polyurethane hot-melt adhesive obtained from the reaction of a polyisocyanate component containing at least a modified aliphatic diisocyanate and a polyol component and containing a urethane prepolymer having terminal isocyanate groups,
    The average functional number of isocyanate groups in the polyisocyanate component is 2.0 to 3.0,
    A moisture-curable polyurethane hot-melt adhesive, wherein the polyol component contains 1 to 8% by mass of a trifunctional or higher polyfunctional polyol.
  2.  ゲル分率が85%以上である請求項1記載の湿気硬化型ポリウレタンホットメルト接着剤。 The moisture-curable polyurethane hot-melt adhesive according to claim 1, which has a gel fraction of 85% or more.
  3.  前記脂肪族ジイソシアネート変性体がアロファネート型ジイソシアネートを含む請求項1又は2に記載の湿気硬化型ポリウレタンホットメルト接着剤。 The moisture-curable polyurethane hot-melt adhesive according to claim 1 or 2, wherein the modified aliphatic diisocyanate contains an allophanate-type diisocyanate.
  4.  前記脂肪族ジイソシアネート変性体がジオールのジイソシアネートアダクト体を含む請求項1~3に記載のいずれか1項に記載の湿気硬化型ポリウレタンホットメルト接着剤。 The moisture-curable polyurethane hot-melt adhesive according to any one of claims 1 to 3, wherein the modified aliphatic diisocyanate contains a diisocyanate adduct of a diol.
  5.  前記脂肪族ジイソシアネート変性体がヌレート型ポリイソシアネートを含む請求項1~4に記載のいずれか1項に記載の湿気硬化型ポリウレタンホットメルト接着剤。 The moisture-curable polyurethane hot-melt adhesive according to any one of claims 1 to 4, wherein the modified aliphatic diisocyanate contains a nurate-type polyisocyanate.
  6.  前記ヌレート型ポリイソシアネートを、前記ポリイソシアネート成分中10~37モル%含む請求項5に記載の湿気硬化型ポリウレタンホットメルト接着剤。 The moisture-curable polyurethane hot-melt adhesive according to claim 5, which contains 10 to 37 mol% of the nurate-type polyisocyanate in the polyisocyanate component.
  7.  硬化後の熱軟化点が175℃以上である請求項1~6のいずれか1項に記載の湿気硬化型ポリウレタンホットメルト接着剤。 The moisture-curable polyurethane hot-melt adhesive according to any one of claims 1 to 6, which has a thermal softening point of 175°C or higher after curing.
  8.  硬化後の25℃における破断伸度が300~1,000%である請求項1~7のいずれか1項に記載の湿気硬化型ポリウレタンホットメルト接着剤。 The moisture-curable polyurethane hot-melt adhesive according to any one of claims 1 to 7, which has a breaking elongation at 25°C of 300 to 1,000% after curing.
  9.  さらに、イソシアネート系架橋剤を含む請求項1~8のいずれか1項に記載の湿気硬化型ポリウレタンホットメルト接着剤。 The moisture-curable polyurethane hot-melt adhesive according to any one of claims 1 to 8, further comprising an isocyanate-based cross-linking agent.
  10.  前記イソシアネート系架橋剤が、脂肪族ジイソシアネート変性体である請求項9に記載の湿気硬化型ポリウレタンホットメルト接着剤。
     

     
    10. The moisture-curable polyurethane hot-melt adhesive according to claim 9, wherein the isocyanate-based cross-linking agent is a modified aliphatic diisocyanate.


PCT/JP2022/028089 2021-07-21 2022-07-19 Moisture-curable polyurethane hot-melt adhesive WO2023002992A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280049923.9A CN117651749A (en) 2021-07-21 2022-07-19 Moisture-curable polyurethane hot-melt adhesive

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021121054A JP7112573B1 (en) 2021-07-21 2021-07-21 Moisture curable polyurethane hot melt adhesive
JP2021-121054 2021-07-21

Publications (1)

Publication Number Publication Date
WO2023002992A1 true WO2023002992A1 (en) 2023-01-26

Family

ID=82701552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028089 WO2023002992A1 (en) 2021-07-21 2022-07-19 Moisture-curable polyurethane hot-melt adhesive

Country Status (4)

Country Link
JP (2) JP7112573B1 (en)
CN (1) CN117651749A (en)
TW (1) TWI828242B (en)
WO (1) WO2023002992A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7268232B1 (en) * 2022-08-02 2023-05-02 大日精化工業株式会社 Moisture curable polyurethane hot melt adhesive

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009280735A (en) * 2008-05-23 2009-12-03 Mitsui Chemicals Polyurethanes Inc One-pack non-solvent adhesive
JP2014122257A (en) * 2012-12-20 2014-07-03 Yokohama Rubber Co Ltd:The Method for producing one-pack moisture-curable polyurethane composition
JP2017137426A (en) * 2016-02-04 2017-08-10 東洋インキScホールディングス株式会社 Adhesive composition and laminate
JP2017152349A (en) * 2016-02-26 2017-08-31 東洋インキScホールディングス株式会社 Battery packaging material, battery container and battery
US20200407609A1 (en) * 2019-06-25 2020-12-31 H.B. Fuller Company Moisture curable polyurethane hot melt adhesive composition having low levels of diisocyanate monomer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI454548B (en) * 2012-08-01 2014-10-01 Eternal Materials Co Ltd Dual curable adhesive composition
JP5787425B2 (en) * 2014-12-24 2015-09-30 第一工業製薬株式会社 Polyurethane resin

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009280735A (en) * 2008-05-23 2009-12-03 Mitsui Chemicals Polyurethanes Inc One-pack non-solvent adhesive
JP2014122257A (en) * 2012-12-20 2014-07-03 Yokohama Rubber Co Ltd:The Method for producing one-pack moisture-curable polyurethane composition
JP2017137426A (en) * 2016-02-04 2017-08-10 東洋インキScホールディングス株式会社 Adhesive composition and laminate
JP2017152349A (en) * 2016-02-26 2017-08-31 東洋インキScホールディングス株式会社 Battery packaging material, battery container and battery
US20200407609A1 (en) * 2019-06-25 2020-12-31 H.B. Fuller Company Moisture curable polyurethane hot melt adhesive composition having low levels of diisocyanate monomer

Also Published As

Publication number Publication date
CN117651749A (en) 2024-03-05
JP2023016602A (en) 2023-02-02
JP7112573B1 (en) 2022-08-03
TW202305083A (en) 2023-02-01
JP2023016691A (en) 2023-02-02
TWI828242B (en) 2024-01-01

Similar Documents

Publication Publication Date Title
JP5176544B2 (en) Hot-melt moisture-curing adhesive and bonding method using the same
TWI305213B (en) Aqueous polyurethane resin dispersion and aqueous adhesive
US6875810B2 (en) Aqueous dispersions of polyurethane resins and aqueous adhesives
JP5682565B2 (en) Reactive hot melt adhesive composition
JP6850398B2 (en) Polyurethane prepolymers, adhesives, and synthetic fake leather
TW201139483A (en) Urethane prepolymer
EP3150648A1 (en) Aqueous functionalized polyurethane dispersions
WO2023002992A1 (en) Moisture-curable polyurethane hot-melt adhesive
JP2001011419A (en) Reactive hot-melt adhesive composition
JP7268232B1 (en) Moisture curable polyurethane hot melt adhesive
JP3944782B2 (en) Aqueous polyurethane resin dispersion, aqueous adhesive containing the same, and aqueous primer coating agent
WO2022191102A1 (en) Curable composition and synthetic leather
KR102455218B1 (en) Promotes Plastic Adhesion for 2K Polyurethane Adhesives
JP2022114079A (en) Moisture-curable polyurethane hot-melt resin composition, moisture-curable polyurethane hot-melt adhesive, cured product and laminate
JP5754068B2 (en) Polyurethane resin aqueous dispersion
JP3765333B2 (en) Crosslinkable polyurethane resin composition for synthetic leather or artificial leather
TWI261611B (en) High performance adhesives having aromatic water-borne polyurethane and flocking method employing the same
JP7285355B1 (en) Urethane prepolymer composition, moisture-curing adhesive, laminate, and synthetic leather
JPH08269428A (en) Adhesive composition for laminate and production of laminated film
WO2023214494A1 (en) Moisture-curable urethane hot melt resin composition, multilayer body and synthetic artificial leather
JPS63202610A (en) Production of polyurethane
JPH1161082A (en) Polyurethane adhesive
JPH1067976A (en) Polyurethane resin adhesive
JP2003277715A (en) Aqueous polyurethane adhesive agent for shoes
JP2003277601A (en) Aqueous dispersion of compounded polyurethane resin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22845925

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2401000361

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE