WO2023002825A1 - Stator structure, motor, air blower, refrigeration device, method for manufacturing stator structure, and method for manufacturing motor - Google Patents

Stator structure, motor, air blower, refrigeration device, method for manufacturing stator structure, and method for manufacturing motor Download PDF

Info

Publication number
WO2023002825A1
WO2023002825A1 PCT/JP2022/025948 JP2022025948W WO2023002825A1 WO 2023002825 A1 WO2023002825 A1 WO 2023002825A1 JP 2022025948 W JP2022025948 W JP 2022025948W WO 2023002825 A1 WO2023002825 A1 WO 2023002825A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing housing
stator
manufacturing
stator structure
mold
Prior art date
Application number
PCT/JP2022/025948
Other languages
French (fr)
Japanese (ja)
Inventor
哲平 小端
純 石丸
浩和 藤井
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2023002825A1 publication Critical patent/WO2023002825A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/12Impregnating, heating or drying of windings, stators, rotors or machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/14Casings; Enclosures; Supports
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/08Insulating casings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields

Definitions

  • stator structure a stator structure, a motor, a blower, a refrigerating device, a method for manufacturing a stator structure, and a method for manufacturing a motor.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2018-148606 discloses a motor including a bearing housing, a stator arranged radially outside the bearing housing, and a rotor arranged radially outside the stator. disclosed.
  • the stator core of the stator is in contact with the bearing housing. If the bearing housing is made of electrically conductive material, there is no insulation between the bearing housing and the stator. As a result, the electric potential of the outer rings of the bearings provided on the upper and lower inner peripheral surfaces of the bearing housing increases, so that the electric potential difference between the electric potential of the inner ring and the electric potential of the outer ring of the bearing increases. Therefore, electrolytic corrosion may occur in the bearing.
  • a stator structure includes a bearing housing, a stator, and resin.
  • the bearing housing is electrically conductive.
  • the bearing housing also holds the ball bearings.
  • the stator is arranged radially outside the bearing housing.
  • the stator includes a stator core and coils wound around the stator core.
  • a resin is disposed between the bearing housing and the stator core. Resin is insulating.
  • the resin interposed between the bearing housing and the stator core insulates and connects the bearing housing and the stator core. Therefore, even if the bearing housing is made of a conductive material, the resin can ensure insulation between the bearing housing and the stator core. Therefore, it is possible to suppress electrolytic corrosion of the ball bearings held in the bearing housing.
  • the stator structure according to the second aspect is the stator structure according to the first aspect, in which the outer surface located radially outward of the bearing housing protrudes from the resin on one side in the axial direction.
  • the stator structure of the second aspect can be manufactured by fixing the outer surface of the bearing housing to a mold during molding. In this case, the coaxiality between the mold and the bearing housing can be ensured, so the quality of the stator structure can be improved.
  • a motor according to the third aspect includes the stator structure of the first aspect or the second aspect, a ball bearing, a shaft, and a rotor.
  • a ball bearing is held in a bearing housing.
  • the shaft extends axially and is supported on ball bearings.
  • the rotor is arranged radially outside the stator.
  • the stator structure by providing the stator structure, it is possible to suppress electrolytic corrosion of the ball bearings held in the bearing housing.
  • the blower of the fourth aspect includes the motor of the third aspect and a fan.
  • a fan is connected to the shaft.
  • the refrigeration system of the fifth aspect includes a refrigerant circuit having the fan of the fourth aspect, a condenser, an evaporator, and an expansion mechanism.
  • the manufacturing method of the stator structure according to the sixth aspect includes the steps of arranging the stator, arranging the bearing housing, and connecting the stator core.
  • the step of disposing a stator disposes a stator including a stator core and coils wound around the stator core.
  • the step of disposing a bearing housing disposes a conductive bearing housing holding a ball bearing radially inward of the stator.
  • the step of connecting the stator core includes disposing insulating resin between the bearing housing and the stator core and connecting the bearing housing and the stator core with the resin.
  • the resin is placed between the bearing housing and the stator core, and the bearing housing and the stator core are insulated and connected. Therefore, even if the bearing housing is made of a conductive material, the resin can ensure insulation between the bearing housing and the stator core. Therefore, it is possible to manufacture a stator structure that can suppress electrolytic corrosion of the ball bearings held in the bearing housing.
  • a method for manufacturing a stator structure according to a seventh aspect is the method for manufacturing a stator structure according to the sixth aspect, wherein the stator structure is formed by placing the stator and the bearing housing in a mold and injecting resin. Manufactured by molding. Molding is performed so that the outer surface of the bearing housing presses against the mold.
  • the outer surface of the bearing housing can be fixed to the mold during molding. Therefore, coaxiality between the mold and the bearing housing can be ensured.
  • a stator structure manufacturing method is the stator structure manufacturing method according to the seventh aspect, wherein the thermal expansion coefficient of the material forming the bearing housing is the thermal expansion coefficient of the material forming the mold. bigger than
  • the bearing housing thermally expands during molding, and the bearing housing spreads outward along the mold, increasing the coaxiality between the bearing housing and the mold. be able to.
  • a method for manufacturing a stator structure according to a ninth aspect is the method for manufacturing a stator structure according to the seventh aspect or the eighth aspect, in which the mold directs the outer surface of the bearing housing radially inward during molding. It has a pressing surface.
  • the outer surface of the bearing housing which has thermally expanded during molding, can be pushed toward the center in the axial direction by the surface of the mold. coaxiality can be increased.
  • a stator structure manufacturing method is the stator structure manufacturing method according to any one of the seventh to ninth aspects, wherein the step of arranging the bearing housing includes the outer surface of the bearing housing and the mold. and a step of setting the bearing housing in the mold by providing a gap between the
  • the bearing housing can thermally expand into the gap during molding, so that the degree of coaxiality between the bearing housing and the mold can be increased.
  • a method of manufacturing a motor according to an eleventh aspect includes steps of manufacturing a stator structure by the method of manufacturing a stator structure according to any one of the sixth to tenth aspects, a holding step, a supporting step, and an arrangement. and a step of:
  • the retaining step retains the ball bearing in the bearing housing.
  • the supporting step supports the axially extending shaft in the ball bearing.
  • the disposing step disposes the rotor radially outside the stator.
  • a refrigeration system includes a refrigerant circuit having a motor manufactured by the method for manufacturing a motor according to the eleventh aspect, a condenser, an evaporator, and an expansion mechanism.
  • FIG. 1 is a front view of a fan including a stator structure and a motor according to an embodiment of the present disclosure
  • FIG. 2 is a cross-sectional view of FIG. 1
  • FIG. 1 is a front view of a stator structure according to an embodiment of the present disclosure
  • FIG. FIG. 4 is a cross-sectional view of FIG. 3
  • 1 is a front view of a bearing housing according to one embodiment of the present disclosure
  • FIG. FIG. 6 is a cross-sectional view of FIG. 5
  • FIG. 4A is a cross-sectional view showing a manufacturing process of a stator structure according to an embodiment of the present disclosure
  • FIG. 4A is a cross-sectional view showing a manufacturing process of a stator structure according to an embodiment of the present disclosure
  • FIG. 4A is a cross-sectional view showing a manufacturing process of a stator structure according to an embodiment of the present disclosure
  • FIG. 4A is a cross-sectional view showing a manufacturing process of a stator structure
  • FIG. 4A is a cross-sectional view showing a manufacturing process of a stator structure according to an embodiment of the present disclosure
  • FIG. 4A is a cross-sectional view showing a manufacturing process of a stator structure according to an embodiment of the present disclosure
  • 4 is a flow chart showing manufacturing steps of a stator structure, a motor and a blower according to an embodiment of the present disclosure
  • 1 is a schematic configuration diagram of a refrigeration system according to an embodiment of the present disclosure
  • axial direction means the central axis A of the motor 3, that is, the direction in which the shaft 5 extends
  • radial direction means the direction orthogonal to the central axis A
  • circumferential direction is the direction around the central axis A;
  • the axial direction, the radial direction, and the circumferential direction in this embodiment are used for specifying the positional relationship, and do not limit the actual directions.
  • a refrigerating device 200 shown in Fig. 12 is an air conditioner that air-conditions a room such as a building using a vapor compression refrigerating cycle.
  • the type of refrigeration system 200 is not limited to an air conditioner, and may be a hot water supply system, a floor heating system, a refrigeration system, or the like.
  • the refrigerating device 200 mainly has an outdoor unit 220 , an indoor unit 230 , and a liquid refrigerant communication pipe 240 and a gas refrigerant communication pipe 250 that connect the outdoor unit 220 and the indoor unit 230 .
  • the vapor compression refrigerant circuit 210 of the refrigeration system 200 is configured by connecting the outdoor unit 220 and the indoor unit 230 via the liquid refrigerant communication pipe 240 and the gas refrigerant communication pipe 250 .
  • the outdoor unit 220 is installed outdoors (on the roof of the building, near the outer wall surface of the building, etc.).
  • the outdoor unit 220 is connected to the indoor unit 230 via the liquid refrigerant communication pipe 240 and the gas refrigerant communication pipe 250 as described above, and constitutes part of the refrigerant circuit 210 .
  • the outdoor unit 220 mainly has a compressor 221 , a channel switching mechanism 222 , an outdoor heat exchanger 223 and an expansion mechanism 224 .
  • the compressor 221 is a mechanism that compresses low-pressure refrigerant in the refrigeration cycle to high pressure.
  • the channel switching mechanism 222 is a mechanism that switches the direction of refrigerant flow when switching between cooling operation and heating operation.
  • the flow path switching mechanism 222 connects the discharge side of the compressor 221 and the gas side of the outdoor heat exchanger 223, and connects the gas side of the indoor heat exchanger 231 (described later) via the gas refrigerant communication pipe 250. and the suction side of the compressor 221 (see the solid line of the flow path switching mechanism 222 in FIG. 12).
  • the flow path switching mechanism 222 connects the discharge side of the compressor 221 and the gas side of the indoor heat exchanger 231 via the gas refrigerant communication pipe 250, and connects the gas side of the outdoor heat exchanger 223. and the suction side of the compressor 221 (see the dashed line of the flow path switching mechanism 222 in FIG. 12).
  • the outdoor heat exchanger 223 is a heat exchanger that functions as a refrigerant radiator during cooling operation and functions as a refrigerant evaporator during heating operation.
  • the outdoor heat exchanger 223 has its liquid side connected to the expansion mechanism 224 and its gas side connected to the channel switching mechanism 222 .
  • the expansion mechanism 224 reduces the pressure of the high-pressure liquid refrigerant that has radiated heat in the outdoor heat exchanger 223 before sending it to the indoor heat exchanger 231 during cooling operation, and transfers the high-pressure liquid refrigerant that has radiated heat in the indoor heat exchanger 231 to the outdoor during heating operation. It is a mechanism for reducing the pressure before sending it to the heat exchanger 223 .
  • Air blower 1 includes fan 2 and motor 3 .
  • the fan 2 sucks outdoor air into the outdoor unit 220 , supplies the outdoor air to the outdoor heat exchanger 223 , and then discharges the outdoor air to the outside of the outdoor unit 220 . Therefore, the outdoor heat exchanger 223 uses the outdoor air as a cooling source or a heating source to radiate heat or evaporate the refrigerant.
  • Fan 2 is rotationally driven by motor 3 . The details of the blower 1, the fan 2, and the motor 3 will be described later.
  • Refrigerant connection pipes 240 and 250 are refrigerant pipes that are constructed on-site when the refrigerating apparatus 200 is installed at an installation location such as a building.
  • One end of the liquid refrigerant communication pipe 240 is connected to the expansion mechanism 224 side, and the other end of the liquid refrigerant communication pipe 240 is connected to the liquid side of the indoor heat exchanger 231 .
  • One end of the gas refrigerant communication pipe 250 is connected to the flow path switching mechanism 222 side, and the other end of the gas refrigerant communication pipe 250 is connected to the gas side of the indoor heat exchanger 231 .
  • the indoor unit 230 is installed indoors (inside the building).
  • the indoor unit 230 is connected to the outdoor unit 220 via the liquid refrigerant communication pipe 240 and the gas refrigerant communication pipe 250 as described above, and constitutes part of the refrigerant circuit 210 .
  • the indoor unit 230 mainly has an indoor heat exchanger 231 and a fan 232 .
  • the indoor heat exchanger 231 is a heat exchanger that functions as a refrigerant evaporator during cooling operation and as a refrigerant radiator during heating operation.
  • the indoor heat exchanger 231 has a liquid side connected to the liquid refrigerant communication pipe 240 and a gas side connected to the gas refrigerant communication pipe 250 .
  • the blower 232 includes a fan 233 and a motor 234.
  • the fan 233 draws indoor air into the indoor unit 230 , supplies the indoor air, and then discharges the indoor air to the outside of the indoor unit 230 . Therefore, the indoor heat exchanger 231 uses the indoor air as a cooling source or a heating source to radiate heat or evaporate the refrigerant. Fan 233 is rotationally driven by motor 234 .
  • the low-pressure refrigerant decompressed in the expansion mechanism 224 is sent to the indoor heat exchanger 231 through the liquid refrigerant communication pipe 240 .
  • the low-pressure refrigerant sent to the indoor heat exchanger 231 exchanges heat with the indoor air supplied by the fan 233 in the indoor heat exchanger 231 and evaporates. As a result, the indoor air is cooled and blown into the room.
  • the low-pressure refrigerant evaporated in the indoor heat exchanger 231 is sucked into the compressor 221 again through the gas refrigerant communication pipe 250 and the flow path switching mechanism 222 .
  • the high-pressure refrigerant that has radiated heat in the indoor heat exchanger 231 is sent to the expansion mechanism 224 through the liquid refrigerant communication pipe 240 and depressurized to the low pressure in the refrigeration cycle.
  • the low-pressure refrigerant decompressed in the expansion mechanism 224 is sent to the outdoor heat exchanger 223 .
  • the low-pressure refrigerant sent to the outdoor heat exchanger 223 exchanges heat with the outdoor air supplied by the fan 2 in the outdoor heat exchanger 223 and evaporates.
  • the low-pressure refrigerant evaporated in the outdoor heat exchanger 223 is sucked into the compressor 221 again through the flow path switching mechanism 222 .
  • the blower 1 includes a fan 2 and a motor 3 .
  • a motor 3 drives the fan 2 to rotate.
  • Fan 2 is, for example, an axial fan.
  • the motor 3 is an outer rotor type. As shown in FIGS. 2-6, the motor 3 includes a stator structure 4, a shaft 5, a rotor 10, ball bearings 21 and 22, and a cover 30. As shown in FIGS.
  • Shaft Shaft 5 is connected to fan 2 .
  • the shaft 5 is a rod-shaped member extending in the axial direction.
  • the rotor 10 is connected to the shaft 5 .
  • the rotor 10 rotates around the central axis A. As shown in FIG. As the rotor 10 rotates, the shaft 5 rotates.
  • the rotor 10 includes a body portion 11, magnets 12, and a yoke 13.
  • the body portion 11 is connected to the shaft 5 .
  • the body portion 11 is made of resin, for example.
  • the magnet 12 and the yoke 13 are connected to the radial inner end of the main body 11 .
  • the magnet 12 and yoke are axially extending and annular.
  • the magnet 12 is configured such that N poles and S poles are arranged in the circumferential direction.
  • the yoke 13 is arranged radially outside the magnet 12 .
  • Ball bearings 21 and 22 support the shaft 5 .
  • the ball bearings 21, 22 are made of a conductive material such as metal.
  • the ball bearing 21 is arranged on one side in the axial direction (upper side in FIG. 2).
  • the ball bearing 22 is arranged on the other side in the axial direction (lower side in FIG. 2).
  • Ball bearing 22 is larger than ball bearing 21 .
  • Cover Cover 30 covers rotor 10 .
  • the cover 30 is arranged on one side in the axial direction.
  • the stator structure 4 includes a bearing housing 40, a stator 50, and resin 60. As shown in FIG.
  • the bearing housing 40 holds the ball bearings 21 and 22 .
  • the bearing housing 40 is arranged radially outside the ball bearings 21 , 22 .
  • the bearing housing 40 includes a tubular portion 41 and an extension portion 42. As shown in FIGS. The tubular portion 41 and the extension portion 42 are integral. The tubular portion 41 extends in the axial direction. The extending portion 42 extends radially outward from the end portion of the cylindrical portion 41 on the other axial side (lower side in FIGS. 4 to 6).
  • the bearing housing 40 has an outer surface 43 located radially outward.
  • the outer surface 43 is the radially outer surface of the cylindrical portion 41 .
  • the outer surface 43 protrudes from the resin 60 on one side in the axial direction. Specifically, one end portion of the outer surface 43 in the axial direction constitutes a protruding portion 44 that protrudes from the resin 60 . The projecting portion 44 does not contact the resin 60 . Here, the projecting portion 44 is exposed.
  • edges on one side in the axial direction of the outer surface 43 may be aligned in the circumferential direction, but are separated in the circumferential direction in FIG.
  • the projections 44 may be continuous in the circumferential direction, but are intermittently positioned in the circumferential direction in FIG.
  • the bearing housing 40 is made of a conductive material such as metal.
  • Metals are aluminum, SUS, etc., for example.
  • stator 50 is arranged radially outside the bearing housing 40 . Further, as shown in FIG. 2, the stator 50 is arranged radially inside the magnet 12 and the yoke 13 of the rotor 10 .
  • the stator 50 has an annular shape. The center of the stator 50 coincides with the center axis A of the motor 3 .
  • stator 50 includes a stator core 51 and coils 52 .
  • the stator core 51 is made of a conductive material.
  • the stator core 51 is formed by laminating magnetic steel plates in the axial direction.
  • Stator core 51 is annular.
  • the coil 52 is wound around the stator core 51 .
  • Coil 52 excites stator core 51 .
  • resin 60 is arranged between bearing housing 40 and stator core 51 .
  • Resin 60 connects bearing housing 40 and stator core 51 .
  • the resin 60 is insulating.
  • the resin 60 of this embodiment is a thermosetting resin.
  • the thermosetting resin is not particularly limited, for example, BMC (Bulk Molding Compound) is used.
  • the resin 60 of this embodiment is arranged entirely between the bearing housing 40 and the stator core 51 .
  • the entire bearing housing 40 is insulated and connected to the stator core 51 by the resin 60 .
  • the resin 60 is not limited to this, and the resin 60 is arranged partly between the bearing housing 40 and the stator core 51 . It doesn't have to be.
  • the area where the resin 60 is not arranged is preferably insulating, and is, for example, a space.
  • the resin 60 covers the entire radial inner surface of the stator core 51 and the entire axial end portions of the coils 52 on one side and the other side. In addition, the resin 60 covers the entire outer surface 43 of the bearing housing 40 excluding the protrusion 44 . Therefore, the resin 60 is arranged between the bearing housing 40 and the stator 50 so as to extend in the axial direction. Furthermore, in FIG. 4 , the resin 60 is arranged to extend radially between the extending portion 42 of the bearing housing 40 and the stator 50 . Furthermore, the resin 60 is arranged so as to extend in the radial direction so as to cover the stator 50 also on one side in the axial direction.
  • the stator structure 4 is manufactured by molding using the mold 100 .
  • mold 100 includes fixed mold 101 and movable mold 102 .
  • the fixed mold 101 is a fixed side mold that is fixed during molding.
  • the movable mold 102 is a movable side mold that can be moved.
  • the coefficient of thermal expansion of the material forming the bearing housing 40 is greater than the coefficient of thermal expansion of the material forming the mold 100 .
  • the material forming the fixed mold 101 and the movable mold 102 is, for example, steel.
  • step S1 a step of arranging the stator 50 including the stator core 51 and the coil 52 wound around the stator core 51 (step S1) is performed.
  • the stator 50 is set on the stationary mold 101, as shown in FIG.
  • the stator 50 is arranged from above in FIG. 7 toward the cavity of the fixed mold 101 .
  • the stationary mold 101 is heated to a high temperature (for example, 150° C.).
  • a conductive bearing housing 40 that holds the ball bearings 21 and 22 is arranged radially inside the stator 50 (step S2).
  • step S2 a conductive bearing housing 40 that holds the ball bearings 21 and 22 is arranged radially inside the stator 50 (step S2).
  • the bearing housing 40 is radially movable within the cavity of the fixed mold 101 .
  • the bearing housing 40 and the stator 50 can be extracted from the stationary mold 101 .
  • the bearing housing 40 is set in the mold 100 with a gap provided between the outer surface 43 of the bearing housing 40 and the mold 100 .
  • the bearing housing 40 is set on the fixed mold 101 with a gap provided between the projecting portion 44 of the outer surface 43 and the fixed mold 101 .
  • step S3 the fixed mold 101 and the movable mold 102 are clamped.
  • step S3 the movable mold 102 is moved toward the fixed mold 101, and the fixed mold 101 and the movable mold 102 are brought together.
  • step S4 an insulating resin 60 is placed between the bearing housing 40 and the stator core 51, and the bearing housing 40 and the stator core 51 are connected by the resin 60 (step S4).
  • resin 60 is injected between bearing housing 40 and stator core 51 in the space defined by fixed mold 101 and movable mold 102 .
  • molten resin 60 is poured between bearing housing 40 and stator 50 .
  • molding is performed so that the outer surface 43 of the bearing housing 40 presses against the mold 100 .
  • the bearing housing 40 has an outer surface 43 that bears against the mold 100 during molding.
  • the mold 100 has a surface 101a that pushes the outer surface 43 of the bearing housing 40 radially inward during molding. This surface 101a faces radially inward.
  • the projecting portion 44 of the bearing housing 40 and the surface 101a of the stationary mold 101 are in contact with each other during molding.
  • the temperature of the mold 100 is higher than the temperature of the bearing housing 40 before step (S4) is performed.
  • the coefficient of thermal expansion of the material forming the bearing housing 40 is greater than the coefficient of thermal expansion of the material forming the fixed mold 101 . Therefore, the heat of the fixed mold 101 is transferred to the bearing housing 40, and the bearing housing 40 thermally expands. As a result, the bearing housing 40 expands radially outward along the stationary die 101 . At this time, the surface 101a of the fixed die 101 pushes the thermally expanded protrusion 44 of the bearing housing 40 toward the center in the axial direction.
  • the bearing housing 40 can be fixed to the stationary die 101 by the projecting portion 44 of the outer surface 43 of the bearing housing 40 . Further, if a gap is provided between the outer surface 43 of the bearing housing 40 and the fixed die 101 in step (S2), the bearing housing 40 thermally expands so as to fill the gap. In this way, the coaxiality between the bearing housing 40 and the mold 100 can be ensured by making the bearing housing 40 an interference fit along the mold 100 .
  • step S5 the mold is opened and the stator structure is taken out (step S5).
  • step S ⁇ b>5 the movable mold 102 is moved away from the fixed mold 101 .
  • the bearing housing 40 is cooled by the cooling of the mold 100 or by the air generated by opening the mold. As a result, the bearing housing 40 shrinks, so the stator structure 4 in which the bearing housing 40 and the stator 50 are connected by the resin 60 is removed from the fixed die 101 .
  • the stator structure 4 including the bearing housing 40, the stator 50 and the resin 60 can be manufactured by performing the above steps (S1 to S5).
  • step S6 prepare the shaft assembly (step S6).
  • step (S6) referring to FIG. 2, the rotor 10 and the ball bearings 21 are attached to the shaft 5. Specifically, the ball bearings 21 are arranged so as to support the shaft 5 . Also, the body portion 11 of the rotor 10 is connected to the shaft 5 .
  • the shaft assembly is attached to the stator structure 4 removed from the mold 100 (step S7).
  • the bearing housing 40 holds the ball bearing 21 .
  • the rotor 10 is arranged radially outside the stator 50 .
  • step S8 the ball bearing 22 is fitted into the bearing housing 40.
  • the fan 2 is attached to the shaft 5 (step S9). Thereby, the blower 1 including the motor 3 and the fan 2 can be manufactured.
  • the stator structure 4 of this embodiment includes a bearing housing 40 , a stator 50 and resin 60 .
  • Bearing housing 40 is electrically conductive. Also, the bearing housing 40 holds the ball bearings 21 and 22 .
  • the stator 50 is arranged radially outside the bearing housing 40 .
  • Stator 50 includes a stator core 51 and coils 52 wound around stator core 51 .
  • Resin 60 is arranged between bearing housing 40 and stator core 51 .
  • the resin 60 is insulating.
  • the bearing housing 40 and the stator core 51 are insulated and connected by the resin 60 arranged between the bearing housing 40 and the stator core 51 . Therefore, even if the bearing housing 40 is made of a conductive material, the insulation between the bearing housing 40 and the stator core 51 can be ensured by the resin 60 . As a result, it is possible to prevent the high potential of the stator 50 from being transmitted to the bearing housing 40 during the operation of the stator structure 4 , thereby preventing the potential of the outer rings of the ball bearings 21 and 22 from increasing. Therefore, the electric potential of the inner rings of the ball bearings 21 and 22 does not change, and only the electric potential of the outer rings of the ball bearings 21 and 22 can be suppressed from increasing. can. Therefore, electrolytic corrosion of the ball bearings 21 and 22 held in the bearing housing 40 can be suppressed.
  • the stator structure 4 of the present embodiment can suppress electrolytic corrosion of the ball bearings 21 and 22, so that the bearing housing 40 made of metal can be used, for example. Since the strength of the bearing housing made of metal is higher than that of the bearing housing made of resin, the strength of the stator structure 4 can also be improved.
  • the outer surface 43 positioned radially outwardly of the bearing housing 40 protrudes from the resin 60 on one side in the axial direction.
  • stator structure 4 can be manufactured by fixing the outer surface 43 of the bearing housing 40 to the mold 100 during molding. In this case, the coaxiality between the mold 100 and the bearing housing 40 can be ensured, so the quality of the stator structure 4 can be improved.
  • the motor 3 of this embodiment includes a stator structure 4 , ball bearings 21 and 22 , a shaft 5 and a rotor 10 .
  • Ball bearings 21 , 22 are held in bearing housing 40 .
  • Shaft 5 extends axially and is supported by ball bearings 21 , 22 .
  • the rotor 10 is arranged radially outside the stator 50 .
  • a blower 1 of this embodiment includes a motor 3 and a fan 2 .
  • Fan 2 is connected to shaft 5 .
  • the refrigeration apparatus 200 of the present embodiment includes the blower 1, the condenser (in FIG. 1, the outdoor heat exchanger 223 or the indoor heat exchanger 231), and the evaporator (in FIG. 1, the indoor heat exchanger 231 or the outdoor heat exchanger 223 ) and an expansion mechanism 224 .
  • the manufacturing method of the stator structure 4 of this embodiment includes the following steps.
  • a stator 50 including a stator core 51 and a coil 52 wound around the stator core 51 is arranged (step S1).
  • the conductive bearing housing 40 that holds the ball bearings 21 and 22 is arranged radially inside the stator 50 (step S2).
  • an insulating resin 60 is placed between the bearing housing 40 and the stator core 51, and the bearing housing 40 and the stator core 51 are connected by the resin 60 (step S4).
  • the resin 60 is arranged between the bearing housing 40 and the stator core 51 so that the bearing housing 40 and the stator core 51 are insulated and connected. Therefore, even if the bearing housing 40 is made of a conductive material, the insulation between the bearing housing 40 and the stator core 51 can be ensured by the resin 60 . Therefore, it is possible to manufacture the stator structure 4 that can suppress electrolytic corrosion of the ball bearings 21 and 22 held in the bearing housing 40 .
  • the stator structure 4 is manufactured by molding by placing the stator 50 and the bearing housing 40 in a mold 100 and injecting the resin 60 . Molding is performed so that the outer surface 43 of the bearing housing 40 presses against the mold.
  • the outer surface 43 of the bearing housing 40 can be fixed to the mold 100 during molding. Therefore, coaxiality between the mold 100 and the bearing housing 40 can be ensured.
  • the mold 100 is fixed on the outer surface 43 of the bearing housing 40 .
  • the coefficient of thermal expansion of the material forming the bearing housing 40 is larger than the coefficient of thermal expansion of the material forming the mold 100 .
  • the bearing housing 40 thermally expands during molding, and the bearing housing 40 expands to the outer peripheral side along the mold 100, so that the degree of coaxiality between the bearing housing 40 and the mold 100 can be increased.
  • the mold 100 has a surface 101a that presses the outer surface 43 of the bearing housing 40 radially inward during molding.
  • the surface 101a of the mold 100 can push the outer surface 43 of the bearing housing 40, which has been thermally expanded during molding, toward the center in the axial direction. can be enhanced.
  • the step of arranging the bearing housing 40 includes providing a gap between the outer surface 43 of the bearing housing 40 and the mold 100 so that the bearing housing 40 is is set in the mold 100.
  • the bearing housing 40 can thermally expand into the gap during molding, so that the degree of coaxiality between the bearing housing 40 and the mold 100 can be increased.
  • the manufacturing method of the motor 3 of this embodiment includes the following steps.
  • the stator structure 4 is manufactured (steps S1-5).
  • the ball bearings 21 and 22 are held in the bearing housing 40 (steps S6 to S8).
  • the axially extending shaft 5 is supported by the ball bearings 21 and 22 (steps S6 to S8).
  • the rotor 10 is arranged radially outside the stator 50 (steps S6 to S8).
  • the motor 3 that suppresses electrolytic corrosion of the ball bearings 21 and 22 held in the bearing housing 40 can be manufactured.
  • the manufacturing method of the air blower 1 of this embodiment includes the following steps.
  • the motor 3 is manufactured (steps S1 to S8).
  • the fan 2 is connected to the shaft 5 (step S9).
  • the blower 1 that suppresses electrolytic corrosion of the ball bearings 21 and 22 held in the bearing housing 40 can be manufactured.
  • the refrigeration apparatus 200 of the present embodiment includes the blower 1 manufactured by the method for manufacturing the blower 1 (steps S1 to S9), the condenser (in FIG. 1, the outdoor heat exchanger 223 or the indoor heat exchanger 231), A refrigerant circuit 210 having an evaporator (the indoor heat exchanger 231 or the outdoor heat exchanger 223 in FIG. 1) and an expansion mechanism 224 is provided.
  • Modification (7-1) Modification 1 the material forming the mold 100 is different from the material forming the bearing housing 40, but the material is not limited to this. In this modification, the material forming the mold 100 and the material forming the bearing housing 40 are the same. In this case, the bearing housing 40 is locally heated during molding.
  • the radially extending resin 60 is arranged between the stator 50 and the extending portion 42 of the bearing housing 40 in the axial direction, but the invention is not limited to this.
  • the resin 60 is arranged between the stator core 51 and the bearing housing 40 according to the structures of the bearing housing 40 and the stator 50 .
  • the radially extending portion of the resin 60 is omitted.
  • blower 3 motor 4: stator structure 5: shaft 10: rotors 21, 22: ball bearings 40: bearing housing 43: outer surface 50: stator 51: stator core 52: coil 60: resin 100: mold 101a: surface 200 : Refrigeration equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Motor Or Generator Frames (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

This stator structure (4) comprises a bearing housing (40), a stator (50), and a resin (60). The bearing housing (40) is electrically conductive. The bearing housing (40) also retains ball bearings (21, 22). The stator (50) is disposed on the radial direction outside of the bearing housing (40). The stator (50) includes a stator core (51), and a coil (52) wound around the stator core (51). The resin (60) is disposed between the bearing housing (40) and the stator core (51). The resin (60) is insulating.

Description

ステータ構造体、モータ、送風機、冷凍装置、ステータ構造体の製造方法及びモータの製造方法Stator structure, motor, blower, refrigerating device, method for manufacturing stator structure, and method for manufacturing motor
 ステータ構造体、モータ、送風機、冷凍装置、ステータ構造体の製造方法及びモータの製造方法に関する。 It relates to a stator structure, a motor, a blower, a refrigerating device, a method for manufacturing a stator structure, and a method for manufacturing a motor.
 特許文献1(特開2018-148606号公報)には、軸受ハウジングと、この軸受ハウジングの径方向外側に配置されたステータと、このステータの径方向外側に配置されたロータと、を備えるモータが開示されている。 Patent Document 1 (Japanese Patent Application Laid-Open No. 2018-148606) discloses a motor including a bearing housing, a stator arranged radially outside the bearing housing, and a rotor arranged radially outside the stator. disclosed.
 しかしながら、特許文献1の図4では、ステータのステータコアが軸受ハウジングと接している。軸受ハウジングが導電性材料で構成される場合には、軸受ハウジングとステータとは絶縁されない。このため、軸受ハウジングの内周面の上部及び下部に設けられている軸受の外輪の電位が高くなるので、軸受の内輪の電位と外輪の電位との電位差が大きくなる。したがって、軸受に電食が発生する場合がある。 However, in FIG. 4 of Patent Document 1, the stator core of the stator is in contact with the bearing housing. If the bearing housing is made of electrically conductive material, there is no insulation between the bearing housing and the stator. As a result, the electric potential of the outer rings of the bearings provided on the upper and lower inner peripheral surfaces of the bearing housing increases, so that the electric potential difference between the electric potential of the inner ring and the electric potential of the outer ring of the bearing increases. Therefore, electrolytic corrosion may occur in the bearing.
 第1観点に係るステータ構造体は、軸受ハウジングと、ステータと、樹脂と、を備えている。軸受ハウジングは、導電性である。また、軸受ハウジングは、玉軸受を保持する。ステータは、軸受ハウジングの径方向外側に配置される。ステータは、ステータコアと、このステータコアに巻回されたコイルと、を含む。樹脂は、軸受ハウジングとステータコアとの間に配置される。樹脂は、絶縁性である。 A stator structure according to the first aspect includes a bearing housing, a stator, and resin. The bearing housing is electrically conductive. The bearing housing also holds the ball bearings. The stator is arranged radially outside the bearing housing. The stator includes a stator core and coils wound around the stator core. A resin is disposed between the bearing housing and the stator core. Resin is insulating.
 第1観点のステータ構造体によれば、軸受ハウジングとステータコアとの間に配置される樹脂によって、軸受ハウジングとステータコアとを絶縁接続させる。このため、軸受ハウジングが導電性材料で構成されていても、樹脂により、軸受ハウジングとステータコアとの絶縁性を確保できる。このため、軸受ハウジングに保持される玉軸受の電食を抑制することができる。 According to the stator structure of the first aspect, the resin interposed between the bearing housing and the stator core insulates and connects the bearing housing and the stator core. Therefore, even if the bearing housing is made of a conductive material, the resin can ensure insulation between the bearing housing and the stator core. Therefore, it is possible to suppress electrolytic corrosion of the ball bearings held in the bearing housing.
 第2観点に係るステータ構造体は、第1観点のステータ構造体であって、軸受ハウジングの径方向外側に位置する外面は、軸方向の一方側において樹脂から突出する。 The stator structure according to the second aspect is the stator structure according to the first aspect, in which the outer surface located radially outward of the bearing housing protrudes from the resin on one side in the axial direction.
 第2観点のステータ構造体では、軸受ハウジングの外面を、モールド成形時に金型に固定して、ステータ構造体を製造することができる。この場合、金型と軸受ハウジングとの同軸度を確保することができるので、ステータ構造体の品質を向上できる。 In the stator structure of the second aspect, the stator structure can be manufactured by fixing the outer surface of the bearing housing to a mold during molding. In this case, the coaxiality between the mold and the bearing housing can be ensured, so the quality of the stator structure can be improved.
 第3観点に係るモータは、第1観点または第2観点のステータ構造体と、玉軸受と、シャフトと、ロータと、を備えている。玉軸受は、軸受ハウジングに保持される。シャフトは、軸方向に延び、かつ玉軸受に支持される。ロータは、ステータの径方向外側に配置される。 A motor according to the third aspect includes the stator structure of the first aspect or the second aspect, a ball bearing, a shaft, and a rotor. A ball bearing is held in a bearing housing. The shaft extends axially and is supported on ball bearings. The rotor is arranged radially outside the stator.
 第3観点のモータでは、上記ステータ構造体を備えることによって、軸受ハウジングに保持される玉軸受の電食を抑制することができる。 In the motor of the third aspect, by providing the stator structure, it is possible to suppress electrolytic corrosion of the ball bearings held in the bearing housing.
 第4観点の送風機は、第3観点のモータと、ファンと、を備えている。ファンは、シャフトに接続される。 The blower of the fourth aspect includes the motor of the third aspect and a fan. A fan is connected to the shaft.
 第4観点の送風機では、上記モータを備えることによって、軸受ハウジングに保持される玉軸受の電食を抑制することができる。 In the blower of the fourth aspect, by including the motor, electrolytic corrosion of the ball bearings held in the bearing housing can be suppressed.
 第5観点の冷凍装置は、第4観点の送風機と、凝縮器と、蒸発器と、膨張機構と、を有する冷媒回路を備えている。 The refrigeration system of the fifth aspect includes a refrigerant circuit having the fan of the fourth aspect, a condenser, an evaporator, and an expansion mechanism.
 第5観点の冷凍装置では、上記送風機を備えることによって、軸受ハウジングに保持される玉軸受の電食を抑制することができる。 In the refrigeration system of the fifth aspect, by providing the blower, it is possible to suppress electrolytic corrosion of the ball bearings held in the bearing housing.
 第6観点に係るステータ構造体の製造方法は、ステータを配置する工程と、軸受ハウジングを配置する工程と、ステータコアを接続する工程と、を備えている。ステータを配置する工程は、ステータコアと、このステータコアに巻回されたコイルと、を含むステータを配置する。軸受ハウジングを配置する工程は、ステータの径方向内側に、玉軸受を保持する、導電性の軸受ハウジングを配置する。ステータコアを接続する工程は、軸受ハウジングとステータコアとの間に、絶縁性の樹脂を配置して、樹脂により軸受ハウジングとステータコアとを接続する。 The manufacturing method of the stator structure according to the sixth aspect includes the steps of arranging the stator, arranging the bearing housing, and connecting the stator core. The step of disposing a stator disposes a stator including a stator core and coils wound around the stator core. The step of disposing a bearing housing disposes a conductive bearing housing holding a ball bearing radially inward of the stator. The step of connecting the stator core includes disposing insulating resin between the bearing housing and the stator core and connecting the bearing housing and the stator core with the resin.
 第6観点のステータ構造体の製造方法によれば、軸受ハウジングとステータコアとの間に樹脂を配置して、軸受ハウジングとステータコアとを絶縁接続させる。このため、軸受ハウジングが導電性材料で構成されていても、樹脂により、軸受ハウジングとステータコアとを絶縁性を確保できる。このため、軸受ハウジングに保持される玉軸受の電食を抑制することができる、ステータ構造体を製造することができる。 According to the manufacturing method of the stator structure of the sixth aspect, the resin is placed between the bearing housing and the stator core, and the bearing housing and the stator core are insulated and connected. Therefore, even if the bearing housing is made of a conductive material, the resin can ensure insulation between the bearing housing and the stator core. Therefore, it is possible to manufacture a stator structure that can suppress electrolytic corrosion of the ball bearings held in the bearing housing.
 第7観点に係るステータ構造体の製造方法は、第6観点に係るステータ構造体の製造方法であって、ステータ構造体は、金型にステータ及び軸受ハウジングを配置して、樹脂を射出するモールド成形により製造される。軸受ハウジングの外面が金型に押し当たるようにモールド成形する。 A method for manufacturing a stator structure according to a seventh aspect is the method for manufacturing a stator structure according to the sixth aspect, wherein the stator structure is formed by placing the stator and the bearing housing in a mold and injecting resin. Manufactured by molding. Molding is performed so that the outer surface of the bearing housing presses against the mold.
 第7観点に係るステータ構造体の製造方法では、軸受ハウジングの外面で、モールド成形時に金型に固定することができる。このため、金型と軸受ハウジングとの同軸度を確保することができる。 In the method of manufacturing the stator structure according to the seventh aspect, the outer surface of the bearing housing can be fixed to the mold during molding. Therefore, coaxiality between the mold and the bearing housing can be ensured.
 第8観点に係るステータ構造体の製造方法は、第7観点に係るステータ構造体の製造方法であって、軸受ハウジングを構成する材料の熱膨張係数は、金型を構成する材料の熱膨張係数よりも大きい。 A stator structure manufacturing method according to an eighth aspect is the stator structure manufacturing method according to the seventh aspect, wherein the thermal expansion coefficient of the material forming the bearing housing is the thermal expansion coefficient of the material forming the mold. bigger than
 第8観点に係るステータ構造体の製造方法では、モールド成形時に軸受ハウジングが熱膨張して、金型に沿うように軸受ハウジングが外周側に広がるため、軸受ハウジングと金型との同軸度を高めることができる。 In the method of manufacturing the stator structure according to the eighth aspect, the bearing housing thermally expands during molding, and the bearing housing spreads outward along the mold, increasing the coaxiality between the bearing housing and the mold. be able to.
 第9観点に係るステータ構造体の製造方法は、第7観点または第8観点に係るステータ構造体の製造方法であって、金型は、モールド成形時に、軸受ハウジングの外面を径方向内側に向けて押す面を有する。 A method for manufacturing a stator structure according to a ninth aspect is the method for manufacturing a stator structure according to the seventh aspect or the eighth aspect, in which the mold directs the outer surface of the bearing housing radially inward during molding. It has a pressing surface.
 第9観点に係るステータ構造体の製造方法では、金型の上記面によって、モールド成形時に熱膨張した軸受ハウジングの外面を、軸方向中心に向かって押すことができるので、軸受ハウジングと金型との同軸度を高めることができる。 In the method of manufacturing the stator structure according to the ninth aspect, the outer surface of the bearing housing, which has thermally expanded during molding, can be pushed toward the center in the axial direction by the surface of the mold. coaxiality can be increased.
 第10観点に係るステータ構造体の製造方法は、第7観点から第9観点のいずれかに係るステータ構造体の製造方法であって、軸受ハウジングを配置する工程は、軸受ハウジングの外面と金型との間に隙間を設けて、軸受ハウジングを金型にセットする工程を含む。 A stator structure manufacturing method according to a tenth aspect is the stator structure manufacturing method according to any one of the seventh to ninth aspects, wherein the step of arranging the bearing housing includes the outer surface of the bearing housing and the mold. and a step of setting the bearing housing in the mold by providing a gap between the
 第10観点に係るステータ構造体の製造方法では、モールド成形時に、隙間に軸受ハウジングが熱膨張できるので、軸受ハウジングと金型との同軸度を高めることができる。 In the method for manufacturing the stator structure according to the tenth aspect, the bearing housing can thermally expand into the gap during molding, so that the degree of coaxiality between the bearing housing and the mold can be increased.
 第11観点に係るモータの製造方法は、第6観点から第10観点のいずれかに係るステータ構造体の製造方法によりステータ構造体を製造する工程と、保持する工程と、支持する工程と、配置する工程と、を備えている。保持する工程は、軸受ハウジングに、玉軸受を保持する。支持する工程は、玉軸受に、軸方向に延びるシャフトを支持する。配置する工程は、ステータの径方向外側にロータを配置する。 A method of manufacturing a motor according to an eleventh aspect includes steps of manufacturing a stator structure by the method of manufacturing a stator structure according to any one of the sixth to tenth aspects, a holding step, a supporting step, and an arrangement. and a step of: The retaining step retains the ball bearing in the bearing housing. The supporting step supports the axially extending shaft in the ball bearing. The disposing step disposes the rotor radially outside the stator.
 第11観点に係るモータの製造方法では、軸受ハウジングに保持される玉軸受の電食を抑制するモータを製造することができる。 With the motor manufacturing method according to the eleventh aspect, it is possible to manufacture a motor that suppresses electrolytic corrosion of the ball bearings held in the bearing housing.
 第12観点の冷凍装置は、第11観点のモータの製造方法により製造されたモータと、凝縮器と、蒸発器と、膨張機構と、を有する冷媒回路を備えている。 A refrigeration system according to a twelfth aspect includes a refrigerant circuit having a motor manufactured by the method for manufacturing a motor according to the eleventh aspect, a condenser, an evaporator, and an expansion mechanism.
 第12観点の冷凍装置では、上記モータの製造方法によって製造されたモータを備えることによって、軸受ハウジングに保持される玉軸受の電食を抑制することができる。 In the refrigerating apparatus of the twelfth aspect, by including the motor manufactured by the motor manufacturing method described above, electrolytic corrosion of the ball bearings held in the bearing housing can be suppressed.
本開示の一実施形態に係るステータ構造体及びモータを備える送風機を示す正面図である。1 is a front view of a fan including a stator structure and a motor according to an embodiment of the present disclosure; FIG. 図1の断面図である。2 is a cross-sectional view of FIG. 1; FIG. 本開示の一実施形態に係るステータ構造体を示す正面図である。1 is a front view of a stator structure according to an embodiment of the present disclosure; FIG. 図3の断面図である。FIG. 4 is a cross-sectional view of FIG. 3; 本開示の一実施形態に係る軸受ハウジングを示す正面図である。1 is a front view of a bearing housing according to one embodiment of the present disclosure; FIG. 図5の断面図である。FIG. 6 is a cross-sectional view of FIG. 5; 本開示の一実施形態に係るステータ構造体の製造工程を示す断面図である。FIG. 4A is a cross-sectional view showing a manufacturing process of a stator structure according to an embodiment of the present disclosure; 本開示の一実施形態に係るステータ構造体の製造工程を示す断面図である。FIG. 4A is a cross-sectional view showing a manufacturing process of a stator structure according to an embodiment of the present disclosure; 本開示の一実施形態に係るステータ構造体の製造工程を示す断面図である。FIG. 4A is a cross-sectional view showing a manufacturing process of a stator structure according to an embodiment of the present disclosure; 本開示の一実施形態に係るステータ構造体の製造工程を示す断面図である。FIG. 4A is a cross-sectional view showing a manufacturing process of a stator structure according to an embodiment of the present disclosure; 本開示の一実施形態に係るステータ構造体、モータ及び送風機の製造工程を示すフローチャートである。4 is a flow chart showing manufacturing steps of a stator structure, a motor and a blower according to an embodiment of the present disclosure; 本開示の一実施形態に係る冷凍装置の概略構成図である。1 is a schematic configuration diagram of a refrigeration system according to an embodiment of the present disclosure; FIG.
 以下、本開示の一実施形態のステータ構造体、モータ、送風機、及びこれらの製造方法、並びに冷凍装置について説明する。以下の説明において、「軸方向」とは、モータ3の中心軸A、つまりシャフト5が延びる方向であり、「径方向」とは、中心軸Aに直交する方向であり、「周方向」とは、中心軸Aの軸回りの方向である。ただし、本実施形態における軸方向、径方向及び周方向は、位置関係を特定するために用いるためであって、実際の方向を限定するものではない。 A stator structure, a motor, an air blower, a manufacturing method thereof, and a refrigeration system according to an embodiment of the present disclosure will be described below. In the following description, "axial direction" means the central axis A of the motor 3, that is, the direction in which the shaft 5 extends, "radial direction" means the direction orthogonal to the central axis A, and "circumferential direction". is the direction around the central axis A; However, the axial direction, the radial direction, and the circumferential direction in this embodiment are used for specifying the positional relationship, and do not limit the actual directions.
 (1)冷凍装置の構成
 図12に示す冷凍装置200は、蒸気圧縮式冷凍サイクルを利用して、建物等の室内の空調を行う空気調和装置である。なお、冷凍装置200の種類は、空気調和装置に限定されるものではなく、給湯装置、床暖房装置、冷蔵装置等であってもよい。
(1) Configuration of Refrigerating Device A refrigerating device 200 shown in Fig. 12 is an air conditioner that air-conditions a room such as a building using a vapor compression refrigerating cycle. The type of refrigeration system 200 is not limited to an air conditioner, and may be a hot water supply system, a floor heating system, a refrigeration system, or the like.
 冷凍装置200は、主として、室外機220と、室内機230と、室外機220と室内機230とを接続する液冷媒連絡管240及びガス冷媒連絡管250と、を有している。そして、冷凍装置200の蒸気圧縮式の冷媒回路210は、室外機220と室内機230とが液冷媒連絡管240及びガス冷媒連絡管250を介して接続されることによって構成されている。 The refrigerating device 200 mainly has an outdoor unit 220 , an indoor unit 230 , and a liquid refrigerant communication pipe 240 and a gas refrigerant communication pipe 250 that connect the outdoor unit 220 and the indoor unit 230 . The vapor compression refrigerant circuit 210 of the refrigeration system 200 is configured by connecting the outdoor unit 220 and the indoor unit 230 via the liquid refrigerant communication pipe 240 and the gas refrigerant communication pipe 250 .
 (1-1)室外機
 室外機220は、室外(建物の屋上や建物の外壁面近傍等)に設置されている。室外機220は、上記のように、液冷媒連絡管240及びガス冷媒連絡管250を介して室内機230に接続されており、冷媒回路210の一部を構成している。室外機220は、主として、圧縮機221と、流路切換機構222と、室外熱交換器223と、膨張機構224と、を有している。
(1-1) Outdoor unit The outdoor unit 220 is installed outdoors (on the roof of the building, near the outer wall surface of the building, etc.). The outdoor unit 220 is connected to the indoor unit 230 via the liquid refrigerant communication pipe 240 and the gas refrigerant communication pipe 250 as described above, and constitutes part of the refrigerant circuit 210 . The outdoor unit 220 mainly has a compressor 221 , a channel switching mechanism 222 , an outdoor heat exchanger 223 and an expansion mechanism 224 .
 圧縮機221は、冷凍サイクルにおける低圧の冷媒を高圧になるまで圧縮する機構である。 The compressor 221 is a mechanism that compresses low-pressure refrigerant in the refrigeration cycle to high pressure.
 流路切換機構222は、冷房運転と暖房運転との切換時に、冷媒の流れの方向を切り換える機構である。流路切換機構222は、冷房運転時には、圧縮機221の吐出側と室外熱交換器223のガス側とを接するとともに、ガス冷媒連絡管250を介して室内熱交換器231(後述)のガス側と圧縮機221の吸入側とを接続する(図12における流路切換機構222の実線を参照)。また、流路切換機構222は、暖房運転時には、ガス冷媒連絡管250を介して圧縮機221の吐出側と室内熱交換器231のガス側とを接続するとともに、室外熱交換器223のガス側と圧縮機221の吸入側とを接続する(図12における流路切換機構222の破線を参照)。 The channel switching mechanism 222 is a mechanism that switches the direction of refrigerant flow when switching between cooling operation and heating operation. During cooling operation, the flow path switching mechanism 222 connects the discharge side of the compressor 221 and the gas side of the outdoor heat exchanger 223, and connects the gas side of the indoor heat exchanger 231 (described later) via the gas refrigerant communication pipe 250. and the suction side of the compressor 221 (see the solid line of the flow path switching mechanism 222 in FIG. 12). Further, during heating operation, the flow path switching mechanism 222 connects the discharge side of the compressor 221 and the gas side of the indoor heat exchanger 231 via the gas refrigerant communication pipe 250, and connects the gas side of the outdoor heat exchanger 223. and the suction side of the compressor 221 (see the dashed line of the flow path switching mechanism 222 in FIG. 12).
 室外熱交換器223は、冷房運転時には冷媒の放熱器として機能し、暖房運転時には冷媒の蒸発器として機能する熱交換器である。室外熱交換器223は、その液側が膨張機構224に接続されており、ガス側が流路切換機構222に接続されている。 The outdoor heat exchanger 223 is a heat exchanger that functions as a refrigerant radiator during cooling operation and functions as a refrigerant evaporator during heating operation. The outdoor heat exchanger 223 has its liquid side connected to the expansion mechanism 224 and its gas side connected to the channel switching mechanism 222 .
 膨張機構224は、冷房運転時には室外熱交換器223において放熱した高圧の液冷媒を室内熱交換器231に送る前に減圧し、暖房運転時には室内熱交換器231において放熱した高圧の液冷媒を室外熱交換器223に送る前に減圧する機構である。 The expansion mechanism 224 reduces the pressure of the high-pressure liquid refrigerant that has radiated heat in the outdoor heat exchanger 223 before sending it to the indoor heat exchanger 231 during cooling operation, and transfers the high-pressure liquid refrigerant that has radiated heat in the indoor heat exchanger 231 to the outdoor during heating operation. It is a mechanism for reducing the pressure before sending it to the heat exchanger 223 .
 また、室外機220には、送風機1が設けられている。送風機1は、ファン2と、モータ3と、を含む。ファン2は、室外機220内に室外空気を吸入して、室外熱交換器223に室外空気を供給した後に、室外機220外に排出する。このため、室外熱交換器223は、室外空気を冷却源又は加熱源として冷媒を放熱や蒸発させる。ファン2は、モータ3によって回転駆動される。送風機1、ファン2及びモータ3についての詳細は、後述する。 Also, the outdoor unit 220 is provided with the blower 1 . Air blower 1 includes fan 2 and motor 3 . The fan 2 sucks outdoor air into the outdoor unit 220 , supplies the outdoor air to the outdoor heat exchanger 223 , and then discharges the outdoor air to the outside of the outdoor unit 220 . Therefore, the outdoor heat exchanger 223 uses the outdoor air as a cooling source or a heating source to radiate heat or evaporate the refrigerant. Fan 2 is rotationally driven by motor 3 . The details of the blower 1, the fan 2, and the motor 3 will be described later.
 (1-2)冷媒連絡管
 冷媒連絡管240、250は、冷凍装置200を建物等の設置場所に設置する際に、現地にて施工される冷媒管である。液冷媒連絡管240の一端は、膨張機構224側に接続され、液冷媒連絡管240の他端は、室内熱交換器231の液側に接続されている。ガス冷媒連絡管250の一端は、流路切換機構222側に接続され、ガス冷媒連絡管250の他端は、室内熱交換器231のガス側に接続されている。
(1-2) Refrigerant Connection Pipes Refrigerant connection pipes 240 and 250 are refrigerant pipes that are constructed on-site when the refrigerating apparatus 200 is installed at an installation location such as a building. One end of the liquid refrigerant communication pipe 240 is connected to the expansion mechanism 224 side, and the other end of the liquid refrigerant communication pipe 240 is connected to the liquid side of the indoor heat exchanger 231 . One end of the gas refrigerant communication pipe 250 is connected to the flow path switching mechanism 222 side, and the other end of the gas refrigerant communication pipe 250 is connected to the gas side of the indoor heat exchanger 231 .
 (1-3)室内機
 室内機230は、室内(建物内)に設置されている。室内機230は、上記のように、液冷媒連絡管240及びガス冷媒連絡管250を介して室外機220に接続されており、冷媒回路210の一部を構成している。室内機230は、主として、室内熱交換器231と、送風機232と、を有している。
(1-3) Indoor Unit The indoor unit 230 is installed indoors (inside the building). The indoor unit 230 is connected to the outdoor unit 220 via the liquid refrigerant communication pipe 240 and the gas refrigerant communication pipe 250 as described above, and constitutes part of the refrigerant circuit 210 . The indoor unit 230 mainly has an indoor heat exchanger 231 and a fan 232 .
 室内熱交換器231は、冷房運転時には冷媒の蒸発器として機能し、暖房運転時には冷媒の放熱器として機能する熱交換器である。室内熱交換器231は、その液側が液冷媒連絡管240に接続されており、ガス側がガス冷媒連絡管250に接続されている。 The indoor heat exchanger 231 is a heat exchanger that functions as a refrigerant evaporator during cooling operation and as a refrigerant radiator during heating operation. The indoor heat exchanger 231 has a liquid side connected to the liquid refrigerant communication pipe 240 and a gas side connected to the gas refrigerant communication pipe 250 .
 送風機232は、ファン233と、モータ234と、を含む。ファン233は、室内機230内に室内空気を吸入して、室内空気を供給した後に、室内機230外に排出する。このため、室内熱交換器231は、室内空気を冷却源又は加熱源として冷媒を放熱や蒸発させる。ファン233は、モータ234によって回転駆動される。 The blower 232 includes a fan 233 and a motor 234. The fan 233 draws indoor air into the indoor unit 230 , supplies the indoor air, and then discharges the indoor air to the outside of the indoor unit 230 . Therefore, the indoor heat exchanger 231 uses the indoor air as a cooling source or a heating source to radiate heat or evaporate the refrigerant. Fan 233 is rotationally driven by motor 234 .
 (1-4)動作
 (1-4-1)冷房運転
 冷凍装置200が冷房運転を行う場合、冷凍サイクルにおける低圧の冷媒は、圧縮機221に吸入され、冷凍サイクルにおける高圧まで圧縮された後に吐出される。圧縮機221から吐出された高圧の冷媒は、流路切換機構222を通じて、室外熱交換器223に送られる。室外熱交換器223に送られた高圧の冷媒は、室外熱交換器223において、ファン2によって供給される室外空気と熱交換を行って放熱する。室外熱交換器223において放熱した高圧の冷媒は、膨張機構224に送られて、冷凍サイクルにおける低圧まで減圧される。膨張機構224において減圧された低圧の冷媒は、液冷媒連絡管240を通じて、室内熱交換器231に送られる。室内熱交換器231に送られた低圧の冷媒は、室内熱交換器231において、ファン233によって供給される室内空気と熱交換を行って蒸発する。これにより、室内空気は冷却されて室内に吹き出される。室内熱交換器231において蒸発した低圧の冷媒は、ガス冷媒連絡管250及び流路切換機構222を通じて、再び、圧縮機221に吸入される。
(1-4) Operation (1-4-1) Cooling operation When the refrigeration system 200 performs cooling operation, low-pressure refrigerant in the refrigerating cycle is sucked into the compressor 221, compressed to high pressure in the refrigerating cycle, and then discharged. be done. A high-pressure refrigerant discharged from the compressor 221 is sent to the outdoor heat exchanger 223 through the channel switching mechanism 222 . The high-pressure refrigerant sent to the outdoor heat exchanger 223 exchanges heat with the outdoor air supplied by the fan 2 in the outdoor heat exchanger 223 to radiate heat. The high-pressure refrigerant that has released heat in the outdoor heat exchanger 223 is sent to the expansion mechanism 224 and depressurized to a low pressure in the refrigeration cycle. The low-pressure refrigerant decompressed in the expansion mechanism 224 is sent to the indoor heat exchanger 231 through the liquid refrigerant communication pipe 240 . The low-pressure refrigerant sent to the indoor heat exchanger 231 exchanges heat with the indoor air supplied by the fan 233 in the indoor heat exchanger 231 and evaporates. As a result, the indoor air is cooled and blown into the room. The low-pressure refrigerant evaporated in the indoor heat exchanger 231 is sucked into the compressor 221 again through the gas refrigerant communication pipe 250 and the flow path switching mechanism 222 .
 (1-4-2)暖房運転
 冷凍装置200が暖房運転を行う場合、冷凍サイクルにおける低圧の冷媒は、圧縮機221に吸入され、冷凍サイクルにおける高圧まで圧縮された後に吐出される。圧縮機221から吐出された高圧の冷媒は、流路切換機構222及びガス冷媒連絡管250を通じて、室内熱交換器231に送られる。室内熱交換器231に送られた高圧の冷媒は、室内熱交換器231において、ファン233によって供給される室内空気と熱交換を行って放熱する。これにより、室内空気は加熱されて室内に吹き出される。室内熱交換器231において放熱した高圧の冷媒は、液冷媒連絡管240を通じて、膨張機構224に送られて、冷凍サイクルにおける低圧まで減圧される。膨張機構224において減圧された低圧の冷媒は、室外熱交換器223に送られる。室外熱交換器223に送られた低圧の冷媒は、室外熱交換器223において、ファン2によって供給される室外空気と熱交換を行って蒸発する。室外熱交換器223において蒸発した低圧の冷媒は、流路切換機構222を通じて、再び、圧縮機221に吸入される。
(1-4-2) Heating Operation When the refrigerating apparatus 200 performs the heating operation, low-pressure refrigerant in the refrigerating cycle is sucked into the compressor 221, compressed to high pressure in the refrigerating cycle, and then discharged. A high-pressure refrigerant discharged from the compressor 221 is sent to the indoor heat exchanger 231 through the flow path switching mechanism 222 and the gas refrigerant communication pipe 250 . The high-pressure refrigerant sent to the indoor heat exchanger 231 exchanges heat with the indoor air supplied by the fan 233 in the indoor heat exchanger 231 to radiate heat. As a result, the indoor air is heated and blown out into the room. The high-pressure refrigerant that has radiated heat in the indoor heat exchanger 231 is sent to the expansion mechanism 224 through the liquid refrigerant communication pipe 240 and depressurized to the low pressure in the refrigeration cycle. The low-pressure refrigerant decompressed in the expansion mechanism 224 is sent to the outdoor heat exchanger 223 . The low-pressure refrigerant sent to the outdoor heat exchanger 223 exchanges heat with the outdoor air supplied by the fan 2 in the outdoor heat exchanger 223 and evaporates. The low-pressure refrigerant evaporated in the outdoor heat exchanger 223 is sucked into the compressor 221 again through the flow path switching mechanism 222 .
 (2)送風機
 図1及び図2に示すように、送風機1は、ファン2と、モータ3と、を備えている。モータ3は、ファン2を回転駆動する。ファン2は、例えば、軸流ファンである。
(2) Blower As shown in FIGS. 1 and 2 , the blower 1 includes a fan 2 and a motor 3 . A motor 3 drives the fan 2 to rotate. Fan 2 is, for example, an axial fan.
 (3)モータ
 モータ3は、アウターロータ型である。図2~図6に示すように、モータ3は、ステータ構造体4と、シャフト5と、ロータ10と、玉軸受21、22と、カバー30と、を備えている。
(3) Motor The motor 3 is an outer rotor type. As shown in FIGS. 2-6, the motor 3 includes a stator structure 4, a shaft 5, a rotor 10, ball bearings 21 and 22, and a cover 30. As shown in FIGS.
 (3-1)シャフト
 シャフト5は、ファン2に接続されている。シャフト5は、軸方向に延びる、棒状部材である。
(3-1) Shaft Shaft 5 is connected to fan 2 . The shaft 5 is a rod-shaped member extending in the axial direction.
 (3-2)ロータ
 ロータ10は、シャフト5に接続されている。ロータ10は、中心軸Aを中心に回転する。ロータ10の回転に伴って、シャフト5が回転する。
(3-2) Rotor The rotor 10 is connected to the shaft 5 . The rotor 10 rotates around the central axis A. As shown in FIG. As the rotor 10 rotates, the shaft 5 rotates.
 ロータ10は、本体部11と、マグネット12と、ヨーク13と、を含む。本体部11は、シャフト5と接続されている。本体部11は、例えば樹脂で構成されている。 The rotor 10 includes a body portion 11, magnets 12, and a yoke 13. The body portion 11 is connected to the shaft 5 . The body portion 11 is made of resin, for example.
 マグネット12及びヨーク13は、本体部11の径方向の内側端部に接続されている。マグネット12及びヨークは、軸方向に延び、環状である。マグネット12は、周方向にN極とS極とが並ぶように構成されている。ヨーク13は、マグネット12の径方向外側に配置されている。 The magnet 12 and the yoke 13 are connected to the radial inner end of the main body 11 . The magnet 12 and yoke are axially extending and annular. The magnet 12 is configured such that N poles and S poles are arranged in the circumferential direction. The yoke 13 is arranged radially outside the magnet 12 .
 (3-3)玉軸受
 玉軸受21、22は、シャフト5を支持する。玉軸受21、22は、例えば金属などの導電性材料で構成されている。ここでは、玉軸受21は、軸方向の一方側(図2における上側)に配置されている。玉軸受22は、軸方向の他方側(図2における下側)配置されている。玉軸受22は、玉軸受21よりも大きい。
(3-3) Ball Bearings Ball bearings 21 and 22 support the shaft 5 . The ball bearings 21, 22 are made of a conductive material such as metal. Here, the ball bearing 21 is arranged on one side in the axial direction (upper side in FIG. 2). The ball bearing 22 is arranged on the other side in the axial direction (lower side in FIG. 2). Ball bearing 22 is larger than ball bearing 21 .
 (3-4)カバー
 カバー30は、ロータ10を覆う。カバー30は、軸方向の一方側に配置される。
(3-4) Cover Cover 30 covers rotor 10 . The cover 30 is arranged on one side in the axial direction.
 (4)ステータ構造体
 図2~図4に示すように、ステータ構造体4は、軸受ハウジング40と、ステータ50と、樹脂60と、を備えている。
(4) Stator Structure As shown in FIGS. 2 to 4, the stator structure 4 includes a bearing housing 40, a stator 50, and resin 60. As shown in FIG.
 (4-1)軸受ハウジング
 図2に示すように、軸受ハウジング40は、玉軸受21、22を保持する。軸受ハウジング40は、玉軸受21、22の径方向外側に配置されている。
(4-1) Bearing Housing As shown in FIG. 2, the bearing housing 40 holds the ball bearings 21 and 22 . The bearing housing 40 is arranged radially outside the ball bearings 21 , 22 .
 図4~図6に示すように、軸受ハウジング40は、筒状部41と、延出部42と、を含む。筒状部41と、延出部42は、一体である。筒状部41は、軸方向に延びる。延出部42は、筒状部41における軸方向の他方側(図4~図6における下側)の端部から、径方向外側に延びる。  As shown in FIGS. 4 to 6, the bearing housing 40 includes a tubular portion 41 and an extension portion 42. As shown in FIGS. The tubular portion 41 and the extension portion 42 are integral. The tubular portion 41 extends in the axial direction. The extending portion 42 extends radially outward from the end portion of the cylindrical portion 41 on the other axial side (lower side in FIGS. 4 to 6).
 軸受ハウジング40は、径方向外側に位置する外面43を有する。ここでは、外面43は、筒状部41の径方向外側の面である。 The bearing housing 40 has an outer surface 43 located radially outward. Here, the outer surface 43 is the radially outer surface of the cylindrical portion 41 .
 外面43は、軸方向の一方側において樹脂60から突出する。具体的には、外面43の軸方向の一方側の端部は、樹脂60から突出する突出部44を構成する。突出部44は、樹脂60と接触しない。ここでは、突出部44は、露出している。 The outer surface 43 protrudes from the resin 60 on one side in the axial direction. Specifically, one end portion of the outer surface 43 in the axial direction constitutes a protruding portion 44 that protrudes from the resin 60 . The projecting portion 44 does not contact the resin 60 . Here, the projecting portion 44 is exposed.
 外面43の軸方向の一方側の端縁は、周方向に揃っていてもよいが、図5では、周方向に分離している。換言すると、突出部44は、周方向に連続してもよいが、図5では、周方向に断続的に位置している。 The edges on one side in the axial direction of the outer surface 43 may be aligned in the circumferential direction, but are separated in the circumferential direction in FIG. In other words, the projections 44 may be continuous in the circumferential direction, but are intermittently positioned in the circumferential direction in FIG.
 軸受ハウジング40は、金属などの導電性材料で構成されている。金属は、例えば、アルミニウム、SUSなどである。 The bearing housing 40 is made of a conductive material such as metal. Metals are aluminum, SUS, etc., for example.
 (4-2)ステータ
 ステータ50は、軸受ハウジング40の径方向外側に配置されている。また図2に示すように、ステータ50は、ロータ10のマグネット12及びヨーク13の径方向内側に配置されている。ステータ50は、円環状である。ステータ50の中心は、モータ3の中心軸Aと一致する。図4に示すように、ステータ50は、ステータコア51と、コイル52とを含む。
(4-2) Stator The stator 50 is arranged radially outside the bearing housing 40 . Further, as shown in FIG. 2, the stator 50 is arranged radially inside the magnet 12 and the yoke 13 of the rotor 10 . The stator 50 has an annular shape. The center of the stator 50 coincides with the center axis A of the motor 3 . As shown in FIG. 4 , stator 50 includes a stator core 51 and coils 52 .
 ステータコア51は、導電性材料で構成されている。例えば、ステータコア51は、磁性鋼板を軸方向に積層して形成されている。ステータコア51は、環状である。 The stator core 51 is made of a conductive material. For example, the stator core 51 is formed by laminating magnetic steel plates in the axial direction. Stator core 51 is annular.
 コイル52は、ステータコア51に巻回されている。コイル52は、ステータコア51を励磁する。 The coil 52 is wound around the stator core 51 . Coil 52 excites stator core 51 .
 (4-3)樹脂
 図2及び図4に示すように、樹脂60は、軸受ハウジング40とステータコア51との間に配置される。樹脂60は、軸受ハウジング40とステータコア51とを接続する。
(4-3) Resin As shown in FIGS. 2 and 4, resin 60 is arranged between bearing housing 40 and stator core 51 . Resin 60 connects bearing housing 40 and stator core 51 .
 樹脂60は、絶縁性である。本実施形態の樹脂60は、熱硬化性樹脂である。熱硬化性樹脂は、特に限定されないが、例えば、BMC(Bulk Molding Compound)が用いられる。 The resin 60 is insulating. The resin 60 of this embodiment is a thermosetting resin. Although the thermosetting resin is not particularly limited, for example, BMC (Bulk Molding Compound) is used.
 本実施形態の樹脂60は、軸受ハウジング40とステータコア51との間の全体に配置される。軸受ハウジング40全体は、ステータコア51と、樹脂60により絶縁接続されている。なお、軸受ハウジング40とステータコア51との間の少なくとも一部に樹脂60が配置されていれば、これに限定されず、軸受ハウジング40とステータコア51との間の一部に樹脂60が配置されていなくてもよい。樹脂60が配置されていない領域は、絶縁性であることが好ましく、例えば、空間である。 The resin 60 of this embodiment is arranged entirely between the bearing housing 40 and the stator core 51 . The entire bearing housing 40 is insulated and connected to the stator core 51 by the resin 60 . However, as long as the resin 60 is arranged at least partly between the bearing housing 40 and the stator core 51 , the resin 60 is not limited to this, and the resin 60 is arranged partly between the bearing housing 40 and the stator core 51 . It doesn't have to be. The area where the resin 60 is not arranged is preferably insulating, and is, for example, a space.
 また、図4では、樹脂60は、ステータコア51の径方向内側面の全体、及びコイル52の軸方向の一方側及び他方側のエンド部の全体を被覆している。それに加えて、樹脂60は、軸受ハウジング40における突出部44を除く外面43全体を被覆している。このため、樹脂60は、軸受ハウジング40とステータ50との間を、軸方向に延びるように配置されている。さらに、図4では、樹脂60は、軸受ハウジング40の延出部42とステータ50との間を、径方向に延びるように配置されている。さらには、樹脂60は、軸方向の一方側においても、ステータ50を被覆するために、径方向に延びるように配置されている。 In addition, in FIG. 4, the resin 60 covers the entire radial inner surface of the stator core 51 and the entire axial end portions of the coils 52 on one side and the other side. In addition, the resin 60 covers the entire outer surface 43 of the bearing housing 40 excluding the protrusion 44 . Therefore, the resin 60 is arranged between the bearing housing 40 and the stator 50 so as to extend in the axial direction. Furthermore, in FIG. 4 , the resin 60 is arranged to extend radially between the extending portion 42 of the bearing housing 40 and the stator 50 . Furthermore, the resin 60 is arranged so as to extend in the radial direction so as to cover the stator 50 also on one side in the axial direction.
 (5)ステータ構造体、モータ及び送風機の製造方法
 次に、図1及び図2に示す送風機1及びモータ3と、図2~図4に示すステータ構造体4との製造方法について、図1~図11を参照して、説明する。
(5) Manufacturing method of stator structure, motor, and blower Next, manufacturing methods of the blower 1 and the motor 3 shown in FIGS. 1 and 2 and the stator structure 4 shown in FIGS. Description will be made with reference to FIG.
 本実施形態では、金型100を用いたモールド成形により、ステータ構造体4を製造する。図7~図10に示すように、金型100は、固定型101と、可動型102とを含む。固定型101は、成形時に固定される、固定側金型である。可動型102は、移動が可能な、可動側金型である。 In this embodiment, the stator structure 4 is manufactured by molding using the mold 100 . As shown in FIGS. 7 to 10, mold 100 includes fixed mold 101 and movable mold 102 . The fixed mold 101 is a fixed side mold that is fixed during molding. The movable mold 102 is a movable side mold that can be moved.
 軸受ハウジング40を構成する材料の熱膨張係数は、金型100を構成する材料の熱膨張係数よりも大きい。ここでは、固定型101及び可動型102を構成する材料は、例えば、鋼である。 The coefficient of thermal expansion of the material forming the bearing housing 40 is greater than the coefficient of thermal expansion of the material forming the mold 100 . Here, the material forming the fixed mold 101 and the movable mold 102 is, for example, steel.
 図7及び図11に示すように、まず、ステータコア51と、このステータコア51に巻回されたコイル52と、を含むステータ50を配置する工程(ステップS1)を実施する。この工程(S1)では、図7に示すように、ステータ50を固定型101にセットする。ここでは、固定型101のキャビティに向けて、ステータ50を図7の上方から配置する。なお、工程(S1)を実施するときには、固定型101は加熱されて、高温(例えば150℃)になっている。 As shown in FIGS. 7 and 11, first, a step of arranging the stator 50 including the stator core 51 and the coil 52 wound around the stator core 51 (step S1) is performed. In this step (S1), the stator 50 is set on the stationary mold 101, as shown in FIG. Here, the stator 50 is arranged from above in FIG. 7 toward the cavity of the fixed mold 101 . In addition, when the step (S1) is carried out, the stationary mold 101 is heated to a high temperature (for example, 150° C.).
 次に、ステータ50の径方向内側に、玉軸受21、22を保持する、導電性の軸受ハウジング40を配置する(ステップS2)。この工程(S2)では、図7に示すように、軸受ハウジング40を固定型101にセットする。この状態では、軸受ハウジング40は、固定型101のキャビティ内において径方向の移動が可能である。また、軸受ハウジング40及びステータ50は、固定型101から抜き出すことも可能である。 Next, a conductive bearing housing 40 that holds the ball bearings 21 and 22 is arranged radially inside the stator 50 (step S2). In this step (S2), as shown in FIG. In this state, the bearing housing 40 is radially movable within the cavity of the fixed mold 101 . Also, the bearing housing 40 and the stator 50 can be extracted from the stationary mold 101 .
 本実施形態では、軸受ハウジング40の外面43と金型100との間に隙間を設けて、軸受ハウジング40を金型100にセットする。詳細には、外面43の突出部44と固定型101との間に隙間を設けて、軸受ハウジング40を固定型101にセットする。 In this embodiment, the bearing housing 40 is set in the mold 100 with a gap provided between the outer surface 43 of the bearing housing 40 and the mold 100 . Specifically, the bearing housing 40 is set on the fixed mold 101 with a gap provided between the projecting portion 44 of the outer surface 43 and the fixed mold 101 .
 次に、図8に示すように、固定型101と可動型102とを型締めする(ステップS3)。この工程(S3)では、可動型102を固定型101に向けて移動して、固定型101と可動型102とを合わせる。 Next, as shown in FIG. 8, the fixed mold 101 and the movable mold 102 are clamped (step S3). In this step (S3), the movable mold 102 is moved toward the fixed mold 101, and the fixed mold 101 and the movable mold 102 are brought together.
 次に、図9に示すように、軸受ハウジング40とステータコア51との間に、絶縁性の樹脂60を配置して、樹脂60により軸受ハウジング40とステータコア51とを接続する(ステップS4)。この工程(S4)では、固定型101と可動型102とで形成される空間において、軸受ハウジング40とステータコア51との間に樹脂60を射出する。ここでは、溶融された状態の樹脂60が、軸受ハウジング40とステータ50との間に流し込まれる。 Next, as shown in FIG. 9, an insulating resin 60 is placed between the bearing housing 40 and the stator core 51, and the bearing housing 40 and the stator core 51 are connected by the resin 60 (step S4). In this step ( S<b>4 ), resin 60 is injected between bearing housing 40 and stator core 51 in the space defined by fixed mold 101 and movable mold 102 . Here, molten resin 60 is poured between bearing housing 40 and stator 50 .
 本実施形態では、軸受ハウジング40の外面43が金型100に押し当たるようにモールド成形する。換言すると、軸受ハウジング40は、モールド成形時に金型100に押し当たる外面43を有する。ここでは、軸方向の一方側(図9の下側)の端部に位置する外面43の突出部44が、モールド成形時に固定型101に押し当たる。 In this embodiment, molding is performed so that the outer surface 43 of the bearing housing 40 presses against the mold 100 . In other words, the bearing housing 40 has an outer surface 43 that bears against the mold 100 during molding. Here, the protruding portion 44 of the outer surface 43 located at the end on one side in the axial direction (lower side in FIG. 9) presses against the stationary die 101 during molding.
 金型100は、このモールド成形時に、軸受ハウジング40の外面43を径方向内側に向けて押す面101aを有する。この面101aは、径方向内側に向く。ここでは、モールド成形時に、軸受ハウジング40の突出部44と固定型101の面101aとは、接触する。 The mold 100 has a surface 101a that pushes the outer surface 43 of the bearing housing 40 radially inward during molding. This surface 101a faces radially inward. Here, the projecting portion 44 of the bearing housing 40 and the surface 101a of the stationary mold 101 are in contact with each other during molding.
 ここで、工程(S2~S4)における金型100及び軸受ハウジング40について、説明する。工程(S4)の実施前に、金型100の温度は、軸受ハウジング40の温度よりも高い。また、軸受ハウジング40を構成する材料の熱膨張係数は、固定型101を構成する材料の熱膨張係数よりも大きい。このため、固定型101の熱が軸受ハウジング40に伝達されることによって、軸受ハウジング40が熱膨張する。これにより、固定型101に沿うように、軸受ハウジング40が径方向外側に広がる。このとき、固定型101の面101aは、熱膨張した軸受ハウジング40の突出部44を、軸方向中心に向かって押す。このため、軸受ハウジング40の外面43の突出部44によって、固定型101に固定することができる。また、工程(S2)において軸受ハウジング40の外面43と固定型101との間に隙間が設けられていると、この隙間を埋めるように軸受ハウジング40が熱膨張する。このように、軸受ハウジング40を金型100に沿うように締り嵌めとすることで、軸受ハウジング40と金型100との同軸度を確保できる。 Here, the mold 100 and the bearing housing 40 in the steps (S2-S4) will be explained. The temperature of the mold 100 is higher than the temperature of the bearing housing 40 before step (S4) is performed. Also, the coefficient of thermal expansion of the material forming the bearing housing 40 is greater than the coefficient of thermal expansion of the material forming the fixed mold 101 . Therefore, the heat of the fixed mold 101 is transferred to the bearing housing 40, and the bearing housing 40 thermally expands. As a result, the bearing housing 40 expands radially outward along the stationary die 101 . At this time, the surface 101a of the fixed die 101 pushes the thermally expanded protrusion 44 of the bearing housing 40 toward the center in the axial direction. Therefore, it can be fixed to the stationary die 101 by the projecting portion 44 of the outer surface 43 of the bearing housing 40 . Further, if a gap is provided between the outer surface 43 of the bearing housing 40 and the fixed die 101 in step (S2), the bearing housing 40 thermally expands so as to fill the gap. In this way, the coaxiality between the bearing housing 40 and the mold 100 can be ensured by making the bearing housing 40 an interference fit along the mold 100 .
 次に、図10に示すように、型開きして、ステータ構造体を取り出す(ステップS5)。この工程(S5)では、可動型102を固定型101から離れるように移動する。金型100の冷却、または、型開きによる大気によって、軸受ハウジング40を冷却する。これにより、軸受ハウジング40が縮むので、軸受ハウジング40とステータ50とが樹脂60で接続されたステータ構造体4を、固定型101から取り出す。 Next, as shown in FIG. 10, the mold is opened and the stator structure is taken out (step S5). In this step ( S<b>5 ), the movable mold 102 is moved away from the fixed mold 101 . The bearing housing 40 is cooled by the cooling of the mold 100 or by the air generated by opening the mold. As a result, the bearing housing 40 shrinks, so the stator structure 4 in which the bearing housing 40 and the stator 50 are connected by the resin 60 is removed from the fixed die 101 .
 上記工程(S1~S5)を実施することによって、軸受ハウジング40、ステータ50及び樹脂60を備えるステータ構造体4を製造することができる。 The stator structure 4 including the bearing housing 40, the stator 50 and the resin 60 can be manufactured by performing the above steps (S1 to S5).
 次に、シャフト組立体を準備する(ステップS6)。この工程(S6)では、図2を参照して、シャフト5に、ロータ10及び玉軸受21を取り付ける。具体的には、シャフト5を支持するように、玉軸受21を配置する。また、シャフト5にロータ10の本体部11を接続する。 Next, prepare the shaft assembly (step S6). In this step (S6), referring to FIG. 2, the rotor 10 and the ball bearings 21 are attached to the shaft 5. Specifically, the ball bearings 21 are arranged so as to support the shaft 5 . Also, the body portion 11 of the rotor 10 is connected to the shaft 5 .
 次に、金型100から取り出したステータ構造体4に、シャフト組立体を取り付ける(ステップS7)。具体的には、軸受ハウジング40に、玉軸受21を保持する。また、ステータ50の径方向外側にロータ10を配置する。 Next, the shaft assembly is attached to the stator structure 4 removed from the mold 100 (step S7). Specifically, the bearing housing 40 holds the ball bearing 21 . Further, the rotor 10 is arranged radially outside the stator 50 .
 次に、軸受ハウジング40に、玉軸受22を嵌め込む(ステップS8)。 Next, the ball bearing 22 is fitted into the bearing housing 40 (step S8).
 上記工程(S6~S8)によって、軸受ハウジング40に玉軸受21、22を保持する工程と、玉軸受21、22にシャフト5を支持する工程と、ステータの径方向外側にロータを配置する工程とが実施される。このため、上記工程(S6~S8)を実施することによって、ステータ構造体4、玉軸受21、22、シャフト5、及びロータ10を備えるモータ3を製造することができる。 By the above steps (S6 to S8), a step of holding the ball bearings 21 and 22 in the bearing housing 40, a step of supporting the shaft 5 on the ball bearings 21 and 22, and a step of arranging the rotor radially outside the stator. is carried out. Therefore, the motor 3 including the stator structure 4, the ball bearings 21 and 22, the shaft 5, and the rotor 10 can be manufactured by performing the steps (S6 to S8).
 次に、シャフト5にファン2を取り付ける(ステップS9)。これにより、モータ3及びファン2を備える送風機1を製造することができる。 Next, the fan 2 is attached to the shaft 5 (step S9). Thereby, the blower 1 including the motor 3 and the fan 2 can be manufactured.
 (6)特徴
 (6-1)
 本実施形態のステータ構造体4は、軸受ハウジング40と、ステータ50と、樹脂60と、を備えている。軸受ハウジング40は、導電性である。また、軸受ハウジング40は、玉軸受21、22を保持する。ステータ50は、軸受ハウジング40の径方向外側に配置される。ステータ50は、ステータコア51と、このステータコア51に巻回されたコイル52と、を含む。樹脂60は、軸受ハウジング40とステータコア51との間に配置される。樹脂60は、絶縁性である。
(6) Features (6-1)
The stator structure 4 of this embodiment includes a bearing housing 40 , a stator 50 and resin 60 . Bearing housing 40 is electrically conductive. Also, the bearing housing 40 holds the ball bearings 21 and 22 . The stator 50 is arranged radially outside the bearing housing 40 . Stator 50 includes a stator core 51 and coils 52 wound around stator core 51 . Resin 60 is arranged between bearing housing 40 and stator core 51 . The resin 60 is insulating.
 本実施形態のステータ構造体4によれば、軸受ハウジング40とステータコア51との間に配置される樹脂60によって、軸受ハウジング40とステータコア51とを絶縁接続させる。このため、軸受ハウジング40が導電性材料で構成されていても、樹脂60により、軸受ハウジング40とステータコア51との絶縁性を確保できる。これにより、ステータ構造体4の動作中に、ステータ50の高い電位が軸受ハウジング40に伝わることを抑制できるので、玉軸受21、22の外輪の電位が高くなることを抑制できる。したがって、玉軸受21、22の内輪の電位は変わらず、玉軸受21、22の外輪の電位のみが高くなることを抑制できるので、玉軸受21、22の内外輪の電位差が大きくなることを抑制できる。よって、軸受ハウジング40に保持される玉軸受21、22の電食を抑制することができる。 According to the stator structure 4 of this embodiment, the bearing housing 40 and the stator core 51 are insulated and connected by the resin 60 arranged between the bearing housing 40 and the stator core 51 . Therefore, even if the bearing housing 40 is made of a conductive material, the insulation between the bearing housing 40 and the stator core 51 can be ensured by the resin 60 . As a result, it is possible to prevent the high potential of the stator 50 from being transmitted to the bearing housing 40 during the operation of the stator structure 4 , thereby preventing the potential of the outer rings of the ball bearings 21 and 22 from increasing. Therefore, the electric potential of the inner rings of the ball bearings 21 and 22 does not change, and only the electric potential of the outer rings of the ball bearings 21 and 22 can be suppressed from increasing. can. Therefore, electrolytic corrosion of the ball bearings 21 and 22 held in the bearing housing 40 can be suppressed.
 このように、本実施形態のステータ構造体4は、玉軸受21、22の電食を抑制できるので、例えば、金属製の軸受ハウジング40を用いることができる。金属製の軸受ハウジングの強度は、樹脂製の軸受ハウジングよりも高いため、ステータ構造体4の強度を向上することもできる。 As described above, the stator structure 4 of the present embodiment can suppress electrolytic corrosion of the ball bearings 21 and 22, so that the bearing housing 40 made of metal can be used, for example. Since the strength of the bearing housing made of metal is higher than that of the bearing housing made of resin, the strength of the stator structure 4 can also be improved.
 (6-2)
 本実施形態のステータ構造体4において好ましくは、軸受ハウジング40の径方向外側に位置する外面43は、軸方向の一方側において樹脂60から突出する。
(6-2)
Preferably, in the stator structure 4 of the present embodiment, the outer surface 43 positioned radially outwardly of the bearing housing 40 protrudes from the resin 60 on one side in the axial direction.
 これにより、軸受ハウジング40の外面43を、モールド成形時に金型100に固定して、ステータ構造体4を製造することができる。この場合、金型100と軸受ハウジング40との同軸度を確保することができるので、ステータ構造体4の品質を向上できる。 Thereby, the stator structure 4 can be manufactured by fixing the outer surface 43 of the bearing housing 40 to the mold 100 during molding. In this case, the coaxiality between the mold 100 and the bearing housing 40 can be ensured, so the quality of the stator structure 4 can be improved.
 (6-3)
 本実施形態のモータ3は、ステータ構造体4と、玉軸受21、22と、シャフト5と、ロータ10と、を備えている。玉軸受21、22は、軸受ハウジング40に保持される。シャフト5は、軸方向に延び、かつ玉軸受21、22に支持される。ロータ10は、ステータ50の径方向外側に配置される。
(6-3)
The motor 3 of this embodiment includes a stator structure 4 , ball bearings 21 and 22 , a shaft 5 and a rotor 10 . Ball bearings 21 , 22 are held in bearing housing 40 . Shaft 5 extends axially and is supported by ball bearings 21 , 22 . The rotor 10 is arranged radially outside the stator 50 .
 本実施形態のモータ3によれば、上記ステータ構造体4を備えることによって、軸受ハウジング40に保持される玉軸受21、22の電食を抑制することができる。 According to the motor 3 of this embodiment, by providing the stator structure 4, electrolytic corrosion of the ball bearings 21 and 22 held in the bearing housing 40 can be suppressed.
 (6―4)
 本実施形態の送風機1は、モータ3と、ファン2と、を備えている。ファン2は、シャフト5に接続される。
(6-4)
A blower 1 of this embodiment includes a motor 3 and a fan 2 . Fan 2 is connected to shaft 5 .
 本実施形態の送風機1によれば、上記モータ3を備えることによって、軸受ハウジング40に保持される玉軸受21、22の電食を抑制することができる。 According to the blower 1 of the present embodiment, by providing the motor 3, electrolytic corrosion of the ball bearings 21 and 22 held in the bearing housing 40 can be suppressed.
 (6-5)
 本実施形態の冷凍装置200は、送風機1と、凝縮器(図1では、室外熱交換器223または室内熱交換器231)と、蒸発器(図1では、室内熱交換器231または室外熱交換器223)と、膨張機構224と、を有する冷媒回路210を備えている。
(6-5)
The refrigeration apparatus 200 of the present embodiment includes the blower 1, the condenser (in FIG. 1, the outdoor heat exchanger 223 or the indoor heat exchanger 231), and the evaporator (in FIG. 1, the indoor heat exchanger 231 or the outdoor heat exchanger 223 ) and an expansion mechanism 224 .
 本実施形態の冷凍装置200によれば、上記送風機1を備えることによって、軸受ハウジング40に保持される玉軸受21、22の電食を抑制することができる。 According to the refrigerating apparatus 200 of the present embodiment, by providing the blower 1, electrolytic corrosion of the ball bearings 21 and 22 held in the bearing housing 40 can be suppressed.
 (6-6)
 本実施形態のステータ構造体4の製造方法は、以下の工程を実施する。ステータコア51と、このステータコア51に巻回されたコイル52と、を含むステータ50を配置する(ステップS1)。そして、ステータ50の径方向内側に、玉軸受21、22を保持する、導電性の軸受ハウジング40を配置する(ステップS2)。そして、軸受ハウジング40とステータコア51との間に、絶縁性の樹脂60を配置して、樹脂60により軸受ハウジング40とステータコア51とを接続する(ステップS4)。
(6-6)
The manufacturing method of the stator structure 4 of this embodiment includes the following steps. A stator 50 including a stator core 51 and a coil 52 wound around the stator core 51 is arranged (step S1). Then, the conductive bearing housing 40 that holds the ball bearings 21 and 22 is arranged radially inside the stator 50 (step S2). Then, an insulating resin 60 is placed between the bearing housing 40 and the stator core 51, and the bearing housing 40 and the stator core 51 are connected by the resin 60 (step S4).
 本実施形態のステータ構造体4の製造方法によれば、軸受ハウジング40とステータコア51との間に樹脂60を配置して、軸受ハウジング40とステータコア51とを絶縁接続させる。このため、軸受ハウジング40が導電性材料で構成されていても、樹脂60により、軸受ハウジング40とステータコア51とを絶縁性を確保できる。このため、軸受ハウジング40に保持される玉軸受21、22の電食を抑制することができる、ステータ構造体4を製造することができる。 According to the method of manufacturing the stator structure 4 of the present embodiment, the resin 60 is arranged between the bearing housing 40 and the stator core 51 so that the bearing housing 40 and the stator core 51 are insulated and connected. Therefore, even if the bearing housing 40 is made of a conductive material, the insulation between the bearing housing 40 and the stator core 51 can be ensured by the resin 60 . Therefore, it is possible to manufacture the stator structure 4 that can suppress electrolytic corrosion of the ball bearings 21 and 22 held in the bearing housing 40 .
 (6-7)
 本実施形態のステータ構造体4の製造方法において好ましくは、ステータ構造体4は、金型100にステータ50及び軸受ハウジング40を配置して、樹脂60を射出するモールド成形により製造される。軸受ハウジング40の外面43が金型に押し当たるようにモールド成形する。
(6-7)
Preferably, in the method of manufacturing the stator structure 4 of the present embodiment, the stator structure 4 is manufactured by molding by placing the stator 50 and the bearing housing 40 in a mold 100 and injecting the resin 60 . Molding is performed so that the outer surface 43 of the bearing housing 40 presses against the mold.
 これにより、軸受ハウジング40の外面43で、モールド成形時に金型100に固定することができる。このため、金型100と軸受ハウジング40との同軸度を確保することができる。 Thereby, the outer surface 43 of the bearing housing 40 can be fixed to the mold 100 during molding. Therefore, coaxiality between the mold 100 and the bearing housing 40 can be ensured.
 なお、軸受ハウジング40の径方向内側に位置する内面は、他の部材と接触しないので、モールド成形時に広がるため、同軸度を確保することが難しい。このため、本実施形態では、軸受ハウジング40の外面43を、金型100の固定位置としている。 It should be noted that since the inner surface positioned radially inward of the bearing housing 40 does not come into contact with other members, it expands during molding, making it difficult to ensure coaxiality. Therefore, in this embodiment, the mold 100 is fixed on the outer surface 43 of the bearing housing 40 .
 (6-8)
 本実施形態のステータ構造体4の製造方法において好ましくは、軸受ハウジング40を構成する材料の熱膨張係数は、金型100を構成する材料の熱膨張係数よりも大きい。
(6-8)
Preferably, in the method of manufacturing the stator structure 4 of the present embodiment, the coefficient of thermal expansion of the material forming the bearing housing 40 is larger than the coefficient of thermal expansion of the material forming the mold 100 .
 これにより、モールド成形時に軸受ハウジング40が熱膨張して、金型100に沿うように軸受ハウジング40が外周側に広がるため、軸受ハウジング40と金型100との同軸度を高めることができる。 As a result, the bearing housing 40 thermally expands during molding, and the bearing housing 40 expands to the outer peripheral side along the mold 100, so that the degree of coaxiality between the bearing housing 40 and the mold 100 can be increased.
 (6-9)
 本実施形態のステータ構造体4の製造方法において好ましくは、金型100は、モールド成形時に、軸受ハウジング40の外面43を径方向内側に向けて押す面101aを有する。
(6-9)
Preferably, in the method of manufacturing the stator structure 4 of the present embodiment, the mold 100 has a surface 101a that presses the outer surface 43 of the bearing housing 40 radially inward during molding.
 これにより、金型100の上記面101aによって、モールド成形時に熱膨張した軸受ハウジング40の外面43を、軸方向中心に向かって押すことができるので、軸受ハウジング40と金型100との同軸度を高めることができる。 As a result, the surface 101a of the mold 100 can push the outer surface 43 of the bearing housing 40, which has been thermally expanded during molding, toward the center in the axial direction. can be enhanced.
 (6-10)
 本実施形態のステータ構造体4の製造方法において好ましくは、軸受ハウジング40を配置する工程(ステップS2)は、軸受ハウジング40の外面43と金型100との間に隙間を設けて、軸受ハウジング40を金型100にセットする工程を含む。
(6-10)
Preferably, in the method of manufacturing the stator structure 4 of the present embodiment, the step of arranging the bearing housing 40 (Step S2) includes providing a gap between the outer surface 43 of the bearing housing 40 and the mold 100 so that the bearing housing 40 is is set in the mold 100.
 これにより、モールド成形時に、隙間に軸受ハウジング40が熱膨張できるので、軸受ハウジング40と金型100との同軸度を高めることができる。 As a result, the bearing housing 40 can thermally expand into the gap during molding, so that the degree of coaxiality between the bearing housing 40 and the mold 100 can be increased.
 (6-11)
 本実施形態のモータ3の製造方法は、以下の工程を備える。上記ステータ構造体4を製造する(ステップS1~5)。そして、軸受ハウジング40に、玉軸受21、22を保持する(ステップS6~8)。そして、玉軸受21、22に、軸方向に延びるシャフト5を支持する(ステップS6~8)。そして、ステータ50の径方向外側にロータ10を配置する(ステップS6~8)。
(6-11)
The manufacturing method of the motor 3 of this embodiment includes the following steps. The stator structure 4 is manufactured (steps S1-5). Then, the ball bearings 21 and 22 are held in the bearing housing 40 (steps S6 to S8). Then, the axially extending shaft 5 is supported by the ball bearings 21 and 22 (steps S6 to S8). Then, the rotor 10 is arranged radially outside the stator 50 (steps S6 to S8).
 本実施形態のモータ3の製造方法によれば、軸受ハウジング40に保持される玉軸受21、22の電食を抑制するモータ3を製造することができる。 According to the method for manufacturing the motor 3 of this embodiment, the motor 3 that suppresses electrolytic corrosion of the ball bearings 21 and 22 held in the bearing housing 40 can be manufactured.
 (6-12)
 本実施形態の送風機1の製造方法は、以下の工程を備える。上記モータ3を製造する(ステップS1~S8)。そして、シャフト5にファン2を接続する(ステップS9)。
(6-12)
The manufacturing method of the air blower 1 of this embodiment includes the following steps. The motor 3 is manufactured (steps S1 to S8). Then, the fan 2 is connected to the shaft 5 (step S9).
 本実施形態の送風機1の製造方法によれば、軸受ハウジング40に保持される玉軸受21、22の電食を抑制する送風機1を製造することができる。 According to the method for manufacturing the blower 1 of the present embodiment, the blower 1 that suppresses electrolytic corrosion of the ball bearings 21 and 22 held in the bearing housing 40 can be manufactured.
 (6-13)
 本実施形態の冷凍装置200は、上記送風機1の製造方法(ステップS1~S9)により製造された送風機1と、凝縮器(図1では、室外熱交換器223または室内熱交換器231)と、蒸発器(図1では、室内熱交換器231または室外熱交換器223)と、膨張機構224と、を有する冷媒回路210を備えている。
(6-13)
The refrigeration apparatus 200 of the present embodiment includes the blower 1 manufactured by the method for manufacturing the blower 1 (steps S1 to S9), the condenser (in FIG. 1, the outdoor heat exchanger 223 or the indoor heat exchanger 231), A refrigerant circuit 210 having an evaporator (the indoor heat exchanger 231 or the outdoor heat exchanger 223 in FIG. 1) and an expansion mechanism 224 is provided.
 本実施形態の冷凍装置200では、上記送風機1の製造方法によって製造された送風機1を備えることによって、軸受ハウジング40に保持される玉軸受21、22の電食を抑制することができる。 In the refrigerating apparatus 200 of the present embodiment, electric corrosion of the ball bearings 21 and 22 held in the bearing housing 40 can be suppressed by including the blower 1 manufactured by the method for manufacturing the blower 1 described above.
 (7)変形例
 (7-1)変形例1
 上記実施形態では、金型100を構成する材料と、軸受ハウジング40を構成する材料とが、異なっているが、これに限定されない。本変形例では、金型100を構成する材料と軸受ハウジング40を構成する材料とが同じである。この場合、モールド成形時に、軸受ハウジング40を局所的に加熱する。
(7) Modification (7-1) Modification 1
In the above embodiment, the material forming the mold 100 is different from the material forming the bearing housing 40, but the material is not limited to this. In this modification, the material forming the mold 100 and the material forming the bearing housing 40 are the same. In this case, the bearing housing 40 is locally heated during molding.
 (7-2)変形例2
 上記実施形態では、ステータ50と軸受ハウジング40の延出部42との軸方向の間に、径方向に延びる樹脂60が配置されているが、これに限定されない。軸受ハウジング40及びステータ50の構造に応じて、樹脂60は、ステータコア51と軸受ハウジング40との間に配置される。本変形例では、軸受ハウジング40の延出部42が省略されているので、樹脂60の径方向に延びる部分が省略されている。
(7-2) Modification 2
In the above embodiment, the radially extending resin 60 is arranged between the stator 50 and the extending portion 42 of the bearing housing 40 in the axial direction, but the invention is not limited to this. The resin 60 is arranged between the stator core 51 and the bearing housing 40 according to the structures of the bearing housing 40 and the stator 50 . In this modified example, since the extending portion 42 of the bearing housing 40 is omitted, the radially extending portion of the resin 60 is omitted.
 以上、本開示の実施形態を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。 Although embodiments of the present disclosure have been described above, it will be appreciated that various changes in form and detail may be made without departing from the spirit and scope of the present disclosure as set forth in the appended claims. .
1    :送風機
3    :モータ
4    :ステータ構造体
5    :シャフト
10   :ロータ
21,22:玉軸受
40   :軸受ハウジング
43   :外面
50   :ステータ
51   :ステータコア
52   :コイル
60   :樹脂
100  :金型
101a :面
200  :冷凍装置
Reference Signs List 1: blower 3: motor 4: stator structure 5: shaft 10: rotors 21, 22: ball bearings 40: bearing housing 43: outer surface 50: stator 51: stator core 52: coil 60: resin 100: mold 101a: surface 200 : Refrigeration equipment
特開2018-148606号公報JP 2018-148606 A

Claims (11)

  1.  玉軸受(21、22)を保持する、導電性の軸受ハウジング(40)と、
     前記軸受ハウジングの径方向外側に配置され、かつ、ステータコア(51)と、前記ステータコアに巻回されたコイル(52)と、を含むステータ(50)と、
     前記軸受ハウジングと前記ステータコアとの間に配置される、絶縁性の樹脂(60)と、
    を備える、ステータ構造体(4)。
    a conductive bearing housing (40) holding the ball bearings (21, 22);
    a stator (50) disposed radially outside the bearing housing and comprising a stator core (51) and a coil (52) wound around the stator core;
    an insulating resin (60) disposed between the bearing housing and the stator core;
    A stator structure (4) comprising:
  2.  前記軸受ハウジングの径方向外側に位置する外面(43)は、軸方向の一方側において前記樹脂から突出する、請求項1に記載のステータ構造体。 The stator structure according to claim 1, wherein the outer surface (43) positioned radially outward of the bearing housing protrudes from the resin on one side in the axial direction.
  3.  請求項1または2に記載のステータ構造体と、
     前記軸受ハウジングに保持される玉軸受と、
     軸方向に延び、かつ前記玉軸受に支持されるシャフト(5)と、
     前記ステータの径方向外側に配置されたロータ(10)と、
    をさらに備える、モータ(3)。
    A stator structure according to claim 1 or 2;
    a ball bearing retained in the bearing housing;
    a shaft (5) extending axially and supported in said ball bearing;
    a rotor (10) arranged radially outside the stator;
    a motor (3).
  4.  請求項3に記載のモータと、
     前記シャフトに接続されたファン(2)と、
    を備える、送風機(1)。
    a motor according to claim 3;
    a fan (2) connected to the shaft;
    A blower (1).
  5.  請求項4に記載の送風機と、凝縮器(223、231)と、蒸発器(231、223)と、膨張機構(224)と、を有する冷媒回路(210)を備える、冷凍装置(200)。 A refrigeration system (200) comprising a refrigerant circuit (210) having the blower according to claim 4, a condenser (223, 231), an evaporator (231, 223), and an expansion mechanism (224).
  6.  ステータコア(51)と、前記ステータコアに巻回されたコイル(52)と、を含むステータ(50)を配置する工程と、
     前記ステータの内側に、玉軸受(21、22)を保持する、導電性の軸受ハウジング(40)を配置する工程と、
     前記軸受ハウジングと前記ステータコアとの間に、絶縁性の樹脂(60)を配置して、前記樹脂により前記軸受ハウジングと前記ステータコアとを接続する工程と、
    を備える、ステータ構造体(4)の製造方法。
    disposing a stator (50) comprising a stator core (51) and a coil (52) wound around the stator core;
    placing an electrically conductive bearing housing (40) holding ball bearings (21, 22) inside said stator;
    disposing an insulating resin (60) between the bearing housing and the stator core and connecting the bearing housing and the stator core with the resin;
    A method of manufacturing a stator structure (4), comprising:
  7.  前記ステータ構造体は、金型(100)に前記ステータ及び前記軸受ハウジングを配置して、前記樹脂を射出するモールド成形により製造され、
     前記軸受ハウジングの外面(43)が前記金型に押し当たるようにモールド成形する、請求項6に記載のステータ構造体の製造方法。
    The stator structure is manufactured by molding by placing the stator and the bearing housing in a mold (100) and injecting the resin,
    7. The method of manufacturing a stator structure according to claim 6, wherein the outer surface (43) of the bearing housing is molded such that it presses against the mold.
  8.  前記軸受ハウジングを構成する材料の熱膨張係数は、前記金型(100)を構成する材料の熱膨張係数よりも大きい、請求項7に記載のステータ構造体の製造方法。 The method for manufacturing a stator structure according to claim 7, wherein the thermal expansion coefficient of the material forming the bearing housing is larger than the thermal expansion coefficient of the material forming the mold (100).
  9.  前記金型は、モールド成形時に、前記軸受ハウジングの前記外面を径方向内側に向けて押す面(101a)を有する、請求項7または8に記載のステータ構造体の製造方法。 The method of manufacturing a stator structure according to claim 7 or 8, wherein the mold has a surface (101a) that presses the outer surface of the bearing housing radially inward during molding.
  10.  前記軸受ハウジングを配置する工程は、前記軸受ハウジングの前記外面と前記金型との間に隙間を設けて、前記軸受ハウジングを前記金型にセットする工程を含む、請求項7~9のいずれか1項に記載のステータ構造体の製造方法。 10. The step of arranging the bearing housing includes the step of providing a gap between the outer surface of the bearing housing and the mold and setting the bearing housing in the mold. 2. A method for manufacturing the stator structure according to item 1.
  11.  請求項6~10のいずれか1項に記載のステータ構造体の製造方法によりステータ構造体を製造する工程と、
     前記軸受ハウジングに、玉軸受を保持する工程と、
     前記玉軸受に、軸方向に延びるシャフト(5)を支持する工程と、
     前記ステータの径方向外側にロータ(10)を配置する工程と、
    を備える、モータ(3)の製造方法。
    a step of manufacturing a stator structure by the method for manufacturing a stator structure according to any one of claims 6 to 10;
    holding a ball bearing in the bearing housing;
    supporting an axially extending shaft (5) in said ball bearing;
    placing a rotor (10) radially outward of the stator;
    A method of manufacturing a motor (3), comprising:
PCT/JP2022/025948 2021-07-19 2022-06-29 Stator structure, motor, air blower, refrigeration device, method for manufacturing stator structure, and method for manufacturing motor WO2023002825A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021119117 2021-07-19
JP2021-119117 2021-07-19

Publications (1)

Publication Number Publication Date
WO2023002825A1 true WO2023002825A1 (en) 2023-01-26

Family

ID=84979957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025948 WO2023002825A1 (en) 2021-07-19 2022-06-29 Stator structure, motor, air blower, refrigeration device, method for manufacturing stator structure, and method for manufacturing motor

Country Status (2)

Country Link
JP (1) JP2023014986A (en)
WO (1) WO2023002825A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010130847A (en) * 2008-11-28 2010-06-10 Nidec Sankyo Corp Electric motor
WO2021005920A1 (en) * 2019-07-08 2021-01-14 パナソニックIpマネジメント株式会社 Method for manufacturing mold, method for manufacturing resin mold article
JP2021023079A (en) * 2019-07-30 2021-02-18 株式会社デンソー Brushless motor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5734755A (en) * 1980-08-11 1982-02-25 Sanyo Electric Co Ltd Manufacture of molded motor
JPS5765541U (en) * 1980-10-06 1982-04-19
JPS57118647U (en) * 1981-01-16 1982-07-23

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010130847A (en) * 2008-11-28 2010-06-10 Nidec Sankyo Corp Electric motor
WO2021005920A1 (en) * 2019-07-08 2021-01-14 パナソニックIpマネジメント株式会社 Method for manufacturing mold, method for manufacturing resin mold article
JP2021023079A (en) * 2019-07-30 2021-02-18 株式会社デンソー Brushless motor

Also Published As

Publication number Publication date
JP2023014986A (en) 2023-01-31

Similar Documents

Publication Publication Date Title
JP4823787B2 (en) Rotor, hermetic compressor and refrigeration cycle apparatus
CN104619990B (en) The rotor of motor, motor, pump and refrigerating circulatory device
CN109565191B (en) Motor, compressor and refrigeration air conditioner
CN111164859B (en) Stator, motor, compressor, air conditioner, and method for manufacturing stator
JP2013042588A (en) Electric motor
WO2019075105A1 (en) Hermetic motor cooling system
CN105553137A (en) Compressor and method for manufacturing compressor
WO2023002825A1 (en) Stator structure, motor, air blower, refrigeration device, method for manufacturing stator structure, and method for manufacturing motor
US11309772B2 (en) Electric motor, air conditioner, vacuum cleaner, and method for producing electric motor
CN203883623U (en) Molded stator, pump and refrigeration cycle device
JPH08223866A (en) Mold motor
WO2022071393A1 (en) Motor apparatus, compressor, and refrigeration apparatus
RU2150609C1 (en) Centrifugal compressor unit and electric motor
US11817740B2 (en) Electric motor, air conditioner, and method for producing electric motor
JP7105999B2 (en) Electric motor, compressor, air conditioner, and method for manufacturing electric motor
WO2020179091A1 (en) Electric motor, blower, air conditioning device, and electric motor manufacturing method
JP7325650B2 (en) Stator, electric motor, compressor, air conditioner, and stator manufacturing method
WO2023105734A1 (en) Motor and method for manufacturing motor
CN112913118B (en) Rotor, motor, compressor, air conditioner, and method for manufacturing rotor
JP2010038083A (en) Pump, heat pump hot-water supply device, and method of manufacturing pump
JP2010038069A (en) Pump, heat pump hot-water supply device, and method of manufacturing pump
JP7252477B2 (en) Motor fixing structure, compressor, and refrigeration equipment
CN115104237A (en) Motor, blower, and air conditioner
WO2022215189A1 (en) Stator for electric motor, compressor, and refrigeration cycle device
CN114128095A (en) Motor, blower, air conditioner, and method for manufacturing motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22845761

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE