JP4823787B2 - Rotor, hermetic compressor and refrigeration cycle apparatus - Google Patents

Rotor, hermetic compressor and refrigeration cycle apparatus Download PDF

Info

Publication number
JP4823787B2
JP4823787B2 JP2006190080A JP2006190080A JP4823787B2 JP 4823787 B2 JP4823787 B2 JP 4823787B2 JP 2006190080 A JP2006190080 A JP 2006190080A JP 2006190080 A JP2006190080 A JP 2006190080A JP 4823787 B2 JP4823787 B2 JP 4823787B2
Authority
JP
Japan
Prior art keywords
rotor
hole
hermetic compressor
magnet insertion
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006190080A
Other languages
Japanese (ja)
Other versions
JP2008022601A (en
Inventor
修 風間
智明 及川
智博 白畑
俊明 岩崎
真紀 岡田
貴弘 堤
義和 藤末
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006190080A priority Critical patent/JP4823787B2/en
Priority to CN201210112332.XA priority patent/CN102638118B/en
Priority to CN2006101423795A priority patent/CN101106295B/en
Publication of JP2008022601A publication Critical patent/JP2008022601A/en
Application granted granted Critical
Publication of JP4823787B2 publication Critical patent/JP4823787B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

この発明は、永久磁石を用いた回転子及び密閉型圧縮機及び冷凍サイクル装置に関するものである。   The present invention relates to a rotor using a permanent magnet, a hermetic compressor, and a refrigeration cycle apparatus.

冷凍サイクルに用いられる高効率密閉型圧縮機では、電動要素には回転子に永久磁石を配置したブラシレスDCモータを用い、インバータを有する専用の制御装置により周波数可変で運転する方法が用いられる。   In a high-efficiency hermetic compressor used in a refrigeration cycle, a brushless DC motor having a permanent magnet disposed on a rotor is used as an electric element, and a method of operating at a variable frequency by a dedicated control device having an inverter is used.

通常永久磁石を配置した回転子は、薄板電磁鋼板を打抜き積層した回転子コアに磁石挿入孔を設け、永久磁石を回転子コアに隙間嵌めする構造が一般的である。   Usually, a rotor in which permanent magnets are arranged generally has a structure in which a magnet insertion hole is provided in a rotor core obtained by punching and laminating thin electromagnetic steel sheets, and the permanent magnet is fitted into the rotor core with a gap.

また、回転子は、回転軸が嵌合される軸孔を有し、回転子と回転軸との嵌合は、回転子を加熱して軸孔の径を膨張させて、回転軸を軸孔に挿入する、焼嵌めが一般的である。   Further, the rotor has a shaft hole into which the rotating shaft is fitted, and the fitting between the rotor and the rotating shaft is performed by heating the rotor and expanding the diameter of the shaft hole so that the rotating shaft is fitted into the shaft hole. The shrink-fitting is generally inserted into

しかし、永久磁石を配置した回転子では、焼嵌め時に永久磁石の温度が上昇すると永久磁石の性能が劣化する場合がある。   However, in the rotor in which the permanent magnet is arranged, the performance of the permanent magnet may be deteriorated when the temperature of the permanent magnet is increased during shrink fitting.

そこで、例えば、予め鉄心の外周にボンド(登録商標)磁石を形成した状態で回転軸の焼嵌めを行っても、ボンド磁石を構成するプラスチックの溶解や劣化による損傷を防止できるようにするために、電動機の回転子は、回転軸が嵌合される軸孔を有する円柱形状の鉄心と、この鉄心の外周に一体形成された円筒形状のプラスチックボンド磁石とを備えている。鉄心は、軸孔側の内層部とボンド磁石側の外層部との間が、周方向に間隔を置いて配置された複数の架橋部によって連結された構造を有している。回転軸を焼嵌めするために鉄心を軸孔側から加熱する場合、鉄心における架橋部の部分は断面積の減少で熱抵抗が大きくなるので、鉄心の内層部から外層部への伝熱が小さくなり、ボンド磁石の温度上昇が抑えられる電動機の回転子が提案されている(例えば、特許文献1参照)。
特開2000−92762号公報
Therefore, for example, in order to prevent damage caused by melting or deterioration of the plastic constituting the bonded magnet even if the rotary shaft is shrink-fitted in a state where the Bond (registered trademark) magnet is previously formed on the outer periphery of the iron core. The rotor of the electric motor includes a columnar iron core having a shaft hole into which a rotating shaft is fitted, and a cylindrical plastic bond magnet integrally formed on the outer periphery of the iron core. The iron core has a structure in which the inner layer portion on the shaft hole side and the outer layer portion on the bond magnet side are connected by a plurality of bridging portions arranged at intervals in the circumferential direction. When the iron core is heated from the shaft hole side in order to shrink fit the rotating shaft, the cross-sectional area of the iron core increases the thermal resistance due to the reduced cross-sectional area. Therefore, a rotor of an electric motor that suppresses the temperature rise of the bonded magnet has been proposed (see, for example, Patent Document 1).
JP 2000-92762 A

しかしながら、永久磁石に希土類磁石等を使用する場合は、特許文献1のように架橋部により鉄心の内層部から外層部への伝熱を小さくするだけでは、不十分で永久磁石の性能が劣化する場合がある。   However, when a rare earth magnet or the like is used for the permanent magnet, it is not sufficient to reduce the heat transfer from the inner layer portion to the outer layer portion of the iron core by the bridging portion as in Patent Document 1, and the performance of the permanent magnet is deteriorated. There is a case.

この発明は、上記のような課題を解決するためになされたもので、永久磁石を配置した回転子において、焼嵌めにより回転軸を回転子に嵌合しても、永久磁石の性能を劣化させる恐れの少ない回転子及び密閉型圧縮機及び冷凍サイクル装置を提供することを目的とする。   The present invention has been made to solve the above-described problems. In a rotor in which a permanent magnet is arranged, the performance of the permanent magnet is deteriorated even if the rotating shaft is fitted to the rotor by shrink fitting. An object of the present invention is to provide a rotor, a hermetic compressor, and a refrigeration cycle apparatus with less fear.

この発明に係る回転子は、薄板電磁鋼板を打ち抜き積層され、中心に軸孔を有し、略円筒形状の回転子鉄心と、この回転子鉄心に設けられ、前記軸孔を内側に形成する第1管部と、この第1管部の外側に配置され、周方向に複数個形成された磁石挿入孔を有する第2管部と、第1管部と、第2管部とを連結し、周方向に間隔を置いて配置されたリブ部と、このリブ部の半径方向外側に形成され、軸方向に形成された孔とを備え、第1管部及び第2管部は、互いに離れて配置され、第1管部、第2管部及びリブ部で囲まれる空洞部を有するように形成されると共に、軸方向に形成された孔と空洞部との間に、軸方向に形成される、所定厚さの薄肉部を有することを特徴とする。   A rotor according to the present invention is obtained by punching and laminating thin electromagnetic steel sheets, having a shaft hole in the center, a substantially cylindrical rotor core, and a rotor core provided in the rotor core, wherein the shaft hole is formed inside. 1 pipe part, the 2nd pipe part which is arranged on the outside of the first pipe part and has a plurality of magnet insertion holes formed in the circumferential direction, the first pipe part, and the second pipe part are connected, A rib portion disposed at intervals in the circumferential direction; and a hole formed radially outside the rib portion and formed in the axial direction. The first tube portion and the second tube portion are separated from each other. It is arranged and formed so as to have a hollow portion surrounded by the first tube portion, the second tube portion and the rib portion, and is formed in the axial direction between the hole formed in the axial direction and the hollow portion. The thin-walled portion has a predetermined thickness.

この発明に係る回転子は、上記構成により、焼嵌めにより回転軸を回転子に嵌合しても、永久磁石の性能を劣化させる恐れが少ない。   With the above configuration, the rotor according to the present invention is less likely to deteriorate the performance of the permanent magnet even when the rotary shaft is fitted to the rotor by shrink fitting.

実施の形態1.
図1乃至図5は実施の形態1を示す図で、図1は密閉型圧縮機37の断面図、図2は永久磁石を挿入する前の回転子鉄心21の断面図、図3は回転子鉄心21に永久磁石24を挿入した回転子11の断面図、図4は回転子11の第1管部56加熱時の磁石挿入孔22の内壁部温度を4種類の回転子11について解析した結果を示す図、図5は回転子鉄心21の変形例を示す図である。
Embodiment 1 FIG.
1 to 5 show the first embodiment. FIG. 1 is a sectional view of a hermetic compressor 37. FIG. 2 is a sectional view of a rotor core 21 before a permanent magnet is inserted. FIG. 4 is a cross-sectional view of the rotor 11 in which the permanent magnet 24 is inserted into the iron core 21, and FIG. 4 is a result of analyzing the temperature of the inner wall portion of the magnet insertion hole 22 when the first pipe portion 56 of the rotor 11 is heated with respect to the four types of rotor 11. FIG. 5 is a diagram showing a modified example of the rotor core 21.

図1により、密閉型圧縮機37の全体構成を説明する。密閉型圧縮機37は、1シリンダ型ロータリー圧縮機を一例として説明する。密閉型圧縮機37は、上部容器1aと下部容器1bとで構成される密閉容器1内に、冷媒を圧縮する圧縮要素2と、この圧縮要素2を駆動する電動要素3とを収納している。圧縮要素2と電動要素3とは、クランクシャフト4で連結され、圧縮要素2が密閉容器1の下部に、電動要素3が密閉容器1の上部に収納されている。   The overall configuration of the hermetic compressor 37 will be described with reference to FIG. The hermetic compressor 37 will be described by taking a one-cylinder rotary compressor as an example. The hermetic compressor 37 accommodates a compression element 2 that compresses a refrigerant and an electric element 3 that drives the compression element 2 in a hermetic container 1 composed of an upper container 1a and a lower container 1b. . The compression element 2 and the electric element 3 are connected by a crankshaft 4, and the compression element 2 is accommodated in the lower part of the sealed container 1 and the electric element 3 is accommodated in the upper part of the sealed container 1.

圧縮要素2は、シリンダ5内にクランクシャフト4の偏心部8に嵌合するローリングピストン9が収納され、シリンダ5に設けられた溝内を径方向に往復運動する図示しないベーンの一端がローリングピストン9の外周に当接しながら圧縮室を形成する。シリンダ5の軸方向両端の開口部は、主軸受6及び副軸受7で閉塞されている。   In the compression element 2, a rolling piston 9 that fits in the eccentric portion 8 of the crankshaft 4 is housed in a cylinder 5, and one end of a vane (not shown) that reciprocates radially in a groove provided in the cylinder 5 is a rolling piston. A compression chamber is formed in contact with the outer periphery of 9. Openings at both axial ends of the cylinder 5 are closed by a main bearing 6 and a sub-bearing 7.

次に電動要素3について説明するが、図1以外に、図2乃至図3を参照しながら説明する。電動要素3は、固定子10と、回転子11とを備え、例えば、ブラシレスDCモータである。固定子10は、薄板電磁鋼板を打ち抜き形成される固定子コアシートを積層して構成される固定子鉄心と、固定子鉄心の内径側に複数個形成される歯部に軸方向に2分割されて嵌合される絶縁部材15と、この絶縁部材15の上に巻回される絶縁被膜を有する銅線16と、絶縁部材15上で銅線16同士もしくは銅線16とリード線17とを接続する端子とを備える。   Next, the electric element 3 will be described with reference to FIGS. 2 to 3 in addition to FIG. The electric element 3 includes a stator 10 and a rotor 11 and is, for example, a brushless DC motor. The stator 10 is divided in two in the axial direction into a stator core formed by stacking stator core sheets formed by punching thin electromagnetic steel sheets and a plurality of teeth formed on the inner diameter side of the stator core. Insulating member 15 fitted together, copper wire 16 having an insulating film wound on insulating member 15, and copper wires 16 or copper wire 16 and lead wire 17 are connected on insulating member 15 Terminal.

回転子11は、薄板電磁鋼板を打ち抜き形成される回転子コアシートを積層して構成され、磁石挿入孔22、磁石挿入孔22に隣接して、半径方向中心側に形成される複数の風穴40(図2の例では、6個)、風穴40の間に形成される風穴45(軸方向に形成された孔の一例、図2の例では、3個)及びリベット孔46(軸方向に形成された孔の一例、図2の例では、3個)、風穴40の半径方向中心側に形成されるスリット部47(空洞部の一例、図2の例では6個)を有する回転子鉄心21と、磁石挿入孔22に挿入される永久磁石24と、回転子鉄心21の両端部に夫々配置され、永久磁石24の飛散を防止する端板の役割を兼ねた上バランスウエイト25a(密閉型圧縮機37において、回転子鉄心21の上端部に配置される)及び下バランスウエイト25b(密閉型圧縮機37において、回転子鉄心21の下端部に配置される)と、上バランスウエイト25a、下バランスウエイト25b及び回転子鉄心21を固定するリベット26とを備える。リベット26は、リベット孔46に挿入される。上バランスウエイト25a及び下バランスウエイト25bと端板は別部品でもよい。   The rotor 11 is configured by laminating a rotor core sheet formed by punching a thin electromagnetic steel plate, and adjacent to the magnet insertion hole 22 and the magnet insertion hole 22, a plurality of air holes 40 formed on the center side in the radial direction. (6 in the example of FIG. 2), air holes 45 formed between the air holes 40 (one example of holes formed in the axial direction, three in the example of FIG. 2) and rivet holes 46 (formed in the axial direction) 2 in the example of FIG. 2, and the slit core 47 formed on the radial center side of the air hole 40 (an example of the cavity, 6 in the example of FIG. 2). And a permanent weight 24 inserted into the magnet insertion hole 22 and an end balance weight 25a (sealed compression) which is disposed at both ends of the rotor core 21 and also serves as an end plate for preventing the permanent magnet 24 from scattering. In the machine 37, it is arranged at the upper end of the rotor core 21) and (In the hermetic compressor 37 is disposed at the lower end portion of the rotor core 21) under the balance weight 25b includes a upper balance weight 25a, and a rivet 26 securing the lower balance weight 25b, and the rotor core 21. The rivet 26 is inserted into the rivet hole 46. The upper balance weight 25a, the lower balance weight 25b, and the end plate may be separate parts.

図2に示すように、略円筒形状の回転子鉄心21は、外周面の内側に周方向に延びる磁石挿入孔22を複数(図2では6個)、極数分有する。各磁石挿入孔22の半径方向中心側に、風穴40が隣接して形成される(図2では6個)。例えば、円形状の風穴40は、磁石挿入孔22に対して少なくとも1個設けられる。本来の風穴40の役割は、圧縮要素2から吐出された冷媒ガスを密閉容器1の上部に導くと共に、冷媒ガスと共に密閉容器1の上部に導かれた冷凍機油を密閉容器1の下部に落とすことである。風穴40と、各磁石挿入孔22との間に薄肉部が形成され、この薄肉部を変形させて永久磁石24の固定を行う。   As shown in FIG. 2, the substantially cylindrical rotor core 21 has a plurality of magnet insertion holes 22 (six in FIG. 2) extending in the circumferential direction on the inner side of the outer peripheral surface for the number of poles. The air holes 40 are formed adjacent to each other in the radial center of each magnet insertion hole 22 (six in FIG. 2). For example, at least one circular air hole 40 is provided for the magnet insertion hole 22. The original role of the air hole 40 is to guide the refrigerant gas discharged from the compression element 2 to the upper part of the sealed container 1 and to drop the refrigerating machine oil guided to the upper part of the sealed container 1 together with the refrigerant gas to the lower part of the sealed container 1. It is. A thin portion is formed between the air hole 40 and each magnet insertion hole 22, and the thin portion is deformed to fix the permanent magnet 24.

風穴40同士の間に、別の風穴45が設けられる。また、風穴45が設けられる風穴40同士の周方向において隣の風穴40同士の間には、上バランスウエイト25a、下バランスウエイト25b及び回転子鉄心21を固定するリベット26を挿入するリベット孔46が設けられる。風穴45と、リベット孔46とは、周方向において、交互に配置される。   Another air hole 45 is provided between the air holes 40. A rivet hole 46 for inserting the rivet 26 for fixing the upper balance weight 25a, the lower balance weight 25b and the rotor core 21 between the adjacent air holes 40 in the circumferential direction of the air holes 40 provided with the air holes 45 is provided. Provided. The air holes 45 and the rivet holes 46 are alternately arranged in the circumferential direction.

回転子鉄心21の、クランクシャフト4が嵌合される軸孔49の外側には、周方向にスリット部47(空洞部の一例)が、間隔を置いて複数個形成される。スリット部47の間の部分を、リブ部55と呼ぶ。   A plurality of slit portions 47 (an example of a hollow portion) are formed at intervals in the circumferential direction on the outer side of the shaft hole 49 in which the crankshaft 4 is fitted in the rotor core 21. A portion between the slit portions 47 is referred to as a rib portion 55.

スリット部47の内側を外周面とし、軸孔49を内周面とする略円筒形状の部分を第1管部56と呼ぶ。   A substantially cylindrical portion having the inner side of the slit portion 47 as the outer peripheral surface and the shaft hole 49 as the inner peripheral surface is referred to as a first tube portion 56.

スリット部47の外側を内周面とし、回転子鉄心21の外周面を外周面とする略円筒形状の部分を第2管部57と呼ぶ。   A substantially cylindrical portion having the outer side of the slit portion 47 as the inner peripheral surface and the outer peripheral surface of the rotor core 21 as the outer peripheral surface is referred to as a second pipe portion 57.

第1管部56と、第2管部57とは、リブ部55で連結している。   The first pipe part 56 and the second pipe part 57 are connected by a rib part 55.

そして、風穴45と、リベット孔46とが、リブ部55の外側に近接して形成されている。風穴45と、スリット部47との間には、薄肉部48aが設けられ、リベット孔46と、スリット部47との間には、薄肉部48bが設けられる。尚、風穴45、リベット孔46は、図2では、円形状であるが、長穴、多角形等の他の形状でもよい。   An air hole 45 and a rivet hole 46 are formed close to the outside of the rib portion 55. A thin portion 48 a is provided between the air hole 45 and the slit portion 47, and a thin portion 48 b is provided between the rivet hole 46 and the slit portion 47. The air holes 45 and the rivet holes 46 are circular in FIG. 2, but may be other shapes such as long holes and polygons.

図3は、回転子鉄心21の磁石挿入孔22に、永久磁石24を挿入した回転子11を示す。   FIG. 3 shows the rotor 11 in which the permanent magnet 24 is inserted into the magnet insertion hole 22 of the rotor core 21.

クランクシャフト4を軸孔49に焼嵌める際は、第1管部56の内側、即ち軸孔49から第1管部56を加熱して(例えば、コイルによる高周波加熱)、軸孔49を膨張させる。この時、スリット部47、風穴45、リベット孔46の存在により、第2管部57に存在する永久磁石24への伝熱が抑えられる。   When the crankshaft 4 is shrink-fitted into the shaft hole 49, the first tube portion 56 is heated from the inside of the first tube portion 56, that is, from the shaft hole 49 (for example, high-frequency heating by a coil) to expand the shaft hole 49. . At this time, due to the presence of the slit portion 47, the air hole 45, and the rivet hole 46, heat transfer to the permanent magnet 24 existing in the second tube portion 57 is suppressed.

スリット部47、風穴45、リベット孔46の、第1管部56加熱時の永久磁石24への伝熱抑制効果を解析により、確認した結果を次に示す。   The results of confirming the effect of suppressing heat transfer to the permanent magnet 24 when the first pipe portion 56 is heated by the slit portion 47, the air hole 45, and the rivet hole 46 are shown below.

図4は次の4種類の回転子11について、回転子11の第1管部56加熱時(第1管部56の内周側から加熱)の磁石挿入孔22の内壁部温度を解析した結果である。尚、クランクシャフト4焼嵌め時で、第1管部56の内周部の温度が焼嵌め可能な所定温度になるときの磁石挿入孔22の内壁部温度を求めた。
(1)スリット部47なし(図2において、スリット部47がなく、風穴45、リベット孔46のみのもの)。
(2)スリット部47、風穴45、リベット孔46があり、薄肉部48aの肉厚が0.81mmのもの(薄肉部48bの肉厚も同じ)。
(3)スリット部47、風穴45、リベット孔46があり、薄肉部48aの肉厚が0.64mmのもの(薄肉部48bの肉厚も同じ)。
(4)スリット部47、風穴45、リベット孔46があり、薄肉部48aの肉厚が0.55mmのもの(薄肉部48bの肉厚も同じ)。
FIG. 4 shows the result of analyzing the inner wall temperature of the magnet insertion hole 22 when the first pipe portion 56 of the rotor 11 is heated (heated from the inner peripheral side of the first pipe portion 56) for the following four types of rotors 11. It is. The temperature of the inner wall portion of the magnet insertion hole 22 when the temperature of the inner peripheral portion of the first pipe portion 56 reaches a predetermined temperature that can be shrink-fitted at the time of shrink fitting of the crankshaft 4 was obtained.
(1) No slit 47 (in FIG. 2, there is no slit 47 and only the air hole 45 and the rivet hole 46).
(2) The slit portion 47, the air hole 45, and the rivet hole 46 are provided, and the thickness of the thin portion 48a is 0.81 mm (the thickness of the thin portion 48b is the same).
(3) The slit portion 47, the air hole 45, and the rivet hole 46 are provided, and the thickness of the thin portion 48a is 0.64 mm (the thickness of the thin portion 48b is the same).
(4) The slit portion 47, the air hole 45, and the rivet hole 46 are provided, and the thickness of the thin portion 48a is 0.55 mm (the thickness of the thin portion 48b is the same).

回転子11の第1管部56の内周面を、コイルを用いて所定の入熱条件で高周波加熱すると、例えば、第1管部56の内周面の温度は、約10秒弱で数百℃に達するので、ここで加熱を終了する。このとき、磁石挿入孔22の内壁部温度は、未だ低く50℃以下である。加熱終了後、第1管部56の内周面の温度は、暫時低下し、加熱開始から約20秒で焼嵌め可能な所定温度付近になる。一方、磁石挿入孔22の内壁部温度は、加熱開始から徐々に増加して、第1管部56の内周面の温度が焼嵌め温度になる時間(加熱開始から約20秒)には、ほぼ飽和する。   When the inner peripheral surface of the first pipe portion 56 of the rotor 11 is heated at a high frequency under a predetermined heat input condition using a coil, for example, the temperature of the inner peripheral surface of the first pipe portion 56 is about a few seconds in about 10 seconds. Since it reaches 100 ° C., the heating is finished here. At this time, the temperature of the inner wall portion of the magnet insertion hole 22 is still low and 50 ° C. or less. After the end of heating, the temperature of the inner peripheral surface of the first pipe portion 56 decreases for a while and becomes close to a predetermined temperature at which shrink fitting can be performed in about 20 seconds from the start of heating. On the other hand, the temperature of the inner wall portion of the magnet insertion hole 22 gradually increases from the start of heating, and the time when the temperature of the inner peripheral surface of the first tube portion 56 reaches the shrink-fit temperature (about 20 seconds from the start of heating) Saturates almost.

図4に示すように、(1)のスリット部47がないものは、クランクシャフト4焼嵌め時で、第1管部56の内周部の温度が焼嵌め可能な所定温度になるときの磁石挿入孔22の内壁部温度は約177℃である。   As shown in FIG. 4, the magnet without the slit portion 47 of (1) is a magnet when the temperature of the inner peripheral portion of the first pipe portion 56 becomes a predetermined temperature that can be shrink-fitted when the crankshaft 4 is shrink-fitted. The inner wall temperature of the insertion hole 22 is about 177 ° C.

これに対し、(2)のスリット部47、風穴45、リベット孔46があり、薄肉部48aの肉厚が0.81mmのものは、クランクシャフト4焼嵌め時で、第1管部56の内周部の温度が焼嵌め可能な所定温度になるときの磁石挿入孔22の内壁部温度は約100℃である。   On the other hand, the slit portion 47, the air hole 45, and the rivet hole 46 of (2), and the thin portion 48a having a thickness of 0.81 mm, are included in the first pipe portion 56 when the crankshaft 4 is shrink-fitted. The inner wall temperature of the magnet insertion hole 22 when the temperature of the peripheral portion reaches a predetermined temperature at which shrink fitting can be performed is about 100 ° C.

また、(3)のスリット部47、風穴45、リベット孔46があり、薄肉部48aの肉厚が0.64mmのものは、クランクシャフト4焼嵌め時で、第1管部56の内周部の温度が焼嵌め可能な所定温度になるときの磁石挿入孔22の内壁部温度は約89℃である。   Further, (3) the slit portion 47, the air hole 45, and the rivet hole 46, and the thin portion 48a having a thickness of 0.64 mm is the inner peripheral portion of the first pipe portion 56 when the crankshaft 4 is shrink-fitted. The temperature of the inner wall of the magnet insertion hole 22 when the temperature becomes a predetermined temperature at which shrink fitting can be performed is about 89 ° C.

また、(4)のスリット部47、風穴45、リベット孔46があり、薄肉部48aの肉厚が0.55mmのものは、クランクシャフト4焼嵌め時で、第1管部56の内周部の温度が焼嵌め可能な所定温度になるときの磁石挿入孔22の内壁部温度は約82℃である。   Further, (4) the slit portion 47, the air hole 45, and the rivet hole 46, and the thin portion 48a having a thickness of 0.55 mm, is the inner peripheral portion of the first pipe portion 56 when the crankshaft 4 is shrink-fitted. The temperature of the inner wall of the magnet insertion hole 22 when the temperature becomes a predetermined temperature at which shrink fitting can be performed is about 82 ° C.

このように、スリット部47、風穴45、リベット孔46を設け、かつスリット部47と風穴45との間の薄肉部48a及びスリット部47とリベット孔46との間の薄肉部48bの肉厚を、例えば0.81mm以下にすることにより、クランクシャフト4焼嵌め時に、第1管部56の内周部を焼嵌め温度である焼嵌め可能な所定温度以上に加熱しても、その熱が磁石挿入孔22まで伝達されにくくなり、図4に示すように、高くても約100℃であり、磁石挿入孔22に永久磁石24が挿入されていても、性能を低下させる恐れが少ない。密閉型圧縮機37の電動要素3に、この回転子11を使用することにより、安定した性能が得られる。   As described above, the slit portion 47, the air hole 45, and the rivet hole 46 are provided, and the thickness of the thin portion 48a between the slit portion 47 and the air hole 45 and the thickness of the thin portion 48b between the slit portion 47 and the rivet hole 46 are set. For example, when the crankshaft 4 is shrink-fitted by setting it to 0.81 mm or less, even if the inner peripheral portion of the first pipe portion 56 is heated to a temperature higher than a predetermined shrinkable temperature that is a shrink-fitting temperature, the heat is magnetized. As shown in FIG. 4, the temperature is not higher than about 100 ° C., and even if the permanent magnet 24 is inserted into the magnet insertion hole 22, there is little risk of lowering the performance. By using this rotor 11 for the electric element 3 of the hermetic compressor 37, stable performance can be obtained.

図5は回転子鉄心21の変形例を示す。図5の例は、スリット部61aが略中央に風穴部を有する形状になっている。また、このスリット部61aにリブ部55を介して隣接するスリット部61bは略中央にリベット孔部を有する形状になっている。スリット部61aと、スリット部61bとは周方向に交互に配置される。図5の場合は、スリット部61aと、スリット部61bとは、各3個形成されている。但し、これは一例であり、何個でもよい。そして、スリット部61aと、スリット部61bとの間に形成されるリブ部55の半径方向外側には、風穴60(軸方向に形成された孔の一例)が配置されている。スリット部61aと、風穴60との間には薄肉部62aがあり、また、スリット部61bと、風穴60との間には薄肉部62bがある。薄肉部62a、薄肉部62bの肉厚は、例えば0.81mm以下にするのが好ましい。尚、本実施の形態は、永久磁石24を着磁後にクランクシャフト4を軸孔49に焼嵌める場合に、永久磁石24の減磁を抑制できるので、特に有効である。   FIG. 5 shows a modification of the rotor core 21. In the example of FIG. 5, the slit portion 61 a has a shape having an air hole portion at substantially the center. Further, the slit portion 61b adjacent to the slit portion 61a via the rib portion 55 has a shape having a rivet hole portion at substantially the center. The slit portions 61a and the slit portions 61b are alternately arranged in the circumferential direction. In the case of FIG. 5, three slit portions 61a and three slit portions 61b are formed. However, this is an example, and any number may be used. And the air hole 60 (an example of the hole formed in the axial direction) is arrange | positioned in the radial direction outer side of the rib part 55 formed between the slit part 61a and the slit part 61b. There is a thin portion 62 a between the slit portion 61 a and the air hole 60, and there is a thin portion 62 b between the slit portion 61 b and the air hole 60. The thickness of the thin portion 62a and the thin portion 62b is preferably set to 0.81 mm or less, for example. The present embodiment is particularly effective because the demagnetization of the permanent magnet 24 can be suppressed when the crankshaft 4 is shrink-fitted into the shaft hole 49 after the permanent magnet 24 is magnetized.

実施の形態2.
図6は実施の形態2を示す図で、空気調和機の冷媒回路図である。図6に示すように、空気調和機の冷媒回路は、密閉型圧縮機37、四方弁50、室外熱交換器51、減圧装置52(電子膨張弁)、室内熱交換器53、冷媒回路のアキュムレータ54で構成される。
Embodiment 2. FIG.
FIG. 6 is a diagram showing the second embodiment and is a refrigerant circuit diagram of the air conditioner. As shown in FIG. 6, the refrigerant circuit of the air conditioner includes a hermetic compressor 37, a four-way valve 50, an outdoor heat exchanger 51, a decompression device 52 (electronic expansion valve), an indoor heat exchanger 53, and an accumulator for the refrigerant circuit. 54.

冷房運転時は、図6の実線で示すように、冷媒は、密閉型圧縮機37、四方弁50、室外熱交換器51、減圧装置52、室内熱交換器53、四方弁50、冷媒回路のアキュムレータ54、密閉型圧縮機37の順に流れる。   During the cooling operation, as shown by the solid line in FIG. 6, the refrigerant includes the hermetic compressor 37, the four-way valve 50, the outdoor heat exchanger 51, the decompression device 52, the indoor heat exchanger 53, the four-way valve 50, and the refrigerant circuit. It flows in the order of the accumulator 54 and the hermetic compressor 37.

暖房運転時は、図6の破線で示すように、冷媒は、密閉型圧縮機37、四方弁50、室内熱交換器53、減圧装置52、室外熱交換器51、四方弁50、冷媒回路のアキュムレータ54、密閉型圧縮機37の順に流れる。   During the heating operation, as shown by the broken line in FIG. 6, the refrigerant includes the hermetic compressor 37, the four-way valve 50, the indoor heat exchanger 53, the decompression device 52, the outdoor heat exchanger 51, the four-way valve 50, and the refrigerant circuit. It flows in the order of the accumulator 54 and the hermetic compressor 37.

実施の形態1の密閉型圧縮機37を使用することにより、安定した性能の空気調和機が得られる。   By using the hermetic compressor 37 of the first embodiment, an air conditioner with stable performance can be obtained.

空気調和機を例に説明したが、冷凍サイクルを使用する装置、例えば、冷蔵庫、ショーケース、給湯機等の冷凍サイクル装置に、密閉型圧縮機37は使用できる。   Although the air conditioner has been described as an example, the hermetic compressor 37 can be used for a device that uses a refrigeration cycle, for example, a refrigeration cycle device such as a refrigerator, a showcase, or a water heater.

実施の形態1を示す図で、密閉型圧縮機37の断面図である。FIG. 5 shows the first embodiment, and is a cross-sectional view of a hermetic compressor 37. FIG. 実施の形態1を示す図で、永久磁石を挿入する前の回転子鉄心21の断面図である。It is a figure which shows Embodiment 1, and is sectional drawing of the rotor core 21 before inserting a permanent magnet. 実施の形態1を示す図で、回転子鉄心21に永久磁石24を挿入した回転子11の断面図である。FIG. 3 shows the first embodiment, and is a cross-sectional view of the rotor 11 in which a permanent magnet 24 is inserted into the rotor core 21. 実施の形態1を示す図で、回転子11の第1管部56加熱時の磁石挿入孔22の内壁部温度を4種類の回転子11について解析した結果を示す図である。FIG. 5 shows the first embodiment, and shows the results of analyzing the inner wall portion temperature of the magnet insertion hole 22 when the first pipe portion 56 of the rotor 11 is heated with respect to four types of rotors 11. 実施の形態1を示す図で、回転子鉄心21の変形例を示す図である。FIG. 5 shows the first embodiment, and shows a modification of the rotor core 21. FIG. 実施の形態2を示す図で、空気調和機の冷媒回路図である。It is a figure which shows Embodiment 2, and is a refrigerant circuit figure of an air conditioner.

符号の説明Explanation of symbols

1 密閉容器、1a 上部容器、1b 下部容器、2 圧縮要素、3 電動要素、4 クランクシャフト、4a 主軸、4b 副軸、5 シリンダ、6 主軸受、7 副軸受、8 偏心部、9 ローリングピストン、10 固定子、11 回転子、13 固定子鉄心、13a 歯部、15 絶縁部材、16 銅線、17 リード線、19 ガラス端子、21 回転子鉄心、22 磁石挿入孔、24 永久磁石、25a 上バランスウエイト、25b 下バランスウエイト、26 リベット、27 アキュムレータ、28 吸入連結管、29 吐出管、37 密閉型圧縮機、40 風穴、40a 突出部、45 風穴、46 リベット孔、47 スリット部、48a 薄肉部、48b 薄肉部、49 軸孔、50 四方弁、51 室外熱交換器、52 減圧装置、53 室内熱交換器、54 冷媒回路のアキュムレータ、55 リブ部、56 第1管部、57 第2管部、60 風穴、61a スリット部、61b スリット部、62a 薄肉部、62b 薄肉部。   DESCRIPTION OF SYMBOLS 1 Airtight container, 1a Upper container, 1b Lower container, 2 Compression element, 3 Electric element, 4 Crankshaft, 4a Main shaft, 4b Secondary shaft, 5 Cylinder, 6 Main bearing, 7 Secondary bearing, 8 Eccentric part, 9 Rolling piston, 10 Stator, 11 Rotor, 13 Stator core, 13a Teeth, 15 Insulating member, 16 Copper wire, 17 Lead wire, 19 Glass terminal, 21 Rotor core, 22 Magnet insertion hole, 24 Permanent magnet, 25a Balance on top Weight, 25b Lower balance weight, 26 rivets, 27 Accumulator, 28 Suction connection pipe, 29 Discharge pipe, 37 Sealed compressor, 40 Air hole, 40a Protruding part, 45 Air hole, 46 Rivet hole, 47 Slit part, 48a Thin wall part, 48b Thin portion, 49 shaft hole, 50 four-way valve, 51 outdoor heat exchanger, 52 decompression device, 53 indoor Exchanger, 54 refrigerant circuit accumulator 55 rib portion, the first tubular portion 56, 57 the second tubular portion, 60 air holes, 61a slits, 61b slits, 62a thin portion, 62b thin portion.

Claims (3)

冷媒ガスと冷凍機油とを用いて動作する密閉型圧縮機の電動要素に用いられる回転子において、
薄板電磁鋼板打ち抜き積層され、中心に軸孔を有する略円筒形状の回転子鉄心と、
この回転子鉄心に設けられ、前記軸孔を内側に形成する第1管部と、
この第1管部の外側に配置された第2管部であって、周方向に複数個形成された磁石挿入孔と、上記冷媒ガスと上記冷凍機油とを導くために前記複数の磁石挿入孔の半径方向中心側に形成され前記磁石挿入孔との間に薄肉部を形成した複数の風穴と、前記薄肉部を変形して前記磁石挿入孔に固定された複数の永久磁石とを有する第2管部と、
前記第1管部と、前記第2管部とを連結し、周方向に間隔を置いて配置されたリブ部と、
このリブ部の半径方向外側に形成され、軸方向に形成された孔とを備え、
前記第1管部及び前記第2管部は、互いに離れて配置され、前記第1管部、前記第2管部及び前記リブ部で囲まれる空洞部を有するように形成されると共に、前記軸方向に形成された孔と前記空洞部との間に、軸方向に形成される、0.81mm以下の薄肉部を有することを特徴とする回転子。
In a rotor used for an electric element of a hermetic compressor that operates using refrigerant gas and refrigeration oil,
Thin electromagnetic steel plates are punched laminated, and the rotor core having a substantially cylindrical shape that have the axial hole in the center,
A first pipe part provided on the rotor core and forming the shaft hole inside;
A second tubular portion disposed on the outer side of the first pipe section, and the magnet insertion holes formed in plural in a circumferential direction, the plurality of magnet insertion holes to guide and the refrigerant gas and the refrigerating machine oil A plurality of air holes that are formed on the center side in the radial direction and formed with thin portions between the magnet insertion holes, and a plurality of permanent magnets that are deformed and fixed to the magnet insertion holes by deforming the thin portions . A pipe section;
A rib portion that connects the first tube portion and the second tube portion and is disposed at intervals in the circumferential direction;
It is formed on the outer side in the radial direction of the rib portion, and has a hole formed in the axial direction.
The first pipe part and the second pipe part are arranged so as to be spaced apart from each other and have a hollow part surrounded by the first pipe part, the second pipe part, and the rib part, and the shaft A rotor having a thin wall portion of 0.81 mm or less formed in an axial direction between a hole formed in a direction and the hollow portion.
密閉容器内に、固定子と回転子とを備える電動要素と、この電動要素によって駆動される圧縮要素とを収納した密閉型圧縮機において、
前記電動要素の前記回転子に、請求項1記載の回転子を用いたことを特徴とする密閉型圧縮機。
In a sealed container, a motor element comprising a stator and a rotating rotor, in the hermetic compressor that houses a compression element driven by the electric element,
A hermetic compressor using the rotor according to claim 1 as the rotor of the electric element.
請求項2記載の密閉型圧縮機を用いたことを特徴とする冷凍サイクル装置。   A refrigeration cycle apparatus using the hermetic compressor according to claim 2.
JP2006190080A 2006-07-11 2006-07-11 Rotor, hermetic compressor and refrigeration cycle apparatus Active JP4823787B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006190080A JP4823787B2 (en) 2006-07-11 2006-07-11 Rotor, hermetic compressor and refrigeration cycle apparatus
CN201210112332.XA CN102638118B (en) 2006-07-11 2006-10-11 Rotor, sealed compressor, and refrigerating cycle device
CN2006101423795A CN101106295B (en) 2006-07-11 2006-10-11 Rotor, closed type compressor and refrigeration circulation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006190080A JP4823787B2 (en) 2006-07-11 2006-07-11 Rotor, hermetic compressor and refrigeration cycle apparatus

Publications (2)

Publication Number Publication Date
JP2008022601A JP2008022601A (en) 2008-01-31
JP4823787B2 true JP4823787B2 (en) 2011-11-24

Family

ID=39000041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006190080A Active JP4823787B2 (en) 2006-07-11 2006-07-11 Rotor, hermetic compressor and refrigeration cycle apparatus

Country Status (2)

Country Link
JP (1) JP4823787B2 (en)
CN (2) CN102638118B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11837920B2 (en) 2018-11-07 2023-12-05 Mitsubishi Electric Corporation Rotor, motor, compressor, air conditioner, and manufacturing method of rotor

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4823787B2 (en) * 2006-07-11 2011-11-24 三菱電機株式会社 Rotor, hermetic compressor and refrigeration cycle apparatus
US8405270B2 (en) * 2007-05-07 2013-03-26 Panasonic Corporation Permanent magnet buried type electric motor
KR100972444B1 (en) * 2008-07-30 2010-07-27 주식회사 동성전기 Rotor of brushless motor
JP2010183800A (en) * 2009-02-09 2010-08-19 Mitsubishi Electric Corp Rotor of electric motor, electric motor, air blower and compressor
JP2011074814A (en) * 2009-09-30 2011-04-14 Sanyo Electric Co Ltd Rotary compressor and manufacturing method for the same
CN102270891B (en) * 2010-06-03 2013-05-22 珠海格力电器股份有限公司 Rotor of self-starting permanent magnet synchronous motor and compressor using same
JP5732309B2 (en) * 2011-04-26 2015-06-10 日立アプライアンス株式会社 Positive displacement compressor
JP5910036B2 (en) * 2011-11-30 2016-04-27 株式会社ジェイテクト Manufacturing method of rotor for rotating machine
JP5840006B2 (en) * 2012-01-24 2016-01-06 株式会社三井ハイテック Shaft fixing method of rotor core
JP5873924B2 (en) 2012-04-10 2016-03-01 本田技研工業株式会社 Rotating electrical machine rotor
JP5956277B2 (en) * 2012-08-07 2016-07-27 山洋電気株式会社 Permanent magnet motor and method for manufacturing permanent magnet motor
CN103973005A (en) * 2013-01-24 2014-08-06 艾默生环境优化技术(苏州)有限公司 Rotor and motor and compressor comprising same
US10027192B2 (en) 2013-06-12 2018-07-17 Mitsubishi Electric Corporation Motor with permanent magnet embedded therein, and compressor
EP3079231B1 (en) 2013-12-05 2019-02-13 Mitsubishi Electric Corporation Permanent magnet-embedded electric motor, compressor, and refrigerating and air-conditioning device
CN105099027B (en) * 2014-05-22 2018-02-09 台达电子工业股份有限公司 Motor rotor and its locating ring
JP6328257B2 (en) 2014-10-07 2018-05-23 三菱電機株式会社 Permanent magnet embedded electric motor, compressor, and refrigeration air conditioner
JP6876630B2 (en) * 2016-02-12 2021-05-26 三菱電機株式会社 Motors, compressors and refrigerating air conditioners
JP6298086B2 (en) * 2016-02-24 2018-03-20 ファナック株式会社 Electric motor rotor and method of manufacturing the same
US11205942B2 (en) 2017-03-22 2021-12-21 Mitsubishi Electric Corporation Motor including a balance weight and compressor provided with the same
CN110431726B (en) 2017-03-27 2021-10-12 三菱电机株式会社 Rotor, motor, compressor, blower, and air conditioner

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06133479A (en) * 1992-09-02 1994-05-13 Toshiba Corp Permanent magnet rotor and manufacture thereof
JP3485909B2 (en) * 1993-12-28 2004-01-13 三洋電機株式会社 Hermetic compressor
JP2000092762A (en) * 1998-09-09 2000-03-31 Toshiba Corp Rotor for motor
JP3654806B2 (en) * 1999-12-27 2005-06-02 松下電器産業株式会社 Electric motor permanent magnet rotor and hermetic compressor using the same
JP2001251795A (en) * 2000-03-07 2001-09-14 Toshiba Kyaria Kk Permanent magnet rotor
JP2002112480A (en) * 2000-09-28 2002-04-12 Fujitsu General Ltd Rotor of permanent magnet motor
CN1142621C (en) * 2001-07-17 2004-03-17 哈尔滨工业大学 Rotor for permanent-magnet motor
JP4565780B2 (en) * 2001-08-31 2010-10-20 東芝キヤリア株式会社 Manufacturing method of electric compressor
CN2681433Y (en) * 2003-12-03 2005-02-23 浙江中源电气有限公司 Servo permanent-magnet motor rotor
JP4823787B2 (en) * 2006-07-11 2011-11-24 三菱電機株式会社 Rotor, hermetic compressor and refrigeration cycle apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11837920B2 (en) 2018-11-07 2023-12-05 Mitsubishi Electric Corporation Rotor, motor, compressor, air conditioner, and manufacturing method of rotor

Also Published As

Publication number Publication date
JP2008022601A (en) 2008-01-31
CN101106295B (en) 2012-08-01
CN102638118B (en) 2015-04-08
CN102638118A (en) 2012-08-15
CN101106295A (en) 2008-01-16

Similar Documents

Publication Publication Date Title
JP4823787B2 (en) Rotor, hermetic compressor and refrigeration cycle apparatus
JP6636144B2 (en) Stator, electric motor, compressor, and refrigeration air conditioner
JP6742402B2 (en) Electric motor, compressor, and refrigeration cycle device
JP6689449B2 (en) Rotors, electric motors, compressors, blowers, and air conditioners
US20120301334A1 (en) Compressor and Refrigerating Cycle Apparatus
CN105553137A (en) Compressor and method for manufacturing compressor
JP2010279126A (en) Stator core of electric motor, electric motor, sealed compressor, and refrigeration cycle device
EP2199615B1 (en) Motor for compressor, compressor, and refrigerating cycle apparatus
JP6195989B2 (en) Compressor, refrigeration cycle apparatus, and air conditioner
EP3324515B1 (en) Rotor, electric motor, compressor, and refrigerator/air conditioning equipment
JP7237178B2 (en) Rotors, electric motors, compressors, and air conditioners
JP7105999B2 (en) Electric motor, compressor, air conditioner, and method for manufacturing electric motor
JP2008029184A (en) Rotor, manufacturing method therefor, closed-type compressor, and refrigeration cycle device
JP6482615B2 (en) Compressor, refrigeration cycle apparatus, and air conditioner
JP4228645B2 (en) Hermetic compressor
JP6961106B2 (en) How to manufacture rotors, motors, compressors, air conditioners and rotors
JP6556342B2 (en) Stator, motor, compressor and refrigeration cycle equipment
CN112913118B (en) Rotor, motor, compressor, air conditioner, and method for manufacturing rotor
WO2023119404A1 (en) Rotor, motor, compressor, and refrigeration cycle device
CN110366809B (en) Rotating electric machine, compressor, and refrigeration cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110621

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110907

R150 Certificate of patent or registration of utility model

Ref document number: 4823787

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250