WO2023002673A1 - 解析装置、解析システム、解析方法、および解析プログラム - Google Patents

解析装置、解析システム、解析方法、および解析プログラム Download PDF

Info

Publication number
WO2023002673A1
WO2023002673A1 PCT/JP2022/010535 JP2022010535W WO2023002673A1 WO 2023002673 A1 WO2023002673 A1 WO 2023002673A1 JP 2022010535 W JP2022010535 W JP 2022010535W WO 2023002673 A1 WO2023002673 A1 WO 2023002673A1
Authority
WO
WIPO (PCT)
Prior art keywords
defect
inspection result
cause
analysis
inspection
Prior art date
Application number
PCT/JP2022/010535
Other languages
English (en)
French (fr)
Inventor
智也 岡▲崎▼
岳彦 指田
淳 大宮
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2023002673A1 publication Critical patent/WO2023002673A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/04Inference or reasoning models

Definitions

  • the present invention relates to analysis devices, analysis systems, analysis methods, and analysis programs.
  • defective products are sorted by detecting product defects through visual inspections.
  • Patent Document 1 In a semiconductor device manufacturing line, a visual inspection device is used to inspect circuit patterns on a wafer for defects, and a defect mode database that indicates the correspondence between defect modes, etc. and device types is used to determine the cause of the defect from the inspection results. Identify types. Then, the device that causes the defect is identified from the identified device type and construction start history.
  • the present invention was made to solve the above problems.
  • an inspection unit that inspects an object to be inspected based on input data; a knowledge database that indicates the correspondence between inspection results by the inspection unit and defect-causing processes; and a knowledge database based on the inspection results.
  • the inspection result expected when the defect cause in the defect cause process is eliminated is first determined.
  • a result analysis unit that analyzes as an expected inspection result; and an evaluation unit that evaluates a difference between the first expected inspection result and the inspection result obtained by the inspection unit after the defect cause in the defect-causing process is resolved. analysis equipment.
  • the result analysis unit analyzes the first expected inspection result as a defect rate based on the inspection result and the defect-causing process for the plurality of inspection objects of the same product type, and the evaluation unit The analysis apparatus according to (1) or (2) above, which evaluates a difference between the defect rate of the first expected inspection result and the defect rate of the inspection target after the defect cause in the defect cause process is eliminated.
  • an output unit for outputting the inspection result by the inspection unit, the analysis result by the cause analysis unit, and the evaluation result by the evaluation unit; a reception unit for receiving correction instructions for the knowledge database; and a correction unit that corrects the knowledge database based on the analysis device according to (1) above.
  • the knowledge database indicates, for each class of the inspection result, the correspondence relationship between the class, the defect cause process, and the secondary defect cause process, and the cause analysis unit stores the inspection result in the knowledge database. analysis is performed to identify the defect cause process and the secondary defect cause process associated with the class of the output unit, and the output unit displays the secondary defect cause process in a selectable manner as the analysis result of the cause analysis unit. and the accepting unit accepts that the secondary defect cause process has been selected by the output unit as the correction instruction to replace the secondary defect cause process with the secondary defect cause process.
  • the knowledge database indicates, for each class of the inspection result, the correspondence relationship between the class, the defect cause process, and the secondary defect cause process, and the cause analysis unit stores the inspection result in the knowledge database.
  • the knowledge database indicates, for each class of the inspection result, the correspondence relationship between the class, the defect cause process, and the plurality of secondary defect cause processes, and the cause analysis unit stores the following in the knowledge database: Analysis is performed to identify the defect cause process and a plurality of the secondary defect cause processes associated with the class of the inspection result, and the result analysis unit analyzes the inspection result and each of the analyzed secondary defect cause processes.
  • the control unit further analyzes the inspection results expected when the cause of the secondary defect in the secondary defect cause step is eliminated as a second expected inspection result, and the evaluation unit generates each of the second expected inspection results, The control unit further evaluates the difference from the inspection result obtained by the inspection unit after the defect cause in each secondary defect cause process is eliminated, and the control unit determines the expected result when the defect cause in the defect cause process is eliminated. If the difference between the first expected inspection result and the inspection result after the defect cause in the defect cause process is eliminated is equal to or greater than a predetermined threshold, the defect cause in the secondary defect cause process is eliminated for the knowledge database. modification to replace the secondary defect cause process with the defect cause process that minimizes the difference between the second expected inspection result expected in the case and the inspection result after the defect cause in the secondary defect cause process is eliminated.
  • the analysis device according to (6) above, wherein
  • An analysis system comprising the analysis device according to any one of (1) to (7) above and a photographing device for photographing an image that is input data.
  • step (9) step (a) of inspecting an object to be inspected based on input data; Based on the step (b) of analyzing the defect-causing process, the inspection result, and the analyzed defect-causing process, the inspection result expected when the defect cause in the defect-causing process is eliminated is first determined.
  • An analysis comprising a step (c) of analyzing as an expected inspection result, and a step (d) of evaluating a difference between the first expected inspection result and the inspection result after eliminating the cause of the defect in the defect-causing process.
  • step (10) The analysis method according to (9) above, further comprising step (e) of correcting the knowledge database based on the evaluation result in step (d).
  • step (c) the first expected inspection result is analyzed as a defect rate based on the inspection result and the defect-causing process for the plurality of inspection objects of the same product type, and the step ( In d), evaluating the difference between the defect rate of the first expected inspection result and the defect rate of the inspection target after the defect cause in the defect cause process is eliminated, Analysis method described.
  • the knowledge database indicates, for each class of the inspection result, the correspondence relationship between the class, the defect cause process, and the secondary defect cause process, and in step (b), the knowledge database stores the Analysis is performed to specify the defect cause process and the secondary defect cause process associated with the class of the inspection result, and in the step (f), the secondary defect cause process is obtained as the analysis result in the step (b). is selectably displayed, and in step (g), the selection of the secondary defect cause process is accepted as the correction instruction to replace the defect cause process with the secondary defect cause process.
  • the knowledge database indicates, for each class of the inspection result, the correspondence relationship between the class, the defect cause process, and the secondary defect cause process, and associates the class with the inspection result in the knowledge database.
  • step (i) of specifying the sub-defect cause process that has been identified, and in step (e), the first expected inspection result when the defect cause in the defect cause process is eliminated, and the defect cause are determined. (10) or (11) above, wherein if the difference from the inspection result after resolution is equal to or greater than a predetermined threshold value, the knowledge database is corrected by substituting the secondary defect cause process for the defect cause process; Analysis method described.
  • the knowledge database indicates, for each class of the inspection result, the correspondence relationship between the class, the defect cause process, and the plurality of secondary defect cause processes, and the step (i) includes: performing analysis for specifying a plurality of the secondary defect cause processes associated with the class of the inspection result, and based on the inspection result and each of the analyzed secondary defect cause processes, the secondary defect cause process a step (j) of analyzing the inspection results expected when the cause of failure is eliminated in step (j) as a second expected inspection result; and a step (k) of evaluating a difference from the inspection result of each, and in the step (e), the first expected inspection result expected when the defect cause in the defect cause process is eliminated and if the difference between the inspection result after the defect cause in the defect cause process is eliminated is a predetermined threshold value or more, the knowledge database predicts when the defect cause in the secondary defect cause process is eliminated
  • the above ( 14) The analysis method described in 14).
  • the defect-causing process is analyzed based on the product inspection results. Then, based on the inspection result and the analyzed defect cause process, an expected inspection result when the defect cause in the defect cause process is eliminated is predicted, and the predicted result and the inspection result after the defect cause is eliminated. Evaluate differences.
  • the knowledge database can be easily modified according to the change in the inspection environment, and even if there is a change in the inspection environment, the process or the like causing the defect can be specified with high accuracy.
  • FIG. 4 shows the structure of an analysis system. It is a block diagram which shows the hardware constitutions of an analysis apparatus. 4 is a functional block diagram of a control unit; FIG. It is a flow chart which shows operation of an analysis system. 4 is a functional block diagram of a control unit; FIG. It is a flow chart which shows operation of an analysis system. 4 is a functional block diagram of a control unit; FIG. It is a flow chart which shows operation of an analysis system. 4 is a functional block diagram of a control unit; FIG. It is a flow chart which shows operation of an analysis system.
  • FIG. 1 is a diagram showing the configuration of an analysis system 10.
  • FIG. 2 is a block diagram showing the hardware configuration of the analysis device 100 included in the analysis system 10.
  • the analysis device 100 may be composed of a plurality of devices.
  • the analysis system 10 may include an analysis device 100 and an imaging device 200.
  • the imaging device 200 captures an image 201 (hereinafter also simply referred to as "image 201") of an inspection target 202 (see FIG. 3).
  • the image 201 constitutes input data to be input to the analysis device 100 .
  • Image 201 may be an image of all or part of inspection object 202 .
  • the image 201 may be an image including objects other than the inspection object 202 .
  • the photographing device 200 is configured by, for example, a camera.
  • the inspection object 202 is, for example, a product, and the product includes not only finished products such as automobiles and semiconductor chips, but also parts such as automobile bodies, bolts, nuts, and flat plates.
  • the imaging device 200 can be replaced by a scanner, a microphone, a voice recognition device that converts voice into text data, an odor sensor, a temperature sensor, and the like.
  • the data sensed (acquired) by these devices also constitutes input data.
  • the input data is the image 201 .
  • the image 201 may be, for example, a black-and-white image or a color image, and may be an image of 128 pixels by 128 pixels.
  • the imaging device 200 transmits the image 201 to the analysis device 100 .
  • the analysis device 100 inspects the inspection target 202 by analyzing the image 201 . Thereby, the analysis device 100 detects an abnormality in the inspection object 202 .
  • Abnormalities include, for example, scratches, chips, folds, bends, stains, discoloration (changes in color), abnormal temperatures, and odors.
  • the analysis device 100 can detect an abnormality (defect) of an inspection target as one of predetermined recognition classes (classes) indicating the type of abnormality.
  • the analysis device 100 further performs an analysis to detect (identify) the process that caused the abnormality as the defect-causing process from the type of abnormality detected (defect recognition class).
  • the defect-causing process includes, for example, each process of base coating and coating included in the painting process.
  • the defect-causing process includes process types such as a polishing process, a cutting process, and a cleaning process.
  • the defect-causing process is not limited to such process types.
  • the defect-causing process includes equipment types such as a coating device, a polishing device, a cutting device, and a cleaning device.
  • the analysis device 100 includes a control unit 110, a storage unit 120, a communication unit 130, and an operation display unit 140. These components are connected to each other via bus 150 .
  • the analysis device 100 is configured by, for example, a computer terminal.
  • the control unit 110 includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), etc., and performs control and arithmetic processing of each part of the analysis apparatus 100 according to a program. Details of the functions of the control unit 110 will be described later.
  • a CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM Read Only Memory
  • the storage unit 120 is configured by a HDD (Hard Disc Drive), SSD (Solid State Drive), etc., and stores various programs and various data.
  • HDD Hard Disc Drive
  • SSD Solid State Drive
  • the communication unit 130 is an interface circuit (for example, a LAN card, etc.) for communicating with an external device via a network.
  • an interface circuit for example, a LAN card, etc.
  • the operation display unit 140 may be composed of, for example, a touch panel.
  • the operation display unit 140 receives various inputs from the user.
  • the operation display unit 140 displays various information.
  • control unit 110 The function of the control unit 110 will be explained.
  • FIG. 3 is a functional block diagram of the control unit 110. As shown in FIG. Control unit 110 functions as inspection unit 111 , analysis unit 112 , evaluation unit 113 , and output unit 114 .
  • the analysis unit 112 constitutes a cause analysis unit and a result analysis unit.
  • FIG. 3 also shows the knowledge database 121 stored in the storage unit 120 .
  • the inspection unit 111 acquires the image 201 by receiving it from the imaging device 200 .
  • the inspection unit 111 may acquire the image 201 by reading it from the storage unit 120 .
  • the object to be inspected 202 is a flat plate, which is a part, and an image 201 with a black circle dirt on the lower right of the flat plate is illustrated.
  • the inspection unit 111 inspects the inspection target 202 based on the image 201 . Specifically, for example, the inspection unit 111 inputs the image 201 to the machine-learned machine-learned model read from the storage unit 120, and identifies one of the predetermined recognition classes to determine the inspection object 202. inspect.
  • the inspection results by the inspection unit 111 are also simply referred to as "inspection results". Identification includes by transformation or classification. In the following, for the sake of simplicity of explanation, identification will be explained by conversion.
  • the inspection unit 111 converts the image 201 into a confidence factor vector of each recognition class (a certainty factor for each recognition class).
  • the confidence factor vector of each recognition class is also simply referred to as a "vector".
  • the degree of certainty is the likelihood of the image 201 falling under the corresponding recognition class.
  • the predetermined recognition classes include bad (abnormal) recognition classes. Converting the image 201 into a vector by the inspection unit 111 enables identification of the recognition class with the highest degree of certainty, and is equivalent to converting the image 201 into a predetermined identification class. Note that the inspection unit 111 may convert the image 201 into the recognition class with the highest degree of certainty (more specifically, data specifying the recognition class with the highest degree of certainty) instead of the vector.
  • a trained model for example, a neural network trained model can be used.
  • a trained model may be a model other than a neural network. That is, the trained model may be, for example, a known support vector machine or random forest trained model.
  • a trained model is generated in advance by learning a neural network using a relatively large amount of teacher data (training data) of combinations of images 201 and recognition classes, which are correct labels corresponding to the images 201, and stored. may be stored in unit 120.
  • the neural network stores the recognition class when the image 201 is input (specifically, the confidence factor vector of each recognition class) and the correct label (specifically, the confidence factor vector of each recognition class). is learned by backpropagation so that the difference (loss) from the correct answer) becomes small.
  • the training data is preferably a combination of the defective product image 201 and the correct label of the defective recognition class, which is the recognition class corresponding to the defective product image 201 .
  • the detection accuracy of abnormality (defect) by the inspection unit 111 can be efficiently improved.
  • the predetermined recognition class is the type of anomaly. "scratches”, “dirt over a predetermined area”, “dirt less than a predetermined area”, and “discoloration”. Also, for example, “dirt of a predetermined area or more”, “dirt of a predetermined area or less”, etc. can be subdivided into a plurality of recognition classes for each location of the dirt on the image 201 . That is, the recognition classes include, for example, "upper right stain over a predetermined area”, “lower right stain over a predetermined area”, “upper left stain over a predetermined area”, and “lower left stain over a predetermined area”.
  • recognition classes can be further subdivided as needed.
  • the prescribed length, prescribed thickness, and prescribed area can be appropriately set through experiments or the like from the viewpoint of analysis accuracy for analysis of failure cause processes from recognition classes.
  • Recognition classes include a "good" class.
  • the analysis unit 112 uses the inspection result (that is, recognition class) by the inspection unit 111 and the knowledge database 121 stored in the storage unit 120 to analyze the defect cause process. As a result, the defect-causing process that caused the abnormality is specified.
  • the knowledge database 121 can be a data group indicating the correspondence between inspection results and defect-causing processes. Specifically, for example, in the vector of the inspection result by the inspection unit 111, if the confidence of the recognition class of "lower right dirt less than predetermined area" is the highest, the analysis unit 112 determines that "below predetermined area The knowledge database 121 is used to analyze the defect-causing process corresponding to "dirt on the lower right of .
  • the knowledge database 121 may be a data group indicating the correspondence between the inspection result, the defect cause process, and the secondary defect cause process.
  • the analysis unit 112 can further analyze the multiple defect cause process using the inspection result by the inspection unit 111 and the knowledge database 121 .
  • the process that is the main cause of defects can change due to fluctuations in the inspection environment such as temperature and humidity. This is because the mounted parts of the device may expand slightly due to the rise in temperature, and dust may easily adhere to the product due to the decrease in humidity. For this reason, processes that may become the main cause of defects due to fluctuations in the inspection environment are registered in the knowledge database 121 as sub-defect cause processes in association with the inspection results. can be utilized.
  • the correspondence between inspection results and defect-causing processes contained in the knowledge database 122 can be based on, for example, the knowledge of skilled workers and engineers in production factories. Based on their own experience, for example, workers can more accurately identify the process that caused the abnormality (defect) by simply looking at the image of the dirty plate in the lower right corner, which is less than a predetermined area. This is because they are highly sensitive.
  • the correspondence between the recognition classes and the defect-causing processes contained in the knowledge database 122 may be set based on the past repair history of the device.
  • the failure recognition class is estimated by machine learning, and the failure is detected using the knowledge database 121.
  • the information (language information, etc.) of the defect-causing process that caused the abnormality is specified from the type information (language information, etc.). This makes it possible to improve detection accuracy and versatility while suppressing the amount of training data.
  • Abnormality detection based on the image 201 or the like is easily affected by shooting conditions (for example, the shooting environment). Every time the production factory changes, the learned model needs to be re-learned.
  • the knowledge database 122 since the information in the knowledge database 122 is knowledge of the correspondence relationship between the type of abnormality and the defect-causing process that caused the abnormality, by using the knowledge database 121, the same learned model can be reused in different production plants. can eliminate the need to re-learn a trained model.
  • the analysis unit 112 analyzes, as a first expected inspection result, an inspection result expected when the cause of the defect in the defect-causing process is eliminated, based on the inspection result and the analyzed defect-causing process.
  • a simpler example of the first expected test result is that only the "good” recognition class (e.g., only the "good” recognition class has a confidence of 1 and the other recognition classes (i.e., the bad class) have a confidence of 0). , vector). That is, the first expected inspection result expected when the cause of the defect in the process causing the defect is eliminated can be the recognition class of "non-defective product".
  • the first expected inspection result may be a statistical estimate of the inspection result, such as a defect rate.
  • the first expected inspection result can be analyzed as a defect rate analyzed based on the inspection results of a plurality of inspection objects of the same type and the defect-causing process, for example.
  • the first expected inspection result may be a defect rate such as "5%", for example.
  • the following description assumes that the first expected inspection result is the defect rate.
  • the analysis unit 112 uses a result prediction table in which the inspection result, the failure cause process, and the first expected inspection result are associated with each other, and based on the inspection result and the analyzed failure cause process, the first Predictive test results may be analyzed.
  • a defect rate of 5% can be analyzed as the first expected inspection result based on the inspection result of "dirt over a predetermined area" and the analyzed defect-causing process of "coating process".
  • the result prediction table can be created in advance and stored in the storage unit 120 based on, for example, the knowledge of the engineer who designed the manufacturing process of the product, the knowledge of skilled workers and engineers in the production factory, and the like.
  • the evaluation unit 113 evaluates the difference between the first expected inspection result and the inspection result after eliminating the cause of the defect in the defect-causing process (hereinafter also referred to as "difference from expectation"). That is, the inspection object 202 is manufactured in the manufacturing process including the defect-causing process in which the cause of the defect has been eliminated by the user, the manufactured inspection object 202 is photographed by the photographing device 200, and the inspection unit 111 based on the photographed image 201 Evaluate the difference between the test result and the first expected test result. For example, if the first expected inspection result is a defect rate of 5% and the inspection result after eliminating the defect cause in the defect cause process is a defect rate of 60%, the difference from the prediction can be evaluated as 55%.
  • the knowledge database 121 cannot accurately identify the defect-causing process due to the influence of fluctuations in the inspection environment or the like.
  • the first expected inspection result is the recognition class of "good product" (for example, a vector whose confidence level is only 1 for the recognition class of "good product")
  • the difference from the prediction is It can be the absolute value of the difference between the vector of one expected inspection result and the vector of the inspection result after eliminating the cause of failure in the cause-of-defect process.
  • the evaluation unit 113 corrects the knowledge database 121 based on the evaluation result of the difference from the prediction. Specifically, when the difference from the prediction is equal to or greater than a predetermined threshold, the evaluation unit 113 performs control to change the defect-causing process associated with the inspection result in the knowledge database 121 .
  • the reason why the knowledge database 121 is corrected when the difference from the prediction is equal to or greater than a predetermined threshold is that the accuracy of the correspondence relationship between the inspection result and the defect-causing process in the knowledge database 121 has decreased due to changes in the inspection environment. Because it is possible.
  • the predetermined threshold value can be appropriately set by experiment or the like from the viewpoint of detection accuracy of the defect-causing process according to the contents (characteristics) of the inspection result for each inspection result.
  • the evaluation unit 113 may determine whether correction of the knowledge database 121 is necessary by considering at least one of the number, type, size, and position of defects in the inspection results. For example, if the number of defects (defects) exceeds a predetermined number within the same day after the inspection unit 111 starts inspection, it may be determined that the knowledge database 121 needs to be corrected. Further, if the type of defect is "stain on the lower right side of the cloth less than a predetermined area", or if the defect is a black stain on plain cloth, it is determined that the knowledge database 121 needs to be corrected. , black stain on gray cloth, it may be determined that correction of the knowledge database 121 is unnecessary.
  • the knowledge database 121 needs to be corrected. can be judged. Also, if the position of the flaw, which is a defect, is a position that degrades the function of the product, such as the hole of the nozzle that ejects ink, it may be determined that the knowledge database 121 needs to be corrected unconditionally.
  • the evaluation unit 113 corrects the knowledge database 121 by substituting the secondary defect cause process for the defect cause process in the inspection result. obtain. Further, when a plurality of secondary defect cause processes are associated with the inspection result, the evaluation unit 113 replaces the defect cause process with any one of the secondary defect cause processes, thereby obtaining the knowledge database 121 can be modified.
  • the output unit 114 outputs the defect-causing process specified by the analysis by the analysis unit 112 .
  • the output unit 114 can output the defect cause process by displaying the defect cause process on the operation display unit 140 .
  • the output unit 114 may output the defect cause process by transmitting the defect cause process to another device. Note that the function of the output unit 114 may be omitted.
  • FIG. 4 is a flowchart showing the operation of the analysis system 10.
  • FIG. This flowchart can be executed by the control unit 110 of the analysis device 100 according to a program.
  • the control unit 110 acquires the image 201 by receiving it from the imaging device 200 (S101). Note that when the image 201 is stored in the storage unit 120 , the control unit 110 may acquire the image 201 by reading it from the storage unit 120 .
  • the control unit 110 inspects the inspection target 202 based on the image 201 by converting the image 201 into a confidence factor vector for each recognition class using the trained model (S102).
  • control unit 110 uses the knowledge database 121 to perform analysis to identify the defect-causing process (S103).
  • the control unit 110 analyzes to specify the first expected inspection result based on the inspection result and the analyzed defect-causing process (S104).
  • the control unit 110 calculates the difference between the first expected inspection result and the inspection result after eliminating the cause of the defect in the defect-causing process, and evaluates the difference from the estimate (S105).
  • the control unit 110 corrects the knowledge database 121 based on the evaluation result of the difference from the prediction (S106).
  • control unit 110 determines correction contents of the knowledge database 121 by arithmetic processing based on a program or the like, and corrects the knowledge database 121 .
  • the present embodiment provides the user with information such as inspection results, defect-causing processes, and information on differences from expectations, and provides these information to the user according to correction instructions in the knowledge database 121 input by the user. Modify knowledge database 121 . Since this embodiment is the same as the first embodiment except for this point, redundant description will be omitted or simplified.
  • FIG. 5 is a functional block diagram of the control unit 110.
  • Control unit 110 functions as inspection unit 111 , analysis unit 112 , evaluation unit 113 , output unit 114 , and reception unit 115 .
  • the reception unit 115 constitutes a correction unit.
  • the inspection unit 111 acquires the image 201 by receiving it from the imaging device 200 .
  • the inspection unit 111 inspects the inspection target 202 based on the image 201 .
  • the inspection unit 111 can inspect the inspection target 202 by converting the image 201 into a vector (certainty of each recognition class) using the trained model.
  • the analysis unit 112 analyzes the defect cause process using the knowledge database 121 based on the inspection result by the inspection unit 111 .
  • the analysis unit 112 analyzes, as a first expected inspection result, an inspection result expected when the cause of the defect in the defect-causing process is eliminated, based on the inspection result and the analyzed defect-causing process.
  • the evaluation unit 113 evaluates the difference from the prediction based on the first expected inspection result and the inspection result after eliminating the cause of the defect in the defect-causing process.
  • the output unit 114 outputs the inspection result, the defect-causing process, and the difference from the prediction.
  • the output unit 114 can output the defect-causing process by displaying the inspection result, the defect-causing process, and the difference from the prediction on the operation display unit 140 .
  • the output unit 114 may transmit the defect-causing process to a user's mobile terminal or the like, and output by displaying the inspection result, the defect-causing process, and the difference from the prediction on the mobile terminal. This allows the user to obtain information on inspection results, defect-causing processes, and deviations from expectations.
  • the output unit 114 may further output the secondary defect cause process.
  • the secondary defect cause process may be output by being selectably displayed on the operation display unit 140 .
  • the accepting unit 115 accepts a correction instruction for the knowledge database 121 by the user input to the operation display unit 140 .
  • the correction instruction may be, for example, an instruction to replace the defect cause process with a secondary defect cause process with respect to the inspection result.
  • a correction instruction can be input by a command on the operation display unit 140 .
  • Accepting unit 115 as a control unit, corrects knowledge database 121 based on the correction instruction.
  • receiving unit 115 notifies that the secondary defect cause process has been selected on operation display unit 140 by the user. can be accepted as a correction instruction for substituting the selected secondary defect cause process.
  • a plurality of secondary defect cause processes may be displayed in the operation display section 140 so as to be selectable.
  • the receiving unit 115 can receive the user's selection of one of the displayed secondary defect cause processes as a correction instruction to replace the defect cause process with the selected secondary defect cause process. .
  • FIG. 6 is a flow chart showing the operation of the analysis system 10.
  • FIG. This flowchart can be executed by the control unit 110 of the analysis device 100 according to a program.
  • Steps S201 to S205 are the same as steps S101 to S105 in FIG. 4 of the first embodiment, so description thereof will be omitted.
  • the control unit 101 outputs the inspection result, the defect-causing process, and the difference from the prediction (S206).
  • the control unit 101 may further output a secondary defect cause process.
  • the control unit 101 receives an instruction to correct the knowledge database 121 via the operation display unit 104 (S207).
  • the control unit 101 corrects the knowledge database 121 based on the correction instruction (S208).
  • a third embodiment will be described. This embodiment differs from the first embodiment in the following points.
  • the first expected inspection result is analyzed based on the inspection result and the analyzed failure cause process, and the difference between the first expected inspection result and the inspection result after the failure cause is eliminated is used as a prediction. It is evaluated as a difference, and if the difference from the prediction is equal to or greater than a predetermined threshold, the knowledge database 121 is corrected.
  • the defect in each secondary defect cause process is determined based on the inspection result and a plurality of secondary defect cause processes associated with the inspection result. Inspection results expected when the cause is eliminated are analyzed as second expected inspection results.
  • the knowledge database 121 is modified so that the secondary defect cause process that minimizes the difference between the second expected inspection result and the inspection result after the defect cause in each secondary defect cause process is eliminated is replaced with the defect cause process. . Since this embodiment is the same as the first embodiment except for this point, redundant description will be omitted or simplified.
  • FIG. 7 is a functional block diagram of the control unit 110. As shown in FIG. Control unit 110 functions as inspection unit 111 , analysis unit 112 , evaluation unit 113 , and output unit 114 .
  • the inspection unit 111 acquires the image 201 by receiving it from the imaging device 200 .
  • the inspection unit 111 inspects the inspection target 202 based on the image 201 .
  • the inspection unit 111 can inspect the inspection target 202 by converting the image 201 into a vector (certainty of each recognition class) using the trained model.
  • the analysis unit 112 analyzes the defect cause process using the knowledge database 121 based on the inspection result by the inspection unit 111 . Furthermore, the analysis unit 112 uses the inspection results and the knowledge database 121 to analyze a plurality of processes causing multiple defects.
  • the knowledge database 121 is a data group that indicates the correspondence between inspection results, defect-causing processes, and a plurality of secondary defect-causing processes.
  • the analysis unit 112 can analyze a plurality of secondary defect causing processes when the difference from the prediction is equal to or greater than a predetermined threshold.
  • the analysis unit 112 analyzes, as a first expected inspection result, an inspection result expected when the cause of failure in the failure-causing process is eliminated based on the inspection result and the analyzed failure-causing process. Furthermore, based on the inspection result and the plurality of secondary defect cause processes associated with the inspection result, the analysis unit 112 calculates the inspection result expected when the defect cause in each secondary defect cause process is eliminated. 2 Analyze as expected test results. The analysis unit 112 can analyze the second predicted test result when the difference from the prediction is equal to or greater than a predetermined threshold.
  • the evaluation unit 113 evaluates the difference from the prediction (hereinafter also referred to as "first difference” in the description of this embodiment). Furthermore, the evaluation unit 113 evaluates the difference (hereinafter also referred to as “second difference”) between each second expected inspection result and the inspection result after the defect cause in each secondary defect cause process is eliminated. The evaluation unit 113 can analyze the second difference when the first difference is greater than or equal to a predetermined threshold.
  • the evaluation unit 113 modifies the knowledge database 121 by replacing the secondary defect cause process with the smallest second difference with the defect cause process.
  • the output unit 114 outputs the inspection result, the defect cause process, and the secondary defect cause process. Note that the function of the output unit 114 may be omitted.
  • FIG. 8 is a flowchart showing the operation of the analysis system 10.
  • FIG. This flowchart can be executed by the control unit 110 of the analysis device 100 according to a program.
  • Steps S301 and S302 are the same as steps S101 and S102 in FIG. 4 of the first embodiment, so description thereof will be omitted.
  • control unit 110 uses the knowledge database 121 to perform analysis to identify the defect-causing process (S303).
  • the control unit 110 analyzes to identify the first expected inspection result based on the inspection result and the analyzed defect-causing process (S304).
  • the control unit 110 evaluates the first difference by calculating the difference between the first expected inspection result and the inspection result after eliminating the cause of the defect in the defect-causing process (S305).
  • the control unit 110 determines whether the first difference is greater than or equal to a predetermined threshold (S306). If the first difference is not equal to or greater than the predetermined threshold (S306: NO), control unit 110 terminates the process.
  • control unit 110 uses the knowledge database 121 to perform analysis to identify a plurality of secondary defect causing processes based on the inspection results (S307).
  • the control unit 110 analyzes the second expected inspection results based on each analyzed secondary failure cause process (S308).
  • the control unit 110 evaluates the difference between each second expected inspection result and the inspection result after eliminating the defect cause in each secondary defect cause process as a second difference (S309).
  • the control unit 110 modifies the knowledge database 121 to replace the secondary defect cause process with the smallest second difference with the defect cause process (S310).
  • the embodiment has the following effects.
  • the defect-causing process is analyzed based on the product inspection results. Then, based on the inspection result and the analyzed defect cause process, an expected inspection result when the defect cause in the defect cause process is eliminated is predicted, and the predicted result and the inspection result after the defect cause is eliminated. Evaluate differences.
  • the knowledge database can be easily modified according to the change in the inspection environment, and even if there is a change in the inspection environment, the process or the like causing the defect can be specified with high accuracy.
  • the knowledge database is corrected based on the evaluation result of the difference between the expected result of the inspection result expected when the cause of the defect in the defect cause process is eliminated and the inspection result after the cause of the defect is eliminated.
  • the knowledge database can be optimized in response to changes in the examination environment without forcing the user to examine the content of correction of the knowledge database.
  • the first expected inspection result is analyzed as a defect rate
  • the defect rate of the first expected inspection result and the defect cause process in the defect cause process Evaluate the difference from the defect rate of the inspection object after eliminating the cause of the defect.
  • a correction instruction for the database is received, and the knowledge database is corrected based on the correction instruction. This allows the knowledge database to be optimized more flexibly and appropriately.
  • the knowledge database indicates the corresponding relationship between the class, the defect cause process and the secondary defect cause process for each class of inspection result, and the defect cause process and the secondary defect cause process corresponding to the class of the inspection result in the knowledge database.
  • Analysis is performed to identify the process causing the defect.
  • the secondary defect cause process is displayed so as to be selectable and output, and the selection of the secondary defect cause process is accepted as a correction instruction to replace the defect cause process with the selected secondary defect cause process. .
  • the knowledge database indicates the corresponding relationship between the class, the defect cause process and the secondary defect cause process for each class of inspection result, and the defect cause process and the secondary defect cause process corresponding to the class of the inspection result in the knowledge database.
  • the knowledge database is: Make corrections by replacing the defect cause process with a sub-defect cause process.
  • the knowledge database indicates the corresponding relationship between the class, the defect cause process, and the plurality of sub-defect cause processes for each class of the inspection result, and the defect cause process associated with the inspection result class in the knowledge database And analysis is performed to identify a plurality of secondary defect cause processes, and based on the inspection results and each analyzed secondary defect cause process, the inspection result expected when the secondary defect cause in the secondary defect cause process is eliminated Further analyze each as a second expected inspection result, evaluate the difference between each second expected inspection result and the inspection result after eliminating the secondary defect cause in each secondary defect cause process, and determine the defect cause in the defect cause process If the difference between the first expected inspection result expected when the defect cause is eliminated and the inspection result after the defect cause in the defect cause process is eliminated is equal to or greater than a predetermined threshold, the defect cause in the secondary defect cause process is stored in the knowledge database.
  • the difference between the second expected inspection result expected when the defect is eliminated and the inspection result after the defect cause in the secondary defect cause process is eliminated is minimized. .
  • the analysis system, the analysis program, the analysis device, and the analysis method described above have described the main configurations in describing the features of the above-described embodiments, and are not limited to the above-described configurations. In can be variously modified. Moreover, it does not exclude the configuration provided in a general analysis system or the like.
  • steps may be omitted from the above-described flowchart, and other steps may be added. Also, part of each step may be executed simultaneously, or one step may be divided into a plurality of steps and executed.
  • the means and methods for performing various processes in the system described above can be realized by either dedicated hardware circuits or programmed computers.
  • the program may be provided by a computer-readable recording medium such as a USB memory or a DVD (Digital Versatile Disc)-ROM, or may be provided online via a network such as the Internet.
  • the program recorded on the computer-readable recording medium is usually transferred to and stored in a storage unit such as a hard disk.
  • the above program may be provided as independent application software, or may be incorporated as one function into the software of the analysis device or the like.
  • 10 analysis system 100 analyzer, 110 control unit, 111 Inspection Department, 112 analysis unit, 113 evaluation unit; 114 output unit, 120 storage unit, 121 knowledge database, 130 Communication Department, 140 operation display unit, 200 imaging device, 201 images, 202 Inspection object.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Linguistics (AREA)
  • Quality & Reliability (AREA)
  • Artificial Intelligence (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computing Systems (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Image Processing (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • General Factory Administration (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

【課題】検査環境の変動があっても不良の発生原因の工程等を高精度に特定できる、解析装置を提供する。 【解決手段】入力データに基づいて検査対象を検査する検査部と、検査部による検査結果と不良原因工程との対応関係を示す知識データベースと、検査結果に基づいて、知識データベースを用いて不良原因工程を解析する原因解析部と、検査結果と不良原因工程とに基づいて、不良原因工程における不良原因を解消した場合に予想される第1予想検査結果を解析する結果解析部と、第1予想検査結果と、不良原因工程における不良原因を解消した後の検査結果との差異を評価する評価部と、を含む解析装置。

Description

解析装置、解析システム、解析方法、および解析プログラム
 本発明は、解析装置、解析システム、解析方法、および解析プログラムに関する。
 工業製品の生産現場等においては、外観検査等により製品の欠陥を検出することで不良品の選別がされている。
 また、外観検査等により検出された欠陥の情報に基づいて欠陥を発生させた工程を特定して、特定された工程等に対処できるようにするための技術の開発が進められている。
 下記特許文献1には次の先行技術が開示されている。半導体装置の製造ラインにおいて、外観検査装置によりウエハー上の回路パターンの欠陥を検査し、欠陥モード等と装置種類との対応関係を示す欠陥モードデータベースを用いて、検査結果から欠陥の発生原因の装置種類を特定する。そして、特定された装置種類と着工来歴から欠陥の発生原因の装置を特定する。
特開2005-197437号公報
 しかし、上記先行技術は、温度や湿度等の検査環境の変動に対して欠陥モードデータベースを修正し最適化することに対応できないため、検査環境がわずかに変動することで不良(欠陥)の発生原因の工程等の特定精度が低下する可能性があるという問題がある。
 本発明は上述の問題を解決するためになされたものである。すなわち、検査環境の変動があっても不良の発生原因の工程等を高精度に特定できる、解析装置、解析システム、解析方法、および解析プログラムを提供することを目的とする。
 本発明の上記課題は、以下の手段によって解決される。
 (1)入力データに基づいて検査対象を検査する検査部と、前記検査部による検査結果と不良原因工程との対応関係を示す知識データベースと、前記検査結果に基づいて、前記知識データベースを用いて前記不良原因工程を解析する原因解析部と、前記検査結果と、解析された前記不良原因工程とに基づいて、前記不良原因工程における不良原因を解消した場合に予想される前記検査結果を第1予想検査結果として解析する結果解析部と、前記第1予想検査結果と、前記不良原因工程における不良原因を解消した後の前記検査部による前記検査結果との差異を評価する評価部と、を有する解析装置。
 (2)前記評価部による評価結果に基づいて前記知識データベースを修正する制御部をさらに有する、上記(1)に記載の解析装置。
 (3)前記結果解析部は、同一品種の複数の前記検査対象についての、前記検査結果および前記不良原因工程に基づいて、前記第1予想検査結果を不良率として解析し、前記評価部は、前記第1予想検査結果の不良率と、前記不良原因工程における不良原因を解消した後の前記検査対象の不良率との差異を評価する、上記(1)または(2)に記載の解析装置。
 (4)前記検査部による前記検査結果と、前記原因解析部による解析結果と、前記評価部による評価結果とを出力する出力部と、前記知識データベースの修正指示を受け付ける受付部と、前記修正指示に基づいて前記知識データベースを修正する修正部と、を有する上記(1)に記載の解析装置。
 (5)前記知識データベースは、前記検査結果のクラスごとに、前記クラスと、前記不良原因工程および副不良原因工程との前記対応関係を示し、前記原因解析部は、前記知識データベースにおいて前記検査結果の前記クラスに対応付けされた前記不良原因工程および前記副不良原因工程を特定する解析を行い、前記出力部は、前記原因解析部による解析結果として、前記副不良原因工程を選択可能に表示することで出力し、前記受付部は、前記出力部において前記副不良原因工程が選択されたことを、前記不良原因工程を前記副不良原因工程に代替させる前記修正指示として受け付ける、上記(4)に記載の解析装置。
 (6)前記知識データベースは、前記検査結果のクラスごとに、前記クラスと、前記不良原因工程および副不良原因工程との前記対応関係を示し、前記原因解析部は、前記知識データベースにおいて前記検査結果の前記クラスに対応付けされた前記不良原因工程および前記副不良原因工程を特定する解析を行い、前記制御部は、前記不良原因工程における不良原因を解消した場合の前記第1予想検査結果と、前記不良原因を解消した後の前記検査結果との差異が所定の閾値以上の場合、前記知識データベースに対し、前記不良原因工程を前記副不良原因工程に代替する修正をする、上記(2)に記載の解析装置。
 (7)前記知識データベースは、前記検査結果のクラスごとに、前記クラスと、前記不良原因工程および複数の前記副不良原因工程との前記対応関係を示し、前記原因解析部は、前記知識データベースにおいて前記検査結果の前記クラスに対応付けされた前記不良原因工程および複数の前記副不良原因工程を特定する解析を行い、前記結果解析部は、前記検査結果と、解析された各前記副不良原因工程とに基づいて、前記副不良原因工程における副不良原因を解消した場合に予想される前記検査結果を第2予想検査結果としてそれぞれさらに解析し、前記評価部は、各第2予想検査結果と、各副不良原因工程における不良原因を解消した後の前記検査部による前記検査結果との差異をそれぞれさらに評価し、前記制御部は、前記不良原因工程における不良原因を解消した場合に予想される前記第1予想検査結果と、前記不良原因工程における不良原因を解消した後の前記検査結果との差異が所定の閾値以上の場合、前記知識データベースに対し、前記副不良原因工程における不良原因を解消した場合に予想される前記第2予想検査結果と、前記副不良原因工程における不良原因を解消した後の前記検査結果との差異が最も小さくなる前記副不良原因工程を前記不良原因工程に代替させる修正をする、上記(6)に記載の解析装置。
 (8)上記(1)~(7)のいずれかに記載の解析装置と、入力データである画像を撮影する撮影装置と、を有する解析システム。
 (9)入力データに基づいて検査対象を検査するステップ(a)と、前記ステップ(a)における検査結果に基づいて、前記検査結果と不良原因工程との対応関係を示す知識データベースを用いて前記不良原因工程を解析するステップ(b)と、前記検査結果と、解析された前記不良原因工程とに基づいて、前記不良原因工程における不良原因を解消した場合に予想される前記検査結果を第1予想検査結果として解析するステップ(c)と、前記第1予想検査結果と、前記不良原因工程における不良原因を解消した後の前記検査結果との差異を評価するステップ(d)と、を有する解析方法。
 (10)前記ステップ(d)における評価結果に基づいて前記知識データベースを修正するステップ(e)をさらに有する、上記(9)に記載の解析方法。
 (11)前記ステップ(c)においては、同一品種の複数の前記検査対象についての、前記検査結果および前記不良原因工程に基づいて、前記第1予想検査結果を不良率として解析し、前記ステップ(d)においては、前記第1予想検査結果の不良率と、前記不良原因工程における不良原因を解消した後の前記検査対象の不良率との差異を評価する、上記(9)または(10)に記載の解析方法。
 (12)前記検査結果と、前記ステップ(b)における解析結果と、前記ステップ(d)における評価結果とを出力するステップ(f)と、前記知識データベースの修正指示を受け付けるステップ(g)と、前記修正指示に基づいて前記知識データベースを修正するステップ(h)と、を有する上記(9)に記載の解析方法。
 (13)前記知識データベースは、前記検査結果のクラスごとに、前記クラスと、前記不良原因工程および副不良原因工程との前記対応関係を示し、前記ステップ(b)においては、前記知識データベースにおいて前記検査結果の前記クラスに対応付けされた前記不良原因工程および前記副不良原因工程を特定する解析をし、前記ステップ(f)においては、前記ステップ(b)における解析結果として、前記副不良原因工程を選択可能に表示することで出力し、前記ステップ(g)においては、前記副不良原因工程が選択されたことを、前記不良原因工程を前記副不良原因工程に代替させる前記修正指示として受け付ける、上記(12)に記載の解析方法。
 (14)前記知識データベースは、前記検査結果のクラスごとに、前記クラスと、前記不良原因工程および副不良原因工程との前記対応関係を示し、前記知識データベースにおいて前記検査結果の前記クラスに対応付けされた前記副不良原因工程を特定するステップ(i)を有し、前記ステップ(e)においては、前記不良原因工程における不良原因を解消した場合の前記第1予想検査結果と、前記不良原因を解消した後の前記検査結果との差異が所定の閾値以上の場合、前記知識データベースに対し、前記不良原因工程を前記副不良原因工程に代替する修正をする、上記(10)または(11)に記載の解析方法。
 (15)前記知識データベースは、前記検査結果のクラスごとに、前記クラスと、前記不良原因工程および複数の前記副不良原因工程との前記対応関係を示し、前記ステップ(i)は、前記知識データベースにおいて前記検査結果の前記クラスに対応付けされた複数の前記副不良原因工程を特定する解析を行い、前記検査結果と、解析された各前記副不良原因工程とに基づいて、前記副不良原因工程における不良原因を解消した場合に予想される前記検査結果を第2予想検査結果としてそれぞれ解析するステップ(j)と、各第2予想検査結果と、各副不良原因工程における不良原因を解消した後の前記検査結果との差異をそれぞれ評価するステップ(k)と、を有し、前記ステップ(e)においては、前記不良原因工程における不良原因を解消した場合に予想される前記第1予想検査結果と、前記不良原因工程における不良原因を解消した後の前記検査結果との差異が所定の閾値以上の場合、前記知識データベースに対し、前記副不良原因工程における不良原因を解消した場合に予想される前記第2予想検査結果と、前記副不良原因工程における不良原因を解消した後の前記検査結果との差異が最も小さくなる前記副不良原因工程を前記不良原因工程に代替させる修正をする、上記(14)に記載の解析方法。
 (16)上記(9)~(15)のいずれかに記載の解析方法をコンピューターに実行させるための制御プログラム。
 製品の検査結果と不良原因工程との対応関係を示す知識データベースを用いて、製品の検査結果に基づいて不良原因工程を解析する。そして、検査結果と解析された不良原因工程とに基づいて、不良原因工程における不良原因を解消した場合に予想される検査結果を予想し、予想結果と不良原因を解消した後の検査結果との差異を評価する。これにより、検査環境の変動に応じて知識データベースを容易に修正可能にし、検査環境の変動があっても不良の発生原因の工程等を高精度に特定できる。
解析システムの構成を示す図である。 解析装置のハードウェア構成を示すブロック図である。 制御部の機能ブロック図である。 解析システムの動作を示すフローチャートである。 制御部の機能ブロック図である。 解析システムの動作を示すフローチャートである。 制御部の機能ブロック図である。 解析システムの動作を示すフローチャートである。
 以下、図面を参照して、本発明の実施形態に係る解析装置、解析システム、解析方法、および解析プログラムについて説明する。なお、図面において、同一の要素には同一の符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。
 (第1実施形態)
 図1は、解析システム10の構成を示す図である。図2は、解析システム10に含まれる解析装置100のハードウェア構成を示すブロック図である。解析装置100は、複数の装置により構成されてもよい。
 解析システム10は、解析装置100および撮影装置200を含み得る。
 撮影装置200は、検査対象202(図3参照)の画像201(以下、単に「画像201」とも称する)を撮影する。画像201は、解析装置100に入力される入力データを構成する。画像201は検査対象202の全部または一部の画像であり得る。画像201は検査対象202以外のものが含まれる画像であってもよい。撮影装置200は、例えばカメラにより構成される。検査対象202は、例えば製品であり、製品には自動車や半導体チップ等の完成品だけでなく、自動車の車体、ボルト、ナット、および平板等の部品が含まれる。撮影装置200は、スキャナー、マイク、音声をテキストデータに変換する音声認識装置、臭いセンサー、および温度センサー等により代替され得る。これらの装置により検知(取得)されるデータも、入力データを構成する。以下、説明を簡単にするために、入力データは画像201であるものとして説明する。
 画像201は、例えば、白黒画像またはカラー画像で、128ピクセル×128ピクセルの画像であり得る。撮影装置200は、画像201を解析装置100へ送信する。
 解析装置100は、画像201を解析することで、検査対象202を検査する。これにより、解析装置100は、検査対象202の異常を検出する。異常には、例えば、傷、欠け、折れ、曲げ、汚れ、変色(色味の変化)、異常温度、異臭等が含まれる。後述するように、解析装置100は、異常の種類を示す所定の認識クラス(クラス)のいずれかとして、検査対象の異常(不良)を検出し得る。
 解析装置100は、さらに、検出された異常の種類(不良の認識クラス)から、異常を発生させた工程を、不良原因工程として検出(特定)する解析を行う。不良原因工程には、例えば、塗装工程に含まれるベース塗りや、コーティングの各工程が含まれる。その他、不良原因工程には、研磨工程、切削工程、洗浄工程等の工程種類が含まれる。不良原因工程はこのような工程種類に限定されない。例えば、不良原因工程には、塗布装置、研磨装置、切削装置、洗浄装置等の装置種類が含まれる。
 図2に示すように、解析装置100は、制御部110、記憶部120、通信部130、および操作表示部140を備える。これらの構成要素は、バス150を介して互いに接続される。解析装置100は、例えばコンピューター端末により構成される。
 制御部110は、CPU(Central Processing Unit)、およびRAM(Random Access Memory)、ROM(Read Only
 Memory)等のメモリにより構成され、プログラムに従って解析装置100の各部の制御および演算処理を行う。制御部110の機能の詳細については後述する。
 記憶部120は、HDD(Hard Disc Drive)、SSD(Solid State Drive)等により構成され、各種プログラムおよび各種データを記憶する。
 通信部130は、ネットワークを介して、外部の装置と通信するためのインターフェース回路(例えばLANカード等)である。
 操作表示部140は、例えば、タッチパネルにより構成され得る。操作表示部140は、ユーザーからの各種入力を受け付ける。操作表示部140は各種情報を表示する。
 制御部110の機能について説明する。
 図3は、制御部110の機能ブロック図である。制御部110は、検査部111、解析部112、評価部113、および出力部114として機能する。解析部112は、原因解析部および結果解析部を構成する。図3には、記憶部120に記憶された知識データベース121も併せて示されている。
 検査部111は、画像201を撮影装置200から受信することで取得する。検査部111は、画像201が記憶部120に記憶される場合、記憶部120から読み出すことで画像201を取得してもよい。
 図3においては、検査対象202が部品である平板であり、平板の右下に黒丸の汚れがある画像201が例示されている。
 検査部111は、画像201に基づいて検査対象202を検査する。具体的には、検査部111は、例えば、記憶部120から読み出した、機械学習された学習済モデルに画像201を入力して、所定の認識クラスのいずれかを特定することで検査対象202を検査する。以下、検査部111による検査結果を、単に「検査結果」とも称する。特定には変換や分類によるものが含まれる。以下、説明を簡単にするために、特定は変換によるものとして説明する。例えば、検査部111は、画像201を、各認識クラスの確信度のベクトル(認識クラスごとの確信度)に変換する。以下、各認識クラスの確信度のベクトルを単に「ベクトル」とも称する。確信度は、対応する認識クラスに画像201が該当する確からしさを示す尤度である。所定の認識クラスは、不良(異常)の認識クラスを含む。検査部111が、画像201をベクトルに変換することは、確信度が最も高い認識クラスを
識別可能にすることであり、画像201を所定の識別クラスに変換することと等価である。なお、検査部111は、ベクトルに代えて、確信度が最も高い認識クラス(より詳細には、確信度が最も高い認識クラスを特定するデータ)に画像201を変換してもよい。
 学習済モデルとしては、例えばニューラルネットワークの学習済モデルを用い得る。学習済モデルは、ニューラルネットワーク以外のモデルであってもよい。すなわち、学習済モデルは、例えば、公知のサポートベクターマシーンまたはランダムフォレストの学習済モデルであってもよい。
 学習済モデルは、画像201と、当該画像201に対応する正解ラベルである認識クラスとの組合せの教師データ(訓練データ)を比較的大量に用いてニューラルネットワークを学習することで予め生成され、記憶部120に記憶され得る。具体的には、ニューラルネットワークは、画像201が入力されたときの認識クラス(具体的には各認識クラスの確信度のベクトル)と、正解ラベル(具体的には各認識クラスの確信度のベクトルの正解)との差(ロス)が小さくなるように、バックプロパゲーションにより学習される。
 教師データは、不良品の画像201と、当該不良品の画像201に対応する認識クラスである不良の認識クラスの正解ラベルの組合せとすることが好ましい。これにより、検査部111による異常(不良)の検出精度を効率的に向上できる。
 所定の認識クラスは異常の種類であり、例えば、「所定の長さ以上の傷」、「所定の長さ未満の傷」、「所定の太さ以上の傷」、「所定の太さ未満の傷」、「所定の面積以上の汚れ」、「所定の面積未満の汚れ」、および「変色」が含まれる。また、例えば、「所定の面積以上の汚れ」や「所定の面積以下の汚れ」等は、画像201上の汚れのある場所ごとに複数の認識クラスに細分化され得る。すなわち、認識クラスには、例えば「所定の面積以上の右上の汚れ」、「所定の面積以上の右下の汚れ」、「所定の面積以上の左上の汚れ」、「所定の面積以上の左下の汚れ」、「所定の面積以下の右上の汚れ」、「所定の面積以下の右下の汚れ」、「所定の面積以下の左上の汚れ」、および「所定の面積以下の左下の汚れ」等が含まれ得る。認識クラスは、必要に応じてさらに細分化され得る。所定の長さ、所定の太さ、および所定の面積は、認識クラスから不良原因工程を解析する解析の、解析精度の観点から実験等により適当に設定し得る。認識クラスには、「良品」のクラスが含まれる。
 解析部112は、検査部111による検査結果(すなわち、認識クラス)と、記憶部120に記憶されている知識データベース121とを用いて、不良原因工程を解析する。これにより、異常を発生させた不良原因工程が特定される。知識データベース121は、検査結果と不良原因工程との対応関係を示すデータ群であり得る。解析部112は、具体的には、例えば、検査部111による検査結果のベクトルにおいて、「所定の面積以下の右下の汚れ」の認識クラスの確信度が最も高かった場合、「所定の面積以下の右下の汚れ」に対応する不良原因工程を、知識データベース121を用いて解析する。なお、知識データベース121は、検査結果と、不良原因工程および副不良原因工程との対応関係を示すデータ群であってもよい。この場合、解析部112は、検査部111による検査結果と、知識データベース121とを用いて、複不良原因工程をさらに解析し得る。不良の主原因となる工程は、温度や湿度等の検査環境の変動により変わり得る。これは、温度の上昇により装置の実装部品がわずかに膨張したり、湿度が低下することで製品にゴミが付着しやすくなることがあるためである。このため、検査環境の変動により、不良の主原因となる可能性がある工程を副不良原因工程として検査結果と対応させて知識データベース121に登録しておき、後述する、知識データベース121の修正に利用され得る。
 知識データベース122に含まれる、検査結果と不良原因工程との対応関係は、例えば生産工場における熟練した作業員や技術者の知識に基づくものであり得る。作業員等は、自己の経験に基づいて、例えば、所定の面積以下の右下の汚れがある平板の画像を見ただけで、異常(不良)を発生させた工程をより正確に特定できる可能性が高いからである。
 知識データベース122に含まれる認識クラスと不良原因工程との対応関係は、装置の過去の修理履歴に基づいて設定されてもよい。
 このように、機械学習により画像201から異常を発生させた不良原因工程をEnd-to-Endで検出せずに、機械学習により不良の認識クラスまでを推定し、知識データベース121を用いて異常の種類の情報(言語情報等)から異常を発生させた不良原因工程の情報(言語情報等)を特定する。これにより、訓練データの量を抑制しつつ検出精度および汎用性を向上できる。画像201等に基づく異常の検知は、撮影条件(例えば、撮影環境)の影響を受けやすいので、機械学習により画像等から異常を発生させた装置種類をEnd-to-Endで検出する場合は、生産工場が変わるごとに学習済モデルの再学習が必要になる。しかし、知識データベース122の情報は、異常の種類と異常を発生させた不良原因工程の対応関係という知識であるため、知識データベース121を用いることで、異なる生産工場で同じ学習済モデルを使い回すことができ、学習済みモデルの再学習を不要にできる。
 解析部112は、検査結果と、解析された不良原因工程とに基づいて、不良原因工程における不良原因を解消した場合に予想される検査結果を第1予想検査結果として解析する。第1予想検査結果のより単純な例は、「良品」の認識クラス(例えば、「良品」の認識クラスの確信度のみが1で、その他の認識クラス(すなわち、不良クラス)の確信度が0である、ベクトル)である。すなわち、不良原因工程における不良原因を解消した場合に予想される第1予想検査結果は「良品」の認識クラスとされ得る。第1予想検査結果は不良率等の統計的な検査結果の予想であり得る。すなわち、第1予想検査結果は、例えば、同一品種の複数の検査対象についての検査結果と、不良原因工程とに基づいて解析される不良率として解析され得る。この場合、第1予想検査結果は、例えば「5%」等の不良率であり得る。以下、説明を簡単にするために、第1予想検査結果は不良率であるものとして説明する。解析部112は、検査結果、不良原因工程、および第1予想検査結果が相互に対応付けされた結果予想用テーブルを用いて、検査結果と、解析された不良原因工程とに基づいて、第1予想検査結果を解析し得る。例えば、検査結果である「所定の面積以上の汚れ」と、解析された不良原因工程である「塗布工程」とに基づいて、不良率5%を第1予想検査結果として解析し得る。結果予想用テーブルは、例えば製品の製造プロセスの設計を行った技術者の知識や生産工場における熟練した作業員や技術者の知識等に基づいて予め作成され、記憶部120に記憶され得る。
 評価部113は、第1予想検査結果と、不良原因工程における不良原因を解消した後の検査結果との差異(以下、「予想との差異」とも称する)を評価する。すなわち、ユーザーにより不良原因が解消された不良原因工程を含む製造工程で検査対象202を製造し、製造された検査対象202を撮影装置200により撮影し、撮影された画像201に基づく検査部111による検査結果と、第1予想検査結果との差異を評価する。例えば、第1予想検査結果が不良率5%であり、不良原因工程における不良原因を解消した後の検査結果が不良率60%である場合は、予想との差異は55%と評価され得る。この場合、予想より不良率が減っていないことから、検査環境の変動等の影響で、知識データベース121により不良原因工程が正確に特定できていないと考えられる。なお、第1予想検査結果が「良品」の認識クラス(例えば、「良品」の認識クラスの確信度のみが1のベクトル)であるような最も単純な例においては、予想との差異は、第1予想検査結果のベクトルと、不良原因工程における不良原因を解消した後の検査結果のベクトルとの差の絶対値とされ得る。
 評価部113は、制御部として、予想との差異の評価結果に基づいて、知識データベース121を修正する。具体的には、評価部113は、予想との差異が所定の閾値以上の場合、知識データベース121において、当該検査結果に対応付けされた不良原因工程を変更する制御をする。予想との差異が所定の閾値以上の場合に知識データベース121を修正するのは、検査環境の変動等により知識データベース121における、検査結果と不良原因工程との対応関係の精度が低下していると考えられるからである。所定の閾値は、検査結果ごとに、検査結果の内容(性質)に応じて、不良原因工程の検出精度の観点から実験等により適当に設定され得る。評価部113は、検査結果における、欠陥の数、種類、サイズ、および位置の少なくともいずれか1つを考慮して知識データベース121の修正の要否を判断してもよい。例えば、検査部111により検査が開始されてから、欠陥(不良)の数が同日中に所定の数を超えた場合は、知識データベース121の修正が必要と判断され得る。また、欠陥の種類が、布の「所定の面積以下の右下の汚れ」である場合、無地の布における黒色の汚れの欠陥である場合は、知識データベース121の修正が必要と判断される一方、灰色の布における黒色の汚れの欠陥である場合は、知識データベース121の修正が不要と判断され得る。また、欠陥である汚れのサイズが「所定の面積を超える」の場合は、知識データベース121の修正が必要と判断される一方、「所定の面積以下」の場合は、知識データベース121の修正が不要と判断され得る。また、欠陥であるキズの位置が、インクを出すノズルの穴の部分というような製品の機能を劣化させる位置である場合は、無条件で知識データベース121の修正が必要と判断され得る。
 評価部113は、例えば、予想との差異が所定の閾値以上の場合、知識データベース121において、当該検査結果において、不良原因工程を副不良原因工程に代替させることで、当該知識データベース121を修正し得る。また、当該検査結果に複数の副不良原因工程が対応付けされている場合は、評価部113は、不良原因工程を副不良原因工程の任意のいずれか1つに代替させることで、当該知識データベース121を修正し得る。
 出力部114は、解析部112による解析により特定された不良原因工程を出力する。出力部114は、不良原因工程を操作表示部140に表示することで不良原因工程を出力し得る。出力部114は、不良原因工程を他の装置へ送信することで不良原因工程を出力してもよい。なお、出力部114の機能は省略されてもよい。
 図4は、解析システム10の動作を示すフローチャートである。本フローチャートは、プログラムに従い、解析装置100の制御部110により実行され得る。
 制御部110は、撮影装置200から画像201を受信することで取得する(S101)。なお、画像201が記憶部120に記憶される場合は、制御部110は、画像201を記憶部120から読み出すことで取得してもよい。
 制御部110は、学習済モデルを用いて画像201を各認識クラスの確信度のベクトルに変換することで、画像201に基づいて検査対象202を検査する(S102)。
 制御部110は、検査結果に基づいて、知識データベース121を用いて不良原因工程を特定する解析をする(S103)。
 制御部110は、検査結果と、解析された不良原因工程とに基づいて第1予想検査結果を特定する解析をする(S104)。
 制御部110は、第1予想検査結果と、不良原因工程における不良原因を解消した後の検査結果との差異を算出して、予想との差異を評価する(S105)。
 制御部110は、予想との差異の評価結果に基づいて知識データベース121を修正する(S106)。
 (第2実施形態)
 第2実施形態について説明する。本実施形態が第1実施形態と異なる点は次の点である。第1実施形態は、制御部110がプログラム等に基づく演算処理により知識データベース121の修正内容を判断して、知識データベース121を修正する。一方、本実施形態は、検査結果、不良原因工程、および予想との差異の情報を表示すること等によりユーザーにこれらの情報を提供するとともに、ユーザーにより入力される知識データベース121の修正指示に従って、知識データベース121を修正する。これ以外の点については、本実施形態は第1実施形態と同様であるので、重複する説明は省略または簡略化する。
 図5は、制御部110の機能ブロック図である。制御部110は、検査部111、解析部112、評価部113、出力部114、および受付部115として機能する。受付部115は修正部を構成する。
 検査部111は、画像201を撮影装置200から受信することで取得する。検査部111は、画像201に基づいて検査対象202を検査する。検査部111は、学習済みモデルを用いて、画像201をベクトル(各認識クラスの確信度)に変換することで、検査対象202を検査し得る。
 解析部112は、検査部111による検査結果に基づいて、知識データベース121を用いて、不良原因工程を解析する。
 解析部112は、検査結果と、解析された不良原因工程とに基づいて、不良原因工程における不良原因を解消した場合に予想される検査結果を第1予想検査結果として解析する。
 評価部113は、第1予想検査結果と、不良原因工程における不良原因を解消した後の検査結果とに基づいて、予想との差異を評価する。
 出力部114は、検査結果、不良原因工程、および予想との差異を出力する。出力部114は、検査結果、不良原因工程、および予想との差異を操作表示部140に表示することで不良原因工程を出力し得る。出力部114は、不良原因工程をユーザーの携帯端末等へ送信し、当該携帯端末において検査結果、不良原因工程、および予想との差異を表示されることで出力してもよい。これにより、ユーザーは、検査結果、不良原因工程、および予想との差異の情報を得ることができる。出力部114は、副不良原因工程をさらに出力してもよい。副不良原因工程は、操作表示部140において選択可能に表示されることで出力されてもよい。
 受付部115は、操作表示部140に入力されるユーザーによる知識データベース121の修正指示を受け付ける。修正指示は、例えば、当該検査結果に関して、不良原因工程を副不良原因工程に代替させる旨の指示であり得る。修正指示は、操作表示部140においてコマンドにより入力され得る。受付部115は、制御部として、修正指示に基づいて、知識データベース121を修正する。受付部115は、副不良原因工程が、操作表示部140において選択可能に表示されることで出力される場合、ユーザーにより操作表示部140において副不良原因工程が選択されたことを、不良原因工程を、選択された副不良原因工程に代替させる修正指示として受け付け得る。この場合、複数の副不良原因工程が操作表示部140において選択可能に表示されてもよい。受付部115は、表示される複
数の副不良原因工程のうちいずれか1つがユーザーにより選択されたことを、不良原因工程を、選択された副不良原因工程に代替させる修正指示として受け付けることができる。
 図6は、解析システム10の動作を示すフローチャートである。本フローチャートは、プログラムに従い、解析装置100の制御部110により実行され得る。
 ステップS201~ステップS205は、第1実施形態の図4のステップS101~ステップS105と同様であるため、説明を省略する。
 制御部101は、検査結果、不良原因工程、および予想との差異を出力する(S206)。制御部101は、副不良原因工程をさらに出力してもよい。
 制御部101は、操作表示部104を介して、知識データベース121の修正指示を受け付ける(S207)。
 制御部101は、修正指示に基づいて知識データベース121を修正する(S208)。
 (第3実施形態)
 第3実施形態について説明する。本実施形態が第1実施形態と異なる点は次の点である。第1実施形態は、検査結果と解析された不良原因工程とに基づいて第1予想検査結果を解析し、第1予想検査結果と不良原因を解消した後の検査結果との差異を予想との差異として評価し、予想との差異が所定の閾値以上の場合、知識データベース121を修正する。一方、本実施形態は、予想との差異が所定の閾値以上の場合、さらに、検査結果と当該検査結果に対応付けされた複数の副不良原因工程とに基づいて、各副不良原因工程における不良原因を解消した場合に予想される検査結果をそれぞれ第2予想検査結果として解析する。そして、知識データベース121に対し、第2予想検査結果と各副不良原因工程における不良原因を解消した後の検査結果との差異が最も小さくなる副不良原因工程を不良原因工程に代替させる修正をする。これ以外の点については、本実施形態は第1実施形態と同様であるので、重複する説明は省略または簡略化する。
 図7は、制御部110の機能ブロック図である。制御部110は、検査部111、解析部112、評価部113、および出力部114として機能する。
 検査部111は、画像201を撮影装置200から受信することで取得する。検査部111は、画像201に基づいて検査対象202を検査する。検査部111は、学習済みモデルを用いて、画像201をベクトル(各認識クラスの確信度)に変換することで、検査対象202を検査し得る。
 解析部112は、検査部111による検査結果に基づいて、知識データベース121を用いて、不良原因工程を解析する。さらに、解析部112は、検査結果と、知識データベース121とを用いて、複数の複不良原因工程を解析する。本実施形態においては、知識データベース121は、検査結果と、不良原因工程および複数の副不良原因工程との対応関係を示すデータ群である。解析部112は、予想との差異が所定の閾値以上の場合に、複数の副不良原因工程を解析し得る。
 解析部112は、検査結果と、解析された不良原因工程とに基づいて、不良原因工程における不良原因を解消した場合に予想される検査結果を第1予想検査結果として解析する。さらに、解析部112は、検査結果と当該検査結果に対応付けされた複数の副不良原因工程とに基づいて、各副不良原因工程における不良原因を解消した場合に予想される検査
結果をそれぞれ第2予想検査結果として解析する。解析部112は、予想との差異が所定の閾値以上の場合に、第2予想検査結果を解析し得る。
 評価部113は、予想との差異(以下、本実施形態の説明において「第1差異」とも称する)を評価する。さらに、評価部113は、各第2予想検査結果と各副不良原因工程における不良原因を解消した後の検査結果との差異(以下、「第2差異」とも称する)をそれぞれ評価する。評価部113は、第1差異が所定の閾値以上の場合に、第2差異を解析し得る。
 評価部113は、知識データベース121に対し、第2差異が最も小さくなる副不良原因工程を不良原因工程に代替させる修正をする。
 出力部114は、検査結果、不良原因工程、および副不良原因工程を出力する。なお、出力部114の機能は省略され得る。
 図8は、解析システム10の動作を示すフローチャートである。本フローチャートは、プログラムに従い、解析装置100の制御部110により実行され得る。
 ステップS301~ステップS302は、第1実施形態の図4のステップS101~ステップS102と同様であるため、説明を省略する。
 制御部110は、検査結果に基づいて、知識データベース121を用いて不良原因工程を特定する解析をする(S303)。
 制御部110は、検査結果と、解析された不良原因工程とに基づいて第1予想検査結果を特定する解析をする(S304)。
 制御部110は、第1予想検査結果と、不良原因工程における不良原因を解消した後の検査結果との差異を算出することで、第1差異を評価する(S305)。
 制御部110は、第1差異が所定の閾値以上かどうか判断する(S306)。制御部110は、第1差異が所定の閾値以上でない場合(S306:NO)は処理を終了する。
 制御部110は、第1差異が所定の閾値以上である場合(S306:YES)、検査結果に基づいて、知識データベース121を用いて複数の副不良原因工程を特定する解析をする(S307)。
 制御部110は、解析された各副不良原因工程に基づいて、第2予想検査結果をそれぞれ解析する(S308)。
 制御部110は、各第2予想検査結果と各副不良原因工程における不良原因を解消した後の検査結果との差異をそれぞれ第2差異として評価する(S309)。
 制御部110は、知識データベース121に対し、第2差異が最も小さくなる副不良原因工程を不良原因工程に代替させる修正をする(S310)。
 実施形態は、以下の効果を奏する。
 製品の検査結果と不良原因工程との対応関係を示す知識データベースを用いて、製品の検査結果に基づいて不良原因工程を解析する。そして、検査結果と解析された不良原因工程とに基づいて、不良原因工程における不良原因を解消した場合に予想される検査結果を予想し、予想結果と不良原因を解消した後の検査結果との差異を評価する。これにより、検査環境の変動に応じて知識データベースを容易に修正可能にし、検査環境の変動があっても不良の発生原因の工程等を高精度に特定できる。
 さらに、不良原因工程における不良原因を解消した場合に予想される検査結果の予想結果と不良原因を解消した後の検査結果との差異の評価結果に基づいて知識データベースを修正する。これにより、知識データベースの修正内容の検討をユーザーに強いることなく、検査環境の変動に応じて知識データベースを最適化できる。
 さらに、同一品種の複数の検査対象についての検査結果および解析された不良原因工程に基づいて、第1予想検査結果を不良率として解析し、第1予想検査結果の不良率と、不良原因工程における不良原因を解消した後の検査対象の不良率との差異を評価する。これにより、検査環境の変動に対する不良の発生原因の工程等の特定精度をさらに向上できる。
 さらに、検査結果と、不良原因工程と、当該不良原因工程における不良原因を解消した場合に予想される検査結果の予想結果と不良原因を解消した後の検査結果との差異とを出力し、知識データベースの修正指示を受け付け、修正指示に基づいて知識データベースを修正する。これにより、より柔軟かつ適切に知識データベースを最適化できる。
 さらに、知識データベースを、検査結果のクラスごとに、クラスと、不良原因工程および副不良原因工程との対応関係を示すものとし、知識データベースにおいて検査結果のクラスに対応付けされた不良原因工程および副不良原因工程を特定する解析を行う。そして、解析結果として、副不良原因工程を選択可能に表示することで出力し、副不良原因工程が選択されたことを、不良原因工程を選択された副不良原因工程に代替させる修正指示として受け付ける。これにより、より簡単かつ適切に知識データベースを最適化できる。
 さらに、知識データベースを、検査結果のクラスごとに、クラスと、不良原因工程および副不良原因工程との対応関係を示すものとし、知識データベースにおいて検査結果のクラスに対応付けされた不良原因工程および副不良原因工程を特定し、不良原因工程における不良原因を解消した場合の第1予想検査結果と、不良原因を解消した後の検査結果との差異が所定の閾値以上の場合、知識データベースに対し、不良原因工程を副不良原因工程に代替する修正をする。これにより、より簡単に、検査環境の変動があっても不良の発生原因の工程等を高精度に特定できる。
 さらに、知識データベースを、検査結果のクラスごとに、クラスと、不良原因工程および複数の副不良原因工程との対応関係を示すものとし、知識データベースにおいて検査結果のクラスに対応付けされた不良原因工程および複数の副不良原因工程を特定する解析を行い、検査結果と、解析された各副不良原因工程とに基づいて、副不良原因工程における副不良原因を解消した場合に予想される検査結果を第2予想検査結果としてそれぞれさらに解析し、各第2予想検査結果と、各副不良原因工程における副不良原因を解消した後の検査結果との差異をそれぞれ評価し、不良原因工程における不良原因を解消した場合に予想される第1予想検査結果と、不良原因工程における不良原因を解消した後の検査結果との差異が所定の閾値以上の場合、知識データベースに対し、副不良原因工程における不良原因を解消した場合に予想される第2予想検査結果と、副不良原因工程における不良原因を解消した後の検査結果との差異が最も小さくなる副不良原因工程を不良原因工程に代替させる修正をする。これにより、より簡単かつより高精度に、検査環境の変動があっても不良の発生原因の工程等を特定できる。
 以上に説明した、解析システム、解析プログラム、解析装置、および解析方法は、上述の実施形態の特徴を説明するにあたって主要構成を説明したのであって、上述の構成に限られず、特許請求の範囲内において、種々改変することができる。また、一般的な解析システム等が備える構成を排除するものではない。
 例えば、上述したフローチャートは、一部のステップを省略してもよく、他のステップが追加されてもよい。また各ステップの一部は同時に実行されてもよく、一つのステップが複数のステップに分割されて実行されてもよい。
 また、上述したシステムにおける各種処理を行う手段および方法は、専用のハードウェア回路、またはプログラムされたコンピューターのいずれによっても実現することが可能である。上記プログラムは、例えば、USBメモリやDVD(Digital Versatile Disc)-ROM等のコンピューター読み取り可能な記録媒体によって提供されてもよいし、インターネット等のネットワークを介してオンラインで提供されてもよい。この場合、コンピューター読み取り可能な記録媒体に記録されたプログラムは、通常、ハードディスク等の記憶部に転送され記憶される。また、上記プログラムは、単独のアプリケーションソフトとして提供されてもよいし、一機能としてその解析装置等のソフトウエアに組み込まれてもよい。
 本出願は、2021年7月20日に出願された日本特許出願(特願2021-119442号)に基づいており、その開示内容は、参照され、全体として、組み入れられている。
  10  解析システム、
  100  解析装置、
  110  制御部、
  111  検査部、
  112  解析部、
  113  評価部、
  114  出力部、
  120  記憶部、
  121  知識データベース、
  130  通信部、
  140  操作表示部、
  200  撮影装置、
  201  画像、
  202  検査対象。

Claims (16)

  1.  入力データに基づいて検査対象を検査する検査部と、
     前記検査部による検査結果と不良原因工程との対応関係を示す知識データベースと、
     前記検査結果に基づいて、前記知識データベースを用いて前記不良原因工程を解析する原因解析部と、
     前記検査結果と、解析された前記不良原因工程とに基づいて、前記不良原因工程における不良原因を解消した場合に予想される前記検査結果を第1予想検査結果として解析する結果解析部と、
     前記第1予想検査結果と、前記不良原因工程における不良原因を解消した後の前記検査部による前記検査結果との差異を評価する評価部と、
     を有する解析装置。
  2.  前記評価部による評価結果に基づいて前記知識データベースを修正する制御部をさらに有する、請求項1に記載の解析装置。
  3.  前記結果解析部は、同一品種の複数の前記検査対象についての、前記検査結果および前記不良原因工程に基づいて、前記第1予想検査結果を不良率として解析し、
     前記評価部は、前記第1予想検査結果の不良率と、前記不良原因工程における不良原因を解消した後の前記検査対象の不良率との差異を評価する、請求項1または2に記載の解析装置。
  4.  前記検査部による前記検査結果と、前記原因解析部による解析結果と、前記評価部による評価結果とを出力する出力部と、
     前記知識データベースの修正指示を受け付ける受付部と、
     前記修正指示に基づいて前記知識データベースを修正する修正部と、
     を有する請求項1に記載の解析装置。
  5.  前記知識データベースは、前記検査結果のクラスごとに、前記クラスと、前記不良原因工程および副不良原因工程との前記対応関係を示し、
     前記原因解析部は、前記知識データベースにおいて前記検査結果の前記クラスに対応付けされた前記不良原因工程および前記副不良原因工程を特定する解析を行い、
     前記出力部は、前記原因解析部による解析結果として、前記副不良原因工程を選択可能に表示することで出力し、
     前記受付部は、前記出力部において前記副不良原因工程が選択されたことを、前記不良原因工程を選択された前記副不良原因工程に代替させる前記修正指示として受け付ける、請求項4に記載の解析装置。
  6.  前記知識データベースは、前記検査結果のクラスごとに、前記クラスと、前記不良原因工程および副不良原因工程との前記対応関係を示し、
     前記原因解析部は、前記知識データベースにおいて前記検査結果の前記クラスに対応付けされた前記不良原因工程および前記副不良原因工程を特定する解析を行い、
     前記制御部は、前記不良原因工程における不良原因を解消した場合の前記第1予想検査結果と、前記不良原因を解消した後の前記検査結果との差異が所定の閾値以上の場合、前記知識データベースに対し、前記不良原因工程を前記副不良原因工程に代替する修正をする、請求項2に記載の解析装置。
  7.  前記知識データベースは、前記検査結果のクラスごとに、前記クラスと、前記不良原因工程および複数の前記副不良原因工程との前記対応関係を示し、
     前記原因解析部は、前記知識データベースにおいて前記検査結果の前記クラスに対応付けされた前記不良原因工程および複数の前記副不良原因工程を特定する解析を行い、
     前記結果解析部は、前記検査結果と、解析された各前記副不良原因工程とに基づいて、前記副不良原因工程における副不良原因を解消した場合に予想される前記検査結果を第2予想検査結果としてそれぞれさらに解析し、
     前記評価部は、各第2予想検査結果と、各副不良原因工程における不良原因を解消した後の前記検査部による前記検査結果との差異をそれぞれさらに評価し、
     前記制御部は、前記不良原因工程における不良原因を解消した場合に予想される前記第1予想検査結果と、前記不良原因工程における不良原因を解消した後の前記検査結果との差異が所定の閾値以上の場合、前記知識データベースに対し、前記副不良原因工程における不良原因を解消した場合に予想される前記第2予想検査結果と、前記副不良原因工程における不良原因を解消した後の前記検査結果との差異が最も小さくなる前記副不良原因工程を前記不良原因工程に代替させる修正をする、請求項6に記載の解析装置。
  8.  請求項1~7のいずれか一項に記載の解析装置と、
     入力データである画像を撮影する撮影装置と、
     を有する解析システム。
  9.  入力データに基づいて検査対象を検査するステップ(a)と、
     前記ステップ(a)における検査結果に基づいて、前記検査結果と不良原因工程との対応関係を示す知識データベースを用いて前記不良原因工程を解析するステップ(b)と、
     前記検査結果と、解析された前記不良原因工程とに基づいて、前記不良原因工程における不良原因を解消した場合に予想される前記検査結果を第1予想検査結果として解析するステップ(c)と、
     前記第1予想検査結果と、前記不良原因工程における不良原因を解消した後の前記検査結果との差異を評価するステップ(d)と、
     を有する解析方法。
  10.  前記ステップ(d)における評価結果に基づいて前記知識データベースを修正するステップ(e)をさらに有する、請求項9に記載の解析方法。
  11.  前記ステップ(c)においては、同一品種の複数の前記検査対象についての、前記検査結果および前記不良原因工程に基づいて、前記第1予想検査結果を不良率として解析し、
     前記ステップ(d)においては、前記第1予想検査結果の不良率と、前記不良原因工程における不良原因を解消した後の前記検査対象の不良率との差異を評価する、請求項9または10に記載の解析方法。
  12.  前記検査結果と、前記ステップ(b)における解析結果と、前記ステップ(d)における評価結果とを出力するステップ(f)と、
     前記知識データベースの修正指示を受け付けるステップ(g)と、
     前記修正指示に基づいて前記知識データベースを修正するステップ(h)と、を有する請求項9に記載の解析方法。
  13.  前記知識データベースは、前記検査結果のクラスごとに、前記クラスと、前記不良原因工程および副不良原因工程との前記対応関係を示し、
     前記ステップ(b)においては、前記知識データベースにおいて前記検査結果の前記クラスに対応付けされた前記不良原因工程および前記副不良原因工程を特定する解析をし、
     前記ステップ(f)においては、前記ステップ(b)における解析結果として、前記副不良原因工程を選択可能に表示することで出力し、
     前記ステップ(g)においては、前記副不良原因工程が選択されたことを、前記不良原因工程を選択された前記副不良原因工程に代替させる前記修正指示として受け付ける、請求項12に記載の解析方法。
  14.  前記知識データベースは、前記検査結果のクラスごとに、前記クラスと、前記不良原因工程および副不良原因工程との前記対応関係を示し、
     前記知識データベースにおいて前記検査結果の前記クラスに対応付けされた前記副不良原因工程を特定するステップ(i)を有し、
     前記ステップ(e)においては、前記不良原因工程における不良原因を解消した場合の前記第1予想検査結果と、前記不良原因を解消した後の前記検査結果との差異が所定の閾値以上の場合、前記知識データベースに対し、前記不良原因工程を前記副不良原因工程に代替する修正をする、請求項10または11に記載の解析方法。
  15.  前記知識データベースは、前記検査結果のクラスごとに、前記クラスと、前記不良原因工程および複数の前記副不良原因工程との前記対応関係を示し、
     前記ステップ(i)は、前記知識データベースにおいて前記検査結果の前記クラスに対応付けされた複数の前記副不良原因工程を特定する解析を行い、
     前記検査結果と、解析された各前記副不良原因工程とに基づいて、前記副不良原因工程における不良原因を解消した場合に予想される前記検査結果を第2予想検査結果としてそれぞれ解析するステップ(j)と、
     各第2予想検査結果と、各副不良原因工程における不良原因を解消した後の前記検査結果との差異をそれぞれ評価するステップ(k)と、を有し、
     前記ステップ(e)においては、前記不良原因工程における不良原因を解消した場合に予想される前記第1予想検査結果と、前記不良原因工程における不良原因を解消した後の前記検査結果との差異が所定の閾値以上の場合、前記知識データベースに対し、前記副不良原因工程における不良原因を解消した場合に予想される前記第2予想検査結果と、前記副不良原因工程における不良原因を解消した後の前記検査結果との差異が最も小さくなる前記副不良原因工程を前記不良原因工程に代替させる修正をする、請求項14に記載の解析方法。
  16.  請求項9~15のいずれか一項に記載の解析方法をコンピューターに実行させるための解析プログラム。
PCT/JP2022/010535 2021-07-20 2022-03-10 解析装置、解析システム、解析方法、および解析プログラム WO2023002673A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021119442A JP2024120127A (ja) 2021-07-20 2021-07-20 解析装置、解析システム、解析方法、および解析プログラム
JP2021-119442 2021-07-20

Publications (1)

Publication Number Publication Date
WO2023002673A1 true WO2023002673A1 (ja) 2023-01-26

Family

ID=84979871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010535 WO2023002673A1 (ja) 2021-07-20 2022-03-10 解析装置、解析システム、解析方法、および解析プログラム

Country Status (2)

Country Link
JP (1) JP2024120127A (ja)
WO (1) WO2023002673A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7553851B1 (ja) 2023-03-29 2024-09-19 ダイキン工業株式会社 塗装検査システム、及び塗装検査支援システム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08297699A (ja) * 1995-04-26 1996-11-12 Hitachi Ltd 製造不良解析支援システム、製造システム、および製造不良解析支援方法
JP2002202807A (ja) * 2000-09-27 2002-07-19 Toshiba Corp 商品の生産方法、品質管理方法及び品質管理プログラム
US20200082523A1 (en) * 2018-09-07 2020-03-12 Kla-Tencor Corporation Using stochastic failure metrics in semiconductor manufacturing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08297699A (ja) * 1995-04-26 1996-11-12 Hitachi Ltd 製造不良解析支援システム、製造システム、および製造不良解析支援方法
JP2002202807A (ja) * 2000-09-27 2002-07-19 Toshiba Corp 商品の生産方法、品質管理方法及び品質管理プログラム
US20200082523A1 (en) * 2018-09-07 2020-03-12 Kla-Tencor Corporation Using stochastic failure metrics in semiconductor manufacturing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7553851B1 (ja) 2023-03-29 2024-09-19 ダイキン工業株式会社 塗装検査システム、及び塗装検査支援システム

Also Published As

Publication number Publication date
JP2024120127A (ja) 2024-09-04

Similar Documents

Publication Publication Date Title
JP7455765B2 (ja) 産業プロセスの品質監視
US20130103336A1 (en) Multi-modal data analysis for defect identification
WO2022149465A1 (ja) 解析装置、解析システム、解析プログラム、および解析方法
US11521120B2 (en) Inspection apparatus and machine learning method
WO2023002673A1 (ja) 解析装置、解析システム、解析方法、および解析プログラム
KR20200006028A (ko) 인쇄 회로 기판 검사 장치, 스크린 프린터의 결함 유형 결정 방법 및 컴퓨터 판독 가능한 기록 매체
JP6630912B1 (ja) 検査装置及び検査方法
JP4631809B2 (ja) 欠陥分類システム、画像形成装置および欠陥分類プログラム
US20200082281A1 (en) Verification device
CN117501285A (zh) 用于验证人工智能ai模型的验证组件
JP7509027B2 (ja) 車両検査方法および車両検査システム
KR20070104073A (ko) 반도체 제조 설비의 공정 분석 시스템 및 그의 분석 방법
JP2022088713A (ja) 物品の組立工程における検査システム
CN111460189B (zh) 面板复判方法、装置、服务器、计算机设备和存储介质
EP4361743A1 (en) Computer implemented method of operating a tooling machine and tooling machine
WO2022209301A1 (ja) 情報処理装置、情報処理方法、及びプログラム
WO2022201968A1 (ja) 情報処理装置、制御プログラム、および制御方法
JP2002048722A (ja) 欠陥検査装置
US20230005120A1 (en) Computer and Visual Inspection Method
CN115587959A (zh) 异常检测系统及异常检测方法
JP2023154742A (ja) 学習システム、不良予測システム、学習済みモデル、学習方法、及び不良予測方法
KR20230081069A (ko) 모터 불량 여부 판단 시스템
JP2024124719A (ja) 検査装置、検査方法、および、プログラム
JP2023024762A (ja) 制御用ソフトウェアの自動テスト方法及び装置ならびにコンピュータプログラム
CN114002225A (zh) 光学检测系统与方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22845613

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22845613

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP