WO2023000984A1 - 轮毂电机控制系统、控制方法、轮胎以及驾驶设备 - Google Patents

轮毂电机控制系统、控制方法、轮胎以及驾驶设备 Download PDF

Info

Publication number
WO2023000984A1
WO2023000984A1 PCT/CN2022/104179 CN2022104179W WO2023000984A1 WO 2023000984 A1 WO2023000984 A1 WO 2023000984A1 CN 2022104179 W CN2022104179 W CN 2022104179W WO 2023000984 A1 WO2023000984 A1 WO 2023000984A1
Authority
WO
WIPO (PCT)
Prior art keywords
control unit
motor control
command
fault
signal
Prior art date
Application number
PCT/CN2022/104179
Other languages
English (en)
French (fr)
Inventor
赵慧超
李帅
苏瑞涛
苍衍
李芝炳
李岩
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2023000984A1 publication Critical patent/WO2023000984A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/46Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors for speed regulation of two or more dynamo-electric motors in relation to one another
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • H02H7/0805Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors for synchronous motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • H02H7/0822Integrated protection, motor control centres
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • H02H7/0833Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors for electric motors with control arrangements
    • H02H7/0844Fail safe control, e.g. by comparing control signal and controlled current, isolating motor on commutation error
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/24Vector control not involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/024Synchronous motors controlled by supply frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/085Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present application relates to the technical field of motor control, for example, to an in-wheel motor control system, a control method, tires and driving equipment.
  • the main power source of electric vehicles is the motor, and the mainstream type of motor is a permanent magnet synchronous three-phase motor.
  • a three-phase motor usually requires a control unit and a three-phase bridge inverter to generate three-phase supply voltages for driving the motor, which are applied to the three-phase windings respectively.
  • motors with multiple sub-unit motors that can work independently are usually used.
  • Different sub-unit motors have the same motor parameters and are controlled by multiple main control units. Separate control, each main control unit controls multiple sub-unit motors, but when a control unit system fails, how to perform fault-tolerant control to ensure the output stability of the system is a problem that needs to be solved.
  • the present application provides an in-wheel motor control system, a control method, tires and driving equipment to solve the technical problem that fault-tolerant control cannot be performed to ensure stable system output after one of the multiple motor control units in the in-wheel motor fails.
  • the present application provides an in-wheel motor control system, including at least two motor control units, a protection control unit, and multiple sub-unit motors;
  • Each motor control unit is electrically connected to the protection control unit; the driving pulse signal of one motor control unit is used to control the operation of multiple sub-unit motors through the protection control unit, and at least two motor control units are connected by communication;
  • the motor control unit is set to self-check whether a fault occurs, and if no fault occurs in the self-test, it receives the torque command sent by the vehicle control unit, and converts the torque command into a D-axis current command and a Q-axis current command , converting the D-axis current command and the Q-axis current command into a D-axis voltage command and a Q-axis voltage command, respectively, converting the D-axis voltage command and the Q-axis voltage command into the drive pulse signal transmission
  • the protection control unit if the self-test fails, the signal that cannot be converted by itself is replaced by the intermediate signal of the fault-free motor control unit;
  • the protection control unit is configured to drive a plurality of sub-unit motors corresponding to the motor control unit to work based on the received drive pulse signal.
  • the faults of the motor control unit include the abnormal reception of the torque command, the fault of the current sensor in the motor control unit, and the internal abnormality of the motor control unit.
  • the intermediate signal is the D-axis current command and the Q-axis current command generated by the non-faulty motor control unit.
  • the intermediate signal is a D-axis voltage command and a Q-axis voltage command generated by the non-faulty motor control unit.
  • the intermediate signal is a drive pulse signal generated by the non-fault motor control unit
  • the motor control unit is also configured to transmit a fault signal to the protection control unit;
  • the protection control unit is further configured to drive the subunit motor corresponding to the faulty motor control unit to work based on the received fault signal and the drive pulse signal transmitted from the non-faulty motor control unit.
  • each drive unit is electrically connected to the protection control unit, and one drive unit is correspondingly connected to one subunit motor;
  • the protection control unit is configured to drive multiple subunit motors corresponding to the motor control unit to work based on the received drive pulse signal in the following manner:
  • the plurality of subunit motors are controlled to work by a plurality of drive units respectively connected to the plurality of subunit motors.
  • the intermediate signal is transmitted between the two motor control units through a serial peripheral interface (Serial Peripheral Interface, SPI) connection line.
  • SPI Serial Peripheral Interface
  • the present application also provides an in-wheel motor control method, which is applied to the in-wheel motor control system described in any of the above-mentioned embodiments, and the driving pulse signal of a motor control unit in the in-wheel motor control system is used to control the Multiple subunit motors of the in-wheel motor control system work, and the in-wheel motor control method includes:
  • the motor control unit receives the torque command sent by the vehicle control unit, converts the torque command into a D-axis current command and a Q-axis current command, and converts the torque command to
  • the D-axis current command and the Q-axis current command are respectively converted into a D-axis voltage command and a Q-axis voltage command, and the D-axis voltage command and the Q-axis voltage command are converted into the driving pulse signal and sent to the protection control unit;
  • the faulty motor control unit replaces the signal that cannot be converted by itself with the intermediate signal of the non-faulty motor control unit, wherein the intermediate signal is the conversion of the torque command is a signal during the process of the driving pulse signal;
  • the protection control unit drives the multiple sub-unit motors corresponding to the motor control unit to work based on the received drive pulse signal.
  • the present application also provides a tire, which is provided with any one of the in-wheel motor control systems described above.
  • the present application also provides a driving device, which includes the above-mentioned tire.
  • FIG. 1 is a structural diagram of an in-wheel motor control system provided by an embodiment of the present application
  • Fig. 2 is a flow chart of converting a torque command into a drive pulse signal in a motor control unit provided by an embodiment of the present application;
  • Fig. 3 is a flow chart of fault-tolerant control when an abnormal torque command occurs according to an embodiment of the present application
  • FIG. 4 is a flow chart of fault-tolerant control when a current sensor fault occurs provided by an embodiment of the present application
  • Fig. 5 is a flow chart of an in-wheel motor control method provided by an embodiment of the present application.
  • FIG. 1 is a structural diagram of an in-wheel motor control system provided by an embodiment of the present application.
  • the in-wheel motor control system includes at least two motor control units Cm, a protection control unit 100, and a plurality of subunit motors Pn; wherein, m represents the number of motor control units, m is a positive integer greater than or equal to 2, and P represents the number of subunit motors. Quantity, n is a positive integer greater than or equal to 4, and n is an even number, as shown in Figure 1, which exemplarily shows that there are two motor control units C1 and C2, and the motor control unit C1 corresponds to the control A schematic diagram of two sub-unit motors P1 and P2, and a motor control unit C2 correspondingly controlling two sub-unit motors P3 and P4.
  • Each motor control unit Cm is electrically connected to the protection control unit 100; the driving pulse signal of one motor control unit Cm is used to control the work of multiple sub-unit motors Pn correspondingly through the protection control unit 100, and at least two motor control units Cm are connected by communication .
  • the motor control unit Cm is set to check whether there is a failure in the self-check. If there is no failure in the self-check, it will receive the torque command sent by the vehicle control unit (Vehicle Control Unit, VCU), and convert the torque command into a D-axis current command and Q-axis current command, and then convert the D-axis current command and Q-axis current command into D-axis voltage command and Q-axis voltage command, and then convert the D-axis voltage command and Q-axis voltage command into drive pulse signals and send them to the protection control unit. If a failure occurs in the self-test, the signal that cannot be converted by itself is replaced by the corresponding intermediate signal of the motor control unit Cm without failure.
  • Fig. 2 is a flow chart of converting a torque command into a drive pulse signal in a motor control unit provided by an embodiment of the present application.
  • the protection control unit 100 drives the corresponding subunit motor Pn to work based on the received driving pulse signal.
  • the motor control unit C1 controls the subunit motor P1 and the subunit motor P2, and the motor control unit C2 controls the subunit motor P3 and the subunit motor P4.
  • Both the motor control unit C1 and the motor control unit C2 can be controlled by the controller
  • the controller area network (CAN) bus receives the torque command sent by the vehicle control unit VCU to control the four sub-unit motors Pn separately; see Figure 2, the motor control unit C1 and the motor control unit C2 can both
  • the received torque commands are sequentially converted into D-axis current commands, Q-axis current commands, D-axis voltage commands, and Q-axis voltage commands, and finally converted into drive pulse signals.
  • the unit 100 outputs 12 driving pulse signals, and the 12 driving pulse signals are output to the corresponding 4 sub-unit motors Pn after safety protection by the protection control unit 100 .
  • the driving pulse signal is a pulse width modulation (Pulse Width Modulation, PWM) signal.
  • the motor control unit Cm can perform self-test when the system is working to see if there is a failure.
  • the embodiment of the present application takes the failure of the motor control unit C2 as an example. Since there is a real-time communication connection between the motor control unit C1 and the motor control unit C2, that is The two motor control units Cm will transmit their own control signals to each other in real time. When the motor control unit C2 fails in self-inspection, it will replace the signal that cannot be converted by itself based on the type of fault detected by itself.
  • the intermediate signal is a signal that appears during the process of converting the torque command into a drive pulse signal.
  • the intermediate signal can be a D-axis current command and a Q-axis current command, or a D-axis voltage command and a Q-axis voltage command.
  • the intermediate signal can also be is the driving pulse signal.
  • the main function of the protection control unit 100 is to protect the in-wheel motor control system by directly turning on and off each drive pulse signal inside the protection control unit 100 under some severe fault conditions, and to protect the hub motor control system under non-fault conditions.
  • the control unit 100 can directly divide the drive pulse signal input by the motor control unit Cm and output it to the corresponding subunit motor Pn, that is, output 6 driving pulse signals to each subunit motor Pn as shown in FIG. 1 .
  • the protection control unit 100 can use a complex programmable logic device (Complex Programmable logic device, CPLD) or a field programmable logic gate array (Field Programmable Gate Array, FPGA) according to needs, and can also use a single-chip microcomputer, which will not be repeated here.
  • CPLD Complex Programmable logic device
  • FPGA Field Programmable Gate Array
  • the control signal of the faulty motor control unit is replaced by the control signal of the non-faulty motor control unit, which solves the problem that one of the multiple motor control units in the hub motor fails.
  • the technical problem of performing fault-tolerant control to ensure the stability of the system output realizes the fault-tolerant control mechanism of the hub motor control system and ensures the stability of the hub motor control system.
  • the faults of the motor control unit Cm include abnormal reception of torque commands, faults of current sensors in the motor control unit, and internal abnormalities of the motor control unit.
  • the motor control unit Cm There are three common faults of the motor control unit Cm, which are abnormal torque command reception, current sensor fault in the motor control unit, and internal abnormality of the motor control unit.
  • the motor control unit Cm When the fault of the motor control unit Cm is abnormal reception of the torque command, the motor control unit Cm cannot convert the torque command into the D-axis current command and the Q-axis current command; when the fault of the motor control unit Cm is the fault of the motor control unit
  • the current sensor fails, the motor control unit Cm cannot convert the D-axis current command and the Q-axis current command into the D-axis voltage command and the Q-axis voltage command; when the fault of the motor control unit Cm is an internal abnormality of the motor control unit, the motor control unit The unit Cm cannot generate a drive pulse signal.
  • Fig. 3 is a flow chart of fault-tolerant control when an abnormal torque command occurs according to an embodiment of the present application.
  • Fig. 4 is a flow chart of fault-tolerant control when a current sensor fault occurs according to an embodiment of the present application.
  • the motor control unit Cm converts the D-axis current command and the Q-axis current command into the D-axis voltage command and the Q-axis voltage command through the current sensor, see Figure 4 , taking the motor control unit C2 fault as an example, when the motor control unit C2 cannot convert the D-axis current command and the Q-axis current command into the D-axis voltage command and the Q-axis voltage command, the motor control unit C2 will actively use the motor control unit C1 Convert the D-axis voltage command and Q-axis voltage command transmitted in real time to obtain a driving pulse signal, and transmit the driving pulse signal to the protection control unit 100, and the protection control unit 100 controls the subunit based on the received driving pulse signal
  • the motor P3 and the subunit motor P4 act.
  • the intermediate signal is a drive pulse signal generated by the motor control unit Cm without fault; the motor control unit Cm is also set to transmit a fault signal to the protection control unit 100; the protection control unit 100 drives the subunit motor Pn corresponding to the faulty motor control unit Cm to work by using the drive pulse signal sent by the non-faulty motor control unit Cm based on the received fault signal.
  • the motor control unit Cm When the fault detected by the motor control unit Cm is an internal abnormality of the motor control unit, that is, when the motor control unit Cm cannot generate a drive pulse signal based on the torque command, take the fault of the motor control unit C2 as an example, when the motor control unit C2 cannot generate When the driving pulse signal is received, the motor control unit C2 will send a fault signal to the protection control unit 100. Based on the received fault signal, the protection control unit 100 determines that the fault of the motor control unit C2 is an internal abnormality of the motor control unit, and then shuts off the motor control unit.
  • Unit C2 sends the channel of the driving pulse signal to the corresponding sub-unit motor Pn through the protection control unit 100, and simultaneously transmits the 12-way driving pulse signal transmitted from the motor control unit C1 to the protection control unit 100 to the motor control unit C2 synchronously.
  • the corresponding subunit motor P3 and subunit motor P4 are used to control the subunit motors P3 and P4 corresponding to the faulty motor control unit C2 using the driving pulse signal generated by the non-faulty motor control unit C1.
  • the in-wheel motor control system further includes a plurality of drive units 200, each drive unit 200 is electrically connected to the protection control unit 100, and one drive unit 200 is correspondingly connected to a subunit motor Pn; the protection control unit 100 controls the operation of the corresponding subunit motor Pn through the driving unit 200 based on the driving pulse signal.
  • Each sub-unit motor Pn needs a drive unit 200 to receive the driving pulse signal transmitted from the protection control unit 100 to realize the operation of the sub-unit motor Pn.
  • each driving unit 200 includes a driving module and an insulated gate bipolar transistor (Insulated Gate Bipolar Transistor, IGBT) module, which are configured to control the operation of the corresponding subunit motor Pn through a driving pulse signal.
  • IGBT Insulated Gate Bipolar Transistor
  • the transmission of intermediate signals is implemented between the two motor control units Cm through an SPI connection line.
  • SPI connection line between the motor control unit C1 and the motor control unit C2, that is, the SPI communication realizes the communication connection between the two; see Figure 3 and Figure 4, when the intermediate signal is the D-axis current command and the Q-axis current command, Or when the intermediate signals are the D-axis voltage command and the Q-axis voltage command, the intermediate signals are all transmitted through the SPI connection line.
  • the control signal of the faulty motor control unit is replaced by the control signal of the non-faulty motor control unit, which solves the problem that one of the multiple motor control units in the hub motor fails.
  • the technical problem of performing fault-tolerant control to ensure the stability of the system output realizes the fault-tolerant control mechanism of the hub motor control system and ensures the stability of the hub motor control system.
  • Fig. 5 is a flow chart of an in-wheel motor control method provided by an embodiment of the present application.
  • the in-wheel motor control method provided by the embodiment of the present application is applied to the in-wheel motor control system shown in any of the above-mentioned embodiments, wherein, the driving pulse signal of one motor control unit in the in-wheel motor control system is used to correspondingly control multiple
  • the wheel hub motor control method includes as follows:
  • the motor control unit Cm self-checks whether a fault occurs.
  • the motor control unit Cm can perform self-test when the system is working to see if there is a fault. There are three common faults of the motor control unit Cm, which are abnormal torque command reception, current sensor fault in the motor control unit, and internal abnormality of the motor control unit. .
  • the motor control unit Cm receives the torque command sent by the vehicle control unit VCU, converts the torque command into a D-axis current command and a Q-axis current command, and then converts the D
  • the axis current command and the Q axis current command are converted into the D axis voltage command and the Q axis voltage command, and then the D axis voltage command and the Q axis voltage command are converted into driving pulse signals and sent to the protection control unit 100 .
  • the in-wheel motor control system is provided with two motor control units C1 and C2, and the motor control unit C1 correspondingly controls the two subunit motors P1 and P2, and the motor control unit C2 correspondingly controls the two subunit motors P3 and Take P4 as an example, when the self-test result shows that there is no failure, both the motor control unit C1 and the motor control unit C2 in the in-wheel motor control system can convert the received torque command into a D-axis current command and a Q-axis current command in sequence , D-axis voltage command, and Q-axis voltage command, and finally converted into 12-way driving pulse signals, and then output 12-way driving pulse signals to the protection control unit 100, and the 12-way driving pulse signals are all passed through the protection control unit 100 for safety protection.
  • the output is sent to the corresponding driving unit 200, and then the corresponding four sub-unit motors Pn are driven to work.
  • the faulty motor control unit Cm replaces the signal that cannot be converted by itself with the intermediate signal of the corresponding non-faulty motor control unit Cm, wherein the intermediate signal is converted from the torque command to A signal in the process of driving a pulse signal.
  • the motor control unit C2 will replace the signal that cannot be converted by itself with the non-faulty motor control unit C1 based on the type of fault detected by itself.
  • the incoming intermediate signal is used, and the intermediate signal is used to continue to generate the driving pulse signal, and the generated driving pulse signal is sent to the protection control unit 100 .
  • the above-mentioned intermediate signal is a signal that appears during the process of converting the torque command into a drive pulse signal.
  • the intermediate signal can be a D-axis current command and a Q-axis current command, or a D-axis voltage command and a Q-axis voltage command.
  • the intermediate signal can also be is the drive pulse signal, when the intermediate signal is the drive pulse signal, it indicates that the fault type of the motor control unit C2 is an internal abnormality of the motor control unit, and at this time the protection control unit 100 will shut down the motor control unit C2 and communicate with it through the protection control unit 100
  • the corresponding sub-unit motor Pn sends the channel of the driving pulse signal, and directly transfers the 12-way driving pulse signal transmitted by the motor control unit C1 synchronously to the sub-unit motor P3 and sub-unit motor P4 corresponding to the motor control unit C2 for control.
  • the protection control unit 100 drives the corresponding subunit motor Pn to work based on the received driving pulse signal.
  • the main function of the protection control unit 100 is to protect the in-wheel motor control system by directly turning on and off each drive pulse signal inside the protection control unit 100 under some severe fault conditions, and to protect the hub motor control system under non-fault conditions.
  • the control unit 100 can directly divide the drive pulse signal input by the motor control unit Cm and output it to the corresponding subunit motor Pn, that is, output 6 driving pulse signals to each subunit motor Pn as shown in FIG. 1 .
  • the protection control unit 100 can use CPLD or FPGA as required, and can also use a single-chip microcomputer, which will not be repeated here.
  • the embodiment of the present application provides an in-wheel motor control method implemented by a real-time communication system, which has the same technical features as the in-wheel motor control system provided in the above embodiments, so it can also solve the same technical problems and achieve the same technical effect.
  • the embodiment of the present application also provides a tire, the tire is provided with the in-wheel motor control system described in any one of the above embodiments.
  • the tires provided in the embodiments of the present application include the in-wheel motor control system in the above embodiments, so the tires provided in the embodiments of the present application also have the effects described in the above embodiments, which will not be repeated here.
  • the embodiment of the present application also provides a driving device, which includes the tire described in any one of the above embodiments.
  • the driving equipment provided in the embodiments of the present application includes the tires in the above embodiments, so the driving equipment provided in the embodiments of the present application also has the effects described in the above embodiments, and will not be repeated here.
  • connection In the description of the embodiments of this application, unless otherwise specified and limited, the terms “installation”, “connection” and “connection” should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral Connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be the internal communication of two components. Those of ordinary skill in the art can understand the meanings of the above terms in this application according to the situation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Multiple Motors (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本文公开了一种轮毂电机控制系统、控制方法、轮胎以及驾驶设备。控制系统包括至少两个电机控制单元、保护控制单元及多个子单元电机;每个电机控制单元与保护控制单元电连接;一个电机控制单元的驱动脉冲信号用于通过保护控制单元对应控制多个子单元电机工作,至少两个电机控制单元之间通讯连接。

Description

轮毂电机控制系统、控制方法、轮胎以及驾驶设备
本申请要求在2021年07月20日提交中国专利局、申请号为202110817168.1的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及电机控制技术领域,例如涉及一种轮毂电机控制系统、控制方法、轮胎以及驾驶设备。
背景技术
随着能源的紧缺、环境的恶化,电动汽车越来越受到人们的重视,电动汽车的主要动力源是电机,主流的电机类型是永磁同步三相电机。三相电机通常需要控制单元和三相桥逆变器生成用于驱动电机的三相供电电压,分别施加到三相绕组。
针对轮毂电机应用,基于其安全、结构紧凑及散热要求高等特点,通常采用具备可以相互独立工作的多各子单元电机的电机,不同子单元电机具备相同的电机参数,由多个主控单元进行分别控制,每个主控单元控制多个子单元电机,但是当一个控制单元系统发生故障后如何进行容错控制来保证系统的输出稳定性是一个需要解决的问题。
发明内容
本申请提供一种轮毂电机控制系统、控制方法、轮胎以及驾驶设备,以解决轮毂电机中多个电机控制单元中的一个发生故障后无法进行容错控制来保证系统输出稳定的技术问题。
本申请提供了一种轮毂电机控制系统,包括至少两个电机控制单元、保护控制单元以及多个子单元电机;
每个电机控制单元与所述保护控制单元电连接;一个电机控制单元的驱动脉冲信号用于通过所述保护控制单元控制多个子单元电机工作,至少两个电机控制单元之间通讯连接;
所述电机控制单元设置为自检是否发生故障,若自检未发生故障,则接收整车控制单元传送的转矩指令,并将所述转矩指令转换为D轴电流指令以及Q轴电流指令,将所述D轴电流指令以及所述Q轴电流指令分别转换为D轴电压指令以及Q轴电压指令,将所述D轴电压指令以及所述Q轴电压指令转换为所 述驱动脉冲信号传送至所述保护控制单元,若自检发生故障,则将自身无法转换的信号替换为无故障的电机控制单元的中间信号;
所述保护控制单元设置为基于接收到的所述驱动脉冲信号驱动所述电机控制单元相对应的多个子单元电机工作。
一实施例中,所述电机控制单元发生的故障包括所述转矩指令接收异常、所述电机控制单元中的电流传感器故障以及所述电机控制单元内部异常。
一实施例中,当所述故障为所述转矩指令接收异常时,所述中间信号为所述无故障的电机控制单元生成的D轴电流指令以及Q轴电流指令。
一实施例中,当所述故障为所述电机控制单元中的电流传感器故障时,所述中间信号为所述无故障的电机控制单元生成的D轴电压指令以及Q轴电压指令。
一实施例中,当所述故障为所述电机控制单元内部异常时,所述中间信号为所述无故障的电机控制单元生成的驱动脉冲信号;
所述电机控制单元还设置为向所述保护控制单元传送故障信号;
所述保护控制单元还设置为基于接收到的所述故障信号以及所述无故障的电机控制单元传送来的所述驱动脉冲信号驱动与故障的所述电机控制单元相对应的子单元电机工作。
一实施例中,还包括多个驱动单元,每个驱动单元与所述保护控制单元电连接,一个驱动单元对应连接一个子单元电机;
所述保护控制单元设置为通过如下方式基于接收到的所述驱动脉冲信号驱动所述电机控制单元相对应的多个子单元电机工作:
基于所述驱动脉冲信号,通过与所述多个子单元电机分别连接的多个驱动单元控制所述多个子单元电机工作。
一实施例中,两个电机控制单元之间通过串行外设接口(Serial Peripheral Interface,SPI)连接线实现所述中间信号的传送。
本申请还提供了一种轮毂电机控制方法,应用于上述任一实施例所述的轮毂电机控制系统,所述轮毂电机控制系统中的一个电机控制单元的驱动脉冲信号用于通过保护控制单元控制所述轮毂电机控制系统的多个子单元电机工作,所述轮毂电机控制方法包括:
所述电机控制单元自检是否发生故障;
若所述电机控制单元自检未发生故障,则所述电机控制单元接收整车控制单元传送的转矩指令,并将所述转矩指令转换为D轴电流指令以及Q轴电流指 令,将所述D轴电流指令以及所述Q轴电流指令分别转换为D轴电压指令以及Q轴电压指令,将所述D轴电压指令以及所述Q轴电压指令转换为所述驱动脉冲信号传送至所述保护控制单元;
若所述电机控制单元自检发生故障,则故障的所述电机控制单元将自身无法转换的信号替换为无故障的电机控制单元的中间信号,其中,所述中间信号为所述转矩指令转换为所述驱动脉冲信号的过程中的信号;
所述保护控制单元基于接收到的所述驱动脉冲信号驱动所述电机控制单元相对应的多个子单元电机工作。
本申请还提供了一种轮胎,所述轮胎上设置有上述任一的轮毂电机控制系统。
本申请还提供了一种驾驶设备,所述驾驶设备包括上述的轮胎。
附图说明
图1是本申请实施例提供的一种轮毂电机控制系统的结构图;
图2是本申请实施例提供的一种电机控制单元中转矩指令转换为驱动脉冲信号的流程图;
图3是本申请实施例提供的一种出现转矩指令异常时的容错控制流程图;
图4是本申请实施例提供的一种出现电流传感器故障时的容错控制流程图;
图5是本申请实施例提供的一种轮毂电机控制方法的流程图。
具体实施方式
下面结合附图和实施例对本申请进行说明。此处所描述的具体实施例仅仅用于解释本申请。为了便于描述,附图中仅示出了与本申请相关的部分。
本申请中的术语“第一”、“第二”等是用于区别不同对象,而不是用于限定特定顺序。本申请下述每个实施例可以单独执行,多个实施例之间也可以相互结合执行,本申请实施例对此不作限制。
图1是本申请实施例提供的一种轮毂电机控制系统的结构图。
轮毂电机控制系统包括至少两个电机控制单元Cm、保护控制单元100以及多个子单元电机Pn;其中,m表示电机控制单元的数量,m为大于或等于2的正整数,P表示子单元电机的数量,n为大于或等于4的正整数,且n为偶数,如图1所示,图1中示例性地给出了设置有两个电机控制单元C1和C2,且电机控制单元C1对应控制两个子单元电机P1和P2,电机控制单元C2对应控制 两个子单元电机P3和P4的示意图。
每个电机控制单元Cm与保护控制单元100电连接;一个电机控制单元Cm的驱动脉冲信号用于通过保护控制单元100对应控制多个子单元电机Pn工作,至少两个电机控制单元Cm之间通讯连接。
电机控制单元Cm设置为自检是否发生故障,若自检未发生故障,则接收整车控制单元(Vehicle Control Unit,VCU)传送的转矩指令,并将转矩指令转换为D轴电流指令以及Q轴电流指令,再将D轴电流指令以及Q轴电流指令转换为D轴电压指令以及Q轴电压指令,进而将D轴电压指令以及Q轴电压指令转换为驱动脉冲信号传送至保护控制单元,若自检发生故障,则将自身无法转换的信号替换为相应的无故障的电机控制单元Cm的中间信号。图2是本申请实施例提供的一种电机控制单元中转矩指令转换为驱动脉冲信号的流程图。
保护控制单元100基于接收到的驱动脉冲信号驱动相应的子单元电机Pn工作。
示例性地,参见图1,电机控制单元C1控制子单元电机P1和子单元电机P2,电机控制单元C2控制子单元电机P3和子单元电机P4,电机控制单元C1和电机控制单元C2都可以通过控制器域网(Controller Area Network,CAN)总线接收到整车控制单元VCU传送来的转矩指令来对四个子单元电机Pn进行分别控制;参见图2,电机控制单元C1和电机控制单元C2均能够将接收到的转矩指令依次转换为D轴电流指令以及Q轴电流指令、D轴电压指令以及Q轴电压指令,并最终转换为驱动脉冲信号,电机控制单元C1和电机控制单元C2最终向保护控制单元100输出12路驱动脉冲信号,12路驱动脉冲信号均经过保护控制单元100进行安全保护后才输出给对应的4个子单元电机Pn。一实施例中,驱动脉冲信号是脉冲宽度调制(Pulse Width Modulation,PWM)信号。
电机控制单元Cm在系统工作时能够进行自检,看是否发生故障,本申请实施例以电机控制单元C2出现故障为例,由于电机控制单元C1和电机控制单元C2之间存在实时通讯连接,即两个电机控制单元Cm之间会将自身的控制信号实时传送给对方,当电机控制单元C2自检出现故障时,会基于自身自检出的故障类型,将自身无法转换的信号替换为无故障的电机控制单元C1实时传送来的中间信号。该中间信号为转矩指令转换为驱动脉冲信号的过程中出现的信号,例如中间信号可以为D轴电流指令和Q轴电流指令,或者为D轴电压指令和Q轴电压指令,中间信号也可以为驱动脉冲信号。
保护控制单元100的主要功能是在一些严重故障情况下通过直接在保护控制单元100内部对每路驱动脉冲信号进行开通和关断来对轮毂电机控制系统进行保护,而在非故障情况下,保护控制单元100能够直接将电机控制单元Cm 输入的驱动脉冲信号进行分流输出给对应的子单元电机Pn,即图1中所示的输出6路驱动脉冲信号给每个子单元电机Pn。保护控制单元100可以根据需要选用复杂可编程逻辑器件(Complex Programmable logic device,CPLD)或现场可编程逻辑门阵列(Field Programmable Gate Array,FPGA),也可以使用单片机,在此不再赘述。
本申请实施例通过在任一电机控制单元发生故障时,利用非故障电机控制单元的控制信号来替换故障电机控制单元的控制信号,解决了轮毂电机中多个电机控制单元中的一个发生故障后无法进行容错控制来保证系统输出稳定的技术问题,实现了轮毂电机控制系统的容错控制机制,保证了轮毂电机控制系统的稳定性。
可选地,电机控制单元Cm发生的故障包括转矩指令接收异常、电机控制单元中的电流传感器故障以及电机控制单元内部异常。
电机控制单元Cm常见的故障有三种,分别为转矩指令接收异常、电机控制单元中的电流传感器故障以及电机控制单元内部异常。当电机控制单元Cm的故障为转矩指令接收异常时,电机控制单元Cm中无法将转矩指令转换为D轴电流指令以及Q轴电流指令;当电机控制单元Cm的故障为电机控制单元中的电流传感器故障时,电机控制单元Cm中无法将D轴电流指令以及Q轴电流指令转换为D轴电压指令以及Q轴电压指令;当电机控制单元Cm的故障为电机控制单元内部异常时,电机控制单元Cm无法生成驱动脉冲信号。
可选地,当故障为转矩指令接收异常时,中间信号为无故障的电机控制单元Cm生成的D轴电流指令以及Q轴电流指令。图3是本申请实施例提供的一种出现转矩指令异常时的容错控制流程图。
当电机控制单元Cm自检出的故障为转矩指令接收异常时,即电机控制单元Cm无法接收到转矩指令,进而无法将转矩指令转换为D轴电流指令和Q轴电流指令时,参见图3,以电机控制单元C2故障为例,当电机控制单元C2无法通过CAN总线接收转矩指令时,电机控制单元C2无法转换出D轴电流指令和Q轴电流指令,则电机控制单元C2会主动使用电机控制单元C1实时传递来的D轴电流指令和Q轴电流指令,将其做转换,最终得到驱动脉冲信号,并将驱动脉冲信号传送至保护控制单元100,保护控制单元100基于接收到的驱动脉冲信号控制子单元电机P3和子单元电机P4动作。
可选地,当故障为电机控制单元Cm中的电流传感器故障时,中间信号为无故障的电机控制单元Cm生成的D轴电压指令以及Q轴电压指令。图4是本申请实施例提供的一种出现电流传感器故障时的容错控制流程图。
当电机控制单元Cm自检出的故障为电流传感器故障时,即电机控制单元Cm通过电流传感器将D轴电流指令和Q轴电流指令转换为D轴电压指令以及Q轴电压指令时,参见图4,以电机控制单元C2故障为例,当电机控制单元C2无法将D轴电流指令和Q轴电流指令转换为D轴电压指令以及Q轴电压指令时,电机控制单元C2会主动使用电机控制单元C1实时传递来的D轴电压指令以及Q轴电压指令,将其做转换,得到驱动脉冲信号,并将驱动脉冲信号传送至保护控制单元100,保护控制单元100基于接收到的驱动脉冲信号控制子单元电机P3和子单元电机P4动作。
可选地,当故障为电机控制单元Cm内部异常时,中间信号为无故障的电机控制单元Cm生成的驱动脉冲信号;电机控制单元Cm还设置为向保护控制单元100传送故障信号;保护控制单元100基于接收到的故障信号利用无故障的电机控制单元Cm传送来的驱动脉冲信号驱动与故障的电机控制单元Cm相对应的子单元电机Pn工作。
当电机控制单元Cm自检出的故障为电机控制单元内部异常时,即电机控制单元Cm无法基于转矩指令生成驱动脉冲信号时,以电机控制单元C2故障为例,当电机控制单元C2无法生成的驱动脉冲信号时,电机控制单元C2会向保护控制单元100发送一故障信号,保护控制单元100基于接收到的故障信号确定电机控制单元C2的故障为电机控制单元内部异常,则关断电机控制单元C2通过保护控制单元100向与之对应的子单元电机Pn发送驱动脉冲信号的通道,同时将电机控制单元C1传送至保护控制单元100中的12路驱动脉冲信号同步转送给与电机控制单元C2相对应的子单元电机P3和子单元电机P4,以实现使用无故障的电机控制单元C1生成的驱动脉冲信号对故障的电机控制单元C2所对应的子单元电机P3和P4进行控制的效果。
可选地,如图1所示,轮毂电机控制系统还包括多个驱动单元200,每个驱动单元200与保护控制单元100电连接,一个驱动单元200对应连接一个子单元电机Pn;保护控制单元100基于驱动脉冲信号,通过驱动单元200控制相应的子单元电机Pn工作。
每个子单元电机Pn需要通过一个驱动单元200来接收通过保护控制单元100传送来的驱动脉冲信号,以实现子单元电机Pn的运转。其中,每个驱动单元200包括一个驱动模块以及一个绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,IGBT)模块,设置为实现通过驱动脉冲信号控制相应的子单元电机Pn工作。
可选地,如图1所示,两个电机控制单元Cm之间通过SPI连接线实现中间信号的传送。
电机控制单元C1和电机控制单元C2之间设置有SPI连接线,即SPI通讯实现两者之间的通讯连接;参见图3和图4,当中间信号为D轴电流指令和Q轴电流指令、或者当中间信号为D轴电压指令和Q轴电压指令时,中间信号均通过SPI连接线进行传送。
本申请实施例通过在任一电机控制单元发生故障时,利用非故障电机控制单元的控制信号来替换故障电机控制单元的控制信号,解决了轮毂电机中多个电机控制单元中的一个发生故障后无法进行容错控制来保证系统输出稳定的技术问题,实现了轮毂电机控制系统的容错控制机制,保证了轮毂电机控制系统的稳定性。
图5是本申请实施例提供的一种轮毂电机控制方法的流程图。
本申请实施例所提供的轮毂电机控制方法应用于上述任一实施例所示的轮毂电机控制系统,其中,轮毂电机控制系统中一个电机控制单元的驱动脉冲信号用于通过保护控制单元对应控制多个子单元电机工作,如图6所示,轮毂电机控制方法包括如下:
S601,电机控制单元Cm自检是否发生故障。
电机控制单元Cm在系统工作时能够进行自检,看是否发生故障,电机控制单元Cm常见的故障有三种,分别为转矩指令接收异常、电机控制单元中的电流传感器故障以及电机控制单元内部异常。
S602,若电机控制单元Cm自检未发生故障,则电机控制单元Cm接收整车控制单元VCU传送的转矩指令,并将转矩指令转换为D轴电流指令以及Q轴电流指令,再将D轴电流指令以及Q轴电流指令转换为D轴电压指令以及Q轴电压指令,进而将D轴电压指令以及Q轴电压指令转换为驱动脉冲信号传送至保护控制单元100。
参见图1和图5,以轮毂电机控制系统设置有两个电机控制单元C1和C2,且电机控制单元C1对应控制两个子单元电机P1和P2,电机控制单元C2对应控制两个子单元电机P3和P4为例,当自检结果为没有发生故障,则轮毂电机控制系统中的电机控制单元C1和电机控制单元C2均能够将接收到的转矩指令依次转换为D轴电流指令以及Q轴电流指令、D轴电压指令以及Q轴电压指令,并最终转换为12路驱动脉冲信号,进而向保护控制单元100输出12路驱动脉冲信号,12路驱动脉冲信号均经过保护控制单元100进行安全保护后才输出给对应的驱动单元200,进而驱动相应的4个子单元电机Pn工作。
S603,若电机控制单元Cm自检发生故障,则故障的电机控制单元Cm将自身无法转换的信号替换为相应的无故障的电机控制单元Cm的中间信号,其 中,中间信号为转矩指令转换为驱动脉冲信号的过程中的信号。
若自检结果为发生故障,以电机控制单元C2出现故障为例,则电机控制单元C2会基于自身自检出的故障类型,将自身无法转换的信号替换为无故障的电机控制单元C1实时传送来的中间信号,并使用该中间信号继续生成驱动脉冲信号,并将生成的驱动脉冲信号传送至保护控制单元100。上述中间信号为转矩指令转换为驱动脉冲信号的过程中出现的信号,例如中间信号可以为D轴电流指令和Q轴电流指令,或者为D轴电压指令和Q轴电压指令,中间信号也可以为驱动脉冲信号,当中间信号为驱动脉冲信号时,表明电机控制单元C2的故障类型为电机控制单元内部异常,此时保护控制单元100会关断电机控制单元C2通过保护控制单元100向与之对应的子单元电机Pn发送驱动脉冲信号的通道,并直接将电机控制单元C1传送来的12路驱动脉冲信号同步转送给与电机控制单元C2相对应的子单元电机P3和子单元电机P4进行控制。
S604,保护控制单元100基于接收到的驱动脉冲信号驱动相应的子单元电机Pn工作。
保护控制单元100的主要功能是在一些严重故障情况下通过直接在保护控制单元100内部对每路驱动脉冲信号进行开通和关断来对轮毂电机控制系统进行保护,而在非故障情况下,保护控制单元100能够直接将电机控制单元Cm输入的驱动脉冲信号进行分流输出给对应的子单元电机Pn,即图1中所示的输出6路驱动脉冲信号给每个子单元电机Pn。
保护控制单元100可以根据需要选用CPLD或FPGA,也可以使用单片机,在此不再赘述。
本申请实施例提供由实时通话系统执行的轮毂电机控制方法,与上述实施例提供的轮毂电机控制系统具有相同的技术特征,所以也能解决相同的技术问题,达到相同的技术效果。
本申请实施例还提供了一种轮胎,轮胎上设置有上述任一实施例所述的轮毂电机控制系统。
本申请实施例提供的轮胎包括上述实施例中的轮毂电机控制系统,因此本申请实施例提供的轮胎也具备上述实施例中所描述的效果,此处不再赘述。
本申请实施例还提供了一种驾驶设备,驾驶设备包括上述任一实施例所述的轮胎。
本申请实施例提供的驾驶设备包括上述实施例中的轮胎,因此本申请实施例提供的驾驶设备也具备上述实施例中所描述的效果,此处不再赘述。
在本申请实施例的描述中,除非另有规定和限定,术语“安装”、“相连”、 “连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据情况理解上述术语在本申请中的含义。

Claims (10)

  1. 一种轮毂电机控制系统,包括至少两个电机控制单元、保护控制单元以及多个子单元电机;
    每个电机控制单元与所述保护控制单元电连接;一个电机控制单元的驱动脉冲信号用于通过所述保护控制单元控制多个子单元电机工作,至少两个电机控制单元之间通讯连接;
    所述电机控制单元设置为自检是否发生故障,在自检未发生故障的情况下,接收整车控制单元传送的转矩指令,并将所述转矩指令转换为D轴电流指令以及Q轴电流指令,将所述D轴电流指令以及所述Q轴电流指令分别转换为D轴电压指令以及Q轴电压指令,将所述D轴电压指令以及所述Q轴电压指令转换为所述驱动脉冲信号传送至所述保护控制单元,在自检发生故障的情况下,将自身无法转换的信号替换为无故障的电机控制单元的中间信号;
    所述保护控制单元设置为基于接收到的所述驱动脉冲信号驱动所述电机控制单元相对应的多个子单元电机工作。
  2. 根据权利要求1所述的轮毂电机控制系统,其中,所述电机控制单元发生的故障包括所述转矩指令接收异常、所述电机控制单元中的电流传感器故障以及所述电机控制单元内部异常。
  3. 根据权利要求2所述的轮毂电机控制系统,其中,在所述故障为所述转矩指令接收异常的情况下,所述中间信号为所述无故障的电机控制单元生成的D轴电流指令以及Q轴电流指令。
  4. 根据权利要求2所述的轮毂电机控制系统,其中,在所述故障为所述电机控制单元中的电流传感器故障的情况下,所述中间信号为所述无故障的电机控制单元生成的D轴电压指令以及Q轴电压指令。
  5. 根据权利要求2所述的轮毂电机控制系统,其中,在所述故障为所述电机控制单元内部异常的情况下,所述中间信号为所述无故障的电机控制单元生成的驱动脉冲信号;
    所述电机控制单元还设置为向所述保护控制单元传送故障信号;
    所述保护控制单元还设置为基于接收到的所述故障信号以及所述无故障的电机控制单元传送来的驱动脉冲信号驱动与故障的所述电机控制单元相对应的子单元电机工作。
  6. 根据权利要求1所述的轮毂电机控制系统,还包括多个驱动单元,每个驱动单元与所述保护控制单元电连接,一个驱动单元对应连接一个子单元电机;
    所述保护控制单元设置为通过如下方式基于接收到的所述驱动脉冲信号驱 动所述电机控制单元相对应的多个子单元电机工作:
    基于所述驱动脉冲信号,通过与所述多个子单元电机分别连接的多个驱动单元控制所述多个子单元电机工作。
  7. 根据权利要求1所述的轮毂电机控制系统,其中,两个电机控制单元之间通过串行外设接口SPI连接线实现所述中间信号的传送。
  8. 一种轮毂电机控制方法,应用于上述权利要求1-7中任一项所述的轮毂电机控制系统,所述轮毂电机控制系统中的一个电机控制单元的驱动脉冲信号用于通过所述轮毂电机控制系统的保护控制单元控制所述轮毂电机控制系统的多个子单元电机工作,所述轮毂电机控制方法包括:
    所述电机控制单元自检是否发生故障;
    在所述电机控制单元自检未发生故障的情况下,所述电机控制单元接收整车控制单元传送的转矩指令,并将所述转矩指令转换为D轴电流指令以及Q轴电流指令,将所述D轴电流指令以及所述Q轴电流指令分别转换为D轴电压指令以及Q轴电压指令,将所述D轴电压指令以及所述Q轴电压指令转换为所述驱动脉冲信号传送至所述保护控制单元;
    在所述电机控制单元自检发生故障的情况下,故障的所述电机控制单元将自身无法转换的信号替换为无故障的电机控制单元的中间信号,其中,所述中间信号为所述转矩指令转换为所述驱动脉冲信号的过程中的信号;
    所述保护控制单元基于接收到的所述驱动脉冲信号驱动所述电机控制单元相对应的多个子单元电机工作。
  9. 一种轮胎,设置有上述权利要求1-7任一项所述的轮毂电机控制系统。
  10. 一种驾驶设备,包括上述权利要求9所述的轮胎。
PCT/CN2022/104179 2021-07-20 2022-07-06 轮毂电机控制系统、控制方法、轮胎以及驾驶设备 WO2023000984A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110817168.1 2021-07-20
CN202110817168.1A CN113556061A (zh) 2021-07-20 2021-07-20 轮毂电机控制系统、控制方法、轮胎以及驾驶设备

Publications (1)

Publication Number Publication Date
WO2023000984A1 true WO2023000984A1 (zh) 2023-01-26

Family

ID=78103477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/104179 WO2023000984A1 (zh) 2021-07-20 2022-07-06 轮毂电机控制系统、控制方法、轮胎以及驾驶设备

Country Status (2)

Country Link
CN (1) CN113556061A (zh)
WO (1) WO2023000984A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113556061A (zh) * 2021-07-20 2021-10-26 中国第一汽车股份有限公司 轮毂电机控制系统、控制方法、轮胎以及驾驶设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203172455U (zh) * 2013-03-11 2013-09-04 西安理工大学 用于轮毂式微型纯电动汽车驱动的控制器
CN107343389A (zh) * 2015-02-24 2017-11-10 三菱电机株式会社 电动驱动装置及电动助力转向装置
CN110063021A (zh) * 2016-11-11 2019-07-26 株式会社电装 旋转电机控制装置以及使用了该旋转电机控制装置的电动动力转向装置
CN110626173A (zh) * 2018-06-20 2019-12-31 株式会社万都 车辆的电机控制设备和方法
CN111564993A (zh) * 2020-05-13 2020-08-21 上海追锋汽车系统有限公司 一种双绕组直流无刷电机冗余控制系统的操作方法
CN113556061A (zh) * 2021-07-20 2021-10-26 中国第一汽车股份有限公司 轮毂电机控制系统、控制方法、轮胎以及驾驶设备

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201122920Y (zh) * 2007-12-04 2008-09-24 北京工业大学 四轮独立驱动电动车辆双电机控制器
CN101767542B (zh) * 2008-12-26 2013-01-02 常州黄海麦科卡电动汽车有限公司 电动汽车四轮智能驱动平台
JP5528168B2 (ja) * 2010-03-26 2014-06-25 Ntn株式会社 電気自動車用コントローラ装置
JP2011234517A (ja) * 2010-04-28 2011-11-17 Renesas Electronics Corp 動力駆動制御装置および動力装置
CN103481798A (zh) * 2012-06-08 2014-01-01 镇江恒驰科技有限公司 基于can总线的主-从分布式轮毂电机驱动的电动车控制系统
WO2017145797A1 (ja) * 2016-02-24 2017-08-31 日本精工株式会社 電動パワーステアリング装置
JP6143905B1 (ja) * 2016-03-08 2017-06-07 三菱電機株式会社 回転電機駆動装置の制御装置
KR102301259B1 (ko) * 2016-03-15 2021-09-10 파나소닉 아이피 매니지먼트 가부시키가이샤 복수 축 모터 제어 시스템
CN106080206B (zh) * 2016-06-29 2018-06-22 南京越博动力系统股份有限公司 一种电动汽车控制系统及方法
CN206541137U (zh) * 2016-11-29 2017-10-03 中国航天空气动力技术研究院 电动舵机控制器
CN208101759U (zh) * 2018-02-02 2018-11-16 浙江中车电车有限公司 一种纯电城市客车轮毂驱动控制系统
CN111413860B (zh) * 2020-03-31 2023-10-20 潍柴动力股份有限公司 一种控制器故障保护电路、方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203172455U (zh) * 2013-03-11 2013-09-04 西安理工大学 用于轮毂式微型纯电动汽车驱动的控制器
CN107343389A (zh) * 2015-02-24 2017-11-10 三菱电机株式会社 电动驱动装置及电动助力转向装置
CN110063021A (zh) * 2016-11-11 2019-07-26 株式会社电装 旋转电机控制装置以及使用了该旋转电机控制装置的电动动力转向装置
CN110626173A (zh) * 2018-06-20 2019-12-31 株式会社万都 车辆的电机控制设备和方法
CN111564993A (zh) * 2020-05-13 2020-08-21 上海追锋汽车系统有限公司 一种双绕组直流无刷电机冗余控制系统的操作方法
CN113556061A (zh) * 2021-07-20 2021-10-26 中国第一汽车股份有限公司 轮毂电机控制系统、控制方法、轮胎以及驾驶设备

Also Published As

Publication number Publication date
CN113556061A (zh) 2021-10-26

Similar Documents

Publication Publication Date Title
CN105191117B (zh) 用于将dc电压转换为ac电压以及反之亦然的电结构
US8499885B1 (en) Motor drive apparatus
EP1953030B1 (en) Controller for inverter
US20170141717A1 (en) Parallel modular converter architecture
CN108696226B (zh) 一种电机控制器
WO2023000984A1 (zh) 轮毂电机控制系统、控制方法、轮胎以及驾驶设备
CN107472355B (zh) 一种电机控制系统以及方法
CN104821658A (zh) 一种柔性直流输电换流阀控制保护系统及阀控闭锁方法
US9744875B2 (en) Motor vehicle, battery, and method for controlling a battery
CN103507660B (zh) 用于驱动电动牵引驱动系统的方法
CN104527452B (zh) 用于自卸车的电驱控制系统和自卸车系统
CN113422347B (zh) 电机控制系统和车辆
CN205004963U (zh) 一种逆变器控制装置
WO2023241442A1 (zh) 一种异构电机控制装置及方法
JP5486336B2 (ja) 車両用電力変換器の制御装置
JP2016127702A (ja) サーボモータ制御装置
CN111200390A (zh) 一种大功率逆变器控制方法及装置
CN115347848A (zh) 电机安全控制电路和应用于设备的安全控制系统
CN201994899U (zh) 一种永磁同步电机的控制系统
CN114172120A (zh) 一种主动短路控制电路及方法
CN102684543A (zh) 350w小功率模块化h逆变桥串级太阳能逆变器系统
US20130234647A1 (en) Method for transferring energy between at least two energy storage cells in a controllable energy store
CN106787787A (zh) 带有控制单元的电力电子变压器及轨道车辆电力系统
CN106487268A (zh) 一种逆变器控制方法
CN218243387U (zh) 电机安全控制电路和应用于设备的安全控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22845149

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE