WO2023000957A1 - 天线阵列、系统及毫米波雷达 - Google Patents

天线阵列、系统及毫米波雷达 Download PDF

Info

Publication number
WO2023000957A1
WO2023000957A1 PCT/CN2022/103349 CN2022103349W WO2023000957A1 WO 2023000957 A1 WO2023000957 A1 WO 2023000957A1 CN 2022103349 W CN2022103349 W CN 2022103349W WO 2023000957 A1 WO2023000957 A1 WO 2023000957A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
adjustment section
antenna array
amplitude
subunit
Prior art date
Application number
PCT/CN2022/103349
Other languages
English (en)
French (fr)
Inventor
汲壮
Original Assignee
深圳市塞防科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市塞防科技有限公司 filed Critical 深圳市塞防科技有限公司
Publication of WO2023000957A1 publication Critical patent/WO2023000957A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/3208Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used
    • H01Q1/3233Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used particular used as part of a sensor or in a security system, e.g. for automotive radar, navigation systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/28Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the amplitude

Definitions

  • the present application relates to the technical field of antennas, in particular to an antenna array, a system and a millimeter-wave radar.
  • the vehicle-mounted millimeter-wave radar is a detection radar working in the millimeter-wave band, and mostly uses a microstrip antenna array.
  • a microstrip antenna array generally includes multiple antenna subunits, and each antenna subunit is fed with the same phase.
  • the array spacing between adjacent antenna sub-units is one waveguide wavelength.
  • the inventors found that the sidelobe in the radiation pattern of the microstrip antenna array in the prior art is relatively high, so that the interference sources in the sidelobe direction cause interference to the microstrip antenna array, making the microstrip antenna array Scanning range with antenna array is small.
  • embodiments of the present invention provide an antenna array, a system, and a millimeter-wave radar, which are used to solve the problem in the prior art that the scanning range of the antenna array is small.
  • an antenna array includes a radiation patch layer, the radiation patch layer is used to radiate high-frequency radar signals to free space, and the radiation patch layer including a plurality of antenna subunits and a power splitter connected to the antenna subunits;
  • the power divider includes at least one amplitude adjustment section and a distance adjustment section connected to the amplitude adjustment section, the amplitude adjustment section is used to adjust the amplitude of the high-frequency radar signal, and the distance adjustment section is connected to the
  • the extending direction of the antenna sub-unit is concave or convex in a direction parallel to the extending direction.
  • the distance adjusting section is in a circular arc structure.
  • the length of the amplitude adjustment section is 1/4 of the wavelength of the waveguide, and the length of the spacing adjustment section is 3/4 of the wavelength of the waveguide.
  • the power divider is connected to the antenna subunit through a radiation efficiency adjustment section, and different impedances of the radiation efficiency adjustment section correspond to different radiation efficiencies of the antenna subunit.
  • the power divider is connected to the radiation efficiency adjustment section through a phase adjustment section, and the phase adjustment section is used to adjust the phase of the high-frequency radar signal.
  • the antenna array further includes a dielectric substrate layer and a ground layer;
  • the radiation patch layer is arranged on the upper surface of the dielectric substrate layer, and the ground layer is arranged on the lower surface of the dielectric substrate layer.
  • the power divider further includes a T-junction, and the T-junction is used to transmit the high-frequency radar signal to each antenna subunit; the plurality of antenna subunits are symmetrically distributed on the left and right sides of the T-junction.
  • the number of antenna subunits is 2N, where N is a positive integer not less than 2.
  • an antenna system is provided, where the antenna system includes the above-mentioned antenna array.
  • a millimeter-wave radar is provided, and the millimeter-wave radar includes the above-mentioned antenna system.
  • the antenna array of the embodiment of the present invention includes a radiation patch layer, which can radiate high-frequency radar signals to free space;
  • the device includes an amplitude adjustment section, the amplitude adjustment section is connected with the spacing adjustment section, the amplitude adjustment section can adjust the amplitude of the high-frequency radar signal, and the spacing adjustment section is concave or convex in a direction parallel to the extending direction of the antenna sub-unit.
  • FIG. 1 shows a schematic structural diagram of an antenna array provided by an embodiment of the present invention
  • Fig. 2 shows a schematic structural diagram of a radiation patch layer provided by an embodiment of the present invention
  • Fig. 3 shows a schematic structural diagram of a radiation patch layer according to another embodiment of the present invention.
  • Fig. 1 shows a schematic structural diagram of an antenna array according to an embodiment of the present invention.
  • the antenna array includes a radiation patch layer 1 for radiating high-frequency radar signals into free space.
  • Fig. 2 shows a schematic structural diagram of the radiation patch layer 1 provided by the embodiment of the present invention.
  • the radiation patch layer 1 includes a plurality of antenna subunits 14 and a power divider 11 connected to the antenna subunits 14
  • the power divider 11 includes a feeder.
  • the feeder includes at least one amplitude adjustment section 113 and a spacing adjustment section 112 connected to the amplitude adjustment section.
  • the amplitude adjustment section 113 is used to adjust the amplitude of the high-frequency radar signal.
  • the spacing adjustment section 112 is in a direction parallel to the extension direction of the antenna subunit 14. Concave or protrude.
  • the radiation pattern of the antenna array can reflect the performance of the antenna array. Therefore, when designing the antenna array, it is necessary to adjust the amplitude and phase of the high-frequency radar signal radiated by the antenna array so that the designed antenna array can meet actual needs.
  • the length of the feed line between adjacent antenna sub-units 14 in the power divider 11 is generally one waveguide wavelength.
  • the feeder line is long, so that the array spacing between the antenna sub-units 14 is large, and the sidelobe in the radiation pattern of the antenna array is relatively high, which causes the interference source in the sidelobe direction to interfere with the antenna array.
  • the spacing adjustment section 112 is recessed or protruded in a direction parallel to the extending direction of the antenna sub-units 14, so that when the length of the feeder line between adjacent antenna sub-units 14 remains constant, the The array spacing between the antenna sub-units 14 prevents interference sources in the side lobe direction from interfering with the antenna array.
  • the radiation patch layer can radiate high-frequency radar signals to free space;
  • the device includes an amplitude adjustment section, the amplitude adjustment section is connected with the spacing adjustment section, the amplitude adjustment section can adjust the amplitude of the high-frequency radar signal, and the spacing adjustment section is concave or convex in a direction parallel to the extending direction of the antenna sub-unit.
  • the distance adjusting section 112 may be designed as an arc structure. Further, the distance adjusting section 112 may be in a circular arc structure. When designing an antenna array, the curvature of the spacing adjustment section 112 can be controlled to increase or decrease the array spacing between adjacent antenna subunits 14 .
  • the length of the amplitude adjustment section 113 may be 1/4 of the waveguide wavelength
  • the length of the pitch adjustment section 112 may be 3/4 of the waveguide wavelength.
  • the power splitter 11 can output multiple groups of high-frequency radar signals with the same phase.
  • the power splitter 11 is connected to the antenna subunit 14 through the radiation efficiency adjustment section 13 , and different impedances of the radiation efficiency adjustment section 13 correspond to different radiation efficiencies of the antenna subunit 14 .
  • the impedance of the radiation efficiency adjusting section 13 can be controlled to increase or decrease the radiation efficiency of the antenna sub-unit 14 .
  • the power divider 11 is also connected to the radiation efficiency adjustment section 13 through the phase adjustment section 12, and the phase adjustment section 12 is used to adjust the phase of the high-frequency radar signal.
  • the phase adjustment section 12 may be a broken line structure, a curved line structure or a meander line structure.
  • the antenna array further includes a dielectric substrate layer 2 and a ground layer 3 , the radiation patch layer 1 is disposed on the upper surface of the dielectric substrate layer 2 , and the ground layer 3 is disposed on the lower surface of the dielectric substrate layer 2 .
  • the power splitter 11 also includes a T-junction 111, which is used to transmit high-frequency radar signals to each antenna sub-unit 14, and a plurality of antenna sub-units 14 are symmetrically distributed on the left and right sides of the T-junction.
  • the radiation patch layer 1 includes 6 antenna sub-units 14, and there are 3 antenna sub-units 14 on the left side and the right side of the T-junction 11 respectively.
  • the left side of the T-junction 11 is directly connected to an antenna sub-unit 14 , and the other two antenna sub-units 14 are sequentially connected through feeders.
  • the right side of the T-junction 11 is directly connected to an antenna sub-unit 14, and the other two antenna sub-units 14 are sequentially connected through feeders.
  • the high-frequency radar signal is transmitted to each antenna subunit 14 through the T-junction 11 .
  • the high-frequency radar signal is divided into left and right signals after passing through the T-junction 11.
  • the left signal is fed into the three antenna subunits on the left through a plurality of sequentially connected amplitude adjustment sections 113 and spacing adjustment sections 112, and the right signal
  • the three antenna sub-units on the right are respectively fed through a plurality of sequentially connected amplitude adjustment sections 113 and spacing adjustment sections 112 .
  • Fig. 3 shows a schematic structural diagram of a radiation patch layer according to another embodiment of the present invention.
  • the radiation patch layer includes four antenna subunits 14 .
  • the number of antenna subunits 14 in the antenna array can be designed as 2N, where N is a positive integer not less than 2, that is, the number of antenna subunits 14 can be 4, 6, 8 etc.
  • the number of antenna subunits 14 included in the antenna array may be determined first, and then the design parameters of each antenna subunit 14 may be determined.
  • the design parameters of the antenna subunit 14 include the amplitude and phase of the high-frequency radar signal radiated by the antenna subunit 14 , the radiation efficiency of the antenna subunit 14 and the array spacing between adjacent antenna subunits 14 .
  • initial design parameters can be set for the antenna array, and the performance of the antenna array under the corresponding design parameters can be evaluated by simulation software, so as to determine the optimal design parameters of each antenna subunit 14 .
  • one antenna subunit 14 may be selected from each antenna subunit 14 as a reference antenna subunit. After determining the amplitude relationship between each antenna sub-unit 14, the amplitude of the high-frequency radar signal radiated by the antenna sub-unit 14 outside the reference antenna sub-unit is adjusted based on the amplitude of the reference antenna sub-unit, namely Increase the characteristic impedance of the amplitude adjustment section 113 to increase the amplitude of the high-frequency radar signal radiated by the corresponding antenna subunit 14, and reduce the characteristic impedance of the amplitude adjustment section 113 to reduce the high-frequency radar signal radiated by the corresponding antenna subunit 14 the magnitude of .
  • the phase of the reference antenna subunit is used as a reference to adjust the phase of the high-frequency radar signal radiated by the antenna subunit 14 other than the reference antenna subunit, that is, to extend the phase adjustment
  • the length of the section 12 is to increase the phase of the high-frequency radar signal radiated by the corresponding antenna subunit 14
  • the length of the phase adjustment section 12 is shortened to reduce the phase of the high-frequency radar signal radiated by the corresponding antenna subunit 14 .
  • the radiation efficiency of the antenna subunits 14 other than the reference antenna subunit is adjusted based on the radiation efficiency of the reference antenna subunit, that is, the impedance of the radiation efficiency adjustment section 13 is increased To reduce the radiation efficiency of the corresponding antenna subunit 14 , reduce the impedance of the radiation efficiency adjustment section 13 to increase the radiation efficiency of the corresponding antenna subunit 14 .
  • the curvature of the spacing adjustment section 112 can be reduced to The array spacing between adjacent antenna subunits 14 is adjusted to the optimal array spacing; if the optimal array spacing is less than the initial array spacing between adjacent antenna subunits 14, the curvature of the spacing adjustment section 112 can be increased to The array spacing between adjacent antenna subunits 14 is adjusted to an optimal array spacing.
  • an embodiment of the present invention also provides an antenna system, where the antenna system includes the above-mentioned antenna array.
  • the radiation patch layer can radiate high-frequency radar signals to free space;
  • the radiation patch layer includes a plurality of antenna subunits, and the antenna subunits are connected to the power divider, and the power divider includes
  • the amplitude adjustment section is connected with the spacing adjustment section, the amplitude adjustment section can adjust the amplitude of the high-frequency radar signal, and the spacing adjustment section is concave or convex in a direction parallel to the extending direction of the antenna sub-unit.
  • an embodiment of the present invention also provides a millimeter-wave radar, where the millimeter-wave radar includes the above-mentioned antenna system.
  • the radiation patch layer can radiate high-frequency radar signals to free space; the radiation patch layer includes a plurality of antenna subunits, and the antenna subunits are connected to the power divider, It includes an amplitude adjustment section, the amplitude adjustment section is connected with the spacing adjustment section, the amplitude adjustment section can adjust the amplitude of the high-frequency radar signal, and the spacing adjustment section is concave or convex in a direction parallel to the extending direction of the antenna sub-unit.
  • the antenna array in the embodiment of the present invention can reduce the array spacing between the antenna sub-units, avoid interference caused by high sidelobes in the radiation pattern, and expand the scanning range of the millimeter wave radar.
  • the first feature may be in direct contact with the first feature or the second feature "on” or “under” the second feature. Indirect contact through intermediaries.
  • “above” and “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • “Below” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply mean that the first feature is less horizontally than the second feature.

Abstract

本发明实施例涉及天线技术领域,公开了一种天线阵列、系统及毫米波雷达。该天线阵列包括辐射贴片层,所述辐射贴片层用于将高频雷达信号辐射到自由空间,所述辐射贴片层包括多个天线子单元以及与所述天线子单元连接的功分器;所述功分器包括至少一个幅度调节段以及与所述幅度调节段连接的间距调节段,所述幅度调节段用于调节所述高频雷达信号的幅度,所述间距调节段向与所述天线子单元的延伸方向平行的方向凹陷或凸出。通过上述方式,本发明实施例扩大了天线阵列的扫描范围。

Description

天线阵列、系统及毫米波雷达
本申请要求于2021年7月23日提交中国专利局、申请号为202110836686.8、申请名称为“天线阵列、系统及毫米波雷达”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及天线技术领域,具体涉及一种天线阵列、系统及毫米波雷达。
背景技术
随着智能驾驶技术的不断发展,车载毫米波雷达得到广泛应用。车载毫米波雷达是工作在毫米波波段的探测雷达,多采用微带天线阵列。
相关技术中,微带天线阵列一般包括多个天线子单元,每个天线子单元同相位馈电。为了实现各个天线子单元的同相位馈电,相邻天线子单元之间的阵列间距为一个波导波长。然而,发明人在实现本发明实施例的过程中发现:现有技术中微带天线阵列的辐射方向图中副瓣较高,使得副瓣方向的干扰源对微带天线阵列造成干扰,使得微带天线阵列的扫描范围较小。
发明内容
鉴于上述问题,本发明实施例提供了一种天线阵列、系统及毫米波雷达,用于解决现有技术中存在的天线阵列扫描范围较小的问题。
根据本发明实施例的一个方面,提供了一种天线阵列,所述天线阵列包括辐射贴片层,所述辐射贴片层用于将高频雷达信号辐射到自由空间,所述辐射贴片层包括多个天线子单元以及与所述天线子单元连接的功分器;
所述功分器包括至少一个幅度调节段以及与所述幅度调节段连接的间距调节段,所述幅度调节段用于调节所述高频雷达信号的幅度,所述间距调节段向与所述天线子单元的延伸方向平行的方向凹陷或凸出。
在一种可选的方式中,所述间距调节段为圆弧结构。
在一种可选的方式中,所述幅度调节段的长度为四分之一波导波长,所述间距调节段的长度为四分之三波导波长。
在一种可选的方式中,所述功分器通过辐射效率调节段与所述天线子单元连接,所述辐射效率调节段的不同阻抗对应所述天线子单元的不同辐射效率。
在一种可选的方式中,所述功分器通过相位调节段与所述辐射效率调节段连接,所述相位调节段用于调节所述高频雷达信号的相位。
在一种可选的方式中,所述天线阵列还包括介质基板层和接地层;
所述辐射贴片层设置于所述介质基板层上表面,所述接地层设置于所述介质基板层下表面。
在一种可选的方式中,所述功分器还包括T型结,所述T型结用于将所述高频雷达信号传输给各个天线子单元;所述多个天线子单元对称分布于所述T型结左右两侧。
在一种可选的方式中,所述天线子单元的数目为2N个,其中,N为不小于2的正整数。
根据本发明实施例的另一方面,提供了一种天线系统,所述天线系统包括上述的天线阵列。
根据本发明实施例的又一方面,提供了一种毫米波雷达,所述毫米波雷达包括上述的天线系统。
本发明实施例的天线阵列包括辐射贴片层,辐射贴片层可以将高频雷达信号辐射到自由空间;辐射贴片层包括多个天线子单元,天线子单元与功分器连接,功分器包括幅度调节段,幅度调节段与间距调节段连接,幅度调节段可以对高频雷达信号的幅度进行调节,间距调节段向与天线子单元的延伸方向平行的方向凹陷或凸出。通过上述间距调节段的结构,本发明实施例的天线阵列可以减小天线子单元之间的阵列间距,避免辐射方向图中副瓣较高导致的干扰,扩大了天线阵列的扫描范围。
上述说明仅是本发明实施例技术方案的概述,为了能够更清楚了解本发明实施例的技术手段,而可依照说明书的内容予以实施,并且为了让本发明实施例的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。
附图说明
附图仅用于示出实施方式,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1示出了本发明实施例提供的天线阵列的结构示意图;
图2示出了本发明实施例提供的辐射贴片层的结构示意图;
图3示出了本发明另一实施例的辐射贴片层的结构示意图。
具体实施方式
下面将参照附图更详细地描述本发明的示例性实施例。虽然附图中显示了本发明的示例性实施例,然而应当理解,可以以各种形式实现本发明而不应被这里阐述的实施例所限制。
图1示出了本发明实施例天线阵列的结构示意图。如图1所示,该天线阵列包括辐射贴片层1,辐射贴片层1用于将高频雷达信号辐射到自由空间。
图2示出了本发明实施例提供的辐射贴片层1的结构示意图。如图2所示,辐射贴片层1包括多个天线子单元14以及与天线子单元14连接的功分器11,功分器11包括馈线。馈线包括至少一个幅度调节段113以及与幅度调节段连 接的间距调节段112,幅度调节段113用于调节高频雷达信号的幅度,间距调节段112向与天线子单元14的延伸方向平行的方向凹陷或凸出。
其中,天线阵列的辐射方向图可以反映天线阵列的性能优劣,因此在设计天线阵列时,需要对天线阵列辐射的高频雷达信号的幅度和相位进行调节,以使得设计出来的天线阵列可以满足实际需要。为了使各个天线子单元14可以同相位馈电,功分器11中相邻天线子单元14之间的馈线长度一般为一个波导波长。然而,现有设计中馈线较长,使得天线子单元14之间的阵列间距较大,天线阵列的辐射方向图中副瓣较高,导致导致副瓣方向的干扰源对天线阵列进行干扰。本发明实施例中,间距调节段112向与天线子单元14的延伸方向平行的方向凹陷或凸出,使得在相邻天线子单元14之间的馈线长度保持不变的情况下,减小了天线子单元14之间的阵列间距,避免了副瓣方向的干扰源对天线阵列进行干扰。
可以看出,本发明实施例的天线阵列中,辐射贴片层可以将高频雷达信号辐射到自由空间;辐射贴片层包括多个天线子单元,天线子单元与功分器连接,功分器包括幅度调节段,幅度调节段与间距调节段连接,幅度调节段可以对高频雷达信号的幅度进行调节,间距调节段向与天线子单元的延伸方向平行的方向凹陷或凸出。通过上述间距调节段的结构,本发明实施例的天线阵列可以减小天线子单元之间的阵列间距,避免辐射方向图中副瓣较高导致的干扰,扩大了天线阵列的扫描范围。
在一种可选的方式中,间距调节段112可以设计为弧线结构。进一步的,间距调节段112可以为圆弧结构。在进行天线阵列设计时,可以控制间距调节段112的曲率,以增大或减小相邻天线子单元14之间的阵列间距。
其中,幅度调节段113的长度可以为四分之一波导波长,间距调节段112的长度可以为四分之三波导波长。通过将幅度调节段113设置为四分之一波导波长,将间距调节段112设置为四分之三波导波长,可以使得功分器11输出多组相同相位的高频雷达信号。进一步的,功分器11通过辐射效率调节段13与天线子单元14连接,辐射效率调节段13的不同阻抗对应天线子单元14的不同辐射效率。在进行天线阵列设计时,可以控制辐射效率调节段13的阻抗以增大或减小天线子单元14的辐射效率。本发明实施例中,功分器11还通过相位调节段12与辐射效率调节段13连接,相位调节段12用于调节高频雷达信号的相位。相位调节段12可以为折线结构、曲线结构或曲折线结构。在进行天线阵列设计时,通过控制相位调节段12的不同长度,可以使得天线子单元14辐射不同相位的高频雷达信号。
其中,天线阵列还包括介质基板层2和接地层3,辐射贴片层1设置于介质基板层2上表面,接地层3设置于介质基板层2下表面。功分器11还包括T型结111,T型结111用于将高频雷达信号传输给各个天线子单元14,多个天线子单元14对称分布于T型结左右两侧。
如图2所示,辐射贴片层1包括6个天线子单元14,T型结11左侧和右 侧各有3个天线子单元14。T型结11左侧直接连接一天线子单元14,另外2个天线子单元14通过馈线依次连接。T型结11右侧直接连接一天线子单元14,另外2个天线子单元14通过馈线依次连接。高频雷达信号通过T型结11传输给各个天线子单元14。高频雷达信号经过T型结11后分为左右两路信号,左路信号分别通过多个依次连接的幅度调节段113及间距调节段112馈入左侧的3个天线子单元,右路信号分别通过多个依次连接的幅度调节段113及间距调节段112馈入右侧的3个天线子单元。
图3示出了本发明另一实施例的辐射贴片层的结构示意图。如图3所示,该辐射贴片层包括4个天线子单元14。进一步的,在进行天线阵列设计时,可以将天线阵列中天线子单元14的数目设计为2N个,N为不小于2的正整数,即天线子单元14的数目可以为4个、6个、8个等。
本发明实施例在进行天线阵列设计时,可以首先确定天线阵列所包含的天线子单元14的个数,然后确定各个天线子单元14的设计参数。天线子单元14的设计参数包括天线子单元14所辐射高频雷达信号的幅值和相位、天线子单元14的辐射效率以及相邻天线子单元14之间的阵列间距。进一步的,可以为天线阵列设置初始设计参数,通过仿真软件评估对应设计参数下天线阵列的性能,从而确定各个天线子单元14的最优设计参数。
其中,可以在各个天线子单元14中选取一天线子单元14作为基准天线子单元。在确定出各个天线子单元14之间的幅值关系之后,以基准天线子单元的幅值为基准,调整基准天线子单元之外的天线子单元14所辐射高频雷达信号的幅值,即增大幅度调节段113的特征阻抗以增大对应天线子单元14所辐射高频雷达信号的幅值,减小幅度调节段113的特征阻抗以减小对应天线子单元14所辐射高频雷达信号的幅值。在确定出各个天线子单元14之间的相位关系之后,以基准天线子单元的相位为基准,调整基准天线子单元之外的天线子单元14所辐射高频雷达信号的相位,即延长相位调节段12的长度以增大对应天线子单元14所辐射高频雷达信号的相位,缩短相位调节段12的长度以减小对应天线子单元14所辐射高频雷达信号的相位。在确定出各个天线子单元14的辐射效率之后,以基准天线子单元的辐射效率为基准,调整基准天线子单元之外的天线子单元14的辐射效率,即增大辐射效率调节段13的阻抗以减小对应天线子单元14的辐射效率,减小辐射效率调节段13的阻抗以增大对应天线子单元14的辐射效率。
其中,在确定出相邻天线子单元14之间的最优阵列间距后,若最优阵列间距大于相邻天线子单元14之间的初始阵列间距,则可以减小间距调节段112的曲率以将相邻天线子单元14之间的阵列间距调整至最优阵列间距;若最优阵列间距小于相邻天线子单元14之间的初始阵列间距,则可以增大间距调节段112的曲率以将相邻天线子单元14之间的阵列间距调整至最优阵列间距。
除此之外,本发明实施例还提供一种天线系统,该天线系统包括上述的天线阵列。本发明实施例天线系统的天线阵列中,辐射贴片层可以将高频雷达信 号辐射到自由空间;辐射贴片层包括多个天线子单元,天线子单元与功分器连接,功分器包括幅度调节段,幅度调节段与间距调节段连接,幅度调节段可以对高频雷达信号的幅度进行调节,间距调节段向与天线子单元的延伸方向平行的方向凹陷或凸出。通过上述间距调节段的结构,本发明实施例的天线阵列可以减小天线子单元之间的阵列间距,避免辐射方向图中副瓣较高导致的干扰,扩大了天线系统的扫描范围。
除此之外,本发明实施例还提供一种毫米波雷达,该毫米波雷达包括上述的天线系统。本发明实施例毫米波雷达的天线系统中,辐射贴片层可以将高频雷达信号辐射到自由空间;辐射贴片层包括多个天线子单元,天线子单元与功分器连接,功分器包括幅度调节段,幅度调节段与间距调节段连接,幅度调节段可以对高频雷达信号的幅度进行调节,间距调节段向与天线子单元的延伸方向平行的方向凹陷或凸出。通过上述间距调节段的结构,本发明实施例的天线阵列可以减小天线子单元之间的阵列间距,避免辐射方向图中副瓣较高导致的干扰,扩大了毫米波雷达的扫描范围。
需要注意的是,除非另有说明,本发明实施例使用的技术术语或者科学术语应当为本发明实施例所属领域技术人员所理解的通常意义。
在本发明实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明实施例的限制。
此外,技术术语“第一”“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。在本发明实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本发明实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明实施例中的具体含义。
在本发明实施例的描述中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其 限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围,其均应涵盖在本发明的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本发明并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (10)

  1. 一种天线阵列,其特征在于,所述天线阵列包括辐射贴片层,所述辐射贴片层用于将高频雷达信号辐射到自由空间,所述辐射贴片层包括多个天线子单元以及与所述天线子单元连接的功分器;
    所述功分器包括至少一个幅度调节段以及与所述幅度调节段连接的间距调节段,所述幅度调节段用于调节所述高频雷达信号的幅度,所述间距调节段向与所述天线子单元的延伸方向平行的方向凹陷或凸出。
  2. 根据权利要求1所述的天线阵列,其特征在于,所述间距调节段为圆弧结构。
  3. 根据权利要求1或2所述的天线阵列,其特征在于,所述幅度调节段的长度为四分之一波导波长,所述间距调节段的长度为四分之三波导波长。
  4. 根据权利要求1所述的天线阵列,其特征在于,所述功分器通过辐射效率调节段与所述天线子单元连接,所述辐射效率调节段的不同阻抗对应所述天线子单元的不同辐射效率。
  5. 根据权利要求4所述的天线阵列,其特征在于,所述功分器通过相位调节段与所述辐射效率调节段连接,所述相位调节段用于调节所述高频雷达信号的相位。
  6. 根据权利要求1所述的天线阵列,其特征在于,所述天线阵列还包括介质基板层和接地层;
    所述辐射贴片层设置于所述介质基板层上表面,所述接地层设置于所述介质基板层下表面。
  7. 根据权利要求1所述的天线阵列,其特征在于,所述功分器还包括T型结,所述T型结用于将所述高频雷达信号传输给各个天线子单元;所述多个天线子单元对称分布于所述T型结左右两侧。
  8. 根据权利要求1所述的天线阵列,其特征在于,所述天线子单元的数目为2N个,其中,N为不小于2的正整数。
  9. 一种天线系统,其特征在于,所述天线系统包括如权利要求1至8任一项所述的天线阵列。
  10. 一种毫米波雷达,其特征在于,所述毫米波雷达包括如权利要求9所述的天线系统。
PCT/CN2022/103349 2021-07-23 2022-07-01 天线阵列、系统及毫米波雷达 WO2023000957A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110836686.8A CN113540830A (zh) 2021-07-23 2021-07-23 天线阵列、系统及毫米波雷达
CN202110836686.8 2021-07-23

Publications (1)

Publication Number Publication Date
WO2023000957A1 true WO2023000957A1 (zh) 2023-01-26

Family

ID=78089264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/103349 WO2023000957A1 (zh) 2021-07-23 2022-07-01 天线阵列、系统及毫米波雷达

Country Status (2)

Country Link
CN (1) CN113540830A (zh)
WO (1) WO2023000957A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113540830A (zh) * 2021-07-23 2021-10-22 深圳市道通智能汽车有限公司 天线阵列、系统及毫米波雷达
CN116315593A (zh) * 2022-04-27 2023-06-23 加特兰微电子科技(上海)有限公司 一种天线、雷达传感系统及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070279303A1 (en) * 2004-09-13 2007-12-06 Robert Bosch Gmbh Antenna Structure for Series-Fed Planar Antenna Elements
CN105226362A (zh) * 2015-10-12 2016-01-06 北京邮电大学 串馈结构功分器、阵列天线系统及其设计方法
CN205509019U (zh) * 2015-10-26 2016-08-24 芜湖森思泰克智能科技有限公司 一种大间距布阵的77GHz车载雷达微带天线
CN106972244A (zh) * 2017-02-28 2017-07-21 惠州硕贝德无线科技股份有限公司 一种车载雷达阵列天线
CN213093354U (zh) * 2020-09-22 2021-04-30 杭州华智超成技术有限公司 水平偏波束车载角雷达天线
CN113540830A (zh) * 2021-07-23 2021-10-22 深圳市道通智能汽车有限公司 天线阵列、系统及毫米波雷达

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070279303A1 (en) * 2004-09-13 2007-12-06 Robert Bosch Gmbh Antenna Structure for Series-Fed Planar Antenna Elements
CN105226362A (zh) * 2015-10-12 2016-01-06 北京邮电大学 串馈结构功分器、阵列天线系统及其设计方法
CN205509019U (zh) * 2015-10-26 2016-08-24 芜湖森思泰克智能科技有限公司 一种大间距布阵的77GHz车载雷达微带天线
CN106972244A (zh) * 2017-02-28 2017-07-21 惠州硕贝德无线科技股份有限公司 一种车载雷达阵列天线
CN213093354U (zh) * 2020-09-22 2021-04-30 杭州华智超成技术有限公司 水平偏波束车载角雷达天线
CN113540830A (zh) * 2021-07-23 2021-10-22 深圳市道通智能汽车有限公司 天线阵列、系统及毫米波雷达

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHANG XIANG: "Research on Antenna Arrays for Automotive Millimeter Wave Radar", CHINA MASTER’S THESES FULL-TEXT DATABASE, no. 5, 15 May 2021 (2021-05-15), XP093026425 *

Also Published As

Publication number Publication date
CN113540830A (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
WO2023000957A1 (zh) 天线阵列、系统及毫米波雷达
US10224638B2 (en) Lens antenna
KR100849702B1 (ko) 원편파 유전체 혼 파라볼라 안테나
JP4090875B2 (ja) マルチリフレクターアンテナにおける電磁波の送信/受信ソースに対する改良
US5070340A (en) Broadband microstrip-fed antenna
US6396453B2 (en) High performance multimode horn
EP1070366B1 (en) Multiple parasitic coupling from inner patch antenna elements to outer patch antenna elements
CN109950707B (zh) 一种圆锥共形端射阵列天线
US20150116154A1 (en) Lens antenna with electronic beam steering capabilities
CN106450789B (zh) 一种基于反射阵馈电的低剖面透镜天线
JP4128686B2 (ja) 平面アンテナ
CN110867643B (zh) 宽波束天线、天线阵以及应用该天线阵雷达
CN109672021B (zh) 一种背腔缝隙耦合贴片天线
KR102015530B1 (ko) 평면형 반사판을 포함하는 모노펄스 안테나
WO2023051240A1 (zh) 天线模组、毫米波雷达以及车辆
US7280081B2 (en) Parabolic reflector and antenna incorporating same
CN110854516A (zh) 远距离天线、天线阵以及应用该天线阵雷达
CN215343002U (zh) 天线阵列、系统及毫米波雷达
CN115632245A (zh) 一种波导结构电磁表面波束扫描阵列
CN211743384U (zh) 宽波束天线、天线阵以及应用该天线阵雷达
CN211957900U (zh) 远距离天线、天线阵以及应用该天线阵雷达
JPH05275920A (ja) 鏡面修正アンテナ
CN108232460B (zh) 一种波束等化的小口径圆锥喇叭
US20190140351A1 (en) Power division in antenna systems for millimeter wave applications
CN220553598U (zh) 一种天线单元、天线及基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22845122

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE