WO2023000953A1 - 显示面板及其制作方法、显示装置 - Google Patents

显示面板及其制作方法、显示装置 Download PDF

Info

Publication number
WO2023000953A1
WO2023000953A1 PCT/CN2022/103314 CN2022103314W WO2023000953A1 WO 2023000953 A1 WO2023000953 A1 WO 2023000953A1 CN 2022103314 W CN2022103314 W CN 2022103314W WO 2023000953 A1 WO2023000953 A1 WO 2023000953A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
emitting
wavelength conversion
emitting device
Prior art date
Application number
PCT/CN2022/103314
Other languages
English (en)
French (fr)
Inventor
靳倩
黄维
孙倩
卢天豪
李杨
康亮亮
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US18/271,851 priority Critical patent/US20240090299A1/en
Publication of WO2023000953A1 publication Critical patent/WO2023000953A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/19Tandem OLEDs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/351Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels comprising more than three subpixels, e.g. red-green-blue-white [RGBW]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/876Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a display panel, a manufacturing method thereof, and a display device.
  • the display architecture combining quantum dot layer and OLED Organic Light-Emitting Diode, organic light-emitting diode
  • OLED Organic Light-Emitting Diode, organic light-emitting diode
  • the disclosure proposes a display panel, a manufacturing method thereof, and a display device.
  • the present disclosure provides a display panel, including:
  • each of the light emitting devices includes: a first electrode, a plurality of light emitting units and a second electrode arranged in sequence along a direction away from the base; wherein the first electrode is a reflective electrode, the second electrode is a transflective electrode, a microcavity structure is formed between the first electrode and the second electrode; the light emitting unit includes a light emitting layer, and in the same light emitting device, at least two of the light emitting layers The light emitting colors of the light emitting devices are different; at least one of the light emitting devices further includes a cavity length adjustment layer, and the cavity length adjustment layer is located between the first electrode and the light emitting unit immediately adjacent to it;
  • the color conversion layer includes a plurality of wavelength conversion units, each of the wavelength conversion units corresponds to one of the light-emitting devices with the cavity length adjustment layer, and the wavelength conversion units are arranged on the light-emitting side of the light-emitting device for Convert the light irradiated to the wavelength conversion unit and within its light absorption band into light of the target color and emit it;
  • At least one luminescence peak in the light emission band of the light emitting device is less than or equal to the intrinsic light emission peak of the corresponding wavelength conversion unit, and the light absorption band of the wavelength conversion unit overlaps with the light emission band of the light emitting device.
  • the overlapping portion of the light absorption band of the wavelength converting unit and the light emitting band of the light emitting device accounts for 50%-100% of the light emitting band.
  • the multiple wavelength conversion units of the color conversion layer are divided into multiple types, different types of wavelength conversion units correspond to different target colors, and different types of wavelength conversion units correspond to different light-emitting devices with different light-emitting bands .
  • the multiple wavelength conversion units include a red wavelength conversion unit and a green wavelength conversion unit, the target color corresponding to the red wavelength conversion unit is red, and the target color corresponding to the green wavelength conversion unit is green,
  • the light-emitting wavelength band of the light-emitting device corresponding to the red wavelength conversion unit includes [380nm, 480nm];
  • the light-emitting wavelength band of the light-emitting device corresponding to the green wavelength conversion unit includes [380nm, 580nm];
  • the color conversion layer further includes a plurality of scattering units, each of which corresponds to a light-emitting device, and the light-emitting wavelength band of the light-emitting device corresponding to the scattering units includes [380nm, 480nm].
  • different types of wavelength conversion units correspond to different thicknesses of the cavity length adjustment layer.
  • the plurality of light-emitting layers in each light-emitting device includes: two blue light-emitting layers and a green light-emitting layer between the two blue light-emitting layers;
  • the thickness of the cavity length adjustment layer in the light-emitting device corresponding to the red wavelength conversion unit is within the range of [100nm, 120nm], so that the light-emitting wavelength band of the light-emitting device corresponding to the red wavelength conversion unit includes [380nm, 480nm];
  • the thickness of the cavity length adjustment layer in the light-emitting device corresponding to the green wavelength conversion unit is within the range of [70nm, 90nm], so that the light-emitting wavelength band of the light-emitting device corresponding to the green wavelength conversion unit includes [380nm, 580nm].
  • the plurality of light emitting layers in each light emitting device includes: a blue light emitting layer and a yellow light emitting layer;
  • the thickness of the cavity length adjustment layer in the light-emitting device corresponding to the red wavelength conversion unit is within the range of [150nm, 170nm], so that the light-emitting wavelength band of the light-emitting device corresponding to the red wavelength conversion unit includes: [380nm, 480nm] and [580nm, 680nm];
  • the thickness of the cavity length adjustment layer in the light-emitting device corresponding to the green wavelength conversion unit is within the range of [130nm, 150nm), so that the light-emitting wavelength band of the light-emitting device corresponding to the green wavelength conversion unit includes [380nm, 580nm].
  • the material of the wavelength conversion unit includes quantum dot material.
  • the first electrode includes: a first transparent conductive layer and a metal reflective layer, and the metal reflective layer is located on a side of the first transparent conductive layer away from the substrate.
  • the cavity length adjustment layer is made of transparent conductive material
  • the cavity length adjustment layer is made of a transparent insulating material, and the side of the cavity length adjustment layer away from the substrate is also provided with a second transparent conductive layer, and the second transparent conductive layer is on the substrate.
  • the orthographic projection exceeds the orthographic projection of the cavity length adjustment layer on the substrate, and the part of the second transparent conductive layer beyond the cavity length adjustment layer is electrically connected to the first electrode.
  • the display panel further includes: a color filter layer, the color filter layer is disposed on a side of the color conversion layer away from the substrate, the color filter layer includes a plurality of color filter parts, Each of the scattering units and each of the wavelength conversion units corresponds to one of the color filter parts, and the color of the color filter part is the same as the color of light emitted by the corresponding scattering part or wavelength conversion unit.
  • each light-emitting device includes N light-emitting units arranged in sequence along a direction away from the substrate, wherein the light-emitting layers of the i-th light-emitting units of the plurality of light-emitting devices are integrated; N, i are all integers, N>1, 0 ⁇ i ⁇ N.
  • a charge generation layer is arranged between every two adjacent light emitting units in the same light emitting device.
  • the display panel further includes: a first encapsulation layer and a second encapsulation layer; wherein,
  • the first encapsulation layer is disposed on a side of the plurality of light emitting devices away from the substrate, and is used for encapsulating the plurality of light emitting devices;
  • the color conversion layer is disposed on a side of the first encapsulation layer away from the substrate;
  • the second encapsulation layer is disposed on a side of the color conversion layer away from the substrate, and is used for encapsulation of the color conversion layer.
  • the display panel further includes: a cover plate, a first encapsulation layer, a second encapsulation layer, and a filling layer, wherein,
  • the first encapsulation layer is disposed on a side of the plurality of light emitting devices away from the substrate, and is used for encapsulating the plurality of light emitting devices;
  • the cover plate is arranged opposite to the base;
  • the color conversion layer is disposed on the side of the cover plate facing the substrate, and the second encapsulation layer is disposed on the side of the color conversion layer away from the cover plate, for performing the color conversion layer on the color conversion layer encapsulation;
  • the filling layer is disposed between the first encapsulation layer and the second encapsulation layer.
  • the embodiment of the present disclosure also provides a method for manufacturing a display panel, including:
  • each of the light-emitting devices includes: a first electrode, a plurality of light-emitting units and a second electrode arranged in sequence along a direction away from the base; wherein the first electrode is a reflective electrode , the second electrode is a transflective electrode, a microcavity structure is formed between the first electrode and the second electrode; the light-emitting unit includes a light-emitting layer, and in the same light-emitting device, at least two of the light-emitting layers The luminous colors are different; at least one of the light-emitting devices further includes a cavity length adjustment layer, and the cavity length adjustment layer is located between the first electrode and the light-emitting unit immediately adjacent to it;
  • the color conversion layer includes a plurality of wavelength conversion units, each of the wavelength conversion units corresponds to one of the light-emitting devices with the cavity length adjustment layer, and the wavelength conversion units are arranged on the light-emitting device
  • the light output side of the wavelength conversion unit is used to convert the light irradiated on the wavelength conversion unit and within its light absorption band into light of the target color and emit it;
  • At least one luminescence peak in the luminescence band of the light emitting device is less than or equal to the intrinsic luminescence peak of the corresponding wavelength conversion unit, and the light absorption band of the wavelength conversion unit overlaps with the light emission band of the light emitting device.
  • an embodiment of the present disclosure further provides a display device, including the above-mentioned display panel.
  • FIG. 1 is a schematic diagram of a display panel provided in some embodiments of the present disclosure.
  • FIG. 2 is a schematic diagram of a light emitting device provided in some embodiments of the present disclosure.
  • Fig. 3 is a schematic diagram of a light emitting device provided in other embodiments of the present disclosure.
  • FIG. 4 is a schematic diagram of a first electrode and a driving structure layer provided in some embodiments of the present disclosure.
  • Fig. 5 is a peak position map when the light-emitting device includes two blue light-emitting layers and one green light-emitting layer.
  • Fig. 6 is a graph showing the relationship between the overall brightness of the light emitting device and the thickness of the cavity length adjustment layer when the light emitting device includes two blue light emitting layers and one green light emitting layer.
  • Fig. 7 is a diagram of the absorption spectrum curve and the emission spectrum curve of the red wavelength conversion unit.
  • Fig. 8 is a graph of the absorption spectrum curve and the emission spectrum curve of the green wavelength conversion unit.
  • Fig. 9 is a peak position map when the light-emitting device includes a blue light-emitting layer and a yellow light-emitting layer.
  • Fig. 10 is a graph showing the relationship between the overall brightness of the light emitting device and the thickness of the cavity length adjustment layer when the light emitting device includes a blue light emitting layer and a yellow light emitting layer.
  • FIG. 11 is a schematic diagram of a display panel provided in other embodiments of the present disclosure.
  • FIG. 12 is a flow chart of a manufacturing method of a display panel provided in some embodiments of the present disclosure.
  • FIGS 13A to 13H are process schematic diagrams of step S10 in the manufacturing method of the display panel provided in some embodiments of the present disclosure.
  • Words such as “comprises” or “comprising” and similar terms mean that the elements or items listed before “comprising” or “comprising” include the elements or items listed after “comprising” or “comprising” and their equivalents, and do not exclude other component or object.
  • Words such as “connected” or “connected” are not limited to physical or mechanical connections, but may include electrical connections, whether direct or indirect. “Up”, “Down”, “Left”, “Right” and so on are only used to indicate the relative positional relationship. When the absolute position of the described object changes, the relative positional relationship may also change accordingly.
  • the display architecture combining quantum dot layer with OLED device can achieve higher color gamut, higher resolution and larger viewing angle.
  • the display panel includes a quantum dot layer and a plurality of blue OLED devices
  • the quantum dot layer includes a red quantum dot unit, a green quantum dot unit and a scattering unit, each red quantum dot unit, each green quantum dot unit and Each scattering unit corresponds to a blue OLED device
  • the red quantum dot unit emits red light when excited by blue light
  • the green quantum dot unit emits green light when excited by blue light
  • the scattering unit scatters blue light.
  • the overall brightness of the display panel is not high.
  • a BG device, a BGB device, and a BY device are used to replace the blue OLED device, wherein the BG device means that the light-emitting layer in the OLED device includes a blue light-emitting layer and a green light-emitting layer.
  • Light-emitting layer, BGB device means that the light-emitting layer in an OLED device includes two blue light-emitting layers and a green light-emitting layer between them;
  • BY device means that the light-emitting layer of an OLED device includes a blue light-emitting layer and a yellow light-emitting layer .
  • this arrangement will reduce the light utilization efficiency of the light emitting device, resulting in increased power consumption.
  • FIG. 1 is a schematic diagram of a display panel provided in some embodiments of the present disclosure. As shown in FIG. 1 , the display panel includes: a substrate 10 , a plurality of light emitting devices 23 disposed on the substrate 10 and a color conversion layer.
  • the substrate 10 may be a glass substrate, and may be a flexible substrate made of flexible materials such as polyimide (PI), so as to facilitate the realization of flexible display.
  • PI polyimide
  • the light emitting device 23 is disposed on the substrate 10 .
  • 2 is a schematic diagram of a light-emitting device provided in some embodiments of the present disclosure
  • FIG. 3 is a schematic diagram of a light-emitting device provided in other embodiments of the present disclosure. of: a first electrode 231 , a plurality of light emitting units 234 and a second electrode 232 .
  • the first electrode 231 can be used as an anode of the light emitting device 23
  • the second electrode 232 can be used as a cathode of the light emitting device 23 .
  • the light emitting unit 234 includes: a hole injection layer 2341, a hole transport layer 2342, a light emitting layer 2343, an electron injection layer 2344, and an electron transport layer 2345 arranged in sequence along a direction away from the substrate 10; optionally, the light emitting device 23 is an OLED device , at this time, the light-emitting layer 2343 uses an organic light-emitting material; or, the light-emitting device 23 is a QLED (Quantum Dot Light Emitting Diodes, Quantum Dot Light Emitting Diodes) device, and at this time, the light-emitting layer 2343 uses a quantum dot light-emitting material.
  • the light emitting device 23 is an OLED device , at this time, the light-emitting layer 2343 uses an organic light-emitting material; or, the light-emitting device 23 is a QLED (Quantum Dot Light Emitting Diodes, Quantum Dot Light Emitting Diodes) device, and at
  • At least two light emitting layers 2343 have different light emitting colors.
  • the first electrode 231, the plurality of light emitting units 234 and the second electrode 232 are "arranged in sequence" along the direction away from the substrate 10, which means that the plurality of light emitting units 234 are located on the side of the first electrode 231 away from the substrate 10, A plurality of light emitting units 234 are stacked in sequence, and the second electrode 232 is located on a side of the plurality of light emitting units 234 away from the substrate 10 , which does not mean that the first electrode 231 and the light emitting unit 234 must be in contact.
  • At least one of the plurality of light emitting devices 23 may further include: a cavity length adjustment layer 233 located between the first electrode 231 and the light emitting unit 234 closest to the first electrode 231 .
  • the first electrode 231 is a reflective electrode configured to reflect the light irradiated to the first electrode 231 ; the second electrode 232 is a transflective electrode configured to partially transmit and partially reflect the light irradiated to the second electrode 232 .
  • a microcavity structure is formed between the first electrode 231 and the second electrode 232, and the cavity length of the microcavity structure is related to the thickness of the cavity length adjustment layer 233; when the thickness of the cavity length adjustment layer 233 is larger, the cavity length of the microcavity structure When the thickness of the cavity length adjusting layer 233 is small, the cavity length of the microcavity structure is relatively short.
  • the light emitted by the light emitting layer 2343 of the plurality of light emitting units 234 oscillates multiple times in the microcavity structure, so that the light emitting device 23 as a whole emits light in a wavelength band corresponding to the cavity length of the microcavity structure.
  • the microcavity effect is an optical resonant cavity with a size on the order of micron or submicron, which uses the effects of reflection, total reflection, scattering or diffraction of light on the interface with discontinuous refractive index to confine light to the light-emitting device23
  • the microcavity effect has the effect of enhancing light of a certain wavelength and suppressing the emission of light of other wavelengths, thereby enhancing and narrowing the light of a specific wavelength.
  • the color conversion layer includes a plurality of wavelength conversion units 24 , each wavelength conversion unit 24 corresponds to a light emitting device 23 , and the light emitting device 23 corresponding to the wavelength conversion unit 24 includes the above cavity length adjustment layer 233 .
  • the wavelength conversion unit 24 is disposed on the light emitting side of the light emitting device 23 , and the light emitting side of the light emitting device 23 is the side of the second electrode 232 away from the first electrode 231 .
  • the wavelength conversion unit 24 is used to convert the light irradiated on the wavelength conversion unit 24 and within its light absorption band into light of a target color and emit it.
  • the wavelength of the light of the target color emitted by the wavelength conversion unit 24 is greater than the light absorption band of the light conversion unit 24 , that is, the wavelength conversion unit 24 converts the low-wavelength light into high-wavelength light.
  • the multiple wavelength conversion units 24 of the color conversion layer can be divided into multiple types, and the target colors of different types of wavelength conversion units 24 can be different, that is, different types of wavelength conversion units 24 receive When the light in the wavelength band, the color of the outgoing light is different.
  • At least one luminescence peak in the luminescence band of the light emitting device 23 is less than or equal to the intrinsic luminescence peak of the corresponding wavelength conversion unit 24 , and the light absorption band of the wavelength conversion unit 24 overlaps with the light emission band of the light emitting device 23 .
  • the light absorption band of the wavelength conversion unit 24 refers to the wavelength range of the light that can excite the wavelength conversion unit 24 to emit light.
  • the intrinsic luminescence peak of the wavelength conversion unit 24 refers to the wavelength of the light with the largest light intensity among the light emitted by the wavelength conversion unit 24 after being excited.
  • the wavelength conversion unit emits light in the red band (ie, 580nm-680nm) after being excited, and the intensity of the light with a wavelength of 630nm is the highest, so the intrinsic luminescence peak of the wavelength conversion unit is 630nm.
  • the luminescence peak in the luminescence wavelength band of the light-emitting device 23 refers to the wavelength corresponding to the peak position of the curve in the spectral curve of the light-emitting device 23 .
  • the spectrum curve of the light emitting device 23 may have two peaks, that is, two light emitting peaks.
  • at least one luminescence peak is smaller than or equal to the intrinsic luminescence peak of the wavelength conversion unit 24 .
  • the material of the wavelength conversion unit includes quantum dot materials.
  • Quantum dot materials are some extremely small semiconductor nanocrystals, which are called a new generation of fluorescent nanomaterials. High, narrow half-maximum width of the luminescence spectrum and other excellent characteristics, quantum dot materials can be excited by low-wavelength light, thereby emitting high-wavelength light.
  • a color filter layer may be provided on the side of the color conversion layer away from the substrate 10, the color filter layer includes a plurality of color filter parts 26r, 26b and 26g, and each wavelength conversion unit 24 corresponds to a color filter part , the color of the color filter part is the same as the color of the light emitted by the wavelength conversion unit 24 .
  • the light-emitting device 23 includes a plurality of light-emitting layers 2343, and at least two light-emitting layers 2343 have different luminous colors, and the light-emitting device 23 includes a cavity length adjustment layer 233, by setting the thickness of the cavity length adjustment layer 233 , the cavity length of the microcavity structure can be adjusted, so that at least one luminescence peak of the light emitting device 23 is less than or equal to the intrinsic luminescence peak of the wavelength conversion unit 24, and the light absorption band of the wavelength conversion unit 24 and the light emission band of the light emitting device 23 exist overlapping to ensure that the wavelength conversion unit 24 can be excited by the light emitted by the light emitting device 23 and improve the utilization rate of the light emitted by the light emitting device 23 .
  • the light not absorbed by the wavelength conversion unit 24 can directly pass through the color filter portion corresponding to the wavelength conversion unit 24 , thereby increasing the luminous brightness of the region where the wavelength conversion unit 24 is located.
  • the overlapping portion of the light absorption band of the wavelength conversion unit 24 and the light emission band of the light emitting device 23 accounts for 50% to 100% of the light emission band.
  • the light absorption band of the wavelength conversion unit 24 and the light emission band The overlapping portion of the luminous wavelength bands of the devices 23 accounts for 80%, or 90%, or 95%, or 100% of the luminous wavelength bands, so as to maximize the utilization rate of light emitted by the light emitting devices 23 .
  • a driving structure layer 20 is provided on the substrate 10, and the driving structure layer 20 includes a plurality of pixel driving circuits, the pixel driving circuits correspond to the light emitting devices 23 one by one, and the pixel driving circuits are used to provide the driving current for the light emitting devices 23 , to drive the light emitting device 23 to emit light.
  • FIG. 4 is a schematic diagram of the first electrode and the driving structure layer provided in some embodiments of the present disclosure.
  • the pixel driving circuit includes a plurality of thin film transistors 21 .
  • the TFT 21 includes a gate 211 , an active layer 212 , a source 213 and a drain 214 .
  • the active layer 212 is located between the gate 211 and the substrate 10 .
  • the material of the active layer 212 may include, for example, an inorganic semiconductor material (eg, polysilicon, amorphous silicon, etc.), an organic semiconductor material, an oxide semiconductor material.
  • the active layer 212 includes a channel portion and a source connection portion and a drain connection portion located on both sides of the channel portion, the source connection portion is connected to the source 213 of the thin film transistor 21, and the drain connection portion is connected to the TFT 21 The drain 214 is connected.
  • Both the source connection part and the drain connection part may be doped with an impurity (eg, N-type impurity or P-type impurity) higher than that of the channel part.
  • the channel part is directly opposite to the gate 211 of the thin film transistor 21. When the voltage signal loaded on the gate 211 reaches a certain value, a carrier path is formed in the channel part, forming a source 213 and a drain 214 of the thin film transistor 21. conduction.
  • the buffer layer BFL is disposed between the TFT 21 and the substrate 10 to prevent or reduce diffusion of metal atoms and/or impurities from the substrate 10 into the active layer 212 of the TFT 21 .
  • the buffer layer BFL may include an inorganic material such as silicon oxide, silicon nitride, and/or silicon oxynitride, and may be formed as a multi-layer or a single layer.
  • the gate insulating layer GI is disposed on the side of the active layer 212 away from the buffer layer BFL.
  • the material of the gate insulating layer GI may include silicon compound, metal oxide.
  • the material of the gate insulating layer GI includes silicon oxynitride, silicon oxide, silicon nitride, silicon oxycarbide, silicon carbide nitride, aluminum oxide, aluminum nitride, tantalum oxide, hafnium oxide, zirconium oxide, titanium oxide and the like.
  • the gate insulating layer GI may be a single layer or a multilayer.
  • the gate 211 of the thin film transistor 21 is disposed on the side of the gate insulating layer GI away from the buffer layer BFL.
  • the material of the gate 211 may include, for example, metal, metal alloy, metal nitride, conductive metal oxide, transparent conductive material, and the like.
  • the gate 211 may include gold, gold alloys, silver, silver alloys, aluminum, aluminum alloys, aluminum nitride, tungsten, tungsten nitride, copper, copper alloys, nickel, chromium, chromium nitride, molybdenum , Molybdenum alloys, titanium, titanium nitride, platinum, tantalum, tantalum nitride, neodymium, scandium, strontium ruthenium oxide, zinc oxide, tin oxide, indium oxide, gallium oxide, indium tin oxide, indium zinc oxide, etc.
  • the gate electrode 211 may have a single layer or multiple layers.
  • the interlayer insulating layer ILD is disposed on the side of the gate 211 away from the buffer layer BFL, and the material of the interlayer insulating layer ILD may include, for example, silicon compound, metal oxide, and the like. Specifically, the silicon compounds and metal oxides listed above can be selected, which will not be repeated here.
  • the source-drain conductive layer is disposed on a side of the interlayer insulating layer ILD away from the buffer layer BFL.
  • the source-drain conductive layer may include a source 213 and a drain 214 of each transistor, the source 213 is electrically connected to the source connection part, and the drain 214 is electrically connected to the drain connection part.
  • the source-drain conductive layer can include metal, alloy, metal nitride, conductive metal oxide, transparent conductive material, etc.
  • the source-drain conductive layer can be a single layer or multiple layers of metal, such as Mo/Al/Mo or Ti /Al/Ti.
  • the planarization layer PLN is arranged on the side of the source-drain conductive layer away from the buffer layer BFL, and the planarization layer PLN can be made of an organic insulating material, for example, the organic insulating material includes polyimide, epoxy Resin materials such as resin, acrylic, polyester, photoresist, polyacrylate, polyamide, siloxane, etc.
  • the first electrode 231 is disposed on the planarization layer PLN.
  • the pixel defining layer PDL is located on a side of the planarization layer PLN away from the buffer layer BFL, and the pixel defining layer PDL has a plurality of pixel openings.
  • the light emitting device 23 corresponds to the pixel opening one by one.
  • the light emitting device 23 includes: a first electrode 231, a cavity length adjustment layer 233, a plurality of light emitting units 234, and a second electrode 232.
  • the cavity length adjustment layer 233 is located on the first electrode 231 away from the substrate 10
  • a plurality of light emitting units 234 are located between the cavity length adjustment layer 233 and the second electrode 232 .
  • the first electrode 231 includes: a first transparent conductive layer 231a and a metal reflective layer 231b that are laminated to reduce the resistance of the first electrode 231 while providing reflection.
  • the metal reflective layer 231b is located on a side of the first transparent conductive layer 231a away from the substrate 10 .
  • the first transparent conductive layer 231a can be made of transparent conductive materials such as indium tin oxide (ITO), and the thickness of the first transparent conductive layer 231a is between between, for example
  • ITO indium tin oxide
  • the metal reflective layer 231b can be made of materials with good conductivity such as silver and aluminum, and its thickness is between between.
  • the cavity length adjustment layer 233 is made of a transparent conductive material, such as ITO. Wherein, the cavity length adjusting layer 233 is in contact with the first electrode 231 .
  • the cavity length adjusting layer 233 is made of a transparent insulating material, which may include silicon nitride, silicon oxide, silicon oxynitride, etc., and the side of the cavity length adjusting layer 233 away from the substrate 10 is further provided with The second transparent conductive layer (not shown), the second transparent conductive layer is electrically connected to the first electrode 231 .
  • the second transparent conductive layer can be made of transparent conductive materials such as ITO, and the thickness of the second transparent conductive layer is between between, for example
  • the material of the second electrode 232 includes magnesium and silver, the volume ratio of magnesium and silver is between 2:8-8:2, and the thickness of the second electrode 232 is 120nm-180nm; or, the second electrode 232 adopts Made of indium zinc oxide (IZO), its thickness is between 80nm and 500nm.
  • IZO indium zinc oxide
  • Each light emitting unit 234 includes: a hole injection layer 2341 , a hole transport layer 2342 , a light emitting layer 2343 , an electron transport layer 2344 , and an electron injection layer 2345 arranged in sequence along a direction away from the substrate 10 .
  • a charge generating layer 235 is disposed between two adjacent light emitting units 234 .
  • the number of light-emitting units 234 in each light-emitting device 23 is N, and N is an integer greater than 1
  • the light-emitting layer 2343 of the i-th light-emitting unit 234 of a plurality of light-emitting devices 23 is an integral structure; i is Integer, N>1, 0 ⁇ i ⁇ N.
  • the i-th light-emitting unit 234 refers to the i-th light-emitting unit 234 arranged along a direction away from the substrate 10 .
  • the hole injection layer 2341 of the i-th light-emitting unit 234 of the plurality of light-emitting devices 23 may have an integrated structure
  • the hole-transport layer 2342 of the i-th light-emitting unit 234 of the plurality of light-emitting devices 23 may have an integrated structure
  • the electron transport layer 2344 of the i-th light-emitting unit 234 of the light-emitting device 23 may have an integrated structure
  • the electron-injection layer 2345 of the i-th light-emitting unit 234 of the plurality of light-emitting devices 23 may have an integrated structure
  • the electrode 232 may be a one-piece structure.
  • the plurality of light-emitting units 234 in each light-emitting device 23 includes: two blue light-emitting units and a yellow light-emitting unit between them, that is, the plurality of light-emitting layers in each light-emitting device 23 Comprising: two blue light-emitting layers and a yellow light-emitting layer between them; or, the plurality of light-emitting units 234 of each light-emitting device 23 comprises: two blue light-emitting units and a green light-emitting unit between them , that is, the multiple light emitting layers 2343 in each light emitting unit 234 include: two blue light emitting layers and a green light emitting layer between them; or, the multiple light emitting units 234 in each light emitting device 23 include: The red light emitting unit, the green light emitting unit and the blue light emitting unit, that is, the plurality of light emitting layers in each light emitting device 23 include: a red light emitting layer, a green light emitting
  • the first encapsulation layer 25 is disposed on the side of the plurality of light emitting devices 23 away from the substrate 10, and is used to encapsulate the plurality of light emitting devices 23 to prevent water vapor and/or oxygen in the external environment from corroding the light emitting devices. twenty three.
  • the first encapsulation layer 25 includes a first inorganic encapsulation layer 25a, a second inorganic encapsulation layer 25b, and an organic encapsulation layer 25c, and the second inorganic encapsulation layer 25b is located on a side of the first inorganic encapsulation layer 25a away from the substrate 10.
  • the organic encapsulation layer 25c is located between the first inorganic encapsulation layer 25a and the second inorganic encapsulation layer 25b.
  • Both the first inorganic encapsulation layer 25 a and the second inorganic encapsulation layer 25 b can be made of highly dense inorganic materials such as silicon oxynitride (SiON), silicon oxide (SiOx), silicon nitride (SiNx), and the like.
  • the organic encapsulation layer 25c can be made of a polymer material containing a desiccant, or a polymer material that can block water vapor.
  • polymer resin is used to relieve the stress of the first inorganic encapsulation layer 25a and the second inorganic encapsulation layer 25b, and a water-absorbing material such as desiccant may be included to absorb water, oxygen and other substances intruding into the interior.
  • a water-absorbing material such as desiccant may be included to absorb water, oxygen and other substances intruding into the interior.
  • a light extraction layer and a protective layer may also be provided between each light emitting device 23 and the first encapsulation layer 25, and the light extraction layer may be made of a material with a relatively high refractive index to facilitate extraction The light emitted by the light emitting device 23.
  • the protective layer is disposed between the light extraction layer and the encapsulation layer, so as to prevent the manufacturing process of the encapsulation layer from affecting the light emitting device 23 .
  • the material of the protective layer may include lithium fluoride (Lif).
  • the color conversion layer and the containment structure layer 27 are disposed on the side of the first encapsulation layer 25 away from the substrate 10 .
  • the color conversion layer includes multiple wavelength conversion units 24 and multiple scattering units 241 .
  • the multiple wavelength conversion units 24 are divided into different types, and different types of wavelength conversion units 24 correspond to different target colors.
  • the multiple wavelength conversion units 24 include a red wavelength conversion unit 24r and a green wavelength conversion unit 24g, the color of light emitted by the red wavelength conversion unit 24r is red, and the color of light emitted by the green wavelength conversion unit 24g is green.
  • each repeating group includes: a red wavelength conversion unit 24r, a green wavelength conversion unit 24g and a scattering unit 241.
  • Each red wavelength conversion unit 24r , each green wavelength conversion unit 24g and each scattering unit 241 corresponds to one light emitting device 23 .
  • Each light emitting device 23 corresponds to a wavelength conversion unit or a scattering unit 241 .
  • the material of the red wavelength conversion unit 24r may include red quantum dot material
  • the material of the green wavelength conversion unit 24g may include green quantum dot material
  • the material of the scattering unit 241 may include scattering particles.
  • Quantum dot material can be one or more in ZnCdSe2, CdSe, CdTe, InP, InAs; Group IV elements, Group IV compounds and/or combinations thereof.
  • the accommodating structure layer 27 has a plurality of accommodating grooves, and each accommodating groove is used to accommodate a wavelength conversion unit 24 or a scattering unit 241 .
  • the second encapsulation layer 28 is disposed on the side of the color conversion layer away from the substrate 10 for encapsulation of the color conversion layer.
  • the color filter layer and the black matrix BM are arranged on the side of the color conversion layer away from the substrate 10.
  • the color filter layer includes a plurality of color filter parts 26r, 26b and 26g, and each scattering unit 241 and each wavelength conversion unit 24 correspond to one
  • the color filter part 26r/26b/26g the color of the color filter part is the same as the color of the corresponding scattering unit 241 or the wavelength conversion unit 24.
  • the color filter part 26r corresponds to the red wavelength conversion unit
  • the color filter part 26g corresponds to the green wavelength conversion unit
  • the scattering unit 241 corresponds to the color filter part 26b
  • any two adjacent color filter parts are black matrix BM spaced apart.
  • different types of wavelength conversion units 24 correspond to different light emitting wavelength bands of the light emitting devices 23 .
  • the light-emitting wavelength bands of the light-emitting device 23 corresponding to the red wavelength conversion unit 24r include [380nm, 480nm]
  • the light-emitting wavelength bands of the light-emitting device 23 corresponding to the green wavelength conversion unit 24g include [380nm, 580nm].
  • Each scattering unit 241 corresponds to one light emitting device 23, and the light emitting wavelength band of the light emitting device 23 corresponding to the scattering unit 241 includes [380nm, 480nm].
  • the cavity length adjustment layer 233 corresponding to different wavelength conversion units 24 may have different thicknesses, so that the light emitting devices 23 corresponding to different wavelength conversion units 24 may have different light emitting wavelength bands.
  • its corresponding light emitting device 23 may include the above-mentioned cavity length adjusting layer 233, or may not include the above-mentioned cavity length adjusting layer 233.
  • the thickness of the cavity length adjustment layer 233 can be adjusted so that the light-emitting wavelength band of the light-emitting device 23 corresponding to the scattering unit 241 includes [380nm, 480nm], for example, Make the light-emitting device 23 corresponding to the scattering unit 241 emit blue light; when the light-emitting device 23 corresponding to the scattering unit 241 does not include the cavity length adjustment layer 233, the light emitted by the light-emitting device 23 can also include blue light in the [380nm, 480nm] band In this case, the color filter part 26b corresponding to the scattering unit 241 can filter out the light of other wavelength bands. Moreover, when the light emitting device 23 does not include the cavity length adjustment layer 233 , the manufacturing process of the light emitting device 23 can be simplified.
  • the multiple light emitting layers in the light emitting device 23 include: two blue light emitting layers and a green light emitting layer located between the two blue light emitting layers.
  • Fig. 5 is a peak position map when the light-emitting device includes two blue light-emitting layers and one green light-emitting layer, the horizontal axis represents the wavelength, and the vertical axis represents the normalized light intensity value.
  • Each curve corresponds to a cavity length adjusting layer 233 with a thickness, and each curve represents the intensity of light emitted from the light emitting device 23 as a function of wavelength when the cavity length adjusting layer 233 reaches a corresponding thickness.
  • the light emitting device 23 when the thickness of the cavity length adjusting layer 233 is within the range of [50nm, 60nm], the light emitting device 23 has a light emitting wavelength band of [440nm, 580nm] and a light emitting peak within the range of [460nm, 530nm].
  • the light-emitting wavelength band of the light-emitting device 23 is [440nm, 580nm]
  • the spectral curve corresponding to the light-emitting device 23 has two peaks, that is, the light-emitting device 23 has two light-emitting peaks, one of which is The luminescence peak is in the range of [450nm, 460nm], and the other luminescence peak is in the range of [535nm, 545nm].
  • the light emitting wavelength band of the light emitting device 23 is [440nm, 580nm]
  • the spectral curve corresponding to the light emitting device 23 has two peaks, that is, the light emitting device 23 has two light emitting peaks, respectively at [450nm , 460nm] range, [545nm, 555nm] range.
  • the light-emitting wavelength bands of the light-emitting device 23 include [435nm, 480nm] and [520nm, 580nm], the first light-emitting peak is in the range of [445nm, 455nm], and the second light-emitting peak In the range of [555nm, 560nm].
  • the light emission wavelength band of the light emitting device 23 is [450nm, 480nm], and the light emission peak is in the range of [445nm, 455nm].
  • the light emission wavelength band of the light emitting device 23 is [450 nm, 480 nm], and the light emission peak is in the range of [455 nm, 465 nm].
  • the thickness of the cavity length adjustment layer 233 is 120nm, the light emission wavelength band of the light emitting device 23 is [445nm, 480nm], and the light emission peak is in the range of [465nm, 470nm].
  • the cavity length adjustment layer 233 has a thickness of 130nm, the light emitting device 23 has a light emitting wavelength band of [455nm, 530nm] and a light emitting peak within the range of [470nm, 480nm].
  • the thickness of the cavity length adjustment layer 233 is 140nm, the light emission wavelength band of the light emitting device 23 is [455nm, 540nm], and the light emission peak is in the range of [480nm, 490nm].
  • Fig. 6 is a graph showing the relationship between the overall brightness of the light emitting device and the thickness of the cavity length adjustment layer when the light emitting device includes two blue light emitting layers and one green light emitting layer.
  • the horizontal axis represents the wavelength
  • the vertical axis represents the luminance.
  • FIG. 7 is an absorption spectrum curve and an emission spectrum curve of a red wavelength conversion unit
  • FIG. 8 is an absorption spectrum curve and an emission spectrum curve of a green wavelength conversion unit.
  • the horizontal axis represents the wavelength
  • the vertical axis represents the light intensity. It can be seen from FIG.
  • the light absorption band of the red wavelength conversion unit 24r is 380nm-650nm, and the intrinsic luminescence peak is 625nm; it can be seen from FIG. 8 that the light absorption band of the green wavelength conversion unit 24g is 380nm-540nm, and the intrinsic luminescence peak is 525nm.
  • the cavity length adjustment layer 233 in the light emitting device 23 corresponding to the red wavelength conversion unit 24r can be The thickness is set within the range of [100nm, 120nm], for example, 100nm or 110nm, so that the light-emitting wavelength band of the light-emitting device 23 corresponding to the red wavelength conversion unit 24r includes [380nm, 480nm], that is, the outgoing light includes blue light, and the light-emitting peak is at Within the range of [450nm, 470nm]; the thickness of the cavity length adjustment layer 233 in the light emitting device 23 corresponding to the green wavelength conversion unit 24g is set within the range of [70nm, 90nm], for example, 70nm or 80nm or 90nm, so that the green wavelength The output light of the light emitting device 23 corresponding to the conversion unit 24g is within the range of [380nm, 5
  • the thickness of the cavity length adjusting layer 233 in the light emitting device 23 corresponding to the scattering unit 241 can be set within the range of [100nm, 120nm], for example, 100nm Or 110nm or 120nm, so that the emitted light of the light emitting device 23 corresponding to the scattering unit 241 is within the range of [380nm, 480nm], that is, blue light is emitted.
  • At least one luminescence peak of the light-emitting device 23 corresponding to the wavelength conversion unit 24 is less than or equal to the intrinsic luminescence peak of the wavelength conversion unit 24, and the light absorption band of the wavelength conversion unit 24 overlaps with the light-emitting band of the corresponding light-emitting device 23. At the same time, it can also ensure that the brightness of the light emitting device 23 is relatively high.
  • the multiple light emitting layers 2343 in the light emitting device 23 include: a blue light emitting layer and a yellow light emitting layer, for example, the yellow light emitting layer is located on the side of the blue light emitting layer away from the substrate 10 .
  • Fig. 9 is a peak position map when the light-emitting device includes a blue light-emitting layer and a yellow light-emitting layer, the horizontal axis in Fig. 9 represents the wavelength, and the vertical axis represents the normalized light intensity value.
  • the light emitting wavelength band of the light emitting device 23 is [400nm, 480nm]; when the thickness of the cavity length adjusting layer 233 is 110nm, the light emitting wave band of the light emitting device 23 is [420nm, 480nm]; when the thickness of the cavity length adjustment layer 233 is 120nm, the light-emitting wavelength band of the light emitting device 23 is [430nm, 480nm]; when the thickness of the cavity length adjustment layer 233 is in the range of [130nm, 150nm], the light emitting device The luminescent wavelength band of 23 is [430nm, 580nm]; when the thickness of the cavity length adjustment layer 233 is within the range of (150nm, 170nm), the luminous wavelength band of the light emitting device 23 includes: [380nm, 480nm] and [580nm, 680nm].
  • Figure 10 is a graph showing the relationship between the overall brightness of the light emitting device and the thickness of the cavity length adjustment layer when the light emitting device includes a blue light emitting layer and a yellow light emitting layer, the horizontal axis in Figure 10 represents the thickness of the cavity length adjustment layer, The vertical axis represents the light output brightness of the light emitting device.
  • the thickness of the cavity length adjustment layer 233 in the light-emitting device 23 corresponding to the red wavelength conversion unit 24r can be set to In the range of [150nm, 170nm], such as 150nm or 160nm or 170nm, so that the light-emitting wavelength band of the light-emitting device 23 corresponding to the red wavelength conversion unit 24r includes: [380nm, 480nm] waveband and [580nm, 680nm] waveband, that is, The outgoing light includes blue light and red light, and the luminous peak value of the light emitting device 23 corresponding to the red wavelength conversion unit 24r is less than 580nm; the thickness of the cavity length adjustment layer 233 in the light emitting device 23 corresponding to the green wavelength conversion unit 24g is set at [130nm, 150nm), such as 130nm or 135nm or 140nm or 145n
  • the thickness of the cavity length adjustment layer 233 in the light emitting device 23 corresponding to the scattering unit 241 can be set within the range of [100nm, 120nm], for example, 100nm Or 110nm or 120nm, so that the wavelength of the outgoing light of the light emitting device 23 corresponding to the scattering unit 241 is within the range of [380nm, 480nm], that is, the outgoing light is blue light.
  • At least one luminescence peak of the light-emitting device 23 corresponding to the wavelength conversion unit is less than or equal to the intrinsic luminescence peak of the wavelength conversion unit 24, and the light absorption band of the wavelength conversion unit overlaps with the light-emitting band of the corresponding light-emitting device 23, At the same time, it can also ensure that the brightness of the light emitting device 23 is relatively high.
  • FIG. 11 is a schematic diagram of a display panel provided in another embodiment of the present disclosure.
  • the display panel shown in FIG. 11 is similar to the display panel in FIG. 1 , the only difference is that the display panel in FIG. 1 adopts an On-EL structure ( That is, the color conversion layer is directly fabricated on the first encapsulation layer 25), and the display panel in FIG. Setting; the color conversion layer is disposed on the side of the cover plate 30 facing the substrate 10 , and the second encapsulation layer 28 is disposed on the side of the color conversion layer away from the cover plate 30 for encapsulating the color conversion layer.
  • the first encapsulation layer 25 and the second encapsulation layer 28 are connected through a filling layer 29 therebetween.
  • Fig. 12 is a flow chart of a manufacturing method of a display panel provided in some embodiments of the present disclosure.
  • the manufacturing method is used to manufacture the display panel in the above embodiments. As shown in Fig. 12 , the manufacturing method includes:
  • each of the light emitting devices includes: a first electrode, a plurality of light emitting units and a second electrode arranged in sequence along a direction away from the substrate; wherein the first electrode is The reflective electrode, the second electrode is a transflective electrode, a microcavity structure is formed between the first electrode and the second electrode, and the cavity length of the microcavity structure is related to the thickness of the cavity length adjustment layer; the The light-emitting unit includes a light-emitting layer, and the light emitted by the light-emitting layers of the plurality of light-emitting units oscillates multiple times in the microcavity structure, so that the light-emitting device emits a waveband corresponding to the cavity length of the microcavity structure light; in the same light-emitting device, at least two of the light-emitting layers have different light-emitting colors. At least one of the light emitting devices further includes a cavity length adjustment layer, and the first electrode is The reflective electrode, the second electrode is a transflect
  • the color conversion layer includes a plurality of wavelength conversion units, each of the wavelength conversion units corresponds to one of the light-emitting devices with the cavity length adjustment layer, and the wavelength conversion units are arranged on the The light-emitting side of the light-emitting device is used to convert the light irradiated on the wavelength conversion unit and within its light absorption band into light of a target color and emit it.
  • At least one luminescence peak in the luminescence band of the light emitting device is less than or equal to the intrinsic luminescence peak of the corresponding wavelength conversion unit, and the light absorption band of the wavelength conversion unit overlaps with the light emission band of the light emitting device.
  • step S10 it may also include: forming a driving structure layer on the substrate, the driving structure layer including: a plurality of pixel circuits, each pixel circuit including a plurality of thin film transistors, and the pixel circuits correspond to the light-emitting devices one by one. To provide driving current for corresponding light emitting devices.
  • the plurality of light emitting devices includes: a plurality of first light emitting devices, a plurality of second light emitting devices, and a plurality of third light emitting devices; the cavity length adjustment layer in the first light emitting devices has a thickness of the first Thickness, the thickness of the cavity length adjustment layer in the second light emitting device is the second thickness, the thickness of the cavity length adjustment layer in the third light emitting device is the third thickness, the second thickness is greater than the first thickness, the third thickness is greater than the second thickness.
  • step S10 in the manufacturing method of the display panel provided in some embodiments of the present disclosure. As shown in FIG. 13A to FIG. 13H , step S10 specifically includes:
  • step S13 may include:
  • S133 as shown in FIG. 13B , form a second cavity length adjusting film layer 233b with a fourth thickness, a part of the second cavity length adjusting film layer 233b is located in the first through hole V1, and the other part is located in the first photoresist layer PR1 away from the surface of the substrate 10.
  • step S13 proceed to step S14: at the position corresponding to each third light emitting device, form a third cavity length adjusting sub-layer with a fifth thickness.
  • the fifth thickness is the difference between the third thickness and the first thickness.
  • step S14 may include:
  • step S122 is performed: as shown in FIG. 13G , patterning is performed on the first cavity length adjusting film layer 233a to form a first cavity length adjusting sub-layer 2331 of a first thickness at the position of each light emitting device.
  • step S121 and step S122 are the steps of making the first cavity length adjustment sub-layer 2331, the first cavity length adjustment sub-layer 2331 at the position of the first light-emitting device is used as the cavity length adjustment layer 233 of the first light-emitting device; the second light-emitting device
  • the first cavity length adjusting sublayer 2331 and the second cavity length adjusting sublayer 2332 at the position of the device together serve as the cavity length adjusting layer 233 of the second light emitting device;
  • the third cavity length adjusting sublayer 2333 collectively serves as the cavity length adjusting layer 233 of the third light emitting device.
  • step S15 is performed: performing a photolithographic patterning process on the conductive material layer 231a, so as to form the first electrode 231 of each light emitting device, as shown in FIG. 13H .
  • step S13 step S122 is performed before step S13.
  • step S15 is performed between step S11 and step S121.
  • its manufacturing method may further include: after forming a plurality of light emitting devices and before forming a color conversion layer, forming a first encapsulation layer; after forming a color conversion layer, sequentially forming a second packaging layer Two encapsulation layer, color film layer.
  • a first encapsulation layer can be formed on the base where multiple light emitting devices are formed, and a color filter layer, The color conversion layer, the second encapsulation layer located on the side of the color conversion layer away from the cover plate, after that, the base of the light-emitting device formed and the cover plate forming the color conversion layer are arranged in a box, and the first encapsulation layer and the first encapsulation layer are formed by using the filling layer The second encapsulation layer is connected.
  • Embodiments of the present disclosure also provide a display device, which includes the display panel in the above embodiments.
  • the display device can be any product or component with a display function such as a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, a navigator, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

公开了一种显示面板及其制作方法、显示装置,显示面板包括:设置在基底上的多个发光器件,每个所述发光器件包括沿远离所述基底的方向依次设置的:第一电极、多个发光单元和第二电极;第一电极与第二电极之间形成微腔结构,所述发光单元包括发光层;在同一个发光器件中,至少两个所述发光层的发光颜色不同;至少一个发光器件还包括腔长调节层;色转换层,包括多个波长转换单元,每个波长转换单元对应一个具有所述腔长调节层的发光器件,所述波长转换单元设置在所述发光器件的出光侧;其中,所述发光器件的发光波段中的至少一个发光峰值小于或等于相应的波长转换单元的本征发光峰,所述波长转换单元的光吸收波段与发光器件的发光波段存在交叠。

Description

显示面板及其制作方法、显示装置 技术领域
本公开涉及显示技术领域,具体涉及一种显示面板及其制作方法、显示装置。
背景技术
量子点层与OLED(Organic Light-Emitting Diode,有机发光二极管)相结合的显示架构,可以实现更高的色域、更高的分辨率和更大的视角,适合于大尺寸的自发光显示技术中。
发明内容
本公开提出了一种显示面板及其制作方法、显示装置。
第一方面,本公开提供一种显示面板,包括:
设置在基底上的多个发光器件,每个所述发光器件包括沿远离所述基底的方向依次设置的:第一电极、多个发光单元和第二电极;其中,所述第一电极为反射电极,第二电极为透反电极,所述第一电极与所述第二电极之间形成微腔结构;所述发光单元包括发光层,在同一个发光器件中,至少两个所述发光层的发光颜色不同;至少一个所述发光器件还包括腔长调节层,所述腔长调节层位于所述第一电极与其紧邻的发光单元之间;
色转换层,包括多个波长转换单元,每个所述波长转换单元对应一个具有所述腔长调节层的所述发光器件,所述波长转换单元设置在所述发光器件的出光侧,用于将照射至该波长转换单元且处于其光吸收波段内的光线转换为目标颜色的光并射出;
其中,所述发光器件的发光波段中的至少一个发光峰值小于或等于相应的波长转换单元的本征发光峰,所述波长转换单元的光吸收波段与 所述发光器件的发光波段存在交叠。
在一些实施例中,所述波长转换单元的光吸收波段与所述发光器件的发光波段的交叠部分占所述发光波段的50%~100%。
在一些实施例中,所述色转换层的多个波长转换单元分为多种,不同种的波长转换单元对应的目标颜色不同,且不同种的波长转换单元所对应的发光器件的发光波段不同。
在一些实施例中,多种波长转换单元包括红色波长转换单元和绿色波长转换单元,所述红色波长转换单元对应的目标颜色为红色,所述绿色波长转换单元对应的目标颜色为绿色,
所述红色波长转换单元对应的发光器件的发光波段包括[380nm,480nm];所述绿色波长转换单元对应的发光器件的发光波段包括[380nm,580nm];
所述色转换层还包括多个散射单元,每个散射单元对应一个发光器件,所述散射单元对应的发光器件的发光波段包括[380nm,480nm]。
在一些实施例中,不同种的波长转换单元对应的所述腔长调节层的厚度不同。
在一些实施例中,每个发光器件中的多个发光层包括:两个蓝色发光层和位于两个所述蓝色发光层之间的绿色发光层;
所述红色波长转换单元对应的发光器件中的腔长调节层的厚度在[100nm,120nm]范围内,以使所述红色波长转换单元对应的发光器件的发光波段包括[380nm,480nm];
所述绿色波长转换单元对应的发光器件中的腔长调节层的厚度在[70nm,90nm]范围内,以使所述绿色波长转换单元对应的发光器件的发光波段包括[380nm,580nm]。
在一些实施例中,每个发光器件中的多个发光层包括:蓝色发光层和黄色发光层;
所述红色波长转换单元对应的发光器件中的腔长调节层的厚度在[150nm,170nm]范围内,以使所述红色波长转换单元对应的发光器件的发光波段包括:[380nm,480nm]和[580nm,680nm];
所述绿色波长转换单元对应的发光器件中的腔长调节层的厚度在[130nm,150nm)范围内,以使所述绿色波长转换单元对应的发光器件的发光波段包括[380nm,580nm]。
在一些实施例中,所述波长转换单元的材料包括量子点材料。
在一些实施例中,所述第一电极包括:第一透明导电层和金属反射层,所述金属反射层位于所述第一透明导电层远离所述基底的一侧。
在一些实施例中,所述腔长调节层采用透明导电材料制成;
或者,所述腔长调节层采用透明绝缘材料制成,所述腔长调节层远离所述基底的一侧还设置有第二透明导电层,所述第二透明导电层在所述基底上的正投影超出所述腔长调节层在所述基底上的正投影,所述第二透明导电层超出所述腔长调节层的部分与所述第一电极电连接。
在一些实施例中,所述显示面板还包括:彩膜层,所述彩膜层设置在所述色转换层远离所述基底的一侧,所述彩膜层包括多个彩色滤光部,每个所述散射单元和每个所述波长转换单元均对应一个所述彩色滤光部,所述彩色滤光部的颜色与其相对应的散射部或波长转换单元的出光颜色相同。
在一些实施例中,每个发光器件包括沿远离所述基底方向依次设置的N个所述发光单元,其中,多个所述发光器件的第i个发光单元的发光层为一体结构;N、i均为整数,N>1,0<i<N。
在一些实施例中,同一个发光器件中的每相邻两个所述发光单元之间设置有电荷生成层。
在一些实施例中,所述显示面板还包括:第一封装层和第二封装层;其中,
所述第一封装层设置在多个发光器件远离所述基底的一侧,用于对多个所述发光器件进行封装;
所述色转换层设置在所述第一封装层远离所述基底的一侧;
所述第二封装层设置在所述色转换层远离所述基底的一侧,用于对所述色转换层进行封装。
在一些实施例中,所述显示面板还包括:盖板、第一封装层、第二封装层和填充层,其中,
所述第一封装层设置在多个发光器件远离所述基底的一侧,用于对多个所述发光器件进行封装;
所述盖板与所述基底相对设置;
所述色转换层设置在所述盖板朝向所述基底的一侧,所述第二封装层设置在所述色转换层远离所述盖板的一侧,用于对所述色转换层进行封装;
所述填充层设置在所述第一封装层与所述第二封装层之间。
第二方面,本公开实施例还提供一种显示面板的制作方法,包括:
在基底上形成多个发光器件,每个所述发光器件包括沿远离所述基底的方向依次设置的:第一电极、多个发光单元和第二电极;其中,所述第一电极为反射电极,第二电极为透反电极,所述第一电极与所述第二电极之间形成微腔结构;所述发光单元包括发光层,在同一个发光器件中,至少两个所述发光层的发光颜色不同;至少一个所述发光器件还包括腔长调节层,所述腔长调节层位于所述第一电极与其紧邻的发光单元之间;
形成色转换层,所述色转换层包括多个波长转换单元,每个所述波长转换单元对应一个具有所述腔长调节层的所述发光器件,所述波长转换单元设置在所述发光器件的出光侧,用于将照射至该波长转换单元且处于其光吸收波段内的光线转换为目标颜色的光并射出;
其中,所述发光器件的发光波段中的至少一个发光峰值小于或等于相应的波长转换单元的本征发光峰,所述波长转换单元的光吸收波段与所述发光器件的发光波段存在交叠。
第三方面,本公开实施例还提供一种显示装置,包括上述的显示面板。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1为本公开的一些实施例中提供的显示面板的示意图。
图2为本公开的一些实施例中提供的发光器件的示意图。
图3为本公开该的另一些实施例中提供的发光器件的示意图。
图4为本公开的一些实施例中提供的第一电极与驱动结构层的示意图。
图5为发光器件包括两层蓝色发光层和一层绿色发光层时的峰位图。
图6为发光器件包括两层蓝色发光层和一层绿色发光层时,发光器件的整体亮度与腔长调整层厚度的关系曲线图。
图7为红色波长转换单元的吸收光谱曲线和发射光谱曲线图。
图8为绿色波长转换单元的吸收光谱曲线和发射光谱曲线图。
图9为发光器件包括一层蓝色发光层和一层黄色发光层时的峰位图。
图10为发光器件包括一层蓝色发光层和一层黄色发光层时,发光器件的整体亮度与腔长调整层的厚度关系曲线图。
图11为本公开的另一些实施例中提供的显示面板的示意图。
图12为本公开的一些实施例中提供的显示面板的制作方法流程图。
图13A至图13H为本公开的一些实施例中提供的显示面板的制作方法中步骤S10的过程示意图。
具体实施方式
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
这里用于描述本公开的实施例的术语并非旨在限制和/或限定本公开的范围。例如,除非另外定义,本公开使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。应该理解的是,本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。除非上下文另外清楚地指出,否则单数形式“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同,并不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则所述相对位置关系也可能相应地 改变。
在下面的描述中,当元件或层被称作“在”另一元件或层“上”或“连接到”另一元件或层时,该元件或层可以直接在所述另一元件或层上、直接连接到所述另一元件或层,或者可以存在中间元件或中间层。然而,当元件或层被称作“直接在”另一元件或层“上”、“直接连接到”另一元件或层时,不存在中间元件或中间层。术语“和/或”包括一个或更多个相关列出项的任意和全部组合。
量子点层与OLED器件相结合的显示架构可以实现更高的色域、更高的分辨率和更大的视角。在一些示例中,显示面板包括量子点层和多个蓝色OLED器件,量子点层包括红色量子点单元、绿色量子点单元和散射单元,每个红色量子点单元、每个绿色量子点单元和每个散射单元均对应一个蓝色OLED器件,红色量子点单元在蓝光激发下发射红光,绿色量子点单元在蓝光激发下发射绿光,散射单元对蓝光进行散射。但是,由于量子点单元的光转换效率较低,导致显示面板整体的亮度不高。为了提高显示面板的整体亮度,在另一些示例中,采用BG器件、BGB器件、BY器件来代替蓝色OLED器件,其中,BG器件是指,OLED器件中的发光层包括蓝色发光层和绿色发光层,BGB器件是指,OLED器件中的发光层包括两层蓝色发光层和二者之间的绿色发光层;BY器件是指,OLED器件的发光层包括蓝色发光层和黄色发光层。但是,这种设置方式会降低发光器件的光线利用率,导致功耗上升。
图1为本公开的一些实施例中提供的显示面板的示意图,如图1所示,显示面板包括:基底10、设置在基底10上的多个发光器件23以及色转换层。
其中,基底10可以为玻璃基底,可以为诸如聚酰亚胺(PI)等柔性材料制作的柔性基底,从而有利于实现柔性显示。
发光器件23设置在基底10上。图2为本公开的一些实施例中提供的 发光器件的示意图,图3为本公开该的另一些实施例中提供的发光器件的示意图,每个发光器件23包括沿远离基底10的方向依次设置的:第一电极231、多个发光单元234和第二电极232。其中,第一电极231可以作为发光器件23的阳极,第二电极232可以作为发光器件23的阴极。发光单元234包括:沿远离基底10的方向依次设置的空穴注入层2341、空穴传输层2342、发光层2343、电子注入层2344、电子传输层2345;可选地,发光器件23为OLED器件,此时,发光层2343采用有机发光材料;或者,发光器件23为QLED(Quantum Dot Light Emitting Diodes,量子点发光二极管)器件,此时,发光层2343采用量子点发光材料。在同一个发光器件23中,至少两个发光层2343的发光颜色不同。需要说明的是,第一电极231、多个发光单元234和第二电极232沿远离基底10的方向“依次设置”是指,多个发光单元234位于第一电极231远离基底10的一侧,多个发光单元234依次叠置,第二电极232位于多个发光单元234远离基底10的一侧,并不表示第一电极231与发光单元234必定接触。
例如,多个发光器件23中的至少一个还可以包括:腔长调节层233,腔长调节层233位于第一电极231以及最靠近该第一电极231的发光单元234之间。
第一电极231为反射电极,配置为对照射至第一电极231的光线进行反射;第二电极232为透反电极,配置为对照射至第二电极232的光线部分透射和部分反射。第一电极231与第二电极232之间形成微腔结构,微腔结构的腔长与腔长调节层233的厚度相关;当腔长调节层233的厚度较大时,则微腔结构的腔长较长,当腔长调节层233的厚度较小时,则微腔结构的腔长较短。多个发光单元234的发光层2343所发出的光在微腔结构内发生多次振荡,以使发光器件23整体出射与微腔结构的腔长对应的波段的光线。
微腔效应是一种尺寸在微米量级或者亚微米量级的光学谐振腔,它利 用光线在折射率不连续的界面上反射、全反射、散射或衍射等效应,将光限制在发光器件23的微腔内,只有特殊波长的光才能够发射出,因此,微腔效应具有增强某一波长的光、同时抑制其他波长的光出射的作用,从而增强并收窄特定波长的光。
色转换层包括多个波长转换单元24,每个波长转换单元24对应一个发光器件23,且波长转换单元24所对应的发光器件23包括上述腔长调节层233。波长转换单元24设置在发光器件23的出光侧,发光器件23的出光侧即第二电极232远离第一电极231的一侧。波长转换单元24用于将照射至该波长转换单元24且处于其光吸收波段内的光线转换为目标颜色的光并射出。其中,波长转换单元24所射出的目标颜色的光线的波长大于光转换单元24的光吸收波段,即,波长转换单元24将低波长的光转换为高波长的光。需要说明的是,色转换层的多个波长转换单元24可以分为多种,不同种的波长转换单元24的目标颜色可以不同,即,不同种的波长转换单元24接收到位于各自的光吸收波段内的光线时,出射光线的颜色不同。
其中,发光器件23的发光波段中的至少一个发光峰值小于或等于相应的波长转换单元24的本征发光峰,波长转换单元24的光吸收波段与发光器件23的发光波段存在交叠。
波长转换单元24的光吸收波段是指,能够激发波长转换单元24发光的光线的波长范围。波长转换单元24的本征发光峰是指,波长转换单元24受到激发所发出的光线中,光强最大的光线的波长。例如,波长转换单元在受到激发后发出红色波段(即580nm~680nm)的光,且波长为630nm的光线强度最大,则波长转换单元的本征发光峰为630nm。
需要说明的是,发光器件23的发光波段中的发光峰值是指,发光器件23的光谱曲线中,与曲线的波峰位置所对应的波长。其中,发光器件23的光谱曲线可能会出现两个波峰,即两个发光峰值。其中,至少一个发光波峰小于或等于波长转换单元24的本征发光峰。
在一些实施例中,波长转换单元的材料包括量子点材料,量子点材料是一些极其微小的半导体纳米晶体,被称为新一代荧光纳米材料,其具有发光颜色随尺寸变化可调、光转换率高、发光光谱半峰宽窄等优异特性,量子点材料可以被低波长的光所激发,从而发出高波长的光。
在一些实施例中,色转换层远离基底10的一侧还可以设置彩膜层,彩膜层包括多个彩色滤光部26r、26b和26g,每个波长转换单元24对应一个彩色滤光部,彩色滤光部的颜色与波长转换单元24的出光颜色相同。
在本公开实施例中,发光器件23包括多个发光层2343,且至少两个发光层2343的发光颜色不同,并且,发光器件23包括腔长调节层233,通过设置腔长调节层233的厚度,可以调节微腔结构的腔长,从而使发光器件23的至少一个发光峰值小于或等于波长转换单元24的本征发光峰,且波长转换单元24的光吸收波段与发光器件23的发光波段存在交叠,以保证波长转换单元24能够受到发光器件23的出射光激发,并提高发光器件23出射光线的利用率。而未被波长转换单元24吸收的光线可以直接穿过与波长转换单元24对应的彩色滤光部,进而提高波长转换单元24所在区域的发光亮度。
在一些实施例中,波长转换单元24的光吸收波段与发光器件23的发光波段的交叠部分占所述发光波段的50%~100%,优选地,波长转换单元24的光吸收波段与发光器件23的发光波段的交叠部分占发光波段的80%,或90%,或95%,或100%,从而尽量提高发光器件23出射光线的利用率。
下面结合附图对本公开实施例中的显示面板进行具体介绍。
如图1所示,基底10上设置有驱动结构层20,驱动结构层20包括多个像素驱动电路,像素驱动电路与发光器件23一一对应,像素驱动电路用于为发光器件23提供驱动电流,以驱动发光器件23发光。图4为本公开的一些实施例中提供的第一电极与驱动结构层的示意图,例如,像素驱动电路包括多个薄膜晶体管21。薄膜晶体管21包括栅极211、有源层212、 源极213和漏极214,以薄膜晶体管21采用顶栅型薄膜晶体管为例,有源层212位于栅极211与基底10之间。有源层212的材料可以包括例如无机半导体材料(例如,多晶硅、非晶硅等)、有机半导体材料、氧化物半导体材料。有源层212包括沟道部和位于该沟道部两侧的源极连接部和漏极连接部,源极连接部与薄膜晶体管21的源极213连接,漏极连接部与薄膜晶体管21的漏极214连接。源极连接部和漏极连接部均可以掺杂有比沟道部的杂质浓度高的杂质(例如,N型杂质或P型杂质)。沟道部与薄膜晶体管21的栅极211正对,当栅极211加载的电压信号达到一定值时,沟道部中形成载流子通路,形成使薄膜晶体管21的源极213和漏极214导通。
如图4所示,缓冲层BFL设置在薄膜晶体管21与基底10之间,用于防止或减少金属原子和/或杂质从基底10扩散到薄膜晶体管21的有源层212中。缓冲层BFL可以包括诸如氧化硅、氮化硅和/或氮氧化硅的无机材料,并且可以形成为多层或单层。
如图4所示,栅绝缘层GI设置在有源层212远离缓冲层BFL的一侧。栅绝缘层GI的材料可以包括硅化合物、金属氧化物。例如,栅绝缘层GI的材料包括氮氧化硅、氧化硅、氮化硅、碳氧化硅、氮碳化硅、氧化铝、氮化铝、氧化钽、氧化铪、氧化锆、氧化钛等。另外,栅绝缘层GI可以为单层或多层。
如图4所示,薄膜晶体管21的栅极211设置在栅绝缘层GI远离缓冲层BFL的一侧。栅极211的材料可以包括例如金属、金属合金、金属氮化物、导电金属氧化物、透明导电材料等。例如,栅极211可以包括金、金的合金、银、银的合金、铝、铝的合金、氮化铝、钨、氮化钨、铜、铜的合金、镍、铬、氮化铬、钼、钼的合金、钛、氮化钛、铂、钽、氮化钽、钕、钪、氧化锶钌、氧化锌、氧化锡、氧化铟、氧化镓、氧化铟锡、氧化铟锌等。栅极211可以具有单层或多层。
如图4所示,层间绝缘层ILD设置在栅极211远离缓冲层BFL的一侧, 层间绝缘层ILD的材料可以包括例如硅化合物、金属氧化物等。具体可以选择上文所列举的硅化合物和金属氧化物,这里不再赘述。
源漏导电层设置在层间绝缘层ILD远离缓冲层BFL的一侧。源漏导电层可以包括各晶体管的源极213和漏极214,源极213与源极连接部电连接,漏极214与漏极连接部电连接。源漏导电层可以包括金属、合金、金属氮化物、导电金属氧化物、透明导电材料等,例如,源漏导电层可以为金属构成的单层或多层,例如为Mo/Al/Mo或Ti/Al/Ti。
如图4所示,平坦化层PLN设置在源漏导电层远离缓冲层BFL的一侧,平坦化层PLN可以采用有机绝缘材料制成,例如,该有机绝缘材料包括聚酰亚胺、环氧树脂、压克力、聚酯、光致抗蚀剂、聚丙烯酸酯、聚酰胺、硅氧烷等树脂类材料等。第一电极231设置在平坦化层PLN上。
如图1和图4所示,像素界定层PDL位于平坦化层PLN远离缓冲层BFL的一侧,像素界定层PDL具有多个像素开口。发光器件23与像素开口一一对应,发光器件23包括:第一电极231、腔长调节层233、多个发光单元234、第二电极232,腔长调节层233位于第一电极231远离基底10的一侧,多个发光单元234位于腔长调节层233与第二电极232之间。
可选地,第一电极231包括:层叠设置的第一透明导电层231a和金属反射层231b,以起到反射作用的同时,减少第一电极231的电阻。金属反射层231b位于第一透明导电层231a远离基底10的一侧。第一透明导电层231a可以采用氧化铟锡(ITO)等透明导电材料制成,第一透明导电层231a的厚度在
Figure PCTCN2022103314-appb-000001
之间,例如为
Figure PCTCN2022103314-appb-000002
金属反射层231b可以采用银、铝等导电性良好的材料制成,其厚度在
Figure PCTCN2022103314-appb-000003
之间。
在一个示例中,腔长调节层233采用透明导电材料制成,该透明导电材料例如包括ITO。其中,腔长调节层233与第一电极231相接触。在另一个示例中,腔长调节层233采用透明绝缘材料制成,该透明绝缘材料可以包括氮化硅、氧化硅、氮氧化硅等,腔长调节层233远离基底10的一侧还 设置有第二透明导电层(未示出),第二透明导电层与第一电极231电连接。第二透明导电层可以采用ITO等透明导电材料制成,第二透明导电层的厚度在
Figure PCTCN2022103314-appb-000004
之间,例如为
Figure PCTCN2022103314-appb-000005
可选地,第二电极232的材料包括镁和银,镁和银的体积比在2:8~8:2之间,第二电极232的厚度在120nm~180nm;或者,第二电极232采用铟锌氧化物(IZO)制成,其厚度在80nm~500nm之间。
每个发光单元234包括沿远离基底10的方向依次设置的:空穴注入层2341、空穴传输层2342、发光层2343、电子传输层2344、电子注入层2345。其中,在同一个发光器件23中,相邻两个发光单元234之间设置有电荷产生层235。
可选地,假设每个发光器件23中的发光单元234的数量为N个,N为大于1的整数,多个发光器件23的第i个发光单元234的发光层2343为一体结构;i为整数,N>1,0<i<N。其中,第i个发光单元234是指,沿远离基底10的方向排列的第i个发光单元234。另外,多个发光器件23的第i个发光单元234的空穴注入层2341可以为一体结构,多个发光器件23的第i个发光单元234的空穴传输层2342可以为一体结构,多个发光器件23的第i个发光单元234的电子传输层2344可以为一体结构,多个发光器件23的第i个发光单元234的电子注入层2345可以为一体结构,多个发光器件23的第二电极232可以为一体结构。
在一些实施例中,每个发光器件23中的多个发光单元234包括:两个蓝色发光单元和位于二者之间的黄色发光单元,即,每个发光器件23中的多个发光层包括:两个蓝色发光层和位于二者之间的黄色发光层;或者,每个发光器件23的多个发光单元234包括:两个蓝色发光单元和位于二者之间的绿色发光单元,即,每个发光单元234中的多个发光层2343包括:两个蓝色发光层和位于二者之间的绿色发光层;或者,每个发光器件23中的多个发光单元234包括:红色发光单元、绿色发光单元和蓝色发光单元, 即,每个发光器件23中的多个发光层包括:红色发光层、绿色发光层和蓝色发光层。
如图1所示,第一封装层25设置在多个发光器件23远离基底10的一侧,用于对多个发光器件23进行封装,以防止外界环境中的水汽和/或氧气侵蚀发光器件23。在一些实施例中,第一封装层25包括第一无机封装层25a、第二无机封装层25b和有机封装层25c,第二无机封装层25b位于第一无机封装层25a的远离基底10的一侧,有机封装层25c位于第一无机封装层25a和第二无机封装层25b之间。第一无机封装层25a和第二无机封装层25b均可以采用氮氧化硅(SiON)、氧化硅(SiOx)、氮化硅(SiNx)等致密性高的无机材料制成。有机封装层25c可以采用含有干燥剂的高分子材料制成,或采用可阻挡水汽的高分子材料制成。例如,采用高分子树脂,从而可以缓解第一无机封装层25a和第二无机封装层25b的应力,还可以包括干燥剂等吸水性材料以吸收侵入内部的水、氧等物质。
可选地,每个发光器件23与第一封装层25之间还可以设置:光取出层和保护层(未示出),光取出层可以采用折射率较大的材料制成,以便于取出发光器件23所发射的光线。保护层设置在光取出层与封装层之间,以防止封装层的制作工艺对发光器件23造成影响。保护层的材料可以包括氟化锂(Lif)。
色转换层和容纳结构层27设置在第一封装层25远离基底10的一侧,如图1所示,色转换层包括多个波长转换单元24和多个散射单元241。例如,多个波长转换单元24分为多种,不同种的波长转换单元24对应的目标颜色不同。例如,多种波长转换单元24包括红色波长转换单元24r和绿色波长转换单元24g,红色波长转换单元24r所射出的光线颜色为红色,绿色波长转换单元24g所射出的光线颜色为绿色。例如,色转换层中的多个波长转换单元24和多个散射单元241组成多个重复组,每个重复组包括:一个红色波长转换单元24r、一个绿色波长转换单元24g和一个散射单元241。 每个红色波长转换单元24r、每个绿色波长转换单元24g和每个散射单元241均对应一个发光器件23。每个发光器件23对应一个波长转换单元或一个散射单元241。红色波长转换单元24r的材料可以包括红色量子点材料,绿色波长转换单元24g的材料可以包括绿色量子点材料,散射单元241的材料包括散射粒子。量子点材料可以为ZnCdSe2,CdSe,CdTe,InP,InAs中的一种或多种;量子点可以不限于上述材料,并从II-VI族化合物、III-V族化合物、IV-VI族化合物、IV族元素、IV族化合物和/或它们的组合中选择。
容纳结构层27具有多个容纳槽,每个容纳槽用于容纳一个波长转换单元24或一个散射单元241。
第二封装层28设置在色转换层远离基底10的一侧,用于对色转换层进行封装。
彩膜层和黑矩阵BM设置在色转换层远离基底10的一侧,彩膜层包括多个彩色滤光部26r、26b和26g,每个散射单元241和每个波长转换单元24均对应一个彩色滤光部26r/26b/26g,彩色滤光部的颜色与其相对应的散射单元241或波长转换单元24的颜色相同。例如,彩色滤光部26r与红色波长转换单元对应,彩色滤光部26g与绿色波长转换单元对应,散射单元241与彩色滤光部26b对应,任意相邻两个彩色滤光部均被黑矩阵BM间隔开。
在一些实施例中,不同种的波长转换单元24所对应的发光器件23的发光波段不同。例如,红色波长转换单元24r对应的发光器件23的发光波段包括[380nm,480nm],绿色波长转换单元24g对应的发光器件23的发光波段包括[380nm,580nm]。每个散射单元241对应一个发光器件23,散射单元241对应的发光器件23的发光波段包括[380nm,480nm]。
在一些实施例中,可以使不同种的波长转换单元24对应的腔长调节层233的厚度不同,从而使不同种的波长转换单元24所对应的发光器件23的发光波段不同。而对于散射单元241而言,其对应的发光器件23可以包括 上述腔长调节层233,也可以不包括上述腔长调节层233。当散射单元241对应的发光器件23包括上述腔长调节层233时,可以通过调节腔长调节层233的厚度,使得散射单元241对应的发光器件23的发光波段包括[380nm,480nm],例如,使得散射单元241对应的发光器件23出射蓝光;当散射单元241对应的发光器件23不包括腔长调节层233时,发光器件23的出射光除了包括[380nm,480nm]波段内的蓝光,还可以包括其他波段的光线,这种情况下,散射单元241对应的彩色滤光部26b可以对其他波段的光线进行滤除。并且,当发光器件23不包括腔长调节层233时,可以简化发光器件23的制作工艺。
在一些实施例中,发光器件23中的多个发光层包括:两个蓝色发光层和位于两个蓝色发光层之间的绿色发光层。图5为发光器件包括两层蓝色发光层和一层绿色发光层时的峰位图,横轴表示波长,纵轴表示归一化的光强值。每条曲线对应一种厚度的腔长调节层233,每条曲线表示腔长调节层233达到相应的厚度时,发光器件23的出射光线的强度随波长变化的曲线。其中,当腔长调节层233的厚度在[50nm,60nm]范围内时,发光器件23的发光波段为[440nm,580nm],发光峰值在[460nm,530nm]范围内。当腔长调节层233的厚度为70nm时,发光器件23的发光波段为[440nm,580nm],且发光器件23对应的光谱曲线出现两个波峰,即发光器件23具有两个发光峰值,其中一个发光峰值在[450nm,460nm]范围内,另一个发光峰值在[535nm,545nm]范围内。腔长调节层233厚度为80nm时,发光器件23的发光波段为[440nm,580nm],且发光器件23对应的光谱曲线出现两个波峰,即发光器件23具有两个发光峰值,分别在[450nm,460nm]范围内、[545nm,555nm]范围内。当腔长调节层233的厚度为90nm时,发光器件23的发光波段包括[435nm,480nm]和[520nm,580nm],第一个发光峰值在[445nm,455nm]范围内,第二个发光峰值在[555nm,560nm]范围内。当腔长调节层233为100nm时,发光器件23的发光波段为[450nm, 480nm],发光峰值在[445nm,455nm]范围内。当腔长调节层233的厚度为110nm时,发光器件23的发光波段为[450nm,480nm],发光峰值在[455nm,465nm]范围内。当腔长调节层233的厚度为120nm时,发光器件23的发光波段为[445nm,480nm],发光峰值在[465nm,470nm]范围内。当腔长调节层233的厚度为130nm时,发光器件23的发光波段为[455nm,530nm],发光峰值在[470nm,480nm]范围内。当腔长调节层233的厚度为140nm时,发光器件23的发光波段为[455nm,540nm],发光峰值在[480nm,490nm]范围内。
图6为发光器件包括两层蓝色发光层和一层绿色发光层时,发光器件的整体亮度与腔长调整层厚度的关系曲线图。图6中横轴表示波长,纵轴表示亮度。图7为红色波长转换单元的吸收光谱曲线和发射光谱曲线图,图8为绿色波长转换单元的吸收光谱曲线和发射光谱曲线图。图7和图8中横轴表示波长,纵轴表示光线强度。由图7可知,红色波长转换单元24r的光吸收波段为380nm~650nm,本征发光峰为625nm;由图8可知,绿色波长转换单元24g的光吸收波段为380nm~540nm,本征发光峰为525nm。
根据图5至图8中的各曲线,当发光器件23包括两层蓝色发光层和一层绿色发光层时,可以将红色波长转换单元24r对应的发光器件23中的腔长调节层233的厚度设置在[100nm,120nm]范围内,例如设置为100nm或者110nm,以使红色波长转换单元24r对应的发光器件23的发光波段包括[380nm,480nm],即,出射光包括蓝光,发光峰值在[450nm,470nm]范围内;将绿色波长转换单元24g对应的发光器件23中的腔长调节层233的厚度设置在[70nm,90nm]范围内,例如为70nm或80nm或90nm,以使绿色波长转换单元24g对应的发光器件23的出射光在[380nm,580nm]范围内,即,出射光包括蓝光和绿光。当散射单元241对应的发光器件23中包括腔长调节层233时,可以将散射单元241对应的发光器件23中的腔长调节层233的厚度设置在[100nm,120nm]范围内,例如为100nm或110nm或120nm, 以使散射单元241对应的发光器件23的出射光在[380nm,480nm]范围内,即,出射蓝光。这样可以使得波长转换单元24对应的发光器件23的至少一个发光峰值小于或等于波长转换单元24的本征发光峰,且波长转换单元24的光吸收波段与相应的发光器件23的发光波段存在交叠,同时,还可以保证发光器件23的亮度较高。
在另一些实施例中,发光器件23中的多个发光层2343包括:一层蓝色发光层和一层黄色发光层,例如,黄色发光层位于蓝色发光层远离基底10的一侧。图9为发光器件包括一层蓝色发光层和一层黄色发光层时的峰位图,图9中的横轴表示波长,纵轴表示归一化的光强值。如图9所示,当腔长调节层233的厚度为100nm时,发光器件23的发光波段为[400nm,480nm];当腔长调节层233的厚度为110nm时,发光器件23的发光波段为[420nm,480nm];当腔长调节层233的厚度为120nm时,发光器件23的发光波段为[430nm,480nm];当腔长调节层233厚度在[130nm,150nm]范围内时,发光器件23的发光波段为[430nm,580nm];当腔长调节层233厚度在(150nm,170nm]范围内时,发光器件23的发光波段包括:[380nm,480nm]和[580nm,680nm]。
图10为发光器件包括一层蓝色发光层和一层黄色发光层时,发光器件的整体亮度与腔长调整层的厚度关系曲线图,图10中的横轴表示腔长调整层的厚度,纵轴表示发光器件的出光亮度。结合图7至图10中的各曲线,当每个发光器件23包括蓝色发光层和黄色发光层时,可以将红色波长转换单元24r对应的发光器件23中的腔长调节层233的厚度设置在[150nm,170nm]范围内,例如为150nm或160nm或170nm,以使红色波长转换单元24r对应的发光器件23的发光波段包括:[380nm,480nm]波段和[580nm,680nm]波段,即,出射光包括蓝光和红光,且红色波长转换单元24r对应的发光器件23的发光峰值小于580nm;将绿色波长转换单元24g对应的发光器件23中的腔长调节层233的厚度设置在[130nm,150nm)范围内,例如 为130nm或135nm或140nm或145nm,以使绿色波长转换单元24g对应的发光器件23的发光波段包括[380nm,580nm],即,出射光包括蓝光和绿光,并且,绿色波长转换单元24g对应的发光器件23的至少一个发光峰值小于525nm。当散射单元241对应的发光器件23中设置腔长调节层233时,可以将散射单元241对应的发光器件23中的腔长调节层233的厚度设置在[100nm,120nm]范围内,例如为100nm或110nm或120nm,以使散射单元241对应的发光器件23的出射光的波长在[380nm,480nm]范围内,即出射光为蓝光。这样可以使得波长转换单元对应的发光器件23的至少一个发光峰值小于或等于波长转换单元24的本征发光峰,且波长转换单元的光吸收波段与相应的发光器件23的发光波段存在交叠,同时,还可以保证发光器件23的亮度较高。
图11为本公开的另一些实施例中提供的显示面板的示意图,图11所示的显示面板与图1中的显示面板类似,区别仅在于,图1中的显示面板采用On-EL结构(即,色转换层直接制作在第一封装层25上),而图11中的显示面板采用对盒结构,即,显示面板还包括:盖板30和填充层29,盖板30与基底10相对设置;色转换层设置在盖板30朝向基底10的一侧,第二封装层28设置在色转换层远离盖板30的一侧,用于对色转换层进行封装。第一封装层25与第二封装层28之间通过二者之间的填充层29连接。
图12为本公开的一些实施例中提供的显示面板的制作方法流程图,该制作方法用于制作上述实施例中的显示面板,如图12所示,该制作方法包括:
S10、在基底上形成多个发光器件,每个所述发光器件包括沿远离所述基底的方向依次设置的:第一电极、多个发光单元和第二电极;其中,所述第一电极为反射电极,第二电极为透反电极,所述第一电极与所述第二电极之间形成微腔结构,所述微腔结构的腔长与所述腔长调节层的厚度相关;所述发光单元包括发光层,多个所述发光单元的发光层所发出的光在 所述微腔结构内发生多次振荡,以使所述发光器件出射与所述微腔结构的腔长对应的波段的光线;在同一个发光器件中,至少两个所述发光层的发光颜色不同。至少一个所述发光器件还包括腔长调节层,所述腔长调节层位于所述第一电极与其紧邻的发光单元之间。
S20、形成色转换层,所述色转换层包括多个波长转换单元,每个所述波长转换单元对应一个具有所述腔长调节层的所述发光器件,所述波长转换单元设置在所述发光器件的出光侧,用于将照射至该波长转换单元且处于其光吸收波段内的光线转换为目标颜色的光并射出。
其中,所述发光器件的发光波段中的至少一个发光峰值小于或等于相应的波长转换单元的本征发光峰,所述波长转换单元的光吸收波段与所述发光器件的发光波段存在交叠。
其中,在步骤S10之前,还可以包括:在基底上形成驱动结构层,该驱动结构层包括:多个像素电路,每个像素电路包括多个薄膜晶体管,像素电路与发光器件一一对应,用于为相应的发光器件提供驱动电流。
在一些实施例中,多个发光器件包括:多个第一发光器件、多个第二发光器件和多个第三发光器件;所述第一发光器件中的腔长调节层的厚度为第一厚度,所述第二发光器件中的腔长调节层的厚度为第二厚度,所述第三发光器件中的腔长调节层的厚度为第三厚度,所述第二厚度大于所述第一厚度,所述第三厚度大于所述第二厚度。
图13A至图13H为本公开的一些实施例中提供的显示面板的制作方法中步骤S10的过程示意图,如图13A至图13H所示,步骤S10具体包括:
S11、在基底10上形成用于制作第一电极的导电材料层231a,例如,该导电材料层231a包括第一透明导电材料层和金属材料层。
S121、形成第一厚度的第一腔长调节膜层233a。
S13、在对应于每个第二发光器件的位置形成第四厚度的第二腔长调节子层2332;其中,第二腔长调节子层2332位于第一腔长调节膜层233a远 离基底10的一侧。第四厚度为第一厚度与第二厚度之差。
其中,步骤S13可以包括:
S131、如图13A所示,形成第一光刻胶层PR1。
S132、在第一光刻胶层PR1上对应于每个第二发光器件的位置形成第一通孔V1。
S133、如图13B所示,形成第四厚度的第二腔长调节膜层233b,第二腔长调节膜层233b的一部分位于第一通孔V1中,另一部分位于第一光刻胶层PR1远离基底10的表面上。
S134、如图13C所示,去除第一光刻胶层PR1,以去除第一光刻胶层PR1上的第二腔长调节膜层233b,第一通孔V1中的第二腔长调节膜层233b作为第二腔长调节子层2332。
步骤S13之后,进行步骤S14:在每个第三发光器件所对应的位置,形成第五厚度的第三腔长调节子层。第五厚度为第三厚度与第一厚度之差。
其中,步骤S14可以包括:
S141、如图13D所示,形成第二光刻胶层PR2,并在第二光刻胶层PR2上对应于每个第三发光器件的位置形成第二通孔V2。
S143、如图13E所示,形成第五厚度的第三腔长调节膜层233c,第三腔长调节膜层233c的一部分位于第二通孔V2中,另一部分位于第二光刻胶层PR2远离基底10的表面上。
S144、如图13F所示,去除第二光刻胶层PR2,以去除第二光刻胶层PR2上的第三腔长调节膜层,第二通孔V2中的第三腔长调节膜层233c作为第三腔长调节子层2333。
之后,进行步骤S122:如图13G所示,对第一腔长调节膜层233a进行构图工艺,以在每个发光器件的位置,形成第一厚度的第一腔长调节子层2331。
其中,步骤S121和步骤S122为制作第一腔长调节子层2331的步骤, 第一发光器件所在位置的第一腔长调节子层2331作为第一发光器件的腔长调节层233;第二发光器件所在位置的第一腔长调节子层2331和第二腔长调节子层2332共同作为第二发光器件的腔长调节层233;第三发光器件所在位置的第一腔长调节子层2331和第三腔长调节子层2333共同作为第三发光器件的腔长调节层233。
之后,进行步骤S15:对导电材料层231a进行光刻构图工艺,从而形成每个发光器件的第一电极231,如图13H所示。
需要说明的是,上述发光器件的制作方法仅为示意性说明,还可以通过其他制作步骤或制作顺序来形成多个发光器件。例如,在步骤S13之前,进行步骤S122。例如,在步骤S11与步骤S121之间进行步骤S15。
当显示面板采用图1中所示的结构时,其制作方法还可以包括:在形成多个发光器件之后、形成色转换层之前,形成第一封装层;在形成色转换层之后,依次形成第二封装层、彩膜层。当显示面板采用图11中所示的结构时,可以将多个发光器件形成的基底上,在多个发光器件远离基底的一侧形成第一封装层;并在盖板上形成彩膜层、色转换层、位于色转换层远离盖板一侧的第二封装层,之后,将形成的发光器件的基底与形成有色转换层的盖板对盒设置,并利用填充层将第一封装层与第二封装层连接。
本公开实施例还提供了一种显示装置,其包括上述实施例中显示面板。该显示装置可以为手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (17)

  1. 一种显示面板,其特征在于,包括:
    设置在基底上的多个发光器件,每个所述发光器件包括沿远离所述基底的方向依次设置的:第一电极、多个发光单元和第二电极;其中,所述第一电极为反射电极,第二电极为透反电极,所述第一电极与所述第二电极之间形成微腔结构;所述发光单元包括发光层,在同一个发光器件中,至少两个所述发光层的发光颜色不同;至少一个所述发光器件还包括腔长调节层,所述腔长调节层位于所述第一电极与其紧邻的发光单元之间;
    色转换层,包括多个波长转换单元,每个所述波长转换单元对应一个具有所述腔长调节层的所述发光器件,所述波长转换单元设置在所述发光器件的出光侧,用于将照射至该波长转换单元且处于其光吸收波段内的光线转换为目标颜色的光并射出;
    其中,所述发光器件的发光波段中的至少一个发光峰值小于或等于相应的波长转换单元的本征发光峰,所述波长转换单元的光吸收波段与所述发光器件的发光波段存在交叠。
  2. 根据权利要求1所述的显示面板,其特征在于,所述波长转换单元的光吸收波段与所述发光器件的发光波段的交叠部分占所述发光波段的50%~100%。
  3. 根据权利要求1所述的显示面板,其特征在于,所述色转换层的多个波长转换单元分为多种,不同种的波长转换单元对应的目标颜色不同,且不同种的波长转换单元所对应的发光器件的发光波段不同。
  4. 根据权利要求3所述的显示面板,其特征在于,多种波长转换单元包括红色波长转换单元和绿色波长转换单元,所述红色波长转换单元对应 的目标颜色为红色,所述绿色波长转换单元对应的目标颜色为绿色,
    所述红色波长转换单元对应的发光器件的发光波段包括[380nm,480nm];所述绿色波长转换单元对应的发光器件的发光波段包括[380nm,580nm];
    所述色转换层还包括多个散射单元,每个散射单元对应一个发光器件,所述散射单元对应的发光器件的发光波段包括[380nm,480nm]。
  5. 根据权利要求4所述的显示面板,其特征在于,不同种的波长转换单元对应的所述腔长调节层的厚度不同。
  6. 根据权利要求5所述的显示面板,其特征在于,每个发光器件中的多个发光层包括:两个蓝色发光层和位于两个所述蓝色发光层之间的绿色发光层;
    所述红色波长转换单元对应的发光器件中的腔长调节层的厚度在[100nm,120nm]范围内,以使所述红色波长转换单元对应的发光器件的发光波段包括[380nm,480nm];
    所述绿色波长转换单元对应的发光器件中的腔长调节层的厚度在[70nm,90nm]范围内,以使所述绿色波长转换单元对应的发光器件的发光波段包括[380nm,580nm]。
  7. 根据权利要求5所述的显示面板,其特征在于,每个发光器件中的多个发光层包括:蓝色发光层和黄色发光层;
    所述红色波长转换单元对应的发光器件中的腔长调节层的厚度在[150nm,170nm]范围内,以使所述红色波长转换单元对应的发光器件的发光波段包括:[380nm,480nm]和[580nm,680nm];
    所述绿色波长转换单元对应的发光器件中的腔长调节层的厚度在 [130nm,150nm)范围内,以使所述绿色波长转换单元对应的发光器件的发光波段包括[380nm,580nm]。
  8. 根据权利要求1至7中任意一项所述的显示面板,其特征在于,所述波长转换单元的材料包括量子点材料。
  9. 根据权利要求1至7中任意一项所述的显示面板,其特征在于,所述第一电极包括:第一透明导电层和金属反射层,所述金属反射层位于所述第一透明导电层远离所述基底的一侧。
  10. 根据权利要求9所述的显示面板,其特征在于,所述腔长调节层采用透明导电材料制成;
    或者,所述腔长调节层采用透明绝缘材料制成,所述腔长调节层远离所述基底的一侧还设置有第二透明导电层,所述第二透明导电层在所述基底上的正投影超出所述腔长调节层在所述基底上的正投影,所述第二透明导电层超出所述腔长调节层的部分与所述第一电极电连接。
  11. 根据权利要求4至7中任意一项所述的显示面板,其特征在于,所述显示面板还包括:彩膜层,所述彩膜层设置在所述色转换层远离所述基底的一侧,所述彩膜层包括多个彩色滤光部,每个所述散射单元和每个所述波长转换单元均对应一个所述彩色滤光部,所述彩色滤光部的颜色与其相对应的散射部或波长转换单元的出光颜色相同。
  12. 根据权利要求1至7中任意一项所述的显示面板,其特征在于,每个发光器件包括沿远离所述基底方向依次设置的N个所述发光单元,其中,多个所述发光器件的第i个发光单元的发光层为一体结构;N、i均为 整数,N>1,0<i<N。
  13. 根据权利要求1至7中任意一项所述的显示面板,其特征在于,同一个发光器件中的每相邻两个所述发光单元之间设置有电荷生成层。
  14. 根据权利要求1至7中任意一项所述的显示面板,其特征在于,所述显示面板还包括:第一封装层和第二封装层;其中,
    所述第一封装层设置在多个发光器件远离所述基底的一侧,用于对多个所述发光器件进行封装;
    所述色转换层设置在所述第一封装层远离所述基底的一侧;
    所述第二封装层设置在所述色转换层远离所述基底的一侧,用于对所述色转换层进行封装。
  15. 根据权利要求1至7中任意一项所述的显示面板,其特征在于,所述显示面板还包括:盖板、第一封装层、第二封装层和填充层,其中,
    所述第一封装层设置在多个发光器件远离所述基底的一侧,用于对多个所述发光器件进行封装;
    所述盖板与所述基底相对设置;
    所述色转换层设置在所述盖板朝向所述基底的一侧,所述第二封装层设置在所述色转换层远离所述盖板的一侧,用于对所述色转换层进行封装;
    所述填充层设置在所述第一封装层与所述第二封装层之间。
  16. 一种显示面板的制作方法,其特征在于,包括:
    在基底上形成多个发光器件,每个所述发光器件包括沿远离所述基底的方向依次设置的:第一电极、多个发光单元和第二电极;其中,所述第一电极为反射电极,第二电极为透反电极,所述第一电极与所述第二电极 之间形成微腔结构;所述发光单元包括发光层,在同一个发光器件中,至少两个所述发光层的发光颜色不同;至少一个所述发光器件还包括腔长调节层,所述腔长调节层位于所述第一电极与其紧邻的发光单元之间;
    形成色转换层,所述色转换层包括多个波长转换单元,每个所述波长转换单元对应一个具有所述腔长调节层的所述发光器件,所述波长转换单元设置在所述发光器件的出光侧,用于将照射至该波长转换单元且处于其光吸收波段内的光线转换为目标颜色的光并射出;
    其中,所述发光器件的发光波段中的至少一个发光峰值小于或等于相应的波长转换单元的本征发光峰,所述波长转换单元的光吸收波段与所述发光器件的发光波段存在交叠。
  17. 一种显示装置,其特征在于,包括权利要求1至15中任意一项所述的显示面板。
PCT/CN2022/103314 2021-07-21 2022-07-01 显示面板及其制作方法、显示装置 WO2023000953A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/271,851 US20240090299A1 (en) 2021-07-21 2022-07-01 Display panel and manufacturing method therefor, and display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110828262.7 2021-07-21
CN202110828262.7A CN115701233A (zh) 2021-07-21 2021-07-21 显示面板及其制作方法、显示装置

Publications (1)

Publication Number Publication Date
WO2023000953A1 true WO2023000953A1 (zh) 2023-01-26

Family

ID=84978974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/103314 WO2023000953A1 (zh) 2021-07-21 2022-07-01 显示面板及其制作方法、显示装置

Country Status (3)

Country Link
US (1) US20240090299A1 (zh)
CN (1) CN115701233A (zh)
WO (1) WO2023000953A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108878504A (zh) * 2018-07-27 2018-11-23 京东方科技集团股份有限公司 Oled显示基板及显示装置
CN110911459A (zh) * 2019-11-13 2020-03-24 清华大学 一种色转换有机电致发光装置
CN111987234A (zh) * 2019-05-23 2020-11-24 环球展览公司 具有未图案化发射堆叠的oled显示面板
CN112219452A (zh) * 2018-06-06 2021-01-12 株式会社半导体能源研究所 发光装置、显示装置及电子设备
CN112236809A (zh) * 2018-06-06 2021-01-15 株式会社半导体能源研究所 显示面板、显示装置、输入输出装置及数据处理装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112219452A (zh) * 2018-06-06 2021-01-12 株式会社半导体能源研究所 发光装置、显示装置及电子设备
CN112236809A (zh) * 2018-06-06 2021-01-15 株式会社半导体能源研究所 显示面板、显示装置、输入输出装置及数据处理装置
CN108878504A (zh) * 2018-07-27 2018-11-23 京东方科技集团股份有限公司 Oled显示基板及显示装置
CN111987234A (zh) * 2019-05-23 2020-11-24 环球展览公司 具有未图案化发射堆叠的oled显示面板
CN110911459A (zh) * 2019-11-13 2020-03-24 清华大学 一种色转换有机电致发光装置

Also Published As

Publication number Publication date
CN115701233A (zh) 2023-02-07
US20240090299A1 (en) 2024-03-14

Similar Documents

Publication Publication Date Title
US11871611B2 (en) Display unit with reflector layer and electronic apparatus
US10312477B2 (en) Light emitting structure, display device including a light emitting structure and method of manufacturing a display device including a light emitting structure
KR101354303B1 (ko) 표시 장치
EP2939284B1 (en) Organic light emitting element, organic light emitting display device, and method of manufacturing the organic light emitting display device
CN102738406B (zh) 有机发光器件和包括有机发光器件的显示单元
TWI721472B (zh) 有機發光二極體、有機發光二極體顯示裝置及使用該有機發光二極體顯示裝置的車輛用顯示裝置
KR102174652B1 (ko) 발광 소자, 표시 장치 및 조명 장치
TW201411833A (zh) 顯示單元及其製造方法及電子裝置
WO2021213510A1 (zh) 显示面板、显示装置以及显示面板的制造方法
US7872288B2 (en) Organic light-emitting display device
KR102320515B1 (ko) 백색 유기전계발광 표시장치 및 그 제조방법
CN114883508B (zh) 显示基板及显示装置
KR20120041949A (ko) 표시 장치 및 표시 장치의 제조 방법
WO2023000953A1 (zh) 显示面板及其制作方法、显示装置
CN114864839B (zh) 显示基板及显示装置
WO2022193671A1 (zh) 封装结构及其制备方法、显示装置
WO2023050171A1 (zh) 发光基板及发光装置
WO2022261870A1 (zh) 显示面板和显示装置
WO2024087973A1 (zh) 一种微型led芯片及其制作方法、显示模组、终端
WO2021184930A1 (zh) 显示面板
US20240237394A9 (en) Display unit, method of manufacturing display unit, and electronic apparatus
TW202329085A (zh) 電子裝置
CN117715460A (zh) 显示面板及其制备方法、显示装置
CN116210365A (zh) 显示面板和显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18271851

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE