WO2022193671A1 - 封装结构及其制备方法、显示装置 - Google Patents

封装结构及其制备方法、显示装置 Download PDF

Info

Publication number
WO2022193671A1
WO2022193671A1 PCT/CN2021/127562 CN2021127562W WO2022193671A1 WO 2022193671 A1 WO2022193671 A1 WO 2022193671A1 CN 2021127562 W CN2021127562 W CN 2021127562W WO 2022193671 A1 WO2022193671 A1 WO 2022193671A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
emitting
inorganic
substrate
Prior art date
Application number
PCT/CN2021/127562
Other languages
English (en)
French (fr)
Inventor
安澈
刘文祺
孙中元
黄维
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2022193671A1 publication Critical patent/WO2022193671A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • H10K59/8731Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a package structure, a preparation method thereof, and a display device.
  • quantum dot materials have been applied to various fields due to their excellent properties, especially in the display field.
  • Display products that combine quantum dot films with Organic Light-Emitting Diode, organic light-emitting diodes are more research hotspots.
  • Quantum dot materials are sensitive to water and oxygen, so they cannot be used alone and need to be packaged.
  • the present disclosure aims to solve at least one of the technical problems existing in the prior art, and proposes a package structure, a preparation method thereof, and a display device.
  • the present disclosure provides a packaging structure, including:
  • the first encapsulation layer disposed on the side of the encapsulation body away from the first substrate, the first encapsulation layer includes at least two inorganic layers stacked in sequence, wherein the at least two inorganic layers include the most adjacent inorganic layers
  • the first inorganic layer of the package body contains carbon atoms and nitrogen atoms.
  • the material of the first inorganic layer includes SiC x N y , wherein 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 2.
  • the at least two inorganic layers further include a second inorganic layer, and the material of the second inorganic layer includes SiN n , where 0 ⁇ n ⁇ 1.
  • the at least two inorganic layers further include a third inorganic layer, the third inorganic layer is located on a side of the second inorganic layer away from the package body, or a third non-polar layer is located on the between the second inorganic layer and the first inorganic layer;
  • the material in the third inorganic layer includes SiO m N g , wherein 1 ⁇ m ⁇ 2, 0 ⁇ g ⁇ 0.7.
  • the refractive indices of the at least two inorganic layers increase sequentially.
  • the number of the inorganic layers is three, and along the direction away from the package body, the refractive indices of the three inorganic layers are respectively in the range of: 1.3-1.6; 1.4-1.8; 1.6- 2.0.
  • the thickness of the first encapsulation layer is between 0.3 ⁇ m and 2 ⁇ m.
  • the package body includes: a color conversion layer.
  • quantum dots are included in the color conversion layer.
  • the package body includes a light emitting structure including a light emitting layer.
  • quantum dots or organic light-emitting materials are included in the light-emitting layer.
  • the light-emitting structure further comprises: a first cathode, an electron transport layer, a hole transport layer and a first anode stacked in sequence, wherein the light-emitting layer is located between the electron transport layer and the empty space between the hole transport layers.
  • An embodiment of the present disclosure further provides a display device, including: the above-mentioned packaging structure.
  • An embodiment of the present disclosure further provides a display device, including: the above-mentioned packaging structure, wherein the display device further includes: a plurality of light-emitting devices, the light-emitting devices are configured to emit light of a preset color;
  • the color conversion layer includes a plurality of light-emitting parts, the light-emitting parts correspond to a light-emitting device, the light-emitting parts are arranged on the light-emitting side of the corresponding light-emitting device, and the light-emitting parts are configured to receive the light emitted by the corresponding light-emitting device, and Emits light in the same or different color as the preset.
  • the light emitting device is disposed between the color conversion layer and the first substrate.
  • the display device further includes: a second substrate, the second substrate is disposed opposite to the first substrate, the light emitting device is disposed on the second substrate, and the color conversion layer is disposed On the side of the first substrate facing the second substrate, the first encapsulation layer is located between the color conversion layer and the light emitting device.
  • the preset color is blue
  • a plurality of light emitting parts of the color conversion layer form a plurality of repeating units
  • each repeating unit includes: a red light emitting part for emitting red light, a The green light emitting part for emitting green light and the blue light emitting part for transmitting blue light.
  • the display device further includes:
  • the second encapsulation layer covers a plurality of the light-emitting devices
  • the accommodating structure layer is arranged on the side of the second encapsulation layer away from the light-emitting device, the accommodating structure layer has a plurality of accommodating grooves, the accommodating grooves are in one-to-one correspondence with the light-emitting device, and the light-emitting portion is provided with in the holding tank.
  • the display device further includes:
  • the color filter layer is located on the side of the color conversion layer away from the light-emitting device, the color filter layer includes a plurality of color filter parts, and each of the color filter parts corresponds to one of the light-emitting parts, so The color of the color filter portion is the same as the color of the light emitted by the corresponding light-emitting portion;
  • the black matrix is located on the side of the color conversion layer away from the light-emitting device; wherein, the orthographic projection of at least a part of each of the light-emitting parts on the first substrate is the same as the black matrix on the first substrate
  • the orthographic projections on are non-overlapping.
  • Embodiments of the present disclosure also provide a method for preparing a package structure, including:
  • a first encapsulation layer is formed on the encapsulation body away from the first substrate; wherein, the step of forming the first encapsulation layer includes: forming at least two inorganic layers in sequence, wherein the at least two inorganic layers include the most adjacent inorganic layers.
  • the first inorganic layer of the package body contains carbon atoms and nitrogen atoms.
  • each of the inorganic layers is formed using a vapor deposition process.
  • FIG. 1A is a schematic diagram of a package structure provided in an embodiment of the present disclosure.
  • FIG. 1B is a schematic structural diagram of a package body in other embodiments of the present disclosure.
  • FIG. 2 is a schematic diagram of a display device provided in some embodiments of the present disclosure.
  • FIG. 3 is a schematic diagram of a driving structure layer provided in some embodiments of the present disclosure.
  • FIG. 4 is a schematic diagram of the outgoing light of the package structure provided in the embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of a display device provided in other embodiments of the present disclosure.
  • FIG. 6 is a flowchart of a method for fabricating a package structure provided in some embodiments of the present disclosure.
  • the encapsulation method adopted is: mixing the quantum dot material with the silica gel, so as to wrap the quantum dot material in the silica gel, and utilizing the water and oxygen blocking properties of the silica gel to achieve the encapsulation effect.
  • this encapsulation method cannot completely eliminate the erosion of small molecules such as water molecules and oxygen.
  • the encapsulation method used is: using an organic film layer to encapsulate the quantum dot layer; or, using two inorganic film layers and an organic film layer between the two inorganic film layers as an encapsulation layer to Quantum dot layer for encapsulation.
  • the thickness of the formed organic film layer is relatively large, resulting in a relatively large overall thickness of the packaging layer, which is not conducive to the application of the quantum dot layer in the display device.
  • FIG. 1A is a schematic diagram of a package structure provided in an embodiment of the present disclosure.
  • the package structure 1 includes: a first substrate 10 , a package body 12 disposed on the first substrate 10 , and a first package layer 11 .
  • the package body 12 may include a color conversion layer, an electroluminescence structure, or a photoelectric conversion structure.
  • the first encapsulation layer 11 is disposed on the side of the encapsulation body 12 away from the first substrate 10 , the first encapsulation layer 11 includes multiple layers of inorganic layers 11 a stacked in sequence, and the multiple layers of inorganic layers 11 a include the first inorganic layer closest to the encapsulation body 12 .
  • the layer 111, the first inorganic layer 111 contains carbon atoms and nitrogen atoms.
  • the surface of the package body 12 facing the first inorganic layer 111 may be in direct contact with the first inorganic layer 111 .
  • the first encapsulation layer 11 includes multiple layers of inorganic layers 11 a, and the inorganic layer 11 a may be formed by a vapor deposition process, so as to obtain the first encapsulation layer 11 with a smaller thickness, which is beneficial to realize the high-quality packaging structure 1 . Thinning.
  • the first inorganic layer 111 closest to the package body 12 contains carbon atoms and nitrogen atoms to form an organic-like film layer with less stress, which is conducive to the matching of the stress between the first inorganic layer 111 and the package body 12, so that there are It is beneficial to balance the stress release of the package body 12 over time, to prevent the first inorganic layer 111 from cracking, and to prevent the other inorganic layers 11a from bursting. Therefore, the package structure 1 in the embodiment of the present disclosure is beneficial to achieve thinning on the basis of ensuring product quality.
  • the package body 12 includes: a color conversion layer, which is used for emitting the same or different light as the source light under the irradiation of the source light.
  • the color conversion layer includes perovskite; as another example, the color conversion layer includes quantum dots.
  • the color conversion layer includes a fluorescent material and a phosphorescent material, for example, includes a red phosphorescent material and a green fluorescent material, and the red phosphorescent material may be (Ca,Sr,Ba)S, (Ca,Sr, Ba ) 2Si5N8 , CASN (CaAlSiN 3 ), CaMoO 4 and Eu 2 Si 5 N 8 at least one material;
  • the green fluorescent material can be yttrium aluminum garnet (YAG), (Ca, Sr, Ba) 2 SiO 4 , SrGa 2 Of S 4 , BAM, ⁇ -SiAlON, ⁇ -SiAlON, Ca 3 Sc 2 Si 3 O 12 , Tb 3 Al 5 O 12 , BaSiO 4 , CaAlSiON and (Sr 1 -xBa x )Si 2 O 2 N 2 at least one material, where x can be a number between 0 and 1.
  • FIG. 1B is a schematic structural diagram of a package body in other embodiments of the present disclosure.
  • the package body 12 includes: a light-emitting structure, the light-emitting structure includes a light-emitting layer 12 a, and the light-emitting layer 12 a Including quantum dot materials, organic light-emitting materials or perovskite materials.
  • the organic light-emitting material includes: one or more of 8-hydroxyquinoline aluminum, mCBP, DPEPO, m-ADN, and Ir(ppy) 3 .
  • the light-emitting structure further includes: a first cathode 12b, an electron transport layer 12c, a hole transport layer 12d and a first anode 12e, wherein the first cathode 12b is arranged opposite to the first anode 12d, and the light-emitting layer 12a is arranged on the first anode Between 12e and the first cathode 12b, an electron transport layer 12c is provided between the light emitting layer 12a and the first cathode 12b, and a hole transport layer 12d is provided between the light emitting layer 12a and the first anode 12e.
  • the light emitting structure may also include other film layers, for example, an electron injection layer between the electron transport layer 12c and the first cathode 12b, and/or a hole injection layer between the hole transport layer 12d and the first anode 12e Floor.
  • first cathode 12b and the electron transport layer 12c may be arranged between the light emitting layer 12a and the first substrate 10
  • the first anode 12e and the hole transport layer 12d may be arranged on the light emitting layer 12a away from the first substrate 10.
  • the first cathode 12b and the electron transport layer 12c can also be arranged on the side of the light-emitting layer 12a away from the first substrate 10, and the first anode 12e and the hole transport layer 12d can also be arranged on the light-emitting layer 12a and the first substrate 10. between a substrate 10 .
  • the package body 12 may include a color conversion layer or a light-emitting layer, and both the color conversion layer or the light-emitting layer may include quantum dots.
  • the quantum dot material can be one or more of ZnCdSe2, CdSe, CdTe, InP, and InAs; Group IV elements, Group IV compounds and/or combinations thereof.
  • the package body 12 in the embodiment of the present disclosure is not limited to the above-mentioned light emitting structure and color conversion layer, for example, the package body 12 may include a photoelectric conversion structure.
  • the photoelectric conversion structure can be a dye-sensitized cell, a quantum dot-sensitized solar cell, a perovskite solar cell or a photodetector device.
  • the overall thickness of the first encapsulation layer 11 of the stacked multi-layer inorganic layers can be controlled between 0.3 ⁇ m and 2 ⁇ m. Compared with the case where the first encapsulation layer 11 includes an organic film layer, the overall thickness of the encapsulation structure 1 The thickness is small, which is beneficial to the application in the display device.
  • the inorganic layer 11 a of the first encapsulation layer 11 includes a first inorganic layer 111 and a second inorganic layer 112 , and the second inorganic layer 112 is located on a side of the first inorganic layer 112 away from the quantum dot layer 12 .
  • the material of the first inorganic layer 111 includes: SiC x N y , wherein 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 2.
  • SiC x N y indicates that the molar ratio of silicon (Si) element to carbon (C) element in SiC x N y is 1:x, and the molar ratio of silicon (Si) element to nitrogen (N) element is 1:y.
  • the first inorganic layer 111 can better balance the stress release of the quantum dot layer 12 .
  • the thickness of the first inorganic layer 111 is less than or equal to 1 ⁇ m, and the stress of the first inorganic layer 111 may specifically be between -10 and 10 Mpa.
  • the material of the second inorganic layer 112 includes a compound containing silicon and nitrogen atoms, which can be represented as SiN n , which functions to block water molecules and oxygen. Among them, 0 ⁇ n ⁇ 1.
  • SiN n indicates that the molar ratio of silicon (Si) element to nitrogen (N) element in SiN n is 1:n; preferably, the SiN n material may not contain other elements, or other elements exist as impurities, but can be ignored Excluding.
  • the film quality of the second inorganic layer 112 is dense and the Young's modulus is relatively large Moreover, the second inorganic layer 112 has fewer internal defects, thereby ensuring that the water vapor transmission coefficient (WVTR) of the second inorganic layer 112 is less than 10 ⁇ 4 , and the structure is stable, thereby improving the reliability of the package structure 1 .
  • the thickness of the second inorganic layer 112 is between 0.5 ⁇ m and 0.9 ⁇ m.
  • the inorganic layer 11a of the first encapsulation layer 11 further includes a third inorganic layer 113, the third inorganic layer 113 is located on the side of the second inorganic layer 112 away from the encapsulation body 12, or the third inorganic layer 113 The layer 113 is located between the second inorganic layer 112 and the first inorganic layer 111 .
  • the stress received by one of the second inorganic layer 112 and the third inorganic layer 113 may be tensile stress, and the stress received by the other may be compressive stress,
  • the stress of the second inorganic layer 112 and the third inorganic layer 113 can be offset, so that the second inorganic layer 112 and the third inorganic layer 113 are more matched to prevent peeling between the film layers.
  • the third inorganic layer 113 is an inorganic film layer containing oxygen atoms.
  • the thickness of the third inorganic layer 113 is between 0.1 ⁇ m and 0.3 ⁇ m.
  • the stress received by the second inorganic layer 112 may be tensile stress, and the stress received by the third inorganic layer 113 may be compressive stress; or, the stress received by the second inorganic layer 112 may be compressive stress, in this case
  • the stress received by the third inorganic layer 113 is tensile stress, and in the present disclosure, it is only necessary to ensure that the stress of the second inorganic layer 112 and the third inorganic layer 113 are balanced.
  • the stress of the film layer may be related to the preparation conditions, thickness, composition and other factors.
  • the second inorganic layer 112 is in contact with the edge of the first inorganic layer 111, and the second inorganic layer 112 is orthographically projected on the first substrate 20 to cover the encapsulation body 12 on the first substrate 20.
  • An orthographic projection on a substrate 20 is orthographically projected on a substrate 20 .
  • the second inorganic layer 112 is orthographically projected on the first substrate 20 to cover the third inorganic layer 112 on the first substrate 20 further preferably, the orthographic projection of the third inorganic layer 112 on the first substrate 20 covers the orthographic projection of the package body 12 on the first substrate 20 .
  • the second inorganic layer 112 may include SiN n
  • the package structure 1 includes a middle region MA and an edge region WA surrounding the middle region MA
  • the package body 12 is located in the middle region MA
  • the first edge region WA is located in the middle region MA.
  • the inorganic layer 111 is in contact with the second inorganic layer 112 , the orthographic projection of the second inorganic layer 112 on the first substrate 20 covers the orthographic projection of the third inorganic layer 113 on the first substrate 20 , and the third inorganic layer 113 is on the first substrate 20 .
  • the orthographic projection on the top 20 covers the orthographic projection of the package body 12 on the first substrate 20 .
  • Embodiments of the present disclosure also provide a display device, which can be any product with a display function, such as an OLED display panel, a QLED display panel, a mobile phone, a tablet computer, a TV, a monitor, a notebook computer, a digital photo frame, a navigator, etc. or parts.
  • FIG. 2 is a schematic diagram of a display device provided in some embodiments of the present disclosure. As shown in FIG. 2 , the display device includes: the quantum dot structure in the above-mentioned embodiments. It also includes: a driving structure layer 22 and a plurality of light emitting devices 23 disposed on the first substrate 20 .
  • the first substrate 20 may be a glass substrate, or a flexible substrate made of a flexible material such as polyimide (PI), so as to facilitate the realization of flexible display.
  • the driving structure layer 22 includes a plurality of pixel driving circuits.
  • the pixel driving circuits correspond to the light-emitting devices 23 one-to-one.
  • the pixel driving circuits are used to provide driving currents for the light-emitting devices 23 to drive the light-emitting devices 23 to emit light.
  • the pixel driving circuit includes a plurality of thin film transistors (as shown in FIG. 3 ) and at least one capacitor.
  • FIG. 3 is a schematic diagram of a driving structure layer provided in some embodiments of the present disclosure.
  • the thin film transistor 24 includes a gate electrode 241 , an active layer 242 , a source electrode 243 and a drain electrode 244 , and the thin film transistor 24 adopts Taking a top-gate thin film transistor as an example, the active layer 242 is located between the gate electrode 241 and the first substrate 10 .
  • the material of the active layer 242 may include, for example, inorganic semiconductor materials (eg, polysilicon, amorphous silicon, etc.), organic semiconductor materials, oxide semiconductor materials.
  • the active layer 242 includes a channel portion and a source connection portion and a drain connection portion located on both sides of the channel portion. Drain 244 is connected.
  • Both the source connection portion and the drain connection portion may be doped with an impurity (eg, N-type impurity or P-type impurity) having a higher impurity concentration than that of the channel portion.
  • the channel portion is directly opposite to the gate 241 of the thin film transistor 24. When the voltage signal loaded on the gate 241 reaches a certain value, a carrier path is formed in the channel portion, forming the source 243 and the drain 244 of the thin film transistor 24. on.
  • the buffer layer BFL is disposed between the thin film transistor 24 and the first substrate 10 for preventing or reducing the diffusion of metal atoms and/or impurities from the first substrate 10 into the active layer 242 of the transistor.
  • the buffer layer BFL may include inorganic materials such as silicon oxide, silicon nitride, and/or silicon oxynitride, and may be formed as a multilayer or a single layer.
  • the first gate insulating layer GI1 is disposed on the side of the active layer 242 away from the buffer layer BFL.
  • the material of the first gate insulating layer GI1 may include silicon compounds, metal oxides.
  • the material of the first gate insulating layer GI1 includes silicon oxynitride, silicon oxide, silicon nitride, silicon oxycarbide, silicon nitride carbide, aluminum oxide, aluminum nitride, tantalum oxide, hafnium oxide, zirconium oxide, titanium oxide, and the like.
  • the first gate insulating layer GI1 may be a single layer or multiple layers.
  • the gate electrode layer is disposed on a side of the first gate insulating layer GI1 away from the buffer layer BFL.
  • the gate electrode layer includes the gate electrode 241 of each thin film transistor and the first electrode plate of the capacitor.
  • the material of the gate electrode layer may include, for example, metals, metal alloys, metal nitrides, conductive metal oxides, transparent conductive materials, and the like.
  • the gate electrode layer may include gold, gold alloys, silver, silver alloys, aluminum, aluminum alloys, aluminum nitride, tungsten, tungsten nitride, copper, copper alloys, nickel, chromium, chromium nitride, molybdenum , Molybdenum alloy, titanium, titanium nitride, platinum, tantalum, tantalum nitride, neodymium, scandium, strontium ruthenium oxide, zinc oxide, tin oxide, indium oxide, gallium oxide, indium tin oxide, indium zinc oxide, etc.
  • the gate electrode layer may have a single layer or multiple layers.
  • the second gate insulating layer GI2 is disposed on the side of the gate electrode layer away from the buffer layer BFL, and the material of the second gate insulating layer GI2 may include, for example, silicon compounds and metal oxides.
  • the material of the second gate insulating layer GI2 may include silicon oxynitride, silicon oxide, silicon nitride, silicon oxycarbide, silicon nitride carbide, aluminum oxide, aluminum nitride, tantalum oxide, hafnium oxide, zirconium oxide, titanium oxide, etc.
  • the second gate insulating layer GI2 may be formed as a single layer or multiple layers.
  • a conductive layer (not shown) is disposed on a side of the second gate insulating layer GI2 away from the buffer layer BFL, and the conductive layer may include a second electrode plate of the capacitor.
  • the material of the conductive layer may be the same as the material of the first electrode plate, for details, please refer to the conductive materials listed above.
  • the interlayer insulating layer ILD is disposed on the side of the conductive layer away from the buffer layer BFL, and the material of the interlayer insulating layer ILD may include, for example, silicon compounds, metal oxides, and the like. Specifically, the silicon compounds and metal oxides listed above can be selected, which will not be repeated here.
  • the source-drain conductive layer is disposed on a side of the interlayer insulating layer ILD away from the buffer layer BFL.
  • the first source-drain conductive layer may include a source electrode 243 and a drain electrode 244 of each transistor, the source electrode 243 is electrically connected to the source connection portion, and the drain electrode 244 is electrically connected to the drain connection portion.
  • the source and drain conductive layers may include metals, alloys, metal nitrides, conductive metal oxides, transparent conductive materials, etc.
  • the source and drain conductive layers may be a single layer or multiple layers of metal, such as Mo/Al/Mo or Ti /Al/Ti.
  • the passivation layer PVX is disposed on the side of the source-drain conductive layer away from the buffer layer BFL, and the material of the passivation layer PVX may include, for example, silicon oxynitride, silicon oxide, silicon nitride, and the like.
  • the planarization layer PLN is arranged on the side of the passivation layer PVX away from the buffer layer BFL, and the planarization layer PLN can be made of an organic insulating material, for example, the organic insulating material includes polyimide, epoxy resin, acrylic, Resin materials such as polyester, photoresist, polyacrylate, polyamide, siloxane, etc.
  • the pixel defining layer PDL is located on a side of the planarization layer PLN away from the buffer layer BFL, and the pixel defining layer PDL has a plurality of pixel openings.
  • the light-emitting devices 23 correspond to the pixel openings one-to-one, and the light-emitting devices 23 include a first electrode 231 , a second electrode 232 and a light-emitting functional layer 233 located between the first electrode 231 and the second electrode 232 .
  • the first electrode 231 is an anode
  • the second electrode 232 is a cathode.
  • the first electrode 231 is a reflective electrode made of a metal material
  • the second electrode 232 is a transparent electrode made of a transparent conductive material (eg, indium tin oxide).
  • the light-emitting functional layer 233 may include sequentially stacked: a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, and an electron injection layer.
  • the first electrode 231 is located between the pixel defining layer PDL and the planarization layer PLN, and a portion of the first electrode 231 is exposed by the pixel opening.
  • the second electrodes 232 of the plurality of light emitting devices 23 may be formed in an integrated structure.
  • the light-emitting device 23 is an OLED device, and at this time, the light-emitting layer adopts an organic light-emitting material; or, the light-emitting device 23 is a QLED (Quantum Dot Light Emitting Diodes, quantum dot light-emitting diode) device, and at this time, the light-emitting layer adopts quantum dots.
  • Luminescent material Each light emitting device is configured to emit light of a preset color.
  • the display device further includes: a second encapsulation layer 25 and an accommodation structure layer 29 .
  • the second encapsulation layer 25 covers the pixel defining layer PDL and the plurality of light emitting devices 23, and is used for encapsulating the light emitting devices 23 to prevent the water vapor and/or oxygen in the external environment from eroding the light emitting devices 23.
  • the second encapsulation layer 25 includes a first inorganic encapsulation layer 251 , a second inorganic encapsulation layer 252 and an organic encapsulation layer 253 , and the second inorganic encapsulation layer 252 is located at a distance of the first inorganic encapsulation layer 251 away from the light emitting device 23 .
  • the organic encapsulation layer 253 is located between the first inorganic encapsulation layer 251 and the second inorganic encapsulation layer 252 .
  • Both the first inorganic encapsulation layer 251 and the second inorganic encapsulation layer 252 may be made of high-density inorganic materials such as silicon oxynitride, silicon oxide, and silicon nitride.
  • the organic encapsulation layer 253 can be made of a polymer material containing a desiccant, or a polymer material that can block water vapor.
  • a polymer resin can be used to relieve the stress of the first inorganic encapsulation layer 251 and the second inorganic encapsulation layer 252, and a water-absorbing material such as a desiccant can also be included to absorb water molecules and/or oxygen molecules intruding inside.
  • the encapsulation body of the encapsulation structure is disposed on the side of the second encapsulation layer 25 away from the light emitting device 23 .
  • the package body includes a plurality of color conversion layers
  • the color conversion layer includes a plurality of light emitting parts 121
  • each light emitting part 121 corresponds to a light emitting device 23
  • the light emitting part 121 is disposed on the light emitting side of the corresponding light emitting device 23
  • the light-emitting device 23 is disposed between the light-emitting portion 121 and the first substrate 10 .
  • the light-emitting portion 121 is configured to receive the light emitted by the corresponding light-emitting device 23 and emit light of the same or different color as the preset color.
  • the color of the light emitted by the light emitting device 23 is blue.
  • the plurality of light emitting parts 121 of the color conversion layer form a plurality of repeating units, and each repeating unit includes: a red light emitting part 12r for emitting red light, a green light emitting part 12g for emitting green light, and a The blue light emitting portion 12b that emits blue light.
  • the blue light emitting portion 12b may include scattering particles; both the red light emitting portion 12r and the green light emitting portion 12g may include quantum dots.
  • the red light emitting portion 12r and the green light emitting portion 12g may also include scattering particles.
  • the accommodating structure layer 29 is disposed on the side of the second encapsulation layer 25 away from the first substrate 10.
  • the accommodating structure layer 29 has a plurality of accommodating grooves, the accommodating grooves correspond to the light emitting devices 23 one-to-one, and the light emitting parts 121 are disposed in the accommodating grooves.
  • Materials for the accommodating structure layer 29 may include: acrylic polymer photoinitiators, organic pigments, resinous organic materials, and mixtures thereof.
  • the display device further includes a color filter layer and a black matrix BM, the color filter layer is located on the side of the color conversion layer away from the first substrate 10, and the color filter layer is The filter layer includes a plurality of color filter parts 26r, 26g and 26b, each color filter part 26r/26g/26b corresponds to a light emitting part 121, and the color filter part 26r/26g/26b and the corresponding light emitting part 121 emit light of the same color.
  • the color filter part 26r corresponds to the red light emitting part 12r, and the color filter part 26r is red; the color filter part 26g corresponds to the green light emitting part 12g, and the color filter part 26g is green; the color filter part 26b corresponds to the blue Corresponding to the light emitting portion 12b, the color filter portion 26b is blue.
  • the black matrix BM is located on the side of the color conversion layer away from the first substrate 10 .
  • the black matrix BM is formed in a grid-like structure to define a plurality of sub-pixel regions, and the sub-pixel regions are the regions where the light emitting device 23 is located.
  • the orthographic projection of at least a portion of each light emitting portion 121 on the first substrate 10 does not overlap with the orthographic projection of the black matrix BM on the first substrate 10 .
  • the refractive indices of the multilayer inorganic layers 11a of the first encapsulation layer 11 increase sequentially, thereby reducing light loss.
  • 4 is a schematic diagram of outgoing light from the package structure provided in an embodiment of the disclosure, wherein the refractive index of the first inorganic layer 111 is smaller than the refractive index of the third inorganic layer 113 , and the refractive index of the third inorganic layer 113 is smaller than that of the second inorganic layer 113
  • the refractive index of the layer 112 at this time, when the light emitted by the light emitting portion 121 passes through the first inorganic layer 11, the third inorganic layer 113 and the second inorganic layer 112 in sequence, the angle between the light output direction and the thickness direction of the display device gradually increases. reduced, thereby reducing or preventing light from entering the black matrix BM.
  • the refractive index of the first inorganic layer 11 is between 1.3 and 1.6
  • the refractive index of the second inorganic layer 12 is between 1.4 and 1.8
  • the refractive index of the third inorganic layer is between 1.4 and 1.8.
  • the refractive index of layer 13 is between 1.6 and 2.0 to minimize light loss.
  • a protective layer 27 is further provided on the side of the color filter layer away from the first substrate 10 to protect the color filter layer and the structures below it.
  • a side of the protective layer 27 away from the first substrate 10 is provided with an optical adhesive layer 28 and a cover plate 30 , and the optical adhesive layer 28 is located between the protective layer 27 and the cover plate 30 .
  • the display device includes a packaging structure, a driving structure layer 22 , The light emitting device 23 , the color filter layer and the black matrix BM, wherein the package body of the package structure includes a color conversion layer, and the color conversion layer includes a plurality of light emitting parts 121 , and each light emitting part 121 is arranged on the light emitting side of the corresponding light emitting device 121 , the light emitting part 121 is arranged in the accommodating groove of the accommodating structure layer 29 .
  • the specific structure of the light emitting device 23 , the material of the light emitting portion 121 , the material of the accommodating structure layer 29 , the specific structure of the driving structure layer 22 and the color filter layer are described above for the structure of FIG. 4 , and will not be repeated here.
  • the difference from FIG. 4 is that in the display device shown in FIG. 5 , the driving structure layer 22 and the light emitting device 23 are disposed on the second substrate 40 , and the driving structure layer 22 is located between the light emitting device 23 and the second substrate 40 .
  • the second substrate 40 is disposed opposite to the first substrate 10
  • the second encapsulation layer 25 is disposed on the side of the light emitting device 23 away from the second substrate 40 .
  • the color conversion layer is disposed on the side of the first substrate 10 facing the second substrate 40
  • the first encapsulation layer 11 is disposed between the color conversion layer and the light emitting device 23 .
  • the color filter layer and the black matrix BM are both disposed between the first encapsulation layer 11 and the first substrate 10. While the first encapsulation layer 11 encapsulates the color conversion layer, it can also encapsulate the color filter layer and the black matrix BM. to encapsulate.
  • a frame sealant 50 is further disposed between the first substrate 10 and the second substrate 40 , the frame sealant 50 is arranged around the display area of the display device, and the area surrounded by the frame sealant 50 is further provided with a filling material 60 , and the filling material 60 At least a part of it is located between the second encapsulation layer 25 and the first encapsulation layer 11 .
  • the filling material 60 and the sealant 50 can play a certain role in blocking water molecules and oxygen, there may be no space between the first inorganic encapsulation layer 251 and the second inorganic encapsulation layer 252 of the second encapsulation layer 25 .
  • An organic encapsulation layer is then provided.
  • structures such as a color filter layer, a black matrix BM, a accommodating structure layer 29 , a color conversion layer and a first encapsulation layer 11 can be formed on the first substrate 10 first.
  • the driving structure layer 40 , the light emitting device 23 and the second encapsulation layer 25 are formed on the substrate 40 , and the sealant 50 and the filling material 60 are formed on at least one of the first substrate 10 and the second substrate 40 .
  • the substrate 10 and the second substrate 40 are assembled together to form the display device shown in FIG. 5 .
  • FIG. 6 is a flowchart of a method for fabricating a package structure provided in some embodiments of the present disclosure. As shown in Figure 6, the preparation method includes:
  • a package body is formed on the first substrate.
  • step S2 forming a first encapsulation layer on the side of the encapsulation body away from the first substrate; step S2 specifically includes: forming multiple layers of inorganic layers in sequence, and stacking the multiple layers of inorganic layers.
  • the multi-layer inorganic layer includes a first inorganic layer closest to the package body, and the first inorganic layer includes carbon atoms and nitrogen atoms.
  • the encapsulation structure may be a color conversion layer, which may include organic light-emitting materials or quantum dots.
  • the color conversion layer can be directly formed on a flexible or rigid substrate; it is also possible to form structures such as a light-emitting device and a second encapsulation layer on the first substrate, and then form a color conversion layer on the second encapsulation layer, thereby preparing the structure shown in FIG. 4 .
  • the structure shown in FIG. 5 can also be formed firstly on the first substrate, such as a color filter layer and a black matrix, and then a color conversion layer is formed on the color filter layer, thereby preparing the structure shown in FIG. 5 .
  • each of the inorganic layers is formed using a vapor deposition (CVD) process, which is beneficial for reducing the thickness of the inorganic layers.
  • the inorganic layer formed by the vapor deposition process has good encapsulation, which is beneficial to improve the reliability of the quantum dot structure.
  • CVD vapor deposition
  • multiple layers of inorganic layers can be continuously deposited in the CVD equipment, which is beneficial to save the time for completing the entire process and reduce the complexity of the process.
  • the substrate or the display quibble can also be taken out from the deposition equipment, and then put into the deposition equipment to deposit the next inorganic layer.
  • the first encapsulation layer includes: a first inorganic layer, a third inorganic layer and a second inorganic layer which are arranged in sequence along a direction away from the quantum dot layer.
  • the deposition time of each inorganic layer is less than or equal to 10 minutes, and the total deposition time of three inorganic layers is not more than 30 minutes, so as to improve production efficiency.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

公开一种封装结构及其制备方法、显示装置。封装结构包括:第一基底;设置在所述第一基底上的封装主体;第一封装层,设置在所述封装主体远离所述第一基底的一侧,所述第一封装层包括依次叠置的至少两层无机层,其中,所述至少两层无机层包括最靠近所述封装主体的第一无机层,所述第一无机层中包含碳原子和氮原子。

Description

封装结构及其制备方法、显示装置
本申请要求申请日为2021年3月19日、申请号为“202110299898.7”发明名称为“封装结构及其制备方法、显示装置”的优先权。
技术领域
本公开涉及显示技术领域,具体涉及一种封装结构及其制备方法、显示装置。
背景技术
量子点层等色转换结构以及光电转换结构的使用过程中,需要对其进行封装。近年来,量子点材料因其优异的性能被应用到各个领域,尤其在显示领域,将量子点膜与(Organic Light-Emitting Diode,有机发光二极管)相结合的显示产品更是研究热点。量子点材料对水氧较为敏感,无法单独使用,需要进行封装。
发明内容
本公开旨在至少解决现有技术中存在的技术问题之一,提出了一种封装结构及其制备方法、显示装置。
本公开提供一种封装结构,包括:
第一基底;
设置在所述第一基底上的封装主体;
第一封装层,设置在所述封装主体远离所述第一基底的一侧,所述第一封装层包括依次叠置的至少两层无机层,其中,所述至少两层无机层包括最靠近所述封装主体的第一无机层,所述第一无机层中包含碳原子和氮原子。
在一些实施例中,所述第一无机层的材料包括SiC xN y,其中,0<x≤2,0<y≤2。
在一些实施例中,所述至少两层无机层还包括第二无机层,所述第二无机层的材料包括SiN n,其中,0<n≤1。
在一些实施例中,0.6<n<1。
在一些实施例中,所述至少两层无机层还包括第三无机层,所述第三无机层位于所述第二无机层远离所述封装主体的一侧,或者第三无极层位于所述第二无机层和所述第一无机层之间;
所述第三无机层中的材料包括SiO mN g,其中,1<m≤2,0≤g<0.7。
在一些实施例中,沿远离所述封装主体的方向,所述至少两层无机层的折射率依次增大。
在一些实施例中,所述无机层的数量为三层,沿远离所述封装主体的方向,三层所述无机层的折射率取值范围分别为:1.3~1.6;1.4~1.8;1.6~2.0。
在一些实施例中,所述第一封装层的厚度在0.3μm~2μm之间。
在一些实施例中,所述封装主体包括:色转换层。
在一些实施例中,所述色转换层中包括量子点。
在一些实施例中,所述封装主体包括发光结构,所述发光结构包括发光层。
在一些实施例中,所述发光层中包括量子点或有机发光材料。
在一些实施例中,所述发光结构还包括依次叠置的:第一阴极、电子传输层、空穴传输层和第一阳极,其中,所述发光层位于所述电子传输层和所述空穴传输层之间。
本公开实施例还提供一种显示装置,包括:上述的封装结构。
本公开实施例还提供一种显示装置,包括:上述的封装结构,其中,所述显示装置还包括:多个发光器件,所述发光器件配置为发射预设颜色的光线;
所述色转换层包括多个出光部,所述出光部对应一个发光器件,所述出光部设置在相应的发光器件的出光侧,所述出光部配置为接收相应的发光器件发射的光线,并发出与所述预设颜色相同或不同的光 线。
在一些实施例中,所述发光器件设置在所述色转换层与所述第一基底之间。
在一些实施例中,所述显示装置还包括:第二基底,所述第二基底与所述第一基底相对设置,所述发光器件设置在所述第二基底上,所述色转换层设置在所述第一基底朝向所述第二基底的一侧,所述第一封装层位于所述色转换层与所述发光器件之间。
在一些实施例中,所述预设颜色为蓝色,所述色转换层的多个出光部组成多个重复单元,每个所述重复单元包括:用于出射红光的红色出光部、用于出射绿光的绿色出光部和用于透过蓝光的蓝色出光部。
在一些实施例中,所述显示装置还包括:
第二封装层,所述第二封装层覆盖多个所述发光器件;
容纳结构层,设置在所述第二封装层远离所述发光器件的一侧,所述容纳结构层具有多个容纳槽,所述容纳槽与所述发光器件一一对应,所述出光部设置在所述容纳槽中。
在一些实施例中,所述显示装置还包括:
彩色滤光层,位于所述色转换层远离所述发光器件的一侧,所述彩色滤光层包括多个彩色滤光部,每个所述彩色滤光部对应一个所述出光部,所述彩色滤光部的颜色与相应的出光部所出射的光线颜色相同;
黑矩阵,位于所述色转换层远离所述发光器件的一侧;其中,每个所述出光部的至少一部分在所述第一基底上的正投影与所述黑矩阵在所述第一基底上的正投影无交叠。
本公开实施例还提供一种封装结构的制备方法,包括:
在第一基底上形成封装主体;
在所述封装主体远离所述第一基底形成第一封装层;其中,形成 所述第一封装层的步骤包括:依次形成至少两层无机层,其中,所述至少两层无机层包括最靠近所述封装主体的第一无机层,所述第一无机层中包含碳原子和氮原子。
在一些实施例中,每层所述无机层均采用气相沉积工艺形成。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1A为本公开实施例中提供的一种封装结构的示意图。
图1B为本公开的另一些实施例中的封装主体的结构示意图。
图2为本公开的一些实施例中提供的显示装置的示意图。
图3为本公开的一些实施例中提供的驱动结构层的示意图。
图4为本公开实施例中提供的封装结构的出射光线的示意图。
图5为本公开的另一些实施例中提供的显示装置的示意图。
图6为本公开的一些实施例中提供的封装结构的制备方法流程图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
这里用于描述本公开的实施例的术语并非旨在限制和/或限定本公开的范围。例如,除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。应该理解的是,本公开中使用的“第一”、“第二”以及类似的词语并不 表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。除非上下文另外清楚地指出,否则单数形式“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同,并不排除其他元件或者物件。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则所述相对位置关系也可能相应地改变。
对于量子点层等色转换结构、以及光电转换结构,在这些结构的使用过程中,为了防止其受到外界水氧的侵蚀,需要对其进行封装。以量子点层为例,由于量子点材料对水分子和氧气较为敏感,因此,在使用时,需要对量子点膜层进行封装。在一个示例中,采用的封装方式为:将量子点材料与硅胶进行混合,从而将量子点材料包裹在硅胶中,利用硅胶的阻水氧特性,达到封装的效果。但这种封装方式无法彻底消除水分子、氧气等小分子的侵蚀。在另一个示例中,采用的封装方式为:采用有机膜层对量子点层进行封装;或者,采用两层无机膜层以及该两层无机膜层之间的有机膜层作为封装层,来对量子点层进行封装。但这种封装方式中,在有机膜层制作工艺的限制下,形成的有机膜层的厚度较大,从而导致封装层整体厚度较大,不利于量子点层在显示装置中的应用。
图1A为本公开实施例中提供的一种封装结构的示意图,如图1A所示,封装结构1包括:第一基底10、设置在第一基底10上的封装主体12和第一封装层11。封装主体12可以包括色转换层、电致发光结构或光电转换结构。第一封装层11设置在封装主体12远离第一基底10的一侧,第一封装层11包括依次叠置的多层无机层11a,多层无机层11a包括最靠近封装主体12的第一无机层111,第一无机层111 中包含碳原子和氮原子。其中,封装主体12朝向第一无机层111的表面可以与第一无机层111直接接触。
在本公开实施例中,第一封装层11包括多层无机层11a,而无机层11a可以采用气相沉积工艺形成,从而得到厚度较小的第一封装层11,进而有利于实现封装结构1的薄型化。另外,最靠近封装主体12的第一无机层111中含有碳原子和氮原子,形成应力较小的类有机膜层,这样有利于实现第一无机层111与封装主体12的应力匹配,从而有利于平衡封装主体12随时间推移而出现的应力释放,防止第一无机层111出现皲裂,进而防止其他无机层11a出现爆膜。因此,本公开实施例中的封装结构1有利于在保证产品质量的基础上,实现薄型化。
在一些实施例中,封装主体12包括:色转换层,该色转换层用于在源光线的照射下,射出与源光线相同或不同的光线。例如,色转换层包括钙钛矿;又例如,色转换层包括量子点。又例如,色转换层包括荧光材料和磷光材料,例如,包括红色磷光材料和绿色荧光材料,红色磷光材料可以为(Ca,Sr,Ba)S、(Ca,Sr,Ba) 2Si 5N 8、CASN(CaAlSiN 3)、CaMoO 4和Eu 2Si 5N 8之中的至少一种材料;绿色荧光材料可以为钇铝石榴石(YAG)、(Ca,Sr,Ba) 2SiO 4、SrGa 2S 4、BAM、α-SiAlON、β-SiAlON、Ca 3Sc 2Si 3O 12、Tb 3Al 5O 12、BaSiO 4、CaAlSiON和(Sr 1-xBa x)Si 2O 2N 2之中的至少一种材料,其中,x可以是0至1之间的数字。
图1B为本公开的另一些实施例中的封装主体的结构示意图,如图1B所示,在另一些实施例中,封装主体12包括:发光结构,发光结构包括发光层12a,发光层12a中包括量子点材料、有机发光材料或者钙钛矿材料。其中,有机发光材料包括:8-羟基喹啉铝、mCBP、DPEPO、m-ADN、Ir(ppy) 3中的一种或多种。另外,发光结构还包括:第一阴极12b、电子传输层12c、空穴传输层12d和第一阳极12e,其中,第一阴极12b与第一阳极12d相对设置,发光层12a设置在第一阳极12e与第 一阴极12b之间,电子传输层12c设置在发光层12a与第一阴极12b之间,空穴传输层12d位于发光层12a与第一阳极12e之间。当然,发光结构还可以包括其他膜层,例如,位于电子传输层12c与第一阴极12b之间的电子注入层,和/或位于空穴传输层12d与第一阳极12e之间的空穴注入层。另外,需要说明的是,可以将第一阴极12b和电子传输层12c设置在发光层12a与第一基底10之间、将第一阳极12e与空穴传输层12d设置在发光层12a远离第一基底10的一侧,也可以将第一阴极12b和电子传输层12c设置在发光层12a远离第一基底10的一侧、将第一阳极12e与空穴传输层12d设置在发光层12a与第一基底10之间。
根据上述实施例所述,封装主体12可以包括的色转换层或者发光层,所述色转换层或者所述发光层中均可以包括量子点。量子点材料可以为ZnCdSe2,CdSe,CdTe,InP,InAs中的一种或多种;量子点可以不限于上述材料,并从II-VI族化合物、III-V族化合物、IV-VI族化合物、IV族元素、IV族化合物和/或它们的组合中选择。
需要说明的是,本公开实施例中的封装主体12不限于上述发光结构和色转换层,例如,封装主体12可以包括光电转换结构。其中,该光电转换结构可以为,染料敏化电池、量子点敏化太阳能电池、钙钛矿太阳能电池或者光电探测器件。
在一些实施例中,叠置的多层无机层的第一封装层11整体的厚度可以控制在0.3μm~2μm之间,相比第一封装层11包含有机膜层的情况,封装结构1整体的厚度较小,有利于在显示装置中的应用。
在一些实施例中,第一封装层11的无机层11a包括:第一无机层111、第二无机层112,第二无机层112位于第一无机层112远离量子点层12的一侧。
其中,第一无机层111的材料包括:SiC xN y,其中0<x≤2,0<y≤2。SiC xN y表明了在SiC xN y中硅(Si)元素与碳(C)元素的摩尔比为 1:x,硅(Si)元素与氮(N)元素的摩尔比为1:y。可选地,0.3<x≤1.8,0.1<y≤1.8;可选地,0.4<x≤1.7,0.2<y≤1.5;可选地,0.5<x≤1.7,0.2<y≤1.3。优选地,0.6<x<1.7,0.3<y<1,从而使第一无机层111能更好地平衡量子点层12的应力释放。第一无机层111的厚度小于或等于1μm,第一无机层111的应力具体可以在-10~10Mpa之间。
第二无机层112材料包括含硅与氮原子的化合物,可以表示为SiN n,其作用为阻隔水分子与氧气。其中,0<n≤1。SiN n表明了在SiN n中硅(Si)元素与氮(N)元素的摩尔比为1:n;优选地,SiN n材料中可以不含有其他元素,或者其他元素作为杂质存在,但可以忽略不计。可选地,0.2<n≤1;可选地,0.3<n<1;优选地,0.6<n<1,这种情况下,第二无机层112的膜质致密且杨氏模量较大,并且,第二无机层112内部缺陷较少,从而保证第二无机层112的水汽透过系数(WVTR)小于10 -4,且结构稳定,进而提高封装结构1的信赖性。可选的,第二无机层112的厚度在0.5μm~0.9μm之间。
在一些实施例中,第一封装层11的无机层11a还包括第三无机层113,所述第三无机层113位于所述第二无机层112远离封装主体12的一侧,或者第三无极层113位于所述第二无机层112和所述第一无机层111之间。
当第一封装层11的无机层11a包括第三无机层113时,第二无机层112和第三无机层113中,可以一者受到的应力为张应力,另一者受到的应力压应力,这种情况下,第二无机层112和第三无机层113的应力可以抵消,从而使第二无机层112和第三无机层113更加匹配,防止膜层之间发生分离(peeling)。
在一些实施例中,第三无机层113为含有氧原子的无机膜层。具体地,第三无机层113的材料可以包括SiO mN g,其中,1<m≤2,0≤g<0.7; SiO mN g表明了在SiO mN g中硅(Si)元素、氧(O)元素、氮(N)元素的摩尔比为1:m:g。当g=0时,无机层为硅氧化物。可选地,第三无机层113的厚度在0.1μm~0.3μm之间。
在上述实施例中,第二无机层112受到的应力可以为张应力,此时第三无机层113受到的应力为压应力;或者,第二无机层112受到的应力可以为压应力,此时第三无机层113受到的应力为张应力,在本公开中,只要保证第二无机层112与第三无机层113应力平衡即可。膜层应力情况可能与制备条件、厚度、成分等因素有关。
优选地,为了提高第一封装层11的水氧隔绝效果,第二无机层112与第一无机层111的边缘接触,第二无机层112在第一基底20上正投影覆盖封装主体12在第一基底20上的正投影。
优选地,当第三无机层113位于第二无机层112和第一无机层111之间时,第二无机层112在第一基底20上正投影覆盖第三无机层112在第一基底20上的正投影;进一步优选地,第三无机层112在第一基底20上的正投影覆盖封装主体12在第一基底20上的正投影。具体地,如图1A所示,第二无机层112可以包括SiN n,封装结构1包括中部区域MA和环绕中部区域MA的边缘区域WA,封装主体12位于中部区域MA,边缘区域WA的第一无机层111与第二无机层112接触,第二无机层112在第一基底20上正投影覆盖第三无机层113在第一基底20上的正投影,第三无机层113在在第一基底20上正投影覆盖封装主体12在第一基底20上的正投影。
本公开实施例还提供一种显示装置,所述显示装置可以为OLED显示面板、QLED显示面板、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。图2为本公开的一些实施例中提供的显示装置的示意图,如图2所示, 显示装置包括:上述实施例中的量子点结构。另外还包括:设置在第一基底20上的驱动结构层22和多个发光器件23。其中,第一基底20可以为玻璃衬底,也可以为诸如聚酰亚胺(PI)等柔性材料制作的柔性衬底,从而有利于实现柔性显示。驱动结构层22包括多个像素驱动电路,像素驱动电路与发光器件23一一对应,像素驱动电路用于为发光器件23提供驱动电流,以驱动发光器件23发光。例如,像素驱动电路包括多个薄膜晶体管(如图3中所示)和至少一个电容。
图3为本公开的一些实施例中提供的驱动结构层的示意图,如图3所示,薄膜晶体管24包括栅极241、有源层242、源极243和漏极244,以薄膜晶体管24采用顶栅型薄膜晶体管为例,有源层242位于栅极241与第一基底10之间。有源层242的材料可以包括例如无机半导体材料(例如,多晶硅、非晶硅等)、有机半导体材料、氧化物半导体材料。有源层242包括沟道部和位于该沟道部两侧的源极连接部和漏极连接部,源极连接部与薄膜晶体管24的源极243连接,漏极连接部与薄膜晶体管24的漏极244连接。源极连接部和漏极连接部均可以掺杂有比沟道部的杂质浓度高的杂质(例如,N型杂质或P型杂质)。沟道部与薄膜晶体管24的栅极241正对,当栅极241加载的电压信号达到一定值时,沟道部中形成载流子通路,形成使薄膜晶体管24的源极243和漏极244导通。
缓冲层BFL设置在薄膜晶体管24与第一基底10之间,用于防止或减少金属原子和/或杂质从第一基底10扩散到晶体管的有源层242中。缓冲层BFL可以包括诸如氧化硅、氮化硅和/或氮氧化硅的无机材料,并且可以形成为多层或单层。
第一栅绝缘层GI1设置在有源层242远离缓冲层BFL的一侧。第一栅绝缘层GI1的材料可以包括硅化合物、金属氧化物。例如,第一 栅绝缘层GI1的材料包括氮氧化硅、氧化硅、氮化硅、碳氧化硅、氮碳化硅、氧化铝、氮化铝、氧化钽、氧化铪、氧化锆、氧化钛等。另外,第一栅绝缘层GI1可以为单层或多层。
栅电极层设置在第一栅绝缘层GI1远离缓冲层BFL的一侧。其中,栅电极层包括各薄膜晶体管的栅极241、电容的第一电极板。栅电极层的材料可以包括例如金属、金属合金、金属氮化物、导电金属氧化物、透明导电材料等。例如,栅电极层可以包括金、金的合金、银、银的合金、铝、铝的合金、氮化铝、钨、氮化钨、铜、铜的合金、镍、铬、氮化铬、钼、钼的合金、钛、氮化钛、铂、钽、氮化钽、钕、钪、氧化锶钌、氧化锌、氧化锡、氧化铟、氧化镓、氧化铟锡、氧化铟锌等。栅电极层可以具有单层或多层。
第二栅绝缘层GI2设置在栅电极层远离缓冲层BFL的一侧,第二栅绝缘层GI2的材料可以包括例如硅化合物、金属氧化物。例如,第二栅绝缘层GI2的材料可以包括氮氧化硅、氧化硅、氮化硅、碳氧化硅、氮碳化硅、氧化铝、氮化铝、氧化钽、氧化铪、氧化锆、氧化钛等。第二栅绝缘层GI2可以形成为单层或多层。
导电层(未示出)设置在第二栅绝缘层GI2远离缓冲层BFL的一侧,导电层可以包括电容的第二电极板。导电层的材料可以与第一电极板的材料相同,具体参见上文中所列举的导电材料。
层间绝缘层ILD设置在导电层远离缓冲层BFL的一侧,层间绝缘层ILD的材料可以包括例如硅化合物、金属氧化物等。具体可以选择上文所列举的硅化合物和金属氧化物,这里不再赘述。
源漏导电层设置在层间绝缘层ILD远离缓冲层BFL的一侧。第一源漏导电层可以包括各晶体管的源极243和漏极244,源极243与源极连接部电连接,漏极244与漏极连接部电连接。源漏导电层可以包 括金属、合金、金属氮化物、导电金属氧化物、透明导电材料等,例如,源漏导电层可以为金属构成的单层或多层,例如为Mo/Al/Mo或Ti/Al/Ti。
钝化层PVX设置在源漏导电层远离缓冲层BFL的一侧,钝化层PVX的材料可以包括例如氮氧化硅、氧化硅、氮化硅等。平坦化层PLN设置在钝化层PVX远离缓冲层BFL的一侧,平坦化层PLN可以采用有机绝缘材料制成,例如,该有机绝缘材料包括聚酰亚胺、环氧树脂、压克力、聚酯、光致抗蚀剂、聚丙烯酸酯、聚酰胺、硅氧烷等树脂类材料等。
像素界定层PDL位于平坦化层PLN远离缓冲层BFL的一侧,像素界定层PDL具有多个像素开口。发光器件23与像素开口一一对应,发光器件23包括:第一电极231、第二电极232以及位于第一电极231与第二电极232之间的发光功能层233。例如,第一电极231为阳极,第二电极232为阴极。可选地,第一电极231为金属材料制作的反射电极,第二电极232为透明导电材料(例如,氧化铟锡)制作的透明电极。发光功能层233可以包括依次叠置的:空穴注入层、空穴传输层、发光层、电子传输层和电子注入层。第一电极231位于像素界定层PDL与平坦化层PLN之间,第一电极231的一部分被像素开口暴露出。多个发光器件23的第二电极232可以形成为一体结构。
可选地,发光器件23为OLED器件,此时,发光层采用有机发光材料;或者,发光器件23为QLED(Quantum Dot Light Emitting Diodes,量子点发光二极管)器件,此时,发光层采用量子点发光材料。每个发光器件配置为发射预设颜色的光线。
如图2所示,显示装置还包括:第二封装层25和容纳结构层29。第二封装层25覆盖像素界定层PDL和多个发光器件23,用于对发光 器件23进行封装,以防止外界环境中的水汽和/或氧气侵蚀发光器件23。在一些实施例中,第二封装层25包括第一无机封装层251、第二无机封装层252和有机封装层253,第二无机封装层252位于第一无机封装层251的远离发光器件23的一侧,有机封装层253位于第一无机封装层251和第二无机封装层252之间。第一无机封装层251和第二无机封装层252均可以采用氮氧化硅、氧化硅、氮化硅等致密性高的无机材料制成。有机封装层253可以采用含有干燥剂的高分子材料制成,或采用可阻挡水汽的高分子材料制成。例如,采用高分子树脂,从而可以缓解第一无机封装层251和第二无机封装层252的应力,还可以包括干燥剂等吸水性材料以吸收侵入内部的水分子和/或氧气分子。
封装结构的封装主体设置在第二封装层25远离发光器件23的一侧。在一些实施例中,封装主体包括多个色转换层,色转换层包括多个出光部121,每个出光部121对应一个发光器件23,出光部121设置在相应的发光器件23的出光侧,发光器件23设置在出光部121与第一基底10之间。出光部121配置为接收相应的发光器件23发射的光线,并发出与预设颜色相同或不同的光线。
在一些实施例中,发光器件23所发射的光线颜色为蓝色。可选地,色转换层的多个出光部121组成多个重复单元,每个重复单元包括:用于出射红光的红色出光部12r、用于出射绿光的绿色出光部12g、和用于出射蓝光的蓝色出光部12b。可选地,蓝色出光部12b可以包括散射粒子;红色出光部12r和绿色出光部12g均可以包括量子点。当然,红色出光部12r和绿色出光部12g中也可以包括散射粒子。
容纳结构层29设置在第二封装层25远离第一基底10的一侧,容纳结构层29具有多个容纳槽,容纳槽与发光器件23一一对应,出光 部121设置在容纳槽中。容纳结构层29的材料可以包括:丙烯酸聚合物光引发剂、有机颜料、树脂类有机材料和他们的混合物。
由于外界环境光中也含有蓝光,当外界环境光中的蓝光射入量子点层时,会激发量子点层12发出红光或绿光,从而影响显示装置的显示效果。为了防止外界环境光对显示装置的显示造成干扰,在一些实施例中,显示装置还包括彩色滤光层和黑矩阵BM,彩色滤光层位于色转换层远离第一基底10的一侧,彩色滤光层包括多个彩色滤光部26r、26g和26b,每个彩色滤光部26r/26g/26b对应一个出光部121,彩色滤光部26r/26g/26b与相应的出光部121所出射的光线颜色相同。例如,彩色滤光部26r与红色出光部12r对应,彩色滤光部26r为红色;彩色滤光部26g与绿色出光部12g对应,彩色滤光部26g为绿色;彩色滤光部26b与蓝色出光部12b对应,彩色滤光部26b为蓝色。
黑矩阵BM位于色转换层远离第一基底10的一侧,黑矩阵BM形成为网格状结构,以限定出多个子像素区,子像素区即为发光器件23所在区域。每个出光部121的至少一部分在第一基底10上的正投影与黑矩阵BM在第一基底10上的正投影无交叠。
在一些实施例中,沿远离色转换层的方向,第一封装层11的多层无机层11a的折射率依次增大,从而减少光损失。图4为本公开实施例中提供的封装结构的出射光线的示意图,其中,第一无机层111的折射率小于第三无机层113的折射率,第三无机层113的折射率小于第二无机层112的折射率,此时,出光部121出射的光线依次穿过第一无机层11、第三无机层113和第二无机层112时,光线的出射方向与显示装置厚度方向的夹角逐渐减小,从而减少或防止光线射入黑矩阵BM。
在一些实施例中,针对波长在440nm~450nm之间的光线,第一无 机层11的折射率在1.3~1.6之间,第二无机层12的折射率在1.4~1.8之间,第三无机层13的折射率在1.6~2.0之间,从而最大程度地减少光损失。
如图2所示,彩色滤光层远离第一基底10的一侧还设置有保护层27,以对彩色滤光层及其下方的结构进行保护。保护层27远离第一基底10的一侧设置有光学胶层28和盖板30,光学胶层28位于保护层27与盖板30之间。
图5为本公开的另一些实施例中提供的显示装置的示意图,与图4所示的显示装置相同地,在图5所示的显示装置中,显示装置包括封装结构、驱动结构层22、发光器件23、彩色滤光层和黑矩阵BM,其中,封装结构的封装主体包括色转换层,色转换层包括多个出光部121,每个出光部121设置在相应的发光器件121的出光侧,出光部121设置在容纳结构层29的容纳槽中。发光器件23的具体结构、出光部121的材料、容纳结构层29的材料、驱动结构层22和彩色滤光层的具体结构上述对图4结构的描述,这里不再赘述。
与图4所不同的是,在图5所示的显示装置中,驱动结构层22、发光器件23设置在第二基底40上,驱动结构层22位于发光器件23与第二基底40之间。第二基底40与第一基底10相对设置,第二封装层25设置在发光器件23远离第二基底40的一侧。色转换层设置在第一基底10朝向第二基底40的一侧,第一封装层11设置在色转换层与发光器件23之间。
另外,彩色滤光层和黑矩阵BM均设置在第一封装层11与第一基底10之间,第一封装层11对色转换层封装的同时,也可以对彩色滤光层和黑矩阵BM进行封装。第一基底10和第二基底40之间还设置有封框胶50,封框胶50环绕显示装置的显示区设置,封框胶50所环 绕的区域内还设置有填充材料60,填充材料60的至少一部分位于第二封装层25与第一封装层11之间。另外,由于填充材料60和封框胶50可以起到一定的隔水分子和氧气的作用,因此,第二封装层25的第一无机封装层251与第二无机封装层252之间,可以不再设置有机封装层。
图5所示的显示装置在进行制作时,可以先在第一基底10上形成彩色滤光层、黑矩阵BM、容纳结构层29、色转换层和第一封装层11等结构,在第二基底40上形成驱动结构层40、发光器件23和第二封装层25,并在第一基底10和第二基底40的至少一者上形成封框胶50和填充材料60,之后,将第一基底10和第二基底40对盒,形成图5所示的显示装置。
图6为本公开的一些实施例中提供的封装结构的制备方法流程图。如图6所示,该制备方法包括:
S1、在第一基底上形成封装主体。
S2、在封装主体远离第一基底的一侧形成第一封装层;步骤S2具体包括:依次形成多层无机层,多层无机层堆叠设置。多层无机层包括最靠近封装主体的第一无机层,第一无机层中包含碳原子和氮原子。
其中,封装结构可以为色转换层,其可以包括有机发光材料或量子点。色转换层可以直接形成在柔性或刚性的基底上;也可以先在第一基底上形成发光器件、第二封装层等结构,再在第二封装层上形成色转换层,从而制备图4所示的结构;也可以先在第一基底上形成彩色滤光层和黑矩阵等结构,再在彩色滤光层上形成色转换层,从而制备图5所示的结构。
在一些实施例中,每层无机层均采用气相沉积(CVD)工艺形成,从而有利于减小无机层的厚度。并且,采用气相沉积工艺形成的无机 层具有很好的包覆性,从而有利于提高量子点结构的信赖性。在实际制备过程中,可以在CVD设备中连续沉积多层无机层,这有利于节省整个工艺完成的时间,减少工艺复杂度。当然,在实际制备过程中,也可以在每沉积一层无机层后,将基底或显示狡辩从沉积设备中取出,之后再放入沉积设备进行下一层无机层的沉积。通过相同的工艺制作多层无机层,可以提高生产效率。具体的,例如,第一封装层包括沿远离量子点层的方向依次设置的:第一无机层、第三无机层和第二无机层。例如,每层无机层的沉积时间小于或等于10分钟,三层无机层的总体沉积时间不超过30分钟,以提高生产效率。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (22)

  1. 一种封装结构,包括:
    第一基底;
    设置在所述第一基底上的封装主体;
    第一封装层,设置在所述封装主体远离所述第一基底的一侧,所述第一封装层包括依次叠置的至少两层无机层,其中,所述至少两层无机层包括最靠近所述封装主体的第一无机层,所述第一无机层中包含碳原子和氮原子。
  2. 根据权利要求1所述的封装结构,其中,所述第一无机层的材料包括SiC xN y,其中,0<x≤2,0<y≤2。
  3. 根据权利要求1所述的封装结构,其中,所述至少两层无机层还包括第二无机层,所述第二无机层的材料包括SiN n,其中,0<n≤1。
  4. 根据权利要求3所述的封装结构,其中,0.6<n<1。
  5. 根据权利要求1所述的封装结构,其中,所述至少两层无机层还包括第三无机层,所述第三无机层位于所述第二无机层远离所述封装主体的一侧,或者第三无极层位于所述第二无机层和所述第一无机层之间;
    所述第三无机层中的材料包括SiO mN g,其中,1<m≤2,0≤g<0.7。
  6. 根据权利要求1至5中任意一项所述的封装结构,其中,沿远 离所述封装主体的方向,所述至少两层无机层的折射率依次增大。
  7. 根据权利要求1至5中任意一项所述的封装结构,其中,所述无机层的数量为三层,沿远离所述封装主体的方向,三层所述无机层的折射率取值范围分别为:1.3~1.6;1.4~1.8;1.6~2.0。
  8. 根据权利要求1至5中任意一项所述的封装结构,其中,所述第一封装层的厚度在0.3μm~2μm之间。
  9. 根据权利要求1至5中任意一项所述的封装结构,其中,所述封装主体包括:色转换层。
  10. 根据权利要求9所述的封装结构,其中,所述色转换层中包括量子点。
  11. 根据权利要求1至5中任意一项所述的封装结构,其中,所述封装主体包括发光结构,所述发光结构包括发光层。
  12. 根据权利要求11所述的封装结构,其中,所述发光层中包括量子点或有机发光材料。
  13. 根据权利要求11所述的封装结构,其中,所述发光结构还包括依次叠置的:第一阴极、电子传输层、空穴传输层和第一阳极,其中,所述发光层位于所述电子传输层和所述空穴传输层之间。
  14. 一种显示装置,包括:权利要求1至13中任意一项所述的封装结构。
  15. 一种显示装置,包括:权利要求9或10所述的封装结构,其中,所述显示装置还包括:多个发光器件,所述发光器件配置为发射预设颜色的光线;
    所述色转换层包括多个出光部,所述出光部对应一个发光器件,所述出光部设置在相应的发光器件的出光侧,所述出光部配置为接收相应的发光器件发射的光线,并发出与所述预设颜色相同或不同的光线。
  16. 根据权利要求15所述的显示装置,其中,所述发光器件设置在所述色转换层与所述第一基底之间。
  17. 根据权利要求15所述的显示装置,其中,所述显示装置还包括:第二基底,所述第二基底与所述第一基底相对设置,所述发光器件设置在所述第二基底上,所述色转换层设置在所述第一基底朝向所述第二基底的一侧,所述第一封装层位于所述色转换层与所述发光器件之间。
  18. 根据权利要求15所述的显示装置,其中,所述预设颜色为蓝色,所述色转换层的多个出光部组成多个重复单元,每个所述重复单元包括:用于出射红光的红色出光部、用于出射绿光的绿色出光部和用于透过蓝光的蓝色出光部。
  19. 根据权利要求15所述的显示装置,其中,所述显示装置还包括:
    第二封装层,所述第二封装层覆盖多个所述发光器件;
    容纳结构层,设置在所述第二封装层远离所述发光器件的一侧,所述容纳结构层具有多个容纳槽,所述容纳槽与所述发光器件一一对应,所述出光部设置在所述容纳槽中。
  20. 根据权利要求15所述的显示装置,其中,所述显示装置还包括:
    彩色滤光层,位于所述色转换层远离所述发光器件的一侧,所述彩色滤光层包括多个彩色滤光部,每个所述彩色滤光部对应一个所述出光部,所述彩色滤光部的颜色与相应的出光部所出射的光线颜色相同;
    黑矩阵,位于所述色转换层远离所述发光器件的一侧;其中,每个所述出光部的至少一部分在所述第一基底上的正投影与所述黑矩阵在所述第一基底上的正投影无交叠。
  21. 一种封装结构的制备方法,包括:
    在第一基底上形成封装主体;
    在所述封装主体远离所述第一基底形成第一封装层;其中,形成所述第一封装层的步骤包括:依次形成至少两层无机层,其中,所述至少两层无机层包括最靠近所述封装主体的第一无机层,所述第一无机层中包含碳原子和氮原子。
  22. 根据权利要求21所述的制备方法,其中,每层所述无机层均采用气相沉积工艺形成。
PCT/CN2021/127562 2021-03-19 2021-10-29 封装结构及其制备方法、显示装置 WO2022193671A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110299898.7 2021-03-19
CN202110299898.7A CN115117269A (zh) 2021-03-19 2021-03-19 封装结构及其制备方法、显示装置

Publications (1)

Publication Number Publication Date
WO2022193671A1 true WO2022193671A1 (zh) 2022-09-22

Family

ID=83321664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/127562 WO2022193671A1 (zh) 2021-03-19 2021-10-29 封装结构及其制备方法、显示装置

Country Status (2)

Country Link
CN (1) CN115117269A (zh)
WO (1) WO2022193671A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024092548A1 (en) * 2022-11-02 2024-05-10 Boe Technology Group Co., Ltd. Display substrate, display panel, display apparatus, and method of fabricating display substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170018737A1 (en) * 2015-07-17 2017-01-19 Samsung Display Co., Ltd. Organic light-emitting display device and method of manufacturing the same
CN108539051A (zh) * 2018-03-20 2018-09-14 武汉华星光电半导体显示技术有限公司 显示面板及其制作方法
CN110164308A (zh) * 2019-05-23 2019-08-23 京东方科技集团股份有限公司 一种封装方法及封装结构

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170018737A1 (en) * 2015-07-17 2017-01-19 Samsung Display Co., Ltd. Organic light-emitting display device and method of manufacturing the same
CN108539051A (zh) * 2018-03-20 2018-09-14 武汉华星光电半导体显示技术有限公司 显示面板及其制作方法
CN110164308A (zh) * 2019-05-23 2019-08-23 京东方科技集团股份有限公司 一种封装方法及封装结构

Also Published As

Publication number Publication date
CN115117269A (zh) 2022-09-27

Similar Documents

Publication Publication Date Title
US9548343B2 (en) Flexible display
KR101818480B1 (ko) 유기 발광 표시 장치 및 그 제조 방법
US8253322B2 (en) Organic light emitting display device including light absorption pattern unit
US8638030B2 (en) Organic light emitting display device including pixel electrode not formed in light transmissive region
CN101728434B (zh) 半导体器件及其制造方法
CN108122953B (zh) 封装单元和包括该封装单元的有机发光显示装置
KR101339000B1 (ko) 유기전계발광 표시소자 및 그 제조방법
US20190157610A1 (en) Organic light-emitting display apparatus and method of manufacturing the same
KR20170043726A (ko) 투명 표시 기판 및 투명 표시 장치
WO2012115016A1 (en) Light-emitting device and electronic device using light-emitting device
US8698134B2 (en) Organic light emitting display device and method of fabricating the same
CN110571347B (zh) 一种显示面板及其制备方法
KR102415326B1 (ko) 플렉서블 표시 장치 및 플렉서블 표시 장치의 제조 방법
WO2022193671A1 (zh) 封装结构及其制备方法、显示装置
TW200424979A (en) Electroluminescence display device
CN216488147U (zh) 封装结构和显示装置
EP3598502B1 (en) Package structure, display panel and display device
KR102343390B1 (ko) 표시 장치 및 이의 제조 방법
KR101957145B1 (ko) 유기발광소자표시장치 및 그 제조방법
WO2023050304A1 (zh) 显示基板、显示装置及显示基板的制备方法
KR20170003298A (ko) 유기 발광 디스플레이 장치 및 이의 제조 방법
KR102383323B1 (ko) 플렉서블 유기발광 표시장치
KR20160046202A (ko) 유기발광표시장치
US11495775B2 (en) Light-emitting device including encapsulation layers having different refractive indexes, method of manufacturing the same and electronic apparatus
CN110739410A (zh) 封装结构、其制作方法及包含该封装结构的oled显示器件

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17911730

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931246

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18.01.2024)