WO2023000944A1 - 自主移动设备 - Google Patents

自主移动设备 Download PDF

Info

Publication number
WO2023000944A1
WO2023000944A1 PCT/CN2022/102349 CN2022102349W WO2023000944A1 WO 2023000944 A1 WO2023000944 A1 WO 2023000944A1 CN 2022102349 W CN2022102349 W CN 2022102349W WO 2023000944 A1 WO2023000944 A1 WO 2023000944A1
Authority
WO
WIPO (PCT)
Prior art keywords
device body
detector
autonomous mobile
mobile device
detectors
Prior art date
Application number
PCT/CN2022/102349
Other languages
English (en)
French (fr)
Inventor
王栋
肖大伟
Original Assignee
灵动科技(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 灵动科技(北京)有限公司 filed Critical 灵动科技(北京)有限公司
Publication of WO2023000944A1 publication Critical patent/WO2023000944A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions

Definitions

  • the embodiments of the present application relate to the technical field of autonomous mobile devices, and in particular, to an autonomous mobile device.
  • the existing AMR car can only realize simple forward, backward, and in-situ rotation, but cannot walk at any angle.
  • various embodiments of the present application provide an autonomous mobile device.
  • an autonomous mobile device includes:
  • a plurality of traveling wheels are arranged at the bottom of the equipment body;
  • the plurality of traveling wheels include a driving wheel assembly and a universal wheel, wherein the driving wheel assembly has the ability to advance, retreat and turn; the universal wheel follows the driving wheel assembly to advance, retreat or turn, To make the equipment body walk at any angle;
  • the traveling wheels at the bottom of the equipment body are arranged symmetrically with respect to the symmetry axis of the equipment body; wherein, the symmetry axis extends along the forward or backward direction of the equipment body;
  • the controller is connected in communication with multiple detectors, and is used to control the equipment body to perform corresponding actions according to the target information of the target identification.
  • the plurality of detectors include: a plurality of obstacle detectors, which are respectively arranged at the first group of diagonal positions among the plurality of groups of diagonal positions; the target identification is the first environment identification in the first detection environment; the obstacle detector is used to detect First environment information of the first environment identifier around the device body;
  • the controller is connected in communication with the obstacle detector, and is used to control the device body to avoid obstacles according to the first environment information of the first environment identifier.
  • a recessed space is provided at the upper middle part of the side of the device body, and the recessed space surrounds the device body for a week;
  • the obstacle detector is located in the recessed space.
  • the plurality of detectors also includes: a plurality of navigation detectors, which are respectively arranged in the second group of diagonal positions in multiple groups of diagonal positions; the target identification is the second environment identification in the second detection environment; The second environment information of the second environment identifier around the detection equipment body;
  • the controller is connected in communication with the navigation detector, and is used for controlling the device body to perform corresponding actions according to the second environment information of the second environment identifier.
  • the obstacle detector is located at the upper middle of the device body; the navigation detector is located at the bottom of the device body.
  • the multiple detectors also include: a two-dimensional code detector, which is arranged at the bottom of the device body; the target mark is a two-dimensional code mark; the two-dimensional code detector is used to detect the two-dimensional code information of the two-dimensional code mark on the ground;
  • the controller communicates with the two-dimensional code detector, and is used to control the device body to perform corresponding actions according to the two-dimensional code information.
  • the multiple detectors also include: a follower detector, which is arranged on one side of the device body; the target is identified as a specific target object; the follower detector is used to detect specific target object information of a specific target object;
  • the controller communicates with the following detector, and is used to control the device body to perform corresponding actions according to the information of the specific target object.
  • the multiple detectors also include: a mark detector, which is arranged on one side of the device body; the target mark is a mark mark; the mark detector is used to detect mark information of the mark mark;
  • the controller communicates with the mark detector, and is used to control the equipment body to perform corresponding actions according to the mark information.
  • the plurality of traveling wheels include two driving wheel assemblies and two universal wheels, and the line connecting the two driving wheel assemblies at the bottom of the equipment body intersects the line connecting the two universal wheels.
  • the driving wheel assembly is a steering wheel assembly or a double differential assembly.
  • the plurality of traveling wheels include two driving wheel assemblies and two universal wheels.
  • the multiple detectors include two obstacle detectors.
  • the plurality of probes includes two navigation probes.
  • a plurality of traveling wheels are provided on the equipment body, including two drive wheel assemblies and two universal wheels; where only two drive wheel assemblies are required, on the one hand, in addition to the universal
  • it can also make the control of the driving wheel assembly relatively simple and reduce the cost; on the other hand, it can also enable the equipment body to walk at any angle;
  • the friction between the forklift and the ground can be increased, and the problem that the forklift is easy to slip is alleviated to a certain extent;
  • the traveling wheels at the bottom of the equipment body are arranged relative to the symmetrical axis of the equipment body, which can improve the stability of the forklift.
  • FIG. 1 is a schematic structural diagram of an autonomous mobile device provided by an embodiment of the present application.
  • Fig. 2 is a schematic structural diagram of a universal wheel provided by an embodiment of the present application.
  • Fig. 3 is a schematic structural diagram of a dual differential wheel module provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a partial structure of an autonomous mobile device provided by an embodiment of the present application.
  • Fig. 5 is a schematic diagram of a partial structure of another autonomous mobile device provided by an embodiment of the present application.
  • Fig. 1 shows a schematic structural diagram of an autonomous mobile device provided by an embodiment of the present application; as shown in Fig. 1 , the autonomous mobile device includes: a device body 1, multiple traveling wheels 11, multiple detectors 12 and control device 13; wherein, a plurality of traveling wheels 11 are arranged at the bottom of the equipment body 1; a plurality of traveling wheels 11 include two driving wheel assemblies 111 and two universal wheels 112, wherein the two driving wheel assemblies 111 have forward and backward functions and steering ability; two universal wheels 112 follow the two driving wheel assemblies 111 to advance, retreat or turn, so that the equipment body 1 can walk at any angle; the traveling wheel 11 at the bottom of the equipment body 1 is symmetrical to a symmetrical axis of the equipment body 1 Setting; wherein, the axis of symmetry extends along the forward or backward direction of the device body 1; a plurality of detectors 12 are used to read the target information of the target identification; a controller 13 is communicatively connected with the plurality of detectors 12 for The target information controls the device
  • the autonomous mobile device in this embodiment can be any device that can autonomously move in space in its working environment, for example, it can be an unmanned vehicle (logistics distribution vehicle), robot (such as a handling robot, a cargo sorting robot, etc.) .
  • unmanned vehicle such as a handling robot, a cargo sorting robot, etc.
  • robot such as a handling robot, a cargo sorting robot, etc.
  • This embodiment does not specifically limit the structure and external outline of the device body 1 of the autonomous mobile device.
  • the line connecting the two driving wheel assemblies 111 and the two universal wheels 112 at the bottom of the device body 1 intersects. Wherein, only two driving wheel assemblies 111 need to be provided.
  • the control of the driving wheel assembly 111 can be made relatively simple and the cost can be reduced;
  • the equipment body can also be made 1 to achieve walking at any angle;
  • the two driving wheel assemblies 111 cooperate with the two universal wheels 112, which can increase the friction between the forklift and the ground, and alleviate the problem that the forklift is easy to slip to a certain extent; the bottom of the equipment body 1
  • the traveling wheels 11 are arranged on a symmetrical axis relative to the equipment body 1, which can improve the stability of the forklift.
  • the two drive wheel assemblies 111 are steering wheel assemblies or double differential assemblies.
  • FIG. 2 is a schematic structural view of the steering wheel assembly.
  • the steering wheel assembly at least includes: a driving wheel 1121 , a steering motor 1122 and a traveling motor 1123 .
  • controller 13 controls steering motor 1122 directional rotation according to steering command, and the directional rotation of steering motor 1122 drives driving wheel 1121 directional rotation; 1121 directional movement.
  • FIG. 3 is a schematic structural diagram of a double differential drive module.
  • the double differential drive module at least includes: connecting seat 1111, rotating bearing 1112, rotating seat 1113, connecting frame 1114, left driving mechanism (not shown in the figure), right driving mechanism (not shown in the figure) out) and left drive wheel 1115 and right drive wheel 1116.
  • connection seat 1111 is connected to the device body 1 , and the bottom of the connection seat 1111 is installed with a rotating bearing 1112 .
  • the connection base 1111 installs the entire double differential drive module on the device body 1 .
  • the upper end of the rotating base 1113 is installed in the rotating bearing 1112 , and the lower end of the rotating base 1113 is installed and fixed on the upper end of the connecting frame 1114 . In this way, the rotating base 1113 can rotate relative to the connecting base 1111 in the horizontal plane.
  • Both sides of the connecting frame 1114 are respectively installed and fixed with a left driving mechanism and a right driving mechanism.
  • the connecting frame 1114 of the present application is U-shaped, and fixes the left drive mechanism, the right drive mechanism and the rotating seat 1113 together.
  • the left driving mechanism is connected with the left driving wheel 1115
  • the right driving mechanism is connected with the right driving wheel 1116 .
  • the left driving mechanism drives the left driving wheel 1115 to roll on the ground
  • the right driving mechanism drives the right driving wheel 1116 to roll on the ground.
  • the left drive mechanism and the right drive mechanism are respectively connected to the control unit and are controlled separately.
  • the speed at which the left drive mechanism drives the left drive wheel 1115 is different from the speed at which the right drive mechanism drives the right drive wheel 1116
  • the two realize a differential speed.
  • the speed difference causes the force on both sides of the connecting frame 1114 to be different and rotate in the horizontal plane.
  • the rotation of the connecting frame 1114 drives the rotating seat 1113 to rotate in the rotating bearing 1112, while the connecting seat 1111 remains stationary, thus realizing the double differential drive
  • the parts below the module connection base 1111 rotate in the horizontal plane.
  • the traveling wheel 11 at the bottom of the equipment body 1 is arranged symmetrically with respect to a symmetrical axis of the equipment body 1, and the two driving wheel assemblies 111 can be arranged at opposite corners of the equipment body 1; correspondingly, two universal wheels 112 can be arranged on the equipment body 1 Another set of diagonals of .
  • the two drive wheel assemblies 111 may also be arranged symmetrically with respect to a symmetrical axis of the equipment body 1 ; correspondingly, the two universal wheels 112 may also be symmetrically arranged relative to a symmetrical axis of the equipment body 1 .
  • the multiple detectors 12 include: two obstacle detectors 121, which are respectively arranged at the first group of diagonal positions of the device body 1, and the two obstacle detectors 121 are arranged at the bottom of the device body 1;
  • the target identification is the first environmental identification in the first detection environment;
  • the obstacle detector 121 is used to detect the first environmental information of the first environmental identification around the device body 1;
  • the controller 13 and the obstacle detector 121 is a communication connection, used for controlling the device body 1 to avoid obstacles according to the first environment information of the first environment identifier.
  • a recessed space is provided at the upper middle of the side of the device body 1, and the recessed space surrounds the device body 1; two obstacle detectors 121 are located in the recessed space.
  • the multiple detectors 12 also include: two navigation detectors 122, which are respectively arranged at the second group of diagonal positions of the equipment body 1; the target mark is the second environment mark in the second detection environment; the navigation detectors 122 Used to detect the second environment information of the second environment identifier around the device body 1; correspondingly, the controller 13 is connected to the navigation detector 122 in communication, and is used to control the device body 1 according to the second environment information of the second environment identifier Perform the corresponding action.
  • two obstacle detectors 121 are located at the upper middle of the device body 1 ; two navigation detectors 122 are located at the bottom of the device body 1 .
  • the device body 1 has four corners, and two opposite corners of the four corners form a set of opposite corners, and the device body 1
  • the first group of diagonal positions of 1 are respectively provided with an obstacle detector 121 .
  • the field of view (FOV) of the obstacle detector 121 is 270 degrees.
  • Two obstacle detectors 121 can realize environmental parameter detection around the device body 1 at the first height H (ie, 360 degrees).
  • the second group of diagonal positions of the device body 1 is respectively provided with a navigation detector 122 .
  • the viewing angle of the navigation probe 122 is 270 degrees.
  • the two navigation detectors 122 can realize environmental parameter detection around the equipment body 1 at the second height h (ie, 360 degrees).
  • the minimum obstacle scanning surface is about 30mm above the ground, which can detect ultra-low obstacles, so as to ensure safety when the autonomous mobile device walks at any angle.
  • two sets of diagonally distributed front detectors and rear detectors are used to ensure that the autonomous mobile device can safely and reliably realize bidirectional operation, and ensure the flexibility and convenience of the autonomous mobile device during transportation.
  • the obstacle detector 121 and the navigation detector 122 are different types of detectors (such as different types of radars).
  • Navigation radar is mainly used for SLAM mapping, positioning and navigation, and obstacle avoidance radar is mainly used to detect obstacles. Therefore, the power (range), accuracy, and resolution of navigation radar are high.
  • two obstacle detectors 121 are located in the middle of the device body 1 (i.e. at the height H); two navigation detectors 122 are located at the bottom of the device body 1 (i.e. at the height h place).
  • the two obstacle detectors 121 and the two navigation detectors 122 are arranged at different heights, they can detect objects at different heights.
  • the navigation detector 122 can be used to detect low obstacles, and the obstacle detector 121 can be used to detect obstacles higher than the detection surface of the navigation detector 122 .
  • the obstacles detectable by the obstacle detector 121 may be objects placed on the ground, or suspended objects protruding downward from above.
  • the environmental parameters detected by the obstacle detector 121 and the navigation detector 122 can be integrated to control the device body 1 of the autonomous mobile device to complete the docking action.
  • the heights and positions of the obstacle detector 121 and the navigation detector 122 are different, and the environmental parameters detected by the obstacle detector 121 and the navigation detector 122 on the same side may be the same or different.
  • the navigation detector 122 arranged at the bottom of the device body 1 can detect the information of the low obstacle, but the obstacle detector 121 arranged in the middle of the device body 1 may not be able to detect Information about this low obstacle.
  • the obstacle detector 121 and the navigation detector 122 can simultaneously detect the information of the obstacle.
  • a recessed space is provided at the middle of the side of the device body 1 of the autonomous mobile device.
  • the recessed space surrounds the device body 1 for a week, and two obstacle detectors 121 are located in the recessed space. Even if a collision event with a small probability occurs, because the two obstacle detectors 121 are located in the recessed space, what they encounter is the casing of the device body 1 , and the obstacle detectors 121 in the recessed space will not be affected.
  • an anti-collision device such as an elastic anti-collision strip, can be provided on the outer shell of the device body 1 .
  • the above-mentioned recessed space may not surround the device body 1 , as long as it does not hinder the viewing angle of the detector installed therein, and the specific structure of the recessed space is not limited in this embodiment.
  • the multiple detectors 12 also include: a two-dimensional code detector 123, which is arranged at the bottom of the device body 1, and the two-dimensional code detector 123 can be a two-dimensional code camera; the target identification is a two-dimensional code identification; two-dimensional code The detector 123 is used to detect the two-dimensional code information marked by the two-dimensional code on the ground; correspondingly, the controller 13 communicates with the two-dimensional code detector 123, and is used to control the device body 1 to perform corresponding actions according to the two-dimensional code information .
  • the two-dimensional code information may be navigation information, and the autonomous mobile device may use a two-dimensional code for navigation.
  • the multiple detectors 12 also include: a following detector 124, which is arranged on the front side of the device body 1, and the following detector 124 may be a following camera;
  • the target identification is a specific target object (such as in object in motion state);
  • the follower detector 124 is used to detect the specific target object information of the specific target object;
  • the controller 13 is connected in communication with the follower detector 124, and is used to control the device body 1 to perform corresponding actions according to the specific target object information.
  • the specific target object information may be the traveling route of the moving object, and the autonomous mobile device may travel or avoid obstacles according to the traveling route of the moving object.
  • the following camera is used to follow a specific target (following mode), so the following camera is generally an ordinary camera.
  • the multiple detectors 12 also include: a mark detector 125, which is arranged on the right side of the device body 1, and the mark detector 125 may be the same camera as the two-dimensional code camera; the target identification is a mark Mark; the mark detector 125 is used to detect mark information of the mark mark; correspondingly, the controller 13 is connected in communication with the mark detector 125, and is used to control the device body 1 to perform corresponding actions according to the mark information.
  • the mark detector 125 can be used to read a specific mark; correspondingly, the controller 13 controls the device body 1 to perform positioning and navigation or to perform specific operations according to the read mark information. What needs to be explained here is that the camera used to read the mark is usually read on the go, so the shutter time needs to be short and all images can be exposed at one time (non-progressive exposure).
  • an emergency stop button 14 is also provided on the right side of the device body; the emergency stop button 14 is used for emergency braking in an emergency.
  • a light strip 15 is also provided on the right side of the device body; the light strip is used for flashing prompts according to the traveling condition of the device body.
  • the autonomous mobile device After receiving the cargo task, the autonomous mobile device walks on the cargo channel, uses two obstacle detectors 121 to detect information of low obstacles, and at the same time uses two navigation detectors 122 to detect high-angle environmental information; and /or utilize the two-dimensional code detector 123 that is arranged on the bottom of the equipment body 1 to detect the two-dimensional code information marked on the ground; and/or utilize the following detector 124 that is arranged on the right side of the equipment body 1 to detect the moving The route of travel of the object; and/or use the marker detector 125 arranged on the right side of the device body 1 to read specific marker information, and the detector sends the detected information to the controller 13 connected in communication with it, and the controller 13 According to the received detection information, the motor of the traveling wheel 11 is controlled to rotate, thereby driving the driving wheel to rotate, so that the autonomous mobile device moves forward, backward and turns, and reaches the designated position to pick up and place goods.
  • a plurality of traveling wheels are provided on the equipment body, including two drive wheel assemblies and two universal wheels; where only two drive wheel assemblies are required, on the one hand, in addition to the universal
  • it can also make the control of the driving wheel assembly relatively simple and reduce the cost; on the other hand, it can also enable the equipment body to walk at any angle;
  • the friction between the forklift and the ground can be increased, and the problem that the forklift is easy to slip is alleviated to a certain extent;
  • the traveling wheels at the bottom of the equipment body are arranged relative to the symmetrical axis of the equipment body, which can improve the stability of the forklift.
  • the autonomous mobile device in this embodiment can also implement other functions, method steps, etc. mentioned above.
  • the autonomous mobile device in this embodiment can also implement other functions, method steps, etc. mentioned above.

Abstract

本申请公开了一种自主移动设备。其中,该自主移动设备包括:设备体;多个行进轮,设置在设备体底部;多个行进轮包括驱动轮组件及万向轮,其中,驱动轮组件具有前进、后退及转向能力;万向轮跟随驱动轮组件前进、后退或转向,以使设备体以任意角度行走;设备体底部的行进轮相对设备体的对称轴对称设置;其中,对称轴沿设备体前进或后退方向延伸;多个探测器,用于读取目标标识的目标信息;控制器,与多个探测器通信连接,用于根据目标标识的目标信息控制设备体执行相应的动作。

Description

自主移动设备 技术领域
本申请实施例涉及自主移动设备的技术领域,尤其涉及一种自主移动设备。
背景技术
随着科技的不断发展,自动化在3C行业(即Computer,Communication,Consumer Electronic)进行广泛的运用,通过使用AMR(Automatic Mobile Robot)小车替代人工进行运输作业,大大提高了工作效率,降低成本。
现有的AMR小车只能实现简单前进、后退、原地旋转,但不能实现以任意角度行走。
发明内容
为解决或改善现有技术中存在的问题,本申请各实施例提供了一种自主移动设备。
在本申请的一个实施例中,提供了一种自主移动设备。该设备包括:
设备体;
多个行进轮,设置在设备体底部;多个行进轮包括驱动轮组件及万向轮,其中,驱动轮组件具有前进、后退及转向能力;万向轮跟随驱动轮组件前进、后退或转向,以使设备体以任意角度行走;设备体底部的行进轮相对设备体的对称轴对称设置;其中,对称轴沿设备体前进或后退方向延伸;
多个探测器,用于读取目标标识的目标信息;
控制器,与多个探测器通信连接,用于根据目标标识的目标信息控制设备体执行相应的动作。
进一步地,设备体上具有多组对角位;
多个探测器包括:多个障碍物探测器,分别设置在多组对角位中的第一组对角位;目标标识为第一探测环境中的第一环境标识;障碍物探测器用于探测设备体周围的第一环境标识的第一环境信息;
控制器与障碍物探测器通信连接,用于根据第一环境标识的第一环境信息控制设备体进行避障。
进一步地,设备体侧面的中部偏上位置处设有凹陷空间,凹陷空间环绕设备体一周;
障碍物探测器位于凹陷空间内。
进一步地,多个探测器还包括:多个导航探测器,分别设置在多组对角位中的第二组对角位;目标标识为第二探测环境中的第二环境标识;导航探测器用于探测设备体周围的第二环境标识的第二环境信息;
控制器与导航探测器通信连接,用于根据第二环境标识的第二环境信息控制设备体执行相应的动作。
进一步地,在设备体的高度方向上,障碍物探测器位于设备体的中部偏上位置;导航探测器位于设备体的底部。
进一步地,多个探测器还包括:二维码探测器,设置在设备体底部;目标标识为二维码标识;二维码探测器用于探测地面上二维码标识的二维码信息;
控制器与二维码探测器通信连接,用于根据二维码信息控制设备体执行相应的动作。
进一步地,多个探测器还包括:跟随探测器,设置在设备体一侧;目标标识为特定目标物体;跟随探测器用于探测特定目标物体的特定目标物体信息;
控制器与跟随探测器通信连接,用于根据特定目标物体信息控制设备体执行相应的动作。
进一步地,多个探测器还包括:标记探测器,设置在设备体一侧;目标标识为标记标识;标记探测器用于探测标记标识的标记信息;
控制器与标记探测器通信连接,用于根据标记信息控制设备体执行相应的 动作。
进一步地,多个行进轮包括两个驱动轮组件及两个万向轮,位于设备体底部的两个驱动轮组件的连线与两个万向轮的连线相交。
进一步地,驱动轮组件为舵轮组件或双差速组件。
进一步地,多个行进轮包括两个驱动轮组件及两个万向轮。
进一步地,设备体上具有两组对角位,多个探测器包括两个障碍物探测器。
进一步地,多个探测器包括两个导航探测器。
本申请各实施例提供的技术方案,在设备体上设置多个行进轮,包括两个驱动轮组件及两个万向轮;其中,只需设置两个驱动轮组件,一方面,在增加万向轮行驶能力的同时,还能使驱动轮组件控制较为简单,并降低成本;另一方面,还可以使设备体实现以任意角度行走;其次,两个驱动轮组件配合两个万向轮,可以加大叉车与地面的摩擦力,在一定程度上缓解了叉车容易打滑的问题;设备体底部的行进轮相对设备体一对称轴设置,可以提高叉车的稳定性。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一实施例提供的一种自主移动设备的结构示意图;
图2为本申请一实施例提供的一种万向轮的结构示意图;
图3为本申请一实施例提供的一种双差速轮模组的结构示意图;
图4为本申请一实施例提供的一种自主移动设备的局部结构示意图;
图5为本申请一实施例提供的另一种自主移动设备的局部结构示意图。
具体实施方式
本申请提供了如下各实施例以解决或部分解决上述各方案存在的问题。 为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
在本申请的说明书、权利要求书及上述附图中描述的一些流程中,包含了按照特定顺序出现的多个操作,这些操作可以不按照其在本文中出现的顺序来执行或并行执行。操作的序号如101、102等,仅仅是用于区分各个不同的操作,序号本身不代表任何的执行顺序。另外,这些流程可以包括更多或更少的操作,并且这些操作可以按顺序执行或并行执行。需要说明的是,本文中的“第一”、“第二”等描述,是用于区分不同的消息、设备、模块等,不代表先后顺序,也不限定“第一”和“第二”是不同的类型。此外,下文描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1示出了本申请一实施例提供的一种自主移动设备的结构示意图;如图1所示,该自主移动设备包括:设备体1、多个行进轮11、多个探测器12及控制器13;其中,多个行进轮11,设置在设备体1底部;多个行进轮11包括两个驱动轮组件111及两个万向轮112,其中,两个驱动轮组件111具有前进、后退及转向能力;两个万向轮112跟随两个驱动轮组件111前进、后退或转向,以使设备体1以任意角度行走;设备体1底部的行进轮11相对设备体1的一对称轴对称设置;其中,对称轴沿设备体1前进或后退方向延伸;多个探测器12,用于读取目标标识的目标信息;控制器13,与多个探测器12通信连接,用于根据目标标识的目标信息控制设备体1执行相应的动作。
本实施例中的自主移动设备可以是任何能够在其作业环境中自主地进行空间移动的设备,例如,可以是无人车(物流配送车)、机器人(如搬运机器人、货物分拣机器人等)。当然,根据自主移动设备具体的工作任务、工作环境等,其设备体1的结构及外部轮廓会有所不同。本实施例对于自主移动设备的设备体1结构及外部轮廓等不作具体限定。
设备体1底部的两个驱动轮组件111与两个万向轮112的连线,相交。其中, 只需设置两个驱动轮组件111,一方面,在增加万向轮112行驶能力的同时,还能使驱动轮组件111控制较为简单,并降低成本;另一方面,还可以使设备体1实现以任意角度行走;其次,两个驱动轮组件111配合两个万向轮112,可以加大叉车与地面的摩擦力,在一定程度上缓解了叉车容易打滑的问题;设备体1底部的行进轮11相对设备体1一对称轴设置,可以提高叉车的稳定性。
进一步地,两个驱动轮组件111为舵轮组件或双差速组件。
图2为舵轮组件的结构示意图。如图2所示,舵轮组件至少包括:驱动轮1121、转向电机1122及行走电机1123。其中,控制器13根据转向指令控制转向电机1122定向旋转,定向旋转的转向电机1122带动驱动轮1121定向转动;控制器13根据行走指令控制行走电机1123定向旋转,定向旋转的行走电机1123带动驱动轮1121定向移动。图3为双差速驱动模组的结构示意图。如图3所示,双差速驱动模组至少包括:连接座1111,旋转轴承1112,旋转座1113,连接架1114,左驱动机构(图中未示出),右驱动机构(图中未示出)及左驱动轮1115和右驱动轮1116。其中,连接座1111上端连接设备体1,连接座1111底部安装旋转轴承1112。连接座1111将整个双差速驱动模组安装在设备体1上。旋转座1113的上端安装于旋转轴承1112内,旋转座1113的下端安装并固定于连接架1114的上端。这样旋转座1113可相对连接座1111在水平面内转动。连接架1114的两侧分别安装固定左驱动机构及右驱动机构。本申请的连接架1114为U形,将左驱动机构、右驱动机构及旋转座1113固定在一起。左驱动机构连接左驱动轮1115,右驱动机构连接右驱动轮1116。这样,左驱动机构驱动左驱动轮1115在地面上滚动,右驱动机构驱动右驱动轮1116在地面上滚动。左驱动机构与右驱动机构分别连接控制单元而单独受控制,当左驱动机构驱动左驱动轮1115的转速与右驱动机构驱动右驱动轮1116的转速不同时,两者实现差速,两者的速度差导致连接架1114两侧的受力不同而在水平面内发生旋转,连接架1114的旋转带动旋转座1113在旋转轴承1112内旋转,而连接座1111保持不动,从而实现了双差速驱动模组连接座1111以下的部件在水平面内旋转。
设备体1底部的行进轮11相对设备体1的一对称轴对称设置,两个驱动轮组件111可设置在设备体1的对角;相应的,两个万向轮112可设置在设备体1的另一组对角。或者,两个驱动轮组件111也可相对设备体1的一对称轴对称设置;相应的,两个万向轮112也相对设备体1的一对称轴对称设置。
进一步地,设备体1上具有两组对角位。如图所示1,多个探测器12包括:两个障碍物探测器121,分别设置在设备体1的第一组对角位,并且两个障碍物探测器121设置在设备体1底部;目标标识为第一探测环境中的第一环境标识;障碍物探测器121用于探测环设备体1一周的第一环境标识的第一环境信息;相应的,控制器13,与障碍物探测器121通信连接,用于根据第一环境标识的第一环境信息控制设备体1进行避障。
进一步地,设备体1侧面的中部偏上位置处设有凹陷空间,凹陷空间环绕设备体1一周;两个障碍物探测器121位于凹陷空间内。
进一步地,多个探测器12还包括:两个导航探测器122,分别设置在设备体1的第二组对角位;目标标识为第二探测环境中的第二环境标识;导航探测器122用于探测环设备体1一周的第二环境标识的第二环境信息;相应的,控制器13,与导航探测器122通信连接,用于根据第二环境标识的第二环境信息控制设备体1执行相应的动作。
进一步地,在设备体1的高度方向上,两个障碍物探测器121位于设备体1的中部偏上位置;两个导航探测器122位于设备体1的底部。
在一种可实现的方案中,以自主移动设备的设备体1外轮廓大体为矩形体为例,设备体1具有四个角,四个角中两相对的角为一组对角,设备体1的第一组对角位分别设有一个障碍物探测器121。障碍物探测器121的视角(FOV)为270度。两个障碍物探测器121便可实现在第一高度H处环设备体1一周(即360度)的环境参数探测。设备体1的第二组对角位分别设有一个导航探测器122。同样的,导航探测器122的视角为270度。两个导航探测器122可实现在第二高度h处环设备体1一周(即360度)的环境参数探测。最低障碍物扫描面离地高度30mm左右,可以检测超低障碍物,从而实现在自主移动设备任意 角度行走的时候,保证安全。
本实施例中采用两组呈对角分布的前探测器和后探测器,确保自主移动设备能够安全可靠地实现前后双向运行,确保自主移动设备在运输过程中的灵活便捷性能。
在本申请实施例中,障碍物探测器121和导航探测器122是不同类型的探测器(如不同种类的雷达)。导航雷达主要用于SLAM建图、定位和导航,避障雷达主要用于检测障碍物,故导航雷达的功率(射程)、精度、分辨率等要求较高。
一具体实施例,在设备体1的高度方向上,两个障碍物探测器121位于设备体1的中部(即H高度处);两个导航探测器122位于设备体1的底部(即h高度处)。
两个障碍物探测器121和两个导航探测器122因设置在不同高度,所以可探测到不同高度的物体。在自主移动设备行进过程中,导航探测器122可用于探测低矮障碍物,障碍物探测器121可用于检测高于导航探测器122探测面的障碍物。障碍物探测器121可探测的障碍物可以是置于地面上的物体,也可以是从上方向下伸出的悬置物体等。在自主移动设备执行对接任务时,可综合障碍物探测器121和导航探测器122探测到的环境参数来控制自主移动设备的设备体1完成对接动作。综合障碍物探测器121和导航探测器122探测到的环境参数,可获得不同高度、多角度、数据密度高的环境参数;相较于现有技术中存在的问题,本实施例提供的技术方案,降低了因探测到的环境参数包含的数据密度不均或出现探测死角等问题所导致的避障不及时或对接位置不合适的发生概率,提高了自主移动设备识别目标物体(如障碍物或对接装置等)的准确度,提升了自主移动设备的总体性能。
障碍物探测器121和导航探测器122设置的高度及位置不同,处于同一侧的障碍物探测器121和导航探测器122探测到的环境参数可能相同,也可能不同。比如,在前方存在低矮障碍物时,设置在设备体1的底部的导航探测器122可以探测到低矮障碍物的信息,而设置在设备体1中部的障碍物探测器121可 能无法探测到该低矮障碍物的信息。在障碍物为高度较高的障碍物时,障碍物探测器121和导航探测器122可同时检测到该障碍物的信息。
上述障碍物探测器121和导航探测器122若设置在设备体1的外表面,容易因碰撞而损坏。为提高探测器的使用安全性,自主移动设备的设备体1侧面的中部位置处设有凹陷空间。凹陷空间环绕设备体1一周,两个障碍物探测器121位于凹陷空间内。即便是发生小概率的碰撞事件,因为两个障碍物探测器121位于凹陷空间内,碰到的也是设备体1的外壳,凹陷空间内的障碍物探测器121不会受到影响。具体实施时,可在设备体1的外壳上设置防撞装置,如具有弹性的防撞条等。
当然,上述凹陷空间也可不环设备体1一周,只要不妨碍到安装在其内的探测器的视角即可,本实施例对于凹陷空间的具体结构不作限定。
进一步地,多个探测器12还包括:二维码探测器123,设置在设备体1底部,该二维码探测器123可以为二维码相机;目标标识为二维码标识;二维码探测器123用于探测地面上二维码标识的二维码信息;相应的,控制器13,与二维码探测器123通信连接,用于根据二维码信息控制设备体1执行相应的动作。其中,二维码信息可以为导航信息,自主移动设备可以使用使用二维码导航的方式行驶。
进一步地,如图4所示,多个探测器12还包括:跟随探测器124,设置在设备体1前侧,该跟随探测器124可以为跟随相机相机;目标标识为特定目标物体(如处于运动状态的物体);跟随探测器124用于探测特定目标物体的特定目标物体信息;相应的,控制器13,与跟随探测器124通信连接,用于根据特定目标物体信息控制设备体1执行相应的动作。其中,特定目标物体信息可以为处于运动状态的物体的行进路线,自主移动设备可以根据处于运动状态的物体的行进路线行进或避障。此处需要说明的是,跟随相机用于跟随特定目标(跟随模式),所以跟随相机一般为普通摄像头。
进一步地,如图5所示,多个探测器12还包括:标记探测器125,设置在设备体1右侧,该标记探测器125可以为和二维码相机相同的相机;目标标识 为标记标识;标记探测器125用于探测标记标识的标记信息;相应的,控制器13,与标记探测器125通信连接,用于根据标记信息控制设备体1执行相应的动作。具体的,标记探测器125可用于读取特定的标记;相应的,控制器13根据读取的标记信息以控制设备体1进行定位导航或执行特定操作。此处需要说明的是,用于读取标记标识的相机因通常是在行进中读取,故需要快门时间较短、能一次曝光所有图像(非逐行曝光)。
进一步地,设备体的右侧面还设置有急停按钮14;急停按钮14用于在紧急情况时紧急制动。
进一步地,设备体的右侧面还设置有灯带15;灯带用于根据设备体的行进情况进行闪光提示。
以某货仓环境为例对上述自主移动设备进行具体阐述。
自主移动设备在接收到货运任务后,在货运通道上行走,利用两个障碍物探测器121探测低矮障碍物的信息,与此同时利用两个导航探测器122探测高角度的环境信息;和/或利用设置在设备体1底部的二维码探测器123探测地面上二维码标识的二维码信息;和/或利用设置在设备体1右侧的跟随探测器124探测处于运动状态的物体的行进路线;和/或利用设置在设备体1右侧的标记探测器125读取特定的标记信息,上述探测器将探测到的上述信息发送至与其通信连接的控制器13,控制器13根据接收到的探测信息控制行进轮11的电机旋转,从而带动驱动轮转动,从而使自主移动设备前进、后退及转向,到达指定位置取放货物。
本申请各实施例提供的技术方案,在设备体上设置多个行进轮,包括两个驱动轮组件及两个万向轮;其中,只需设置两个驱动轮组件,一方面,在增加万向轮行驶能力的同时,还能使驱动轮组件控制较为简单,并降低成本;另一方面,还可以使设备体实现以任意角度行走;其次,两个驱动轮组件配合两个万向轮,可以加大叉车与地面的摩擦力,在一定程度上缓解了叉车容易打滑的问题;设备体底部的行进轮相对设备体一对称轴设置,可以提高叉车的稳定性。
这里需要说明的是:本实施例中自主移动设备除具有上述描述的功能 外,还可实现上文中提及的其他功能、方法步骤等,具体内容可参见上文各实施例中的相应内容,此处不再赘述。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (13)

  1. 一种自主移动设备,其特征在于,包括:
    设备体;
    多个行进轮,设置在所述设备体底部;所述多个行进轮包括驱动轮组件及万向轮,其中,所述驱动轮组件具有前进、后退及转向能力;所述万向轮跟随所述驱动轮组件前进、后退或转向,以使所述设备体以任意角度行走;所述设备体底部的所述行进轮相对所述设备体的对称轴对称设置;其中,所述对称轴沿所述设备体前进或后退方向延伸;
    多个探测器,用于读取目标标识的目标信息;
    控制器,与所述多个探测器通信连接,用于根据所述目标标识的所述目标信息控制所述设备体执行相应的动作。
  2. 根据权利要求1的自主移动设备,其特征在于,所述设备体上具有多组对角位;
    所述多个探测器包括:多个障碍物探测器,分别设置在所述多组对角位中的第一组对角位;所述目标标识为第一探测环境中的第一环境标识;所述障碍物探测器用于探测所述设备体周围的所述第一环境标识的第一环境信息;
    所述控制器与所述障碍物探测器通信连接,用于根据所述第一环境标识的所述第一环境信息控制所述设备体进行避障。
  3. 根据权利要求2的自主移动设备,其特征在于,所述设备体侧面的中部偏上位置处设有凹陷空间,所述凹陷空间环绕所述设备体一周;
    所述障碍物探测器位于所述凹陷空间内。
  4. 根据权利要求2的自主移动设备,其特征在于,
    所述多个探测器还包括:多个导航探测器,分别设置在所述多组对角位中的第二组对角位;所述目标标识为第二探测环境中的第二环境标识;所述导航探测器用于探测所述设备体周围的所述第二环境标识的第二环境信息;
    所述控制器与所述导航探测器通信连接,用于根据所述第二环境标识的所述第二环境信息控制所述设备体执行相应的动作。
  5. 根据权利要求4的自主移动设备,其特征在于,在所述设备体的高度方向上,所述障碍物探测器位于所述设备体的中部偏上位置;所述导航探测器位于所述设备体的底部。
  6. 根据权利要求1的自主移动设备,其特征在于,
    所述多个探测器还包括:二维码探测器,设置在所述设备体底部;所述目标标识为二维码标识;所述二维码探测器用于探测地面上所述二维码标识的二维码信息;
    所述控制器与所述二维码探测器通信连接,用于根据所述二维码信息控制所述设备体执行相应的动作。
  7. 根据权利要求1的自主移动设备,其特征在于,
    所述多个探测器还包括:跟随探测器,设置在所述设备体一侧;所述目标标识为特定目标物体;所述跟随探测器用于探测所述特定目标物体的特定目标物体信息;
    所述控制器与所述跟随探测器通信连接,用于根据所述特定目标物体信息控制所述设备体执行相应的动作。
  8. 根据权利要求1的自主移动设备,其特征在于,
    所述多个探测器还包括:标记探测器,设置在所述设备体一侧;所述目标标识为标记标识;所述标记探测器用于探测所述标记标识的标记信息;
    所述控制器与所述标记探测器通信连接,用于根据所述标记信息控制所述设备体执行相应的动作。
  9. 根据权利要求1至8任一项的自主移动设备,其特征在于,所述多个行进轮包括两个驱动轮组件及两个万向轮,位于所述设备体底部的所述两个驱动轮组件的连线与所述两个万向轮的连线相交。
  10. 根据权利要求1至8任一项的自主移动设备,其特征在于,所述驱动轮组件为舵轮组件或双差速组件。
  11. 根据权利要求1的自主移动设备,其特征在于,所述多个行进轮包括两个驱动轮组件及两个万向轮。
  12. 根据权利要求2的自主移动设备,其特征在于,所述设备体上具有两组对角位,所述多个探测器包括两个障碍物探测器。
  13. 根据权利要求4的自主移动设备,其特征在于,所述多个探测器包括两个导航探测器。
PCT/CN2022/102349 2021-07-19 2022-06-29 自主移动设备 WO2023000944A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202121644762.7 2021-07-19
CN202121644762.7U CN215181584U (zh) 2021-07-19 2021-07-19 自主移动设备

Publications (1)

Publication Number Publication Date
WO2023000944A1 true WO2023000944A1 (zh) 2023-01-26

Family

ID=79392491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/102349 WO2023000944A1 (zh) 2021-07-19 2022-06-29 自主移动设备

Country Status (2)

Country Link
CN (1) CN215181584U (zh)
WO (1) WO2023000944A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115202331A (zh) * 2021-04-09 2022-10-18 灵动科技(北京)有限公司 自主移动设备、自主移动设备的控制方法及货运系统
CN215181584U (zh) * 2021-07-19 2021-12-14 灵动科技(北京)有限公司 自主移动设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207198662U (zh) * 2017-09-27 2018-04-06 安徽硕威智能科技有限公司 银行自助机器人移动底座
CN208196812U (zh) * 2018-03-29 2018-12-07 北京瑞悟科技有限公司 一种迎宾机器人
CN208432902U (zh) * 2018-03-27 2019-01-25 合肥赛丽宝电气科技有限公司 一种基于agv技术的双驱双控运输车
CN210454478U (zh) * 2019-06-18 2020-05-05 深圳诗航智能科技有限公司 自动导航和自动跟随一体化智能运输车
CN212637735U (zh) * 2020-06-09 2021-03-02 安徽意欧斯物流机器人有限公司 一种重载全向搬运式agv
CN215181584U (zh) * 2021-07-19 2021-12-14 灵动科技(北京)有限公司 自主移动设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207198662U (zh) * 2017-09-27 2018-04-06 安徽硕威智能科技有限公司 银行自助机器人移动底座
CN208432902U (zh) * 2018-03-27 2019-01-25 合肥赛丽宝电气科技有限公司 一种基于agv技术的双驱双控运输车
CN208196812U (zh) * 2018-03-29 2018-12-07 北京瑞悟科技有限公司 一种迎宾机器人
CN210454478U (zh) * 2019-06-18 2020-05-05 深圳诗航智能科技有限公司 自动导航和自动跟随一体化智能运输车
CN212637735U (zh) * 2020-06-09 2021-03-02 安徽意欧斯物流机器人有限公司 一种重载全向搬运式agv
CN215181584U (zh) * 2021-07-19 2021-12-14 灵动科技(北京)有限公司 自主移动设备

Also Published As

Publication number Publication date
CN215181584U (zh) 2021-12-14

Similar Documents

Publication Publication Date Title
WO2023000944A1 (zh) 自主移动设备
EP3423913B1 (en) Sensor trajectory planning for a vehicle-mounted sensor
WO2018072712A1 (zh) Agv运输车及其控制方法
JP7168211B2 (ja) 障害物の回避動作を行う移動体およびそのコンピュータプログラム
US10108194B1 (en) Object placement verification
KR101319045B1 (ko) 무인 화물 이송로봇
JP2019168942A (ja) 移動体、管理装置および移動体システム
CN110998472A (zh) 移动体以及计算机程序
CN111052026A (zh) 移动体和移动体系统
JP7136426B2 (ja) 管理装置および移動体システム
Horan et al. OzTug mobile robot for manufacturing transportation
JPWO2019187816A1 (ja) 移動体および移動体システム
JPWO2019054209A1 (ja) 地図作成システムおよび地図作成装置
CN111717843A (zh) 一种物流搬运机器人
KR20230162046A (ko) 통합 모바일 조작기 로봇을 위한 안전 시스템들 및 방법들
JP2019053391A (ja) 移動体
JP7164085B2 (ja) 移動体を用いたワークの搬送方法、コンピュータプログラム、および移動体
Behrje et al. An autonomous forklift with 3d time-of-flight camera-based localization and navigation
US20220297992A1 (en) Unmanned transport vehicle, unmanned transport method, and computer-readable storage medium
WO2019194079A1 (ja) 位置推定システム、当該位置推定システムを備える移動体、およびコンピュータプログラム
JP7243014B2 (ja) 移動体
JP7095301B2 (ja) 搬送車の走行制御システム、及び、搬送車の走行制御方法
Charabaruk Development of an autonomous omnidirectional hazardous material handling robot
JP2019067001A (ja) 移動体
JP2019179497A (ja) 移動体および移動体システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22845109

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE