WO2023000290A1 - 电极组件、电池单体、电池和用电设备 - Google Patents

电极组件、电池单体、电池和用电设备 Download PDF

Info

Publication number
WO2023000290A1
WO2023000290A1 PCT/CN2021/108058 CN2021108058W WO2023000290A1 WO 2023000290 A1 WO2023000290 A1 WO 2023000290A1 CN 2021108058 W CN2021108058 W CN 2021108058W WO 2023000290 A1 WO2023000290 A1 WO 2023000290A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
layer
cathode
adsorption layer
bending
Prior art date
Application number
PCT/CN2021/108058
Other languages
English (en)
French (fr)
Inventor
曾毓群
张盛武
唐鸣浩
林文法
刘会会
叶杰
Original Assignee
江苏时代新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏时代新能源科技有限公司 filed Critical 江苏时代新能源科技有限公司
Priority to PCT/CN2021/108058 priority Critical patent/WO2023000290A1/zh
Priority to KR1020237006541A priority patent/KR20230042352A/ko
Priority to JP2023514103A priority patent/JP2023542829A/ja
Priority to CA3190877A priority patent/CA3190877A1/en
Priority to EP21950539.3A priority patent/EP4177996A1/en
Priority to CN202180073499.7A priority patent/CN116636056A/zh
Publication of WO2023000290A1 publication Critical patent/WO2023000290A1/zh
Priority to US18/462,428 priority patent/US20230420750A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/471Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
    • H01M50/474Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof characterised by their position inside the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/471Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
    • H01M50/48Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof characterised by the material
    • H01M50/486Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the field of batteries, in particular to an electrode assembly, a battery cell, a battery and electrical equipment.
  • a rechargeable battery which can be called a secondary battery, refers to a battery that can be activated by charging the active material after the battery is discharged and continues to be used.
  • Rechargeable batteries are widely used in electronic devices such as mobile phones, laptop computers, battery cars, electric cars, electric airplanes, electric boats, electric toy cars, electric toy boats, electric toy airplanes and electric tools, etc.
  • Rechargeable batteries may include nickel-cadmium batteries, nickel-hydrogen batteries, lithium-ion batteries, and secondary alkaline zinc-manganese batteries, among others.
  • lithium-ion batteries are generally used in automobiles.
  • As a rechargeable battery lithium-ion batteries have the advantages of small size, high energy density, high power density, many cycle times and long storage time.
  • a rechargeable battery includes an electrode assembly including a cathode tab, an anode tab, and a separator between the cathode tab and the anode tab, and an electrolyte.
  • the cathode pole pieces all have a cathode active material layer, for example, the cathode active material of the cathode active material layer can be lithium manganese oxide, lithium cobalt oxide, lithium iron phosphate or lithium nickel cobalt manganese oxide; the surface of the anode pole piece has an anode active material layer
  • the anode active material of the anode active material layer may be graphite or silicon.
  • the electrolyte will be continuously consumed during the cycle. After the electrolyte between the anode plates is consumed, the electrolyte will be free in the shell and cannot be replenished in time, which will lead to insufficient electrolyte after long-term charging and discharging. The problem that leads to the attenuation of battery cell and battery cycle life.
  • Various aspects of the present application provide an electrode assembly, a battery cell, a battery, and an electrical device, which overcome the above-mentioned problems or at least partially solve the above-mentioned problems.
  • the first aspect of the present application provides an electrode assembly, which includes: a cathode sheet, an anode sheet, a separator, and an electrolyte adsorption layer.
  • the separator is used to isolate the cathode pole piece and the anode pole piece;
  • the electrolyte adsorption layer is configured to be arranged along the surface of at least one of the cathode pole piece, the anode pole piece and the separator;
  • ion exchange channels are provided on the electrolyte absorption layer, The ion exchange channels are through holes arranged along the thickness direction of the electrolyte adsorption layer.
  • the electrolyte adsorption layer By disposing an electrolyte adsorption layer on the surface of at least one of the cathode sheet, the anode sheet and the separator, the electrolyte adsorption layer can be used to maintain and slowly release the electrolyte to replenish the electrolyte consumed during the cycle, It is beneficial to the conduction and diffusion of ions, thereby improving the performance of the battery cell; an ion exchange channel is provided on the electrolyte adsorption layer, and the ion exchange channel is a through hole arranged along the thickness direction of the electrolyte adsorption layer, which is conducive to electrolysis Liquid release and ion conduction and diffusion are beneficial to improve the cycle performance and service life of the battery.
  • an electrolyte adsorption layer is attached to one or both surfaces of the cathode sheet, and/or, an electrolyte adsorption layer is attached to one or both surfaces of the anode sheet, and/or,
  • the separator has an electrolyte adsorption layer attached to one surface or both surfaces.
  • the position of one or both sides of the cathode pole piece, the anode pole piece or the separator can be improved.
  • the cathode electrode sheet, the separator and the anode electrode sheet are wound to form a bending area, and at least a part of the electrolyte adsorption layer is disposed on the cathode electrode sheet, the anode electrode sheet and the separator in the bending area. at least one surface.
  • the electrolyte adsorption layer adsorbed with the electrolyte can fill the bending area.
  • the gap between the cathode electrode piece and the anode electrode piece in the area can maintain and slowly release the electrolyte in the bending area to replenish the electrolyte consumed during the cycle, which is conducive to the conduction and diffusion of ions, thereby improving the battery cell. performance.
  • the electrolyte adsorption layer is arranged on the bending area of the surface of the cathode electrode sheet and/or the anode electrode sheet, and the electrolyte adsorption layer can also protect the cathode active material layer on the cathode electrode sheet and/or the anode active material layer on the anode electrode sheet. Reinforcement is performed to reduce the fracture of the cathode active material layer on the cathode pole piece and/or the anode active material layer on the anode pole piece due to bending, thereby improving the performance of the battery cell.
  • At least a part of the electrolyte adsorption layer is arranged at the first bending position and/or the second bending position of the cathode sheet in the bending area, and/or, at least part of the electrolyte adsorption layer A part is arranged at the first bending position and/or the second bending position of the anode pole piece, and/or at least a part of the electrolyte adsorption layer is arranged at the first bending position adjacent to the cathode pole piece
  • the bending part of the separator and/or the bending part of the separator adjacent to the second bending part, and/or, at least a part of the electrolyte adsorption layer is arranged in the same position as the first bending part of the anode sheet.
  • At least a part of the electrolyte adsorption layer is provided at the first bending position and the second bending position of at least one of the cathode pole piece, the anode pole piece and the separator, and the cathode pole piece and the anode
  • the first and second bending parts with a large gap between the pole pieces improve the uniformity of the electrolyte at the first and second bending parts, while reducing the impact on the energy density of the battery cell , improve the performance of the battery cell.
  • the electrolyte adsorption layer is arranged on the first and second bending parts of the bending area of the surface of the cathode electrode sheet and/or the anode electrode sheet, and the electrolyte adsorption layer can also protect the cathode electrode sheet for the first time and the second bending position. Reinforcing the cathode active material layer on the second bending part and/or the anode active material layer on the first and second bending parts of the anode pole piece to reduce the occurrence of fracture of the active material layer due to bending, In turn, the performance of the battery cell is improved.
  • the bending region includes a first bending region covering the center line of the bending region and a second bending region located on at least one side of the first bending region, and the center line of the bending region and the winding of the electrode assembly
  • the axes are parallel; wherein, the porosity of the part of the electrolyte adsorption layer in the first bending zone is different from the porosity of the part of the electrolyte adsorption layer in the second bending zone, wherein the porosity of the electrolyte adsorption layer is the ratio of the ion exchange channel area to the electrolyte adsorption layer area.
  • the ion exchange channels are distributed on the electrolyte adsorption layer in a broken line or a curved line.
  • the ion exchange channels are arranged as broken lines or curves on the electrolyte adsorption layer, so that the ion exchange channels are distributed at different widths and heights of the electrolyte adsorption layer, so that the electrolyte adsorption layer is at different heights and heights. Electrolyte release and ion conduction and diffusion can be achieved at any width position, which is conducive to improving the cycle performance and service life of the battery.
  • the electrolyte adsorption layer includes an adsorption base layer, one side of the adsorption base layer is attached to the corresponding cathode sheet, anode sheet or separator, and ion exchange channels are provided on the adsorption layer.
  • the adsorption base layer is used to store and maintain the electrolyte on the surface of the cathode sheet, the anode sheet or the separator, so as to replenish the electrolyte consumed in the cycle process, which is beneficial to the conduction and diffusion of ions, thereby improving the battery life.
  • the material of the adsorption base layer includes acrylic acid-acrylate copolymer, butadiene-styrene copolymer, styrene-acrylic acid copolymer, styrene-acrylate copolymer, ethylene-vinyl acetate copolymer, acrylic acid grafted polyethylene, maleic anhydride grafted polyethylene, acrylic acid grafted polypropylene, maleic anhydride grafted polypropylene, polyvinylidene fluoride, carboxymethyl cellulose, polyimide, polyetherimide, polyphenylene Ethylene dicarboxylate, styrene-isoprene-styrene copolymer rubber, ethylene-vinyl acetate copolymer bisphenol A type epoxy resin, ethylene-vinyl acetate copolymer bisphenol F type epoxy resin, glyceryl ether Type epoxy resin, glyceride type epoxy resin, silicone type resin, polyurethan
  • the electrolyte adsorption layer includes an adsorption base layer and a support layer, one side of the adsorption base layer is attached to the corresponding cathode sheet, anode sheet or separator, and the support layer is attached to the other side of the adsorption base layer;
  • the ion exchange channel runs through the support layer and the adsorption base layer along the thickness direction.
  • the electrolyte adsorption layer includes an adsorption base layer and a support layer.
  • the adsorption base layer has a certain fluidity and is easy to move and deform on the surface of the cathode electrode piece, the anode electrode piece or the separator, thereby affecting the distribution of the electrolyte adsorption layer.
  • the uniformity of the adsorption layer is provided on the opposite side of the adsorption base layer to the side where the cathode electrode, anode electrode sheet or separator is attached.
  • the support layer can prevent the flow and deformation of the adsorption base layer while allowing ions to flow, and the adsorption
  • the base layer is evenly maintained on the surface of the cathode pole piece, anode pole piece or separator, so that the electrolyte can be kept on the surface of the cathode pole piece, anode pole piece or separator for a long time and stably, which is beneficial to improve the cycle performance and service life.
  • the ion exchange channel runs through the support layer and the adsorption base layer, so that the ion exchange channel can pass through the support layer and the adsorption base layer, which is beneficial to the release of electrolyte, ion conduction and diffusion, and is conducive to improving the cycle performance and service life of the battery.
  • the material of the absorbent base layer comprises acrylic acid-acrylate copolymer, butadiene-styrene copolymer, styrene-acrylic acid copolymer, styrene-acrylate copolymer, ethylene-vinyl acetate copolymer, acrylic acid Grafted polyethylene, maleic anhydride grafted polyethylene, acrylic acid grafted polypropylene, maleic anhydride grafted polypropylene, polyvinylidene fluoride, carboxymethyl cellulose, polyimide, polyetherimide, poly Ethylene phthalate, styrene-isoprene-styrene copolymer rubber, ethylene-vinyl acetate copolymer bisphenol A type epoxy resin, ethylene-vinyl acetate copolymer bisphenol F type epoxy resin, glycerin Ether-type epoxy resin, glyceride-type epoxy resin, silicone-type resin, polyurethane, s
  • the material of the support layer comprises polyvinyl chloride, polyethylene, polypropylene, polyvinylidene fluoride, hexafluoropropylene-vinylidene fluoride copolymer, tetrafluoropropylene-vinylidene fluoride copolymer, chlorotrifluoropropylene - vinylidene fluoride copolymers, polyethylene terephthalate, polyimides, polyetherimides, polycarbonates, polystyrene, polyphenylene sulfide, polyvinylidene fluoride or copolymers thereof, Polyarylate, fiber, nylon, non-woven fabric and one of the modified products of the above substances.
  • the thickness of the support layer is ⁇ 50um
  • the porosity of the support layer is ⁇ 50%
  • the tensile modulus of the support layer is ⁇ 100Mpa, wherein the porosity of the support layer is equal to the total area of the ion exchange channels The ratio of the support layer area.
  • setting the thickness of the supporting layer to ⁇ 50 um can control the gap between the cathode electrode piece and the anode electrode piece within a reasonable range, which is beneficial to the transmission of ions.
  • Setting the porosity of the support layer to 0 ⁇ the porosity of the support layer ⁇ 50% can better allow the flow of ions while suppressing the flow and deformation of the adsorption base layer, and evenly maintain the adsorption base layer on the cathode sheet and the anode electrode
  • the tensile modulus of the support layer is less than or equal to 100Mpa, so that the support layer has better retention performance on the adsorption base layer.
  • the second aspect of the present application provides a battery cell, which includes: a casing, an electrolyte, a cover plate, and at least one electrode assembly of the above-mentioned embodiment, wherein the casing has a cavity and an opening, and the electrode assembly and the electrolyte Accommodated in the accommodating cavity; the cover plate is used to close the opening of the housing.
  • a third aspect of the present application provides a battery, including a case body and at least one battery cell according to the above embodiment, and the battery cell is accommodated in the case body.
  • a fourth aspect of the present application provides an electric device configured to receive electric power supplied from the battery of the above-described embodiment.
  • FIG. 1 is a schematic diagram of a three-dimensional structure of an electrode assembly according to an embodiment of the present application
  • FIG. 2 is a schematic structural view of the electrode assembly of FIG. 1 along a cross section perpendicular to the winding axis K;
  • FIG. 3 is a schematic structural view of a cross-section perpendicular to the winding axis K of a flat body-shaped electrode assembly according to another embodiment of the present application;
  • FIG. 4 is a schematic structural view of a cross-section perpendicular to the winding axis K of another electrode assembly in the shape of a flat body according to another embodiment of the present application;
  • FIG. 5 is a schematic structural view of a cross-section perpendicular to the winding axis K of another electrode assembly in the shape of a flat body according to another embodiment of the present application;
  • FIG. 6 is a schematic structural view of a cross-section perpendicular to the winding axis K of another electrode assembly in the shape of a flat body according to another embodiment of the present application;
  • Fig. 7 is a schematic structural view of a cross-section perpendicular to the winding axis K of another electrode assembly in the shape of a flat body according to another embodiment of the present application;
  • FIG. 8 is a schematic structural view of a cross-section perpendicular to the winding axis K of another electrode assembly in the shape of a flat body according to another embodiment of the present application;
  • Fig. 9 is a schematic structural diagram of an anode pole piece according to another embodiment of the present application.
  • Fig. 10 is a schematic structural diagram of a cathode electrode piece in another embodiment of the present application.
  • Fig. 11 is a schematic cross-sectional structure diagram of A-A direction in Fig. 10;
  • Fig. 12 is a schematic cross-sectional structure diagram of B-B direction in Fig. 10;
  • Fig. 13 is a schematic cross-sectional structure diagram of the B-B direction in Fig. 10 in another embodiment of the present application;
  • Fig. 14 is a schematic cross-sectional structure diagram of the B-B direction in Fig. 10 in another embodiment of the present application;
  • Fig. 15 is a schematic cross-sectional structure diagram of the B-B direction in Fig. 10 in another embodiment of the present application;
  • 16 is a schematic diagram of a partial structure of an electrode assembly in its bending area according to an embodiment of the present application.
  • Fig. 17 is a structural schematic diagram of a cross-section perpendicular to the winding axis K of a flat body-shaped electrode assembly according to another embodiment of the present application;
  • Fig. 18 is a schematic structural diagram of a cathode sheet in another embodiment of the present application.
  • Fig. 19 is a structural schematic diagram of a cross-section perpendicular to the winding axis K of another electrode assembly in the shape of a flat body according to another embodiment of the present application;
  • Fig. 20 is a structural schematic diagram of another flat body-shaped electrode assembly perpendicular to the winding axis K in a cross-section according to another embodiment of the present application;
  • Fig. 21 is a schematic structural view of a cross-section perpendicular to the winding axis K of another electrode assembly in the shape of a flat body according to another embodiment of the present application;
  • Fig. 22 is a structural schematic diagram of another flat body-shaped electrode assembly perpendicular to the winding axis K in a cross-section according to another embodiment of the present application;
  • Fig. 23 is a structural schematic diagram of another flat body-shaped electrode assembly perpendicular to the winding axis K in a cross-section according to another embodiment of the present application;
  • Fig. 24 is a schematic structural view of a cross-section perpendicular to the winding axis K of another electrode assembly in the shape of a flat body according to another embodiment of the present application;
  • Fig. 25 is a schematic structural view of a cross-section perpendicular to the winding axis K of another electrode assembly in the shape of a flat body according to another embodiment of the present application;
  • Fig. 26 is a structural schematic diagram of another flat body-shaped electrode assembly perpendicular to the winding axis K in a cross-section according to another embodiment of the present application;
  • Fig. 27 is a schematic structural diagram of a cathode sheet in another embodiment of the present application.
  • Fig. 28 is a schematic structural diagram of a cathode sheet in another embodiment of the present application.
  • Fig. 29 is a schematic structural diagram of a cathode sheet in another embodiment of the present application.
  • FIG. 30 is a schematic structural view of a battery cell according to another embodiment of the present application.
  • FIG. 31 is a schematic structural diagram of a battery module according to another embodiment of the present application.
  • Fig. 32 is a schematic structural diagram of a battery according to another embodiment of the present application.
  • FIG. 33 is a schematic structural diagram of an electrical device according to another embodiment of the present application.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediary, and it can be the internal communication of two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application in specific situations.
  • the cathode pole piece, anode pole piece and separator in the electrode assembly of the lithium-ion battery can be wound and then compacted.
  • Figure 1 it is a schematic diagram of a three-dimensional structure of an electrode assembly, which includes an anode pole piece, a cathode pole piece and a separator, wherein the anode pole piece, the cathode pole piece and the separator are stacked and then wound
  • the axis K is wound to form a winding structure.
  • the separator is an insulating film used to separate the anode pole piece and the cathode pole piece to prevent the anode pole piece and the cathode pole piece from being short-circuited.
  • the winding structure of the electrode assembly is in the shape of a flat body , the structural diagram of the electrode assembly along a cross section perpendicular to the winding axis K can be shown in FIG. 2 .
  • the electrode assembly includes a straight region P and bent regions C located at both ends of the straight region P.
  • the flat area P refers to the area with a parallel structure in the winding structure, that is, the anode pole piece 101, the cathode pole piece 102 and the separator 103 in the flat area P are basically parallel to each other, that is, the electrode assembly is in the flat area.
  • the surfaces of the anode pole piece 101 , the cathode pole piece 102 and the separator 103 of each layer of P are plane.
  • the bending area C refers to the area with a bending structure in the winding structure, that is, the anode pole piece 101, the cathode pole piece 102 and the separator 103 in the bending area C are all bent, that is, the electrode assembly is bent.
  • the surface of each layer of anode pole piece 101, cathode pole piece 102 and separator 103 in area C is a curved surface, and the bending area C has a winding direction L, which can be understood as the electrode assembly along the bending area C
  • the surface of the surface points to the direction of the straight region, for example, the winding direction L is along the winding direction of the winding structure in the bending region C.
  • the surface of the anode pole piece 101 has an anode active material layer composed of an anode active material
  • the surface of the cathode pole piece 102 has a cathode active material layer composed of a cathode active material.
  • the cathode active material can be lithium manganate, lithium cobaltate , lithium iron phosphate or lithium nickel cobalt manganese oxide
  • the anode active material can be graphite or silicon.
  • the inventors found that the electrode assembly would consume the electrolyte continuously during the circulation process. After the electrolyte between the cathode and anode pieces was consumed, the electrolyte free in the shell could not be replenished in place in time, which would lead to long-term charging. After discharge and use, there is a problem that the life of the battery cell and the battery pack is prematurely decayed due to insufficient electrolyte.
  • the present application intends to provide an electrode assembly, which includes a cathode pole piece, an anode pole piece, and a separator, and the separator is used to isolate the cathode pole piece and the anode pole piece, wherein the anode pole piece, the cathode pole piece
  • a winding structure can be formed around the winding axis, for example, a flat winding structure, and the anode sheet, the cathode sheet and the separator can also be continuously folded in a zigzag shape after being laminated.
  • the electrode assembly can be formed by winding or continuous folding in a zigzag shape.
  • the electrode assembly also includes an electrolyte adsorption layer configured to be arranged along the surface of at least one of the cathode sheet, the anode sheet and the separator; the electrolyte adsorption layer is provided with ion exchange channels, and the ion exchange channels are arranged along the electrolytic through holes provided in the thickness direction of the liquid adsorption layer.
  • the electrolyte solution adsorption layer can fill the gap between the cathode electrode sheet and the anode electrode sheet, maintain and slowly release the electrolyte, To replenish the electrolyte consumed during the cycle, it is beneficial to the conduction and diffusion of ions, thereby improving the performance of the battery cell; on the electrolyte adsorption layer, there are ion exchange channels arranged along the thickness direction of itself, which is conducive to the release of the electrolyte And ion conduction and diffusion, which is conducive to improving the cycle performance and service life of battery cells.
  • the ion exchange channels can be through holes arranged in the thickness direction of the electrolyte adsorption layer, and the through holes can be uniformly or non-uniformly distributed on the surface of the electrolyte adsorption layer, and the through holes can have the same or different cross-sectional areas and/or hole depths, There can be one or more through holes.
  • Electrolyte is contained in the ion exchange channel, and ions can pass through the electrolyte adsorption layer through the ion exchange channel.
  • the spacer 103 has electronic insulation and is used to isolate the adjacent cathode electrode piece 102 and the anode electrode piece 101 to prevent the adjacent cathode electrode piece 102 and the anode electrode piece 101 from short circuiting.
  • the separator 103 has a large number of micropores through which the electrolyte and ions can pass freely, and has good permeability to lithium ions. Therefore, the separator 103 basically cannot block the passage of lithium ions.
  • the spacer 103 includes a base layer of the spacer and a functional layer located on the surface of the base layer of the spacer, and the base layer of the spacer includes at least one of polypropylene, polyethylene, ethylene-propylene copolymer, polybutylene terephthalate, etc.
  • the functional layer may be a mixture layer of ceramic oxide and binder.
  • an electrolyte adsorption layer is attached to one or both surfaces of the cathode sheet 1, and/or, an electrolyte adsorption layer is attached to one or both surfaces of the anode sheet 2 4, and/or, an electrolyte adsorption layer 4 is attached to one or both surfaces of the separator 3 .
  • an electrolyte adsorption layer 4 is attached to the inner surface of the cathode sheet 1 .
  • an electrolyte adsorption layer 4 is attached to the outer surface of the cathode sheet 1 .
  • an electrolyte adsorption layer 4 is attached to both the inner surface and the outer surface of the cathode sheet 1 .
  • an electrolyte adsorption layer can also be attached to the inner surface and/or outer surface of the anode pole piece 2, and its arrangement can refer to the cathode pole piece 1 in Figures 3-5.
  • the method of setting the electrolyte adsorption layer on the surface can also be attached to the inner surface and/or outer surface of the anode pole piece 2, and its arrangement can refer to the cathode pole piece 1 in Figures 3-5. The method of setting the electrolyte adsorption layer on the surface.
  • an electrolyte adsorption layer 4 is attached to the inner and outer surfaces of the cathode electrode sheet 1 and the inner and outer surfaces of the anode electrode sheet 2 .
  • the electrolyte adsorption layer 4 is attached to one or both surfaces of the cathode sheet 1, and/or, attached to one or both surfaces of the anode sheet 2, may also be the electrolyte adsorption layer 4 Attached to any surface of the cathode electrode sheet 1 and/or the anode electrode sheet 2, and/or, attached to one or both surfaces of the separator 3.
  • attaching refers to adhesion or coating or spraying, and the position movement of the electrolyte adsorption layer 4 during the use of the battery cells can be reduced through the attachment.
  • an electrolyte adsorption layer 4 may be attached to the inner surface of the separator 3 .
  • an electrolyte adsorption layer 4 may be attached to the outer surface of the separator 3 .
  • an electrolyte adsorption layer 4 may also be attached to both the inner surface and the outer surface of the separator 3 .
  • the manner of attaching the electrolyte adsorption layer 4 on the separator 3 may refer to the manner of disposing the electrolyte adsorption layer 4 on the surface of the cathode electrode sheet 1 and/or the anode electrode sheet 2 in FIGS. 3-6 .
  • the electrolyte adsorption layer 4 is set on the surface of the separator 3, which can also fill the gap between the cathode pole piece and the anode pole piece, maintain and store the electrolyte solution, to replenish the electrolyte solution consumed during the circulation process, and is conducive to the conduction of ions and diffusion, thereby improving the cycle performance and life of the battery cell; on the electrolyte adsorption layer 4, there are ion exchange channels arranged along the thickness direction of the electrolyte adsorption layer, which is beneficial to the release of the electrolyte and ion conduction and diffusion. Improve the cycle performance and service life of battery cells.
  • FIG. 9 is a schematic structural diagram of an anode pole piece according to another embodiment of the present application.
  • the anode pole piece 2 includes an anode body part 21 and a winding axis K
  • the outwardly extending anode lug portion 22, the surface of the anode body portion 21 along the winding axis K is at least partly an anode active material layer 211, the anode active material layer 211 is used to coat the anode active material, and the anode active material may be graphite or silicon.
  • the anode active material layer 211 is provided on the partial area of the surface of the anode body part 21, but also the anode active material is provided on the surface of the anode lug part 22 and near the root region of the anode body part 21.
  • the layer 211 that is, the partial area of the anode tab 22 is the anode active material layer 211 .
  • the anode active material layer 211 covers the entire surface of the anode body portion 21 along the winding axis K.
  • the cathode active material may not cover the entire surface of the cathode electrode sheet 1 , for example, as shown in FIG. 10 , which is a schematic structural diagram of a cathode electrode sheet in another embodiment of the application.
  • the cathode sheet 1 includes a cathode body part 11 and at least one cathode tab part 12 extending outside the cathode body part 11 along the winding axis K. At least part of the surface of the cathode body part 11 is a cathode active material layer 111.
  • the active material layer 111 may be coated with a cathode active material, for example, the cathode active material may be a ternary material, lithium manganate or lithium iron phosphate.
  • the surface of the cathode main body 11 further includes a first insulating layer coating region 112 adjacent to the cathode active material layer 111, and the first insulating layer coating region 112 is located on the cathode active material layer 111.
  • the two surfaces of the current collector of the cathode pole piece 1 have a cathode active material layer 111, and the cathode ear part 12 is a part of the current collector of the cathode pole piece 1, wherein the material of the current collector Can be aluminum.
  • the cathode active material layer 111 and the first insulating layer coating region 112 are distributed on the surface of the cathode main body 11 along the width direction of the cathode main body 11 (that is, the winding axis K), and the cathode tab 12 It belongs to the same end of the cathode body part 11 as the first insulating layer coating region 112 .
  • the cathode active material layer 111 and the first insulating layer coating region 112 are two substantially parallel regions on the surface of the cathode main body 11, and are located on the cathode main body along the winding axis K. 11 is distributed in two layers on the surface.
  • the first insulating layer coating area 112 may be located at the part where the cathode body part 11 and the cathode tab part 12 are interconnected, for example, the first insulating layer coating area 112 is located at the cathode body part 11
  • the part on the surface and interconnected with the cathode tab 12 is used to separate the surface of the cathode tab 12 from the cathode active material layer 111 .
  • not only the first insulating layer coating area 112 is provided on the surface of the cathode body part 11, but also the second insulating layer is provided at the root region of the cathode tab part 12 close to the cathode body part 11. Coating area, the second insulating layer The coating area is used for coating insulating substances.
  • the surface of the first insulating layer coating region 112 is coated with an insulating substance
  • the insulating substance includes inorganic fillers and binders.
  • Inorganic fillers include boehmite, alumina, magnesia, titanium dioxide, zirconia, silicon dioxide, silicon carbide, boron carbide, calcium carbonate, aluminum silicate, calcium silicate, potassium titanate, barium sulfate or Several kinds.
  • the binder includes one or more of polyvinylidene fluoride, polyacrylonitrile, polyacrylic acid, polyacrylate, polyacrylic acid-acrylate, polyacrylonitrile-acrylic acid, and polyacrylonitrile-acrylate.
  • each cathode sheet 1 may include one or two or more cathode tabs 12, when the cathode sheet 1 includes two or more cathode tabs 12 , all the cathode tabs 12 are located on the same side of the cathode sheet 1 along the winding axis K.
  • both ends of the anode active material layer 211 of the anode pole piece 2 along the winding axis K exceed the cathode of the adjacent cathode pole piece 1.
  • the corresponding end of the active material layer 111 so that the electrode assembly can have better energy density.
  • the two ends of the anode active material layer 211 along the winding axis K are respectively the first end 23 and the second end 24, and the two ends of the cathode active material layer 111 along the winding axis K are respectively the third end 13 and the fourth end.
  • the second end 24 of the anode active material layer 211 and the fourth end 14 of the cathode active material layer 111 are located on the other side of the electrode assembly along the winding axis K, and the anode The second end 24 of the active material layer 211 protrudes beyond the fourth end 14 of the cathode active material layer 111 along the winding axis K.
  • the dimensions of the two ends of the anode active material layer 211 along the winding axis K beyond the corresponding ends of the cathode active material layer 111 may be the same or different, for example, the excess size ranges from 0.2 mm to 5 mm.
  • FIG. 12 it is a schematic diagram of the cross-sectional structure in the B-B direction in FIG. 10.
  • the electrolyte adsorption layer 4 is attached to the surface of the cathode active material layer 111, that is, the surface of the cathode active material layer.
  • the electrolyte adsorption layer 4 adsorbed with the electrolyte can fill the cathode electrode sheet 1 and the anode electrode sheet 2
  • the gap between them can maintain and slowly release the electrolyte to replenish the electrolyte consumed during the cycle, which is conducive to the conduction and diffusion of ions, thereby improving the cycle performance and service life of the battery cell;
  • the electrolyte adsorption layer 4 There are ion exchange channels 40 arranged along the thickness direction of the electrolyte adsorption layer, which is conducive to the release of electrolyte, ion conduction and diffusion, and the improvement of the cycle performance and service life of the battery cells.
  • the electrolyte adsorption layer 4 may be any material suitable for absorbing and retaining the electrolyte and resistant to corrosion by the electrolyte.
  • the electrolyte adsorption layer 4 may include an adsorption base layer 41, one side of the adsorption base layer 41 is attached to the corresponding cathode electrode piece or anode electrode piece, and the adsorption base layer 41 is provided with ion Switch channel 40.
  • the material of the adsorption base layer 41 includes acrylic acid-acrylate copolymer, butadiene-styrene copolymer, styrene-acrylic acid copolymer, styrene-acrylate copolymer, ethylene-vinyl acetate copolymer, acrylic acid grafted polyethylene, Maleic anhydride grafted polyethylene, acrylic acid grafted polypropylene, maleic anhydride grafted polypropylene, polyvinylidene fluoride, carboxymethyl cellulose, polyimide, polyetherimide, polyethylene phthalate Ester, styrene-isoprene-styrene copolymer rubber, ethylene-vinyl acetate copolymer bisphenol A type epoxy resin, ethylene-vinyl acetate copolymer bisphenol F type epoxy resin, glyceryl ether type epoxy resin , glyceride type epoxy resin, silicone type resin, polyurethane, styren
  • one or more ion exchange channels 40 can be arranged on the adsorption base layer 41, for example, the ion exchange channels 40 can be arranged in arrays on the adsorption base layer 41, and each ion exchange channel 40 has the same diameter .
  • the ion exchange channel 40 can be arranged in the adsorption base layer 41 along the thickness direction of the adsorption base layer 41, the ion exchange channel 40 can be a through hole or a blind hole, the space in the ion exchange channel can store more electrolyte, and improve the adsorption base layer 41. Electrolyte release properties and ion conduction and diffusion properties.
  • the ion exchange channels 40 may also be non-uniformly arranged on the adsorption base layer 41, and/or, the ion exchange channels 40 may have different diameters and/or depths.
  • the ion exchange channel 40 can penetrate through the adsorption base layer 41 and directly contact with the cathode active material layer or the anode active material layer, which is beneficial for ions to escape from the cathode active material layer through the electrolyte in the ion exchange channel 40 and embed in the anode active material layer. Improve the passage of ions.
  • the ion exchange channel 40 can also store more electrolyte and improve the release performance of the electrolyte and the ion conduction and diffusion performance. By adjusting the arrangement and diameter of the ion exchange channel 40, the adsorption base layer can be adjusted. 41 release properties and ion conduction and diffusion properties.
  • the electrolyte adsorption layer 4 includes a fifth end (upper end) and a sixth end (lower end) along the direction perpendicular to the winding direction L (ie, the winding axis K).
  • the fifth end of the electrolyte adsorption layer 4 exceeds the cathode active material layer of the cathode sheet 1 and/or the sixth end of the electrolyte adsorption layer 4 exceeds the cathode active material layer, that is, the fifth end of the electrolyte adsorption layer 4 is along the
  • the winding axis K exceeds the third end (upper end) of the cathode active material layer 111, and/or, the sixth end of the electrolyte adsorption layer 4 exceeds the fourth end (lower end) of the cathode active material layer 111 along the winding axis K,
  • the excess size ranges from 0.2 mm to 5 mm.
  • the electrolyte can be kept in the cathode active material layer as much as possible, so that the electrolyte can be slowly released on the surface of the cathode active material layer, thereby enhancing the cycle performance and life of the battery cell.
  • the porosity of the electrolyte adsorption layer 4 is the porosity of the adsorption base layer 41, and the porosity of the adsorption base layer is 0 ⁇ the porosity of the adsorption base layer ⁇ 50 %, for example, the porosity of the adsorption base layer can be 0.05%, 0.08%, 0.1%, 0.5%, 1%, 2%, 5%, 10%, 15%,
  • the porosity of the adsorption base layer By adjusting the porosity of the adsorption base layer, the release performance and ion conduction and diffusion performance of the adsorption base layer 41 can be adjusted.
  • FIG. 13 it is a schematic diagram of a cross-sectional structure along the B-B direction in FIG. 10 .
  • the difference between the embodiment shown in FIG. 13 and the embodiment shown in FIG. 12 is that the electrolyte adsorption layer 4 is provided on the surface of the cathode active material layer 111 on both surfaces of the cathode sheet 1 .
  • the specific structure and attachment manner and position of the electrolyte adsorption layer 4 are the same as those in FIG. 12 .
  • the electrolyte adsorption layer 4 can also be attached to one or both surfaces of the anode pole piece 2 or separator 3, the specific structure and attachment method of the electrolyte adsorption layer 4 and The location is the same as the way it is attached to the cathode sheet 1 , for details, refer to the structure in FIG. 12 or 13 .
  • FIG. 14 it is a schematic structural diagram of a cathode sheet in another embodiment of the present application.
  • the electrolyte adsorption layer 4 of this embodiment includes an adsorption base layer 41 and a support layer 42, the support layer 42 is attached to the other side of the adsorption base layer 41, and the other side is the opposite side of the side where the adsorption base layer 41 is attached to the pole piece , as shown in FIG. 14 , the other side of the adsorption base layer 41 is attached to the cathode sheet 1 , and the ion exchange channel can penetrate the support layer and the adsorption base layer along the thickness direction.
  • the ion exchange channel 40 runs through the support layer 42 and the adsorption base layer 41 , as shown in FIG. 14 .
  • a first ion exchange channel 401 is provided on the adsorption base layer 41
  • a second ion exchange channel 402 is provided on the support layer
  • the first ion exchange channel 401 and the second ion exchange channel 402 are connected to form the ion exchange channel 40 .
  • the adsorption base layer 41 has a certain fluidity, it is easy to move and deform on the surface of the pole piece, thereby affecting the uniformity of the distribution of the adsorption base layer 41.
  • a support layer 42 is provided on the opposite side of the attached side.
  • the support layer 42 can suppress the flow and deformation of the adsorption base layer 41 while allowing the ions to flow, and keep the adsorption base layer 41 evenly on the surface of the pole piece, thereby allowing the electrolyte to distribute. uniform.
  • the ion exchange channel 40 runs through the support layer and the adsorption base layer, allowing the ion exchange channel 40 to pass through the support layer 42 and the adsorption base layer 41, which is conducive to electrolyte release, ion conduction and diffusion, and is conducive to improving the cycle performance and service life of the battery.
  • one or more second ion exchange channels 402 may be arranged on the support layer 42, for example, the second ion exchange channels 402 may be arrayed on the support layer 42, and each second ion exchange channel 402 has same diameter.
  • the second ion exchange channel 402 can be arranged in the support layer 42 along the thickness direction of the support layer 42, the second ion exchange channel 402 is a through hole, and the space in the second ion exchange channel 402 can store more electrolyte and improve the electrolyte solution. release performance, improve the electrolyte release and ion conduction and diffusion performance of the support layer 42.
  • the second ion exchange channels 402 may also be non-uniformly arranged on the support layer 42, and/or, the second ion exchange channels 402 may have different diameters.
  • one or more first ion exchange channels 401 may be arranged on the adsorption base layer 41, for example, the first ion exchange channels 401 may be arrayed on the adsorption base layer 41, and each first ion exchange channel 401 has same diameter.
  • the first ion exchange channel 401 can be arranged in the adsorption base layer 41 along the thickness direction of the adsorption base layer 41, the ion exchange channel 40 can be a through hole or a blind hole, and the space in the first ion exchange channel 401 can store more electrolyte, Improve the electrolyte release and ion conduction and diffusion performance of the adsorption base layer 41 .
  • the shape and location of the first ion exchange channel 401 correspond to the shape and location of the second ion exchange channel 402 , and the second ion exchange channel 402 communicates with the first ion exchange channel 401 .
  • the material of the adsorption base layer 41 includes acrylic acid-acrylate copolymer, butadiene-styrene copolymer, styrene-acrylic acid copolymer, styrene-acrylate copolymer, ethylene-vinyl acetate copolymer, Acrylic grafted polyethylene, maleic anhydride grafted polyethylene, acrylic grafted polypropylene, maleic anhydride grafted polypropylene, polyvinylidene fluoride, carboxymethyl cellulose, polyimide, polyetherimide, Polyethylene phthalate, styrene-isoprene-styrene copolymer rubber, ethylene-vinyl acetate copolymer bisphenol A type epoxy resin, ethylene-vinyl acetate copolymer bisphenol F type epoxy resin, At least one of glyceryl ether type epoxy resin, glyceryl ester type epoxy resin, silicone type resin, polyurethane,
  • the composition of the support layer 42 may include polyvinyl chloride, polyethylene, polypropylene, polyvinylidene fluoride, hexafluoropropylene-vinylidene fluoride copolymer, tetrafluoropropylene-vinylidene fluoride copolymer, three Fluorochloropropylene-vinylidene fluoride copolymer, polyethylene terephthalate, polyimide, polyetherimide, polycarbonate, polystyrene, polyphenylene sulfide, polyvinylidene fluoride or its At least one of copolymers, polyarylates, fibers, nylon, non-woven fabrics and modified products of the above substances.
  • the thickness of the support layer 42 ⁇ 50um, the porosity of 0 ⁇ the support layer 42 ⁇ 50%, and/or the tensile modulus of the support layer 42 ⁇ 100Mpa, wherein the porosity of the support layer 42 is ion exchange The ratio of the total area of the channel 40 to the area of the support layer.
  • the total area of the ion exchange channels 40 is the sum of the areas of one or more ion exchange channels.
  • setting the thickness of the supporting layer 42 to ⁇ 50 um can control the gap between the cathode electrode piece 1 and the anode electrode piece 2 within a reasonable range, which is beneficial to the transmission of ions.
  • the porosity of the support layer 42 is set to 0 ⁇ the porosity of the support layer 42 ⁇ 50%, for example, the porosity of the support layer 42 can be 0.05%, 0.08%, 0.1%,
  • the porosity of the support layer 42 can be approximately equal to the porosity of the electrolyte adsorption layer.
  • the surface, and then the electrolyte can be kept on the surface of the cathode electrode sheet 1, the anode electrode sheet 2 or the separator 3 for a long time and stably, which is conducive to improving the cycle performance and service life of the battery.
  • the tensile modulus of the support layer 42 ⁇ 100 Mpa enables the support layer 42 to have better retention performance on the adsorption base layer 41 .
  • FIG. 15 it is a schematic structural diagram of a cathode sheet in another embodiment of the present application.
  • the structure of the cathode sheet 1 is the same as that in FIG. 11 .
  • the difference between the embodiment in FIG. 15 and the embodiment in FIG. 14 is that an adsorption base layer 41 and a support layer 42 are provided on both sides of the cathode sheet 1 .
  • One side of the adsorption base layer 41 is attached to the surface of the cathode active material layer 111 on both sides of the cathode sheet 1 , that is, the surface of the cathode active material layer, and the support layer 42 is attached to the other side of the adsorption base layer 41 .
  • the adsorption base layer 41 and the support layer 42 can also be attached to one or both surfaces of the anode pole piece 2 or the separator 3, and the specific structures of the adsorption base layer 41 and the support layer 42 and The attachment method and position on the anode electrode sheet 2 or the separator 3 are the same as the attachment method on the cathode electrode sheet, and reference can be made to the structures of the embodiments in FIGS. 10 to 15 .
  • the electrode assembly in another embodiment of the present application, whether the electrode assembly is formed by winding or continuously folded in a zigzag shape, the electrode assembly includes a flat area and a connection connecting the flat area.
  • the electrode assembly of this embodiment is described by taking a flat body winding structure as an example.
  • the structure of one of the bending regions C and the straight region P of the flat body winding structure can be As shown in Figure 16, it is a schematic diagram of the partial structure of an electrode assembly in its bending area according to an embodiment of the present application.
  • the electrode assembly includes a cathode pole piece 1, an anode pole piece 2 and a The separator 3 of the pole piece 1 and the anode pole piece 2, wherein the spacer 3 can be independent between the adjacent cathode pole piece 1 and the anode pole piece 2, and can also be coated on the cathode pole piece 1 or the anode pole piece 2 s surface.
  • one piece of separator 3, one piece of cathode pole piece 1, another piece of separator 3 and one piece of anode pole piece 2 can be stacked and rolled or folded, or at least one piece (for example, Two or more) cathode pole piece 1 and at least one (for example, two or more than two pieces) anode pole piece 2 and at least two separators (for example four or more, the number of separators is cathode electrode 2 times the number of sheets or anode sheets) are stacked and wound or folded to form a bending area C, when the electrode assembly has a multilayer cathode sheet 1, a multilayer anode sheet 2 and When the multi-layer separator 3 is used, the bending area C includes a structure in which the cathode electrode sheet 1, the separator 3 and the anode electrode sheet 2 are alternately distributed, and the electrolyte adsorption layer 4 is attached to one or both surfaces of the cathode electrode sheet 1, And/or, attached to one or both surfaces
  • an electrolyte adsorption layer 4 is included between at least one adjacent cathode sheet 1 and anode sheet 2 .
  • the cathode electrode sheet 1 and the anode electrode sheet 2 adjacent to the bending area C refer to the fact that a layer of cathode electrode sheet 1 and a layer of anode electrode sheet 2 are adjacent to each other in the bending area C without another layer of cathode electrode being included between them. Sheet 1 or another layer of anode sheet 2.
  • the width direction of the cathode pole piece 1 and the anode pole piece 2 is parallel to the winding axis K, and the width direction of the cathode pole piece 1 and the anode pole piece 2 is perpendicular to the winding direction L
  • the directions are parallel; when the electrode assembly does not have a winding structure, the width direction of the cathode pole piece 1 and the anode pole piece 2 is parallel to the direction perpendicular to the winding direction L, which is simple for the subsequent description.
  • the cathode pole piece 1 and the width direction of the anode sheet 2, the direction perpendicular to the winding direction L and the winding axis K are collectively referred to as the winding axis K.
  • the cathode pole piece 1, the separator 3 and the anode pole piece 2 are wound to form a bending region C, and the electrolyte adsorption layer 4 is arranged along the cathode pole piece 1, The bending area C of the surface of at least one of the anode tab 2 and the separator 3 is arranged. That is, the electrolyte adsorption layer 4 may be attached on a partial surface of the cathode tab 1, the anode tab and/or the separator.
  • the electrolyte adsorbed with the electrolyte is adsorbed Layer 4 can fill the gap between the cathode electrode piece 1 and the anode electrode piece 2 in the bending area C, and maintain and slowly release the electrolyte in the bending area C to replenish the electrolyte consumed during the cycle, which is beneficial to the ion exchange Conduction and diffusion, thereby improving the performance of the battery cell; on the electrolyte adsorption layer, there are ion exchange channels arranged along the thickness, which is conducive to the release of the electrolyte and ion conduction and diffusion, and is conducive to improving the cycle performance of the battery cell and service life.
  • the electrolyte adsorption layer 4 By arranging at least a part of the electrolyte adsorption layer 4 in the bending region C of at least one of the cathode sheet 1, the anode sheet 2 and the separator 3, it specifically means that all of the electrolyte adsorption layer 4 is located at the cathode In the bending area C of the surface of at least one of the pole piece 1, the anode pole piece 2 and the separator 3, or a part of the electrolyte adsorption layer 4 is located in at least one of the cathode pole piece 1, the anode pole piece 2 and the separator 3
  • One part of the curved area C on the surface is located in the flat area P outside this area.
  • the electrolyte adsorption layer is arranged on the bending area C of the surface of the cathode electrode sheet 1 and/or the anode electrode sheet 2, and the electrolyte solution adsorption layer 4 can also protect the cathode active material layer and/or the anode electrode on the cathode electrode sheet 1.
  • the anode active material layer on the sheet 2 is strengthened to reduce the occurrence of fracture of the cathode active material layer on the cathode sheet 1 and/or the anode active material layer on the anode sheet 2 due to bending, thereby improving the battery life. performance.
  • both ends of the electrolyte adsorption layer 4 extending along the winding direction L are located in the bending region C, that is, the electrolyte adsorption layer 4 is all located in the bending region C.
  • the electrode assembly further includes a straight region P connected to the bent region C, and the winding direction L refers to a direction along the curved surface of the bent region C and points to the straight region P, and is perpendicular to the winding direction
  • the direction of L refers to the direction perpendicular to the winding direction L.
  • one end of the electrolyte adsorption layer 4 extending along the winding direction L is located in the straight area P, and the other end is located in the bent area C.
  • the electrolyte adsorption layer 4 in order to improve the storage and retention performance of the electrolyte in the bending region C, has as large an area as possible in the bending region C, for example, the electrolyte adsorption layer 4 along the Both ends extending in the winding direction L are located in the flat area P, that is, the electrolyte adsorption layer 4 extends to the flat area P in addition to being located in the bending area C.
  • both ends of the electrolyte adsorption layer 4 extending along the winding direction L are located at the junction of the bending region C and the straight region P, or the electrolyte adsorption layer 4 extends along the winding direction L. Both ends of the extension are adjacent to the junction of the bending area C and the straight area P.
  • FIG. 17 it is a schematic structural view of a cross-section perpendicular to the winding axis K of a flat body-shaped electrode assembly according to another embodiment of the present application.
  • the electrode assembly includes an anode pole piece 91, a cathode pole piece 92, and a separator. 93.
  • FIG. 18 shows a schematic structural view of the expanded cathode sheet 92 in FIG. 17 , showing the attachment position of the second electrolyte adsorption layer 95 on the cathode sheet 92 .
  • anode pole piece 91 the cathode pole piece 92, the separator 93, and the electrolyte adsorption layers 94-96 of this embodiment can be referred to the descriptions of the above-mentioned embodiments corresponding to FIGS. 1-15, and will not be repeated here.
  • the winding structure of the electrode assembly includes a straight region 9A and a first bent region 9B1 and a second bent region 9B2 located on both sides of the straight region 9A, wherein the straight region 9A is respectively connected to the first bent region.
  • the division of the bending area 9B1 and the second bending area 9B2 is respectively divided by straight dotted lines.
  • the anode pole piece 91 and the cathode pole piece 92 included in the first bending area 9B1 and the second bending area 9B2 of the electrode assembly are stacked alternately in sequence, and there is a spacer 93 between adjacent anode pole pieces 91 and cathode pole pieces 92, wherein
  • the innermost pole pieces of the first bending area 9B1 and the second bending area 9B2 are all anode pole pieces 91, and at least the inside of the innermost cathode pole piece 92 of the first bending area 9B1 and the second bending area 9B2
  • the surface is provided (for example, attached) with an electrolyte adsorption layer, for example, the inner surface of each layer of cathode sheet 92 in the first bending region 9B1 and the second bending region 9B2 is provided with (for example, attached) an electrolyte adsorption layer. layer.
  • the inner surface of the cathode electrode piece 92 refers to the surface of the cath
  • the first bending region 9B1 has multi-layer pole pieces, such as three-layer pole pieces, the innermost layer (also called the first layer) and the outermost layer (also called the third layer) of the first bending region 9B1.
  • layer) pole piece is the anode pole piece 91
  • the pole piece (also can be referred to as the second layer pole piece) between the innermost pole piece and the outermost pole piece is the cathode pole piece 92
  • the cathode pole piece 92 is the innermost cathode sheet in the first bending area 9B1
  • the first electrolyte adsorption layer 94 is attached to the inner surface of the cathode sheet 92 in the first bending area 9B1 .
  • the second bending region 9B2 has multi-layer pole pieces, such as five-layer pole pieces.
  • the anode pole piece 91 and the cathode pole piece 92 of the second bending zone 9B2 are stacked alternately in sequence.
  • the innermost pole piece in the second bending area 9B2 is the anode pole piece 91 , and the inner surface of each cathode pole piece 92 in the second bending area 9B2 is attached with an electrolyte adsorption layer.
  • the second bending region 9B2 includes the first, second, third, fourth and fifth layers of pole pieces in sequence, and the first, third and fifth layers of pole pieces are anode pole pieces 91,
  • the second and fourth layers of pole pieces are cathode pole pieces 92
  • an electrolyte adsorption layer is attached to the inner surface of each cathode pole piece 92 in the second bending region 9B2 .
  • the second electrolyte adsorption layer 95 is attached to the inner surface of the second pole piece (which is the cathode pole piece 92 ) in the second bending region 9B2 .
  • the third electrolyte adsorption layer 96 is attached to the inner surface of the fourth pole piece (which is the cathode pole piece 92 ) in the second bending region 9B2.
  • the two ends of the first electrolyte adsorption layer 94, the second electrolyte adsorption layer 95 and the third electrolyte adsorption layer 96 along the winding direction L are respectively located at the junction of the bending area and the straight area,
  • the two ends of the first electrolyte adsorption layer 94 along the winding direction are respectively located at the junction of the first bending region 9B1 and the straight region 9A
  • the second electrolyte adsorption layer 95 and the third electrolyte adsorption layer 96 are located along the winding direction. Both ends of the winding direction are respectively located at the junction of the second bending region 9B2 and the straight region 9A.
  • the functions, structures, and distribution methods of the first electrolyte adsorption layer 94, the second electrolyte adsorption layer 95, and the third electrolyte adsorption layer 96 can refer to the above-mentioned embodiments of Figures 1-15.
  • the related content of the described electrolyte adsorption layer will not be repeated here.
  • FIG. 19 it is a schematic structural view of a cross-section perpendicular to the winding axis K of another flat electrode assembly according to another embodiment of the present application.
  • the electrode assembly includes an anode pole piece 1001, a cathode pole piece 1002, a separator 1003, the first electrolyte adsorption layer 1004, the second electrolyte adsorption layer 1005 and the third electrolyte adsorption layer 1006, wherein the spacer 1003 is located between the anode sheet 1001 and the cathode sheet 1002, the anode sheet 1001,
  • the cathode sheet 1002 and the separator 1003 are stacked and wound around the winding axis to form a flat body-shaped winding structure.
  • the winding structure of the electrode assembly includes a straight region 10A and a first bent region 10B1 and a second bent region 10B2 located on both sides of the straight region 10A.
  • the electrode assembly of this embodiment is basically similar to the electrode assembly described in the embodiment corresponding to FIG. 17 and FIG. 18 , and the difference may be as follows.
  • At least the outer surface of the innermost cathode sheet 1002 of the first bending area 10B1 and the second bending area 10B2 is provided with (for example, attached) an electrolyte adsorption layer, for example, the first bending area 10B1 and the second bending area 10B1
  • the outer surface of each cathode sheet 1002 in the folding region 10B2 is provided with (eg, attached to) an electrolyte adsorption layer.
  • the outer surface of the cathode electrode piece 1002 refers to the surface of the cathode electrode piece 1002 facing away from the winding axis, or the surface facing away from the inside of the winding structure.
  • the first electrolyte adsorption layer 1004 is attached to the outer surface of the cathode sheet 1002 in the first bending region 10B1 .
  • the second electrolyte adsorption layer 1005 is attached to the outer surface of the second pole piece (which is the cathode pole piece 1002 ) in the second bending region 10B2 .
  • the third electrolyte adsorption layer 1006 is attached to the outer surface of the fourth pole piece (which is the cathode pole piece 1002 ) in the second bending region 10B2 .
  • the two ends of the first electrolyte adsorption layer 1004 along the winding direction are respectively located at the junction of the first bending region 10B1 and the straight region 10A, and the second electrolyte adsorption layer 1005 and the third electrolyte adsorption layer The two ends of 1006 along the winding direction are respectively located at the junction of the second bending region 10B2 and the straight region 10A.
  • the functions, structures, and distribution methods of the first electrolyte adsorption layer 1004, the second electrolyte adsorption layer 1005, and the third electrolyte adsorption layer 1006 can also refer to the above-mentioned embodiments of Figures 1-15.
  • the related content of the described electrolyte adsorption layer will not be repeated here.
  • FIG. 20 it is a structural schematic diagram of another flat body-shaped electrode assembly perpendicular to the winding axis K in another embodiment of the present application.
  • the electrode assembly includes an anode pole piece 1101, a cathode pole piece 1102, a separator 1103, the first electrolyte adsorption layer 1104, the second electrolyte adsorption layer 1105, the third electrolyte adsorption layer 1106, the fourth electrolyte adsorption layer 1107 and the fifth electrolyte adsorption layer 1108, wherein the separator 1103 is located at the anode Between the pole piece 1101 and the cathode pole piece 1102 , the anode pole piece 1101 , the cathode pole piece 1102 and the separator 1103 are stacked and wound around the winding axis to form a flat body-shaped winding structure.
  • the winding structure of the electrode assembly includes a straight region 11A and a first bent region 11B1 and a second bent region 11B2 located on both sides of the straight region 11A.
  • the electrode assembly of this embodiment is basically similar to the electrode assembly described in the embodiment corresponding to FIG. 17 and FIG. 18 , and the difference may be as follows.
  • the inner surface of at least the innermost anode sheet 1101 of the first bending area 11B1 and the second bending area 11B2 is provided with (for example, attached) an electrolyte adsorption layer, for example, the first bending area 11B1 and the second bending area 11B1
  • the inner surface of each anode sheet 1101 in the folding area 11B2 is provided with an electrolyte adsorption layer.
  • the inner surface of the anode pole piece 1101 refers to the surface of the anode pole piece 1101 facing the winding axis, or the surface facing the inside of the winding structure.
  • the first electrolyte adsorption layer 1104 is attached to the inner surface of the innermost pole piece (which is the anode pole piece 1101) of the first bending region 11B1, and the second electrolyte absorption layer 1105 is attached to the outermost pole piece.
  • the inside surface of the pole piece (which is the anode pole piece 1101).
  • the third electrolyte adsorption layer 1106 is attached to the inner surface of the first pole piece (which is the anode pole piece 1101 ) in the second bending region 11B2 .
  • the fourth electrolyte adsorption layer 1107 is attached to the inner surface of the third pole piece (which is the anode pole piece 1101 ) in the second bending region 11B2 .
  • the fifth electrolyte adsorption layer 1108 is attached to the inner surface of the fifth pole piece (which is the anode pole piece 1101 ) in the second bending region 11B2 .
  • the two ends of the first electrolyte adsorption layer 1104 and the second electrolyte adsorption layer 1105 along the winding direction are respectively located at the junction of the first bending region 11B1 and the straight region 11A, and the third electrolyte adsorption layer 1106 , the ends of the fourth electrolyte adsorption layer 1107 and the fifth electrolyte adsorption layer 1108 along the winding direction are respectively located at the junction of the second bent region 11B2 and the straight region 11A.
  • the functions, structures and distributions of the first electrolyte adsorption layer 1104, the second electrolyte adsorption layer 1105, the third electrolyte adsorption layer 1106, the fourth electrolyte adsorption layer 1107 and the fifth electrolyte adsorption layer 1108 For related content such as the method, you can refer to the relevant content of the electrolyte adsorption layer described in the embodiment of FIGS. 1-15 above, and details are not repeated here.
  • FIG. 21 it is a structural schematic diagram of another flat body-shaped electrode assembly perpendicular to the winding axis K in another embodiment of the present application.
  • the electrode assembly includes an anode pole piece 1201, a cathode pole piece 1202, a separator 1203, the first electrolyte adsorption layer 1204, the second electrolyte adsorption layer 1205, the third electrolyte adsorption layer 1206, the fourth electrolyte adsorption layer 1207 and the fifth electrolyte adsorption layer 1208, wherein the separator 1203 is located at the anode Between the pole piece 1201 and the cathode pole piece 1202 , the anode pole piece 1201 , the cathode pole piece 1202 and the separator 1203 are stacked and then wound around the winding axis to form a flat body-shaped winding structure.
  • the winding structure of the electrode assembly includes a straight region 12A and a first bent region 12B1 and a second bent region 12B2 located on both sides of the straight region 12A.
  • the electrode assembly of this embodiment is basically similar to the electrode assembly described in the embodiment corresponding to FIG. 17 and FIG. 18 , and the difference may be as follows.
  • At least the outer surface of the innermost anode sheet 1201 of the first bending area 12B1 and the second bending area 12B2 is provided with (for example, attached) an electrolyte adsorption layer, for example, the first bending area 12B1 and the second bending area 12B1
  • the outer surface of each anode sheet 1201 in the folding area 12B2 is provided with an electrolyte adsorption layer.
  • the outer surface of the anode pole piece 1201 refers to the surface of the anode pole piece 1201 facing away from the winding axis, or the surface facing away from the inside of the winding structure.
  • the first electrolyte adsorption layer 1204 is attached to the outer surface of the innermost pole piece (which is the anode pole piece 1201 ) of the first bending region 12B1, and the second electrolyte absorption layer 1205 is attached to the outermost pole piece (which is the anode pole piece 1201 ).
  • the third electrolyte adsorption layer 1206 is attached to the outer surface of the first pole piece (which is the anode pole piece 1201 ) in the second bending region 12B2 .
  • the fourth electrolyte adsorption layer 1207 is attached to the outer surface of the third pole piece (which is the anode pole piece 1201 ) in the second bending region 12B2 .
  • the fifth electrolyte adsorption layer 1208 is attached to the outer surface of the fifth pole piece (which is the anode pole piece 1201 ) in the second bending region 12B2 .
  • the two ends of the first electrolyte adsorption layer 1204 and the second electrolyte adsorption layer 1205 along the winding direction are respectively located at the junction of the first bending region 12B1 and the straight region 12A, and the third electrolyte adsorption layer 1206 , the ends of the fourth electrolyte adsorption layer 1207 and the fifth electrolyte adsorption layer 1208 along the winding direction are respectively located at the junction of the second bending region 12B2 and the straight region 12A.
  • the functions, structures and distributions of the first electrolyte adsorption layer 1204, the second electrolyte adsorption layer 1205, the third electrolyte adsorption layer 1206, the fourth electrolyte adsorption layer 1207 and the fifth electrolyte adsorption layer 1208 For related content such as the method, you can refer to the relevant content of the electrolyte adsorption layer described in the embodiment of FIGS. 1-15 above, and details are not repeated here.
  • FIG. 22 it is a structural schematic diagram of another flat-shaped electrode assembly perpendicular to the winding axis K in another embodiment of the present application.
  • the electrode assembly includes an anode pole piece 1301, a cathode pole piece 1302, a separator A piece 1303 and a plurality of electrolyte adsorption layers 1304, wherein the separator 1303 is located between the anode pole piece 1301 and the cathode pole piece 1302, and the anode pole piece 1301, the cathode pole piece 1302 and the separator 1303 are stacked and wound around the winding axis A coiled structure in the shape of a flat body.
  • the winding structure of the electrode assembly includes a straight region 13A and a first bent region 13B1 and a second bent region 13B2 located on both sides of the straight region 13A.
  • the electrode assembly of this embodiment is basically similar to the electrode assembly described in the embodiment corresponding to FIG. 17 and FIG. 18 , and the difference may be as follows.
  • At least the inner surface of the innermost spacer 1303 of the first bending region 13B1 and the second bending region 13B2 is attached with an electrolyte adsorption layer 1304, for example, each layer of the first bending region 13B1 and the second bending region 13B2
  • An electrolyte adsorption layer 1304 is attached to the inside surface of the separator 1303 .
  • the inner surface of the spacer 1303 refers to the surface of the spacer 1303 facing the winding axis, or the surface facing the inside of the winding structure.
  • each electrolyte adsorption layer 1304 in the first bending region 13B1 along the winding direction are respectively located at the junction of the first bending region 13B1 and the straight region 13A, and the two ends of the second bending region 13B2 Two ends of each electrolyte adsorption layer 1304 along the winding direction are respectively located at the junction of the second bending region 12B2 and the straight region 12A.
  • an electrolyte adsorption layer 1304 is attached to the inner surface of the separator 1303 adjacent to the cathode pole piece 1302 or the anode pole piece 1301 in the first bending area 13B1 and the second bending area 13B2, so that the electrolytic The liquid-absorbing layer can replenish electrolyte for the adjacent cathode electrode sheet 1302 or anode electrode sheet 1301 .
  • each electrolyte adsorption layer 1304 can refer to the relevant content of the electrolyte adsorption layer described in the embodiment of FIGS.
  • FIG. 23 it is a structural schematic diagram of another flat-shaped electrode assembly perpendicular to the winding axis K in another embodiment of the present application.
  • the electrode assembly includes an anode pole piece 1401, a cathode pole piece 1402, a separator A piece 1403 and a plurality of electrolyte adsorption layers 1404, wherein the separator 1403 is located between the anode pole piece 1401 and the cathode pole piece 1402, and the anode pole piece 1401, the cathode pole piece 1402 and the separator 1403 are stacked and wound around the winding axis A coiled structure in the shape of a flat body.
  • the winding structure of the electrode assembly includes a straight region 14A and a first bent region 14B1 and a second bent region 14B2 located on both sides of the straight region 14A.
  • the electrode assembly of this embodiment is basically similar to the electrode assembly described in the embodiment corresponding to FIG. 17 , and the difference may be as follows.
  • the outer surface of at least the innermost separator 1403 of the first bending region 14B1 and the second bending region 14B2 is attached with an electrolyte adsorption layer 1404, for example, each of the first bending region 14B1 and the second bending region 14B2
  • An electrolyte adsorption layer 1404 is attached to the outer surface of the layer separator 1403 .
  • the outer surface of the spacer 1403 refers to the surface of the spacer 1403 facing away from the winding axis, or the surface facing away from the inside of the winding structure.
  • each electrolyte adsorption layer 1404 in the first bending region 14B1 along the winding direction are respectively located at the junction of the first bending region 14B1 and the straight region 14A, and the ends of the second bending region 14B2 Two ends of each electrolyte adsorption layer 1404 along the winding direction are respectively located at the junction of the second bending region 14B2 and the straight region 14A.
  • an electrolyte adsorption layer 1404 is attached to the outer surface of the separator 1403 adjacent to the cathode electrode piece 1402 or the anode electrode piece 1401 in the first bending region 14B1 and the second bending region 14B2, so that the electrolysis
  • the liquid-absorbing layer can supplement the electrolyte solution for the adjacent cathode electrode sheet 1402 or anode electrode sheet 1401 .
  • each electrolyte adsorption layer 1404 can refer to the relevant content of the electrolyte adsorption layer described in the embodiment of FIGS. 1-15 above, and will not be repeated here.
  • electrolyte absorbing layer there is at least a portion of the electrolyte absorbing layer such that the electrolyte absorbing layer can replenish electrolyte to adjacent cathode or anode tabs.
  • the spacers adjacent to the cathode tab or the anode tab in the first bending area and the second bending area specifically refer to , a separator located on the inside and/or outside of the anode sheet, or a separator located on the inside and/or outside of the cathode sheet.
  • At the bending position of the separator adjacent to the first bending position and the second bending position of the cathode pole piece, and the first bending position of the anode pole piece At least a part of the electrolyte adsorption layer is attached to the inner surface and/or the outer surface of at least one of the bent positions of the separator adjacent to the bent position and the second bent position.
  • the electrolyte adsorption layer can be arranged on the separator inside and/or outside the first bending position of the cathode pole piece and the separator inside and/or outside the second bending position of the cathode pole piece.
  • the electrolyte adsorption layer may be provided on the inside surface and/or the outside surface of the separator. Or at least a part of the electrolyte adsorption layer can be provided on the inside and/or outside separator of the first bending position of the anode sheet, and on the inside and/or outside separator of the second bending position, and the electrolysis
  • the liquid absorbing layer may be provided on the inside surface and/or the outside surface of the separator.
  • FIG. 24 it is a schematic structural view of a cross-section perpendicular to the winding axis K of another flat-shaped electrode assembly according to another embodiment of the present application.
  • the electrode assembly includes an anode pole piece 1501, a cathode pole piece 1502, a separator A piece 1503 and a plurality of electrolyte adsorption layers 1504, wherein the separator 1503 is located between the anode pole piece 1501 and the cathode pole piece 1502, and the anode pole piece 1501, the cathode pole piece 1502 and the separator 1503 are stacked and wound around the winding axis A coiled structure in the shape of a flat body.
  • the winding structure of the electrode assembly includes a straight region 15A and a first bent region 15B1 and a second bent region 15B2 located on both sides of the straight region 15A.
  • the electrode assembly of this embodiment is basically similar to the electrode assembly described in the embodiment corresponding to FIG. 17 and FIG. 18 , and the difference may be as follows.
  • the anode pole piece 1501 and the cathode pole piece 1502 included in the first bending area 15B1 and the second bending area 15B2 of the electrode assembly are stacked alternately in sequence, and any adjacent anode electrode in the first bending area 15B1 and the second bending area 15B2
  • the inner surface and the outer surface of at least the innermost cathode electrode piece 1502 in the bending area 15B2 are provided with an electrolyte adsorption layer 1504, for example, each layer of the cathode electrode sheet 1502 in the first bending area 15B1 and the second bending area 15B2
  • Both the inside surface and the outside surface of the battery are provided with an electrolyte adsorption layer 1504 .
  • the inner surface of the cathode pole piece 1502 refers to the surface of the cathode pole piece 1502 facing the winding axis, or the surface towards the inside of the winding structure
  • the outer surface of the cathode pole piece 1502 refers to the surface of the cathode pole piece 1502 facing away from the coil. The surface around the axis, or the surface facing away from the interior of the wound structure.
  • the first bending region 15B1 has a multi-layer pole piece, such as a three-layer pole piece, the innermost layer (also called the first layer) and the outermost layer (also called the third layer) of the first bending region 15B1.
  • Layer) pole pieces are anode pole pieces
  • the pole piece (also called the second pole piece) between the innermost pole piece and the outermost pole piece of the first bending area 15B1 is the cathode pole piece 1502, the first bending area 15B1
  • Both the inner and outer surfaces of the cathode tab 1502 are provided with (eg, attached to) an electrolyte adsorption layer 1504 .
  • the second bending region 15B2 has multi-layer pole pieces, such as five-layer pole pieces. Along the direction from the inside to the outside of the winding structure, the anode pole piece 1501 and the cathode pole piece 1502 of the second bending zone 15B2 are stacked alternately in sequence.
  • the innermost pole piece of the second bending region 15B2 is the anode pole piece 1501, and the inner surface and the outer surface of each cathode pole piece 1502 of the second bending region 15B2 are provided with (for example, attached to) an electrolyte adsorption layer 1504.
  • the second bending region 15B2 includes the first, second, third, fourth and fifth layers of pole pieces in sequence, and the first, third and fifth layers of pole pieces are anode pole pieces 1501,
  • the second and fourth-layer pole pieces are cathode pole pieces 1502
  • the inner and outer surfaces of the second and fourth-layer pole pieces in the second bending region 15B2 are provided with an electrolyte adsorption layer 1504 .
  • each electrolyte adsorption layer 1504 along the winding direction L are respectively located at the junction of the bending area and the straight area, for example, each electrolyte adsorption layer 1504 in the first bending area 15B1
  • the two ends along the winding direction are respectively located at the junction of the first bending area 15B1 and the straight area 15A
  • the two ends of each electrolyte adsorption layer 1504 along the winding direction of the second bending area 15B2 are respectively located at the junction of the second bending area 15B1.
  • the junction of the folded area 15B2 and the flat area 15A are respectively located at the junction of the folded area 15B2 and the flat area 15A.
  • each electrolyte adsorption layer 1504 can refer to the relevant content of the electrolyte adsorption layer described in the embodiment of FIGS.
  • FIG. 25 it is a schematic structural view of a cross-section perpendicular to the winding axis K of a flat body-shaped electrode assembly according to another embodiment of the present application.
  • the electrode assembly includes an anode pole piece 1601, a cathode pole piece 1602, and a separator.
  • the separator 1603 is located between the anode electrode sheet 1601 and the cathode electrode sheet 1602, the anode electrode sheet 1601, the cathode electrode sheet
  • the pole piece 1602 and the spacer 1603 are stacked and wound around the winding axis to form a flat body-shaped winding structure.
  • the electrode assembly of this embodiment is basically similar to the electrode assembly described in the embodiment corresponding to FIG. 17 and FIG. 18 , and the difference may be as follows.
  • the winding structure of the electrode assembly includes a first straight region 16A1, a second straight region 16A2, a first bent region 16B1 and a second bent region 16B2, and the first straight region 16A1 and the second flat region
  • the straight area 16A2 is arranged oppositely, the first bent area 16B1 and the second bent area 16B2 are arranged oppositely, and the two ends of the first bent area 16B1 are respectively connected to the same side end of the first straight area 16A1 and the second straight area 16A2 , the two ends of the second bent region 16B2 are respectively connected to the other ends of the first straight region 16A1 and the second straight region 16A2 on the same side.
  • the anode pole piece 1601 and the cathode pole piece 1602 included in the first bending area 16B1 and the second bending area 16B2 of the electrode assembly are stacked alternately in sequence, and there is a spacer 1603 between adjacent anode pole pieces 1601 and cathode pole pieces 1602, wherein
  • the innermost pole pieces of the first bending area 16B1 and the second bending area 16B2 are all anode pole pieces 1601, and at least the inside of the innermost cathode pole piece 1602 of the first bending area 16B1 and the second bending area 16B2
  • the surface is provided (for example, attached) with an electrolyte adsorption layer, for example, the inner surface of each layer of cathode sheet 1602 in the first bending region 16B1 and the second bending region 16B2 is provided with (for example, attached) an electrolyte adsorption layer. layer.
  • the inner surface of the cathode electrode piece 1602 refers to the surface of the cathode
  • the first bending region 16B1 has a multilayer pole piece, such as a three-layer pole piece, the innermost layer (also called the first layer) and the outermost layer (also called the third layer) of the first bending region 16B1.
  • layer) pole piece is the anode pole piece 1601
  • the pole piece between the innermost pole piece and the outermost pole piece (also can be called the second layer pole piece) is the cathode pole piece 1602
  • the adsorption layer 1604 is attached to the inner surface of the cathode sheet 1602 in the first bending region 16B1 .
  • the second bending region 16B2 has multi-layer pole pieces, such as five-layer pole pieces, along the direction from the inside to the outside of the winding structure, the anode pole piece 1601 and the cathode pole piece 1602 of the second bending zone 16B2 are stacked alternately in sequence
  • the innermost pole piece in the second bending region 16B2 is the anode pole piece 1601
  • the inner surface of each cathode pole piece 1602 in the second bending region 16B2 is attached with an electrolyte adsorption layer.
  • the second bending region 16B2 includes the first, second, third, fourth and fifth layers of pole pieces in sequence, and the first, third and fifth layers of pole pieces are anode pole pieces 1601,
  • the second and fourth layers of pole pieces are the cathode pole piece 1602
  • the second electrolyte adsorption layer 1605 is attached to the innermost adjacent anode pole piece 1601 and the cathode pole piece 1602 in the cathode pole piece 1602 of the second bending region 16B2 , that is, the second electrolyte adsorption layer 1605 is attached to the inner surface of the second pole piece (which is the cathode pole piece 1602 ) of the second bending region 16B2.
  • the third electrolyte adsorption layer 1606 is attached to the inner surface of the fourth pole piece (which is the cathode pole piece 1602 ) in the second bending region 16B2 .
  • the first electrolyte adsorption layer 1604 includes a first end and a second end along the winding direction L, the first end of the first electrolyte adsorption layer 1604 is located in the first bending region 16B1, and the first electrolyte adsorption The second end of the layer 1604 is located in the first flat region 16A1.
  • the second electrolyte adsorption layer 1605 includes a first end and a second end along the winding direction L, the first end of the second electrolyte adsorption layer 1605 is located in the second bending region 16B2, and the second end of the second electrolyte adsorption layer 1605 The end is located in the second straight region 16A2.
  • the third electrolyte adsorption layer 1606 includes a first end and a second end along the winding direction L, the first end of the third electrolyte adsorption layer 1606 is located in the second bending region 16B2, the second end of the third electrolyte adsorption layer 1606 The end is located in the second straight region 16A2.
  • the first end of the third electrolyte adsorption layer 1606 is located in the second bent region 16B2
  • the second end of the third electrolyte adsorption layer 1606 may be located in the first straight region 16A1 .
  • the functions, structures, and distribution methods of the first electrolyte adsorption layer 1604, the second electrolyte adsorption layer 1605, and the third electrolyte adsorption layer 1606 can refer to the above-mentioned embodiments of Figures 1-15.
  • the related content of the described electrolyte adsorption layer will not be repeated here.
  • FIG. 26 it is a schematic structural view of a cross-section perpendicular to the winding axis K of a flat body-shaped electrode assembly according to another embodiment of the present application.
  • the electrode assembly includes an anode pole piece 1701, a cathode pole piece 1702, and a separator.
  • the spacer 1703 is located between the anode electrode sheet 1701 and the cathode electrode sheet 1702, the anode electrode sheet 1701, the cathode electrode sheet
  • the pole piece 1702 and the spacer 1703 are stacked and wound around the winding axis to form a flat body-shaped winding structure.
  • the electrode assembly of this embodiment is basically similar to the electrode assembly described in the embodiment corresponding to FIG. 17 and FIG. 18 , and the difference may be as follows.
  • the winding structure of the electrode assembly includes a first straight region 17A1, a second straight region 17A2, a first bent region 17B1 and a second bent region 17B2, and the first straight region 17A1 and the second flat region
  • the straight area 17A2 is arranged oppositely, the first bent area 17B1 and the second bent area 17B2 are arranged oppositely, and the two ends of the first bent area 17B1 are respectively connected to the same side ends of the first straight area 17A1 and the second straight area 17A2 , the two ends of the second bent region 17B2 are respectively connected to the other ends of the first straight region 17A1 and the second straight region 17A2 on the same side.
  • the anode pole piece 1701 and the cathode pole piece 1702 included in the first bending area 17B1 and the second bending area 17B2 of the electrode assembly are stacked alternately in sequence, and there is a separator 1703 between the adjacent anode pole piece 1701 and the cathode pole piece 1702, wherein
  • the innermost pole pieces of the first bending area 17B1 and the second bending area 17B2 are all anode pole pieces 1701, and at least the inside of the innermost cathode pole piece 1702 of the first bending area 17B1 and the second bending area 17B2
  • the surface is provided with (for example, attached to) an electrolyte adsorption layer, for example, the inner surface of each cathode sheet 1702 in the first bending region 17B1 and the second bending region 17B2 is provided with (for example, attached) an electrolyte adsorption layer. layer.
  • the inner surface of the cathode electrode piece 1702 refers to the surface of the ca
  • the first bending region 17B1 has multi-layer pole pieces, such as three-layer pole pieces, the innermost layer (also referred to as the first layer) and the outermost layer (also referred to as the third layer) of the first bending region 17B1.
  • layer) pole piece is the anode pole piece 1701
  • the pole piece between the innermost pole piece and the outermost pole piece (also can be called the second layer pole piece) is the cathode pole piece 1702
  • the adsorption layer 1704 is attached to the inner surface of the cathode sheet 1702 of the first bending region 17B1 .
  • the second bending region 17B2 has multi-layer pole pieces, such as five-layer pole pieces. Along the direction from the inside to the outside of the winding structure, the anode pole piece 1701 and the cathode pole piece 1702 of the second bending zone 17B2 are stacked alternately in sequence.
  • the innermost pole piece of the second bending region 17B2 is the anode pole piece 1701 , and the inner surface of each cathode pole piece 1702 of the second bending region 17B2 is attached with an electrolyte adsorption layer.
  • the second bending region 17B2 includes the first, second, third, fourth and fifth layers of pole pieces in sequence, and the first, third and fifth layers of pole pieces are anode pole pieces 1701,
  • the second and fourth layers of pole pieces are the cathode pole piece 1702
  • the second electrolyte adsorption layer 1705 is attached to the innermost adjacent anode pole piece 1701 and the cathode pole piece 1702 in the cathode pole piece 1702 of the second bending region 17B2 , that is, the second electrolyte adsorption layer 1705 is attached to the inner surface of the second pole piece (which is the cathode pole piece 1702 ) of the second bending region 17B2.
  • the third electrolyte adsorption layer 1706 is attached to the inner surface of the fourth pole piece (which is the cathode pole piece 1702 ) in the second bending region 17B2 .
  • the first electrolyte adsorption layer 1704 includes a first end and a second end along the winding direction L, and both the first end and the second end of the first electrolyte adsorption layer 1704 are located in the first bending region 17B1.
  • the second electrolyte adsorption layer 1705 includes a first end and a second end along the winding direction L, and the first end of the second electrolyte adsorption layer 1705 is located at the junction of the second bent region 17B2 and the first straight region 17A1, The second end of the second electrolyte adsorption layer 1705 is located at the junction of the second bent region 17B2 and the second straight region 17A2 .
  • the third electrolyte adsorption layer 1706 includes a first end and a second end along the winding direction L, and both the first end and the second end of the third electrolyte adsorption layer 1706 are located in the second bending region 17B2.
  • the circumferential angle covered by each electrolyte adsorption layer in the second bending region 17B2 along the winding direction can be successively reduced, for example, the third electrolyte adsorption layer
  • the circumferential angle covered by the layer 1706 in the second bending region 17B2 along the winding direction is smaller than the circumferential angle covered by the second electrolyte adsorption layer 1705 in the second bending region 17B2, for example, the third electrolyte adsorption layer 1706 is The circumferential angle covered by the bending region 17B2 along the winding direction is 90°, and the circumferential angle covered by the second electroly
  • the functions, structures, and distribution methods of the first electrolyte adsorption layer 1704, the second electrolyte adsorption layer 1705, and the third electrolyte adsorption layer 1706 can refer to the above-mentioned embodiments of Figures 1-15.
  • the related content of the described electrolyte adsorption layer will not be repeated here.
  • the electrolyte adsorption layer 4 can be arranged on at least one of the cathode sheet, the anode sheet and the separator in the first bending area and the second bending area at the same time as predetermined times. Bending the corresponding bending part.
  • At least a part of the electrolyte adsorption layer is arranged at the first bending position and/or the second bending position of the cathode sheet in the bending area, and/or, at least part of the electrolyte adsorption layer A part is arranged at the first bending position and/or the second bending position of the anode pole piece, and/or at least a part of the electrolyte adsorption layer is arranged at the first bending position adjacent to the cathode pole piece
  • the bending part of the separator and/or the bending part of the separator adjacent to the second bending part, and/or, at least a part of the electrolyte adsorption layer is arranged in the same position as the first bending part of the anode sheet.
  • the bending position of the adjacent spacer and/or the bending position of the spacer adjacent to the second bending position refers to the number of times that the cathode pole piece, the separator and the anode pole piece are arranged according to the order of bending during the process of winding from the inside out to form the motor assembly.
  • the position of the second electrolyte adsorption layer 95 is the first bending of the cathode pole piece 92
  • the position of the first electrolyte absorption layer 94 is The second bending of the cathode sheet 92
  • the position of the third electrolyte adsorption layer 96 is the third bending of the cathode sheet 92, and so on.
  • the position of the third electrolyte adsorption layer 1106 is the first bending of the anode sheet 1101
  • the position of the first electrolyte adsorption layer 1104 is the position of the anode sheet 1101.
  • the position of the fourth electrolyte adsorption layer 1107 is the third bending of the anode sheet 1101 , and so on.
  • the predetermined number of bends of the cathode pole piece and the anode pole piece is not limited to the first time and the second time, and can be selected according to the needs of any number of bending ranges, for example, the electrolyte adsorption layer 4 can be arranged on the cathode pole in the bending area The 1-4th or 1-6th or 1-8th, or 3-4th or 3-6th or 3-8th or other bending parts of the sheet, and/or, the electrolytic The liquid adsorption layer 4 is arranged on the 1st-4th or 1-6th or 1-8th, or 3-4th or 3-6th or 3-8th or other bending times of the anode sheet in the bending area The bending part of the bending, and/or, the electrolyte adsorption layer 4 is arranged in the bending area and the 1s
  • the spacers adjacent to the cathode tab or the anode tab in the first bending area and the second bending area specifically refer to , a separator located on the inside and/or outside of the anode sheet, or a separator located on the inside and/or outside of the cathode sheet.
  • an electrolyte adsorption layer is provided at the predetermined bending position of at least one of the cathode pole piece, the anode pole piece and the separator, and the gap between the cathode pole piece 1 and the anode pole piece 2 can be adjusted.
  • Larger predetermined secondary bending position for example, the predetermined secondary bending includes the first bending and the second bending, and only the electrolyte at the first and second bending positions is regulated to improve the cathode electrode piece 1
  • the electrolyte storage and retention performance of the first and second bending parts of the anode pole piece 2 can improve the conduction and diffusion performance of ions, and improve the cycle performance and service life of the battery cell.
  • the electrolyte adsorption layer is arranged on the first and second bending parts of the bending area of the surface of the cathode electrode sheet and/or the anode electrode sheet, and the electrolyte adsorption layer can also protect the cathode electrode sheet for the first time and the second bending position. Reinforcing the cathode active material layer on the second bending part and/or the anode active material layer on the first and second bending parts of the anode pole piece to reduce the occurrence of fracture of the active material layer due to bending, In turn, the performance of the battery cell is improved.
  • FIG. 27 it is a schematic diagram of the unfolded cathode electrode sheet 1702 of another embodiment of the present application, specifically a schematic diagram of the unfolded position where the cathode electrode sheet 1702 in FIG. 27 is attached with the second electrolyte adsorption layer 1705 .
  • the first bending region 17B1 and the second bending region 17B2 have a centerline M, the centerline M is parallel to the winding axis of the electrode assembly, and extends along the length direction of the electrode assembly in Figure 26, and the centerline M is along the width of the electrode assembly
  • the direction divides the first bending region 17B1 and the second bending region 17B2 into upper and lower parts respectively.
  • the second electrolyte adsorption layer 1705 it includes the middle adsorption layer 43 in the first bending zone 1708, and the side adsorption layer 44 in the second bending zone 1709, wherein the first bending zone 1708 covers the bending area
  • the midline M of the first bending zone 1708 is located in the middle of the bending area as a whole; the second bending zone 1709 is located at least one side of the first bending zone 1708, as shown in FIG.
  • a second bending section 1709 is arranged on both sides of the first bending section.
  • the porosity of the middle adsorption layer 43 is greater than that of the side adsorption layers 44 .
  • the porosity of the electrolyte adsorption layer in different bending zones is the ratio of the sum of the areas of all ion exchange channels 40 on the electrolyte adsorption layer in a zone to the area of the electrolyte adsorption layer in this zone.
  • the porosity of the electrolyte adsorption layer can be adjusted by changing the diameter of the ion exchange channels 40 on the electrolyte adsorption layer and the number of ion exchange channels per unit area.
  • the diameter of the ion exchange channels 40 in the middle adsorption layer 43 and/or the number of ion exchange channels per unit area may be greater than the diameter of the ion exchange channels 40 in the side adsorption layer 44 and/or the number of ion exchange channels per unit area. quantity.
  • the structure of the second electrolyte adsorption layer 1705 in this embodiment can be arranged on one surface or both surfaces of the predetermined bending position of at least one of the cathode sheet, the anode sheet and the separator. In some embodiments, 0 ⁇ the porosity of the middle adsorption layer 43 ⁇ 50%.
  • the porosity of the middle adsorption layer 43 can be 0.05%, 0.08%, 0.1%, 0.5%, 1%, 2%, 5%, 10%, 15%, 30%, 40%, etc. or other values.
  • the porosity of the side adsorption layer 44 can be 0, that is, no ion exchange channel 40 is provided on the side adsorption layer 44 , or 0 ⁇ the porosity of the side adsorption layer 44 ⁇ 50%.
  • the porosity of the side adsorption layer 44 can be 0, 0.05%, 0.08%, 0.1%, 0.5%, 1%, 2%, 5%, 10%, 15%, 30%, 40% or other values.
  • the porosity of the middle adsorption layer 43 may also be smaller than that of the side adsorption layers 44 .
  • the diameter of the ion exchange channels 40 in the middle adsorption layer 43 and/or the number of ion exchange channels per unit area may be smaller than the diameter of the ion exchange channels 40 in the side adsorption layer 44 and/or the number of ion exchange channels per unit area. quantity.
  • the structure of the second electrolyte adsorption layer 1705 in this embodiment can be arranged on one surface or both surfaces of the predetermined bending position of at least one of the cathode sheet, the anode sheet and the separator.
  • the porosity of the adsorption layer 44 on the 0 ⁇ side is ⁇ 50%.
  • the porosity of the side adsorption layer 44 can be 0.05%, 0.08%, 0.1%, 0.5%, 1%, 2%, 5%, 10%, 15%, 30%, 40% or other values.
  • the porosity of the middle adsorption layer 43 can be 0, that is, no ion exchange channel 40 is set on the middle adsorption layer 43; it can also be 0 ⁇ the porosity of the middle adsorption layer 43 ⁇ 50%.
  • the porosity of the middle adsorption layer 43 can be 0, 0.05%, 0.08%, 0.1%, 0.5%, 1%, 2%, 5%, 10%, 15%, 30%, 40% or other values.
  • FIG. 29 a schematic diagram of the unfolded cathode electrode sheet 1702 of another embodiment of the present application, specifically a schematic diagram of the unfolded position where the cathode electrode sheet 1702 in FIG. 26 is attached with the second electrolyte adsorption layer 1705 .
  • the ion exchange channels 40 are distributed on the second electrolyte adsorption layer 1705 in a bent line or a curved line.
  • the ion exchange channels 40 on the second electrolyte adsorption layer 1705 Arranging the ion exchange channels 40 on the second electrolyte adsorption layer 1705 as broken lines or curves, so that the ion exchange channels 40 are distributed at different widths and heights of the second electrolyte adsorption layer 1705, so that the second electrolyte adsorption layer 1705 can realize electrolyte release and ion conduction and diffusion at different heights and widths, which is beneficial to improve the cycle performance and service life of the battery.
  • the porosity of the second electrolyte adsorption layer 1705 can be 0.05%, 0.08%, 0.1%, 0.5%, 1%, 2%, 5%, 10%, 15%, 30%, 40% or other values.
  • the embodiments in Figures 27 to 29 only briefly describe the positional relationship between the electrolyte adsorption layer and the cathode sheet and the structural features of the electrolyte adsorption layer, and the electrolyte adsorption layer in Figures 27 to 29 is not limited to being arranged on the cathode electrode
  • the first and second bending positions of the sheet can also be arranged on other parts of the cathode sheet, as well as on the anode sheet and the separator.
  • the structure of the electrolyte adsorption layer in the embodiments of FIG. 27 to FIG. 29 can be applied to the structure of the electrolyte adsorption layer in any of the embodiments in FIGS. 3-8 and 11-26.
  • FIG. 30 it is a schematic structural diagram of a battery cell according to another embodiment of the present application.
  • the battery cell includes a casing 181 and one or more electrode assemblies 182 accommodated in the casing 181.
  • the casing 181 includes a casing 1811 and a cover plate 1812.
  • the casing 1811 has an accommodating cavity, and the casing 1811 has an opening, that is, the plane There is no shell wall so that the inside and outside of the shell 1811 communicate, so that the electrode assembly 182 can be accommodated in the housing cavity of the shell 1811, the cover plate 1812 and the shell 1811 are combined at the opening of the shell 1811 to form a hollow cavity, the electrode assembly After 182 is placed in the shell 181, the shell 181 is filled with electrolyte and sealed.
  • the housing 1811 depends on the combined shape of one or more electrode assemblies 182 , for example, the housing 1811 may be a hollow cuboid, a hollow cube, or a hollow cylinder.
  • the housing 1811 when the housing 1811 is a hollow cuboid or cube, one of the planes of the housing 1811 is an open surface, that is, the plane does not have a housing wall so that the inside and outside of the housing 1811 communicate; when the housing 1811 is a hollow cylinder At this time, one of the circular sides of the housing 1811 is an open surface, that is, the circular side does not have a housing wall so that the inside and outside of the housing 1811 communicate.
  • the casing 1811 may be made of conductive metal material or plastic, and optionally, the casing 1811 is made of aluminum or aluminum alloy.
  • FIG. 31 it is a schematic structural diagram of a battery module according to another embodiment of the present application.
  • the battery module 19 includes a plurality of interconnected battery cells 191 , wherein the plurality of battery cells 191 can be connected in series. Or parallel connection or mixed connection, mixed connection means that the connection includes both series connection and parallel connection.
  • the structure of the battery cell 191 can refer to the battery cell described in the corresponding embodiment in FIG. 30 , which will not be repeated here.
  • FIG. 32 is a schematic structural diagram of a battery according to another embodiment of the present application.
  • the battery includes a box, and a plurality of battery cells are accommodated in the box.
  • the structure of the battery cell can refer to the structure of the battery cell shown in FIG. 30 .
  • the specific way of accommodating multiple battery cells in the box may include: directly installing the battery cells in the box, or combining multiple battery cells into a battery module, and then installing the battery module in the battery.
  • the battery includes a plurality of battery modules 19 and a box
  • the box includes a lower box 20 and an upper box 30, and multiple battery modules 19 can be connected in series or in parallel.
  • the lower box body 20 has an accommodation cavity
  • the lower box body 20 has an opening, so that a plurality of battery modules 19 connected can be accommodated in the accommodation cavity of the lower box body 20, and the upper box body 30 and the lower box body 20 is combined with the opening of the lower box 20 to form a hollow cavity, and the upper box 30 and the lower box 20 are combined and sealed.
  • the battery can supply power to the electric device alone, and the battery can be called a battery pack, for example, it is used for power supply of a car.
  • a plurality of batteries are connected to each other and combined into a battery pack for supplying power to the electric device.
  • the battery pack can also be accommodated in a case and packaged.
  • the following embodiments are described by taking the electric device including a battery as an example.
  • an embodiment of the present application also provides an electrical device.
  • the electrical device may be an automobile, such as a new energy vehicle.
  • the electrical device includes the battery described in the foregoing embodiment, wherein the battery used by the electrical device may be The battery described in the embodiment corresponding to FIG. 31 will not be repeated here.
  • the electric device can be a car, and the car can be a fuel car, a gas car or a new energy car, and the new energy car can be Pure electric vehicles, hybrid vehicles or extended-range vehicles, etc.
  • the car includes a battery 2101 , a controller 2102 and a motor 2103 .
  • the battery 2101 is used to supply power to the controller 2102 and the motor 2103, as the operating power and driving power of the car, for example, the battery 2101 is used for starting, navigating and running the car.
  • the battery 2101 supplies power to the controller 2102, and the controller 2102 controls the battery 2101 to supply power to the motor 2103.
  • the motor 2103 receives and uses the power of the battery 2101 as the driving power of the vehicle, replacing or partially replacing fuel oil or natural gas to provide driving power for the vehicle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Separators (AREA)
  • Aviation & Aerospace Engineering (AREA)

Abstract

一种电极组件、电池单体、电池和用电设备。该电极组件包括:阴极极片、阳极极片、隔离件,隔离件用于隔离阴极极片和阳极极片;电解液吸附层,被配置为沿阴极极片、阳极极片和隔离件中的至少一个的表面布设;电解液吸附层上设有离子交换通道,离子交换通道为沿电解液吸附层的厚度方向设置的通孔。在阴极极片、阳极极片和隔离件的至少一个表面布设电解液吸附层,可以吸附和保持电解液,有利于电解液存储、释放,以及离子传导和扩散,提高电池的循环性能和使用寿命。

Description

电极组件、电池单体、电池和用电设备 技术领域
本申请涉及电池领域,尤其涉及一种电极组件、电池单体、电池和用电设备。
背景技术
可再充电电池,可以称为二次电池,是指在电池放电后可通过充电的方式使活性物质激活而继续使用的电池。可再充电电池广泛用于电子设备,例如手机、笔记本电脑、电瓶车、电动汽车、电动飞机、电动轮船、电动玩具汽车、电动玩具轮船、电动玩具飞机和电动工具等等。
可再充电电池可以包括镉镍电池、氢镍电池、锂离子电池和二次碱性锌锰电池等。
目前,汽车使用较多的电池一般是锂离子电池,锂离子电池作为一种可再充电电池,具有体积小、能量密度高、功率密度高、循环使用次数多和存储时间长等优点。
可再充电电池包括电极组件和电解液,电极组件包括阴极极片、阳极极片和位于阴极极片和阳极极片之间的隔离件。阴极极片均具有阴极活性物质层,例如,阴极活性物质层的阴极活性物质可为锰酸锂、钴酸锂、磷酸铁锂或者镍钴锰酸锂;阳极极片表面均具有阳极活性物质层,例如,阳极活性物质层的阳极活性物质可以是石墨或硅。
对于电极组件,在循环过程中会不断消耗电解液,阳极极片间的电解液经过消耗后,游离在壳体里面电解液不能及时补充到位,会导致在长期充放电使用后,存在电解液不足导致电池单体及电池循环寿命衰减的问题。
因此,如何提高电池的循环寿命成为行业一个难题。
发明内容
本申请的多个方面提供一种电极组件、电池单体、电池和用电设备,克服了上述问题或者至少部分地解决了上述问题。
本申请的第一方面提供一种电极组件,其中,包括:阴极极片、阳极极片、隔离件和电解液吸附层。隔离件用于隔离阴极极片和阳极极片;电解液吸附层被配置为沿阴极极片、阳极极片和隔离件中的至少一个的表面布设;电解液吸附层上设有离子交换通 道,离子交换通道为沿电解液吸附层的厚度方向设置的通孔。
通过在阴极极片、阳极极片和隔离件中的至少一个的表面的布设电解液吸附层,电解液吸附层可以用于保持和缓慢释放电解液,以补充循环过程中消耗掉的电解液,有利于离子的传导和扩散,进而提高电池单体的性能;在电解液吸附层上设有离子交换通道,离子交换通道为沿所述电解液吸附层的厚度方向设置的通孔,有利于电解液释放和离子传导和扩散,有利于提高电池的循环性能和使用寿命。
在一些实施例中,阴极极片的一个表面或两个表面附接有电解液吸附层,和/或,阳极极片的一个表面或两个表面附接有电解液吸附层,和/或,隔离件一个表面或两个表面附接有电解液吸附层。
该实施例中,通过在阴极极片、阳极极片或隔离件的一个表面或者两个表面附接电解液吸附层,可改善阴极极片、阳极极片或隔离件的一侧或者两侧位置处电解液存储性能和保持性能,以补充循环过程中消耗掉的电解液,有利于离子的传导和扩散,进而提高电池单体的性能。
在一些实施例中,阴极极片、隔离件和阳极极片经过卷绕形成弯折区域,电解液吸附层的至少一部分设置在弯折区域内的阴极极片、阳极极片和隔离件中的至少一个的表面。
该实施例中,通过在阴极极片、阳极极片和隔离件中的至少一个的表面的弯折区域内布设电解液吸附层的至少一部分,吸附有电解液的电解液吸附层可以填充弯折区域内阴极极片和阳极极片之间的间隙,可在弯折区域保持和缓慢释放电解液,以补充循环过程中消耗掉的电解液,有利于离子的传导和扩散,进而提高电池单体的性能。此外,在阴极极片和/或阳极极片的表面的弯折区域布设电解液吸附层,电解液吸附层还能对阴极极片上的阴极活性物质层和/或阳极极片上的阳极活性物质层进行加强,减少阴极极片上的阴极活性物质层和/或阳极极片上的阳极活性物质层因弯折而断裂的情况发生,进而提高电池单体的性能。
在一些实施例中,电解液吸附层的至少一部分设置在弯折区域内的阴极极片的第一次弯折部位和/或第二次弯折部位,和/或,电解液吸附层的至少一部分设置在阳极极片的第一次弯折部位和/或第二次弯折部位,和/或,电解液吸附层的至少一部分设置在与阴极极片的第一次弯折部位相邻的隔离件的弯折部位和/或第二次弯折部位相邻的隔离件的弯折部位,和/或,电解液吸附层的至少一部分设置在与阳极极片的第一次弯折部位相邻的隔离件的弯折部位和/或第二次弯折部位相邻的隔离件的弯折部位。
该实施例中,在阴极极片、阳极极片和隔离件的至少一者的第一次弯折部位和第二次弯折部位设置电解液吸附层的至少一部分,可对阴极极片和阳极极片之间的间隙较大的第一次和第二次弯折部位,提高第一次和第二次弯折部位的电解液均匀性,在降低对电池单体的能量密度的影响的同时,提高电池单体的性能。此外,在阴极极片和/或阳极极片的表面的弯折区域的第一次和第二次弯折部位布设电解液吸附层,电解液吸附层还能对阴极极片第一次和第二次弯折部位上的阴极活性物质层和/或阳极极片第一次和第二次弯折部位上的阳极活性物质层的进行加强,减少活性物质层因弯折而断裂的情况发生,进而提高电池单体的性能。
在一些实施例中,弯折区域包括覆盖弯折区域的中线的第一弯折分区和位于第一弯折分区至少一侧的第二弯折分区,弯折区域的中线与电极组件的卷绕轴线平行;其中,电解液吸附层处于第一弯折分区内的部分的孔隙率与电解液吸附层处于第二弯折分区内的部分的孔隙率不相同,其中,电解液吸附层的孔隙率为离子交换通道面积与电解液吸附层面积的比值。
该实施例中,通过调整处于第一弯折分区和第二弯折分区中的支撑层表面的孔隙率,实现第一弯折分区和第二弯折分区的电解液释放和离子传导和扩散的性能调节,有利于提高电池的循环性能和使用寿命。
在一些实施例中,在弯折区域,沿着平行于电极组件的卷绕轴线的方向,离子交换通道在电解液吸附层上呈折线或曲线分布。
该实施例中,将离子交换通道在电解液吸附层上布置为折线或者曲线,使得离子交换通道在电解液吸附层的不同宽度和高度位置都有分布,使电解液吸附层在不同的高度和宽度位置都能实现电解液释放和离子传导和扩散,有利于提高电池的循环性能和使用寿命。
在一些实施例中,电解液吸附层包括吸附基层,吸附基层的一侧与对应的阴极极片、阳极极片或隔离件附接,吸附基层上设有离子交换通道。
该实施例中,吸附基层用于在阴极级片、阳极极片或隔离件的表面存储和保持电解液,以补充循环过程中消耗掉的电解液,有利于离子的传导和扩散,进而提高电池单体的性能;在吸附基层上设有沿自身厚度方向设置的离子交换通道,有利于电解液释放和离子传导和扩散,有利于提高电池的循环性能和使用寿命。
该实施例中,吸附基层的材料包含丙烯酸-丙烯酸酯共聚物,丁二烯-苯乙烯共聚物,苯乙烯-丙烯酸共聚物,苯乙烯-丙烯酸酯共聚物,乙烯-醋酸乙烯共聚物,丙烯酸接 枝聚乙烯,马来酸酐接枝聚乙烯,丙烯酸接枝聚丙烯,马来酸酐接枝聚丙烯,聚偏氟乙烯,羧甲基纤维素,聚酰亚胺,聚醚酰亚胺,聚苯二甲酸乙二酯,苯乙烯-异戊二烯-苯乙烯共聚物橡胶,乙烯-醋酸乙烯共聚物双酚A型环氧树脂,乙烯-醋酸乙烯共聚物双酚F型环氧树脂,甘油醚型环氧树脂,甘油酯型环氧树脂,硅氧型树脂,聚氨酯,苯乙烯-异戊二烯-苯乙烯共聚物以及以上物质的改性物中的一种。
在一些实施例中,电解液吸附层包括吸附基层和支撑层,吸附基层的一侧与对应的阴极极片、阳极极片或隔离件附接,支撑层附接于吸附基层的另一侧;离子交换通道沿厚度方向贯穿支撑层和吸附基层。
该实施例中,电解液吸附层包括吸附基层和支撑层,吸附基层具有一定的流动性,容易在阴极极片、阳极极片或隔离件的表面发生移动和变形,进而影响电解液吸附层分布的均匀性,在吸附基层的与阴极极片、阳极极片或隔离件附接一侧的相反侧设置支撑层,支撑层可在使离子流动的同时,抑制吸附基层的流动和变形,将吸附基层均匀的保持在阴极极片、阳极极片或隔离件的表面,进而使电解液能够长期和稳定的保持在阴极极片、阳极极片或隔离件的表面,有利于提高电池的循环性能和使用寿命。离子交换通道贯穿支撑层和吸附基层,可使通过离子交换通道穿过支撑层和吸附基层,有利于电解液释放和离子传导和扩散,有利于提高电池的循环性能和使用寿命。
在一些实施例中,吸附基层的材料包含丙烯酸-丙烯酸酯共聚物,丁二烯-苯乙烯共聚物,苯乙烯-丙烯酸共聚物,苯乙烯-丙烯酸酯共聚物,乙烯-醋酸乙烯共聚物,丙烯酸接枝聚乙烯,马来酸酐接枝聚乙烯,丙烯酸接枝聚丙烯,马来酸酐接枝聚丙烯,聚偏氟乙烯,羧甲基纤维素,聚酰亚胺,聚醚酰亚胺,聚苯二甲酸乙二酯,苯乙烯-异戊二烯-苯乙烯共聚物橡胶,乙烯-醋酸乙烯共聚物双酚A型环氧树脂,乙烯-醋酸乙烯共聚物双酚F型环氧树脂,甘油醚型环氧树脂,甘油酯型环氧树脂,硅氧型树脂,聚氨酯,苯乙烯-异戊二烯-苯乙烯共聚物以及以上物质的改性物中的一种。
在一些实施例中,支撑层的材料包含聚氯乙烯,聚乙烯,聚丙烯,聚偏氟乙烯,六氟丙烯-偏氟乙烯共聚物,四氟丙烯-偏氟乙烯共聚物,三氟氯丙烯-偏氟乙烯共聚物,聚对苯二甲酸乙二醇酯,聚酰亚胺,聚醚酰亚胺,聚碳酸酯,聚苯乙烯,聚苯硫醚,聚偏氟乙烯或其共聚物,聚芳酯,纤维,尼龙,无纺布以及以上物质的改性物中的一种。
在一些实施例中,支撑层的厚度≤50um,0<支撑层的孔隙率≤50%,和/或支撑层的拉伸模量≤100Mpa,其中支撑层的孔隙率为离子交换通道总面积与支撑层面积的比值。
该实施例中,将支撑层的厚度设置为≤50um,可以将阴极极片和阳极极片之间的间隙控制在合理的范围内,有利于离子的传输。将支撑层的孔隙率设置为0<支撑层的孔隙率≤50%,可以更好的使离子流动的同时,抑制吸附基层的流动和变形,将吸附基层均匀的保持在阴极极片、阳极极片或隔离件的表面,进而使电解液能够长期和稳定的保持在阴极极片、阳极极片或隔离件的表面,有利于提高电池的循环性能和使用寿命。支撑层的拉伸模量≤100Mpa使得支撑层具备对吸附基层较好的保持性能。
本申请的第二方面提供一种电池单体,其中,包括:壳体、电解液、盖板和至少一个上述实施例的电极组件,其中,壳体具有容纳腔和开口,电极组件和电解液容纳于容纳腔中;盖板用于封闭壳体的开口。
本申请的第三方面提供一种电池,包括箱体和至少一个上述实施例的电池单体,电池单体收纳于箱体内。
本申请的第四方面提供一种用电设备,用电装置被配置为接收从上述实施例的电池提供的电力。
上述说明仅是本申请实施例技术方案的概述,为了能够更清楚了解本申请实施例的技术手段,而可依照说明书的内容予以实施,并且为了让本申请实施例的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本申请一实施例的一种电极组件的立体结构示意图;
图2为图1的电极组件沿垂直于卷绕轴线K的横截面的结构示意图;
图3为本申请另一实施例的一种扁平体形状的电极组件垂直于卷绕轴线K的横截面的结构示意图;
图4为本申请另一实施例的另一种扁平体形状的电极组件垂直于卷绕轴线K的横截面的结构示意图;
图5为本申请另一实施例的另一种扁平体形状的电极组件垂直于卷绕轴线K的横截面的结构示意图;
图6为本申请另一实施例的另一种扁平体形状的电极组件垂直于卷绕轴线K的横截面的结构示意图;
图7为本申请另一实施例的另一种扁平体形状的电极组件垂直于卷绕轴线K的横截面的结构示意图;
图8为本申请另一实施例的另一种扁平体形状的电极组件垂直于卷绕轴线K的横截面的结构示意图;
图9为本申请另一实施例的一种阳极极片的结构示意图;
图10为本申请另一实施例中一种阴极极片的结构示意图;
图11为图10中A-A方向的截面结构示意图;
图12为图10中B-B方向的截面结构示意图;
图13为本申请另一个实施例中图10中B-B方向的截面结构示意图;
图14为本申请另一个实施例中图10中B-B方向的截面结构示意图;
图15为本申请另一个实施例中图10中B-B方向的截面结构示意图;
图16为本申请一实施例的一种电极组件在其弯折区域的局部结构示意图;
图17为本申请另一实施例的一种扁平体形状的电极组件垂直于卷绕轴线K的横截面的结构示意图;
图18为本申请另一实施例中一种阴极极片的结构示意图;;
图19为本申请另一实施例的另一种扁平体形状的电极组件垂直于卷绕轴线K的横截面的结构示意图;
图20为本申请另一实施例的另一种扁平体形状的电极组件垂直于卷绕轴线K的横截面的结构示意图;
图21为本申请另一实施例的另一种扁平体形状的电极组件垂直于卷绕轴线K的横截面的结构示意图;
图22为本申请另一实施例的另一种扁平体形状的电极组件垂直于卷绕轴线K的横截面的结构示意图;
图23为本申请另一实施例的另一种扁平体形状的电极组件垂直于卷绕轴线K的横截面的结构示意图;
图24为本申请另一实施例的另一种扁平体形状的电极组件垂直于卷绕轴线K的横截面的结构示意图;
图25为本申请另一实施例的另一种扁平体形状的电极组件垂直于卷绕轴线K的横截面的结构示意图;
图26为本申请另一实施例的另一种扁平体形状的电极组件垂直于卷绕轴线K的横截面的结构示意图;
图27为本申请另一实施例中一种阴极极片的结构示意图;
图28为本申请另一实施例中一种阴极极片的结构示意图;
图29为本申请另一实施例中一种阴极极片的结构示意图;
图30为本申请另一实施例的一种电池单体的结构示意图;
图31为本申请另一实施例的一种电池模组的结构示意图;
图32为本申请另一实施例的一种电池的结构示意图;
图33为本申请另一实施例的一种用电装置的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排它的包含。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置 关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序,可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
为使得锂离子电池体积更小,能量密度更高,锂离子电池的电极组件中的阴极极片、阳极极片和隔离件可以进行卷绕,然后压实。例如,如图1所示,为一种电极组件的立体结构示意图,该电极组件包括阳极极片、阴极极片和隔离件,其中,阳极极片、阴极极片和隔离件层叠后绕卷绕轴线K卷绕形成卷绕结构,隔离件为一种绝缘膜,用于隔开阳极极片和阴极极片,防止阳极极片和阴极极片短路,该电极组件的卷绕结构为扁平体形状,该电极组件沿垂直于卷绕轴线K的横截面的结构示意图可以如图2所示。
结合图1和图2,该电极组件包括平直区域P和位于该平直区域P两端的弯折区域C。平直区域P是指该卷绕结构中具有平行结构的区域,即在该平直区域P内的阳极极片101、阴极极片102和隔离件103相互基本平行,即电极组件在平直区域P的每层阳极极片101、阴极极片102和隔离件103的表面均为平面。弯折区域C是指该卷绕结构中具有弯折结构的区域,即在该弯折区域C内的阳极极片101、阴极极片102和隔离件103均弯折,即电极组件在弯折区域C的每层阳极极片101、阴极极片102和隔离件103的表面均为曲面,该弯折区域C具有卷绕方向L,该卷绕方向L可以理解为沿弯折区域C电极组件的表面指向平直区域的方向,例如,该卷绕方向L在该弯折区域C沿该卷绕结构的卷绕方向。
阳极极片101的表面具有由阳极活性物质组成的阳极活性物质层,阴极极片102的表面具有由阴极活性物质组成的阴极活性物质层,例如,阴极活性物质可为锰酸锂、钴酸锂、磷酸铁锂或者镍钴锰酸锂,阳极活性物质可以是石墨或硅。
发明人在研发过程中发现,电极组件在循环过程中会不断消耗电解液,阴阳极片之间的电解液经过消耗后,游离在壳体里面的电解液不能及时补充到位,会导致在长期充放电使用后,存在电解液不足导致电池单体及电池包寿命衰减过早的问题。
有鉴于此,本申请欲提供一种电极组件,该电极组件包括阴极极片、阳极极片、隔离件,隔离件用于隔离阴极极片和阳极极片,其中,阳极极片、阴极极片和隔离件层叠后可以是绕卷绕轴线形成卷绕结构,例如,扁平体的卷绕结构,阳极极片、阴极极片和隔离件层叠后也可以是以Z字形状连续折叠。电极组件可以由卷绕形成,也可以以Z字形状连续折叠而形成。电极组件还包括电解液吸附层,被配置为沿阴极极片、阳极极片和隔离件中的至少一个的表面布设;电解液吸附层上设有离子交换通道,离子交换通道为沿所述电解液吸附层的厚度方向设置的通孔。
通过在阴极极片、阳极极片和隔离件中的至少一个的表面的布设电解液吸附层,电解液吸附层可以填充阴极极片和阳极极片之间的间隙,保持和缓慢释放电解液,以补充循环过程中消耗掉的电解液,有利于离子的传导和扩散,进而提高电池单体的性能;在电解液吸附层上设有沿自身厚度方向设置的离子交换通道,有利于电解液释放和离子传导和扩散,有利于提高电池单体的循环性能和使用寿命。离子交换通道可以为设在电解液吸附层厚度方向的通孔,通孔可以在电解液吸附层的表面均匀分布或者非均匀分布,通孔可以具有相同或者不同的截面积和/或孔深,通孔可以为一个或多个。离子交换通道内容纳有电解液,离子可通过离子交换通道穿过电解液吸附层。
隔离件103具有电子绝缘性,用于隔离相邻的阴极极片102和阳极极片101,防止相邻的阴极极片102和阳极极片101短路。隔离件103具有大量贯通的微孔,能够使电解液和离子能自由通过,对锂离子有很好的透过性,所以,隔离件103基本上不能阻挡锂离子通过。例如,隔离件103包括隔离件基层和位于隔离件基层表面的功能层,隔离件基层包括聚丙烯、聚乙烯、乙烯—丙烯共聚物、聚对苯二甲酸丁二醇酯等的至少一种,功能层可以是陶瓷氧化物和粘结剂的混合物层。
本申请的实施例的电极组件在阴极极片1的一个表面或两个表面附接有电解液吸附层,和/或,阳极极片2的一个表面或两个表面附接有电解液吸附层4,和/或,隔离件3的一个表面或两个表面附接有电解液吸附层4。
如图3中所示,在本申请的另一实施例中,在阴极极片1的内表面附接有电解液吸附层4。
如图4中所示,在本申请的另一实施例中,在阴极极片1的外表面附接有电解液吸附层4。
如图5中所示,在本申请的另一实施例中,在阴极极片1的内表面和外表面均附接有电解液吸附层4。
在一些图中未示出的实施例中,也可在阳极极片2的内表面和/或外表面附接电解 液吸附层,其设置方式可参考图3-5中在阴极极片1的表面设置电解液吸附层的方式。
如图6中所示,在本申请的另一实施例中,在阴极极片1的内表面和外表面,以及阳极极片2的内表面和外表面附接有电解液吸附层4。
其中,电解液吸附层4附接在阴极极片1的一个表面或两个表面,和/或,附接在阳极极片2的一个表面或两个表面上,也可以是电解液吸附层4附接在阴极极片1和/或阳极极片2的任意表面,和/或,附接在隔离件3的一个表面或两个表面上。其中,附接是指粘附或者涂覆或者喷涂,通过附接,可以减少电解液吸附层4在电池单体使用过程中的位置移动。
如图7中所示,在本申请的另一实施例中,可在隔离件3的内表面附接有电解液吸附层4。
如图8中所示,在本申请的另一实施例中,可在隔离件3的外表面附接有电解液吸附层4。
在图中未示出的一些实施例中,还可以在隔离件3的内表面和外表面均附接有电解液吸附层4。在隔离件3上附接电解液吸附层4的方式可参考图3-6中在阴极极片1和/或阳极极片2的表面设置电解液吸附层4的方式。
在隔离件3的表面设置电解液吸附层4,同样可以填充阴极极片和阳极极片之间的间隙,保持和存储电解液,以补充循环过程中消耗掉的电解液,有利于离子的传导和扩散,进而提高电池单体的循环性能和寿命;在电解液吸附层4上设有沿电解液吸附层的厚度方向设置的离子交换通道,有利于电解液释放和离子传导和扩散,有利于提高电池单体的循环性能和使用寿命。
阳极极片2的结构可以如图9所示,为本申请另一实施例的一种阳极极片的结构示意图,阳极极片2包括阳极主体部21和从阳极主体部21沿卷绕轴线K向外延伸的阳极极耳部22,阳极主体部21的表面上沿卷绕轴线K至少部分区域为阳极活性物质层211,阳极活性物质层211用于涂覆阳极活性物质,阳极活性物质可以是石墨或硅。
在本申请的另一实施例中,不仅阳极主体部21的表面的部分区域设有阳极活性物质层211,阳极极耳部22的表面且靠近阳极主体部21的根部区域也设有阳极活性物质层211,即阳极极耳部22的部分区域为阳极活性物质层211。
在本申请的另一实施例中,如图9所示,阳极活性物质层211覆盖阳极主体部21的沿卷绕轴线K的整个表面。
在本申请的另一实施例中,阴极活性物质可能没有覆盖阴极极片1的整个表面,例如,如图10所示,为本申请另一实施例中一种阴极极片的结构示意图。
阴极极片1包括阴极主体部11和沿卷绕轴线K向阴极主体部11外部延伸的至少一个阴极极耳部12,阴极主体部11的表面至少部分区域为阴极活性物质层111,在该阴极活性物质层111可以涂覆阴极活性物质,例如,阴极活性物质可以是三元材料、锰酸锂或磷酸铁锂。
在本申请的另一实施例中,阴极主体部11的表面还包括与阴极活性物质层111相邻的第一绝缘层涂覆区112,第一绝缘层涂覆区112位于阴极活性物质层111邻近阴极极耳部12的一侧,第一绝缘层涂覆区112用于涂覆绝缘物质,用于绝缘隔离阴极活性物质层111和阴极极耳部12,例如,如图11所示,为图10中A-A方向的截面结构示意图,阴极极片1的集流体的两个表面具有阴极活性物质层111,阴极极耳部12为阴极极片1的集流体的一部分,其中,集流体的材质可以为铝。
例如,阴极活性物质层111和第一绝缘层涂覆区112在阴极主体部11的表面上沿阴极主体部11的宽度方向(即卷绕轴线K)呈两端分布,且阴极极耳部12与第一绝缘层涂覆区112属于阴极主体部11的同一端。
在本申请的另一实施例中,阴极活性物质层111和第一绝缘层涂覆区112在阴极主体部11的表面上为两个基本平行的区域,且沿卷绕轴线K在阴极主体部11的表面上呈两层分布。
在本申请的另一实施例中,第一绝缘层涂覆区112可以位于阴极主体部11与阴极极耳部12相互连接的部分,例如,第一绝缘层涂覆区112位于阴极主体部11的表面上且与阴极极耳部12相互连接的部分,用于隔开阴极极耳部12的表面和阴极活性物质层111。在本申请的另一实施例中,不仅阴极主体部11的表面上设有第一绝缘层涂覆区112,在阴极极耳部12靠近阴极主体部11的根部区域也设有第二绝缘层涂覆区,第二绝缘层涂覆区用于涂覆绝缘物质。
在本申请的另一实施例中,第一绝缘层涂覆区112的表面涂覆绝缘物质,绝缘物质包括无机填料和粘结剂。无机填料包括勃姆石、氧化铝、氧化镁、二氧化钛、氧化锆、二氧化硅、碳化硅、碳化硼、碳酸钙、硅酸铝、硅酸钙、钛酸钾、硫酸钡中的一种或几种。粘结剂包括聚偏氟乙烯、聚丙烯腈、聚丙烯酸、聚丙烯酸酯、聚丙烯酸-丙烯酸酯、聚丙烯腈-丙烯酸、聚丙烯腈-丙烯酸酯中的一种或几种。
在本申请的另一实施例中,每片阴极极片1可以包括一个或两个或两个以上阴极极耳部12,当阴极极片1包括两个或两个以上阴极极耳部12时,所有阴极极耳部12均位于阴极极片1沿卷绕轴线K的同一侧。
结合图9和图10,当阴极极片1和阳极极片2相互层叠时,阳极极片2的阳极活 性物质层211沿卷绕轴线K的两端均超出相邻的阴极极片1的阴极活性物质层111的对应端,这样,可以使电极组件具备较好的能量密度。例如,阳极活性物质层211沿卷绕轴线K的两端分别为第一端23和第二端24,阴极活性物质层111沿卷绕轴线K的两端分别为第三端13和第四端14,其中,阳极活性物质层211的第一端23和阴极活性物质层111的第三端13沿卷绕轴线K位于电极组件的同一侧,且阳极活性物质层211的第一端23沿卷绕轴线K超出阴极活性物质层111的第三端13,阳极活性物质层211的第二端24和阴极活性物质层111的第四端14沿卷绕轴线K位于电极组件的另一侧,阳极活性物质层211的第二端24沿卷绕轴线K超出阴极活性物质层111的第四端14。
阳极活性物质层211沿卷绕轴线K的两端超出阴极活性物质层111的对应端的尺寸可以相同,也可不同,例如,超出的尺寸范围为0.2毫米~5毫米。
如图12所示,为图10中B-B方向的截面结构示意图,结合图10,电解液吸附层4附接于阴极活性物质层111的表面上,即阴极活性物质层的表面上。通过在阴极极片1、阳极极片2和隔离件3中的至少一个的表面上布设电解液吸附层4,吸附有电解液的电解液吸附层4可以填充阴极极片1和阳极极片2之间的间隙,可以保持和缓慢释放电解液,以补充循环过程中消耗掉的电解液,有利于离子的传导和扩散,进而提高电池单体的循环性能和使用寿命;在电解液吸附层4上设有沿电解液吸附层的厚度方向设置的离子交换通道40,有利于电解液释放和离子传导和扩散,有利于提高电池单体的循环性能和使用寿命。
在一些实施例中,电解液吸附层4可以采用任何适于吸附和保持电解液,并能耐电解液腐蚀的材料。
如图12中所示,在一些实施例中,电解液吸附层4可包括吸附基层41,吸附基层41的一侧与对应的阴极极片或阳极极片附接,吸附基层41上设有离子交换通道40。
吸附基层41的材料包含丙烯酸-丙烯酸酯共聚物,丁二烯-苯乙烯共聚物,苯乙烯-丙烯酸共聚物,苯乙烯-丙烯酸酯共聚物,乙烯-醋酸乙烯共聚物,丙烯酸接枝聚乙烯,马来酸酐接枝聚乙烯,丙烯酸接枝聚丙烯,马来酸酐接枝聚丙烯,聚偏氟乙烯,羧甲基纤维素,聚酰亚胺,聚醚酰亚胺,聚苯二甲酸乙二酯,苯乙烯-异戊二烯-苯乙烯共聚物橡胶,乙烯-醋酸乙烯共聚物双酚A型环氧树脂,乙烯-醋酸乙烯共聚物双酚F型环氧树脂,甘油醚型环氧树脂,甘油酯型环氧树脂,硅氧型树脂,聚氨酯,苯乙烯-异戊二烯-苯乙烯共聚物以及以上物质的改性物中的至少一种。
结合图10和图12所示,离子交换通道40可以在吸附基层41上布置一个或多个,例如,离子交换通道40可以在吸附基层41上阵列排列,每个离子交换通道40具有相同 的直径。离子交换通道40可以沿吸附基层41的厚度方向设置在吸附基层41中,离子交换通道40可以为通孔或者盲孔,离子交换通道内的空间可以存储更多的电解液,提高吸附基层41的电解液释放性能和离子传导和扩散性能。但不限于此,离子交换通道40也可以在吸附基层41上非均匀排列,和/或,离子交换通道40可以具有不同的直径和/或深度。离子交换通道40可以贯通吸附基层41,并与阴极活性物质层或阳极活性物质层直接接触,有利于离子通过离子交换通道40内的电解液从阴极活性物质层脱出,以及嵌入阳极活性物质层,改善离子的通过性,此外离子交换通道40内也可以存储较多的电解液并提高电解液的释放性能和离子传导和扩散性能,通过调整离子交换通道40的排列方式和直径,可以调节吸附基层41的释放性能和离子传导和扩散性能。
为了提供较好的电解液存储性能和保持性能,又能节约成本,电解液吸附层4沿垂直于卷绕方向L(即卷绕轴线K)包括第五端(上端)和第六端(下端),电解液吸附层4的第五端超出阴极极片1的阴极活性物质层和/或电解液吸附层4的第六端超出阴极活性物质层,即电解液吸附层4的第五端沿卷绕轴线K超出阴极活性物质层111的第三端(上端),和/或,电解液吸附层4的第六端沿卷绕轴线K超出阴极活性物质层111的第四端(下端),例如,超出的尺寸范围为0.2毫米~5毫米。这样,可以尽可能多的将电解液保持在阴极活性物质层,使电解液在阴极活性物质层表面缓慢释放,增强电池单体的循环性能和寿命。
在一些实施例中,当电解液吸附层4由吸附基层41组成时,电解液吸附层4的孔隙率为吸附基层41的孔隙率,吸附基层的孔隙率为0<吸附基层的孔隙率≤50%,例如吸附基层的孔隙率可以为0.05%、0.08%、0.1%、0.5%、1%、2%、5%、10%、15%、
30%、40%等数值。通过调节吸附基层的孔隙率,可以调节吸附基层41的释放性能和离子传导和扩散性能。
在本申请的另一实施例中,如图13所示,为图10中B-B方向的截面结构示意图。图13的实施例与图12中所示实施例的区别在于,在阴极极片1的两个表面的阴极活性物质层111的表面均设置了电解液吸附层4。电解液吸附层4的具体结构和附接方式和位置与图12中相同。在一些图中未示出的实施例中,也可以在阳极极片2或隔离件3的一个或两个表面附接电解液吸附层4,电解液吸附层4的具体结构和附接方式和位置与其在阴极极片1上的附接方式相同,具体可以参考图12或13的结构。
如图14所示,为本申请另一实施例中一种阴极极片的结构示意图。
本实施例中,阴极极片1的结构与图13中相同。本实施例的电解液吸附层4包括吸附基层41和支撑层42,支撑层42附接于吸附基层41的另一侧,该另一侧为吸附基 层41与极片附接一侧的相反侧,如图14中所示,吸附基层41的另一侧与阴极极片1相附接,离子交换通道可沿厚度方向贯穿支撑层和吸附基层。
在一些实施例中,离子交换通道40贯穿支撑层42和吸附基层41,如图14中所示。具体地,吸附基层41上设有第一离子交换通道401,支撑层上设有第二离子交换通道402,第一离子交换通道401与第二离子交换通道402相连通构成离子交换通道40。由于吸附基层41具有一定的流动性,容易在极片的表面发生移动和变形,进而影响吸附基层41分布的均匀性,在吸附基层41的与阴极极片1、阳极极片2或者隔离件3附接一侧的相反侧设置支撑层42,支撑层42可在使离子流动的同时,抑制吸附基层41的流动和变形,将吸附基层41均匀的保持在极片的表面,进而使电解液分布均匀。离子交换通道40贯穿支撑层和吸附基层,可使通过离子交换通道40穿过支撑层42和吸附基层41,有利于电解液释放和离子传导和扩散,有利于提高电池的循环性能和使用寿命。
在一些实施例中,第二离子交换通道402可以在支撑层42上布置一个或多个,例如,第二离子交换通道402可以在支撑层42上阵列排列,每个第二离子交换通道402具有相同的直径。第二离子交换通道402可以沿支撑层42厚度方向设置在支撑层42中,第二离子交换通道402为通孔,第二离子交换通道402内的空间可以存储较多的电解液并提高电解液的释放性能,提高支撑层42的电解液释放和离子传导和扩散性能。但不限于此,第二离子交换通道402也可以在支撑层42上非均匀排列,和/或,第二离子交换通道402可以具有不同的直径。
在一些实施例中,第一离子交换通道401可以在吸附基层41上布置一个或多个,例如,第一离子交换通道401可以在吸附基层41上阵列排列,每个第一离子交换通道401具有相同的直径。第一离子交换通道401可以沿吸附基层41的厚度方向设置在吸附基层41中,离子交换通道40可以为通孔或者盲孔,第一离子交换通道401内的空间可以存储更多的电解液,提高吸附基层41的电解液释放和离子传导和扩散性能。可选地,第一离子交换通道401的形状和设置位置与第二离子交换通道402的形状和设置位置相对应,第二离子交换通道402与第一离子交换通道401相连通。
在一些实施例中,吸附基层41的材料包含丙烯酸-丙烯酸酯共聚物,丁二烯-苯乙烯共聚物,苯乙烯-丙烯酸共聚物,苯乙烯-丙烯酸酯共聚物,乙烯-醋酸乙烯共聚物,丙烯酸接枝聚乙烯,马来酸酐接枝聚乙烯,丙烯酸接枝聚丙烯,马来酸酐接枝聚丙烯,聚偏氟乙烯,羧甲基纤维素,聚酰亚胺,聚醚酰亚胺,聚苯二甲酸乙二酯,苯乙烯-异戊二烯-苯乙烯共聚物橡胶,乙烯-醋酸乙烯共聚物双酚A型环氧树脂,乙烯-醋酸乙烯共聚物双酚F型环氧树脂,甘油醚型环氧树脂,甘油酯型环氧树脂,硅氧型树脂,聚氨酯,苯 乙烯-异戊二烯-苯乙烯共聚物以及以上物质的改性物中的至少一种。
在一些实施例中,支撑层42的组分可包含聚氯乙烯,聚乙烯,聚丙烯,聚偏氟乙烯,六氟丙烯-偏氟乙烯共聚物,四氟丙烯-偏氟乙烯共聚物,三氟氯丙烯-偏氟乙烯共聚物,聚对苯二甲酸乙二醇酯,聚酰亚胺,聚醚酰亚胺,聚碳酸酯,聚苯乙烯,聚苯硫醚,聚偏氟乙烯或其共聚物,聚芳酯,纤维,尼龙,无纺布以及以上物质的改性物中的至少一种。
在一些实施例中,支撑层42的厚度≤50um,0<支撑层42的孔隙率≤50%,和/或支撑层42的拉伸模量≤100Mpa,其中支撑层42的孔隙率为离子交换通道40总面积与支撑层面积的比值。其中,离子交换通道40总面积为一个或多个离子交换通道的面积的总和。
该实施例中,将支撑层42的厚度设置为≤50um,可以将阴极极片1和阳极极片2之间的间隙控制在合理的范围内,有利于离子的传输。将支撑层42的孔隙率设置为0<支撑层42的孔隙率≤50%,例如支撑层42的孔隙率可以为0.05%、0.08%、0.1%、
0.5%、1%、2%、5%、10%、15%、30%、40%等数值。当电解液吸附层4由吸附基层41和支撑层42组成时,支撑层42的孔隙率可近似等于电解液吸附层的孔隙率。通过控制支撑层42的孔隙率,可以更好的使离子流动的同时,抑制吸附基层41的流动和变形,将吸附基层41均匀的保持在阴极极片1、阳极极片2或隔离件3的表面,进而使电解液能够长期和稳定的保持在阴极极片1、阳极极片2或隔离件3的表面,有利于提高电池的循环性能和使用寿命。支撑层42的拉伸模量≤100Mpa使得支撑层42具备对吸附基层41较好的保持性能。
如图15所示,为本申请另一实施例中一种阴极极片的结构示意图。本实施例中,阴极极片1的结构与图11中相同。图15的实施例与图14中实施例的区别在于,在阴极极片1的两侧均设有吸附基层41和支撑层42。吸附基层41的一侧附接于阴极极片1两侧的阴极活性物质层111的表面上,即阴极活性物质层的表面上,支撑层42附接于吸附基层41的另一侧。
在一些图中未示出的实施例中,也可以在阳极极片2或隔离件3的一个或两个表面附接吸附基层41和支撑层42,吸附基层41和支撑层42的具体结构和在阳极极片2或隔离件3上的附接方式和位置与其在阴极极片上的附接方式相同,可以参考图图10至图15的实施例的结构。
上述实施例仅仅概况性地描述电解液吸附层分别与阴极极片、阳极极片和隔离件的 位置关系以及电解液吸附层的结构特征,为了更清楚电解液吸附层分别与阴极极片、阳极极片和隔离件的位置关系以及电解液吸附层的结构,下述以几种具有卷绕结构的电极组件分别进行详细的描述。
如图16中所示,在本申请的另一实施例中,电极组件不论是由卷绕而形成,还是以Z字形状连续折叠而形成,该电极组件均包括平直区域和连接该平直区域两端的弯折区域,为描述简洁,本实施例的电极组件以扁平体卷绕结构为例进行描述,例如,该扁平体卷绕结构的其中一个弯折区域C和平直区域P的结构可以如图16所示,为本申请一实施例的一种电极组件在其弯折区域的局部结构示意图,电极组件在其弯折区域C包括阴极极片1、阳极极片2和用于隔离阴极极片1和阳极极片2的隔离件3,其中,隔离件3可以独立于相邻的阴极极片1和阳极极片2之间,也可以涂覆于阴极极片1或阳极极片2的表面。在本申请的另一实施例中,可以是一片隔离件3、一片阴极极片1、另一片隔离件3和一片阳极极片2层叠后进行卷绕或折叠,也可以是至少一片(例如,两片或两片以上)阴极极片1和至少一片(例如,两片或两片以上)阳极极片2和至少两片隔离件(例如四片或者更多,隔离件的片数为阴极极片或阳极极片的片数的2倍)层叠后进行卷绕或折叠,并形成弯折区域C,当电极组件在弯折区域C具有多层阴极极片1、多层阳极极片2和多层隔离件3时,弯折区域C包括阴极极片1、隔离件3和阳极极片2交替分布的结构,电解液吸附层4附接在阴极极片1的一个表面或两个表面,和/或,附接在阳极极片2的一个表面或两个表面上,和/或隔离件3的一个表面或两个表面上。通过这样设置,使得至少一层相邻的阴极极片1和阳极极片2之间包括电解液吸附层4。弯折区域C相邻的阴极极片1和阳极极片2是指该弯折区域C内一层阴极极片1和一层阳极极片2相邻且它们之间没有包括另一层阴极极片1或另一层阳极极片2。
当电极组件具有卷绕结构时,阴极极片1和阳极极片2的宽度方向与卷绕轴线K平行,以及,阴极极片1和阳极极片2的宽度方向与垂直于卷绕方向L的方向平行;当电极组件不具有卷绕结构时,阴极极片1和阳极极片2的宽度方向与垂直于卷绕方向L的方向平行,为后续的描述简单,本实施例中,阴极极片1和阳极极片2的宽度方向、垂直于卷绕方向L的方向和卷绕轴线K统一称为卷绕轴线K。
如图16中所示,在一些实施例中,阴极极片1、隔离件3和阳极极片2经过卷绕形成弯折区域C,电解液吸附层4,被配置为沿阴极极片1、阳极极片2和隔离件3中的至少一个的表面的弯折区域C布设。也即,电解液吸附层4可以附接在阴极极片1、阳极极片和/或隔离件的部分表面上。
该实施例中,在弯折区域C,阴极极片1和阳极极片2之间具有较大的间隙,在弯 折区域C设置电解液吸附层4,可以实现更好的电解液存储和缓慢释放的效果。该实施例中,通过在阴极极片1、阳极极片2和隔离件3中的至少一个的表面的弯折区域C内布设电解液吸附层4的至少一部分,吸附有电解液的电解液吸附层4可以填充弯折区域C内阴极极片1和阳极极片2之间的间隙,在弯折区域C保持和缓慢释放电解液,以补充循环过程中消耗掉的电解液,有利于离子的传导和扩散,进而提高电池单体的性能;在电解液吸附层上设有沿厚度方设置的离子交换通道,有利于电解液释放和离子传导和扩散,有利于提高电池单体的循环性能和使用寿命。通过在阴极极片1、阳极极片2和隔离件3中的至少一个的表面的弯折区域C内布设电解液吸附层4的至少一部分具体指的是电解液吸附层4的全部都位于阴极极片1、阳极极片2和隔离件3中的至少一个的表面的弯折区域C内,或者电解液吸附层4的一部分位于阴极极片1、阳极极片2和隔离件3中的至少一个的表面的弯折区域C内,一部分位于该区域外的平直区域P。此外,在阴极极片1和/或阳极极片2的表面的弯折区域C布设电解液吸附层,电解液吸附层4还能对阴极极片1上的阴极活性物质层和/或阳极极片2上的阳极活性物质层进行加强,减少阴极极片1上的阴极活性物质层和/或阳极极片2上的阳极活性物质层因弯折而断裂的情况发生,进而提高电池单体的性能。
在本申请的另一实施例中,电解液吸附层4沿卷绕方向L延伸的两端均位于弯折区域C,即电解液吸附层4全部均位于弯折区域C。本实施例中,电极组件还包括与弯折区域C相连接的平直区域P,卷绕方向L是指沿着弯折区域C的曲面且指向平直区域P的方向,垂直于卷绕方向L的方向是指与卷绕方向L垂直的方向。
在本申请的另一实施例中,电解液吸附层4沿卷绕方向L延伸的一端位于平直区域P,另一端位于弯折区域C。
在本申请的另一实施例中,为了改善弯折区域C的电解液的存储和保持性能,电解液吸附层4在弯折区域C尽可能具有较大面积,例如,电解液吸附层4沿卷绕方向L延伸的两端均位于平直区域P,即电解液吸附层4除了位于弯折区域C之外,还延伸至平直区域P。
在本申请的另一实施例中,电解液吸附层4沿卷绕方向L延伸的两端均位于弯折区域C与平直区域P的交界处,或者电解液吸附层4沿卷绕方向L延伸的两端均临近弯折区域C与平直区域P的交界处。
如图17所示,为本申请另一实施例的一种扁平体形状的电极组件垂直于卷绕轴线K的横截面的结构示意图,电极组件包括阳极极片91、阴极极片92、隔离件93、第一电 解液吸附层94、第二电解液吸附层95和第三电解液吸附层96,其中,隔离件93位于阳极极片91与阴极极片92之间,隔离件93为两片,在图17的电极组件的截面图中通过卷绕的两条虚线表示,阳极极片91、阴极极片92和隔离件93叠加后绕卷绕轴线卷绕成扁平体形状的卷绕结构。图18中示出了图17中的阴极极片92展开后的结构示意图,示出了第二电解液吸附层95在阴极极片92上的附接位置。
本实施例的阳极极片91、阴极极片92、隔离件93和电解液吸附层94-96的相关技术特征,可以参考前述图1-15所对应实施例的描述,在此不再赘述。
本实施例中,电极组件的卷绕结构包括平直区域9A和位于平直区域9A两侧的第一弯折区域9B1和第二弯折区域9B2,其中,平直区域9A分别与第一弯折区域9B1和第二弯折区域9B2的划分,分别通过直线虚线进行划分。
电极组件在第一弯折区域9B1和第二弯折区域9B2包括的阳极极片91和阴极极片92依次交替层叠,相邻阳极极片91和阴极极片92之间具有隔离件93,其中,第一弯折区域9B1和第二弯折区域9B2最内侧的极片均为阳极极片91,第一弯折区域9B1和第二弯折区域9B2的至少最内侧的阴极极片92的内侧表面设有(例如,附接)电解液吸附层,例如,第一弯折区域9B1和第二弯折区域9B2的每层阴极极片92的内侧表面设有(例如,附接)电解液吸附层。本实施例中,阴极极片92的内侧表面是指阴极极片92朝向卷绕轴线的表面,或者朝向卷绕结构内部的表面。
例如,第一弯折区域9B1具有多层极片,例如三层极片,第一弯折区域9B1的最内层(也可以称为第一层)和最外层(也可以称为第三层)的极片均为阳极极片91,最内层极片和最外层的极片之间的极片(也可以称为第二层极片)为阴极极片92,该阴极极片92为第一弯折区域9B1最内侧的阴极极片,第一电解液吸附层94附接于第一弯折区域9B1的阴极极片92的内侧表面。
第二弯折区域9B2具有多层极片,例如五层极片,沿卷绕结构从内到外的方向,第二弯折区域9B2的阳极极片91和阴极极片92依次交替层叠,第二弯折区域9B2的最内层的极片为阳极极片91,第二弯折区域9B2的每层阴极极片92的内侧表面附接有电解液吸附层。
例如,沿卷绕结构从内到外的方向,第二弯折区域9B2依次包括第一、二、三、四和五层极片,第一、三和五层极片为阳极极片91,第二和四层极片为阴极极片92,第二弯折区域9B2的每层阴极极片92的内侧表面均附接有电解液吸附层。例如,第二电解液吸附层95附接于第二弯折区域9B2的第二层极片(其为阴极极片92)的内侧表面。第三电解液吸附层96附接于第二弯折区域9B2的第四层极片(其为阴极极片92)的内侧 表面。
本实施例中,第一电解液吸附层94、第二电解液吸附层95和第三电解液吸附层96沿卷绕方向L的两端,分别位于弯折区域与平直区域的交界处,例如,第一电解液吸附层94沿卷绕方向的两端分别位于第一弯折区域9B1与平直区域9A的交界处,第二电解液吸附层95和第三电解液吸附层96沿卷绕方向的两端分别位于第二弯折区域9B2与平直区域9A的交界处。
本实施例中,第一电解液吸附层94、第二电解液吸附层95和第三电解液吸附层96的功能、结构和分布方式等相关内容,均可以参考前述图1-15实施例所描述的电解液吸附层的相关内容,在此不再赘述。
如图19所示,为本申请另一实施例的另一种扁平体形状的电极组件垂直于卷绕轴线K的横截面的结构示意图,电极组件包括阳极极片1001、阴极极片1002、隔离件1003、第一电解液吸附层1004、第二电解液吸附层1005和第三电解液吸附层1006,其中,隔离件1003位于阳极极片1001与阴极极片1002之间,阳极极片1001、阴极极片1002和隔离件1003叠加后绕卷绕轴线卷绕成扁平体形状的卷绕结构。
本实施例的阳极极片1001、阴极极片1002和隔离件1003的相关技术特征,可以参考前述图1-15所对应实施例的描述,在此不再赘述。
本实施例中,电极组件的卷绕结构包括平直区域10A和位于平直区域10A两侧的第一弯折区域10B1和第二弯折区域10B2。
本实施例的电极组件与图17和图18对应的实施例描述的电极组件基本类似,其不同之处可以如下。
第一弯折区域10B1和第二弯折区域10B2的至少最内侧的阴极极片1002的外侧表面设有(例如,附接)电解液吸附层,例如,第一弯折区域10B1和第二弯折区域10B2的每层阴极极片1002的外侧表面均设有(例如,附接)电解液吸附层。本实施例中,阴极极片1002的外侧表面是指阴极极片1002背向卷绕轴线的表面,或者背向卷绕结构内部的表面。
例如,第一电解液吸附层1004附接于第一弯折区域10B1的阴极极片1002的外侧表面。
例如,第二电解液吸附层1005附接于第二弯折区域10B2的第二层极片(其为阴极极片1002)的外侧表面。第三电解液吸附层1006附接于第二弯折区域10B2的第四层极片(其为阴极极片1002)的外侧表面。
本实施例中,第一电解液吸附层1004沿卷绕方向的两端分别位于第一弯折区域 10B1与平直区域10A的交界处,第二电解液吸附层1005和第三电解液吸附层1006沿卷绕方向的两端分别位于第二弯折区域10B2与平直区域10A的交界处。
本实施例中,第一电解液吸附层1004、第二电解液吸附层1005和第三电解液吸附层1006的功能、结构和分布方式等相关内容,还可以参考前述图1-15实施例所描述的电解液吸附层的相关内容,在此不再赘述。
如图20所示,为本申请另一实施例的另一种扁平体形状的电极组件垂直于卷绕轴线K的横截面的结构示意图,电极组件包括阳极极片1101、阴极极片1102、隔离件1103、第一电解液吸附层1104、第二电解液吸附层1105、第三电解液吸附层1106、第四电解液吸附层1107和第五电解液吸附层1108,其中,隔离件1103位于阳极极片1101与阴极极片1102之间,阳极极片1101、阴极极片1102和隔离件1103叠加后绕卷绕轴线卷绕成扁平体形状的卷绕结构。
本实施例的阳极极片1101、阴极极片1102和隔离件1103的相关技术特征,可以参考前述图1-15所对应实施例的描述,在此不再赘述。
本实施例中,电极组件的卷绕结构包括平直区域11A和位于平直区域11A两侧的第一弯折区域11B1和第二弯折区域11B2。
本实施例的电极组件与图17和图18对应的实施例描述的电极组件基本类似,其不同之处可以如下。
第一弯折区域11B1和第二弯折区域11B2的至少最内侧的阳极极片1101的内侧表面设有(例如,附接)电解液吸附层,例如,第一弯折区域11B1和第二弯折区域11B2的每层阳极极片1101的内侧表面均设有电解液吸附层。本实施例中,阳极极片1101的内侧表面是指阳极极片1101朝向卷绕轴线的表面,或者朝向卷绕结构内部的表面。
例如,第一电解液吸附层1104附接于第一弯折区域11B1的最内层极片(其为阳极极片1101)的内侧表面,第二电解液吸附层1105附接于最外层的极片(其为阳极极片1101)的内侧表面。
例如,第三电解液吸附层1106附接于第二弯折区域11B2的第一层极片(其为阳极极片1101)的内侧表面。第四电解液吸附层1107附接于第二弯折区域11B2的第三层极片(其为阳极极片1101)的内侧表面。第五电解液吸附层1108附接于第二弯折区域11B2的第五层极片(其为阳极极片1101)的内侧表面。
本实施例中,第一电解液吸附层1104和第二电解液吸附层1105沿卷绕方向的两端分别位于第一弯折区域11B1与平直区域11A的交界处,第三电解液吸附层1106、第四电解液吸附层1107和第五电解液吸附层1108沿卷绕方向的两端分别位于第二弯折区域 11B2与平直区域11A的交界处。
本实施例中,第一电解液吸附层1104、第二电解液吸附层1105、第三电解液吸附层1106、第四电解液吸附层1107和第五电解液吸附层1108的功能、结构和分布方式等相关内容,均可以参考前述图1-15实施例所描述的电解液吸附层的相关内容,在此不再赘述。
如图21所示,为本申请另一实施例的另一种扁平体形状的电极组件垂直于卷绕轴线K的横截面的结构示意图,电极组件包括阳极极片1201、阴极极片1202、隔离件1203、第一电解液吸附层1204、第二电解液吸附层1205、第三电解液吸附层1206、第四电解液吸附层1207和第五电解液吸附层1208,其中,隔离件1203位于阳极极片1201与阴极极片1202之间,阳极极片1201、阴极极片1202和隔离件1203叠加后绕卷绕轴线卷绕成扁平体形状的卷绕结构。
本实施例的阳极极片1201、阴极极片1202和隔离件1203的相关技术特征,可以参考前述图1-15所对应实施例的描述,在此不再赘述。
本实施例中,电极组件的卷绕结构包括平直区域12A和位于平直区域12A两侧的第一弯折区域12B1和第二弯折区域12B2。
本实施例的电极组件与图17和图18对应的实施例描述的电极组件基本类似,其不同之处可以如下。
第一弯折区域12B1和第二弯折区域12B2的至少最内侧的阳极极片1201的外侧表面设有(例如,附接)电解液吸附层,例如,第一弯折区域12B1和第二弯折区域12B2的每层阳极极片1201的外侧表面均设有电解液吸附层。本实施例中,阳极极片1201的外侧表面是指阳极极片1201背向卷绕轴线的表面,或者背向卷绕结构内部的表面。
例如,第一电解液吸附层1204附接于第一弯折区域12B1的最内层极片(其为阳极极片1201)的外侧表面,第二电解液吸附层1205附接于最外层的极片(其为阳极极片1201)的外侧表面。
例如,第三电解液吸附层1206附接于第二弯折区域12B2的第一层极片(其为阳极极片1201)的外侧表面。第四电解液吸附层1207附接于第二弯折区域12B2的第三层极片(其为阳极极片1201)的外侧表面。第五电解液吸附层1208附接于第二弯折区域12B2的第五层极片(其为阳极极片1201)的外侧表面。
本实施例中,第一电解液吸附层1204和第二电解液吸附层1205沿卷绕方向的两端分别位于第一弯折区域12B1与平直区域12A的交界处,第三电解液吸附层1206、第四电解液吸附层1207和第五电解液吸附层1208沿卷绕方向的两端分别位于第二弯折区域 12B2与平直区域12A的交界处。
本实施例中,第一电解液吸附层1204、第二电解液吸附层1205、第三电解液吸附层1206、第四电解液吸附层1207和第五电解液吸附层1208的功能、结构和分布方式等相关内容,均可以参考前述图1-15实施例所描述的电解液吸附层的相关内容,在此不再赘述。
如图22所示,为本申请另一实施例的另一种扁平体形状的电极组件垂直于卷绕轴线K的横截面的结构示意图,电极组件包括阳极极片1301、阴极极片1302、隔离件1303和多个电解液吸附层1304,其中,隔离件1303位于阳极极片1301与阴极极片1302之间,阳极极片1301、阴极极片1302和隔离件1303叠加后绕卷绕轴线卷绕成扁平体形状的卷绕结构。
本实施例的阳极极片1301、阴极极片1302和隔离件1303的相关技术特征,可以参考前述图1-15所对应实施例的描述,在此不再赘述。
本实施例中,电极组件的卷绕结构包括平直区域13A和位于平直区域13A两侧的第一弯折区域13B1和第二弯折区域13B2。
本实施例的电极组件与图17和图18对应的实施例描述的电极组件基本类似,其不同之处可以如下。
第一弯折区域13B1和第二弯折区域13B2的至少最内侧隔离件1303的内侧表面附接有电解液吸附层1304,例如,第一弯折区域13B1和第二弯折区域13B2的每层隔离件1303的内侧表面附接有电解液吸附层1304。本实施例中,隔离件1303的内侧表面是指隔离件1303朝向卷绕轴线的表面,或者朝向卷绕结构内部的表面。
本实施例中,第一弯折区域13B1的每个电解液吸附层1304沿卷绕方向的两端分别位于第一弯折区域13B1与平直区域13A的交界处,第二弯折区域13B2的每个电解液吸附层1304沿卷绕方向的两端分别位于第二弯折区域12B2与平直区12A的交界处。
本实施例中,在第一弯折区域13B1和第二弯折区域13B2的与阴极极片1302或阳极极片1301相邻的隔离件1303的内侧表面附接有电解液吸附层1304,使得电解液吸附层可以为相邻的阴极极片1302或阳极极片1301补充电解液。
本实施例中,每个电解液吸附层1304的功能、结构和分布方式等相关内容,均可以参考前述图1-15实施例所描述的电解液吸附层的相关内容,在此不再赘述。
如图23所示,为本申请另一实施例的另一种扁平体形状的电极组件垂直于卷绕轴线K的横截面的结构示意图,电极组件包括阳极极片1401、阴极极片1402、隔离件1403和多个电解液吸附层1404,其中,隔离件1403位于阳极极片1401与阴极极片1402之 间,阳极极片1401、阴极极片1402和隔离件1403叠加后绕卷绕轴线卷绕成扁平体形状的卷绕结构。
本实施例的阳极极片1401、阴极极片1402和隔离件1403的相关技术特征,可以参考前述图1-15所对应实施例的描述,在此不再赘述。
本实施例中,电极组件的卷绕结构包括平直区域14A和位于平直区域14A两侧的第一弯折区域14B1和第二弯折区域14B2。
本实施例的电极组件与图17对应的实施例描述的电极组件基本类似,其不同之处可以如下。
第一弯折区域14B1和第二弯折区域14B2的至少最内侧的隔离件1403的外侧表面附接有电解液吸附层1404,例如,第一弯折区域14B1和第二弯折区域14B2的每层隔离件1403的外侧表面附接有电解液吸附层1404。本实施例中,隔离件1403的外侧表面是指隔离件1403背向卷绕轴线的表面,或者背向卷绕结构内部的表面。
本实施例中,第一弯折区域14B1的每个电解液吸附层1404沿卷绕方向的两端分别位于第一弯折区域14B1与平直区域14A的交界处,第二弯折区域14B2的每个电解液吸附层1404沿卷绕方向的两端分别位于第二弯折区域14B2与平直区14A的交界处。
本实施例中,在第一弯折区域14B1和第二弯折区域14B2的与阴极极片1402或阳极极片1401相邻的隔离件1403的外侧表面附接有电解液吸附层1404,使得电解液吸附层可以为相邻的阴极极片1402或阳极极片1401补充电解液。
本实施例中,每个电解液吸附层1404的功能、结构和分布方式等相关内容,均可以参考前述图1-15实施例所描述的电解液吸附层的相关内容,在此不再赘述。
在一些图中未示出的实施例中,还可以在在第一弯折区域和第二弯折区域的与阴极极片或阳极极片相邻的隔离件的内侧表面以及外侧表面均附接有电解液吸附层的至少一部分,使得电解液吸附层可以为相邻的阴极极片或阳极极片补充电解液。
在上述实施例中,在第一弯折区域和第二弯折区域的与阴极极片或阳极极片相邻的隔离件具体指的是在在第一弯折区域和第二弯折区域中,位于阳极极片的内侧和/或外侧的隔离件,或者位于阴极极片的内侧和/或外侧的隔离件。
在一些图中未示出的实施例中,在与阴极极片的第一次弯折部位和第二次弯折部位相邻的隔离件的弯折部位、与阳极极片的第一次弯折部位和第二次弯折部位相邻的隔离件的弯折部位中的至少一者处的内侧表面和/或外侧表面均附接有电解液吸附层的至少一部分。具体地,可在阴极极片的第一次弯折部位内侧和/或外侧的隔离件,以及阴极极片的第二次弯折部位内侧和/或外侧的隔离件上设置电解液吸附层的至少一部分,电解液吸 附层可设置在隔离件的内侧表面和/或外侧表面。或者可在阳极极片的第一次弯折部位的内侧和/或外侧的隔离件,以及第二次弯折部位的内侧和/或外侧的隔离件上设置电解液吸附层的至少一部分,电解液吸附层可设置在隔离件的内侧表面和/或外侧表面。
通过在第一弯折区域和第二弯折区域的隔离件上设置电解液吸附层的至少一部分,可对阴极极片和阳极极片之间的间隙较大的第一次和第二次弯折部位,提高第一次和第二次弯折部位的电解液均匀性,在降低对电池单体的能量密度的影响的同时,提高电池单体的性能。如图24所示,为本申请另一实施例的另一种扁平体形状的电极组件垂直于卷绕轴线K的横截面的结构示意图,电极组件包括阳极极片1501、阴极极片1502、隔离件1503和多个电解液吸附层1504,其中,隔离件1503位于阳极极片1501与阴极极片1502之间,阳极极片1501、阴极极片1502和隔离件1503叠加后绕卷绕轴线卷绕成扁平体形状的卷绕结构。
本实施例的阳极极片1501、阴极极片1502和隔离件1503的相关技术特征,可以参考前述图1-15所对应实施例的描述,在此不再赘述。
本实施例中,电极组件的卷绕结构包括平直区域15A和位于平直区域15A两侧的第一弯折区域15B1和第二弯折区域15B2。
本实施例的电极组件与图17和图18对应的实施例描述的电极组件基本类似,其不同之处可以如下。
电极组件在第一弯折区域15B1和第二弯折区域15B2包括的阳极极片1501和阴极极片1502依次交替层叠,第一弯折区域15B1和第二弯折区域15B2的任意相邻阳极极片1501和阴极极片1502之间具有隔离件1503,其中,第一弯折区域15B1和第二弯折区域15B2最内侧的极片均为阳极极片1501,第一弯折区域15B1和第二弯折区域15B2的至少最内侧的阴极极片1502的内侧表面和外侧表面均设有电解液吸附层1504,例如,第一弯折区域15B1和第二弯折区域15B2的每层阴极极片1502的内侧表面和外侧表面均设有电解液吸附层1504。本实施例中,阴极极片1502的内侧表面是指阴极极片1502朝向卷绕轴线的表面,或者朝向卷绕结构内部的表面,阴极极片1502的外侧表面是指阴极极片1502背向卷绕轴线的表面,或者背向卷绕结构内部的表面。
例如,第一弯折区域15B1具有多层极片,例如三层极片,第一弯折区域15B1的最内层(也可以称为第一层)和最外层(也可以称为第三层)的极片均为阳极极片
1501,第一弯折区域15B1的最内层极片和最外层的极片之间的极片(也可以称为第二层极片)为阴极极片1502,第一弯折区域15B1的阴极极片1502的内侧表面和外侧表面均设有(例如,附接)电解液吸附层1504。
第二弯折区域15B2具有多层极片,例如五层极片,沿卷绕结构从内到外的方向,第二弯折区域15B2的阳极极片1501和阴极极片1502依次交替层叠,第二弯折区域15B2的最内层的极片为阳极极片1501,第二弯折区域15B2的每层阴极极片1502的内侧表面和外侧表面均设有(例如,附接)电解液吸附层1504。
例如,沿卷绕结构从内到外的方向,第二弯折区域15B2依次包括第一、二、三、四和五层极片,第一、三和五层极片为阳极极片1501,第二和四层极片为阴极极片1502,第二弯折区域15B2的第二和四层极片的内侧表面和外侧表面均设有电解液吸附层1504。
本实施例中,每个电解液吸附层1504沿卷绕方向L的两端,分别位于弯折区域与平直区域的交界处,例如,第一弯折区域15B1的每个电解液吸附层1504沿卷绕方向的两端分别位于第一弯折区域15B1与平直区域15A的交界处,第二弯折区域15B2的每个电解液吸附层1504沿卷绕方向的两端分别位于第二弯折区域15B2与平直区域15A的交界处。
本实施例中,每个电解液吸附层1504的功能、结构和分布方式等相关内容,均可以参考前述图1-15实施例所描述的电解液吸附层的相关内容,在此不再赘述。
如图25所示,为本申请另一实施例的一种扁平体形状的电极组件垂直于卷绕轴线K的横截面的结构示意图,电极组件包括阳极极片1601、阴极极片1602、隔离件1603、第一电解液吸附层1604、第二电解液吸附层1605和第三电解液吸附层1606,其中,隔离件1603位于阳极极片1601与阴极极片1602之间,阳极极片1601、阴极极片1602和隔离件1603叠加后绕卷绕轴线卷绕成扁平体形状的卷绕结构。
本实施例的阳极极片1601、阴极极片1602和隔离件1603的相关技术特征,可以参考前述图1-15所对应实施例的描述,在此不再赘述。
本实施例的电极组件与图17和图18对应的实施例描述的电极组件基本类似,其不同之处可以如下。
本实施例中,电极组件的卷绕结构包括第一平直区域16A1、第二平直区域16A2、第一弯折区域16B1和第二弯折区域16B2,第一平直区域16A1和第二平直区域16A2相对设置,第一弯折区域16B1和第二弯折区域16B2相对设置,第一弯折区域16B1的两端分别连接第一平直区域16A1和第二平直区域16A2的同一侧端,第二弯折区域16B2的两端分别连接第一平直区域16A1和第二平直区域16A2的另同一侧端。
电极组件在第一弯折区域16B1和第二弯折区域16B2包括的阳极极片1601和阴极极片1602依次交替层叠,相邻阳极极片1601和阴极极片1602之间具有隔离件1603, 其中,第一弯折区域16B1和第二弯折区域16B2最内侧的极片均为阳极极片1601,第一弯折区域16B1和第二弯折区域16B2的至少最内侧的阴极极片1602的内侧表面设有(例如,附接)电解液吸附层,例如,第一弯折区域16B1和第二弯折区域16B2的每层阴极极片1602的内侧表面设有(例如,附接)电解液吸附层。本实施例中,阴极极片1602的内侧表面是指阴极极片1602朝向卷绕轴线的表面,或者朝向卷绕结构内部的表面。
例如,第一弯折区域16B1具有多层极片,例如三层极片,第一弯折区域16B1的最内层(也可以称为第一层)和最外层(也可以称为第三层)的极片均为阳极极片1601,最内层极片和最外层的极片之间的极片(也可以称为第二层极片)为阴极极片1602,第一电解液吸附层1604附接于第一弯折区域16B1的阴极极片1602的内侧表面。
例如,第二弯折区域16B2具有多层极片,例如五层极片,沿卷绕结构从内到外的方向,第二弯折区域16B2的阳极极片1601和阴极极片1602依次交替层叠,第二弯折区域16B2的最内层的极片为阳极极片1601,第二弯折区域16B2的每层阴极极片1602的内侧表面附接有电解液吸附层。
例如,沿卷绕结构从内到外的方向,第二弯折区域16B2依次包括第一、二、三、四和五层极片,第一、三和五层极片为阳极极片1601,第二和四层极片为阴极极片1602,第二电解液吸附层1605附接于第二弯折区域16B2的最内侧相邻的阳极极片1601和阴极极片1602中的阴极极片1602的内侧表面上,即第二电解液吸附层1605附接于第二弯折区域16B2的第二层极片(其为阴极极片1602)的内侧表面。第三电解液吸附层1606附接于第二弯折区域16B2的第四层极片(其为阴极极片1602)的内侧表面。
本实施例中,第一电解液吸附层1604沿卷绕方向L包括第一端和第二端,第一电解液吸附层1604的第一端位于第一弯折区域16B1,第一电解液吸附层1604的第二端位于第一平直区域16A1。第二电解液吸附层1605沿卷绕方向L包括第一端和第二端,第二电解液吸附层1605的第一端位于第二弯折区域16B2,第二电解液吸附层1605的第二端位于第二平直区域16A2。第三电解液吸附层1606沿卷绕方向L包括第一端和第二端,第三电解液吸附层1606的第一端位于第二弯折区域16B2,第三电解液吸附层1606的第二端位于第二平直区域16A2。在本申请的另一实施例这种,第三电解液吸附层1606的第一端位于第二弯折区域16B2,第三电解液吸附层1606的第二端可以位于第一平直区域16A1。
本实施例中,第一电解液吸附层1604、第二电解液吸附层1605和第三电解液吸附层1606的功能、结构和分布方式等相关内容,均可以参考前述图1-15实施例所描述的 电解液吸附层的相关内容,在此不再赘述。
如图26所示,为本申请另一实施例的一种扁平体形状的电极组件垂直于卷绕轴线K的横截面的结构示意图,电极组件包括阳极极片1701、阴极极片1702、隔离件1703、第一电解液吸附层1704、第二电解液吸附层1705和第三电解液吸附层1706,其中,隔离件1703位于阳极极片1701与阴极极片1702之间,阳极极片1701、阴极极片1702和隔离件1703叠加后绕卷绕轴线卷绕成扁平体形状的卷绕结构。
本实施例的阳极极片1701、阴极极片1702和隔离件1703的相关技术特征,可以参考前述图1-15所对应实施例的描述,在此不再赘述。
本实施例的电极组件与图17和图18对应的实施例描述的电极组件基本类似,其不同之处可以如下。
本实施例中,电极组件的卷绕结构包括第一平直区域17A1、第二平直区域17A2、第一弯折区域17B1和第二弯折区域17B2,第一平直区域17A1和第二平直区域17A2相对设置,第一弯折区域17B1和第二弯折区域17B2相对设置,第一弯折区域17B1的两端分别连接第一平直区域17A1和第二平直区域17A2的同一侧端,第二弯折区域17B2的两端分别连接第一平直区域17A1和第二平直区域17A2的另同一侧端。
电极组件在第一弯折区域17B1和第二弯折区域17B2包括的阳极极片1701和阴极极片1702依次交替层叠,相邻阳极极片1701和阴极极片1702之间具有隔离件1703,其中,第一弯折区域17B1和第二弯折区域17B2最内侧的极片均为阳极极片1701,第一弯折区域17B1和第二弯折区域17B2的至少最内侧的阴极极片1702的内侧表面设有(例如,附接)电解液吸附层,例如,第一弯折区域17B1和第二弯折区域17B2的每层阴极极片1702的内侧表面设有(例如,附接)电解液吸附层。本实施例中,阴极极片1702的内侧表面是指阴极极片1702朝向卷绕轴线的表面,或者朝向卷绕结构内部的表面。
例如,第一弯折区域17B1具有多层极片,例如三层极片,第一弯折区域17B1的最内层(也可以称为第一层)和最外层(也可以称为第三层)的极片均为阳极极片1701,最内层极片和最外层的极片之间的极片(也可以称为第二层极片)为阴极极片1702,第一电解液吸附层1704附接于第一弯折区域17B1的阴极极片1702的内侧表面。
第二弯折区域17B2具有多层极片,例如五层极片,沿卷绕结构从内到外的方向,第二弯折区域17B2的阳极极片1701和阴极极片1702依次交替层叠,第二弯折区域17B2的最内层的极片为阳极极片1701,第二弯折区域17B2的每层阴极极片1702的内侧表面附接有电解液吸附层。
例如,沿卷绕结构从内到外的方向,第二弯折区域17B2依次包括第一、二、三、四和五层极片,第一、三和五层极片为阳极极片1701,第二和四层极片为阴极极片1702,第二电解液吸附层1705附接于第二弯折区域17B2的最内侧相邻的阳极极片1701和阴极极片1702中的阴极极片1702的内侧表面上,即第二电解液吸附层1705附接于第二弯折区域17B2的第二层极片(其为阴极极片1702)的内侧表面。第三电解液吸附层1706附接于第二弯折区域17B2的第四层极片(其为阴极极片1702)的内侧表面。
本实施例中,第一电解液吸附层1704沿卷绕方向L包括第一端和第二端,第一电解液吸附层1704的第一端和第二端均位于第一弯折区域17B1。第二电解液吸附层1705沿卷绕方向L包括第一端和第二端,第二电解液吸附层1705的第一端位于第二弯折区域17B2与第一平直区域17A1的交界处,第二电解液吸附层1705的第二端位于第二弯折区域17B2与第二平直区域17A2的交界处。第三电解液吸附层1706沿卷绕方向L包括第一端和第二端,第三电解液吸附层1706的第一端和第二端均位于第二弯折区域17B2。
本实施例中,在第二弯折区域17B2,沿垂直于卷绕轴线K且从电极组件从内到外的方向,每层极片的曲率依次减小,即弯折程度逐次降低,则沿垂直于卷绕轴线K且从电极组件从内到外的方向,每个电解液吸附层在第二弯折区域17B2沿卷绕方向覆盖的圆周角度可以依次减小,例如,第三电解液吸附层1706在第二弯折区域17B2沿卷绕方向覆盖的圆周角度小于第二电解液吸附层1705在第二弯折区域17B2覆盖的圆周角度,例如,第三电解液吸附层1706在第二弯折区域17B2沿卷绕方向覆盖的圆周角度为90°,第二电解液吸附层1705在第二弯折区域17B2沿卷绕方向覆盖的圆周角度为180°。
本实施例中,第一电解液吸附层1704、第二电解液吸附层1705和第三电解液吸附层1706的功能、结构和分布方式等相关内容,均可以参考前述图1-15实施例所描述的电解液吸附层的相关内容,在此不再赘述。
此外,在图17-26的实施例中,电解液吸附层4可设置在第一弯折区域和第二弯折区域内阴极极片、阳极极片和隔离件的至少一者的与预定次弯折对应的弯折部位。在一些实施例中,电解液吸附层的至少一部分设置在弯折区域内的阴极极片的第一次弯折部位和/或第二次弯折部位,和/或,电解液吸附层的至少一部分设置在阳极极片的第一次弯折部位和/或第二次弯折部位,和/或,电解液吸附层的至少一部分设置在与阴极极片的第一次弯折部位相邻的隔离件的弯折部位和/或第二次弯折部位相邻的隔离件的弯折部位,和/或,电解液吸附层的至少一部分设置在与阳极极片的第一次弯折部位相邻的隔离件的弯折部位和/或第二次弯折部位相邻的隔离件的弯折部位。本实施例中所说的预定次弯折指的是阴极极片、隔离件和阳极极片在由内向外卷绕形成电机组件的过程中,按照弯折 的先后顺序排列出来的次数。以图17的实施例为例,对于阴极极片92,第二电解液吸附层95所处的位置为阴极极片92的第一次弯折,第一电解液吸附层94所处的位置为阴极极片92的第二次弯折,第三电解液吸附层96所处的位置为阴极极片92的第三次弯折,以此类推。此外,以图20的实施例为例,第三电解液吸附层1106所处的位置为阳极极片1101的第一次弯折,第一电解液吸附层1104所处位置为阳极极片1101的第二次弯折,第四电解液吸附层1107所处的位置为阳极极片1101的第三次弯折,以此类推。但阴极极片、阳极极片的预定次弯折不限于第一次、第二次,可以是根据需要选择任意次数弯折范围,例如可将电解液吸附层4设置在弯折区域内阴极极片的第1-4次或1-6次或1-8次,或者3-4次或3-6次或3-8次或其他次数范围弯折的弯折部位,和/或,将电解液吸附层4设置在弯折区域内阳极极片的第1-4次或1-6次或1-8次,或者3-4次或3-6次或3-8次或者其他次数范围弯折的弯折部位,和/或,将电解液吸附层4设置在弯折区域内与阴极极片的第1-4次或1-6次或1-8次,或者3-4次或3-6次或3-8次或者其他次数弯折的弯折部位相邻的隔离件的弯折部位,或者与阳极极片的第1-4次或1-6次或1-8次,或者3-4次或3-6次或3-8次或者其他次数弯折的弯折部位相邻的隔离件的弯折部位。在上述实施例中,在第一弯折区域和第二弯折区域的与阴极极片或阳极极片相邻的隔离件具体指的是在在第一弯折区域和第二弯折区域中,位于阳极极片的内侧和/或外侧的隔离件,或者位于阴极极片的内侧和/或外侧的隔离件。
该实施例中,在阴极极片、阳极极片和隔离件的至少一者的预定次弯折的弯折部位设置电解液吸附层,可对阴极极片1和阳极极片2之间的间隙较大的预定次弯折部位,例如预定次弯折包括第一次弯折和第二次弯折,仅对第一次和第二次弯折部位的电解液进行调控,提高阴极极片1或阳极极片2第一次和第二次弯折部位的电解液存储和保持性能,提高离子的传导和扩散性能,提高电池单体的循环性能和使用寿命。此外,在阴极极片和/或阳极极片的表面的弯折区域的第一次和第二次弯折部位布设电解液吸附层,电解液吸附层还能对阴极极片第一次和第二次弯折部位上的阴极活性物质层和/或阳极极片第一次和第二次弯折部位上的阳极活性物质层的进行加强,减少活性物质层因弯折而断裂的情况发生,进而提高电池单体的性能。
如图27所示,为本申请另一实施例的阴极极片1702展开后的示意图,具体为图27中的阴极极片1702贴附有第二电解液吸附层1705位置的展开后的示意图,其中,第一弯折区域17B1和第二弯折区域17B2具有中线M,中线M与电极组件的卷绕轴线平行,并沿电极组件在图26中的长度方向延伸,中线M沿电极组件的宽度方向将第一弯 折区域17B1和第二弯折区域17B2分别分成上下两部分。
对于第二电解液吸附层1705,其包括处于第一弯折分区1708的中间吸附层43,和处于第二弯折分区1709的侧吸附层44,其中,第一弯折分区1708覆盖弯折区域的中线M,即第一弯折分区1708整体位于弯折区域的中部;第二弯折分区1709位于第一弯折分区1708的至少一侧,如图27中所示,可选地,在第一弯折分区两侧分别设有一个第二弯折分区1709。如图27中所示,其中,中间吸附层43的孔隙率大于侧吸附层44的孔隙率。在不同弯折分区的电解液吸附层的孔隙率为在一个分区内的电解液吸附层上的所有离子交换通道40的面积总和与该区域内的电解液吸附层的面积的比值。电解液吸附层的孔隙率可以通过改变电解液吸附层上离子交换通道40的直径和单位面积内离子交换通道的数量进行调节。例如,位于中间吸附层43中的离子交换通道40的直径和/或单位面积内离子交换通道的数量可以大于侧吸附层44中的离子交换通道40的直径和/或单位面积内离子交换通道的数量。本实施例的第二电解液吸附层1705的结构,可以布置在阴极极片、阳极极片和隔离件的至少一者的预定次弯折的弯折部位的一个表面或两个表面上。在一些实施例中,0<中间吸附层43的孔隙率≤50%。中间吸附层43的孔隙率可以为0.05%、0.08%、0.1%、0.5%、1%、2%、5%、10%、15%、30%、40%等或者其他值。在一些实施例中,侧吸附层44的孔隙率可以为0,即侧吸附层44上不设置离子交换通道40,也可以0<侧吸附层44的孔隙率≤50%。侧吸附层44孔隙率可以为0、0.05%、0.08%、0.1%、0.5%、1%、2%、5%、10%、15%、30%、40%等数值或者其他值。
如图28所示,中间吸附层43的孔隙率也可以小于侧吸附层44的孔隙率。例如,位于中间吸附层43中的离子交换通道40的直径和/或单位面积内离子交换通道的数量可以小于侧吸附层44中的离子交换通道40的直径和/或单位面积内离子交换通道的数量。本实施例的第二电解液吸附层1705的结构,可以布置在阴极极片、阳极极片和隔离件的至少一者的预定次弯折的弯折部位的一个表面或两个表面上。在一些实施例中,0<侧吸附层44的孔隙率≤50%。侧吸附层44的孔隙率的孔隙率可以为0.05%、0.08%、0.1%、0.5%、1%、2%、5%、10%、15%、30%、40%等数值或者其他值。在一些实施例中,中间吸附层43的孔隙率可以为0,即中间吸附层43上不设置离子交换通道40;也可以0<中间吸附层43的孔隙率≤50%。中间吸附层43的孔隙率可以为0、0.05%、0.08%、0.1%、0.5%、1%、2%、5%、10%、15%、30%、40%等数值或者其他值。
如图29所示,本申请另一实施例的阴极极片1702展开后的示意图,具体为图26中的阴极极片1702贴附有第二电解液吸附层1705位置的展开后的示意图,在弯折区 域,沿着平行于电极组件的卷绕轴线K的方向,离子交换通道40在第二电解液吸附层1705上呈折线或曲线分布。将离子交换通道40在第二电解液吸附层1705上布置为折线或者曲线,使得离子交换通道40在第二电解液吸附层1705的不同宽度和高度位置都有分布,使第二电解液吸附层1705在不同的高度和宽度位置都能实现电解液释放和离子传导和扩散,有利于提高电池的循环性能和使用寿命。该实施例中,0<第二电解液吸附层1705的孔隙率≤50%。第二电解液吸附层1705的孔隙率可以为0.05%、0.08%、0.1%、0.5%、1%、2%、5%、10%、15%、30%、40%等数值或者其他值。
图27至图29的实施例仅仅概况性地描述电解液吸附层分别与阴极极片的位置关系以及电解液吸附层的结构特征,图27至图29的电解液吸附层不限于设置在阴极极片的第一次和第二次弯折部位,也可以设置在阴极极片的其他部位,以及设在阳极极片和隔离件上。图27至图29的实施例的电解液吸附层的结构可应用于图3-8、图11-图26中任一实施例的电解液吸附层结构中。
如图30所示,为本申请另一实施例的一种电池单体的结构示意图。电池单体包括外壳181和容置于外壳181内的一个或多个电极组件182,外壳181包括壳体1811和盖板1812,壳体1811具有容纳腔,且壳体1811具有开口,即该平面不具有壳体壁而使得壳体1811内外相通,以便电极组件182可以收容于壳体1811的容纳腔内,盖板1812与壳体1811结合于壳体1811的开口处以形成中空腔体,电极组件182容置于外壳181内后,外壳181内充有电解液并密封。
壳体1811根据一个或多个电极组件182组合后的形状而定,例如,壳体1811可以为中空长方体或中空正方体或中空圆柱体。例如,当壳体1811为中空的长方体或正方体时,壳体1811的其中一个平面为开口面,即该平面不具有壳体壁而使得壳体1811内外相通;当壳体1811为中空的圆柱体时,壳体1811的其中一个圆形侧面为开口面,即该圆形侧面不具有壳体壁而使得壳体1811内外相通。
在本申请的另一实施例,壳体1811可由导电金属的材料或塑料制成,可选地,壳体1811由铝或铝合金制成。
电极组件182的结构可以参考前述图1-27实施例描述的电极组件的相关内容,在此不再赘述。
如图31所示,为本申请另一实施例的一种电池模组的结构示意图,电池模组19包括多个相互连接的电池单体191,其中,多个电池单体191之间可以串联或并联或混联,混联是指连接同时包括串联和并联,电池单体191的结构可以参考图30所对应实施例描述的电池单体,在此不再赘述。
图32为本申请另一实施例的一种电池的结构示意图,电池包括箱体,箱体中容纳有多个电池单体。电池单体的结构可参考图30所示的电池单体的结构。箱体中容纳多个电池单体的具体方式可以包括:将电池单体直接安装于箱体内,或者将多个电池单体组成电池模组,再将电池模组安装在电池内。
如图32中所示,在一些实施例中,电池包括多个电池模组19和箱体,箱体包括下箱体20和上箱体30,多个电池模组19之间可以串联或并联或混联,下箱体20具有容纳腔,且下箱体20具有开口,以便连接后的多个电池模组19可以收容于下箱体20的容纳腔内,上箱体30与下箱体20结合于下箱体20的开口处以形成中空腔体,上箱体30与下箱体20结合后密封。
在本申请的另一实施例中,电池可以单独给用电装置供电,该电池可以称为电池包,例如,用于汽车的供电。
在本申请的另一实施例中,根据用电装置的用电需求,多个电池相互连接后组合成电池组,用于给用电装置供电。在本申请的另一实施例中,该电池组也有可以容纳于一个箱体中,并封装。
为使得描述简洁,下述实施例以用电装置包括电池为例进行描述。
在本申请的一实施例还提供一种用电装置,例如,用电装置可以为汽车,例如,新能源车,用电装置包括前述实施例描述的电池,其中,用电装置使用的电池可以如图31对应的实施例所描述的电池,在此不再赘述。
例如,如图33所示,为本申请另一实施例的一种用电装置的结构示意图,用电装置可以为汽车,汽车可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。汽车包括电池2101、控制器2102和马达2103。电池2101用于向控制器2102和马达2103供电,作为汽车的操作电源和驱动电源,例如,电池2101用于汽车的启动、导航和运行时的工作用电需求。例如,电池2101向控制器2102供电,控制器2102控制电池2101向马达2103供电,马达2103接收并使用电池2101的电力作为汽车的驱动电源,替代或部分地替代燃油或天然气为汽车提供驱动动力。
本领域的技术人员能够理解,尽管在此的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本申请的范围之内并且形成不同的实施例。例如,在权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对 本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (15)

  1. 一种电极组件,包括:
    阴极极片、阳极极片、隔离件,所述隔离件用于隔离所述阴极极片和所述阳极极片;
    电解液吸附层,被配置为沿所述阴极极片、所述阳极极片和所述隔离件中的至少一个的表面布设;所述电解液吸附层上设有离子交换通道,所述离子交换通道为沿所述电解液吸附层的厚度方向设置的通孔。
  2. 如权利要求1所述的电极组件,其中,所述阴极极片的一个表面或两个表面附接有所述电解液吸附层,和/或,
    所述阳极极片的一个表面或两个表面附接有所述电解液吸附层,和/或,
    所述隔离件的一个表面或两个表面附接有所述电解液吸附层。
  3. 如权利要求2所述的电极组件,其中,所述阴极极片、所述隔离件和所述阳极极片经过卷绕形成弯折区域,所述电解液吸附层的至少一部分设置在所述弯折区域内的所述阴极极片、所述阳极极片和所述隔离件中的至少一个的表面。
  4. 如权利要求3所述的电极组件,其中,所述电解液吸附层的至少一部分设置在弯折区域内的所述阴极极片的第一次弯折部位和/或第二次弯折部位,和/或,所述电解液吸附层的至少一部分设置在所述阳极极片的第一次弯折部位和/或第二次弯折部位,和/或,所述电解液吸附层的至少一部分设置在与所述阴极极片的第一次弯折部位相邻的所述隔离件的弯折部位和/或第二次弯折部位相邻的所述隔离件的弯折部位,和/或,所述电解液吸附层的至少一部分设置在与所述阳极极片的第一次弯折部位相邻的所述隔离件的弯折部位和/或第二次弯折部位相邻的所述隔离件的弯折部位。
  5. 如权利要求4所述的电极组件,其中,所述弯折区域包括覆盖弯折区域的中线的第一弯折分区和位于所述第一弯折分区至少一侧的第二弯折分区,所述弯折区域的中线与所述电极组件的卷绕轴线平行;其中,
    所述电解液吸附层处于所述第一弯折分区内的部分的孔隙率与所述电解液吸附层处于所述第二弯折分区内的部分的孔隙率不相同,其中,电解液吸附层的孔隙率为离子交换通道面积与电解液吸附层面积的比值。
  6. 如权利要求4所述的电极组件,其中,在所述弯折区域,沿着平行于所述电极组件的卷绕轴线的方向,所述离子交换通道在所述电解液吸附层上呈折线或曲线分布。
  7. 如权利要求1-6中任一项所述的电极组件,其中,所述电解液吸附层包括吸附基层,所述吸附基层上设有所述离子交换通道。
  8. 如权利要求7所述的电极组件,其中,所述吸附基层的材料包含丙烯酸-丙烯酸酯共聚物,丁二烯-苯乙烯共聚物,苯乙烯-丙烯酸共聚物,苯乙烯-丙烯酸酯共聚物,乙烯-醋酸乙烯共聚物,丙烯酸接枝聚乙烯,马来酸酐接枝聚乙烯,丙烯酸接枝聚丙烯,马来酸酐接枝聚丙烯,聚偏氟乙烯,羧甲基纤维素,聚酰亚胺,聚醚酰亚胺,聚苯二甲酸乙二酯,苯乙烯-异戊二烯-苯乙烯共聚物橡胶,乙烯-醋酸乙烯共聚物双酚A型环氧树脂,乙烯-醋酸乙烯共聚物双酚F型环氧树脂,甘油醚型环氧树脂,甘油酯型环氧树脂,硅氧型树脂,聚氨酯,苯乙烯-异戊二烯-苯乙烯共聚物以及以上物质的改性物中的一种。
  9. 如权利要求1-6中任一项所述的电极组件,其中,所述电解液吸附层包括吸附基层和支撑层,所述吸附基层的一侧与对应的阴极极片、阳极极片或隔离件附接,所述支撑层附接于所述吸附基层的另一侧,所述离子交换通道沿所述厚度方向贯穿所述支撑层和所述吸附基层。
  10. 如权利要求9所述的电极组件,其中,所述吸附基层的材料包含丙烯酸-丙烯酸酯共聚物,丁二烯-苯乙烯共聚物,苯乙烯-丙烯酸共聚物,苯乙烯-丙烯酸酯共聚物,乙烯-醋酸乙烯共聚物,丙烯酸接枝聚乙烯,马来酸酐接枝聚乙烯,丙烯酸接枝聚丙烯,马来酸酐接枝聚丙烯,聚偏氟乙烯,羧甲基纤维素,聚酰亚胺,聚醚酰亚胺,聚苯二甲酸乙二酯,苯乙烯-异戊二烯-苯乙烯共聚物橡胶,乙烯-醋酸乙烯共聚物双酚A型环氧树脂,乙烯-醋酸乙烯共聚物双酚F型环氧树脂,甘油醚型环氧树脂,甘油酯型环氧树脂,硅氧型树脂,聚氨酯,苯乙烯-异戊二烯-苯乙烯共聚物以及以上物质的改性物中的一种。
  11. 如权利要求9或10所述的电极组件,其中,所述支撑层的材料包含聚氯乙烯,聚乙烯,聚丙烯,聚偏氟乙烯,六氟丙烯-偏氟乙烯共聚物,四氟丙烯-偏氟乙烯共聚物,三氟氯丙烯-偏氟乙烯共聚物,聚对苯二甲酸乙二醇酯,聚酰亚胺,聚醚酰亚胺,聚碳酸酯,聚苯乙烯,聚苯硫醚,聚偏氟乙烯或其共聚物,聚芳酯,纤维,尼龙,无纺布以及以上物质的改性物中的一种。
  12. 如权利要求9-11中任一项所述的电极组件,其中,其中,所述支撑层的厚度≤50um,0<支撑层的孔隙率≤50%,和/或所述支撑层的拉伸模量≤100Mpa,其中所述支撑层的孔隙率为离子交换通道总面积与支撑层面积的比值。
  13. 一种电池单体,包括:壳体、电解液、盖板和至少一个如权利要求1-12任一项所述的电极组件,其中,
    所述壳体具有容纳腔和开口,所述电极组件和所述电解液容纳于所述容纳腔中;
    所述盖板用于封闭所述壳体的开口。
  14. 一种电池,包括箱体和至少一个如权利要求13所述的电池单体,所述电池单体 收容于所述箱体内。
  15. 一种用电装置,所述用电装置被配置为接收从如权利要求14所述的电池提供的电力。
PCT/CN2021/108058 2021-07-23 2021-07-23 电极组件、电池单体、电池和用电设备 WO2023000290A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/CN2021/108058 WO2023000290A1 (zh) 2021-07-23 2021-07-23 电极组件、电池单体、电池和用电设备
KR1020237006541A KR20230042352A (ko) 2021-07-23 2021-07-23 전극 어셈블리, 배터리 셀, 배터리 및 전기 장치
JP2023514103A JP2023542829A (ja) 2021-07-23 2021-07-23 電極アセンブリ、電池セル、電池および電力消費装置
CA3190877A CA3190877A1 (en) 2021-07-23 2021-07-23 Electrode assembly, battery cell, battery and electric device
EP21950539.3A EP4177996A1 (en) 2021-07-23 2021-07-23 Electrode assembly, battery cell, battery and electric device
CN202180073499.7A CN116636056A (zh) 2021-07-23 2021-07-23 电极组件、电池单体、电池和用电设备
US18/462,428 US20230420750A1 (en) 2021-07-23 2023-09-07 Electrode assembly, battery cell, battery, and power consuming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/108058 WO2023000290A1 (zh) 2021-07-23 2021-07-23 电极组件、电池单体、电池和用电设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/462,428 Continuation US20230420750A1 (en) 2021-07-23 2023-09-07 Electrode assembly, battery cell, battery, and power consuming device

Publications (1)

Publication Number Publication Date
WO2023000290A1 true WO2023000290A1 (zh) 2023-01-26

Family

ID=84980365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/108058 WO2023000290A1 (zh) 2021-07-23 2021-07-23 电极组件、电池单体、电池和用电设备

Country Status (7)

Country Link
US (1) US20230420750A1 (zh)
EP (1) EP4177996A1 (zh)
JP (1) JP2023542829A (zh)
KR (1) KR20230042352A (zh)
CN (1) CN116636056A (zh)
CA (1) CA3190877A1 (zh)
WO (1) WO2023000290A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1244952A (zh) * 1997-11-19 2000-02-16 三菱电机株式会社 锂离子二次电池和其制造方法
JP2013222510A (ja) * 2012-04-13 2013-10-28 Hitachi Ltd 二次電池用セパレータ、二次電池用セパレータを用いた二次電池
CN104393231A (zh) * 2013-05-07 2015-03-04 株式会社Lg化学 二次电池用电极、其制备、以及包含其的二次电池和线缆型二次电池
CN208352457U (zh) * 2018-06-12 2019-01-08 深圳市中美通用科技有限公司 一种弧形锂电池
CN209389153U (zh) * 2019-03-20 2019-09-13 三星(天津)电池有限公司 一种卷绕结构的锂离子电池
CN212810367U (zh) * 2020-08-21 2021-03-26 宁德时代新能源科技股份有限公司 电极组件、电池单体、电池和用电装置
CN112753112A (zh) * 2020-03-04 2021-05-04 宁德新能源科技有限公司 电化学装置和包含其的电子装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1244952A (zh) * 1997-11-19 2000-02-16 三菱电机株式会社 锂离子二次电池和其制造方法
JP2013222510A (ja) * 2012-04-13 2013-10-28 Hitachi Ltd 二次電池用セパレータ、二次電池用セパレータを用いた二次電池
CN104393231A (zh) * 2013-05-07 2015-03-04 株式会社Lg化学 二次电池用电极、其制备、以及包含其的二次电池和线缆型二次电池
CN208352457U (zh) * 2018-06-12 2019-01-08 深圳市中美通用科技有限公司 一种弧形锂电池
CN209389153U (zh) * 2019-03-20 2019-09-13 三星(天津)电池有限公司 一种卷绕结构的锂离子电池
CN112753112A (zh) * 2020-03-04 2021-05-04 宁德新能源科技有限公司 电化学装置和包含其的电子装置
CN212810367U (zh) * 2020-08-21 2021-03-26 宁德时代新能源科技股份有限公司 电极组件、电池单体、电池和用电装置

Also Published As

Publication number Publication date
JP2023542829A (ja) 2023-10-12
KR20230042352A (ko) 2023-03-28
CN116636056A (zh) 2023-08-22
EP4177996A1 (en) 2023-05-10
CA3190877A1 (en) 2023-01-26
US20230420750A1 (en) 2023-12-28

Similar Documents

Publication Publication Date Title
CN212810367U (zh) 电极组件、电池单体、电池和用电装置
US11843119B2 (en) Electrode assembly, battery cell, battery, and method and apparatus for manufacturing electrode assembly
KR101635336B1 (ko) 정극 활물질, 정극 재료, 정극 및 비수전해질 이차 전지
CN214477598U (zh) 电极组件、电池单体、电池和用电装置
KR20150119876A (ko) 정극 활물질, 정극 재료, 정극 및 비수전해질 이차 전지
KR20160130467A (ko) 전기 디바이스
WO2022222141A1 (zh) 电极组件、电池单体、电池及电极组件的制造方法和设备
US20230299302A1 (en) Electrode assembly and processing method and device therefor, battery cell, battery and power consuming device
CN220155580U (zh) 电池和用电设备
WO2023000290A1 (zh) 电极组件、电池单体、电池和用电设备
WO2023240482A1 (zh) 极片及制作方法、电极组件、二次电池和用电装置
US20220294022A1 (en) Secondary battery
CN109314277B (zh) 非水电解质二次电池
CN220774471U (zh) 一种电池单体、电池和用电装置
WO2024087196A1 (zh) 正极片、电极组件、二次电池及用电装置
CN115036456B (zh) 电极极片及电芯
CN219759653U (zh) 卷绕式电芯、电池和车辆
CN220439759U (zh) 电池和用电设备
US20230361429A1 (en) Electrode assembly, battery cell, battery, and electrical apparatus
WO2024082088A1 (zh) 电极组件、电池单体、电池及用电装置
KR20230028504A (ko) 전극 어셈블리, 그 가공 방법과 장치, 배터리 셀, 배터리 및 전기 설비
WO2024087190A1 (zh) 极片、电极组件、二次电池及用电装置
JP2023134238A (ja) 電池の製造方法
CN117916943A (zh) 电极组件、电池单体、电池及用电装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021950539

Country of ref document: EP

Effective date: 20230203

ENP Entry into the national phase

Ref document number: 20237006541

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3190877

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2023514103

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21950539

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180073499.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE