WO2023000274A1 - 柔性电池、电路板和电子设备 - Google Patents

柔性电池、电路板和电子设备 Download PDF

Info

Publication number
WO2023000274A1
WO2023000274A1 PCT/CN2021/107963 CN2021107963W WO2023000274A1 WO 2023000274 A1 WO2023000274 A1 WO 2023000274A1 CN 2021107963 W CN2021107963 W CN 2021107963W WO 2023000274 A1 WO2023000274 A1 WO 2023000274A1
Authority
WO
WIPO (PCT)
Prior art keywords
flexible
layer
crack detection
flexible packaging
peripheral area
Prior art date
Application number
PCT/CN2021/107963
Other languages
English (en)
French (fr)
Inventor
崔越
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202180001952.3A priority Critical patent/CN116235345A/zh
Priority to PCT/CN2021/107963 priority patent/WO2023000274A1/zh
Publication of WO2023000274A1 publication Critical patent/WO2023000274A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to the technical field of batteries, in particular, to a flexible battery, a circuit board and electronic equipment.
  • the edge of the flexible battery is prone to micro-cracks due to bending, which will lead to the failure of the flexible battery package, and the flexible battery is prone to failure problems such as leakage and swelling.
  • the size of microcracks is too small to be quickly observed by the naked eye.
  • the purpose of the present disclosure is to overcome the shortcomings of the above-mentioned prior art, and provide a flexible battery, a circuit board and an electronic device, which are convenient for detecting microcracks on the edge of the flexible battery.
  • a flexible battery comprising:
  • a flexible packaging structure having a battery area and a peripheral area surrounding the battery area; the battery area includes a plurality of rigid areas and a plurality of bending areas arranged alternately along a first direction;
  • a plurality of electric cores are provided in one-to-one correspondence with a plurality of the rigid regions; in the corresponding rigid regions, the electric cores are wrapped in the flexible packaging structure;
  • the crack detection wiring is located in the peripheral area and at least partly extends along the first direction; wherein, the crack detection wiring is wrapped in the flexible packaging structure.
  • the peripheral area includes a first peripheral area and a second peripheral area located on both sides of the battery area; the first peripheral area and the second peripheral area are both along the first peripheral area. extend in one direction;
  • the crack detection wiring includes a first sub-detection wiring and a second sub-detection wiring that are electrically connected to each other; the first sub-detection wiring runs through the first peripheral area along the first direction, and the first sub-detection wiring runs through the first peripheral area along the first direction.
  • the two sub-detection wires run through the second peripheral area along the first direction.
  • the peripheral area further includes a third peripheral area, and the third peripheral area connects the first peripheral area and the second peripheral area;
  • the crack detection routing further includes a third sub-detection routing that runs through the third peripheral area, and the third sub-detection routing connects the first sub-detection routing and the second sub-detection routing.
  • the thickness of the crack detection wiring is in the range of 0.3-1.5 microns.
  • the width of the crack detection trace is in the range of 0.2-1.0 mm.
  • the distance between the crack detection wiring and the edge of the flexible packaging structure is within a range of 0.5-1.5 millimeters.
  • the material of the crack detection wiring is a metal material.
  • the flexible packaging structure includes a first flexible packaging layer and a second flexible packaging layer stacked; the electric core is arranged on the first flexible packaging layer and the second flexible packaging between layers;
  • the crack detection wiring is located in the first flexible packaging layer.
  • the electric cores are arranged on one side of the first flexible packaging layer and arranged at intervals along the first direction;
  • the second flexible packaging layer includes a protruding portion covering the electric cores, and a concave portion located between adjacent electric cores.
  • the elastic modulus of the first flexible packaging layer is greater than the elastic modulus of the second flexible packaging layer.
  • the first flexible packaging layer is a steel-plastic film.
  • the second flexible packaging layer is an aluminum-plastic film.
  • the first flexible packaging layer includes a first heat-sealing layer, a first adhesive layer, a first metal layer, and a second adhesive layer arranged sequentially. Bonding layer and first protective layer;
  • the crack detection wiring is sandwiched between the second adhesive layer and the first protective layer.
  • the flexible battery further includes a flexible conductive layer, the flexible conductive layer is at least partially covered in the flexible packaging structure, and is electrically connected to each of the battery cells;
  • the flexible conductive layer has a binding area located outside the flexible packaging structure; the binding area has a crack detection pad electrically connected to the crack detection wiring.
  • a circuit board comprising:
  • a resistance detection circuit for being electrically connected to the crack detection wiring of the above-mentioned flexible battery, configured to be able to detect the resistance of the crack detection wiring;
  • a bootstrap circuit for being electrically connected to the crack detection wiring, is configured to receive a first voltage and output a second voltage to the crack detection wiring; the second voltage is higher than the first voltage.
  • the bootstrap circuit includes a boost subcircuit and a logic control subcircuit
  • the boost sub-circuit includes:
  • the first capacitor the two ends of which are respectively connected to the first node and the second node;
  • a first switch one end of which is electrically connected to the first node, and the other end is used to load a reference voltage
  • a second switch one end is electrically connected to the second node, and the other end is electrically connected to the input end;
  • a third switch one end is electrically connected to the input end, and the other end is electrically connected to the first node;
  • a fourth switch one end is electrically connected to the second node, and the other end is electrically connected to the output end;
  • a second capacitor one end of which is electrically connected to the output end, and the other end is used to load the reference voltage
  • the logic control subcircuit is configured to turn on the first switch and the second switch and turn off the third switch and the fourth switch during the charging phase; the logic control subcircuit is also configured to It is configured to turn off the first switch and the second switch and turn on the third switch and the fourth switch in a discharging phase.
  • an electronic device including the above-mentioned flexible battery.
  • FIG. 1 is a schematic cross-sectional structure diagram of a flexible battery in an embodiment of the present disclosure.
  • FIG. 2 is a schematic top view of a flexible packaging structure in an embodiment of the present disclosure.
  • FIG. 3 is a schematic top view of each cell in an embodiment of the present disclosure.
  • FIG. 4 is a schematic cross-sectional structure diagram of a first flexible packaging layer in an embodiment of the present disclosure.
  • FIG. 5 is a schematic cross-sectional structure diagram of a second flexible packaging layer in an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of the position of the crack detection wiring in an embodiment of the present disclosure.
  • FIG. 7 is a schematic cross-sectional structure diagram of a first flexible packaging layer in an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of the structure of the cooperation between the circuit board and the crack detection wiring in an embodiment of the present disclosure. Wherein, for clarity of illustration, in FIG. 8 , the crack detection pins and the crack detection pads are staggered and shown without overlapping.
  • FIG. 9 is a schematic diagram of an equivalent circuit of a boost sub-circuit in an embodiment of the present disclosure.
  • FIG. 10 is a schematic circuit diagram of a boost sub-circuit in a charging phase in an embodiment of the present disclosure.
  • FIG. 11 is a schematic circuit diagram of a boost sub-circuit in a discharge phase in an embodiment of the present disclosure.
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • Example embodiments may, however, be embodied in many forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of example embodiments to those skilled in the art.
  • the same reference numerals in the drawings denote the same or similar structures, and thus their detailed descriptions will be omitted.
  • the drawings are merely schematic illustrations of the present disclosure and are not necessarily drawn to scale.
  • the flexible battery includes a plurality of cells 100 arranged at intervals along a first direction H1 , and includes a flexible packaging structure FES covering each cell 100 .
  • the area corresponding to the battery cell 100 is the rigid area A1 (that is, the area overlapping with the battery cell 100 is the rigid area A1), and the area between the battery cells 100 is the bending area.
  • Area A2; each bending area A2 and each rigid area A1 form a battery area AA in which battery cells 100 are distributed.
  • the flexible encapsulation structure FES may further include a peripheral area BB surrounding the battery area AA, so as to achieve more effective packaging of each battery cell 100 .
  • the flexible encapsulation structure FES has a battery area AA and a peripheral area BB surrounding the battery area AA; the battery area AA includes a plurality of rigid areas A1 and a plurality of bends arranged alternately along the first direction H1 Area A2.
  • both ends of the battery area AA are rigid areas A1 .
  • Each battery cell 100 is arranged in one-to-one correspondence with each rigid area A1; the battery cell 100 is arranged in the corresponding rigid area A1, and is wrapped in the flexible packaging structure FES.
  • the battery cell 100 is disposed in the rigid area A1 and wrapped in the flexible encapsulation structure FES, and the flexible battery can be bent in the bending area A2.
  • This enables the flexible battery of the present disclosure to be bent between adjacent battery cells 100 , so that the flexible battery can realize flexible forms such as bending, folding or twisting.
  • the flexible packaging structure FES includes a stacked first flexible packaging layer F100 and a second flexible packaging layer F200; the electric core 100 is disposed between the first flexible packaging layer F100 and the second flexible packaging layer F200 .
  • both the first flexible packaging layer F100 and the second flexible packaging layer F200 are connected to and isolated from the battery cell 100 .
  • the first flexible encapsulation layer F100 and the second flexible encapsulation layer F200 are directly connected to enclose the rigid area A1.
  • the inner surfaces of the first flexible packaging layer F100 and the second flexible packaging layer F200 are both provided with heat-sealing layers.
  • both the first flexible packaging layer F100 and the second flexible packaging layer F200 are bonded to the electric core 100 to realize the fixing of the electric core 100 .
  • the first flexible packaging layer F100 and the second flexible packaging layer F200 are bonded to each other to realize the packaging of the electric core 100 .
  • the first flexible packaging layer F100 may be a flat packaging layer; the second flexible packaging layer F200 may be a concave-convex packaging layer.
  • the flexible battery has a flat side and a pitted side oppositely; the packaging layer of the flexible packaging structure FES on the flat side is the first flexible packaging layer F100 , and the packaging layer on the pitted side is the second flexible packaging layer F200 .
  • the first flexible packaging layer F100 flat packaging layer
  • each battery cell 100 is located on one side of the plane.
  • the second flexible packaging layer F200 (concave-convex packaging layer) may include a protruding portion F301 covering the electric core 100 , and a concave portion F302 between adjacent electric cores 100 .
  • the shape of the second flexible packaging layer F200 can fluctuate along with the battery cell 100 .
  • the second flexible packaging layer F200 covers the surface of the electric core 100 (close to or away from the surface of the first flexible packaging layer F100) and protrudes from the surface of the first flexible packaging layer F100, which is the second flexible packaging Protruding portion F301 of layer F200.
  • the second flexible packaging layer F200 is between the adjacent cells 100 and directly covers the surface of the first flexible packaging layer F100, thus serving as a concave portion F302 of the second flexible packaging layer F200.
  • the protruding portion F301 of the second flexible encapsulation layer F200 also covers the side surfaces of the cells (surfaces where the cells are close to or far away from each other).
  • the protruding portion F301 of the second flexible encapsulation layer F200 also covers the end faces of the cell (surfaces at both ends in the length direction of the cell).
  • first flexible packaging layer F100 and the second flexible packaging layer F200 may both be concave-convex packaging layers.
  • the first flexible packaging layer F100 includes a first heat-sealing layer F101 , a first metal layer F103 and a first protective layer F105 which are sequentially stacked.
  • the first heat-sealing layer F101 is used to fix the first metal layer F103 and is used for heat-sealing packaging.
  • the first metal layer F103 is used to isolate water and oxygen.
  • the first protection layer F105 is used to provide protection for the first flexible packaging layer F100.
  • a first adhesive layer F102 is provided between the first heat-sealing layer F101 and the first metal layer F103; a second adhesive layer F104 is provided between the first metal layer F103 and the first protective layer F105.
  • the first heat-sealing layer F101, the first metal layer F103 and the first protective layer F105 are connected by two adhesive layers.
  • the materials of the first adhesive layer F102 and the second adhesive layer F104 may be different.
  • the materials of the first adhesive layer F102 and the second adhesive layer F104 may also be the same.
  • the first heat-sealing layer F101 may be a polypropylene layer, especially a cast polypropylene layer.
  • the material of the first adhesive layer F102 may be modified polypropylene.
  • the material of the second adhesive layer F104 may be polyester or polyurethane.
  • the first protective layer F105 may be a nylon layer.
  • the thickness of the first flexible encapsulation layer F100 may be in the range of 40-150 microns, such as in the range of 80-120 microns, and for example in the range of 45-55 microns.
  • the second flexible packaging layer F200 includes a second heat-sealing layer F201 , a second metal layer F203 and a second protective layer F205 which are sequentially stacked.
  • the second heat-sealing layer F201 is used for fixing the second metal layer F203 and is used for heat-sealing packaging.
  • the second metal layer F203 is used to isolate water and oxygen.
  • the second protection layer F205 is used to protect the second flexible packaging layer F200.
  • a third adhesive layer F202 is provided between the second heat-sealing layer F201 and the second metal layer F203; a fourth adhesive layer F204 is provided between the second metal layer F203 and the second protective layer F205.
  • the second heat-sealing layer F201, the second metal layer F203 and the second protective layer F205 are connected by two adhesive layers.
  • the materials of the third adhesive layer F202 and the fourth adhesive layer F204 may be different. Certainly, in other embodiments of the present disclosure, the materials of the third adhesive layer F202 and the fourth adhesive layer F204 may also be the same.
  • the second heat-sealing layer F201 may be a polypropylene layer, especially a cast polypropylene layer.
  • the material of the third adhesive layer F202 may be modified polypropylene.
  • the material of the fourth adhesive layer F204 may be polyester or polyurethane.
  • the second protective layer F205 may be a nylon layer.
  • the thickness of the second flexible encapsulation layer F200 may be in the range of 40-150 microns, such as in the range of 80-120 microns, and for example in the range of 45-55 microns.
  • the cell 100 includes a cell body 101 and positive tabs 102 and negative tabs 103 located at both ends of the cell body 101, a plurality of cell bodies 101 are arranged in sequence along the first direction H1, and two phases There is a predetermined gap between adjacent battery cells 100 .
  • the flexible battery may further include a flexible conductive layer 200 , and the flexible conductive layer 200 is electrically connected to each battery cell 100 .
  • the portion of the flexible conductive layer 200 electrically connected to each battery cell 100 may be wrapped in a flexible packaging structure.
  • At least a part of the flexible conductive layer 200 may protrude from the flexible packaging structure to be electrically connected to an external circuit (such as a circuit board).
  • the flexible battery is electrically connected to an external circuit through the flexible conductive layer 200 for charging or discharging.
  • the flexible conductive layer 200 is at least partially interposed between the first flexible packaging layer F100 and the second flexible packaging layer F200 .
  • the flexible conductive layer 200 protrudes from the flexible packaging structure, and its end (the end away from the flexible packaging structure) may be provided with a binding area.
  • the flexible conductive layer 200 may be provided with bonding pads, and these bonding pads may include battery pads electrically connected to external circuits.
  • An external circuit such as an external flexible circuit board, can be electrically connected to the flexible conductive layer 200 through the battery pad, so as to receive electric energy provided by the flexible battery or charge the flexible battery.
  • the flexible conductive layer 200 includes a first flexible conductive strip 201 and a second flexible conductive strip 202 .
  • the first flexible conductive strip 201 is electrically connected to the positive tab 102 of each battery cell 100 , so that the positive poles of each battery cell 100 are connected in parallel.
  • the second flexible conductive strip 202 is electrically connected to the negative tab 103 of each battery cell 100 , so that the negative electrodes of each battery cell 100 are connected in parallel.
  • the battery cell can be a lithium battery structure.
  • the cell has a first separator, a negative electrode sheet, a second separator, a positive electrode sheet, a negative electrode tab on the negative electrode sheet, and a positive electrode tab on the positive electrode sheet that are stacked in sequence.
  • the pole piece (positive electrode piece, negative electrode piece) and diaphragm (first diaphragm, second diaphragm) of the battery cell can be wound to form a rigid energy storage unit.
  • the positive tab 102 and the negative tab 103 can be bent to the surface of the cell 100 (close to or away from the surface of the first flexible packaging layer F100 ), so as to be electrically connected to the flexible conductive layer 200 .
  • the flexible conductive layer 200 is disposed between the first flexible packaging layer F100 and the electric core 100 , and extends out of the flexible packaging structure along the first direction H1 .
  • the distance between two adjacent electric cores (the size of the interval between two adjacent electric cores in the first direction) is not less than the thickness of the electric core (the upper and lower two sides of the electric core). dimensions between surfaces).
  • the flexible battery can maintain greater flexibility.
  • the distance between two adjacent battery cells may also be smaller than the thickness of the battery cores.
  • the microcrack defect is often difficult to detect, especially cannot be quickly observed by naked eyes. This will lead to certain safety hazards in flexible batteries.
  • the flexible battery in order to efficiently detect microcracks at the edge of the flexible packaging structure FES, the flexible battery may be provided with a crack detection trace PCD.
  • the crack detection wiring PCD may be located in the peripheral area BB and at least partly extend along the first direction H1; wherein, the crack detection wiring PCD is wrapped in the flexible packaging structure FES.
  • the micro crack when a microcrack occurs at the position of the crack detection line PCD of the flexible packaging structure FES, the micro crack will cause damage to the crack detection line PCD, for example, the resistance of the crack detection line PCD at the micro crack will increase. (Partial fracture or thinning, etc. lead to increased resistance) or fracture. Therefore, it is possible to determine whether there is a microcrack by detecting the electrical state of the PCD (for example, the magnitude of the resistance or whether it is open) by detecting the crack.
  • the crack detection wire PCD is covered and protected by the flexible encapsulation structure FES.
  • the electrical state of the crack detection wiring PCD is consistent with the state of the flexible packaging structure FES in the peripheral area BB, which improves the accuracy of crack detection.
  • the crack detection wiring PCD is arranged outside the flexible packaging structure FES, when non-microcrack factors cause the crack detection wiring PCD to break, for example, when the crack detection wiring PCD is corroded or scratched, the electrical properties of the crack detection wiring PCD The state change is not consistent with the state of the flexible packaging structure FES; this is not conducive to accurate detection of microcracks in the flexible packaging structure FES.
  • the crack detection wiring PCD may be located in the first flexible packaging layer F100 .
  • the first flexible packaging layer F100 can provide protection for the crack detection wiring PCD, preventing the crack detection wiring PCD from being exposed and being scratched or corroded.
  • the crack detection wiring PCD may be located between the second adhesive layer F104 and the first protection layer F105 .
  • the crack detection line PCD can be protected by the first protective layer F105 and insulated from the first metal layer F103 by the second adhesive layer F104 .
  • the first metal layer F103 and other film layers are arranged between the crack detection line PCD and the first heat-sealing layer F101, which avoids the influence of the first heat-sealing layer F101 on the crack detection line PCD due to melting deformation during heat sealing .
  • the ends of the crack detection wiring PCD can be electrically connected to crack detection pads (Pad1, Pad2), and the crack detection pads (Pad1, Pad2) are used to communicate with external circuits (such as circuit boards). 300) to be electrically connected so that the external circuit detects whether the crack detection line PCD is disconnected or damaged.
  • the crack detection pads Pad1 , Pad2
  • the crack detection pad may be directly connected to the end of the crack detection trace PCD.
  • the crack detection pad may not be directly connected to the crack detection wiring, but may be transferred through other conductive wiring; that is, the crack detection pad and the crack detection wiring They can be connected indirectly through other conductive traces.
  • the crack detection traces PCD may converge toward the flexible conductive layer 200 and extend toward the bonding area; the crack detection pad may be disposed in the bonding area. In this way, the various pads connected to the flexible battery and the outside can be collected together, which improves the degree of integration and facilitates the connection with the external circuit.
  • the crack detection pads may be arranged in the bonding area, and the crack detection traces may not converge into the bonding area, but connect to the bonding area through other conductive traces connected to the bonding area. The crack detection pad is electrically connected.
  • the peripheral area BB may include a first peripheral area B1 , a third peripheral area B3 , a second peripheral area B2 , and a fourth peripheral area B4 connected end to end in sequence.
  • the first peripheral area B1 and the second peripheral area B2 are located on two sides of the battery area AA, and both extend along the first direction H1.
  • the third peripheral area B3 and the fourth peripheral area B4 are located on two sides of the battery area AA, and both extend along the second direction H2.
  • the second direction H2 is the extending direction of the battery cell 100 . Further, the first direction H1 is perpendicular to the second direction H2.
  • the crack detection wiring PCD includes a first sub-detection wiring PCD1 and a second sub-detection wiring PCD2;
  • the direction H1 runs through the first peripheral area B1
  • the second sub-detection wiring PCD2 runs through the second peripheral area B2 along the first direction H1.
  • the crack detection line PCD runs through the first peripheral region B1 and the second peripheral region B2 along the first direction H1 , so microcracks in the first peripheral region B1 and the second peripheral region B2 can be effectively detected.
  • the crack detection wiring PCD further includes a third sub-detection wiring PCD3 passing through the third peripheral area B3, and the third sub-detection wiring PCD3 connects the first sub-detection wiring PCD1 and the second sub-detection wiring PCD2. In this way, the crack detection line PCD can also detect micro cracks located in the third peripheral region B3.
  • the crack detection wiring PCD may further include a fourth detection sub-wiring located in the fourth peripheral area B4, so as to detect micro cracks located in the fourth peripheral area B4.
  • the thickness of the crack detection wire PCD is in the range of 0.3-1.5 microns.
  • the required crack detection line PCD can be formed by printing, vapor deposition, magnetron sputtering and other methods.
  • the material of the crack detection trace PCD may be a metal material, which may include one metal layer or multiple stacked metal layers.
  • the crack detection line PCD includes a titanium layer, an aluminum layer and a titanium layer that are sequentially stacked.
  • the PCD of the crack detection line may also use other conductive materials, such as organic conductive materials or conductive metal oxides.
  • the width of the PCD for crack detection is in the range of 0.2-1.0 mm; further, the width of the PCD for crack detection is in the range of 0.4-0.7 mm.
  • the crack detection trace PCD has a width of 0.5 mm.
  • the distance between the crack detection trace PCD and the edge of the flexible packaging structure FES is within a range of 0.5-1.5 millimeters.
  • the crack detection trace PCD is set close to the edge of the flexible packaging structure FES, so as to timely reflect the micro-cracks at the edge of the flexible packaging structure FES.
  • the distance between the crack detection trace PCD and the edge of the flexible packaging structure FES is in the range of 0.8-1.0 mm.
  • the distance between the crack detection trace PCD and the edge of the flexible packaging structure FES is 0.93 millimeters.
  • the present disclosure may also provide an external circuit bound and connected to the flexible battery, for example, a circuit board.
  • the circuit board 300 includes a resistance detection circuit 310 .
  • the resistance detection circuit 310 is used to be electrically connected with the crack detection wiring PCD of the flexible battery, and is configured to be able to detect the resistance of the crack detection wiring PCD. In this way, it can be judged whether there are microcracks on the edge of the flexible battery according to the resistance of the crack detection wiring PCD.
  • the circuit board 300 may further include a bootstrap circuit 320 .
  • the booster circuit 320 is used to be electrically connected to the crack detection wiring PCD, and is configured to receive the first voltage and output a second voltage to the crack detection wiring; the second voltage is higher than the first voltage.
  • the bootstrap circuit 320 can output a higher voltage signal to the crack detection line to accelerate the resistance change of the crack detection line PCD at the micro crack, thereby improving the sensitivity of micro crack detection.
  • the crack detection trace PCD at this position will become fragile and the resistance will increase; when the high-voltage signal passes through, the heat generated by the crack detection trace PCD at this position will higher than other positions, which in turn causes the crack detection line PCD to accelerate fracture at this position.
  • the bootstrap circuit 320 can generate a high-voltage pulse signal with a peak voltage of the second voltage, and then generate a detection current on the crack detection wiring PCD or burn the crack detection wiring PCD at the crack.
  • the circuit board 300 may further include crack detection pins ( Pin1 , Pin2 ) for bonded connection with the crack detection pads ( Pad1 , PAD2 ).
  • the circuit board 300 can be electrically connected to the crack detection line PCD, and then can detect the resistance of the crack detection line PCD, and judge whether the edge of the flexible battery has micro cracks according to the resistance of the crack detection line PCD.
  • the bootstrap circuit 320 includes a boost sub-circuit 321 and a logic control sub-circuit 322 .
  • the boost sub-circuit 321 includes:
  • the first capacitor C1 the two ends of which are respectively connected to the first node N1 and the second node N2;
  • the first switch S1, one end is electrically connected to the first node N1, and the other end is used to load the reference voltage GND;
  • the second switch S2 one end is electrically connected to the second node N2, and the other end is connected to the input terminal Vin for applying the first voltage;
  • the third switch S3, one end is used to load the first voltage, and the other end is electrically connected to the first node N1;
  • the fourth switch S4 one end is connected to the second node N2, and the other end is connected to the output terminal Vout for outputting the second voltage;
  • One end of the second capacitor C2 is used to load the reference voltage GND, and the other end is connected to the output terminal Vout.
  • the logic control sub-circuit 322 is used to control the on or off of the first switch S1 , the second switch S2 , the third switch S3 and the fourth switch S4 . Specifically, the logic control subcircuit is configured to turn on the first switch S1 and the second switch S2 and turn off the third switch S3 and the fourth switch S4 during the charging phase. The logic control sub-circuit 322 is further configured to turn off the first switch S1 and the second switch S2 and turn on the third switch S3 and the fourth switch S4 during the discharge phase.
  • the working process of the bootstrap circuit 320 is as follows:
  • the input terminal Vin is loaded with the first voltage V1.
  • the first switch S1 and the second switch S2 are turned on, and the third switch S3 and the fourth switch S4 are turned off.
  • the voltage of the first node N1 is 0V
  • the voltage of the second node N2 is the first voltage V1.
  • the potential difference between the second node N2 and the first node N1 is equal to the first voltage V1.
  • the input terminal Vin is loaded with the first voltage V1.
  • the first switch S1 and the second switch S2 are closed, while the third switch S3 and the fourth switch S4 are open.
  • the voltage of the first node N1 is equal to the first voltage V1
  • the voltage of the second node N2 is bootstrapped to 2V1.
  • the voltage of the second node N2 is output through the output terminal Vout as an output voltage.
  • the voltage output by the output terminal Vout is the second voltage, and its magnitude is 2V1.
  • the risk of microcracks can be reduced by adjusting the FES of the flexible packaging structure.
  • the first flexible packaging layer F100 may be a flat packaging layer.
  • the second flexible packaging layer F200 may be a concave-convex packaging layer, which may include a protruding portion F301 covering the electric core 100 and a concave portion F302 between adjacent electric cores 100 . In this way, the flexible battery can be bent toward the concave-convex side.
  • the elastic modulus of the first flexible packaging layer F100 may be greater than the elastic modulus of the second flexible packaging layer F200.
  • the neutral plane of the flexible packaging structure FES during bending can be adjusted so that the neutral plane is closer to the outer surface of the first flexible packaging layer F100 with a large elastic modulus .
  • most of the flexible packaging structure FES is located on the side of the neutral layer close to the electric core 100 and bears compressive stress, and a small part of the flexible packaging structure FES is located on the side of the neutral layer away from the electric core 100 and bears compressive stress. tensile stress.
  • the thickness of this part is small, so its tensile deformation is small.
  • the flexible packaging structure FES has a stronger resistance to bending, and is less prone to microcracks due to bending. This improves the bending resistance properties of the flexible battery.
  • the present disclosure conducted a bending reliability test (50,000 times of bending) on three different flexible batteries.
  • the first flexible packaging layer F100 uses a flexible packaging layer with a high elastic modulus
  • the second flexible packaging layer F200 also uses a flexible packaging layer with a high elastic modulus.
  • the first flexible packaging layer F100 uses a flexible packaging layer with a low elastic modulus
  • the second flexible packaging layer F200 also uses a flexible packaging layer with a low elastic modulus.
  • the first flexible packaging layer F100 uses a flexible packaging layer with a high elastic modulus
  • the second flexible packaging layer F200 uses a flexible packaging layer with a low elastic modulus.
  • the modulus of elasticity of the first metal layer may be greater than that of the second metal layer, so that the modulus of elasticity of the first flexible packaging layer F100 is greater than that of the second flexible packaging layer F200 .
  • the elastic modulus of the first flexible packaging layer F100 is 6-11 times of the elastic modulus of the second flexible packaging layer F200.
  • the neutral plane of the flexible packaging structure FES can be effectively adjusted, thereby improving the bending reliability of the flexible battery.
  • the elastic modulus of the first flexible packaging layer F100 is in the range of 180GPa ⁇ 220GPa.
  • the first flexible packaging layer F100 is a steel-plastic film.
  • the first metal layer F103 may be a stainless steel layer, such as 304 stainless steel. It can be understood that the first flexible packaging layer F100 can also be other flexible packaging layers with high elastic modulus.
  • the Poisson's ratio of the first flexible packaging layer F100 may be between 0.35-0.45, for example, between 0.39-0.41.
  • the thickness of the first flexible encapsulation layer F100 may be between 40-60 microns, for example, between 45-55 microns.
  • the elastic modulus of the second flexible encapsulation layer F200 is in the range of 20GPa ⁇ 30GPa.
  • the second flexible packaging layer F200 is an aluminum-plastic film.
  • the second metal layer F203 may be an aluminum foil layer. It can be understood that the second flexible encapsulation layer F200 may also be other flexible encapsulation layers with low elastic modulus.
  • the Poisson's ratio of the second flexible packaging layer F200 may be between 0.35-0.45, for example, between 0.39-0.41.
  • the thickness of the second flexible encapsulation layer F200 may be between 40-60 microns, for example, between 45-55 microns.
  • Embodiments of the present disclosure also provide an electronic device, which includes any flexible battery described in the above flexible battery embodiments.
  • the electronic device may be a smart watch, a smart phone or other types of electronic devices; especially, the electronic device may be a flexible and portable electronic device, such as a flexible wearable device. Since the electronic device has any one of the flexible batteries described in the above flexible battery implementation manners, it has the same beneficial effect, and the present disclosure will not repeat them here.
  • the electronic device further includes a display panel, and the flexible battery is used to supply power to the display panel.
  • the display panel is a flexible display panel.
  • the electronic device adopts a flexible battery and a flexible display panel, so that the electronic device can be bent as a whole.

Abstract

一种柔性电池、电路板和电子设备,属于电池技术领域。所述柔性电池包括柔性封装结构(FES)、多个电芯(100)和裂纹检测走线(PCD)。其中,柔性封装结构(FES)具有电池区(AA)和围绕所述电池区(AA)的外围区(BB);所述电池区(AA)包括沿第一方向(H1)交替设置的多个刚性区(A1)和多个弯折区(A2)。多个电芯(100)与多个所述刚性区(A1)一一对应设置;在对应的所述刚性区(A1),所述电芯(100)被包覆于所述柔性封装结构(FES)内。裂纹检测走线(PCD)位于所述外围区(BB)且至少部分沿所述第一方向(H1)延伸;其中,所述裂纹检测走线(PCD)被包覆于所述柔性封装结构(FES)内。所述柔性电池便于检测柔性电池边缘的微裂纹。

Description

柔性电池、电路板和电子设备 技术领域
本公开涉及电池技术领域,具体而言,涉及一种柔性电池、电路板和电子设备。
背景技术
柔性电池的边缘位置容易因弯折而产生微裂纹,这会导致柔性电池封装失效,柔性电池容易出现漏液、膨胀鼓包等失效问题。然而,微裂纹的尺寸非常小,无法通过肉眼迅速观察。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本公开的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
公开内容
本公开的目的在于克服上述现有技术的不足,提供一种柔性电池、电路板和电子设备,便于检测柔性电池边缘的微裂纹。
根据本公开的第一个方面,提供一种柔性电池,包括:
柔性封装结构,具有电池区和围绕所述电池区的外围区;所述电池区包括沿第一方向交替设置的多个刚性区和多个弯折区;
多个电芯,与多个所述刚性区一一对应设置;在对应的所述刚性区,所述电芯被包覆于所述柔性封装结构内;
裂纹检测走线,位于所述外围区且至少部分沿所述第一方向延伸;其中,所述裂纹检测走线被包覆于所述柔性封装结构内。
根据本公开的一种实施方式,所述外围区包括位于所述电池区两侧的第一外围区和第二外围区;所述第一外围区和所述第二外围区均沿所述第一方向延伸;
所述裂纹检测走线包括相互电连接的第一子检测走线和第二子检测走线;所述第一子检测走线沿所述第一方向贯穿所述第一外围区,所述第二子检测走线沿所述第一方向贯穿所述第二外围区。
根据本公开的一种实施方式,所述外围区还包括第三外围区,所述第三外围区连接所述第一外围区和所述第二外围区;
所述裂纹检测走线还包括贯穿所述第三外围区的第三子检测走线,所述第三子检测走线连接所述第一子检测走线和所述第二子检测走线。
根据本公开的一种实施方式,所述裂纹检测走线的厚度在0.3~1.5微米范围内。
根据本公开的一种实施方式,所述裂纹检测走线的宽度在0.2~1.0毫米范围内。
根据本公开的一种实施方式,所述裂纹检测走线与所述柔性封装结构的边缘的距离在0.5~1.5毫米范围内。
根据本公开的一种实施方式,所述裂纹检测走线的材料为金属材料。
根据本公开的一种实施方式,所述柔性封装结构包括层叠设置的第一柔性封装层和第二柔性封装层;所述电芯设置于所述第一柔性封装层和所述第二柔性封装层之间;
所述裂纹检测走线位于所述第一柔性封装层内。
根据本公开的一种实施方式,所述电芯设于所述第一柔性封装层的一侧且沿所述第一方向间隔设置;
所述第二柔性封装层包括覆盖所述电芯的凸出部分,以及包括位于相邻所述电芯之间的凹陷部分。
根据本公开的一种实施方式,所述第一柔性封装层的弹性模量大于所述第二柔性封装层的弹性模量。
根据本公开的一种实施方式,所述第一柔性封装层为钢塑膜。
根据本公开的一种实施方式,所述第二柔性封装层为铝塑膜。
根据本公开的一种实施方式,沿远离所述电芯的方向,所述第一柔性封装层包括依次层叠设置的第一热封层、第一粘接层、第一金属层、第二粘接层和第一保护层;
所述裂纹检测走线夹设于所述第二粘接层和所述第一保护层之间。
根据本公开的一种实施方式,所述柔性电池还包括柔性导电层,所述柔性导电层至少部分包覆于所述柔性封装结构内,且与各个所述电芯电连接;
所述柔性导电层具有位于所述柔性封装结构外的绑定区;所述绑定区具有与所述裂纹检测走线电连接的裂纹检测焊盘。
根据本公开的第二个方面,提供一种电路板,包括:
电阻检测电路,用于与上述的柔性电池的所述裂纹检测走线电连接,被配置为能够检测所述裂纹检测走线的电阻;
自举电路,用于与所述裂纹检测走线电连接,被配置为接收第一电压并输出第二电压至所述裂纹检测走线;所述第二电压高于所述第一电压。
根据本公开的一种实施方式,所述自举电路包括升压子电路和逻辑控制子电路;
所述升压子电路包括:
第一电容,两端分别连接第一节点和第二节点;
第一开关,一端与所述第一节点电连接,另一端用于加载参考电压;
第二开关,一端与所述第二节点电连接,另一端与输入端电连接;
第三开关,一端与所述输入端电连接,另一端与所述第一节点电连接;
第四开关,一端与所述第二节点电连接,另一端与输出端电连接;
第二电容,一端与所述输出端电连接,另一端用于加载所述参考电压;
所述逻辑控制子电路被配置为,在充电阶段使得所述第一开关和所述第二开关导通,且使得所述第三开关和所述第四开关截止;所述逻辑控制子电路还被配置为,在放电阶段使得所述第一开关和所述第二开关截止,且使得所述第三开关和所述第四开关导通。
根据本公开的第三个方面,提供一种电子设备,包括上述的柔性电池。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开一种实施方式中的柔性电池的剖视结构示意图。
图2为本公开一种实施方式中的柔性封装结构的俯视示意图。
图3为本公开一种实施方式中的各个电芯的俯视示意图。
图4为本公开一种实施方式中的第一柔性封装层的剖视结构示意图。
图5为本公开一种实施方式中的第二柔性封装层的剖视结构示意图。
图6为本公开的一种实施方式中,裂纹检测走线的位置示意图。
图7为本公开的一种实施方式中,第一柔性封装层的剖视结构示意图。
图8为本公开的一种实施方式中,电路板与裂纹检测走线配合的结构示意图。其中,为了示意清楚,在图8中裂纹检测引脚和裂纹检测焊盘错开示意而没有交叠。
图9为本公开的一种实施方式中,升压子电路的等效电路示意图。
图10为本公开的一种实施方式中,升压子电路的在充电阶段的电路示意图。
图11为本公开的一种实施方式中,升压子电路的在放电阶段的电路示意图。
附图标记说明:
100、电芯;101、电芯主体;102、正极耳;103、负极耳;200、柔性导电层;201、第一柔性导电带;202、第二柔性导电带;FES、柔性封装结构;F100、第一柔性封装层;F200、第二柔性封装层;F301、凸出部分;F302、凹陷部分;F101、第一热封层;F102、第一粘接层;F103、第一金属层;F104、第二粘接层;F105、第一保护层;F201、第二热封层;F202、第三粘接层;F203、第二金属层;F204、第四粘接层;F205、第二保护层;AA、电池区;A1、刚性区;A2、弯折区;BB、外围区;B1、第一外围区;B2、第二外围区;B3、第三外围区;B4、第四外围区;PCD、裂纹检测走线;PCD1、第一子检测走线;PCD2、第二子检测走线;PCD3、第三子检测走线;H1、第一方向;H2、第二方向。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本公开将全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。此外,附图仅为本公开的示意性图解,并非一定是按比例绘制。
虽然本说明书中使用相对性的用语,例如“上”“下”来描述图标的一个组件对于另一组件的相对关系,但是这些术语用于本说明书中仅出于方便,例如根据附图中所述的示例的方向。能理解的是,如果将图标的装置翻转使其上下颠倒,则所叙述在“上”的组件将会成为在“下”的组件。当某结构在其它结构“上”时,有可能是指某结构一体形成于其它结构上,或指某结构“直接”设置在其它结构上,或指某结构通过另一结构“间接”设置在其它结构上。
用语“一个”、“一”、“该”和“至少一个”用以表示存在一个或多个要素/组成部分/等;用语“包括”和“具有”用以表示开放式的包括在内的意思并且是指除了列出的要素/组成部分/等之外还可存在另外的要素/组成部分/等;用语“第一”和“第二”等仅作为标记使用,不是对其对象的数量限制。
本公开提供一种柔性电池,参见图1,柔性电池包括多个沿第一方向H1间隔排列的电芯100,以及包括包覆各个电芯100的柔性封装结构FES。
参见图1和图2,在柔性封装结构FES上,电芯100对应的区域为刚性区A1(即与电芯100交叠的区域为刚性区A1),电芯100之间的区域为弯折区A2;各个弯折区A2和各个刚性区A1组成分布有电芯100的电池区AA。柔性封装结构FES还可以包括围绕电池区AA的外围区BB,以便实现对各个电芯100的更有效的封装。换言之,在本公开的柔性电池中,柔性封装结构FES具有电池区AA和围绕电池区AA的外围区BB;电池区AA包括沿第一方向H1交替设置的多个刚性区A1和多个弯折区A2。其中,参见图2,电池区AA的两端均为刚性区A1。各个电芯100与各个刚性区A1一一对应设置;电芯100设置在对应的刚性区A1,且被 包覆于柔性封装结构FES内。如此,本公开的柔性电池中,电芯100设置于刚性区A1且被包覆于柔性封装结构FES内,柔性电池可以在弯折区A2进行弯折。这使得,本公开的柔性电池可以在相邻电芯100之间弯折,以使得柔性电池能够实现弯折、折叠或者扭曲等柔性形态。
可选地,参见图1,柔性封装结构FES包括层叠设置的第一柔性封装层F100和第二柔性封装层F200;电芯100设置于第一柔性封装层F100和第二柔性封装层F200之间。在刚性区A1,第一柔性封装层F100和第二柔性封装层F200均与电芯100连接且被电芯100隔离。在外围区BB和弯折区A2,第一柔性封装层F100和第二柔性封装层F200直接连接以封闭刚性区A1。进一步地,第一柔性封装层F100和第二柔性封装层F200的内侧表面,均设置有热封层。如此,在刚性区A1,第一柔性封装层F100和第二柔性封装层F200均与电芯100粘接以实现对电芯100的固定。在外围区BB和弯折区A2,第一柔性封装层F100和第二柔性封装层F200相互粘接以实现对对电芯100的封装。
在一些实施方式中,参见图1,第一柔性封装层F100可以为一平坦封装层;第二柔性封装层F200可以为凹凸封装层。如此,柔性电池具有相对设置的平坦侧和冲坑侧;柔性封装结构FES在平坦侧的封装层为第一柔性封装层F100,在冲坑侧的封装层为第二柔性封装层F200。柔性电池处于平展状态时,第一柔性封装层F100(平坦封装层)可以平铺为一平面,各个电芯100位于该平面的一侧。换言之,在平展状态下,第一柔性封装层F100在弯折区A2的部分,可以不向电芯100之间的间隙中弯折。第二柔性封装层F200(凹凸封装层)可以包括覆盖电芯100的凸出部分F301,以及位于相邻电芯100之间的凹陷部分F302。换言之,第二柔性封装层F200的形貌可以随着电芯100而起伏。在刚性区A1,第二柔性封装层F200覆盖电芯100的表面(靠近或者背离第一柔性封装层F100的表面)而凸出于第一柔性封装层F100的表面,该部分为第二柔性封装层F200的凸出部分F301。在弯折区A2,第二柔性封装层F200在相邻电芯100之间且直接覆盖在第一柔性封装层F100的表面上,因此作为第二柔性封装层F200的凹陷部分F302。进一步地,参见图1,第二柔性封装层F200的凸出部分F301还覆盖电芯的侧面(电芯之间相互靠近或者远离的面)。 在更进一步的方案中,第二柔性封装层F200的凸出部分F301还覆盖电芯的端面(电芯长度方向的两端的面)。
当然的,在本公开的其他实施方式中,第一柔性封装层F100和第二柔性封装层F200也可以均为凹凸封装层。
可选地,参见图4,沿远离电芯100的方向,第一柔性封装层F100包括依次层叠设置的第一热封层F101、第一金属层F103和第一保护层F105。其中,第一热封层F101用于固定第一金属层F103,且用于热封封装。第一金属层F103用于隔绝水氧。第一保护层F105用于对第一柔性封装层F100提供保护。
进一步地,第一热封层F101和第一金属层F103之间设置有第一粘接层F102;第一金属层F103和第一保护层F105之间设置有第二粘接层F104。如此,第一热封层F101、第一金属层F103和第一保护层F105之间通过两层粘接层连接。更进一步地,第一粘接层F102和第二粘接层F104的材料可以不同。当然的,在本公开的其他实施方式中,第一粘接层F102和第二粘接层F104的材料也可以相同。
在本公开的一种实施方式中,第一热封层F101可以为聚丙烯层,尤其是可以为流延聚丙烯层。
在本公开的一种实施方式中,第一粘接层F102的材料可以为改性聚丙烯。
在本公开的一种实施方式中,第二粘接层F104的材料可以为聚酯或者聚氨酯。
在本公开的一种实施方式中,第一保护层F105可以为尼龙层。
可选地,第一柔性封装层F100的厚度可以在40~150微米范围内,例如在80~120微米范围内,再例如在45~55微米范围内。
可选地,参见图5,沿远离电芯100的方向,第二柔性封装层F200包括依次层叠设置的第二热封层F201、第二金属层F203和第二保护层F205。其中,第二热封层F201用于固定第二金属层F203,且用于热封封装。第二金属层F203用于隔绝水氧。第二保护层F205用于对第二柔性封装层F200提供保护。
进一步地,第二热封层F201和第二金属层F203之间设置有第三粘接 层F202;第二金属层F203和第二保护层F205之间设置有第四粘接层F204。如此,第二热封层F201、第二金属层F203和第二保护层F205之间通过两层粘接层连接。更进一步地,第三粘接层F202和第四粘接层F204的材料可以不同。当然的,在本公开的其他实施方式中,第三粘接层F202和第四粘接层F204的材料也可以相同。
在本公开的一种实施方式中,第二热封层F201可以为聚丙烯层,尤其是可以为流延聚丙烯层。
在本公开的一种实施方式中,第三粘接层F202的材料可以为改性聚丙烯。
在本公开的一种实施方式中,第四粘接层F204的材料可以为聚酯或者聚氨酯。
在本公开的一种实施方式中,第二保护层F205可以为尼龙层。
可选地,第二柔性封装层F200的厚度可以在40~150微米范围内,例如在80~120微米范围内,再例如在45~55微米范围内。
可选地,参见图3,电芯100包括电芯主体101以及位于电芯主体101两端的正极耳102和负极耳103,多个电芯主体101沿第一方向H1依次排列,且两个相邻的电芯100之间具有预设间隙。
可选地,参见图3(图3中未示出柔性封装结构),柔性电池还可以包括柔性导电层200,柔性导电层200与各个电芯100电连接。其中,柔性导电层200与各个电芯100电连接的部分,可以被包覆于柔性封装结构内。柔性导电层200的至少部分,可以伸出柔性封装结构以与外部电路(例如电路板)电连接。柔性电池通过柔性导电层200与外部电路电连接,以便充电或者放电。在本公开的一种实施方式中,柔性导电层200至少部分夹设于第一柔性封装层F100和第二柔性封装层F200之间。
可选地,柔性导电层200伸出柔性封装结构的部分,其端部(远离柔性封装结构的一端)可以设置有绑定区。在绑定区内,柔性导电层200可以设置有绑定焊盘,这些绑定焊盘可以包括与外部电路电连接的电池焊盘。外部电路,例如外部的柔性电路板等,可以通过电池焊盘与柔性导电层200电连接,进而接收柔性电池提供的电能或者为柔性电池充电。
在本公开的一种实施方式中,参见图3,柔性导电层200包括第一柔 性导电带201和第二柔性导电带202。其中,第一柔性导电带201与各个电芯100的正极耳102电连接,以使得各个电芯100的正极并联。第二柔性导电带202与各个电芯100的负极耳103电连接,以使得各个电芯100的负极并联。
可选地,电芯可以为锂电池结构。在本公开的一种实施方式中,电芯具有依次层叠的第一隔膜、负极片、第二隔膜、正极片、设置于负极片上的负极耳和设置于正极片上的正极耳。为了增加电芯的容量,可以将电芯的极片(正极片、负极片)和隔膜(第一隔膜、第二隔膜)进行卷绕形成刚性的储能单元。
可选地,参见图3,正极耳102和负极耳103可以弯折至电芯100的表面(靠近或者背离第一柔性封装层F100的表面),以便与柔性导电层200电连接。在本公开的一种实施方式中,柔性导电层200设置于第一柔性封装层F100和电芯100之间,且沿第一方向H1延伸至柔性封装结构以外。
可选地,在一些实施方式中,相邻两个电芯之间的间距(相邻两个电芯在第一方向上的间隔的尺寸),不小于电芯的厚度(电芯的上下两个表面之间的尺寸)。如此,可以使得柔性电池保持较大的柔性。当然的,在本公开的其他实施方式中,相邻两个电芯之间的间距也可以小于电芯的厚度。
在相关技术中,柔性电池在弯折时,在外围区BB容易发生应力集中问题。具体的,在弯折区A2的延伸线与外围区BB的交汇处,容易发生应力集中,进而导致柔性封装结构FES在该位置处产生微裂纹,该微裂纹可能会导致柔性电池出现漏液、膨胀鼓包等失效问题,并可能产生安全隐患。
在相关技术中,由于微裂纹的尺寸非常小,该微裂纹缺陷常常难以检测,尤其是无法通过肉眼迅速观察。这会导致,柔性电池存在一定的安全隐患。
在本公开的一些实施方式中,参见图6,为了能够高效的检测柔性封装结构FES边缘位置处的微裂纹,柔性电池可以设置有裂纹检测走线PCD。裂纹检测走线PCD可以位于外围区BB且至少部分沿第一方向H1延伸; 其中,裂纹检测走线PCD被包覆于柔性封装结构FES内。在该实施方式中,当柔性封装结构FES的裂纹检测走线PCD位置产生微裂纹时,微裂纹将会对裂纹检测走线PCD产生损伤,例如使得裂纹检测走线PCD在微裂纹处电阻增大(局部断裂或者变细等导致电阻增大)或者断裂。因此,可以通过检测裂纹检测走线PCD的电性状态(例如电阻大小或者是否断路)进而判断是否存在微裂纹。
在这些实施方式中,裂纹检测走线PCD被柔性封装结构FES包覆和保护。如此裂纹检测走线PCD的电性状态与柔性封装结构FES在外围区BB的状态保持一致,提高了裂纹检测的准确性。在本公开实施方式中,避免了将裂纹检测走线PCD设置在柔性封装结构FES外侧。如果裂纹检测走线PCD设置在柔性封装结构FES外侧,当非微裂纹因素导致裂纹检测走线PCD断裂时,例如当裂纹检测走线PCD被腐蚀或者划伤时,裂纹检测走线PCD的电性状态改变与柔性封装结构FES的状态并不一致;这不利于准确检测柔性封装结构FES的微裂纹。
可选地,参见图7,裂纹检测走线PCD可以位于第一柔性封装层F100内。如此,第一柔性封装层F100可以为裂纹检测走线PCD提供保护,避免裂纹检测走线PCD暴露在外而被划伤或者腐蚀。
在本公开的一种实施方式中,裂纹检测走线PCD可以位于第二粘接层F104和第一保护层F105之间。如此,裂纹检测走线PCD可以被第一保护层F105所保护,且与第一金属层F103之间通过第二粘接层F104绝缘。不仅如此,裂纹检测走线PCD与第一热封层F101之间设置有第一金属层F103等膜层,避免了第一热封层F101在热封时融化变形对裂纹检测走线PCD的影响。
在一些实施方式中,参见图8,裂纹检测走线PCD的端部可以电连接有裂纹检测焊盘(Pad1、Pad2),裂纹检测焊盘(Pad1、Pad2)用于与外部电路(例如电路板300)电连接,以便外部电路检测裂纹检测走线PCD是否发生断路或者损伤。在本公开的一种实施方式中,裂纹检测焊盘(Pad1、Pad2)可以直接连接至裂纹检测走线PCD的端部。当然地,在本公开的其他实施方式中,裂纹检测焊盘也可以不与裂纹检测走线直接连接,而是可以通过其他导电走线转接;即,裂纹检测焊盘和裂纹检测走线之间可以 通过其他导电走线间接连接。
在一些实施方式中,裂纹检测走线PCD可以向柔性导电层200一侧汇聚,且延伸向绑定区;裂纹检测焊盘可以设置于绑定区。如此,可以使得柔性电池与外部连接的各个焊盘汇集,提高集成程度,利于与外部电路的连接。当然地,在本公开的其他实施方式中,裂纹检测焊盘可以设置于绑定区,裂纹检测走线可以不汇聚至绑定区中,而是通过连接至绑定区的其他导电走线与裂纹检测焊盘电连接。
参见图2,外围区BB可以包括依次首尾连接的第一外围区B1、第三外围区B3、第二外围区B2和第四外围区B4。其中,第一外围区B1和第二外围区B2位于电池区AA两侧,且均沿第一方向H1延伸。第三外围区B3和第四外围区B4位于电池区AA两侧,且均沿第二方向H2延伸。第二方向H2为电芯100的延伸方向。进一步地,第一方向H1和第二方向H2垂直。
在本公开的一种实施方式中,参见图6,裂纹检测走线PCD包括相互电连接的第一子检测走线PCD1和第二子检测走线PCD2;第一子检测走线PCD1沿第一方向H1贯穿第一外围区B1,第二子检测走线PCD2沿第一方向H1贯穿第二外围区B2。柔性电池在弯折时,第一外围区B1和第二外围区B2容易发生应力集中而产生微裂纹。在该实施方式中,裂纹检测走线PCD沿第一方向H1贯穿第一外围区B1和第二外围区B2,因此可以有效地检测第一外围区B1和第二外围区B2中的微裂纹。
进一步地,裂纹检测走线PCD还包括贯穿第三外围区B3的第三子检测走线PCD3,第三子检测走线PCD3连接第一子检测走线PCD1和第二子检测走线PCD2。如此,裂纹检测走线PCD还可以检测位于第三外围区B3中的微裂纹。
当然地,可以理解的是,在一些实施方式中,裂纹检测走线PCD还可以包括位于第四外围区B4的第四检测子走线,以便检测位于第四外围区B4的微裂纹。
可选地,裂纹检测走线PCD的数量可以为一个,也可以为多个。
可选地,裂纹检测走线PCD的厚度在0.3~1.5微米范围内。可以通过印刷、气相沉积、磁控溅射等方式形成所需的裂纹检测走线PCD。
可选地,裂纹检测走线PCD的材料可以为金属材料,其可以包括一层金属层或者层叠的多层金属层。举例而言,在本公开的一种实施方式中,裂纹检测走线PCD包括依次层叠设置的钛层、铝层和钛层。当然的,在本公开的其他实施方式中,裂纹检测走线PCD也可以采用其他导电的材料,例如有机导电材料或者导电金属氧化物等。
可选地,裂纹检测走线PCD的宽度在0.2~1.0毫米范围内;进一步地,裂纹检测走线PCD的宽度在0.4~0.7毫米范围内。示例性地,裂纹检测走线PCD的宽度为0.5毫米。
可选地,裂纹检测走线PCD与柔性封装结构FES的边缘的距离在0.5~1.5毫米范围内。如此,裂纹检测走线PCD既靠近柔性封装结构FES的边缘设置,以及时反映出柔性封装结构FES边缘的微裂纹情况。进一步的,裂纹检测走线PCD与柔性封装结构FES的边缘的距离在0.8~1.0毫米范围内。示例性地,在本公开的一种实施方式中,裂纹检测走线PCD与柔性封装结构FES的边缘的距离为0.93毫米。
本公开还可以提供一种与柔性电池绑定连接的外部电路,例如提供一种电路板。参见图8,该电路板300包括电阻检测电路310。电阻检测电路310用于与柔性电池的裂纹检测走线PCD电连接,且被配置为能够检测裂纹检测走线PCD的电阻。如此,可以根据裂纹检测走线PCD的电阻情况,判断柔性电池的边缘是否存在微裂纹。
进一步地,该电路板300还可以包括自举电路320。举电路320用于与裂纹检测走线PCD电连接,且被配置为接收第一电压并输出第二电压至裂纹检测走线;第二电压高于第一电压。如此,自举电路320能够向裂纹检测走线输出更高电压的信号,以加速微裂纹处的裂纹检测走线PCD的电阻变化,进而提高微裂纹检测的灵敏性。具体地,当柔性电池的边缘处出现微裂纹时,该位置处的裂纹检测走线PCD将变得脆弱且电阻增大;当高压信号通过时,裂纹检测走线PCD在该位置产生的热量将高于其他位置,进而使得裂纹检测走线PCD在该位置处加速断裂。
进一步地,自举电路320可以产生峰值电压为第二电压的高电压脉冲信号,进而在裂纹检测走线PCD上产生检测电流或者在裂纹处烧断裂纹检测走线PCD。
参见图8,电路板300还可以包括用于与裂纹检测焊盘(Pad1、PAD2)绑定连接的裂纹检测引脚(Pin1、Pin2)。如此,该电路板300可以与裂纹检测走线PCD电连接,进而可以检测裂纹检测走线PCD的电阻,并根据裂纹检测走线PCD的电阻判断柔性电池的边缘是否产生了微裂纹。
在本公开的一种实施方式中,自举电路320包括升压子电路321和逻辑控制子电路322。其中,参见图9,升压子电路321包括:
第一电容C1,两端分别连接第一节点N1和第二节点N2;
第一开关S1,一端与第一节点N1电连接,另一端用于加载参考电压GND;
第二开关S2,一端与第二节点N2电连接,另一端连接输入端Vin以用于加载第一电压;
第三开关S3,一端用于加载第一电压,另一端与第一节点N1电连接;
第四开关S4,一端连接第二节点N2,另一端连接输出端Vout以用于输出第二电压;
第二电容C2,一端用于加载参考电压GND,另一端与输出端Vout连接。
逻辑控制子电路322用于控制第一开关S1、第二开关S2、第三开关S3和第四开关S4的导通或者截止。具体地,逻辑控制子电路被配置为,在充电阶段使得第一开关S1和第二开关S2导通,且使得第三开关S3和第四开关S4截止。逻辑控制子电路322还被配置为,在放电阶段使得第一开关S1和第二开关S2截止,且使得第三开关S3和第四开关S4导通。
在该实施方式中,自举电路320的工作过程如下:
在充电阶段,参见图10,,输入端Vin加载有第一电压V1。第一开关S1和第二开关S2打开,而第三开关S3和第四开关S4关闭。此时,在第一电容C1的两端,第一节点N1的电压为0V,第二节点N2的电压第一电压V1。第二节点N2与第一节点N1之间的电势差等于第一电压V1。
在放电阶段,参见图11,输入端Vin加载有第一电压V1。第一开关S1和第二开关S2关闭,而第三开关S3和第四开关S4打开。此时,第一节点N1的电压等于第一电压V1,在第一电容C1的耦合作用下,第二节点N2的电压被自举至2V1。该第二节点N2的电压作为输出电压而通过 输出端Vout输出。此时,输出端Vout所输出的电压为第二电压,其大小为2V1。
在本公开的一些实施方式中,可以通过对柔性封装结构FES的调整,降低产生微裂纹的风险。参见图1,第一柔性封装层F100可以为平坦封装层。第二柔性封装层F200可以为凹凸封装层,其可以包括覆盖电芯100的凸出部分F301,以及位于相邻电芯100之间的凹陷部分F302。如此,柔性电池可以朝向凹凸侧进行弯折。其中,第一柔性封装层F100的弹性模量可以大于第二柔性封装层F200的弹性模量。如此,通过使得平坦封装层的弹性模量更大,可以调节柔性封装结构FES在弯折时的中性面,使得中性面更靠近具有大弹性模量的第一柔性封装层F100的外侧表面。这样,在弯折时,柔性封装结构FES的大部分位于中性层靠近电芯100的一侧而承受压应力,柔性封装结构FES的小部分位于中性层远离电芯100的一侧而承受拉应力。对于柔性封装结构FES承受拉应力的部分,由于中性面的偏移,该部分的厚度小,因此其拉伸形变小。在整体上,柔性封装结构FES对弯折具有更强的耐受程度,更不容易因弯折而产生微裂纹。这提高了柔性电池的耐弯折特性。
本公开对三种不同的柔性电池进行了弯折信赖性测试(弯折五万次)。
在第一种柔性电池中,第一柔性封装层F100采用高弹性模量的柔性封装层,第二柔性封装层F200也采用高弹性模量的柔性封装层。结果显示,在第一种柔性电池的柔性封装结构FES在弯折位置产生折痕。这表明,第一种柔性电池在边缘位置产生了损伤,不能通过弯折信赖性测试。
在第二种柔性电池中,第一柔性封装层F100采用低弹性模量的柔性封装层,第二柔性封装层F200也采用低弹性模量的柔性封装层。结果显示,在第二种柔性电池的柔性封装结构FES在弯折位置产生折痕。这表明,第二种柔性电池在边缘位置产生了损伤,不能通过弯折信赖性测试。
在第三种柔性电池中,第一柔性封装层F100采用高弹性模量的柔性封装层,第二柔性封装层F200采用低弹性模量的柔性封装层。结果显示,在第三种柔性电池在边缘位置未产生折痕。这表明,本公开实施方式的柔性电池通过了弯折信赖性测试,其产生微裂纹的风险很低。
可选地,可以使得第一金属层的弹性模量大于第二金属层的弹性模量, 进而使得第一柔性封装层F100的弹性模量大于第二柔性封装层F200的弹性模量。
可选地,第一柔性封装层F100的弹性模量,为第二柔性封装层F200的弹性模量的6~11倍。如此,可以有效地调整柔性封装结构FES的中性面,进而提高柔性电池的弯折信赖性。
在本公开的一种实施方式中,第一柔性封装层F100的弹性模量在180GPa~220GPa范围内。进一步地,第一柔性封装层F100为钢塑膜。示例性地,第一金属层F103可以为不锈钢层,例如可以为304不锈钢。可以理解的是,第一柔性封装层F100也可以为其他具有高弹性模量的柔性封装层。
在本公开的一种实施方式中,第一柔性封装层F100的泊松比可以在0.35~0.45之间,例如在0.39~0.41之间。
在本公开的一种实施方式中,第一柔性封装层F100的厚度可以在40~60微米之间,例如在45~55微米之间。
在本公开的一种实施方式中,第二柔性封装层F200的弹性模量在20GPa~30GPa范围内。进一步地,第二柔性封装层F200为铝塑膜。示例性地,第二金属层F203可以为铝箔层。可以理解的是,第二柔性封装层F200也可以为其他具有低弹性模量的柔性封装层。
在本公开的一种实施方式中,第二柔性封装层F200的泊松比可以在0.35~0.45之间,例如在0.39~0.41之间。
在本公开的一种实施方式中,第二柔性封装层F200的厚度可以在40~60微米之间,例如在45~55微米之间。
本公开实施方式还提供一种电子设备,该电子设备包括上述柔性电池实施方式所描述的任意一种柔性电池。该电子设备可以为智能手表、智能手机或者其他类型的电子设备;尤其是,该电子设备可以为柔性便携电子设备,例如柔性可穿戴设备。由于该电子设备具有上述柔性电池实施方式所描述的任意一种柔性电池,因此具有相同的有益效果,本公开在此不再赘述。
在本公开的一种实施方式中,电子设备还包括一显示面板,柔性电池用于向显示面板供电。
在进一步地实施方式中,显示面板为柔性显示面板。如此,该电子设备采用柔性电池和柔性显示面板,使得电子设备整体上可弯折。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由所附的权利要求指出。

Claims (17)

  1. 一种柔性电池,包括:
    柔性封装结构,具有电池区和围绕所述电池区的外围区;所述电池区包括沿第一方向交替设置的多个刚性区和多个弯折区;
    多个电芯,与多个所述刚性区一一对应设置;在对应的所述刚性区,所述电芯被包覆于所述柔性封装结构内;
    裂纹检测走线,位于所述外围区且至少部分沿所述第一方向延伸;其中,所述裂纹检测走线被包覆于所述柔性封装结构内。
  2. 根据权利要求1所述的柔性电池,其中,所述外围区包括位于所述电池区两侧的第一外围区和第二外围区;所述第一外围区和所述第二外围区均沿所述第一方向延伸;
    所述裂纹检测走线包括相互电连接的第一子检测走线和第二子检测走线;所述第一子检测走线沿所述第一方向贯穿所述第一外围区,所述第二子检测走线沿所述第一方向贯穿所述第二外围区。
  3. 根据权利要求2所述的柔性电池,其中,所述外围区还包括第三外围区,所述第三外围区连接所述第一外围区和所述第二外围区;
    所述裂纹检测走线还包括贯穿所述第三外围区的第三子检测走线,所述第三子检测走线连接所述第一子检测走线和所述第二子检测走线。
  4. 根据权利要求1所述的柔性电池,其中,所述裂纹检测走线的厚度在0.3~1.5微米范围内。
  5. 根据权利要求1所述的柔性电池,其中,所述裂纹检测走线的宽度在0.2~1.0毫米范围内。
  6. 根据权利要求1所述的柔性电池,其中,所述裂纹检测走线与所述柔性封装结构的边缘的距离在0.5~1.5毫米范围内。
  7. 根据权利要求1所述的柔性电池,其中,所述裂纹检测走线的材料为金属材料。
  8. 根据权利要求1~7任意一项所述的柔性电池,其中,所述柔性封装结构包括层叠设置的第一柔性封装层和第二柔性封装层;所述电芯设置于所述第一柔性封装层和所述第二柔性封装层之间;
    所述裂纹检测走线位于所述第一柔性封装层内。
  9. 根据权利要求8所述的柔性电池,其中,所述电芯设于所述第一柔性封装层的一侧且沿所述第一方向间隔设置;
    所述第二柔性封装层包括覆盖所述电芯的凸出部分,以及包括位于相邻所述电芯之间的凹陷部分。
  10. 根据权利要求8所述的柔性电池,其中,所述第一柔性封装层的弹性模量大于所述第二柔性封装层的弹性模量。
  11. 根据权利要求8所述的柔性电池,其中,所述第一柔性封装层为钢塑膜。
  12. 根据权利要求8所述的柔性电池,其中,所述第二柔性封装层为铝塑膜。
  13. 根据权利要求8所述的柔性电池,其中,沿远离所述电芯的方向,所述第一柔性封装层包括依次层叠设置的第一热封层、第一粘接层、第一金属层、第二粘接层和第一保护层;
    所述裂纹检测走线夹设于所述第二粘接层和所述第一保护层之间。
  14. 根据权利要求1~7任意一项所述的柔性电池,其中,所述柔性电池还包括柔性导电层,所述柔性导电层至少部分包覆于所述柔性封装结构内,且与各个所述电芯电连接;
    所述柔性导电层具有位于所述柔性封装结构外的绑定区;所述绑定区具有与所述裂纹检测走线电连接的裂纹检测焊盘。
  15. 一种电路板,包括:
    电阻检测电路,用于与权利要求1~14任意一项所述的柔性电池的所述裂纹检测走线电连接,被配置为能够检测所述裂纹检测走线的电阻;
    自举电路,用于与所述裂纹检测走线电连接,被配置为接收第一电压并输出第二电压至所述裂纹检测走线;所述第二电压高于所述第一电压。
  16. 根据权利要求15所述的电路板,其中,所述自举电路包括升压子电路和逻辑控制子电路;
    所述升压子电路包括:
    第一电容,两端分别连接第一节点和第二节点;
    第一开关,一端与所述第一节点电连接,另一端用于加载参考电压;
    第二开关,一端与所述第二节点电连接,另一端与输入端电连接;
    第三开关,一端与所述输入端电连接,另一端与所述第一节点电连接;
    第四开关,一端与所述第二节点电连接,另一端与输出端电连接;
    第二电容,一端与所述输出端电连接,另一端用于加载所述参考电压;
    所述逻辑控制子电路被配置为,在充电阶段使得所述第一开关和所述第二开关导通,且使得所述第三开关和所述第四开关截止;所述逻辑控制子电路还被配置为,在放电阶段使得所述第一开关和所述第二开关截止,且使得所述第三开关和所述第四开关导通。
  17. 一种电子设备,包括权利要求1~14任意一项所述的柔性电池。
PCT/CN2021/107963 2021-07-22 2021-07-22 柔性电池、电路板和电子设备 WO2023000274A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180001952.3A CN116235345A (zh) 2021-07-22 2021-07-22 柔性电池、电路板和电子设备
PCT/CN2021/107963 WO2023000274A1 (zh) 2021-07-22 2021-07-22 柔性电池、电路板和电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/107963 WO2023000274A1 (zh) 2021-07-22 2021-07-22 柔性电池、电路板和电子设备

Publications (1)

Publication Number Publication Date
WO2023000274A1 true WO2023000274A1 (zh) 2023-01-26

Family

ID=84980296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/107963 WO2023000274A1 (zh) 2021-07-22 2021-07-22 柔性电池、电路板和电子设备

Country Status (2)

Country Link
CN (1) CN116235345A (zh)
WO (1) WO2023000274A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130171490A1 (en) * 2011-12-29 2013-07-04 Apple Inc. Flexible battery pack
CN103824985A (zh) * 2014-03-20 2014-05-28 东莞新能源科技有限公司 柔性电池组及其制造方法
US20150280186A1 (en) * 2014-03-28 2015-10-01 Jiang Fan Articulate Battery Case
US20160260944A1 (en) * 2015-03-03 2016-09-08 Samsung Sdi Co., Ltd. Flexible rechargeable battery
CN209560899U (zh) * 2018-11-19 2019-10-29 昆山国显光电有限公司 柔性显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130171490A1 (en) * 2011-12-29 2013-07-04 Apple Inc. Flexible battery pack
CN103824985A (zh) * 2014-03-20 2014-05-28 东莞新能源科技有限公司 柔性电池组及其制造方法
US20150280186A1 (en) * 2014-03-28 2015-10-01 Jiang Fan Articulate Battery Case
US20160260944A1 (en) * 2015-03-03 2016-09-08 Samsung Sdi Co., Ltd. Flexible rechargeable battery
CN209560899U (zh) * 2018-11-19 2019-10-29 昆山国显光电有限公司 柔性显示装置

Also Published As

Publication number Publication date
CN116235345A (zh) 2023-06-06

Similar Documents

Publication Publication Date Title
US6773848B1 (en) Arrangement of electrochemical cells and circuit board
KR100689574B1 (ko) 2차 전지와 그 리드접합방법 및 이것을 이용한 전지전원장치
JP5194584B2 (ja) 配線基板、及び積層型蓄電デバイス
KR102210879B1 (ko) 배터리 팩
CN115566375B (zh) 储能设备以及用电设备
JP2000208118A (ja) 非水電解液二次電池からなる組電池
US9196887B2 (en) Assembled battery wiring member and assembled battery module
JP5974622B2 (ja) 電池集合体
CN111556648B (zh) 驱动芯片保护膜和显示装置
KR102409424B1 (ko) 배터리 모듈 및 그 제조 방법
US9673489B2 (en) Battery pack
US8691407B2 (en) Battery pack
US20200395580A1 (en) Battery
KR20090004355A (ko) 팩 외부 보호용 고강도 라벨을 포함하는 전지팩
US20120301748A1 (en) Battery pack
CN113078283A (zh) 电芯及应用其的电池和用电设备
CN102386367A (zh) 电池组
WO2023000274A1 (zh) 柔性电池、电路板和电子设备
WO2023000277A1 (zh) 柔性电池和电子设备
JP2734997B2 (ja) 圧電センサ
CN109102772A (zh) 驱动电路板和显示装置
WO2022205183A1 (zh) 电化学装置及电子装置
CN208044250U (zh) 具有静电屏蔽功能的一体化模组
JP2014120369A (ja) 電池パック
CN207165216U (zh) 驱动电路板和显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17912531

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21950525

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE