WO2022270926A1 - 다양한 암의 진단, 전이 또는 예후 예측용 신규한 바이오마커 및 이의 용도 - Google Patents

다양한 암의 진단, 전이 또는 예후 예측용 신규한 바이오마커 및 이의 용도 Download PDF

Info

Publication number
WO2022270926A1
WO2022270926A1 PCT/KR2022/008902 KR2022008902W WO2022270926A1 WO 2022270926 A1 WO2022270926 A1 WO 2022270926A1 KR 2022008902 W KR2022008902 W KR 2022008902W WO 2022270926 A1 WO2022270926 A1 WO 2022270926A1
Authority
WO
WIPO (PCT)
Prior art keywords
cancer
stc1
cells
expression
prognosis
Prior art date
Application number
PCT/KR2022/008902
Other languages
English (en)
French (fr)
Inventor
임선희
문정연
정미소
김민혜
양기은
Original Assignee
동아대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동아대학교 산학협력단 filed Critical 동아대학교 산학협력단
Priority claimed from KR1020220076394A external-priority patent/KR20230175021A/ko
Publication of WO2022270926A1 publication Critical patent/WO2022270926A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer

Definitions

  • the present invention relates to novel biomarkers for diagnosis, metastasis or prognosis of various cancers and uses thereof.
  • Cancer refers to the abnormal growth of cells, in which cells lose their normal regulatory mechanisms and continue to proliferate, infiltrate nearby tissues, migrate to distant parts of the body, or promote the growth of new blood vessels that cells take in nutrients. means malignant tumor.
  • Cancerous tissues malignancies
  • Types of cancerous solid tumors include carcinomas or sarcomas, and certain cancers are further classified by the organ in which they first develop and the type of cells they develop.
  • Leukemia and lymphoma are cancers of the blood and hematopoietic tissue and cells of the immune system.
  • Leukemia develops in hematopoietic cells and suppresses the production of normal blood cells in the bone marrow.
  • Cancer cells in lymphoma enlarge the lymph nodes and form large masses in the armpit, groin, abdomen or chest.
  • Carcinoma is a cancer that occurs in the inner cells of the skin, lungs, digestive tract, and internal organs, and examples of carcinoma include cancer that occurs in the skin, lungs, colon, stomach, breast, prostate, and thyroid gland.
  • Sarcoma is a cancer of mesoderm cells.
  • Mesoderm cells commonly form muscle, blood vessels, bone, and connective tissue, and examples of sarcomas include leiomyosarcoma (cancer of the smooth muscle in the wall of the digestive tract) and osteosarcoma (bone cancer).
  • tumor formation can be confirmed by performing X-ray, ultrasonography, or computed tomography from a suspected patient at an early stage of cancer, but whether the confirmed tumor is cancer is identified through additional diagnosis.
  • a tumor manipulation is taken through a biopsy or surgery, and a sample from a suspected area is examined under a microscope to confirm cancer cells.
  • additional evidence for cancer diagnosis can be obtained by measuring the level of tumor markers (substances secreted into the bloodstream by specific tumors).
  • Tumor markers can be usefully used to monitor the effectiveness of treatment and to detect the possibility of cancer recurrence. In some cancers, the level of tumor markers decreases after treatment and increases again when cancer recurs.
  • Some tumor markers can be detected in biological samples including blood, but there are also markers that can only be detected in tumor tissue. These tumor markers are often referred to as biomarkers.
  • bladder cancer is the most common cancer among urinary system cancers, and the number of patients diagnosed with bladder cancer is increasing as society gradually ages.
  • bladder cancer patients When bladder cancer patients are diagnosed, about 70% are diagnosed with superficial bladder cancer that has not invaded the muscle layer of the bladder, and the 5-year survival rate with treatment reaches 70%.
  • more than 50% of them appear as superficial bladder cancer at recurrence, and some patients appear as invasive bladder cancer or metastatic bladder cancer that has invaded the muscle layer.
  • the biggest problem in the successful treatment of bladder cancer patients is chemotherapy resistance and frequent recurrence. For this reason, bladder cancer patients frequently perform cystoscopy, which is expensive and has side effects after the test, because continuous monitoring is required.
  • An object of the present invention is to provide a novel STC1 (Stanniocalcin-1) biomarker for cancer diagnosis, metastasis or prognosis.
  • Another object of the present invention is to provide a biomarker composition for diagnosis, metastasis or prognosis of cancer, including an agent capable of measuring the expression level of STC1 (Stanniocalcin-1).
  • Another object of the present invention is to provide a kit for diagnosis, metastasis or prognosis of cancer comprising the above composition.
  • Another object of the present invention is to separate a biological sample from a subject
  • Another object of the present invention is to separate a biological sample from a subject
  • Another object of the present invention is to separate a biological sample from a subject
  • the present invention provides a novel STC1 (Stanniocalcin-1) biomarker for diagnosis, metastasis or prognosis of cancer.
  • the present invention provides a biomarker composition for diagnosis, metastasis or prognosis of cancer, including an agent capable of measuring the expression level of STC1 (Stanniocalcin-1).
  • the present invention is to provide a kit for diagnosis, metastasis or prognosis of cancer comprising the above composition.
  • the present invention is a step of separating a biological sample from the subject
  • It provides a method for providing information for diagnosis, metastasis or prognosis of cancer, including comparing the expression level of STC1 with a reference value of a control group.
  • the present invention is a step of separating a biological sample from the subject
  • Comparing the expression level of the STC1 with the reference value of the control group provides a method for screening anticancer agents comprising the.
  • the present invention is a step of separating a biological sample from the subject
  • It provides a method for diagnosing, metastasis or predicting prognosis of cancer including; comparing the expression level of STC1 with a reference value of a control group.
  • STC1 a novel biomarker for cancer diagnosis or prognosis of the present invention, was confirmed to be associated with poor prognosis of cancer patients according to its expression level, and was overexpressed in various cancer cell lines.
  • STC1 is a biomarker related to proliferation, invasion and migration (metastasis) of cancer cells.
  • STC1 can be effectively used for diagnosis and prognosis of bladder cancer by detecting the serum or urine of bladder cancer patients and confirming expression differences according to the patient's clinical stage, which can be usefully used in related industries. .
  • Figure 1 shows the identification and quantitative comparison of the conditioned media of T24 (P0) and GRC1-P15 (P15) cells.
  • (a) It is a schematic diagram showing the secretome analysis process for the identification of secreted proteins using LC-MS/MS from medium without serum in P0 and P15 cells. A heat map showing the expression of various secreted proteins in the conditioned media of P0 and P15 cells in three independent cell conditioned media. The figure on the right shows the results of STC1 protein expression and ponceau staining in conditioned media derived from P0 and P15 cell cultures.
  • (b) It is a Venn diagram showing the number of proteins identified in P0 and P15 cell condition media.
  • glioblastoma U251
  • lung cancer A549, H460
  • colon cancer LoVo, HCT116
  • prostate cancer DU145, PC3
  • bladder cancer T24, 5637
  • breast cancer MDA-MB231, SKBR3
  • pancreatic cancer Miapaca2, CFPAC1
  • gastric cancer AGS
  • ovarian cancer SKOV3 cell lysate and cell line culture conditioned medium STC1 expression and secretion This is the result of comparing the expression of the sex STC1 protein.
  • Figure 3 shows that STC1 is a factor predicting poor prognosis in bladder cancer.
  • the threshold for significance is P ⁇ 0.001 and FDR ⁇ 0.25.
  • the diagram on the right shows 21 genes out of a total of 367 genes with expression levels closely related to STC1.
  • (e) It shows the gene expression profile of STC1-related genes.
  • 367 genes obtained from a Korean bladder cancer patient cohort (GSE13507) 345 genes commonly included in the Lund cohort were analyzed. Patients were divided into two groups, STC1 high and STC1 low, and the graph shows progression-free and cancer specific survival according to STC1 expression in the Lund cohort.
  • FIG. 4 shows that the regulation of expression of STC1 regulates the growth and proliferation of bladder cancer cells.
  • (a) and (b) show the STC1 mRNA and protein expression levels as results of qRT-PCR and Western blot in STC1 overexpressing and knockdown cells, respectively.
  • (b) The survival rate of cell lines transfected with STC1 overexpression vector (pSTC1) #1, #2, and #3 and cell lines transfected with STC1 knockdown siRNA (siSTC1) #1, #2, and #3 was measured by MTT experiment This is the result of performing
  • Figure 6 is a positive correlation between STC1 and EMT-related genes (11 genes, VIM, ZEB1, ZEB2, SNAI1, TWIST1, TWIST2, MMP1, MMP3, MMP9, NCAD, and CD44) in a Korean bladder cancer patient dataset. Association and (b) negative correlation association of STC1 with mesenchymal-epithelial transition (MET)-related genes (3 genes, SDC1, SDC2, and ECAD).
  • MET mesenchymal-epithelial transition
  • EMT and MET-related genes (MMP1, MMP2, MMP9, VIM, SNAIL, SLUG, ZEB1, ZEB2, TWIST) expressed in cells transfected with STC1 overexpression vector (pSTC1) compared to control cells (pcDNA) , NCAD, SDC1, SDC2, and ECAD) mRNA levels are shown.
  • pSTC1 overexpression vector pSTC1 overexpression vector
  • NCAD SDC1, SDC2, and ECAD
  • ECAD ECAD
  • Western blot analysis results comparing the protein expression of identified EMT and MET-related genes (MMP1, MMP2, MMP9, NCAD, VIM, SNAIL, and ECAD) with control cells (pcDNA). ns, no significant; *, P ⁇ 0.05; **, P ⁇ 0.01; ***, P ⁇ 0.001.
  • the figure on the right is an image of a tumor surgically removed from a mouse (c) Stained photograph results confirming H&E and STC1 expression immunohistochemically in mouse tumor tissue injected with STC1 overexpressing cells *, P ⁇ 0.05; ** , P ⁇ 0.01;***, P ⁇ 0.001.
  • the figure on the right shows the results of H&E, Ki67, and STC1 confirmed by immunohistochemical staining
  • c H&E staining and STC1 expression levels in bladder cancer tissues of Grade 1, 2, and 3 bladder cancer patients by immunohistochemical staining This is the result shown by *, P ⁇ 0.05.
  • Figure 11 shows that the secreted STC1 protein increases the cell proliferation and metastasis ability in bladder cancer cells.
  • This is the result of confirming the cell proliferation through MTT assay at P0 and P15 treated with recombinant human STC1 (rhSTC1) in the medium.
  • rhSTC1 recombinant human STC1
  • FIG. 11 shows that the secreted STC1 protein increases the cell proliferation and metastasis ability in bladder cancer cells.
  • the present invention provides a novel Stanniocalcin-1 (STC1) biomarker for cancer diagnosis, metastasis or prognosis.
  • STC1 Stanniocalcin-1
  • STC1 (Stanniocalcin-1) of the present invention is a glycoprotein that is a homologue of stanniocalcin, a hormone first discovered in bony fishes. Encodes a secreted homodimeric glycoprotein that may have a paracrine function.
  • STC1 the only known function of human STC1 was the SUMO E3 ubiquitin ligase activity in the SUMOylation pathway. STC1 is known to interact with many proteins in the cytosol, mitochondria, endoplasmic reticulum and cell nucleus.
  • the term “diagnosis” as used herein refers to determining the susceptibility of a subject to a specific disease or disorder, determining whether a subject currently has a specific disease or disorder, determining whether a specific disease or disorder Determining the prognosis of a subject with a disease (e.g., identifying pre-metastatic or metastatic cancer status, determining the stage of a cancer, or determining the responsiveness of a cancer to treatment), or using therametrics (e.g., monitoring the condition of the subject to provide information on the efficacy of the treatment).
  • a disease e.g., identifying pre-metastatic or metastatic cancer status, determining the stage of a cancer, or determining the responsiveness of a cancer to treatment
  • therametrics e.g., monitoring the condition of the subject to provide information on the efficacy of the treatment.
  • prognosis refers to predicting various conditions of a patient according to cancer, such as the possibility of a cure for cancer, the possibility of recurrence after treatment, and the possibility of survival of a patient after cancer is diagnosed.
  • the prognosis of cancer can be estimated from various viewpoints, but it can be representatively judged from the viewpoints of recurrence possibility, survivability, and disease-free survival.
  • prognosis may refer to the prognosis of survival after diagnosis of cancer.
  • biomarker provided by the present invention, it is possible to more easily predict the survival prognosis of cancer patients, so that it can be used to classify patients in the high-risk group or to determine whether to use additional treatment methods, thereby causing cancer to develop. It can contribute to increasing the survival rate of later life.
  • the term "(bio)marker, marker for diagnosis, or diagnostic marker” refers to a substance that can discriminate cancer-causing cells or tissues from normal cells or tissues and determine cancer compared to normal cells.
  • Polypeptides or nucleic acids eg mRNA, etc.
  • lipids eg lipids, glycolipids, glycoproteins, sugars (monosaccharides, disaccharides, oligosaccharides, etc.)
  • the present invention provides a biomarker composition for diagnosis, metastasis or prognosis of cancer, including an agent capable of measuring the expression level of STC1 (Stanniocalcin-1).
  • the composition measures the expression level of the gene or protein of STC1, and the agent used in the method for confirming the expression level of the gene or fragment thereof is used in the method for confirming the expression of the corresponding miRNA or fragment thereof contained in the sample.
  • RT-PCR competitive RT-PCR (Real-time RT-PCR), RNase protection assay (RPA; RNase protection assay), Northern blotting
  • RPA RNase protection assay
  • Northern blotting It may be a primer, probe, or antibody that can specifically bind to a target gene used in methods such as (Northern blotting) and gene chip analysis, but is not particularly limited thereto.
  • primer is a nucleic acid sequence having a short free 3' hydroxyl group, capable of forming a base pair with a complementary template, and a starting point for copying the template strand. Refers to a short nucleic acid sequence that functions as a point.
  • a primer can initiate DNA synthesis in the presence of a reagent for polymerization (i.e., DNA polymerase or reverse transcriptase) and four different nucleoside triphosphates in an appropriate buffer and temperature.
  • probe refers to a nucleic acid fragment such as RNA or DNA corresponding to a few bases to several hundreds of bases as short as possible to form a specific binding with a gene or mRNA, oligonucleotide It can be manufactured in the form of a probe, single stranded DNA probe, double stranded DNA probe, RNA probe, etc., and can be labeled for easier detection.
  • An agent capable of measuring the expression level of the protein is an antibody, an eptamer, an oligopeptide or PNA (peptide nucleic acid) that specifically binds to the STC1, or a gene encoding the protein. Having a specific complementary sequence Primers or probes may be included, but are not limited thereto.
  • the STC1 may include the nucleotide sequence of SEQ ID NO: 1.
  • polynucleotide (or nucleotide, nucleic acid) has the meaning of comprehensively including DNA (gDNA and cDNA) and RNA molecules, and nucleotides, which are basic structural units in nucleic acid molecules, are not only natural nucleotides, but also sugars. or analogs in which the base site is modified.
  • polypeptide a specific amino acid sequence
  • nucleic acid molecules encoding an amino acid sequence showing substantial identity to a specific amino acid sequence or a polypeptide having a function corresponding thereto be interpreted as including
  • the cancer is bladder cancer, breast cancer, glioblastoma, prostate cancer, cerebrospinal tumor, head and neck cancer, lung cancer, thymoma, mesothelioma, esophageal cancer, stomach cancer, colon cancer, liver cancer, pancreatic cancer, biliary tract cancer, kidney cancer , testicular cancer, germ cell tumor, ovarian cancer, cervical cancer, endometrial cancer, lymphoma, acute leukemia, chronic leukemia, multiple myeloma, sarcoma, malignant melanoma, and skin cancer.
  • cancer cell growth, invasion, or migration may be increased.
  • the clinical stage of cancer when the expression of the STC1 is increased compared to the reference value of the control group, the clinical stage of cancer may be increased.
  • the method for diagnosing cancer and estimating prognosis according to the present invention can be used to determine the degree of severity (clinical stage) of cancer. For example, compared to the profiles of positive and negative controls, it can be rated as mild, moderate or severe. Furthermore, by performing marker profile analysis on a certain cancer group, it is possible to classify according to a certain criterion based on the profile result.
  • the STC1 may be measured in a sample isolated from an individual, wherein the sample is selected from the group consisting of tissue, cell, whole blood, serum, plasma, saliva, sputum, cerebrospinal fluid and urine It may be, but preferably serum or urine or not limited thereto.
  • the present invention is to provide a kit for diagnosis, metastasis or prognosis of cancer comprising the above composition.
  • the term “kit” refers to a set of components and accessories necessary for a specific purpose.
  • the kit of the present invention is to confirm the diagnosis or prognosis of cancer.
  • the kit of the present invention includes primers, probes for confirming the diagnosis or prognosis of cancer, an antibody that selectively recognizes a peptide or an antibody that recognizes a specific peptide whose expression is specifically changed at the onset of cancer, as well as one type suitable for an analysis method or more other constituent compositions, solutions or devices.
  • the present invention is a step of separating a biological sample from the subject
  • It provides a method for providing information for diagnosis, metastasis or prognosis of cancer, including comparing the expression level of STC1 with a reference value of a control group.
  • the biological sample may be selected from the group consisting of tissue, cell, whole blood, serum, plasma, saliva, sputum, cerebrospinal fluid and urine.
  • the expression of the STC1 when the expression of the STC1 is increased compared to the reference value of the control group, it may be determined that the cancer is present.
  • the expression of the STC1 when the expression of the STC1 is increased compared to the reference value of the control group, it may be determined that cancer cell growth, invasion or migration is increased.
  • the expression of the STC1 when the expression of the STC1 is increased compared to the reference value of the control group, it may be determined that the clinical stage of cancer is increased.
  • the present invention is a step of separating a biological sample from the subject
  • Comparing the expression level of the STC1 with the reference value of the control group provides a method for screening anticancer agents comprising the.
  • the expression of the STC1 when the expression of the STC1 is low compared to the reference value of the control group, it may be determined that there is an anticancer effect.
  • the present invention is a step of separating a biological sample from the subject
  • It provides a method for diagnosing, metastasis or predicting prognosis of cancer including; comparing the expression level of STC1 with a reference value of a control group.
  • the human bladder cancer cell lines T24, 5637, UC3, UC5 and UC14 were purchased from the American Type Culture Collection (ATCC) and the RT4 cell line was purchased from the Korean Cell Line Bank (KCLB).
  • T24, UC3, UC5, UC14 and RT4 cell lines were cultured in DMEM (Dulbecco's modified Eagle's medium) and 5637 cell line was cultured in 10% FBS (Capricorn Scientific GmbH, Ebsdorfer ground, Germany) and 1% penicillin/streptomycin (Capricorn Scientific GmbH, Ebsdorfergrund, Germany). ) was added and cultured in RPMI 1640. All cell lines were cultured at 37°C and 5% CO 2 in a humid atmosphere.
  • CM Serum-free conditioned medium
  • T24 P0
  • P15 150 mm dishes
  • Media was collected and cell debris was removed at 1,000 rpm for 10 minutes.
  • the conditioned medium was concentrated with VIVASPIN (GE Healthcare, USA) at 3,850 rpm for 2 hours at 4°C.
  • Protein concentration was confirmed by BCA assay and samples were stored at -70°C for further study.
  • In-gel digestion was constructed according to the method described in the previous literature [Schevchenko A. et al., Nature Protocols 2006;1(6)2856-2860]. The gel was divided into 4 parts according to molecular weight. After desalting, the gel fraction was digested with trypsin after reducing and alkylating the cysteine of the protein. The degraded peptides were extracted with an extraction solution buffer. The digested peptides were dissolved in 10 ⁇ l of sample solution containing 0.02% formic acid and 0.5% acetic acid. LC-MS/MS analysis was performed at least three times for each sample.
  • a cDNA encoding the sequence of STC1 was cloned by RT-PCR from normal human tissue as a substrate and the PCR product was subcloned into a pcDNA/His B vector.
  • DNA sequencing containing the STC1 open reading frame flanking the HindIII- BamHI restriction site was PCR amplified from T24 cells.
  • siSTC1 oligonucleotide was purchased from Dharmacon SMARTPool.
  • scrambled siRNA (scRNA) or siSTC1 transfection was performed at a final siRNA concentration of -100 nM. Knockdown efficiency was confirmed using qRT-PCR or Western blot analysis, respectively.
  • the invasion capacity of the cells was measured in a Boyden chamber using the transwell assay. After loading 4 ⁇ 10 4 cells in a matrigel-coated chamber, they were cultured for 24 hours. In the case of cell invasion assay by conditioned medium (CM) of cells, in order to confirm the ability of cells to invade or migrate by CM, cells were treated for 24 hours in a basic composition and conditioned medium in a 1:1 ratio to invade or Mobility was confirmed.
  • CM conditioned medium
  • RNA quantification check was evaluated using a spectrophotometer (ND-1000). First-strand cDNA synthesis was assessed from 1 ⁇ g total RNA using the PrimeScript TM RT reagent Kit (Takara). qRT-PCR was performed using TB Green Premix Ex Taq (Takara) and CFX 96 real-time PCR Detection system (BioRad). The primer set sequences used are shown in Table 1. The reproducibility of the quantitative evaluation was assessed by three independent rounds of cDNA synthesis and PCR amplification from each preparation of RNA. For mRNA analysis, data were normalized to GAPDH as an endogenous control and fold changes were calculated via relative quantification (2 - ⁇ Ct ).
  • the membrane was then blocked using 5% non-fat milk in 0.05% TBS-T.
  • Antibodies against STC1 include MMP-1 (Santa Cruz Biotech), MMP2 (Cell signaling), MMP9 (Cell signaling), NCAD (Cell signaling), ECAD (Cell signaling), VIM (Santa Cruz Biotech), SNAIL (Santa Cruz Biotech), FAK (Cell signaling), p-FAK (Cell signaling), ERK (Cell signaling), and p-ERK (Cell signaling).
  • GAPDH Cell signaling was used as a loading control.
  • HRP horseradish peroxidase
  • IgG anti-mouse immunoglobulin G
  • mice injected into the tail vein were dissected and the number of lung nodules formed was confirmed.
  • Tissue Microarray Tissue Microarray
  • IHC Immunohistochemistry
  • TMA blocks were selected from mouse paraffin-blocks with a tissue diameter of 2 mm. Slides were stained with H&E (hematoxylin and eosin) and observed to identify representative tumor tissues.
  • H&E hematoxylin and eosin
  • IHC immunohistochemical hematoxylin and eosin
  • all tissue samples were fixed in buffered formalin (Sigma-Aldrich, St. Louis, MO, USA) and embedded in paraffin. Paraffin-impregnated tissues were deparaffinized in xylene and rehydrated in alcohol (100%, 90%, 80%, and 60%). Antigen retrieval (10 min in boiling water) was performed and sodium citrate was used as pH 7 retrieval buffer.
  • Primary STC1 and Ki67 antibodies (Santa Cruz Biotech) used were rabbit monoclonal IgG (Abcam).
  • TMA slides were treated at 4° C. with primary antibody and biotinylated secondary antibody.
  • Vectastain Elite ABC Reagent Vector Laboratories
  • DAB 3,3'-diaminobenzidine
  • the TMA slides were counterstained with Mayer's hematoxylin (Dako), dehydrated with alcohol (60%, 80%, 90%, and 100%), washed three times with xylene, and fixed with mounting agent in xylene. The staining result was confirmed under a microscope.
  • BC patients' blood was collected in heparinized saline tubes and centrifuged at 3,000 rpm for 10 minutes. Serum separated from blood was frozen and stored. Urine samples were collected from healthy humans and bladder patients, respectively. 20 ml of urine in the tube was centrifuged at 4° C. at 3,000 rpm for 10 minutes. The supernatant of urine was concentrated using a VIVASPIN column and used in the experiment.
  • the concentration of STC1 in conditioned medium, serum and urine samples was analyzed using an Enzyme-linked immunosorbent assay (ELISA) kit (R&D systems).
  • ELISA Enzyme-linked immunosorbent assay
  • CM conditioned media
  • glioblastoma U251
  • lung cancer A549, H460
  • colorectal cancer LoVo, HCT116
  • prostate cancer DU145, PC3
  • bladder cancer T24, 5637
  • breast cancer MDA-MB231, SKBR3
  • pancreatic cancer Miapaca2, CFPAC1
  • gastric cancer AG5
  • ovarian cancer SKOV3
  • human foreskin fibroblasts Human Newborn Foreskin Fibroblasts, Nuff
  • STC1 Human Newborn Foreskin Fibroblasts, Nuff
  • STC1 whose expression was confirmed in bladder cancer, was also expressed in various carcinomas (glioblastoma, lung cancer, colorectal cancer, prostate cancer, breast cancer, pancreatic cancer, stomach cancer and ovarian cancer) including bladder cancer, making it a cancer cell-specific marker It was confirmed that (Figs. 2a and 2b).
  • the gene expression level of STC1 was confirmed and compared with the expression level in primary NMIBC, bladder tissue containing primary MIBC, and recurrent tissue in a bladder cancer cohort.
  • Figure 3b shows the baseline characteristics of 618 bladder cancer patients.
  • the average age was 66 years (range 24 to 88 years), and the average follow-up interval after surgery was 53 months (range 1 month to 161 months).
  • 34 patients 21%) had disease progression.
  • the mean age was 71 years (range 20 to 96 years) and the mean follow-up interval after surgery was 46 months (2 to 127 months).
  • 19 patients (12%) had disease progression.
  • the average age was 73 years (range 36 to 100 years), and the average follow-up interval after surgery was 70 months (range 1 to 103 months).
  • progression-free survival data were not supplied in the Yonsei cohort.
  • STC1 is commonly upregulated in many cancers and is used as a prognostic marker
  • the predicted level of STC1 in the survival outcome of bladder cancer patients was further evaluated. This is to identify a gene expression signature directly related to the STC1 expression level and to use it as a signature to predict disease progression and survival.
  • 367 genes related to STC1 expression were identified (Pearson's correlation test, P ⁇ 0.001,
  • the cancer-specific survival rate of STC1-low patients was significantly higher than that of STC1-high patients (log-rank test, P ⁇ 0.001; Fig. 3c).
  • important signaling pathways related to STC1 expression were also identified. GO analysis of 367 genes related to STC1 (279 upregulated genes) was performed using DAVID software.
  • bladder cancer patients were stratified into two groups in the Yonsei cohort (GSE120736).
  • STC1 overexpressing stable (STC1 OE) cell line compared to the control cells, the mRNA and protein expression of STC1 and cell proliferation, colony formation ability, invasion and migration ability were all increased (Fig. 5a, b, c).
  • Control cells and STC1 overexpressing stable cells were injected subcutaneously into the flank region of male BALB/C nude mice, and the overall experimental schematic diagram is as follows (FIG. 8a).
  • the body weight of the mouse group injected with the STC1 overexpressing stable cells increased, although not significantly, compared to the control mouse group, and the tumor size rapidly increased (Fig. 8a, b).
  • 9B shows representative photographs of tumors formed in the flanks of mice injected with control and STC1-overexpressing stable cells.
  • the mRNA expression of STC1 was increased in the STC1 overexpressing stable mouse group than in the tumors of the control cell-injected mouse group (FIG. 8c). Therefore, the protein expression of STC1 confirmed by IHC was increased in tumors of mice injected with STC1 overexpressing stable cell line (FIG. 8c).
  • FIG. 9a It was observed that body weight change and lung metastasis between the two groups increased over time in both the STC1 overexpressing stable cell mouse group compared to the control mouse group (FIG. 9a). More and larger lung nodules were observed in the mouse group injected with the STC1 overexpressing stable cell line compared to the control cell mouse group (FIG. 9B). Higher expression of Ki67 and STC1 was found in lung tissues of mice injected with STC1 overexpressing stable cells (FIG. 9B).
  • the wound healing ability was also increased, and Western blotting results confirmed by concentrating the conditioned medium of the STC1 overexpressing stable cells showed that the protein level of MMP1 was reduced, but the expression of MMP2 and 9 was increased, indicating that the secreted STC1 protein was found in bladder cancer cells. suggests that it promotes EMT-related gene expression in (Fig. 10d).
  • the amount of STC1 secreted in the conditioned medium of P15 cells was higher than that of the conditioned medium of P0 cells (FIG. 10E).
  • the amount of secreted STC1 protein was further increased in the conditioned medium of the cells transfected with the STC1 overexpression vector and the STC1 overexpression stable cells (FIG. 10e).
  • Figure 10f shows the results of collecting mouse blood from the experiment in Figure 9, isolating serum, and conducting a human STC1 ELISA assay on the serum. More secretory STC1 protein was found in the serum of the mouse groups. To confirm that STC1 secreted protein was detected in bladder cancer cells, an ELISA assay of human STC1 protein was performed on conditioned media of P0 and P15 cells. That is, secreted STC1 promotes the growth, invasion, and migration of bladder cancer cells.
  • the secreted STC1 protein is related to metastasis of bladder cancer.
  • rhSTC1 recombinant human STC1
  • the cell proliferation ability confirmed by treatment with rhSTC1 in bladder cancer cells was also increased in P0 cells treated with 100 and 200 ng/mL rhSTC1, as well as cell migration and invasion ability (FIG. 11B). Thereafter, rhSTC1 was blocked with an STC1 antibody, and it was confirmed that the metastatic effect of rhSTC1 was lost in bladder cancer cells (FIG. 11c). After treating the cells with rhSTC1, the expression of the identified phosphorylated-FAK (p-FAK) increased (FIG. 11c).
  • STC1 As a biomarker for predicting the diagnosis and prognosis of bladder cancer patients, the expression of STC1 was confirmed in the serum and urine of healthy control patients and bladder cancer patients (FIG. 12). Increased levels of secretory STC1 were detected in the serum of bladder cancer patients compared to healthy control patients (FIG. 12A). Secreted STC1 detection was also confirmed in the urine of bladder cancer patients compared to control patients, and a tendency to vary depending on the patient's grade and T stage was confirmed. There was no difference in samples where recurrence was confirmed (FIG. 12B). These results suggest that bladder cancer can be identified by STC1 protein secreted from urine and serum of bladder cancer patients. These results confirmed that STC1 can be utilized as a biomarker candidate.
  • STC1 a novel biomarker for cancer diagnosis or prognosis prediction of the present invention, is associated with poor prognosis of cancer patients according to its expression level and is overexpressed in various cancer cell lines.
  • STC1 is a biomarker associated with proliferation, invasion and migration (metastasis) of cancer cells.
  • STC1 can be effectively used for diagnosis and prognosis of bladder cancer by detecting the serum or urine of bladder cancer patients and confirming the expression difference according to the patient's clinical stage.

Abstract

본 발명은 암의 진단용 신규한 바이오마커 및 이의 용도에 관한 것으로서, 본 발명의 암 진단 또는 예후 예측용 신규한 바이오 마커인 STC1은 발현량에 따라서 암 환자의 불량한 예후와 관련된 것을 확인하였으며, 다양한 암세포주에서 과발현 되는 것을 확인하였다. 또한, STC1이 암세포의 증식, 침윤 및 이동(전이)와 관련된 바이오마커인 것을 확인하였다. 또한, STC1이 방광암 환자의 혈청 또는 소변에서 검출되고, 환자의 임상 병기에 따른 발현 차이를 확인하여, 효과적으로 방광암의 진단 및 예후 예측에 이용될 수 있는 것을 확인하였다.

Description

다양한 암의 진단, 전이 또는 예후 예측용 신규한 바이오마커 및 이의 용도
본 발명은 다양한 암의 진단, 전이 또는 예후 예측용 신규한 바이오마커 및 이의 용도에 관한 것이다.
암이란 세포의 비정상적인 성장을 의미하며, 세포가 정상적인 조절 기전을 상실하여 지속적으로 증식하거나, 근처 조직에 침투하거나, 인체의 먼 부위로 옮겨가거나, 세포가 영양분을 섭취하는 새로운 혈관 성장을 촉진하는, 악성 종양을 뜻한다. 암성 조직(악성 종양)은 혈액과 조혈 조직에서의 종양(백혈병 및 림프종)과 “고형” 종양(고형 세포 덩어리)으로 분류할 수 있는데 이를 대개 암이라고 지칭한다. 암성 고형 종양의 종류에는 암종 또는 육종이 있으며, 특정 암은 처음 발생하는 기관 및 발생 세포 유형에 의해 추가적으로 분류된다. 백혈병과 림프종은 혈액과 조혈 조직 및 면역 체계 세포의 암이며, 백혈병은 조혈 세포에서 발생하여 골수에 있는 정상 혈액 세포의 생성을 억제하게 된다. 림프종의 암세포는 림프절을 확장시키고, 겨드랑이, 서혜부, 복부 또는 흉부에 큰 종괴를 형성하게 된다. 암종은 피부, 폐, 소화관, 내부 장기의 안쪽 세포에 발생하는 암이며, 암종의 예로서 피부, 폐, 결장, 위, 유방, 전립선, 갑상선에 발생하는 암이 있다. 육종은 중배엽 세포의 암입니다. 중배엽 세포는 일반적으로 근육, 혈관, 뼈, 그리고 결합 조직을 형성하고, 육종의 예로는 평활근육종(소화 기관의 벽에 있는 평활근의 암)과 뼈육종(골암)등이 있다.
일반적으로 암은 초기에, 의심되는 환자로부터 X-선, 초음파 쵤영, 또는 컴퓨터 단층 촬영을 실시하여 종양 형성을 확인할 수 있지만, 확인된 종양이 암인지는 추가적인 진단으로 파악하게 된다. 암을 구체적으로 진단하기 위해서는 생검 또는 수술을 통해서 종양 조작을 채취하고 의심 부위의 검체를 현미경으로 검사하여 암세포를 확인하게 된다. 또한, 검진 결과 또는 영상 결과 암이 의심될 경우, 종양 표지자(특정 종양이 혈류로 분비하는 물질)의 수치를 측정하여 암 진단을 위한 추가적인 증거를 확보할 수 있으며, 특정 암을 진단 받은 사람의 경우 치료 효과를 모니터링하고 암 재발 가능성을 감지하기 위해 종양 표지자가 유용하게 이용될 수 있다. 일부 암의 경우 치료 후에 종양 표지자 수준이 낮아졌다가 암이 재발하면 다시 높아지며, 일부 종양 표지자는 혈액을 포함한 생체 시료에서 검출이 가능하지만, 종양 조직에서만 검출가능한 표지자도 존재한다. 이러한 종양 표지자를 흔히 바이오마커(biomarker)라고 한다.
한편, 방광암은 비뇨기계 암 중에서는 가장 흔한 암이며, 사회가 점차 고령화되어감에 따라 방광암으로 진단 받는 환자들의 수는 증가되고 있다. 방광암 환자들이 진단 받을 시, 약 70%가 방광의 근육층으로 침범하지 않은 표재성 방광암으로 진단 받으며, 치료 시 5년 생존율은 70%에 달한다. 그러나 그 중 50% 이상이 재발 시 표재성 방광암으로 나타날 뿐만 아니라 일부 환자들은 근육층까지 침범한 침윤성 방광암 또는 전이성 방광암으로 나타난다. 방광암 환자들의 성공적인 치료에 가장 큰 문제점은 항암제 내성과 빈번한 재발이다. 이러한 이유로 방광암 환자들은 지속적인 모니터링이 필요하기 때문에 고비용과 검사 후 부작용이 있는 방광경 검사를 빈번하게 시행한다. 또한, 화학 항암제 요법과 같은 치료에도 불구하고 방광암 환자의 재발 문제는 계속해서 삶의 질을 저하시키고 재정적 고통을 유발한다. 따라서 방광암 진단이 보다 안전하고 간편하며, 환자의 항암제 내성 및 예후 예측까지 가능한 바이오마커 개발이 필수적이다.
본 발명의 목적은, 암의 진단, 전이 또는 예후 예측을 위한 신규한 STC1(Stanniocalcin-1) 바이오마커를 제공하는 것이다.
본 발명의 다른 목적은 STC1(Stanniocalcin-1)의 발현수준을 측정할 수 있는 제제를 포함하는, 암의 진단, 전이 또는 예후 예측용 바이오마커 조성물을 제공하는 것이다.
본 발명의 또 다른 목적은, 상기의 조성물을 포함하는 암의 진단, 전이 또는 예후 예측용 키트를 제공하는 것이다.
본 발명의 또 다른 목적은 개체로부터 생물학적 시료를 분리하는 단계;
상기 분리된 생물학적 시료에서 STC1(Stanniocalcin-1)의 발현수준을 측정하는 단계; 및
상기 STC1의 발현 수준을 대조군의 기준치와 비교하는 단계;를 포함하는 암의 진단, 전이 또는 예후 예측을 위한 정보 제공 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 개체로부터 생물학적 시료를 분리하는 단계;
상기 분리된 생물학적 시료에 후보 물질을 처리하는 단계;
상기 후보물질이 처리된 생물학적 시료에서 STC1(Stanniocalcin-1)의 발현 수준을 측정하는 단계; 및
상기 STC1의 발현 수준을 대조군의 기준치와 비교하는 단계;를 포함하는 항암제의 스크리닝 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 개체로부터 생물학적 시료를 분리하는 단계;
상기 분리된 생물학적 시료에서 STC1(Stanniocalcin-1)의 발현수준을 측정하는 단계; 및
상기 STC1의 발현 수준을 대조군의 기준치와 비교하는 단계;를 포함하는 암의 진단, 전이 또는 예후 예측 방법을 제공하는 것이다.
상기와 같은 본 발명의 목적을 달성하기 위해서, 본 발명은 암의 진단, 전이 또는 예후 예측을 위한 신규한 STC1(Stanniocalcin-1) 바이오마커를 제공한다.
또한, 본 발명은 STC1(Stanniocalcin-1)의 발현수준을 측정할 수 있는 제제를 포함하는, 암의 진단, 전이 또는 예후 예측용 바이오마커 조성물을 제공한다.
또한, 본 발명은 상기의 조성물을 포함하는 암의 진단, 전이 또는 예후 예측용 키트를 제공하는 것이다.
또한, 본 발명은 개체로부터 생물학적 시료를 분리하는 단계;
상기 분리된 생물학적 시료에서 STC1(Stanniocalcin-1)의 발현수준을 측정하는 단계; 및
상기 STC1의 발현 수준을 대조군의 기준치와 비교하는 단계;를 포함하는 암의 진단, 전이 또는 예후 예측을 위한 정보 제공 방법을 제공한다.
또한, 본 발명은 개체로부터 생물학적 시료를 분리하는 단계;
상기 분리된 생물학적 시료에 후보 물질을 처리하는 단계;
상기 후보물질이 처리된 생물학적 시료에서 STC1(Stanniocalcin-1)의 발현 수준을 측정하는 단계; 및
상기 STC1의 발현 수준을 대조군의 기준치와 비교하는 단계;를 포함하는 항암제의 스크리닝 방법을 제공한다.
또한, 본 발명은 개체로부터 생물학적 시료를 분리하는 단계;
상기 분리된 생물학적 시료에서 STC1(Stanniocalcin-1)의 발현수준을 측정하는 단계; 및
상기 STC1의 발현 수준을 대조군의 기준치와 비교하는 단계;를 포함하는 암의 진단, 전이 또는 예후 예측 방법을 제공한다.
본 발명의 암 진단 또는 예후 예측용 신규한 바이오 마커인 STC1은 발현량에 따라서 암 환자의 불량한 예후와 관련된 것을 확인하였으며, 다양한 암세포주에서 과발현 되는 것을 확인하였다. 또한, STC1이 암세포의 증식, 침윤 및 이동(전이)와 관련된 바이오마커인 것을 확인하였다. 또한, STC1이 방광암 환자의 혈청 또는 소변에서 검출되고, 환자의 임상 병기에 따른 발현 차이를 확인하여, 효과적으로 방광암의 진단 및 예후 예측에 이용될 수 있는 것을 확인하여, 관련 산업에 유용하게 이용할 수 있다.
도 1은 T24(P0) 및 GRC1-P15(P15) 세포의 조건 배지의 확인 및 정량 비교를 나타낸 것이다. (a) P0 및 P15 세포에 혈청이 제외된 배지로부터 LC-MS/MS을 사용하여 분비 단백질 확인을 위한 분비체 분석 과정을 나타낸 개략도이다. 3개 독립된 세포 조건 배지에서 P0 및 P15 세포의 조건 배지에 대한 다양한 분비 단백질 발현을 나타내는 히트맵이다. 오른쪽 그림은 P0 및 P15 세포 배양액으로부터 유래한 조정 배지에서 STC1 단백질 발현 및 ponceau 염색 결과를 나타낸 것이다. (b) P0 및 P15 세포 조건 배지에서 확인된 단백질의 수를 나타낸 벤다이어그램이다. P0 세포에 비해 P15 세포의 조정 배지에서 가장 유의미하게 변한 상위 13개 표준 경로를 나타낸 것이다. (c) P0 및 P15 세포의 조건 배지 사이에서, P15에서 특이적으로 확인된 386개의 단백질들을 위치 및 과발현에 따라 요약하여 총 27개의 단백질로 표시한 것이다.
도 2 (a) 및 (b)는 인체 섬유아세포(Nuff)와 비교하여 교모세포종(U251), 폐암(A549, H460), 대장암(LoVo, HCT116), 전립선암(DU145, PC3), 방광암(T24, 5637), 유방암(MDA-MB231, SKBR3), 췌장암(Miapaca2, CFPAC1), 위암(AGS), 난소암(SKOV3) 세포주의 세포 용해물(cell lysate) 및 세포주 배양 조정 배지에서 STC1 발현 및 분비성 STC1 단백질의 발현을 비교한 결과이다.
도 3은 STC1이 방광암에서 좋지 않은 예후를 예측하는 인자임을 나타낸 것이다. (a) 3개 방광암 코호트에서 STC1 발현 수치의 Boxplot이다. (b) 3개의 방광암 코호트에 대한 설명 표이다. (c) STC1과 연관된 유전자들의 발현 프로파일을 나타낸 것이다. 발현 수준이 STC1과 밀접하게 연관된 총 367개 유전자를 클러스터 분석을 위해 선별하였다(Pearson correlation test, P < 0.001, |r| > 0.4). 해당 환자는 STC1 발현이 높은 high 및 낮은 low, 두 그룹으로 나누었다. 한국인 방광암 환자 코호트(GSE13507)에서 STC1 발현에 따른 무진행(Progression-free) 및 암 특이(cancer specific) 생존을 나타낸 것이다. (d) DAVID software를 사용하여 결정한 Gene Ontology 기반 생물학적 기능을 나타낸 것이다. 유의성의 한계값은 P < 0.001 및 FDR < 0.25이다. 또한 오른쪽 도표는 STC1과 밀접하게 연관되는 발현 수준을 갖는 총 367개 유전자 중 21개 유전자를 나타낸 것이다. (e) STC1-연관 유전자의 유전자 발현 프로파일을 나타낸 것이다. 한국인 방광암 환자 코호트(GSE13507)로부터 수득한 367개 유전자 중, Lund 코호트에 공통적으로 포함되는 345개 유전자를 분석하였다. 환자는 STC1 high 및 STC1 low의 두 그룹으로 나누었으며, 그래프는 Lund 코호트에서 STC1 발현에 따른 무진행(Progression-free) 및 암 특이(cancer specific) 생존을 나타낸 것이다. (f) STC1-유전자의 유전자 발현 프로파일을 나타냈으며, 한국인 방광암 환자 코호트(GSE13507)로부터 수득한 367개 유전자 중, 연세 코호트와 공통으로 포함하는 308개 유전자를 분석하였다. 환자는 STC1 high 및 STC1 low의 두 그룹으로 나누었으며, 그래프는 연세 코호트에서 STC1 발현에 따른 암 특이(cancer specific) 생존을 나타낸 것이다.
도 4은 STC1의 발현조절이 방광암 세포의 성장 및 증식을 조절한다는 내용을 나타낸 것이다. (a) 및 (b)는 STC1 과발현 및 녹다운 세포 각각에서 qRT-PCR 및 웨스턴 블롯 결과로서, STC1 mRNA 및 단백질 발현 수준을 나타낸 것이다. (b) STC1 과발현 벡터(pSTC1) #1, #2, 및 #3을 형질주입한 세포주들과 STC1 녹다운 siRNA (siSTC1) #1, #2, 및 #3을 형질주입한 세포주들의 생존률을 MTT 실험을 통해 수행한 결과이다. (c) 3가지 후보군들 중에서 가장 STC1 과발현 및 녹다운 효율이 좋은 pSTC1#1 과 siSTC#2를 형질주입한 세포의 클론원성 검정 결과이다. 데이터는 적어도 3회의 독립 실험으로부터의 평균 ± SD로 나타냈다. **, P < 0.01; ***, P < 0.001.
도 5는 STC1가 방광암 세포의 증식, 침습, 및 이동을 촉진함을 나타낸다. (a) 대조군 세포와 STC1 overexpressing (STC1 OE), 즉 STC1 과발현 세포주에서 STC1 mRNA 및 단백질의 발현 수준을 나타낸 결과이다. (b) 왼쪽 그래프는 대조군 세포와 비교하여 STC1 과발현 세포에서 세포의 생존률을 확인한 MTT 검정 결과이다. 오른쪽은 대조군 세포와 비교하여 STC1 과발현 세포의 종양형성에 대한 효과를 나타내는 클론원성 검정 결과이다. (c) 대조군 세포와 비교하여 STC1 과발현 세포의 트랜스웰을 이용한 세포 침습 및 이동 검정 결과이다. **, P < 0.01; ***, P < 0.001
도 6은 한국인 방광암 환자 데이터세트에서 (a) STC1과 EMT-관련 유전자 (11 genes, VIM, ZEB1, ZEB2, SNAI1, TWIST1, TWIST2, MMP1, MMP3, MMP9, NCAD, 및 CD44)의 양의 상관관계 연관성 및 (b) STC1과 mesenchymal-epithelial transition (MET)-관련 유전자 (3 genes, SDC1, SDC2, 및 ECAD)의 음의 상관관계 연관성을 나타낸 것이다.
도 7은 방광암 세포에서 STC1 발현이 EMT-관련 유전자들의 발현을 증가시킴을 나타낸 결과이다. (a) 대조군 세포(pcDNA)와 비교하여 STC1 과발현 벡터(pSTC1)를 형질주입한 세포에서 발현된 EMT 및 MET-관련 유전자들 (MMP1, MMP2, MMP9, VIM, SNAIL, SLUG, ZEB1, ZEB2, TWIST, NCAD, SDC1, SDC2, 및 ECAD)의 mRNA 수준을나타낸 것이다. (b) 그 중 확인된 EMT, MET 관련 유전자들 (MMP1, MMP2, MMP9, NCAD, VIM, SNAIL, 및 ECAD)의 단백질 발현을 대조군 세포(pcDNA)와 비교한 웨스턴 블롯 분석 결과이다. ns, no significant; *, P < 0.05; **, P < 0.01; ***, P < 0.001.
도 8은 STC1 과발현이 생체 내에서 종양의 성장을 촉진함을 나타낸 것이다. (a) 마우스 종양형성 실험 공정을 나타낸 공정도이다. 피하 주입은 마우스 환경 적응 기간 후 7일째에 이루어졌으며 무작위로 2개 그룹(그룹 당 n = 7; Con (Control, 대조군 세포), STC1 OE (STC1 overexpressing, STC1 과발현 세포)으로 나누었다. 마우스 옆구리에 대조군 및 STC1 과발현 세포 (1×106 세포)를 주입하고 매주 체중을 측정했다. (b) 마지막 측정 후 마우스를 희생시켜 종양 조직을 회수하였다. 35일간 캘리퍼스로 종양 부피를 측정한 결과를 나타낸 것이다. 오른쪽 그림은 마우스로부터 수술적으로 제거한 종양의 이미지이다. (c) STC1 과발현 세포 주입에 의한 마우스 종양 조직에서 면역조직화학적으로 H&E 및 STC1 발현을 확인한 염색 사진 결과이다. *, P < 0.05; **, P < 0.01; ***, P < 0.001.
도 9는 STC1 과발현이 생체 내에서 종양의 폐 전이를 촉진함을 나타낸 것이다. (a) 마우스 종양 전이 실험 공정을 나타낸 공정도이다. 정맥 내 주입은 마우스 환경 적응 기간 후 7일째에 이루어졌으며 무작위로 2개 그룹(그룹 당 n = 7; Con (Control, 대조군 세포), STC1 OE (STC1 overexpressing, STC1 과발현 세포)으로 나누었다. 마우스의 꼬리 정맥으로 대조군 및 STC1 과발현 세포 (5×105 세포)를 주입하고 매주 체중을 측정했다. (b) 대조군 및 STC1 과발현 세포 주입으로 형성된 폐 전이가 확인된 마우스 폐 조직의 이미지와 개수를 확인한 결과이다. 오른쪽 그림은 H&E, Ki67 및 STC1을 면역조직화학염색법을 통해 확인한 결과이다. (c) 방광암 환자 Grade 1, 2, 및 3 단계의 방광암 조직의 H&E 염색 및 STC1 발현 정도를 면역조직염색화학법에 의해 나타난 결과이다. *, P < 0.05.
도 10은 STC1 과발현 세포의 조정 배지를 처리한 방광암 세포의 이동 및 침습이 촉진되고, 방광암 세포에서 분비성 STC1 단백질 발현을 확인한 결과이다. (a) 왼쪽은 대조군 및 STC1 과발현 세포의 조정배지 속 STC1 단백질을 확인한 결과이다. 오른쪽은 대조군 및 STC1 과발현 세포의 조정배지를 처리한 방광암 세포의 MTT 검정 결과를 나타낸 것이다. (b) 대조군 및 STC1 과발현 세포의 조정배지를 처리한 방광암 세포의 콜로니 형성 능력이 개선됨을 나타낸 것이다. (c) 대조군 및 STC1 과발현 세포의 조정배지를 처리한 방광암 세포의 침습 및 이동 검정 결과를 나타낸 것이다. (d) 방광암 세포가 배양된 플레이트에 상처를 내고, 대조군 및 STC1 과발현 세포의 조정배지를 처리하여 24시간 후에 회복된 상처 영역(%) 이미지를 나타낸 것이다. 오른쪽은 대조군 및 STC1 과발현 세포의 조정배지를 처리한 방광암 세포의 EMT 마커의 웨스턴 블롯 분석 결과이다. (e) P0 및 P15 세포, 대조군 및 STC1 과발현 벡터 형질주입한 세포, 대조군 및 STC1 과발현 세포에서 분비성 STC1 단백질 발현을 ELISA 검정 결과이다. (f) 도 10에서 확인한 마우스 혈청에서 분비성 STC1 단백질을 ELISA 검정을 통해 확인한 결과이다. **, P < 0.01; ***, P < 0.001.
도 11은 방광암 세포에서 분비성 STC1 단백질이 세포의 증식 및 전이 능력을 증가시킴을 나타낸 것이다. (a) recombinant human STC1 (rhSTC1)을 배지에 처리한 P0 및 P15에서 세포의 증식을 MTT 검정을 통해 확인한 결과이다. (b) rhSTC1을 배지에 첨가하여 P0 세포에서 콜로니 형성, 세포의 침습 및 이동 능력을 확인한 결과이다. (c) rhSTC1에 의해 증가된 방광암 세포에 STC1 항체 (STC1 antibody, ab)에 의해 중화되는 침습 및 이동 능력을 확인한 결과이다. 오른쪽 그림은 rhSTC1에 의한 p-FAK 활성화를 확인한 웨스턴 블롯 결과이다. *, P < 0.05; **, P < 0.01
도 12는 방광암 환자의 혈청 및 소변 샘플에서 분비성 STC1 단백질을 확인함으로서 바이오마커로서 가능성을 확인한 결과이다. (a) 건강한 개체 및 방광암 환자의 혈청 샘플에서 ELISA 검정을 통해 확인한 STC1 농도를 나타낸 것이다. 데이터를 포함하는 스캐터 플롯은 ELISA 검정에 의해 혈청 내 STC1의 수준을 측정한 범위 및 분포를 나타내기 위해 가리키는 것이다. 방광암 환자를 Grade, stage, recurrence로 나누어 비교한 결과를 나타낸다. (b) 건강한 개체 및 방광암 환자의 소변 샘플에서 ELISA 검정을 통해 확인한 STC1 농도를 나타낸 것이다. 데이터를 포함하는 스캐터 플롯은 ELISA 검정에 의해 소변 내 STC1의 수준을 측정한 범위 및 분포를 나타내기 위해 가리키는 것이다. 방광암 환자를 Grade, stage, recurrence로 나누어 비교한 결과를 나타낸다. ***, P < 0.001.
이하 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명한다. 이하의 설명에 있어, 당업자에게 주지 저명한 기술에 대해서는 그 상세한 설명을 생략할 수 있다. 또한, 본 발명을 설명함에 있어서, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 수 있다. 또한, 본 명세서에서 사용되는 용어(terminology)들은 본 발명의 바람직한 실시예를 적절히 표현하기 위해 사용된 용어들로서, 이는 사용자, 운용자의 의도 또는 본 발명이 속하는 분야의 관례 등에 따라 달라질 수 있다.
따라서 본 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 발명은, 암의 진단, 전이 또는 예후 예측을 위한 신규한 STC1(Stanniocalcin-1) 바이오마커를 제공한다.
본 발명의 “STC1(Stanniocalcin-1)”은 뼈 물고기(bony fishe)에서 처음 발견된 호르몬인 stanniocalcin의 상동체인 당 단백질로서, 인간에서는 STC1 유전자에 의해 코딩되며, 매우 다양한 조직에서 발현되고 자가분비 또는 파라크린 기능을 가질 수 있는 분비된 동종이량체 당단백질 암호화한다. 현재까지 인간 STC1의 알려진 기능은 SUMOylation 경로에서 SUMO E3 유비퀴틴 리가아제 활성만이 보고되었다. STC1은 세포질, 미토콘드리아, 소포체 및 세포핵에서 많은 단백질과 상호작용하는 것으로 알려져 있다.
본 발명에서, 사용된 용어 “진단”은 특정 질병 또는 질환에 대한 한 객체의 감수성(susceptibility)을 판정하는 것, 한 객체가 특정 질병 또는 질환을 현재 가지고 있는 지 여부를 판정하는 것, 특정 질병 또는 질환에 걸린 한 객체의 예후(prognosis)(예컨대, 전-전이성 또는 전이성 암 상태의 동정, 암의 단계 결정 또는 치료에 대한 암의 반응성 결정)를 판정하는 것, 또는 테라메트릭스(therametrics)(예컨대, 치료 효능에 대한 정보를 제공하기 위하여 객체의 상태를 모니터링 하는 것)을 포함한다.
용어, "예후"는 암이 진단된 이후에 암의 완치 가능성, 치료 후 재발 가능성, 환자의 생존 가능성 등 암에 따른 환자의 각종 상태를 예측하는 것을 말한다. 암의 예후는 다양한 관점에서 추정될 수 있지만, 대표적으로 재발가능성, 생존가능성, 무병생존가능성의 관점에서 판단될 수 있다. 본 발명의 목적상 예후는 암의 진단 이후 생존의 예후를 의미할 수 있다. 본 발명에서 제공하는 바이오 마커를 사용하면, 암 환자의 생존 예후를 보다 용이하게 예측할 수 있어, 고 위험군의 환자를 분류하거나, 추가 필요한 치료 방법의 사용 여부를 결정하는 데 활용할 수 있고, 이로써 암 발병 후의 생존율을 높이는 데 기여할 수 있다.
본 발명에서 용어 "(바이오)마커, 진단하기 위한 마커 또는 진단 마커(diagnosis marker)"란 암이 발생한 세포 또는 조직을 정상 세포 또는 조직과 구분하여 판정할 수 있는 물질로, 정상 세포에 비하여 암을 가진 세포에서 증가 양상을 보이는 폴리펩타이드 또는 핵산(예: mRNA 등), 지질, 당지질, 당단백질, 당(단당류, 이당류, 올리고당류 등) 등과 같은 유기 생체 분자 등을 포함한다.
또한, 본 발명은 STC1(Stanniocalcin-1)의 발현수준을 측정할 수 있는 제제를 포함하는, 암의 진단, 전이 또는 예후 예측용 바이오마커 조성물을 제공한다.
상기 조성물은 STC1의 유전자 또는 단백질 발현수준을 측정하는 것이며, 상기 유전자 또는 이의 단편의 발현 수준을 확인하는 방법에 사용되는 제제는 시료에 포함된 해당 miRNA 또는 이의 단편의 발현 여부를 확인하는 방법에 사용되는 제제를 의미하는데, 예를 들어, RT-PCR, 경쟁적 RTPCR(Competitive RT-PCR), 실시간 RT-PCR(Real-time RT-PCR), RNase 보호 분석법(RPA; RNase protection assay), 노던 블럿팅(Northern blotting), 유전자 칩 분석법 등의 방법에 사용되는 표적 유전자에 특이적으로 결합할 수 있는 프라이머, 프로브 또는 항체가 될 수 있으나, 특별히 이에 제한되지는 않는다.
본 발명에서 사용되는 용어 "프라이머"란, 짧은 자유 3말단 수산화기(free 3' hydroxylgroup)를 가지는 핵산서열로 상보적인 템플레이트(template)와 염기쌍(base pair)을 형성할 수 있고 템플레이트 가닥 복사를 위한 시작지점으로 기능을 하는 짧은 핵산 서열을 의미한다. 프라이머는 적절한 완충용액 및 온도에서 중합반응(즉, DNA 폴리머레이즈 또는 역전사효소)을 위한 시약 및 상이한 4가지 뉴클레오사이드 트리포스페이트의 존재하에서 DNA 합성을 개시할 수 있다.
본 발명에서 사용되는 용어 "프로브"란, 유전자 또는 mRNA와 특이적 결합을 이룰 수 있는 짧게는 수 염기 내지 길게는 수백 염기에 해당하는 RNA 또는 DNA 등의 핵산 단편을 의미하는데, 올리고뉴클레오티드(oligonucleotide) 프로브, 단쇄 DNA(single stranded DNA) 프로브, 이중쇄 DNA(double stranded DNA) 프로브, RNA 프로브 등의 형태로 제작될 수 있고, 보다 용이하게 검출하기 위하여 라벨링될 수 있다.
상기 단백질의 발현 수준을 측정할 수 있는 제제는 상기 STC1에 특이적으로 결합하는 항체, 엡타머, 올리고펩타이드 또는 PNA(Peptide nucleic acid), 또는 상기 단백질을 코딩하는 유전자에 특이적인 상보적 서열을 갖는 프라이머 또는 프로브 등을 포함할 수 있으나, 이에 제한되지 않는다.
본 발명의 일실시예에 따르면, 상기 STC1은 서열번호 1의 염기서열을 포함하는 것일 수 있다.
본 명세서에 사용되는 "폴리뉴클레오타이드" (또는 뉴클레오타이드, 핵산)는 DNA(gDNA 및 cDNA) 그리고 RNA 분자를 포괄적으로 포함하는 의미를 가지며, 핵산 분자에서 기본 구성 단위인 뉴클레오타이드는 자연의 뉴클레오타이드 뿐만 아니라, 당 또는 염기 부위가 변형된 유사체(analogues)도 포함한다.
본 발명의 폴리뉴클레오타이드는 특정의 아미노산 서열(폴리펩타이드)을 암호화하는 핵산 분자에 제한되지않고, 특정 아미노산 서열에 대하여 실질적인 동일성을 나타내는 아미노산 서열 또는 그에 상응하는 기능을 갖는 폴리펩타이드를 암호화하는 핵산 분자를 포함하는 것으로 해석된다.
본 발명의 일실시예에 따르면, 상기 암은 방광암, 유방암, 교모세포종, 전립선암, 뇌척수종양, 두경부암, 폐암, 흉선종, 중피종, 식도암, 위암, 대장암, 간암, 췌장암, 담도암, 신장암, 고환암, 생식세포종, 난소암, 자궁 경부암, 자궁 내막암, 림프종, 급성 백혈병, 만성 백혈병, 다발성 골수종, 육종, 악성 흑색종 및 피부암으로 이루어진 군에서 선택된 것일 수 있다.
본 발명의 일실시예에 따르면, 상기 STC1의 발현이 대조군의 기준치와 비교하여 증가되면, 암세포의 성장, 침습(invasion) 또는 이동(migration)이 증가되는 것일 수 있다.
본 발명의 일실시예에 따르면, 상기 STC1의 발현이 대조군의 기준치와 비교하여 증가되면, 암의 임상 병기(clinical stage)가 증가되는 것일 수 있다.
본 발명에 따른 암 진단 및 예후 추정 방법은 암의 심각성 정도(임상 병기)를 판단하는데 사용될 수 있다. 예를 들면, 양성 대조군 및 음성 대조군의 프로파일과 비교하여, 경증, 중간 정도 또는 중증으로 평가될 수 있다. 나아가 일정한 암 집단에 대한 마커 프로파일 분석을 수행하여, 프로파일 결과를 근거로 일정 기준에 따라 분류할 수 있다.
본 발명의 일실시예에 따르면, 상기 STC1은 개체로부터 분리된 시료에서 측정되는 것일 수 있으며, 상기 시료는 조직, 세포, 전혈, 혈청, 혈장, 타액, 객담, 뇌척수액 및 소변으로 이루어진 군에서 선택되는 것일 수 있으나, 바람직하게는 혈청 또는 소변이나 이에 제한되지는 않는다.
또한, 본 발명은 상기의 조성물을 포함하는 암의 진단, 전이 또는 예후 예측용 키트를 제공하는 것이다.
본 발명의 용어 "키트"란, 특정한 목적을 위해 필요한 조성물 및 부속품들을 모아놓은 세트를 의미한다. 본 발명의 목적상, 본 발명의 키트는 암의 진단 또는 예후를 확인하는 것이다. 본 발명의 키트에는 암의 진단 또는 예후를 확인하기 위한 프라이머, 프로브, 선택적으로 펩타이드를 인지하는 항체 또는 암 발병시 특이적으로 발현이 변화되는 특정 펩타이드를 인지하는 항체뿐만 아니라 분석방법에 적합한 한 종류 또는 그 이상의 다른 구성성분 조성물, 용액 또는 장치가 포함될 수 있다.
또한, 본 발명은 개체로부터 생물학적 시료를 분리하는 단계;
상기 분리된 생물학적 시료에서 STC1(Stanniocalcin-1)의 발현수준을 측정하는 단계; 및
상기 STC1의 발현 수준을 대조군의 기준치와 비교하는 단계;를 포함하는 암의 진단, 전이 또는 예후 예측을 위한 정보 제공 방법을 제공한다.
본 발명의 일실시예에 따르면, 상기 생물학적 시료는 조직, 세포, 전혈, 혈청, 혈장, 타액, 객담, 뇌척수액 및 소변으로 이루어진 군에서 선택되는 것일 수 있다.
본 발명의 일실시예에 따르면, 상기 STC1의 발현이 대조군의 기준치와 비교하여 증가되면, 암인 것으로 판단하는 것일 수 있다.
본 발명의 일실시예에 따르면, 상기 STC1의 발현이 대조군의 기준치와 비교하여 증가되면, 암세포의 성장, 침습(invasion) 또는 이동(migration)이 증가된 것으로 판단하는 것일 수 있다.
본 발명의 일실시예에 따르면, 상기 STC1의 발현이 대조군의 기준치와 비교하여 증가되면, 암의 임상 병기(clinical stage)가 증가된 것으로 판단하는 것일 수 있다.
또한, 본 발명은 개체로부터 생물학적 시료를 분리하는 단계;
상기 분리된 생물학적 시료에 후보 물질을 처리하는 단계;
상기 후보물질이 처리된 생물학적 시료에서 STC1(Stanniocalcin-1)의 발현 수준을 측정하는 단계; 및
상기 STC1의 발현 수준을 대조군의 기준치와 비교하는 단계;를 포함하는 항암제의 스크리닝 방법을 제공한다.
본 발명의 일실시예에 따르면, 상기 STC1의 발현이 대조군의 기준치와 비교하여 저발현 되면, 항암효과가 있는 것으로 판단하는 것일 수 있다.
또한, 본 발명은 개체로부터 생물학적 시료를 분리하는 단계;
상기 분리된 생물학적 시료에서 STC1(Stanniocalcin-1)의 발현수준을 측정하는 단계; 및
상기 STC1의 발현 수준을 대조군의 기준치와 비교하는 단계;를 포함하는 암의 진단, 전이 또는 예후 예측 방법을 제공한다.
이하 본 발명을 실시예에 의하여 더욱 상세하게 설명한다. 하기 실시예는 단지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 국한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
실시예 1. 신규 바이오마커 발굴 및 기능 평가를 위한 준비
1. 세포 배양
인간 방광암 세포주인 T24, 5637, UC3, UC5 및 UC14는 American Type Culture Collection (ATCC)에서 구입하고 RT4 세포주는 Korean Cell Line Bank (KCLB)에서 구입하였다. T24, UC3, UC5, UC14 및 RT4 세포주는 DMEM(Dulbecco’s modified Eagle’s medium)에 배양하고 5637 세포주는 10% FBS (Capricorn Scientific GmbH, Ebsdorfergrund, Germany) 및 1% penicillin/streptomycin (Capricorn Scientific GmbH, Ebsdorfergrund, Germany)이 첨가된 RPMI 1640에 배양하였다. 모든 세포주는 37℃, 5% CO2의 습한 대기에서 배양하였다.
2. 조정 배지(Conditioned Medium; CM)로부터 분비된 단백질의 수확
무혈청 조정 배지(CM)를 6시간 동안 40 ml의 무혈청 배지로 배양된 T24(P0), P15 (150 mm 디쉬)로 제조하였다. 배지를 수집하고 1,000 rpm에서 10분간 세포 잔해를 제거하였다. 조정 배지를 4℃에서 2시간 동안 3,850 rpm에서 VIVASPIN (GE Healthcare, USA)으로 농축하였다.
3. LC-MS/MS에 의한 프로테오믹 분석
단백질 농도를 BCA 검정으로 확인하고 추후 연구를 위해 샘플을 -70℃에서 보관하였다. 10 ㎍의 단백질 샘플을 12% SDS-PAGE 겔로 분리하고, 이 겔을 Coomassie Brilliant Blue R-250 buffer로 염색하였다. 이전 문헌에 기재된 방법에 따라 인-겔 분해(In-gel digestion)를 구성하였다 [Schevchenko A. et al., Nature Protocols 2006;1(6)2856-2860]. 겔을 분자량에 따라 4 부분으로 나누었다. 겔 분획을 탈염한 후 단백질의 시스테인의 환원 및 알킬화 후 트립신으로 분해하였다. 분해된 펩티드를 추출 용액 버퍼로 추출하였다. 분해된 펩티드를 0.02% 포름산 및 0.5% 아세트산을 함유하는 10 ㎕의 샘플 용액에 용해시켰다. LC-MS/MS 분석을 각 샘플마다 적어도 3회 실시하였다.
4. STC1 과발현 벡터 구성 및 Small-interference RNAs (siRNA)를 이용한 녹다운
인간 STC1을 암호화하는 플라스미드 발현 벡터의 트랜스펙션을 위해, STC1의 서열을 코딩하는 cDNA를 기질로서 정상 인간 조직으로부터 RT-PCR로 클로닝하고 PCR 산물을 pcDNA/His B 벡터로 서브클로닝하였다. HindIII-BamHI 제한 부위 측면의 STC1 오픈 리딩 프레임을 포함하는 DNA 시퀀싱을 T24 세포로부터 PCR 증폭하였다. 내인성 STC1의 녹다운을 위해, 세포를 siSTC1 올리고뉴클레오티드로 트렌스펙션시켰다. siSTC1 올리고뉴클레오티드를 Dharmacon SMARTPool에서 구입하였다. scRNA(scrambled siRNA) 또는 siSTC1 트랜스펙션을 ~100 nM의 최종 siRNA 농도에서 실시하였다. 녹다운 효율을 각각 qRT-PCR 또는 웨스턴 블롯 분석을 이용해 확인하였다.
5. MTT 및 콜로니 형성 검정
1 x 103 세포를 96-웰 플레이트의 각 웰에 배양하였다. DMEM를 제거하고 세포 시간 위치를 기록하고 이동 비율을 0, 24, 48 및 72 시간 후에 각각 측정하였다. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)를 사용하여 각 웰에 첨가한 후 1시간 동안 인큐베이션하고 Dimethyl Sulfoxide (DMSO)를 첨가하였다. 540 nm에서의 흡광도를 spectrophotometer microplate reader로 측정하고 세포 생존률을 대조 세포와 비교한 퍼센트로 계산하였다.
1 x 103 세포를 6-웰 플레이트의 각 웰에 배양하고 눈에 보이는 콜로니가 형성될 때까지 7일까지 배양하였다. 콜로니를 4% 포름알데히드로 10분간 고정하고 0.1% 크리스탈 바이올렛 용액을 1시간 동안 각각 염색하였다. 콜로니 수를 Image J software를 사용하여 수동으로 계수하였다.
6. 세포 침입 및 이동 검정
세포의 침입 능력을 트렌스웰 검정을 사용하여 Boyden chamber에서 측정하였다. 4×104 세포를 매트리겔(matrigel) 코팅된 챔버에 로딩한 후 24시간 동안 배양하였다. 세포의 조정배지(CM)에 의한 세포 침입 분석의 경우에, CM에 의한 세포의 침입 또는 이동 능력을 확인하기 위해, 세포를 1:1 비율의 기본 조성 및 조정배지에서 24시간 동안 처리하여 침입 또는 이동 능력을 확인하였다.
7. 상처 회복 분석(Wound Healing Assay)
세포를 6-웰 플레이트에 접종하고 90% 까지 가득 찰 때까지 24시간 동안 배양하였다. P200 피펫의 옐로우 팁으로 플레이트의 표면에 상처를 만든 후, 세포를 PBS로 여러 번 세척하여 세포 잔해를 제거하고 세포를 5% CO2, 37℃에서 배양하였다. 24시간 후, 세포를 광현미경으로 시각화시켰다. 그 후, 상처난 부분의 사진을 시간 간격을 두고 촬영하였다. 3개의 무작위 필드를 표시하여 측정하였다. 이동 인덱스를 대조 세포에 대한 처리 세포의 이동 거리의 비율로 표시하였다.
8. qRT-PCR(Quantitative real-time polymerase chain reaction)
총 RNA를 RNAiso reagent (Takara)를 사용하여 분리하였다. RNA 정량 체크를 spectrophotometer (ND-1000)를 사용하여 평가하였다. 일차 가닥 cDNA 합성을 PrimeScriptTM RT reagent Kit (Takara)를 사용하여 1 ㎍ 총 RNA로부터 평가하였다. qRT-PCR을 TB Green Premix Ex Taq (Takara) 및 CFX 96 real-time PCR Detection system (BioRad)을 이용하여 실시하였다. 사용된 프라이머 세트 서열을 표 1에 나타냈다. 정량 평가의 재연성은 3회의 독립적인 cDNA 합성 및 RNA의 각 제조로부터의 PCR 증폭으로 평가하였다. mRNA 분석을 위해, 데이터를 내인성 대조로서 GAPDH에 대해 표준화하고 폴드 체인지(fold change)를 상대적 정량(2-ΔΔCt)을 통해 계산하였다.
[표 1]
Figure PCTKR2022008902-appb-img-000001
9. 웨스턴 블롯 분석 및 항체
웨스턴 블롯 분석을 제조사의 지시사항에 따라 실시하였다. 세포를 PBS를 사용해 첫 번째로 세척한 후 단백질을 radio immunoprecipitation (RIPA) buffer (Ambion, 150 mM NaCl, 0.5% sodium deoxycholate, 0.1% SDS, 50 mM Tris, pH 8.0, protease inhibitor cocktail, 및 phosphatase inhibitor)로 분리하고 원심분리하였다(12,000 g, 15 min, 4℃). 단백질의 양을 BCA assay kit (Thermo Fisher Scientific)를 사용하여 평가한 후, 10-12% SDS-polyacrylamide gel electrophoresis (SDS-PAGE)를 실시하고 니트로셀룰로오스(NC) 맴브레인(GE healthcare)으로 전기적으로 옮겼다. 그런 다음 0.05% TBS-T 중의 5% 무지방 우유를 이용해 맴브레인을 차단하였다. STC1(Santa Cruz Biotech)에 대한 항체는 MMP-1 (Santa Cruz Biotech), MMP2 (Cell signaling), MMP9 (Cell signaling), NCAD (Cell signaling), ECAD (Cell signaling), VIM (Santa Cruz Biotech), SNAIL (Santa Cruz Biotech), FAK(Cell signaling), p-FAK (Cell signaling,), ERK (Cell signaling), 및 p-ERK (Cell signaling)이었다. GAPDH (Cell signaling)는 로딩 대조군으로서 사용하였다. horseradish peroxidase (HRP)-conjugated anti-rabbit 또는 anti-mouse immunoglobulin G (IgG)을 이차 항체로 사용하고 양성 밴드를 ECL 검출 시약을 사용하여 검출하였다. 화학형광 시그널의 최종 시각화를 automatic X-ray film processor (JPI Healthcare)로 캡쳐하고 X-ray films (Fuji film) 상의 시그널 강도를 Image J software로 정량하였다.
10. 생체 내 종양 성장 및 전이 능력 검정
생체 내 종양 형성 및 전이 능력 검정을 위해, P0 또는 P15 세포를 트립신화시키고 PBS에 현탁하였다. 그런 다음, 세포를 각 BALB/C 누드 마우스의 측면 및 꼬리 정맥에 피하 주입하였다. 종양 형성 능력을 확인하기 위하여 세포를 200 ㎕ 부피의 PBS 중의 세포 및 동량의 Matrigel과 섞어서 피하로 주입하였다. 마우스의 체중 및 종양이 측정 가능한 시기에 캘리퍼스를 이용하여 측정하고 종양 부피를 계산하였다: Tumor volume (mm3)= width2 (mm2) x length (mm). 종양 조직에서 RNA 및 단백질 추출 시 마우스 조직을 PBS로 2회 세척하였으며, 측정 35일차에 마우스를 해부하여 조직을 수득하였다. 종양 전이 능력을 확인하기 위하여 꼬리 정맥에 주입한 마우스는 해부하여 폐 결절 형성 개수를 확인하였다.
11. 조직 마이크로어레이(Tissue Microarray; TMA) 및 면역조직화학(Immunohistochemistry; IHC)
TMA 블록을 마우스의 파라핀-블록으로부터 조직 지름 2 mm로 선택하였다. 슬라이드를 H&E(hematoxylin 및 eosin)로 염색하고 대표 종양 조직을 확인하기 위해 관찰하였다. IHC에서, 모든 조직 샘플을 완충 포르말린(Sigma-Aldrich, St. Louis, MO, USA)에 고정하고 파라핀에 함침했다. 파라핀-함침 조직을 자일렌 내에서 탈파라핀화시키고 알코올(100 %, 90%, 80%, 및 60%)에서 재수화시켰다. 항원 회수(끓는 물에서 10분)를 실시하고, 시트르산나트륨을 pH 7 회수 버퍼로서 사용하였다. 사용된 일차 STC1 및 Ki67 항체(Santa Cruz Biotech)는 rabbit monoclonal IgG (Abcam)이었다. Rabbit IgG를 음성 아이소타입 대조로서 사용하였다. TMA 슬라이드를 일차 항체와 함께 4℃에서 처리하고 비오틴화된 이차 항체를 처리하였다. Vectastain Elite ABC Reagent (Vector Laboratories)를 실온에서 30분간 첨가하고 3, 3’-diaminobenzidine (DAB)을 색소원으로 사용하여 면역반응을 검출하였다. 그런 다음, TMA 슬라이드를 Mayer’s hematoxylin (Dako)로 대조염색하고, 알코올(60%, 80%, 90%, 및 100%)로 탈수하고, 자일렌으로 3회 세척하고 자일렌 중의 봉입제로 고정하였다. 현미경으로 염색 결과를 확인하였다.
12. 인간 혈청 및 소변 샘플
BC 환자의 혈액을 헤파린 첨가 식염수 튜브에 수집하고 3,000 rpm에서 10분간 원심분리하였다. 혈액으로부터 분리된 혈청을 냉동하여 보관하였다. 소변 샘플을 건강한 사람 및 방광 환자로부터 각각 수집하였다. 튜브 중에서 20 ㎖의 소변을 4℃에서 3,000 rpm으로 10분간 원심분리하였다. 소변의 상층액을 VIVASPIN 컬럼을 사용하여 농축하고 실험에 사용하였다.
13. 인간 STC1 ELISA 검정
조정배지, 혈청 및 소변 샘플 중의 STC1의 농도를 Enzyme-linked immunosorbent assay (ELISA) kit (R&D systems)를 사용해 분석하였다.
14. 환자 및 유전자 발현 데이터
National Center for Biotechnology information (NCBI) Gene Expression Omnibus (GEO) 데이터베이스 (GSE13507, GSE32894, 및 GSE120736)로부터 임상 및 유전자 발현 데이터를 포함하는 데이터 세트를 수득하였다. 모든 데이터는 log2 스케일로 변환시키고 quantile normalization으로 표준화하였다. 165명의 방광암 환자 데이터를 디스커버리 코호트(n=165; Korean cohort; GSE13507)로 사용하고, 453명의 방광암 환자 데이터를 발리데이션 코호트(n=308; Lund cohort; GSE32894, n=145; Yonsei cohort; GSE120736)로 사용하였다.
15. 연관성, 유전자 발현 및 Function Enrichment 분석
유전자 특성과 관련된 유의한 유전자 세트를 제조하기 위해, 한국 방광암 환자 코호트 (GSE13507)로부터의 유전자 발현 데이터에 Pearson correlation test를 적용하고 유의한 연관성 계수(|r| > 0.4 및 p < 0.001)를 갖는 유전자를 선택하였다. 유사성 및 완전 연결 클러스터링 방법(complete linkage clustering method)의 척도로서 중심 상관 계수로 계층 클러스터링 분석을 실시하였다. 환자 클러스터링 결과에 따라, 환자를 2개의 서브그룹으로 나누고, 각 서브그룹에서 환자의 진행 시간 및 암 특이 생존률을 평가하였다. Kaplan-Meier 방법을 사용하여 log-rank statistics로 무진행 시간 및 암 특이 생존을 계산하였다. Gene ontology (GO) 분석을 DAVID bioinformatic resources (http://david.ncifcrf.gov)로 실시하고, 결과는 p < 0.001 및 false discovery rate (FDR) < 0.25일 때 유의한 것으로 간주하였다.
16. 통계 분석
데이터 결과는 3회 반복 연구의 평균 ± 표준 편차 (SD)로 나타냈다. 모든 분석은 적어도 3회 실시하였으며 3회의 개별 실험으로부터의 데이터로 나타냈다. 모든 실험은 3중 디바이스로 구성하였다. 모든 수치 데이터는 평균 ± S.D로 나타냈다. 두 독립 그룹 사이의 차이의 유의성은 two-tailed Student’s t-test를 사용하여 결정하였다. 차이는 P < 0.05에서 통계학적으로 유의한 것으로 간주하였다. * ,P < 0.05; **, P < 0.01; ***, P < 0.001. 통계 분석은 R 3.6.1 language environment (http://www.r-project.org)을 사용하여 실시하였다.
실시예 2. 신규 바이오마커 발굴 및 이의 기능 평가
1. 방광암 항암제 내성 세포의 조정 배지(CM)에서 분비된 단백질 분석
방광암 항암제 내성 세포주에서 분비되는 단백질들을 확인하기 위해, P0 및 P15 세포의 조정배지로부터 샘플을 제조한 후 liquid chromatograph-tandem mass spectrophotometer(LC-MS/MS)를 실시하였다(도 1a). P0 및 P15 세포의 조정 배지에서 발현된 다량의 단백질들을 확인하였으며, 각각 662 및 805개의 분비성 단백질로 확인되었다(도 1b). P0와 비교하여 P15 세포의 조정배지에서만 분비된 단백질을 비교하고, 관련 경로를 확인하였다. 그 결과, ingenuity pathway analysis (IPA)에 의해 분석하였으며, 세포 이동과 관련된 단백질이 발현이 13개 기준 경로에서 현저하게 변화함을 발견하였다(도 1b). P0 및 P15 세포의 조정 배지 사이에서 차별적으로 발현하는 386개 단백질 중 P15 세포에서 과발현하면서 세포외 공간에 위치하는 총 27개 단백질을 확인하였다(도 1c).
2. 방광암 세포 및 여러 암세포에서 STC1의 바이오마커 활용 가능성
다음으로는 방광암 뿐만 아니라 다양한 암 종에서도 STC1의 발현 수준을 확인하였다. 구체적으로, 교모세포종(U251), 폐암(A549, H460), 대장암(LoVo, HCT116), 전립선암(DU145, PC3), 방광암(T24, 5637), 유방암(MDA-MB231, SKBR3), 췌장암(Miapaca2, CFPAC1), 위암(AG5) 및 난소암(SKOV3) 세포주에서 세포파쇄물(cell lysate) 및 CM에서의 STC1의 단백질을 웨스턴블랏으로 정량하였으며 Ponceau staining으로 확인하였다. 대조군으로는 인간 포피 섬유아세포(Human Newborn Foreskin Fibroblasts, Nuff)를 이용하였다. 그 결과, 방광암에서 발현이 확인된 STC1은, 방광암을 포함하는 다양한 암종(교모세포종, 폐암, 대장암, 전립선암, 유방암, 췌장암, 위암 및 난소암)에서도 그 발현이 확인되어, 암세포 특이적 마커인 것을 확인하였다(도 2a 및 도 2b).
3. 높은 STC1의 발현과 방광암 환자들의 나쁜 예후와 관련성 확인
우선 STC1의 유전자 발현 수준을 확인하고 원발성 NMIBC, 원발성 MIBC을 포함하는 방광 조직, 및 방광암 코호트에서의 재발 조직에서의 발현 수준과 비교하였다. 다양한 방광암 코호트 (한국인 방광암 코호트, GSE13507, Lund 코호트, GSE32894, Yonsei 코호트, GSE120736)에서의 유전자 발현 데이터 비교에서, 모든 케이스에서 원발성 MIBC에서 STC1의 발현 수준이 원발성 NMIBC에 비해 상당히 높았다(P = 0.01, P < 0.001, 및 P = 0.05 by a two-sample t-test, 도 3a). 도 3b는 618명의 방광암 환자의 기본 특성을 나타낸 것이다. 한국인 방광암 코호트(GSE13507)에서, 평균 연령은 66세(24세 내지 88세 범위)이고, 수술 후 평균 후속 주기는 53개월(1개월 내지 161개월 범위)였다. 후속 주기 동안, 34명의 환자(21%)가 질환이 진행되었다. Lund 코호트(Lund cohort)에서, 평균 연령은 71세(20세 내지 96세 범위)이고, 수술 후 평균 후속 주기는 46개월(2개월 내지 127개월)이었다. 후속 주기 동안, 19명의 환자(12%)가 질환이 진행되었다. Yonsei 코호트(Yonsei cohort)에서, 평균 연령은 73세(36세 내지 100세 범위)이고, 수술 후 평균 후속 주기는 70개월(1개월 내지 103개월 범위)였다. 다만, Yonsei 코호트에서 무 진행 생존률 데이터는 공급받지 못했다.
STC1이 많은 암에서 흔히 상향조절되고 예후 마커로서 사용되므로, 방광암 환자의 생존 결과에서 STC1의 예상 수치를 추가 평가하였다. 이는 STC1 발현 수준과 직접적으로 관련된 유전자 발현 시그니처를 확인하고 질환 진행 및 생존의 가능성을 예측하기 위한 시그니처로 사용하기 위한 것이다. GSE13507 코호트에서 STC1 발현과 관련된 367개 유전자를 확인하였다(Pearson’s correlation test, P < 0.001, |r| > 0.4). 이러한 유전자의 발현 패턴의 계층 클러스터링 분석에 근거하여, 방광암 환자를 STC1-low 및 STC1-high의 2개 그룹으로 나누었다(도 3c). STC1-low 환자의 진행 생존률은 STC1-high 환자보다 상당히 높았다(log-rank test, P = 0.007; 도 3c). STC1-low 환자의 암-특이 생존률은 STC1-high 환자에 비해 상당히 높았다(log-rank test, P < 0.001; 도 3c). 본 발명에서는 또한 STC1 발현과 관련된 중요 시그널링 경로를 확인하였다. STC1 관련 367개 유전자의 GO 분석(279개 상향조절 유전자)을 DAVID software를 사용하여 실시하였다. 상향조절 유전자를 DAVID에 적용시켰을 때, 염증 반응, 세포외 매트릭스 조직화, 백혈구 이동, 세포 주화성, 시그널 트랜스덕션, 식균작용, 및 PI3K-Akt 시그널링 경로에 관련된 유전자가 상당히 풍부하였다(도 3d). 또한, STC1 발현에 밀접하게 관련된 21개 유전자도 확인하였다(도 3d). 독립적인 환자 코호트(GSE32894 및 GSE120736)로부터 유전자 발현 데이터를 사용하여 상기 발견을 입증하였다. Lund 코호트(GSE32984)에서의 시그니처-기반 계층 클러스터 분석과 동일한 과정을 통해, STC1-high 또는 STC1-low 그룹으로 방광암 환자를 계층화하였다(도 3e). STC1-low 환자의 진행 생존율은 STC1-high 환자보다 상당히 높았다(log-rank test, P = 0.001 및 P = 0.36; 도 3e). 또한, 방광암 환자를 Yonsei 코호트(GSE120736)에서의 두 그룹으로 계층화하였다. STC1-low 환자의 암-특이 생존율은 STC1-high 환자보다 상당히 더 높았다(log-rank test, P = 0.004; 도 3f).
4. STC1의 방광암에서 세포의 증식, 이동 및 침습 능력 촉진 확인
증가된 STC1 발현은 다양한 유형의 암 환자에서 불량한 예후와 관련되어 있다. STC1이 방광암에서 세포 증식에 기여하는지 여부를 확인하기 위해, P0 세포주에 STC1 과발현 벡터(pSTC1) 또는 STC1의 small-interference RNA(siSTC1)로 트랜스펙션 시킨 세포주로 우선 발현 증가 및 감소를 확인했다 (도 4a). STC1 과발현 및 녹다운 시킨 세포주를 이용하여 MTT(도 4b) 실험을 통한 세포 증식과 클론원성 검정(도 4c)을 통한 콜로니 형성 능력을 확인하였다. 두 결과에서 모두 STC1의 발현에 따라 세포의 증식을 조절하는 것을 확인하였다(도 4b, c). 또한 STC1 과발현 안정(STC1 overexpressing stable; STC1 OE) 세포주에서도 대조군 세포와 비교하여 STC1의 mRNA, 단백질 발현 및 세포의 증식, 콜로니 형성 능력, 침습 및 이동 능력모두 증가한 결과를 확인하였습니다(도 5a, b, c). 이러한 결과들을 통해 STC1가 방광암에서 세포 증식뿐만 아니라 이동 및 침습 능력도 촉진시킨다는 것을 제시한다.
5. STC1의 epithelial-mesenchymal transition (EMT) 유전자들과의 상관관계확인
GSE13507 데이터에서 STC1와 연관된 EMT-관련 유전자인 VIM, ZEB1, ZEB2, SNAI1, TWIST1, TWIST2, MMP1, MMP3, MMP9, NCAD, 및 CD44는 STC1와 양의 상관관계를 보였으며 (도 6a), mesenchymal-epithelial transition(MET)-관련 유전자인 SDC1 및 ECAD은 STC1와 음의 상관관계를 보였다(도 6b). 다음으로는 STC1가 방광암 세포에서 이동 및 EMT 관련 유전자간의 발현 조절 여부를 확인하기 위해, MMP1, MMP2, MMP9, NCAD, VIM, SNAIL, SLUG, ZEB1, ZEB2TWIST의 mRNA 발현이 증가됨을 확인하였다(도 7a). 웨스턴 블롯팅 결과를 통해, MMP1, MMP2, MMP9, NCAD, VIM, 및 SNAIL의 단백질 수준이 증가됨을 확인하였으며, 반대로 MET 관련 ECAD 단백질 수준이 감소됨을 확인하였다(도 7b).
6. STC1의 생체 내에서 방광암 종양 성장 및 폐 전이를 증가 확인
대조군 세포 및 STC1 과발현 안정 세포를 수컷 BALB/C 누드 마우스의 옆구리 영역에 피하 주입하여 전체적인 실험 개략도는 다음과 같다(도 8a). STC1 과발현 안정 세포를 주입한 마우스 그룹의 체중은 대조군 마우스 그룹에 비해 유의하진 않지만 증가하였으며, 종양 크기는 급격히 증가하였다(도 8a, b). 도 9b는 대조군 및 STC1 과발현 안정 세포가 주입된 마우스의 옆구리에 형성된 종양의 대표 사진을 나타낸 것이다. STC1의 mRNA 발현은 대조군 세포 주입 마우스 그룹의 종양에서보다 STC1 과발현 안정 마우스 그룹에서 증가하였다(도 8c). 그러므로, IHC에 의해 확인된 STC1의 단백질 발현은 STC1 과발현 안정 세포주 주입 마우스 종양에서 증가하였다(도 8c). 이러한 결과들은 STC1가 생체 내에서 종양 성장을 증가시킴을 보인다.
그런 다음, STC1가 폐 전이를 조절하는지를 확인하기 위해, 대조군 및 STC1 과발현 안정 세포를 마우스 꼬리 정맥에 주입하여 전체적인 실험 개략도는 다음과 같다(도 9a). 두 그룹간의 체중 변화 및 폐 전이가 대조군의 마우스 그룹에 비해 STC1 과발현 안정 세포 마우스 그룹 모두 시간이 지남에 따라 증가됨을 관찰되었다(도 9a). STC1 과발현 안정 세포주가 주입된 마우스 그룹에서 대조군 세포 마우스 그룹에 비해 더 많고 큰 폐 결절이 확인되었다(도 9b). Ki67 및 STC1의 더 높은 발현이 STC1 과발현 안정 세포가 주입된 마우스의 폐 조직에서 확인되었다(도 9b). 또한, STC1 단백질 발현은 방광암 환자의 조직 샘플에서 Grade 1, 2, 3으로 나누어 확인하였으며, grade가 증가할수록 STC1의 발현 또한 증가하였다(도 9c). 이러한 결과들은 STC1은 종양 형성 및 폐 전이를 촉진시키는 중요한 역할을 시사한다.
7. STC1 과발현 안정 세포의 조정 배지(CM)에서 확인된 분비성 STC1의 암 세포의 세포 성장, 침습, 및 이동을 유도 확인
대조군 세포의 조정배지와 비교하여 STC1 과발현 안정 세포의 조정배지에서의 분비된 STC1 단백질의 양이 더 많은 것을 확인하였다(도 10a). 기능적 효과에 대해 세포 증식 및 콜로니 형성 검정을 실시하였으며, STC1 과발현 안정 세포의 조정배지를 방광암 세포에 처리했을 때 증식 및 콜로니 형성 능력이 상당히 가속화됨을 확인하였다(도 10a, b). 또한 세포 침입 및 이동 분석에서, STC1 과발현 안정 세포의 조정 배지에서 배양된 방광암 세포는 더 높은 세포 이동 및 침습 능력을 보였다(도 10c). 또한, 상처 회복 능력도 증가하였으며, STC1 과발현 안정 세포의 조정 배지를 농축하여 확인한 웨스턴 블롯팅 결과에서는 MMP1의 단백질 수준을 감소시켰으나 MMP2 및 9의 발현은 증가시켰으며, 이는 분비된 STC1 단백질이 방광암 세포에서 EMT 관련 유전자 발현을 촉진한다는 것 제시한다(도 10d). 또한, P15 세포의 조정 배지에서 분비된 STC1의 양은 P0 세포의 조정 배지에 보다 더 증가되었다(도 10e). 또한, 분비성 STC1 단백질의 양이 STC1 과발현 벡터를 형질주입한 세포와 STC1 과발현 안정 세포의 조정 배지에서 더 증가되었다(도 10e). 도 10f는, 도 9에서 진행한 실험의 마우스 혈액을 수집하여 혈청을 분리하고 혈청에 대해 인간 STC1 ELISA 검정을 실시한 결과를 나타낸 것으로, 대조군 세포를 주입한 마우스 그룹에 비해 STC1 과발현 안정 세포를 주입한 마우스 그룹의 혈청에서 더 많은 분비성 STC1 단백질이 발견되었다. STC1 분비 단백질이 방광암 세포에서 검출되는지를 확인하기 위해, P0 및 P15 세포의 조정 배지에 대해 인간 STC1 단백질의 ELISA 검정을 실시하였다. 즉, 분비된 STC1이 방광암 세포의 성장, 침습, 및 이동을 촉진한다.
8. 방광암 환자의 혈청 및 소변에서 확인된 분비성 STC1 단백질을 통해 방광암 환자의 진단 및 예후 예측 가능성 확인
본 발명에서 분비된 STC1 단백질이 방광암의 전이와 관련됨을 확인하였다. 방광암 세포의 조정배지에서 분비된 STC1 단백질을 확인하고, 효과를 확인하기 위해, P0 및 P15 세포에 0, 100, 및 200 ng/mL의 재조합 인간 STC1 (rhSTC1) 단백질을 각각 0, 24, 48, 및 72시간 동안 처리하였다. rhSTC1 처리에 의한 세포 생존력은 72시간에 P0 세포에서 rhSTC1 처리에 의해 증가되었다. 그러나, P15 세포에는 효과가 없었다(도 11a). 방광암 세포에서 rhSTC1를 처리하여 확인한 세포 증식 능력도 100, 200 ng/mL rhSTC1가 처리된 P0 세포에서 콜로니 형성 능력 및 세포 이동 및 침습 능력 또한 증가하였다(도 11b). 이후, STC1 항체로 rhSTC1을 차단하여, rhSTC1의 전이 효과가 방광암 세포에서 없어지는 것을 확인하였다(도 11c). rhSTC1을 세포에 처리한 후에, 확인한 phosphorylated-FAK (p-FAK)의 발현이 증가하였다(도 11c).
방광암 환자의 진단 및 예후를 예상하기 위한 STC1의 바이오마커로서의 유효성을 확인하기 위해, 건강한 대조 환자 및 방광암 환자의 혈청 및 소변에서 STC1의 발현을 확인하였다(도 12). 분비성 STC1의 증가된 수준이 건강한 대조 환자들에 비해 방광암 환자의 혈청에서 검출되었다(도 12a). 분비된 STC1 검출 또한 대조군 환자들에 비해 방광암 환자의 소변에서 확인되었으며, 환자의 등급 및 T 단계에 따라 달라지는 경향을 확인하였다. 재발이 확인된 샘플에서는 차이를 나타내지 않았다(도 12b). 이러한 결과들은 방광암 환자의 소변 및 혈청에서 분비된 STC1 단백질로 방광암을 확인할 수 있음을 제시한다. 이러한 결과들은 STC1가 바이오마커 후보로서 활용될 수 있음을 확인하였다.
따라서, 본 발명의 암 진단 또는 예후 예측용 신규한 바이오 마커인 STC1은 발현량에 따라서 암 환자의 불량한 예후와 관련된 것을 확인하였으며, 다양한 암세포주에서 과발현 되는 것을 확인하였다. 또한, STC1가 암세포의 증식, 침윤 및 이동(전이)와 관련된 바이오마커인 것을 확인하였다. 또한, STC1이 방광암 환자의 혈청 또는 소변에서 검출되고, 환자의 임상 병기에 따른 발현 차이를 확인하여, 효과적으로 방광암의 진단 및 예후 예측에 이용될 수 있는 것을 확인하였다.
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.

Claims (18)

  1. 암의 진단, 전이 또는 예후 예측을 위한 신규한 STC1(Stanniocalcin-1) 바이오마커.
  2. STC1(Stanniocalcin-1)의 발현수준을 측정할 수 있는 제제를 포함하는, 암의 진단, 전이 또는 예후 예측용 바이오마커 조성물.
  3. 제 2항에 있어서,
    상기 STC1은 서열번호 1의 염기서열을 포함하는 것인, 조성물.
  4. 제 2항에 있어서,
    상기 암은 방광암, 유방암, 교모세포종, 전립선암, 뇌척수종양, 두경부암, 폐암, 흉선종, 중피종, 식도암, 위암, 대장암, 간암, 췌장암, 담도암, 신장암, 고환암, 생식세포종, 난소암, 자궁 경부암, 자궁 내막암, 림프종, 급성 백혈병, 만성 백혈병, 다발성 골수종, 육종, 악성 흑색종 및 피부암으로 이루어진 군에서 선택된 것인, 조성물.
  5. 제 2항에 있어서,
    상기 STC1의 발현이 대조군의 기준치와 비교하여 증가되면, 암세포의 성장, 침습(invasion) 또는 이동(migration)이 증가되는 것인, 조성물.
  6. 제 2항에 있어서,
    상기 STC1의 발현이 대조군의 기준치와 비교하여 증가되면, 암의 임상 병기(clinical stage)가 증가되는 것인, 조성물.
  7. 제 2항에 있어서,
    상기 STC1은 개체로부터 분리된 시료에서 측정되는 것인, 조성물.
  8. 제 7항에 있어서,
    상기 시료는 조직, 세포, 전혈, 혈청, 혈장, 타액, 객담, 뇌척수액 및 소변으로 이루어진 군에서 선택되는 것인, 조성물.
  9. 제 1항의 조성물을 포함하는 암의 진단, 전이 또는 예후 예측용 키트.
  10. 개체로부터 생물학적 시료를 분리하는 단계;
    상기 분리된 생물학적 시료에서 STC1(Stanniocalcin-1)의 발현수준을 측정하는 단계; 및
    상기 STC1의 발현 수준을 대조군의 기준치와 비교하는 단계;를 포함하는 암의 진단, 전이 또는 예후 예측을 위한 정보 제공 방법.
  11. 제 10항에 있어서,
    상기 생물학적 시료는 조직, 세포, 전혈, 혈청, 혈장, 타액, 객담, 뇌척수액 및 소변으로 이루어진 군에서 선택되는 것인, 방법.
  12. 제 10항에 있어서,
    상기 STC1의 발현이 대조군의 기준치와 비교하여 증가되면, 암인 것으로 판단하는 것인, 방법.
  13. 제 12항에 있어서,
    상기 암은 방광암, 유방암, 교모세포종, 전립선암, 뇌척수종양, 두경부암, 폐암, 흉선종, 중피종, 식도암, 위암, 대장암, 간암, 췌장암, 담도암, 신장암, 고환암, 생식세포종, 난소암, 자궁 경부암, 자궁 내막암, 림프종, 급성 백혈병, 만성 백혈병, 다발성 골수종, 육종, 악성 흑색종 및 피부암으로 이루어진 군에서 선택된 것인 방법.
  14. 제 10항에 있어서,
    상기 STC1의 발현이 대조군의 기준치와 비교하여 증가되면, 암세포의 성장, 침습(invasion) 또는 이동(migration)이 증가된 것으로 판단하는 것인, 방법.
  15. 제 10항에 있어서, 상기 STC1의 발현이 대조군의 기준치와 비교하여 증가되면, 암의 임상 병기(clinical stage)가 증가된 것으로 판단하는 것인, 방법.
  16. 개체로부터 생물학적 시료를 분리하는 단계;
    상기 분리된 생물학적 시료에 후보 물질을 처리하는 단계;
    상기 후보물질이 처리된 생물학적 시료에서 STC1(Stanniocalcin-1)의 발현 수준을 측정하는 단계; 및
    상기 STC1의 발현 수준을 대조군의 기준치와 비교하는 단계;를 포함하는 항암제의 스크리닝 방법.
  17. 제 16항에 있어서,
    상기 STC1의 발현이 대조군의 기준치와 비교하여 저발현 되면, 항암효과가 있는 것으로 판단하는 것인, 방법.
  18. 개체로부터 생물학적 시료를 분리하는 단계;
    상기 분리된 생물학적 시료에서 STC1(Stanniocalcin-1)의 발현수준을 측정하는 단계; 및
    상기 STC1의 발현 수준을 대조군의 기준치와 비교하는 단계;를 포함하는 암의 진단, 전이 또는 예후 예측 방법.
PCT/KR2022/008902 2021-06-22 2022-06-22 다양한 암의 진단, 전이 또는 예후 예측용 신규한 바이오마커 및 이의 용도 WO2022270926A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20210080807 2021-06-22
KR10-2021-0080807 2021-06-22
KR10-2022-0076394 2022-06-22
KR1020220076394A KR20230175021A (ko) 2022-06-22 2022-06-22 혈청 또는 소변에서 방광암의 진단 및 예후를 예측할 수 있는 신규한 바이오마커

Publications (1)

Publication Number Publication Date
WO2022270926A1 true WO2022270926A1 (ko) 2022-12-29

Family

ID=84545630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/008902 WO2022270926A1 (ko) 2021-06-22 2022-06-22 다양한 암의 진단, 전이 또는 예후 예측용 신규한 바이오마커 및 이의 용도

Country Status (1)

Country Link
WO (1) WO2022270926A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116718784A (zh) * 2023-06-19 2023-09-08 十堰市太和医院(湖北医药学院附属医院) Stc1作为胶质瘤标记物的应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200261490A1 (en) * 2013-05-10 2020-08-20 Aarhus Universitet Pappalysin regulator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200261490A1 (en) * 2013-05-10 2020-08-20 Aarhus Universitet Pappalysin regulator

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CHANG ANDY C-M; DOHERTY JUDY; HUSCHTSCHA LILY I.; REDVERS RICHARD; RESTALL CHRISTINA; REDDEL ROGER R.; ANDERSON ROBIN L.: "STC1 expression is associated with tumor growth and metastasis in breast cancer", CLINICAL & EXPERIMENTAL METASTASIS, vol. 32, no. 1, 1 January 2015 (2015-01-01), Dordrecht , pages 15 - 27, XP035436362, ISSN: 0262-0898, DOI: 10.1007/s10585-014-9687-9 *
HOU JING, CHENG JIGAN, DAI ZEHUA, WEI NA, CHEN HUAN, WANG SHU, DAI MIN, LI LEILEI, WANG HUA, NI QING: "Molecular and Clinical Significance of Stanniocalcin-1 Expression in Breast Cancer Through Promotion of Homologous Recombination-Mediated DNA Damage Repair", FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, vol. 9, 15 October 2021 (2021-10-15), pages 1 - 12, XP093016395, DOI: 10.3389/fcell.2021.731086 *
SU JINGYUAN; GUO BINGYU; ZHANG TINGTING; WANG KANWEN; LI XIAOMING; LIANG GUOBIAO: "Stanniocalcin-1, a new biomarker of glioma progression, is associated with prognosis of patients", TUMOR BIOLOGY, vol. 36, no. 8, 18 March 2015 (2015-03-18), CH , pages 6333 - 6339, XP036218533, ISSN: 1010-4283, DOI: 10.1007/s13277-015-3319-0 *
SUN JIALE, WEI XUEDONG, YOU JIAWEI, YUE WENCHANG, OUYANG JUN, LING ZHIXIN, HOU JIANQUAN: "STC1 is a Novel Biomarker Associated with Immune Characteristics and Prognosis of Bladder Cancer", INTERNATIONAL JOURNAL OF GENERAL MEDICINE, vol. 14, 11 September 2021 (2021-09-11), pages 5505 - 5516, XP093016398, DOI: 10.2147/IJGM.S329723 *
WANG YAN, QI ZIHAO, ZHOU MENGLONG, YANG WANG, HU RAN, LI GUICHAO, MA XUEJUN, ZHANG ZHEN: "Stanniocalcin‑1 promotes cell proliferation, chemoresistance and metastasis in hypoxic gastric cancer cells via Bcl‑2", ONCOLOGY REPORTS, vol. 41, no. 3, 1 March 2019 (2019-03-01), pages 1998 - 2008, XP093016380, ISSN: 1021-335X, DOI: 10.3892/or.2019.6980 *
ZHAO FANGYU, YANG GANG, FENG MENGYU, CAO ZHE, LIU YUEZE, QIU JIANGDONG, YOU LEI, ZHENG LIANFANG, ZHANG TAIPING, ZHAO YUPEI: "Expression, function and clinical application of stanniocalcin‐1 in cancer", JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, vol. 24, no. 14, 1 July 2020 (2020-07-01), RO , pages 7686 - 7696, XP093016375, ISSN: 1582-1838, DOI: 10.1111/jcmm.15348 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116718784A (zh) * 2023-06-19 2023-09-08 十堰市太和医院(湖北医药学院附属医院) Stc1作为胶质瘤标记物的应用

Similar Documents

Publication Publication Date Title
Jia et al. Cancer-associated Fibroblasts induce epithelial-mesenchymal transition via the Transglutaminase 2-dependent IL-6/IL6R/STAT3 axis in Hepatocellular Carcinoma
Sun et al. Microrna-199a-5p functions as a tumor suppressor via suppressing connective tissue growth factor (CTGF) in follicular thyroid carcinoma
KR20220170379A (ko) 암의 진단용 신규한 바이오마커 및 이의 용도
Wang et al. Characterizing the role of PCDH9 in the regulation of glioma cell apoptosis and invasion
Tang et al. Mutant p53 regulates Survivin to foster lung metastasis
Wang et al. Deubiquitinase PSMD7 promotes the proliferation, invasion, and cisplatin resistance of gastric cancer cells by stabilizing RAD23B
WO2022270926A1 (ko) 다양한 암의 진단, 전이 또는 예후 예측용 신규한 바이오마커 및 이의 용도
Chen et al. Identification of nasopharyngeal carcinoma metastasis-related biomarkers by iTRAQ combined with 2D-LC-MS/MS
Zhang et al. C-MYC-induced upregulation of LINC01503 promotes progression of non-small cell lung cancer.
Jiang et al. Increased expression of neuropilin 1 is associated with epithelial ovarian carcinoma
Soendergaard et al. Systemic and intestinal levels of factor XIII-A: the impact of inflammation on expression in macrophage subtypes
WO2011081421A2 (en) Complement c9 as markers for the diagnosis of cancer
Guo et al. Epigenetic silencing of olfactomedin-4 enhances gastric cancer cell invasion via activation of focal adhesion kinase signaling
Yang et al. DKK2 impairs tumor immunity infiltration and correlates with poor prognosis in pancreatic ductal adenocarcinoma
Chen et al. KRT17 promotes the activation of HSCs via EMT in liver fibrosis
Zhang et al. Promoter hypermethylation of CHODL contributes to carcinogenesis and indicates poor survival in patients with early-stage colorectal cancer
WO2009066820A1 (en) Characterization of cxcl-16 as a tumor associated marker of colorectal cancer
Li et al. Cytoplasmic expression of p33ING1b is correlated with tumorigenesis and progression of head and neck squamous cell carcinoma
Thakur et al. Deletion of mdig enhances H3K36me3 and metastatic potential of the triple negative breast cancer cells
WO2009066821A1 (en) Characterization of esm-1 as a tumor associated marker of colorectal cancer
Zhang et al. TRIM44 regulates tumor immunity in gastric cancer through LOXL2-dependent extracellular matrix remodeling
Du et al. ZNF750 inhibits the proliferation and invasion of melanoma cells through modulating the Wnt/b-catenin signaling pathway
KR20150087580A (ko) Del-1 단백질 양성 엑소좀을 포함하는 암 진단 또는 예후 예측용 조성물
WO2009131366A2 (ko) 위암 또는 대장암 진단 마커 및 치료제로서의 cdca5
Zhong et al. The inhibition of YTHDF3/m6A/LRP6 reprograms fatty acid metabolism and suppresses lymph node metastasis in cervical cancer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22828773

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE