KR20220170379A - 암의 진단용 신규한 바이오마커 및 이의 용도 - Google Patents

암의 진단용 신규한 바이오마커 및 이의 용도 Download PDF

Info

Publication number
KR20220170379A
KR20220170379A KR1020220076393A KR20220076393A KR20220170379A KR 20220170379 A KR20220170379 A KR 20220170379A KR 1020220076393 A KR1020220076393 A KR 1020220076393A KR 20220076393 A KR20220076393 A KR 20220076393A KR 20220170379 A KR20220170379 A KR 20220170379A
Authority
KR
South Korea
Prior art keywords
cancer
stc1
cells
expression
diagnosis
Prior art date
Application number
KR1020220076393A
Other languages
English (en)
Inventor
임선희
문정연
정미소
김민혜
양기은
Original Assignee
동아대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동아대학교 산학협력단 filed Critical 동아대학교 산학협력단
Publication of KR20220170379A publication Critical patent/KR20220170379A/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/106Pharmacogenomics, i.e. genetic variability in individual responses to drugs and drug metabolism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/118Prognosis of disease development
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Hospice & Palliative Care (AREA)
  • Biophysics (AREA)
  • Oncology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 암의 진단용 신규한 바이오마커 및 이의 용도에 관한 것으로서, 본 발명의 암 진단 또는 예후 예측용 신규한 바이오 마커인 STC1은 발현량에 따라서 암 환자의 불량한 예후와 관련된 것을 확인하였으며, 다양한 암세포주에서 과발현 되는 것을 확인하였다. 또한, STC1이 암세포의 증식, 침윤 및 이동(전이)와 관련된 바이오마커인 것을 확인하여, 본 발명의 신규한 바이오마커인 STC1이 암의 진단과 예후를 판단할 수 있는 마커인 것을 확인하였다.

Description

암의 진단용 신규한 바이오마커 및 이의 용도{Novel biomarkers for the diagnosis of cancer and uses thereof}
본 발명은 암의 진단용 신규한 바이오마커 및 이의 용도에 관한 것이다.
암이란 세포의 비정상적인 성장을 의미하며, 세포가 정상적인 조절 기전을 상실하여 지속적으로 증식하거나, 근처 조직에 침투하거나, 인체의 먼 부위로 옮겨가거나, 세포가 영양분을 섭취하는 새로운 혈관 성장을 촉진하는, 악성 종양을 뜻한다. 암성 조직(악성 종양)은 혈액과 조혈 조직에서의 종양(백혈병 및 림프종)과 “고형” 종양(고형 세포 덩어리)으로 분류할 수 있는데 이를 대개 암이라고 지칭한다. 암성 고형 종양의 종류에는 암종 또는 육종이 있으며, 특정 암은 처음 발생하는 기관 및 발생 세포 유형에 의해 추가적으로 분류된다. 백혈병과 림프종은 혈액과 조혈 조직 및 면역 체계 세포의 암이며, 백혈병은 조혈 세포에서 발생하여 골수에 있는 정상 혈액 세포의 생성을 억제하게 된다. 림프종의 암세포는 림프절을 확장시키고, 겨드랑이, 서혜부, 복부 또는 흉부에 큰 종괴를 형성하게 된다. 암종은 피부, 폐, 소화관, 내부 장기의 안쪽 세포에 발생하는 암이며, 암종의 예로서 피부, 폐, 결장, 위, 유방, 전립선, 갑상선에 발생하는 암이 있다. 육종은 중배엽 세포의 암입니다. 중배엽 세포는 일반적으로 근육, 혈관, 뼈, 그리고 결합 조직을 형성하고, 육종의 예로는 평활근육종(소화 기관의 벽에 있는 평활근의 암)과 뼈육종(골암)등이 있다.
일반적으로 암은 초기에, 의심되는 환자로부터 X-선, 초음파 쵤영, 또는 컴퓨터 단층 촬영을 실시하여 종양 형성을 확인할 수 있지만, 확인된 종양이 암인지는 추가적인 진단으로 파악하게 된다. 암을 구체적으로 진단하기 위해서는 생검 또는 수술을 통해서 종양 조작을 채취하고 의심 부위의 검체를 현미경으로 검사하여 암세포를 확인하게 된다. 또한, 검진 결과 또는 영상 결과 암이 의심될 경우, 종양 표지자(특정 종양이 혈류로 분비하는 물질)의 수치를 측정하여 암 진단을 위한 추가적인 증거를 확보할 수 있으며, 특정 암을 진단 받은 사람의 경우 치료 효과를 모니터링하고 암 재발 가능성을 감지하기 위해 종양 표지자가 유용하게 이용될 수 있다. 일부 암의 경우 치료 후에 종양 표지자 수준이 낮아졌다가 암이 재발하면 다시 높아지며, 일부 종양 표지자는 혈액을 포함한 생체 시료에서 검출이 가능하지만, 종양 조직에서만 검출가능한 표지자도 존재한다. 이러한 종양 표지자를 흔히 바이오마커(biomarker)라고 한다.
본 발명의 목적은, STC1(Stanniocalcin-1) 유전자를 포함하는 암의 진단용 바이오마커를 제공하는 것이다.
본 발명의 다른 목적은, STC1(Stanniocalcin-1)의 발현수준을 측정할 수 있는 제제를 포함하는, 암의 진단, 전이 또는 예후 예측용 바이오마커 조성물을 제공하는 것이다.
본 발명의 또 다른 목적은, 상기의 조성물을 포함하는 암의 진단, 전이 또는 예후 예측용 키트를 제공하는 것이다.
본 발명의 또 다른 목적은 개체로부터 생물학적 시료를 분리하는 단계;
상기 분리된 생물학적 시료에서 STC1(Stanniocalcin-1)의 발현수준을 측정하는 단계; 및
상기 STC1의 발현 수준을 대조군의 기준치와 비교하는 단계;를 포함하는 암의 진단, 전이 또는 예후 예측을 위한 정보 제공 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 개체로부터 생물학적 시료를 분리하는 단계;
상기 분리된 생물학적 시료에 후보 물질을 처리하는 단계;
상기 후보물질이 처리된 생물학적 시료에서 STC1(Stanniocalcin-1)의 발현 수준을 측정하는 단계; 및
상기 STC1의 발현 수준을 대조군의 기준치와 비교하는 단계;를 포함하는 항암제의 스크리닝 방법을 제공하는 것이다.
상기와 같은 본 발명의 목적을 달성하기 위해서, 본 발명은, STC1(Stanniocalcin-1) 유전자를 포함하는 암의 진단용 바이오마커를 제공한다.
또한, 본 발명은 STC1(Stanniocalcin-1)의 발현수준을 측정할 수 있는 제제를 포함하는, 암의 진단, 전이 또는 예후 예측용 바이오마커 조성물을 제공한다.
또한, 본 발명은 상기의 조성물을 포함하는 암의 진단, 전이 또는 예후 예측용 키트를 제공한다.
또한, 본 발명은 개체로부터 생물학적 시료를 분리하는 단계;
상기 분리된 생물학적 시료에서 STC1(Stanniocalcin-1)의 발현수준을 측정하는 단계; 및
상기 STC1의 발현 수준을 대조군의 기준치와 비교하는 단계;를 포함하는 암의 진단, 전이 또는 예후 예측을 위한 정보 제공 방법을 제공한다.
또한, 본 발명은 개체로부터 생물학적 시료를 분리하는 단계;
상기 분리된 생물학적 시료에 후보 물질을 처리하는 단계;
상기 후보물질이 처리된 생물학적 시료에서 STC1(Stanniocalcin-1)의 발현 수준을 측정하는 단계; 및
상기 STC1의 발현 수준을 대조군의 기준치와 비교하는 단계;를 포함하는 항암제의 스크리닝 방법을 제공한다.
본 발명의 암 진단 또는 예후 예측용 신규한 바이오 마커인 STC1은 발현량에 따라서 암 환자의 불량한 예후와 관련된 것을 확인하였으며, 다양한 암세포주에서 과발현 되는 것을 확인하였다. 또한, STC1이 암세포의 증식, 침윤 및 이동(전이)와 관련된 바이오마커인 것을 확인하여, 본 발명의 신규한 바이오마커인 STC1이 암의 진단과 예후를 판단할 수 있는 마커인 것을 확인하여, 관련 산업에 유용하게 이용할 수 있다.
도 1은 T24(P0) 및 GRC1-P15(P15) 세포의 조건 배지의 확인 및 정량 비교를 나타낸 것이다. (a) P0 및 P15 세포에 혈청이 제외된 배지로부터 LC-MS/MS을 사용하여 분비 단백질 확인을 위한 분비체 분석 과정을 나타낸 개략도이다. 3개 독립된 세포 조건 배지에서 P0 및 P15 세포의 조건 배지에 대한 다양한 분비 단백질 발현을 나타내는 히트맵이다. 오른쪽 그림은 P0 및 P15 세포 배양액으로부터 유래한 조정 배지에서 STC1 단백질 발현 및 ponceau 염색 결과를 나타낸 것이다. (b) P0 및 P15 세포 조건 배지에서 확인된 단백질의 수를 나타낸 벤다이어그램이다. P0 세포에 비해 P15 세포의 조정 배지에서 가장 유의미하게 변한 상위 13개 표준 경로를 나타낸 것이다. (c) P0 및 P15 세포의 조건 배지 사이에서, P15에서 특이적으로 확인된 386개의 단백질들을 위치 및 과발현에 따라 요약하여 총 27개의 단백질로 표시한 것이다.
도 2 (a) 및 (b)는 인체 섬유아세포(Nuff)와 비교하여 교모세포종(U251), 폐암(A549, H460), 대장암(LoVo, HCT116), 전립선암(DU145, PC3), 방광암(T24, 5637), 유방암(MDA-MB231, SKBR3), 췌장암(Miapaca2, CFPAC1), 위암(AGS), 난소암(SKOV3) 세포주의 세포 용해물(cell lysate) 및 세포주 배양 조정 배지에서 STC1 발현 및 분비성 STC1 단백질의 발현을 비교한 결과이다.
도 3은 STC1이 방광암에서 좋지 않은 예후를 예측하는 인자임을 나타낸 것이다. (a) 3개 방광암 코호트에서 STC1 발현 수치의 Boxplot이다. (b) 3개의 방광암 코호트에 대한 설명 표이다. (c) STC1과 연관된 유전자들의 발현 프로파일을 나타낸 것이다. 발현 수준이 STC1과 밀접하게 연관된 총 367개 유전자를 클러스터 분석을 위해 선별하였다(Pearson correlation test, P < 0.001, |r| > 0.4). 해당 환자는 STC1 발현이 높은 high 및 낮은 low, 두 그룹으로 나누었다. 한국인 방광암 환자 코호트(GSE13507)에서 STC1 발현에 따른 무진행(Progression-free) 및 암 특이(cancer specific) 생존을 나타낸 것이다. (d) DAVID software를 사용하여 결정한 Gene Ontology 기반 생물학적 기능을 나타낸 것이다. 유의성의 한계값은 P < 0.001 및 FDR < 0.25이다. 또한 오른쪽 도표는 STC1과 밀접하게 연관되는 발현 수준을 갖는 총 367개 유전자 중 21개 유전자를 나타낸 것이다. (e) STC1-연관 유전자의 유전자 발현 프로파일을 나타낸 것이다. 한국인 방광암 환자 코호트(GSE13507)로부터 수득한 367개 유전자 중, Lund 코호트에 공통적으로 포함되는 345개 유전자를 분석하였다. 환자는 STC1 high 및 STC1 low의 두 그룹으로 나누었으며, 그래프는 Lund 코호트에서 STC1 발현에 따른 무진행(Progression-free) 및 암 특이(cancer specific) 생존을 나타낸 것이다. (f) STC1-유전자의 유전자 발현 프로파일을 나타냈으며, 한국인 방광암 환자 코호트(GSE13507)로부터 수득한 367개 유전자 중, 연세 코호트와 공통으로 포함하는 308개 유전자를 분석하였다. 환자는 STC1 high 및 STC1 low의 두 그룹으로 나누었으며, 그래프는 연세 코호트에서 STC1 발현에 따른 암 특이(cancer specific) 생존을 나타낸 것이다.
도 4는 STC1의 발현조절이 방광암 세포의 성장 및 증식을 조절한다는 내용을 나타낸 것이다. (a) 및 (b)는 STC1 과발현 및 녹다운 세포 각각에서 qRT-PCR 및 웨스턴 블롯 결과로서, STC1 mRNA 및 단백질 발현 수준을 나타낸 것이다. (b) STC1 과발현 벡터(pSTC1) #1, #2, 및 #3을 형질주입한 세포주들과 STC1 녹다운 siRNA (siSTC1) #1, #2, 및 #3을 형질주입한 세포주들의 생존률을 MTT 실험을 통해 수행한 결과이다. (c) 3가지 후보군들 중에서 가장 STC1 과발현 및 녹다운 효율이 좋은 pSTC1#1 과 siSTC#2를 형질주입한 세포의 클론원성 검정 결과이다. 데이터는 적어도 3회의 독립 실험으로부터의 평균 ± SD로 나타냈다. **, P < 0.01; ***, P < 0.001.
도 5는 STC1가 방광암 세포의 증식, 침습, 및 이동을 촉진함을 나타낸다. (a) 대조군 세포와 STC1 overexpressing (STC1 OE), 즉 STC1 과발현 세포주에서 STC1 mRNA 및 단백질의 발현 수준을 나타낸 결과이다. (b) 왼쪽 그래프는 대조군 세포와 비교하여 STC1 과발현 세포에서 세포의 생존률을 확인한 MTT 검정 결과이다. 오른쪽은 대조군 세포와 비교하여 STC1 과발현 세포의 종양형성에 대한 효과를 나타내는 클론원성 검정 결과이다. (c) 대조군 세포와 비교하여 STC1 과발현 세포의 트랜스웰을 이용한 세포 침습 및 이동 검정 결과이다. **, P < 0.01; ***, P < 0.001
도 6은 한국인 방광암 환자 데이터세트에서 (a) STC1과 EMT-관련 유전자 (11 genes, VIM, ZEB1, ZEB2, SNAI1, TWIST1, TWIST2, MMP1, MMP3, MMP9, NCAD, 및 CD44)의 양의 상관관계 연관성 및 (b) STC1과 mesenchymal-epithelial transition (MET)-관련 유전자 (3 genes, SDC1, SDC2, 및 ECAD)의 음의 상관관계 연관성을 나타낸 것이다.
도 7은 방광암 세포에서 STC1 발현이 EMT-관련 유전자들의 발현을 증가시킴을 나타낸 결과이다. (a) 대조군 세포(pcDNA)와 비교하여 STC1 과발현 벡터(pSTC1)를 형질주입한 세포에서 발현된 EMT 및 MET-관련 유전자들 (MMP1, MMP2, MMP9, VIM, SNAIL, SLUG, ZEB1, ZEB2, TWIST, NCAD, SDC1, SDC2, 및 ECAD)의 mRNA 수준을나타낸 것이다. (b) 그 중 확인된 EMT, MET 관련 유전자들 (MMP1, MMP2, MMP9, NCAD, VIM, SNAIL, 및 ECAD)의 단백질 발현을 대조군 세포(pcDNA)와 비교한 웨스턴 블롯 분석 결과이다. ns, no significant; *, P < 0.05; **, P < 0.01; ***, P < 0.001.
도 8은 STC1 과발현이 생체 내에서 종양의 성장을 촉진함을 나타낸 것이다. (a) 마우스 종양형성 실험 공정을 나타낸 공정도이다. 피하 주입은 마우스 환경 적응 기간 후 7일째에 이루어졌으며 무작위로 2개 그룹(그룹 당 n = 7; Con (Control, 대조군 세포), STC1 OE (STC1 overexpressing, STC1 과발현 세포)으로 나누었다. 마우스 옆구리에 대조군 및 STC1 과발현 세포 (1×106 세포)를 주입하고 매주 체중을 측정했다. (b) 마지막 측정 후 마우스를 희생시켜 종양 조직을 회수하였다. 35일간 캘리퍼스로 종양 부피를 측정한 결과를 나타낸 것이다. 오른쪽 그림은 마우스로부터 수술적으로 제거한 종양의 이미지이다. (c) STC1 과발현 세포 주입에 의한 마우스 종양 조직에서 면역조직화학적으로 H&E 및 STC1 발현을 확인한 염색 사진 결과이다. *, P < 0.05; **, P < 0.01; ***, P < 0.001.
도 9는 STC1 과발현이 생체 내에서 종양의 폐 전이를 촉진함을 나타낸 것이다. (a) 마우스 종양 전이 실험 공정을 나타낸 공정도이다. 정맥 내 주입은 마우스 환경 적응 기간 후 7일째에 이루어졌으며 무작위로 2개 그룹(그룹 당 n = 7; Con (Control, 대조군 세포), STC1 OE (STC1 overexpressing, STC1 과발현 세포)으로 나누었다. 마우스의 꼬리 정맥으로 대조군 및 STC1 과발현 세포 (5×105 세포)를 주입하고 매주 체중을 측정했다. (b) 대조군 및 STC1 과발현 세포 주입으로 형성된 폐 전이가 확인된 마우스 폐 조직의 이미지와 개수를 확인한 결과이다. 오른쪽 그림은 H&E, Ki67 및 STC1을 면역조직화학염색법을 통해 확인한 결과이다. (c) 방광암 환자 Grade 1, 2, 및 3 단계의 방광암 조직의 H&E 염색 및 STC1 발현 정도를 면역조직염색화학법에 의해 나타난 결과이다. *, P < 0.05.
도 10은 STC1 과발현 세포의 조정 배지를 처리한 방광암 세포의 이동 및 침습이 촉진되고, 방광암 세포에서 분비성 STC1 단백질 발현을 확인한 결과이다. (a) 왼쪽은 대조군 및 STC1 과발현 세포의 조정배지 속 STC1 단백질을 확인한 결과이다. 오른쪽은 대조군 및 STC1 과발현 세포의 조정배지를 처리한 방광암 세포의 MTT 검정 결과를 나타낸 것이다. (b) 대조군 및 STC1 과발현 세포의 조정배지를 처리한 방광암 세포의 콜로니 형성 능력이 개선됨을 나타낸 것이다. (c) 대조군 및 STC1 과발현 세포의 조정배지를 처리한 방광암 세포의 침습 및 이동 검정 결과를 나타낸 것이다. (d) 방광암 세포가 배양된 플레이트에 상처를 내고, 대조군 및 STC1 과발현 세포의 조정배지를 처리하여 24시간 후에 회복된 상처 영역(%) 이미지를 나타낸 것이다. 오른쪽은 대조군 및 STC1 과발현 세포의 조정배지를 처리한 방광암 세포의 EMT 마커의 웨스턴 블롯 분석 결과이다. (e) P0 및 P15 세포, 대조군 및 STC1 과발현 벡터 형질주입한 세포, 대조군 및 STC1 과발현 세포에서 분비성 STC1 단백질 발현을 ELISA 검정 결과이다. (f) 도 10에서 확인한 마우스 혈청에서 분비성 STC1 단백질을 ELISA 검정을 통해 확인한 결과이다. **, P < 0.01; ***, P < 0.001.
도 11은 방광암 세포에서 분비성 STC1 단백질이 세포의 증식 및 전이 능력을 증가시킴을 나타낸 것이다. (a) recombinant human STC1 (rhSTC1)을 배지에 처리한 P0 및 P15에서 세포의 증식을 MTT 검정을 통해 확인한 결과이다. (b) rhSTC1을 배지에 첨가하여 P0 세포에서 콜로니 형성, 세포의 침습 및 이동 능력을 확인한 결과이다. (c) rhSTC1에 의해 증가된 방광암 세포에 STC1 항체 (STC1 antibody, ab)에 의해 중화되는 침습 및 이동 능력을 확인한 결과이다. 오른쪽 그림은 rhSTC1에 의한 p-FAK 활성화를 확인한 웨스턴 블롯 결과이다. *, P < 0.05; **, P < 0.01
이하 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명한다. 이하의 설명에 있어, 당업자에게 주지 저명한 기술에 대해서는 그 상세한 설명을 생략할 수 있다. 또한, 본 발명을 설명함에 있어서, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 수 있다. 또한, 본 명세서에서 사용되는 용어(terminology)들은 본 발명의 바람직한 실시예를 적절히 표현하기 위해 사용된 용어들로서, 이는 사용자, 운용자의 의도 또는 본 발명이 속하는 분야의 관례 등에 따라 달라질 수 있다.
따라서 본 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 발명은, STC1(Stanniocalcin-1) 유전자를 포함하는 암의 진단용 바이오마커를 제공한다.
본 발명의 “STC1(Stanniocalcin-1)”은 뼈 물고기(bony fishe)에서 처음 발견된 호르몬인 stanniocalcin의 상동체 당 단백질로서, 인간에서는 STC1 유전자에 의해 코딩되며, 매우 다양한 조직에서 발현되고 자가분비 또는 파라크린 기능을 가질 수 있는 분비된 동종이량체 당단백질 암호화한다. 현재까지 인간 STC1의 알려진 기능은 SUMOylation 경로에서 SUMO E3 유비퀴틴 리가아제 활성만이 보고되었다. STC1은 세포질, 미토콘드리아, 소포체 및 세포핵에서 많은 단백질과 상호작용하는 것으로 알려져 있다.
또한, 본 발명은 STC1(Stanniocalcin-1)의 발현수준을 측정할 수 있는 제제를 포함하는, 암의 진단, 전이 또는 예후 예측용 바이오마커 조성물을 제공한다.
본 발명에서, 사용된 용어 “진단”은 특정 질병 또는 질환에 대한 한 객체의 감수성(susceptibility)을 판정하는 것, 한 객체가 특정 질병 또는 질환을 현재 가지고 있는 지 여부를 판정하는 것, 특정 질병 또는 질환에 걸린 한 객체의 예후(prognosis)(예컨대, 전-전이성 또는 전이성 암 상태의 동정, 암의 단계 결정 또는 치료에 대한 암의 반응성 결정)를 판정하는 것, 또는 테라메트릭스(therametrics)(예컨대, 치료 효능에 대한 정보를 제공하기 위하여 객체의 상태를 모니터링 하는 것)을 포함한다.
용어, "예후"는 암이 진단된 이후에 암의 완치 가능성, 치료 후 재발 가능성, 환자의 생존 가능성 등 암에 따른 환자의 각종 상태를 예측하는 것을 말한다. 암의 예후는 다양한 관점에서 추정될 수 있지만, 대표적으로 재발가능성, 생존가능성, 무병생존가능성의 관점에서 판단될 수 있다. 본 발명의 목적상 예후는 암의 진단 이후 생존의 예후를 의미할 수 있다. 본 발명에서 제공하는 바이오 마커를 사용하면, 암 환자의 생존 예후를 보다 용이하게 예측할 수 있어, 고 위험군의 환자를 분류하거나, 추가 필요한 치료 방법의 사용 여부를 결정하는 데 활용할 수 있고, 이로써 암 발병 후의 생존율을 높이는 데 기여할 수 있다.
본 발명에서 용어 "(바이오)마커, 진단하기 위한 마커 또는 진단 마커(diagnosis marker)"란 암이 발생한 세포 또는 조직을 정상 세포 또는 조직과 구분하여 판정할 수 있는 물질로, 정상 세포에 비하여 암을 가진 세포에서 증가 양상을 보이는 폴리펩타이드 또는 핵산(예: mRNA 등), 지질, 당지질, 당단백질, 당(단당류, 이당류, 올리고당류 등) 등과 같은 유기 생체 분자 등을 포함한다.
상기 조성물은 STC1의 유전자 또는 단백질 발현수준을 측정하는 것이며, 상기 유전자 또는 이의 단편의 발현 수준을 확인하는 방법에 사용되는 제제는 시료에 포함된 해당 miRNA 또는 이의 단편의 발현 여부를 확인하는 방법에 사용되는 제제를 의미하는데, 예를 들어, RT-PCR, 경쟁적 RTPCR(Competitive RT-PCR), 실시간 RT-PCR(Real-time RT-PCR), RNase 보호 분석법(RPA; RNase protection assay), 노던 블럿팅(Northern blotting), 유전자 칩 분석법 등의 방법에 사용되는 표적 유전자에 특이적으로 결합할 수 있는 프라이머, 프로브 또는 항체가 될 수 있으나, 특별히 이에 제한되지는 않는다.
본 발명에서 사용되는 용어 "프라이머"란, 짧은 자유 3말단 수산화기(free 3' hydroxylgroup)를 가지는 핵산서열로 상보적인 템플레이트(template)와 염기쌍(base pair)을 형성할 수 있고 템플레이트 가닥 복사를 위한 시작지점으로 기능을 하는 짧은 핵산 서열을 의미한다. 프라이머는 적절한 완충용액 및 온도에서 중합반응(즉, DNA 폴리머레이즈 또는 역전사효소)을 위한 시약 및 상이한 4가지 뉴클레오사이드 트리포스페이트의 존재하에서 DNA 합성을 개시할 수 있다.
본 발명에서 사용되는 용어 "프로브"란, 유전자 또는 mRNA와 특이적 결합을 이룰 수 있는 짧게는 수 염기 내지 길게는 수백 염기에 해당하는 RNA 또는 DNA 등의 핵산 단편을 의미하는데, 올리고뉴클레오티드(oligonucleotide) 프로브, 단쇄 DNA(single stranded DNA) 프로브, 이중쇄 DNA(double stranded DNA) 프로브, RNA 프로브 등의 형태로 제작될 수 있고, 보다 용이하게 검출하기 위하여 라벨링될 수 있다.
상기 단백질의 발현 수준을 측정할 수 있는 제제는 상기 STC1에 특이적으로 결합하는 항체, 엡타머, 올리고펩타이드 또는 PNA(Peptide nucleic acid), 또는 상기 단백질을 코딩하는 유전자에 특이적인 상보적 서열을 갖는 프라이머 또는 프로브 등을 포함할 수 있으나, 이에 제한되지 않는다.
본 발명의 일실시예에 따르면, 상기 STC1은 서열번호 1의 염기서열을 포함하는 것일 수 있다.
본 명세서에 사용되는 "폴리뉴클레오타이드" (또는 뉴클레오타이드, 핵산)는 DNA(gDNA 및 cDNA) 그리고 RNA 분자를 포괄적으로 포함하는 의미를 가지며, 핵산 분자에서 기본 구성 단위인 뉴클레오타이드는 자연의 뉴클레오타이드 뿐만 아니라, 당 또는 염기 부위가 변형된 유사체(analogues)도 포함한다.
본 발명의 폴리뉴클레오타이드는 특정의 아미노산 서열(폴리펩타이드)을 암호화하는 핵산 분자에 제한되지않고, 특정 아미노산 서열에 대하여 실질적인 동일성을 나타내는 아미노산 서열 또는 그에 상응하는 기능을 갖는 폴리펩타이드를 암호화하는 핵산 분자를 포함하는 것으로 해석된다.
본 발명의 일실시예에 따르면, 상기 암은 방광암, 유방암, 교모세포종, 전립선암, 뇌척수종양, 두경부암, 폐암, 흉선종, 중피종, 식도암, 위암, 대장암, 간암, 췌장암, 담도암, 신장암, 고환암, 생식세포종, 난소암, 자궁 경부암, 자궁 내막암, 림프종, 급성 백혈병, 만성 백혈병, 다발성 골수종, 육종, 악성 흑색종 및 피부암으로 이루어진 군에서 선택된 것일 수 있다.
본 발명의 일실시예에 따르면, 상기 STC1의 발현이 대조군의 기준치와 비교하여 증가되면, 암세포의 성장, 침습(invasion) 또는 이동(migration)이 증가되는 것일 수 있다.
본 발명의 일실시예에 따르면, 상기 STC1의 발현이 대조군의 기준치와 비교하여 증가되면, 암의 임상 병기(clinical stage)가 증가되는 것일 수 있다.
본 발명에 따른 암 진단 및 예후 추정 방법은 암의 심각성 정도(임상 병기)를 판단하는데 사용될 수 있다. 예를 들면, 양성 대조군 및 음성 대조군의 프로파일과 비교하여, 경증, 중간 정도 또는 중증으로 평가될 수 있다. 나아가 일정한 암 집단에 대한 마커 프로파일 분석을 수행하여, 프로파일 결과를 근거로 일정 기준에 따라 분류할 수 있다.
또한, 본 발명은 상기의 조성물을 포함하는 암의 진단, 전이 또는 예후 예측용 키트를 제공한다.
본 발명의 용어 "키트"란, 특정한 목적을 위해 필요한 조성물 및 부속품들을 모아놓은 세트를 의미한다. 본 발명의 목적상, 본 발명의 키트는 암의 진단 또는 예후를 확인하는 것이다. 본 발명의 키트에는 암의 진단 또는 예후를 확인하기 위한 프라이머, 프로브, 선택적으로 펩타이드를 인지하는 항체 또는 암 발병시 특이적으로 발현이 변화되는 특정 펩타이드를 인지하는 항체뿐만 아니라 분석방법에 적합한 한 종류 또는 그 이상의 다른 구성성분 조성물, 용액 또는 장치가 포함될 수 있다.
또한, 본 발명은 개체로부터 생물학적 시료를 분리하는 단계;
상기 분리된 생물학적 시료에서 STC1(Stanniocalcin-1)의 발현수준을 측정하는 단계; 및
상기 STC1의 발현 수준을 대조군의 기준치와 비교하는 단계;를 포함하는 암의 진단, 전이 또는 예후 예측을 위한 정보 제공 방법을 제공한다.
본 발명의 일실시예에 따르면, 상기 생물학적 시료는 조직, 세포, 전혈, 혈청, 혈장, 타액, 객담, 뇌척수액 및 소변으로 이루어진 군에서 선택되는 것일 수 있다.
본 발명의 일실시예에 따르면, 상기 STC1의 발현이 대조군의 기준치와 비교하여 증가되면, 암인 것으로 판단하는 것일 수 있다.
본 발명의 일실시예에 따르면, 상기 STC1의 발현이 대조군의 기준치와 비교하여 증가되면, 암세포의 성장, 침습(invasion) 또는 이동(migration)이 증가된 것으로 판단하는 것일 수 있다.
본 발명의 일실시예에 따르면, 상기 STC1의 발현이 대조군의 기준치와 비교하여 증가되면, 암의 임상 병기(clinical stage)가 증가된 것으로 판단하는 것일 수 있다.
또한, 본 발명은 개체로부터 생물학적 시료를 분리하는 단계;
상기 분리된 생물학적 시료에 후보 물질을 처리하는 단계;
상기 후보물질이 처리된 생물학적 시료에서 STC1(Stanniocalcin-1)의 발현 수준을 측정하는 단계; 및
상기 STC1의 발현 수준을 대조군의 기준치와 비교하는 단계;를 포함하는 항암제의 스크리닝 방법을 제공한다.
본 발명의 일실시예에 따르면, 상기 STC1의 발현이 대조군의 기준치와 비교하여 저발현 되면, 항암효과가 있는 것으로 판단하는 것일 수 있다.
이하 본 발명을 실시예에 의하여 더욱 상세하게 설명한다. 하기 실시예는 단지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 국한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
실시예 1. 신규 바이오마커 발굴 및 기능 평가를 위한 준비
1. 세포 배양
인간 방광암 세포주인 T24, 5637, UC3, UC5 및 UC14는 American Type Culture Collection (ATCC)에서 구입하고 RT4 세포주는 Korean Cell Line Bank (KCLB)에서 구입하였다. T24, UC3, UC5, UC14 및 RT4 세포주는 DMEM(Dulbecco’s modified Eagle’s medium)에 배양하고 5637 세포주는 10% FBS (Capricorn Scientific GmbH, Ebsdorfergrund, Germany) 및 1% penicillin/streptomycin (Capricorn Scientific GmbH, Ebsdorfergrund, Germany)이 첨가된 RPMI 1640에 배양하였다. 모든 세포주는 37℃, 5% CO2의 습한 대기에서 배양하였다.
2. 조정 배지(Conditioned Medium; CM)로부터 분비된 단백질의 수확
무혈청 조정 배지(CM)를 6시간 동안 40 ml의 무혈청 배지로 배양된 T24(P0), P15 (150 mm 디쉬)로 제조하였다. 배지를 수집하고 1,000 rpm에서 10분간 세포 잔해를 제거하였다. 조정 배지를 4℃에서 2시간 동안 3,850 rpm에서 VIVASPIN (GE Healthcare, USA)으로 농축하였다.
3. LC-MS/MS에 의한 프로테오믹 분석
단백질 농도를 BCA 검정으로 확인하고 추후 연구를 위해 샘플을 -70℃에서 보관하였다. 10 ㎍의 단백질 샘플을 12% SDS-PAGE 겔로 분리하고, 이 겔을 Coomassie Brilliant Blue R-250 buffer로 염색하였다. 이전 문헌에 기재된 방법에 따라 인-겔 분해(In-gel digestion)를 구성하였다 [Schevchenko A. et al., Nature Protocols 2006;1(6)2856-2860]. 겔을 분자량에 따라 4 부분으로 나누었다. 겔 분획을 탈염한 후 단백질의 시스테인의 환원 및 알킬화 후 트립신으로 분해하였다. 분해된 펩티드를 추출 용액 버퍼로 추출하였다. 분해된 펩티드를 0.02% 포름산 및 0.5% 아세트산을 함유하는 10 ㎕의 샘플 용액에 용해시켰다. LC-MS/MS 분석을 각 샘플마다 적어도 3회 실시하였다.
4. STC1 과발현 벡터 구성 및 Small-interference RNAs (siRNA)를 이용한 녹다운
인간 STC1을 암호화하는 플라스미드 발현 벡터의 트랜스펙션을 위해, STC1의 서열을 코딩하는 cDNA를 기질로서 정상 인간 조직으로부터 RT-PCR로 클로닝하고 PCR 산물을 pcDNA/His B 벡터로 서브클로닝하였다. HindIII-BamHI 제한 부위 측면의 STC1 오픈 리딩 프레임을 포함하는 DNA 시퀀싱을 T24 세포로부터 PCR 증폭하였다. 내인성 STC1의 녹다운을 위해, 세포를 siSTC1 올리고뉴클레오티드로 트렌스펙션시켰다. siSTC1 올리고뉴클레오티드를 Dharmacon SMARTPool에서 구입하였다. scRNA(scrambled siRNA) 또는 siSTC1 트랜스펙션을 ~100 nM의 최종 siRNA 농도에서 실시하였다. 녹다운 효율을 각각 qRT-PCR 또는 웨스턴 블롯 분석을 이용해 확인하였다.
5. MTT 및 콜로니 형성 검정
1 x 103 세포를 96-웰 플레이트의 각 웰에 배양하였다. DMEM를 제거하고 세포 시간 위치를 기록하고 이동 비율을 0, 24, 48 및 72 시간 후에 각각 측정하였다. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)를 사용하여 각 웰에 첨가한 후 1시간 동안 인큐베이션하고 Dimethyl Sulfoxide (DMSO)를 첨가하였다. 540 nm에서의 흡광도를 spectrophotometer microplate reader로 측정하고 세포 생존률을 대조 세포와 비교한 퍼센트로 계산하였다.
1 x 103 세포를 6-웰 플레이트의 각 웰에 배양하고 눈에 보이는 콜로니가 형성될 때까지 7일까지 배양하였다. 콜로니를 4% 포름알데히드로 10분간 고정하고 0.1% 크리스탈 바이올렛 용액을 1시간 동안 각각 염색하였다. 콜로니 수를 Image J software를 사용하여 수동으로 계수하였다.
6. 세포 침입 및 이동 검정
세포의 침입 능력을 트렌스웰 검정을 사용하여 Boyden chamber에서 측정하였다. 4×104 세포를 매트리겔(matrigel) 코팅된 챔버에 로딩한 후 24시간 동안 배양하였다. 세포의 조정배지(CM)에 의한 세포 침입 분석의 경우에, CM에 의한 세포의 침입 또는 이동 능력을 확인하기 위해, 세포를 1:1 비율의 기본 조성 및 조정배지에서 24시간 동안 처리하여 침입 또는 이동 능력을 확인하였다.
7. 상처 회복 분석(Wound Healing Assay)
세포를 6-웰 플레이트에 접종하고 90% 까지 가득 찰 때까지 24시간 동안 배양하였다. P200 피펫의 옐로우 팁으로 플레이트의 표면에 상처를 만든 후, 세포를 PBS로 여러 번 세척하여 세포 잔해를 제거하고 세포를 5% CO2, 37℃에서 배양하였다. 24시간 후, 세포를 광현미경으로 시각화시켰다. 그 후, 상처난 부분의 사진을 시간 간격을 두고 촬영하였다. 3개의 무작위 필드를 표시하여 측정하였다. 이동 인덱스를 대조 세포에 대한 처리 세포의 이동 거리의 비율로 표시하였다.
8. qRT-PCR(Quantitative real-time polymerase chain reaction)
총 RNA를 RNAiso reagent (Takara)를 사용하여 분리하였다. RNA 정량 체크를 spectrophotometer (ND-1000)를 사용하여 평가하였다. 일차 가닥 cDNA 합성을 PrimeScriptTM RT reagent Kit (Takara)를 사용하여 1 ㎍ 총 RNA로부터 평가하였다. qRT-PCR을 TB Green Premix Ex Taq (Takara) 및 CFX 96 real-time PCR Detection system (BioRad)을 이용하여 실시하였다. 사용된 프라이머 세트 서열을 표 1에 나타냈다. 정량 평가의 재연성은 3회의 독립적인 cDNA 합성 및 RNA의 각 제조로부터의 PCR 증폭으로 평가하였다. mRNA 분석을 위해, 데이터를 내인성 대조로서 GAPDH에 대해 표준화하고 폴드 체인지(fold change)를 상대적 정량(2-ΔΔCt)을 통해 계산하였다.
Gene Forward Primer Sequences Reverse Primer Sequences
GAPDH TGCACCACCAACTGCTTAGC GGCATGGACTGTGGTCATGAG
MMP1 TTTGGCTTCCCTAGAACTGTG GCTATCATTTTGGGATAACCTGG
MMP2 GCGGCGGTCACAGCTACTT CACGCTCTTCAGACTTTGGTTCT
MMP9 CCTGGAGACCTGAGAACCAATC CCACCCGAGTGTAACCATAGC
VIM AGGCAAAGCAGGAGTCCACTGA ATCTGGCGTTCCAGGGACTCAT
SNAIL CCACAAGCACCAAGAGTC TGGCAGTGAGAAGGATGT
SLUG TTCACTCCGAAGCCAAATG TCTCTCTGTGGGTGTGTG
ZEB1 TGTGCCAATTTGTTCCTGTA TGAGATGGGAGTCTGGTAAA
ZEB2 ATCGTGTAACAAAGATGAAGAAA TCACAAATGTCTCAAGTTCTAAA
TWIST GCCAGGTACATCGACTTCCTCT TCCATCCTCCAGACCGAGAAGG
NCAD GAATTCAGCACCCCCCTCAG GCTGCATATATCGATCTGGG
SDC1 TTCACACTCCCCACACAGAG ACTACAGCCGTATTCTCCCC
SDC2 TGTACCTTGACAACAGCTCC CTCTACATCCTCATCAGCTCC
ECAD GCAGTGACGAATGTGGTACC GTGTCTGGCTCCTGGGCAGT
STC1 AGCGCTGCTAAATTTGACACT CTTTGGAAAGTGGAGCACCTCCG
9. 웨스턴 블롯 분석 및 항체
웨스턴 블롯 분석을 제조사의 지시사항에 따라 실시하였다. 세포를 PBS를 사용해 첫 번째로 세척한 후 단백질을 radio immunoprecipitation (RIPA) buffer (Ambion, 150 mM NaCl, 0.5% sodium deoxycholate, 0.1% SDS, 50 mM Tris, pH 8.0, protease inhibitor cocktail, 및 phosphatase inhibitor)로 분리하고 원심분리하였다(12,000 g, 15 min, 4℃). 단백질의 양을 BCA assay kit (Thermo Fisher Scientific)를 사용하여 평가한 후, 10-12% SDS-polyacrylamide gel electrophoresis (SDS-PAGE)를 실시하고 니트로셀룰로오스(NC) 맴브레인(GE healthcare)으로 전기적으로 옮겼다. 그런 다음 0.05% TBS-T 중의 5% 무지방 우유를 이용해 맴브레인을 차단하였다. STC1(Santa Cruz Biotech)에 대한 항체는 MMP-1 (Santa Cruz Biotech), MMP2 (Cell signaling), MMP9 (Cell signaling), NCAD (Cell signaling), ECAD (Cell signaling), VIM (Santa Cruz Biotech), SNAIL (Santa Cruz Biotech), FAK(Cell signaling), p-FAK (Cell signaling,), ERK (Cell signaling), 및 p-ERK (Cell signaling)이었다. GAPDH (Cell signaling)는 로딩 대조군으로서 사용하였다. horseradish peroxidase (HRP)-conjugated anti-rabbit 또는 anti-mouse immunoglobulin G (IgG)을 이차 항체로 사용하고 양성 밴드를 ECL 검출 시약을 사용하여 검출하였다. 화학형광 시그널의 최종 시각화를 automatic X-ray film processor (JPI Healthcare)로 캡쳐하고 X-ray films (Fuji film) 상의 시그널 강도를 Image J software로 정량하였다.
10. 생체 내 종양 성장 및 전이 능력 검정
생체 내 종양 형성 및 전이 능력 검정을 위해, P0 또는 P15 세포를 트립신화시키고 PBS에 현탁하였다. 그런 다음, 세포를 각 BALB/C 누드 마우스의 측면 및 꼬리 정맥에 피하 주입하였다. 종양 형성 능력을 확인하기 위하여 세포를 200 ㎕ 부피의 PBS 중의 세포 및 동량의 Matrigel과 섞어서 피하로 주입하였다. 마우스의 체중 및 종양이 측정 가능한 시기에 캘리퍼스를 이용하여 측정하고 종양 부피를 계산하였다: Tumor volume (mm3)= width2 (mm2) x length (mm). 종양 조직에서 RNA 및 단백질 추출 시 마우스 조직을 PBS로 2회 세척하였으며, 측정 35일차에 마우스를 해부하여 조직을 수득하였다. 종양 전이 능력을 확인하기 위하여 꼬리 정맥에 주입한 마우스는 해부하여 폐 결절 형성 개수를 확인하였다.
11. 조직 마이크로어레이(Tissue Microarray; TMA) 및 면역조직화학(Immunohistochemistry; IHC)
TMA 블록을 마우스의 파라핀-블록으로부터 조직 지름 2 mm로 선택하였다. 슬라이드를 H&E(hematoxylin 및 eosin)로 염색하고 대표 종양 조직을 확인하기 위해 관찰하였다. IHC에서, 모든 조직 샘플을 완충 포르말린(Sigma-Aldrich, St. Louis, MO, USA)에 고정하고 파라핀에 함침했다. 파라핀-함침 조직을 자일렌 내에서 탈파라핀화시키고 알코올(100 %, 90%, 80%, 및 60%)에서 재수화시켰다. 항원 회수(끓는 물에서 10분)를 실시하고, 시트르산나트륨을 pH 7 회수 버퍼로서 사용하였다. 사용된 일차 STC1 및 Ki67 항체(Santa Cruz Biotech)는 rabbit monoclonal IgG (Abcam)이었다. Rabbit IgG를 음성 아이소타입 대조로서 사용하였다. TMA 슬라이드를 일차 항체와 함께 4℃에서 처리하고 비오틴화된 이차 항체를 처리하였다. Vectastain Elite ABC Reagent (Vector Laboratories)를 실온에서 30분간 첨가하고 3, 3’-diaminobenzidine (DAB)을 색소원으로 사용하여 면역반응을 검출하였다. 그런 다음, TMA 슬라이드를 Mayer’s hematoxylin (Dako)로 대조염색하고, 알코올(60%, 80%, 90%, 및 100%)로 탈수하고, 자일렌으로 3회 세척하고 자일렌 중의 봉입제로 고정하였다. 현미경으로 염색 결과를 확인하였다.
12. 인간 혈청 및 소변 샘플
BC 환자의 혈액을 헤파린 첨가 식염수 튜브에 수집하고 3,000 rpm에서 10분간 원심분리하였다. 혈액으로부터 분리된 혈청을 냉동하여 보관하였다. 소변 샘플을 건강한 사람 및 방광 환자로부터 각각 수집하였다. 튜브 중에서 20 ㎖의 소변을 4℃에서 3,000 rpm으로 10분간 원심분리하였다. 소변의 상층액을 VIVASPIN 컬럼을 사용하여 농축하고 실험에 사용하였다.
13. 인간 STC1 ELISA 검정
조정배지, 혈청 및 소변 샘플 중의 STC1의 농도를 Enzyme-linked immunosorbent assay (ELISA) kit (R&D systems)를 사용해 분석하였다.
14. 환자 및 유전자 발현 데이터
National Center for Biotechnology information (NCBI) Gene Expression Omnibus (GEO) 데이터베이스 (GSE13507, GSE32894, 및 GSE120736)로부터 임상 및 유전자 발현 데이터를 포함하는 데이터 세트를 수득하였다. 모든 데이터는 log2 스케일로 변환시키고 quantile normalization으로 표준화하였다. 165명의 방광암 환자 데이터를 디스커버리 코호트(n=165; Korean cohort; GSE13507)로 사용하고, 453명의 방광암 환자 데이터를 발리데이션 코호트(n=308; Lund cohort; GSE32894, n=145; Yonsei cohort; GSE120736)로 사용하였다.
15. 연관성, 유전자 발현 및 Function Enrichment 분석
유전자 특성과 관련된 유의한 유전자 세트를 제조하기 위해, 한국 방광암 환자 코호트 (GSE13507)로부터의 유전자 발현 데이터에 Pearson correlation test를 적용하고 유의한 연관성 계수(|r| > 0.4 및 p < 0.001)를 갖는 유전자를 선택하였다. 유사성 및 완전 연결 클러스터링 방법(complete linkage clustering method)의 척도로서 중심 상관 계수로 계층 클러스터링 분석을 실시하였다. 환자 클러스터링 결과에 따라, 환자를 2개의 서브그룹으로 나누고, 각 서브그룹에서 환자의 진행 시간 및 암 특이 생존률을 평가하였다. Kaplan-Meier 방법을 사용하여 log-rank statistics로 무진행 시간 및 암 특이 생존을 계산하였다. Gene ontology (GO) 분석을 DAVID bioinformatic resources (http://david.ncifcrf.gov)로 실시하고, 결과는 p < 0.001 및 false discovery rate (FDR) < 0.25일 때 유의한 것으로 간주하였다.
16. 통계 분석
데이터 결과는 3회 반복 연구의 평균 ± 표준 편차 (SD)로 나타냈다. 모든 분석은 적어도 3회 실시하였으며 3회의 개별 실험으로부터의 데이터로 나타냈다. 모든 실험은 3중 디바이스로 구성하였다. 모든 수치 데이터는 평균 ± S.D로 나타냈다. 두 독립 그룹 사이의 차이의 유의성은 two-tailed Student’s t-test를 사용하여 결정하였다. 차이는 P < 0.05에서 통계학적으로 유의한 것으로 간주하였다. * ,P < 0.05; **, P < 0.01; ***, P < 0.001. 통계 분석은 R 3.6.1 language environment (http://www.r-project.org)을 사용하여 실시하였다.
실시예 2. 신규 바이오마커 발굴 및 이의 기능 평가
1. 방광암 항암제 내성 세포의 조정 배지(CM)에서 분비된 단백질 분석
방광암 항암제 내성 세포주에서 분비되는 단백질들을 확인하기 위해, P0 및 P15 세포의 조정배지로부터 샘플을 제조한 후 liquid chromatograph-tandem mass spectrophotometer(LC-MS/MS)를 실시하였다(도 1a). P0 및 P15 세포의 조정 배지에서 발현된 다량의 단백질들을 확인하였으며, 각각 662 및 805개의 분비성 단백질로 확인되었다(도 1b). P0와 비교하여 P15 세포의 조정배지에서만 분비된 단백질을 비교하고, 관련 경로를 확인하였다. 그 결과, ingenuity pathway analysis (IPA)에 의해 분석하였으며, 세포 이동과 관련된 단백질이 발현이 13개 기준 경로에서 현저하게 변화함을 발견하였다(도 1b). P0 및 P15 세포의 조정 배지 사이에서 차별적으로 발현하는 386개 단백질 중 P15 세포에서 과발현하면서 세포외 공간에 위치하는 총 27개 단백질을 확인하였다(도 1c).
2. 방광암 세포 및 여러 암세포에서 STC1의 바이오마커 활용 가능성
다음으로는 다양한 암종에서 STC1의 발현을 확인하였다. 구체적으로, 교모세포종(U251), 폐암(A549, H460), 대장암(LoVo, HCT116), 전립선암(DU145, PC3), 방광암(T24, 5637), 유방암(MDA-MB231, SKBR3), 췌장암(Miapaca2, CFPAC1), 위암(AG5) 및 난소암(SKOV3) 세포주에서 세포파쇄물(cell lysate) 및 CM에서의 STC1의 단백질을 웨스턴블랏으로 정량하였으며 Ponceau staining으로 확인하였다. 대조군으로는 인간 포피 섬유아세포(Human Newborn Foreskin Fibroblasts, Nuff)를 이용하였다. 그 결과, 방광암에서 발현이 확인된 STC1은, 방광암을 포함하는 다양한 암종(교모세포종, 폐암, 대장암, 전립선암, 유방암, 췌장암, 위암 및 난소암)에서도 그 발현이 확인되어, 암세포 특이적 마커인 것을 확인하였다(도 2a 및 도 2b).
3. 높은 STC1의 발현은 방광암 환자들의 나쁜 예후 관련성 확인
우선 STC1의 유전자 발현 수준을 확인하고 원발성 NMIBC, 원발성 MIBC을 포함하는 방광 조직, 및 방광암 코호트에서의 재발 조직에서의 발현 수준과 비교하였다. 다양한 방광암 코호트 (한국인 방광암 코호트, GSE13507, Lund 코호트, GSE32894, Yonsei 코호트, GSE120736)에서의 유전자 발현 데이터 비교에서, 모든 케이스에서 원발성 MIBC에서 STC1의 발현 수준이 원발성 NMIBC에 비해 상당히 높았다(P = 0.01, P < 0.001, 및 P = 0.05 by a two-sample t-test, 도 3a). 도 3b는 618명의 방광암 환자의 기본 특성을 나타낸 것이다. 한국인 방광암 코호트(GSE13507)에서, 평균 연령은 66세(24세 내지 88세 범위)이고, 수술 후 평균 후속 주기는 53개월(1개월 내지 161개월 범위)였다. 후속 주기 동안, 34명의 환자(21%)가 질환이 진행되었다. Lund 코호트(Lund cohort)에서, 평균 연령은 71세(20세 내지 96세 범위)이고, 수술 후 평균 후속 주기는 46개월(2개월 내지 127개월)이었다. 후속 주기 동안, 19명의 환자(12%)가 질환이 진행되었다. Yonsei 코호트(Yonsei cohort)에서, 평균 연령은 73세(36세 내지 100세 범위)이고, 수술 후 평균 후속 주기는 70개월(1개월 내지 103개월 범위)였다. 다만, Yonsei 코호트에서 무 진행 생존률 데이터는 공급받지 못했다.
STC1이 많은 암에서 흔히 상향조절되고 예후 마커로서 사용되므로, 방광암 환자의 생존 결과에서 STC1의 예상 수치를 추가 평가하였다. 이는 STC1 발현 수준과 직접적으로 관련된 유전자 발현 시그니처를 확인하고 질환 진행 및 생존의 가능성을 예측하기 위한 시그니처로 사용하기 위한 것이다. GSE13507 코호트에서 STC1 발현과 관련된 367개 유전자를 확인하였다(Pearson’s correlation test, P < 0.001, |r| > 0.4). 이러한 유전자의 발현 패턴의 계층 클러스터링 분석에 근거하여, 방광암 환자를 STC1-low 및 STC1-high의 2개 그룹으로 나누었다(도 3c). STC1-low 환자의 진행 생존률은 STC1-high 환자보다 상당히 높았다(log-rank test, P = 0.007; 도 3c). STC1-low 환자의 암-특이 생존률은 STC1-high 환자에 비해 상당히 높았다(log-rank test, P < 0.001; 도 3c). 본 발명에서는 또한 STC1 발현과 관련된 중요 시그널링 경로를 확인하였다. STC1 관련 367개 유전자의 GO 분석(279개 상향조절 유전자)을 DAVID software를 사용하여 실시하였다. 상향조절 유전자를 DAVID에 적용시켰을 때, 염증 반응, 세포외 매트릭스 조직화, 백혈구 이동, 세포 주화성, 시그널 트랜스덕션, 식균작용, 및 PI3K-Akt 시그널링 경로에 관련된 유전자가 상당히 풍부하였다(도 3d). 또한, STC1 발현에 밀접하게 관련된 21개 유전자도 확인하였다(도 3d). 독립적인 환자 코호트(GSE32894 및 GSE120736)로부터 유전자 발현 데이터를 사용하여 상기 발견을 입증하였다. Lund 코호트(GSE32984)에서의 시그니처-기반 계층 클러스터 분석과 동일한 과정을 통해, STC1-high 또는 STC1-low 그룹으로 방광암 환자를 계층화하였다(도 3e). STC1-low 환자의 진행 생존율은 STC1-high 환자보다 상당히 높았다(log-rank test, P = 0.001 및 P = 0.36; 도 3e). 또한, 방광암 환자를 Yonsei 코호트(GSE120736)에서의 두 그룹으로 계층화하였다. STC1-low 환자의 암-특이 생존율은 STC1-high 환자보다 상당히 더 높았다(log-rank test, P = 0.004; 도 3f).
4. STC1의 방광암에서 세포의 증식, 이동 및 침습 능력 촉진효과 확인
증가된 STC1 발현은 다양한 유형의 암 환자에서 불량한 예후와 관련되어 있다. STC1이 방광암에서 세포 증식에 기여하는지 여부를 확인하기 위해, P0 세포주에 STC1 과발현 벡터(pSTC1) 또는 STC1의 small-interference RNA(siSTC1)로 트랜스펙션 시킨 세포주로 우선 발현 증가 및 감소를 확인했다 (도 4a). STC1 과발현 및 녹다운 시킨 세포주를 이용하여 MTT(도 4b) 실험을 통한 세포 증식과 클론원성 검정(도 4c)을 통한 콜로니 형성 능력을 확인하였다. 두 결과에서 모두 STC1의 발현에 따라 세포의 증식을 조절하는 것을 확인하였다(도 4b, c). 또한 STC1 과발현 안정(STC1 overexpressing stable; STC1 OE) 세포주에서도 대조군 세포와 비교하여 STC1의 mRNA, 단백질 발현 및 세포의 증식, 콜로니 형성 능력, 침습 및 이동 능력모두 증가한 결과를 확인하였습니다(도 5a, b, c). 이러한 결과들을 통해 STC1가 방광암에서 세포 증식뿐만 아니라 이동 및 침습 능력도 촉진시킨다는 것을 제시한다.
5. STC1의 epithelial-mesenchymal transition (EMT) 유전자들과의 양의 상관관계 확인
GSE13507 데이터에서 STC1와 연관된 EMT-관련 유전자인 VIM, ZEB1, ZEB2, SNAI1, TWIST1, TWIST2, MMP1, MMP3, MMP9, NCAD, 및 CD44는 STC1와 양의 상관관계를 보였으며 (도 6a), mesenchymal-epithelial transition(MET)-관련 유전자인 SDC1 및 ECAD은 STC1와 음의 상관관계를 보였다(도 6b). 다음으로는 STC1가 방광암 세포에서 이동 및 EMT 관련 유전자간의 발현 조절 여부를 확인하기 위해, MMP1, MMP2, MMP9, NCAD, VIM, SNAIL, SLUG, ZEB1, ZEB2TWIST의 mRNA 발현이 증가됨을 확인하였다(도 7a). 웨스턴 블롯팅 결과를 통해, MMP1, MMP2, MMP9, NCAD, VIM, 및 SNAIL의 단백질 수준이 증가됨을 확인하였으며, 반대로 MET 관련 ECAD 단백질 수준이 감소됨을 확인하였다(도 7b).
6. STC1의 생체 내에서 방광암 종양 성장 및 폐 전이를 증가 확인
대조군 세포 및 STC1 과발현 안정 세포를 수컷 BALB/C 누드 마우스의 옆구리 영역에 피하 주입하여 전체적인 실험 개략도는 다음과 같다(도 8a). STC1 과발현 안정 세포를 주입한 마우스 그룹의 체중은 대조군 마우스 그룹에 비해 유의하진 않지만 증가하였으며, 종양 크기는 급격히 증가하였다(도 8a, b). 도 9b는 대조군 및 STC1 과발현 안정 세포가 주입된 마우스의 옆구리에 형성된 종양의 대표 사진을 나타낸 것이다. STC1의 mRNA 발현은 대조군 세포 주입 마우스 그룹의 종양에서보다 STC1 과발현 안정 마우스 그룹에서 증가하였다(도 8c). 그러므로, IHC에 의해 확인된 STC1의 단백질 발현은 STC1 과발현 안정 세포주 주입 마우스 종양에서 증가하였다(도 8c). 이러한 결과들은 STC1가 생체 내에서 종양 성장을 증가시킴을 보인다.
그런 다음, STC1가 폐 전이를 조절하는지를 확인하기 위해, 대조군 및 STC1 과발현 안정 세포를 마우스 꼬리 정맥에 주입하여 전체적인 실험 개략도는 다음과 같다(도 9a). 두 그룹간의 체중 변화 및 폐 전이가 대조군의 마우스 그룹에 비해 STC1 과발현 안정 세포 마우스 그룹 모두 시간이 지남에 따라 증가됨을 관찰되었다(도 9a). STC1 과발현 안정 세포주가 주입된 마우스 그룹에서 대조군 세포 마우스 그룹에 비해 더 많고 큰 폐 결절이 확인되었다(도 9b). Ki67 및 STC1의 더 높은 발현이 STC1 과발현 안정 세포가 주입된 마우스의 폐 조직에서 확인되었다(도 9b). 또한, STC1 단백질 발현은 방광암 환자의 조직 샘플에서 Grade 1, 2, 3으로 나누어 확인하였으며, grade가 증가할수록 STC1의 발현 또한 증가하였다(도 9c). 이러한 결과들은 STC1은 종양 형성 및 폐 전이를 촉진시키는 중요한 역할을 시사한다.
7. STC1 과발현 안정 세포의 조정 배지(CM)에서 확인된 분비성 STC1은 암 세포의 세포 성장, 침습, 및 이동을 유도 확인
대조군 세포의 조정배지와 비교하여 STC1 과발현 안정 세포의 조정배지에서의 분비된 STC1 단백질의 양이 더 많은 것을 확인하였다(도 10a). 기능적 효과에 대해 세포 증식 및 콜로니 형성 검정을 실시하였으며, STC1 과발현 안정 세포의 조정배지를 방광암 세포에 처리했을 때 증식 및 콜로니 형성 능력이 상당히 가속화됨을 확인하였다(도 10a, b). 또한 세포 침입 및 이동 분석에서, STC1 과발현 안정 세포의 조정 배지에서 배양된 방광암 세포는 더 높은 세포 이동 및 침습 능력을 보였다(도 10c). 또한, 상처 회복 능력도 증가하였으며, STC1 과발현 안정 세포의 조정 배지를 농축하여 확인한 웨스턴 블롯팅 결과에서는 MMP1의 단백질 수준을 감소시켰으나 MMP2 및 9의 발현은 증가시켰으며, 이는 분비된 STC1 단백질이 방광암 세포에서 EMT 관련 유전자 발현을 촉진한다는 것 제시한다(도 10d). 또한, P15 세포의 조정 배지에서 분비된 STC1의 양은 P0 세포의 조정 배지에 보다 더 증가되었다(도 10e). 또한, 분비성 STC1 단백질의 양이 STC1 과발현 벡터를 형질주입한 세포와 STC1 과발현 안정 세포의 조정 배지에서 더 증가되었다(도 10e). 도 10f는, 도 9에서 진행한 실험의 마우스 혈액을 수집하여 혈청을 분리하고 혈청에 대해 인간 STC1 ELISA 검정을 실시한 결과를 나타낸 것으로, 대조군 세포를 주입한 마우스 그룹에 비해 STC1 과발현 안정 세포를 주입한 마우스 그룹의 혈청에서 더 많은 분비성 STC1 단백질이 발견되었다. STC1 분비 단백질이 방광암 세포에서 검출되는지를 확인하기 위해, P0 및 P15 세포의 조정 배지에 대해 인간 STC1 단백질의 ELISA 검정을 실시하였다. 즉, 분비된 STC1이 방광암 세포의 성장, 침습, 및 이동을 촉진한다.
8. 방광암 환자에서 확인된 분비성 STC1 단백질을 통해 방광암 환자의 진단 및 예후 예측 가능성
본 발명에서 분비된 STC1 단백질이 방광암의 전이와 관련됨을 확인하였다. 방광암 세포의 조정배지에서 분비된 STC1 단백질을 확인하고, 효과를 확인하기 위해, P0 및 P15 세포에 0, 100, 및 200 ng/mL의 재조합 인간 STC1 (rhSTC1) 단백질을 각각 0, 24, 48, 및 72시간 동안 처리하였다. rhSTC1 처리에 의한 세포 생존력은 72시간에 P0 세포에서 rhSTC1 처리에 의해 증가되었다. 그러나, P15 세포에는 효과가 없었다(도 11a). 방광암 세포에서 rhSTC1를 처리하여 확인한 세포 증식 능력도 100, 200 ng/mL rhSTC1가 처리된 P0 세포에서 콜로니 형성 능력 및 세포 이동 및 침습 능력 또한 증가하였다(도 11b). 이후, STC1 항체로 rhSTC1을 차단하여, rhSTC1의 전이 효과가 방광암 세포에서 없어지는 것을 확인하였다(도 11c). rhSTC1을 세포에 처리한 후에, 확인한 phosphorylated-FAK (p-FAK)의 발현이 증가하였다(도 11c).
따라서, 본 발명의 암 진단 또는 예후 예측용 신규한 바이오 마커인 STC1은 발현량에 따라서 암 환자의 불량한 예후와 관련된 것을 확인하였으며, 다양한 암세포주에서 과발현 되는 것을 확인하였다. 또한, STC1이 암세포의 증식, 침윤 및 이동(전이)와 관련된 바이오마커인 것을 확인하여, 본 발명의 신규한 바이오마커인 STC1이 암의 진단과 예후를 판단할 수 있는 마커인 것을 확인하였다.
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.
<110> Dong-A University Research Foundation For Industry-Academy Cooperation <120> Novel biomarkers for the diagnosis of cancer and uses thereof <130> PN2206-328 <150> KR 10-2021-0080807 <151> 2021-06-22 <160> 4 <170> KoPatentIn 3.0 <210> 1 <211> 12878 <212> DNA <213> Artificial Sequence <220> <223> Homo sapiens stanniocalcin 1 (STC1) gene sequence <400> 1 agtttgcaaa agccagaggt gcaagaagca gcgactgcag cagcagcagc agcagcggcg 60 gtggcagcag cagcagcagc ggcggcagca gcagcagcag cggaggcacc ggtggcagca 120 gcagcatcac cagcaacaac aacaaaaaaa aatcctcatc aaatcctcac ctaagctttc 180 agtgtatcca gatccacatc ttcactcaag ccaggagagg gaaagaggaa aggggggcag 240 gaaaaaaaaa aaacccaaca acttagcgga aacttctcag agaatgctcc aaaactcagc 300 agtgcttctg gtgctggtga tcagtgcttc tgcaacccat gaggcggagc agaatgactc 360 tgtgagcccc aggaaatccc gagtggcggc tcaaaactca ggtaagcagc aaacccaaga 420 gcggtttctc ccccaaagag ctgtcctcat ttgcctctcc cttttgcaac tgtgtctgtg 480 acggctgatc ttgataataa atgtgcttca tgcctgatgg caataaactg ccagtgtaat 540 ccaatagcct taggcagtgg agctcctttg tttaataaat tgcatgcaac taaacgaaga 600 agctggacgc tctgctgagg gtatttcatt gcataagcct agcctgattg cctgaaatct 660 ggcacgtacc ctcttggagg gggaggggtg agaggggagg aaaggcttga atgttggcat 720 gcttcaaagc gctctctata ctttccagaa gctgatctaa ggtaagacct ggcttgtttg 780 atgctgtccc tcttcctttc ctcttaagac tctacctctt cacttcttga cttctctacc 840 taagagaata cacagaaaag ctccctcttc agactgattt tcagaaccat agccctcaag 900 tctgacaaat ccagggcgga ttcagagaaa accctataca tcccaccccc aaccctgctg 960 cctgtctccc tcctggctct gtagggctcc attcagtcgt ccctgcagcc cgtagccaga 1020 gagcccctag aaaaaaaaaa ttgtgaaacg tagcagctgt ttctccaagg gtaaggtctc 1080 actttcgtct tgactcttgg agcagttaat tgtgcattat cttggcttct gaaggaaaag 1140 aatcattagg aagcctgcat tgacacctct gcctcttgac ttctctggct ccacttgttc 1200 cccttccaat actgccctct gtcctccaac tgtcagcaaa gaccggatca caggtgtcaa 1260 aatgctgcag atgatgatcc ccttggaaga gcacaggtcc ctgccgagag gagggctttt 1320 gcttcacttc cttttgtact tagttgctat agagatgcag tgattcacaa ttcgagcttg 1380 cctaaaacaa tagcagccct aatgcatatt aaaactgctt aaagcaaagt tataatttaa 1440 acccgtggaa atatataatt agggaaatga cttgtaacat cctagaggct gcgggtggtg 1500 ggagggggtg gggaagacta actgaaccat gcttttgatc tcagaggaga atcctatggc 1560 atgaaggctg cagatcattc cttgcctagc tgcctgccag aacacccccc ttctgtggga 1620 gaaaaattac ttttatggga gatcttatcc agaatgtaga aagcctcatg caagtttttt 1680 gcggttttct tccagtcttg catagggagg ccttggcctg gttattccac acctgtgttt 1740 cttctttctt tctttctttc tttctttctt ttttaaaagg cttttaatat gaaagagatt 1800 atgcatacct ctaagcactg tcctagtgga gggttggggt gaaacatgaa cggatcagat 1860 ttctttttgc caatatgacg gtaagttaaa agcctgaaat cagaagggtc tccaagtgga 1920 ctcctggcac agtcttctct gccatttaga ctaaaatccc atgcttttta ctcgggagtg 1980 catttttcca aagctagatg gattccctgg cccttttacc tcttaaacct gaccactagc 2040 cactgtctcc ttccttccca tgctttcaag tgctaagcaa tgacctttga ttctatggaa 2100 tggcttaaag gcactgtgca tttccagact tgagcctcac ttctccagac accaaaattg 2160 taggtaatgg tgaaacaggg agcgtgtgtc tgaaacagag aactccctcc ctgtccatca 2220 tgtactccag caatcataaa caaaaggagc ctgtctatcc tctctttctc aatcaaatgg 2280 gtctatcaat tgcccctcat gacagattcc taggataagt tcttctgacc tcatgtcctt 2340 gaaattcacc tctgcaccca cttgatccca cccagccatt cctcactgtt tgacccagaa 2400 tggatggatt tgtctctttc agctgaagtg gttcgttgcc tcaacagtgc tctacaggtc 2460 ggctgcgggg cttttgcatg cctggaaaac tccacctgtg acacagatgg gatgtatgac 2520 atctgtaaat ccttcttgta cagcgctgct aaatttgaca ctcaggtaat aaaaccttga 2580 cccctgctcc cactggctgc ttgtctttaa cagtgtgtta gaccatggtt cttaggaacc 2640 agtcttgtag ggaaccagcc ctgcttctca gcttccccac tctaaattcc catctcagca 2700 tgtgtatgca caagtgtgtg catgcacaca cacacacaca cacacacaca gaggcactca 2760 tctggccagg aaataggttc tgtataagac acgccccact cactctaatg catgattcta 2820 aggagctagt agaggctgtc ttataaggcc aggggtaata agccaaaaag attttcctct 2880 gtaagaggac ataaaaacgt gcatagagca aggaagttct ctctgcatga cctagcatac 2940 tagcttttga tctgaattct caaagtctca atctcaagaa tatgaagtca gattacgact 3000 atttttaagc tgcagaatgg ttgatcacgg ttcatctttt ttttctgtaa tttcatttcg 3060 gtagagctta attctcaagg gaatccaggg agatggggag agggcttttt tttttttcaa 3120 tccttagccg agacatgcaa tcttctcatt gcaaggatat gcagatggcc atgatacgtt 3180 gcccagatga gcccccttaa attcctccat gtatatgccc atcctctttg tcaggtcaag 3240 ctaaagacct ccctcttgtc cttcctccat ggcagggaaa agcattcgtc aaagagagct 3300 taaaatgcat cgccaacggg gtcacctcca aggtcttcct cgccattcgg aggtgctcca 3360 ctttccaaag gatgattgct gaggtgcagg aagagtgcta cagcaagctg aatgtgtgca 3420 gcatcgccaa gcggaaccct gaagccatca ctgaggtcgt ccagctgccc aatcacttct 3480 ccaacaggta caaactgagt ctactttttc acaatcaggg gactgggagc aggtggctgg 3540 ctggcagagc cagactggga gggagggtta aattgccaca gtcatgctct tattttagct 3600 tgcagtcttc ccagcttttg caggaaaaaa atatgtttgt gattggttgt gacagtttaa 3660 gcagcttggg cttttttttc cctactgtta taggaaaagt cttttcatgc agctcataga 3720 aagccagcct catctgcagc atccctgggt gctttcattg accatttttt gccataagcc 3780 tgaagggaat ggtgaagttt ctggaaacaa gcttttaaga catcagattt ggctgaaacc 3840 atgaccgtgc aacaacacaa ttggccatga ttaaaaaaaa aaaaaaaaaa aaaagccctc 3900 tggttaaatg tcataatgca gattttaagt ctccatctat ttcaaatcag tcccaaacac 3960 agtcagagat ttcactgggt agcccagagc aagccatctc acttccctgg ggctcagatt 4020 tcctttgtaa aaagcaaaat ggctggactg gaccattttc aggtttcctt ccaggcctta 4080 tgttatccca ttcctctagc ccaagatttc ctagaatgag tgtgttttat ggctgtccag 4140 atcccattct catcttagta ttcaaacacc acccaaggcc actgagctag tacagtaaca 4200 tctgggcatt gtacttttca gtgtttttac cagccaggag tgaattcctg ttacatgaga 4260 cagctggcat cctcagttca tgtgcgtggc ctggaaaggt tcccagcaag aactaagaga 4320 tgccaatggg gttggcgtgg aggtctggca ggggcagtgc agaccggtca agtttagccc 4380 cctgtgatat ccctcagcct aaaaacttga ctcccagcct tgaatttcta tgattctttg 4440 actctccact caaatctgca catatccaca atgatcagtg ctttgcatgt tactctgacc 4500 acctgagagt tatcacaggc ttatctgatt aatttcctag ccaggtgcca ccacccttct 4560 taagacagtg gcaacagcca agtccctctg gggcttacaa gtgatttagt catgtacata 4620 catgcaacaa aaaagtagtt cctccttagg gaaaggctaa ggtgcctaac acaaacgctg 4680 tgtaaaattt ctttttcacc cttaactaca ggtgagtgcc cttcagaacc acaaatcaat 4740 ttgtaaaaat cacttctcta gtccttggaa gtgactttat catggggttc taaatggttt 4800 cctcagaaca gaaaaatcca accattttct caagtgggct gtctctatat aactcttggt 4860 tttaaatttc ccctaggaag attcttattg cacagaggaa acaggtgcag agggtgggga 4920 ggggagatct gattaattat tggagacttc cttcaccatt aggaaaagaa atgaagaatt 4980 cttagccaga caggggctaa ggacaaagta tgtgtttgtg tggtagttag gggtgggggg 5040 agaggtacat tagcaaagcc actattacaa tttagatcct taaggattct gtgacaaatc 5100 atgatctata atacggcata tttccaattt tgaggcgata ctaatctccc tatttcatct 5160 gaagtagcat cttccattag aaaggcagag aggtctttag gcagaactat atagctactc 5220 gactagaggt cccaatttat ctaagaagag actagtaaat ttttaaccag gctattattt 5280 cttctaatca gtgccttatt ttcaacacct ttagaaaatg gtcacaaaga aagtcttctt 5340 atctccctct ttcatcttag ggactcatta ggaaaggtca attggagaaa aaaaaaatgt 5400 ggccagccct tgaaaaccgg aatcttccat gcaacctttc tccaaaaatt tcactttaac 5460 aggctatatt attcctgctc aggattgtag aaatgtccgg ttccatgctg ggcttgcttt 5520 gctccattga agctgctcac cttcctgaga catcctgctt tcccagcctc tatcccacca 5580 tagacacacg ctaagtcagt gccaattggc acagaattgc aagaggaagt agttacaggt 5640 tcattccacc ttcctgtgac ttatctagca tgagatttgg ggctgggaga atccaaaagc 5700 ctgtgactgg accaggagcc agaacaaggg gattttccat gacagaaatg cacctagagg 5760 gtaaagaggt agctggagtt tccacctgcc tgaatttgca gactatgctt tcaaccctgt 5820 gggaagcagg caaaattgat caggccagca gggcggtgcg aggcttggga accacttaga 5880 ccaacccaga tccagagtgg gaaaactgac aaagcttcca actctctagg gcatggatag 5940 ggaacaggaa acagaagaat aatattgatc aagggaaaca aaggactatt tataaaccct 6000 cacacagaac gttcctaggc agtatgtgtg tatttgggta agcatggctg aaacagtagc 6060 tatggagaat atctgatctt attctttatc aaaaaaaaaa aggtcaggga tggaattttc 6120 aaagtgagaa aaaagaaaca taattaaaaa ggtcctttcg ggctgggtga tcagaacact 6180 tagtccacca agtctttcca acacatctcc tccatcctcc ataaagataa agaaaggaat 6240 cttcttcttc tttttttttt tttttttttt tttttttgac agagtatcgc tctgttgccc 6300 aggctggagt acagtggtga gatctcagtt cactgcaacc tccatctcct gggttcaagc 6360 aattctcctg cctcagcctc cagagtagct gggattacaa gcactcacca ccacgcccag 6420 ctaatttttg tatttttagt agagacaggg tttcatcatg ttggccgggc tggtcttgaa 6480 ctcctgacct caggtgatcc acccatcttg gcctcccaaa gtgctgggac tgcaggcatg 6540 agccaccatg cccagccaag aaaggaatct tcttaagcag tcctaactac cactgcaaag 6600 gaggggatgt aagcagagct gctctatttt ttgtaaaatt gagaagaaaa atgtgtattg 6660 aatccctaga aacatagaat gtcatagttg gagatgactg ctgaggttaa ctagactaac 6720 tgcctcattt tactgattaa agaataaagg ctcagagagt ggagtgacct gctgaaggtc 6780 acacagcttg tgaataacta agttgggctt agaactcatg tggccttgag ccaagctatt 6840 tgatttctac ttcaaaaatg gcagccagca aaatctgcag gaaatagcca caacccaaaa 6900 atagaatacc aagcacaatt gaatatatgt gcaccgtggt agtccacaat taaatttgcg 6960 tcctttctct cccaaaagga tggacacatc ctaccaatag ctataggaac tataagacca 7020 tagcacaaga aggtgctcac taaataggtg acgattgcta agtcaactct tgctggagac 7080 acaacctctt aaataatcca tctcacttag tgacacagga aagggctatg tcattggcaa 7140 gcatgatccc agaggtaaat ggctattcca gcccttactg gacaggcact ggttaaccta 7200 ttgctcatac tgagaaactg gtgacatcaa ataatcctga caaattttcc agcctttgaa 7260 gaactactaa tggagacatg gactttgttt tatattctaa agagctttct cagcctgccc 7320 ttgctgagtt aacaaaagcc ccatgaggga aatagggtag attccagtgg gggtgggtgg 7380 ttctcactaa gagccctcag gctggcaagg gtcactgtca agaaacacca aggtcaggtg 7440 tcatatctga gccagcagac aaagcaacag taaaggtaga aaggtagaaa ccctccaaaa 7500 aagagcaggc actctgacaa agtggggcct gaaggaaatg tatggccctg aagctgcaaa 7560 gctggctgca gaagcttaat taccttaagg gtactagact tctttgtcca gacaagagct 7620 ttcaagtcct tctaaggaag aactagcatt tctttttatc cctttctagg gaaagattgt 7680 attttccagc ctatctgggg actcatctgg catgaacagc tctttctaga aatggaaggg 7740 ttaacttcta agttataaag tccttattgg agggatggga gatcagaaac cacccaccag 7800 gatctaatca ccctctgaaa tagacacagc catccaaaga cccaggtcct agcagagccc 7860 aagagccagg tgatgcctgg agatctatat gggtgtgtag atgtcagaag ctgctggtgc 7920 aaagttgttt attctatgtt tctccaaaac tggttttctc ctcatttccc catccaaagg 7980 agatctcctt tgactcatgt gctttgtaat tccaaagagt tggacaatgt tcctctgtgc 8040 cagagagtcc cagttttgac cacagctgga tataattctc cctggaggga agggtttcac 8100 caggcctgtg tcagcaacca agacactgca cttgcctctc agtccccagc ttccttctgc 8160 tgtgccacag aagggtgacc atatcacctc attacccacg ttccatgcta tttaccacac 8220 atctttgaaa taacctctct gggggattaa gttattctag aaagatgttt gatcctgtgc 8280 actgtttggt gagttaaaaa taaacaggtt tcttttcacg gaagacctgg tggccccaga 8340 gatccttggg ctcctctgag aaaaagttct ctccatgtaa atactgcagg tcactgtcac 8400 tgagtctctt attagcgaac acagaggtaa tgggttttga caactcaact gcgactacaa 8460 aatggaccaa atgcatccca gtctaaattg gataatacct gaactgtctt cccaaataac 8520 aggacaagtc attgatatgc cctaaatatt agacagttta atcctttctg agccacaaag 8580 cttagctaca ttgcttgggg gtatttaaag aattcgctgc aaagatgaag gtaactgata 8640 ccaaacacaa ggggttttgg taaaatttac taaaactaca gataagtttt cttctgggaa 8700 tcactactta ttggagagaa ttatattctt aaaactccat ttccttagtg gctgcaaaat 8760 aaatcaacaa atgtgcagtg atcaggcaat gtagcacgat ggcaccgggc cataaggaat 8820 acaaagaagg acacaaatcc tgccttcagt aagcttacag tctagtcagc gaaagaaagc 8880 catcacaaaa ccatcaaatg ctggcctatg tgatggcaaa caaagatcta taaatatcca 8940 aaaagggaag aggttagcaa actctggtat agtagaagaa ggattcatga attatagtag 9000 catgaaccct taaaaaccac caatatttcc atttaaatag acttcttgcc taggatttgg 9060 ccttctgact acaatatacc tttgaaggag ggctgaagat ggagtcagtc aatatctttt 9120 atcagggctg tccaagtatg tgataagggc attagatttt gtagaaaaat gcatggcaca 9180 cagaagaggg ggccttagac agaagtttca tcagaagatg cacagatctg catacacaca 9240 cacacacaca cacctgtgcc cacacaccac caaaaaaagg aaaattacaa aaaagcatca 9300 aaataattac acatgcatgt acaatggcta ctaatctcag tgatgagcat tggactcact 9360 tcattctaat ttgcttcacc tcatccacct tagtttcttc tctacaaaat gagagttgaa 9420 ctagtcacca aatggtctct gtggtcccag ctagctctgt aattctgttt ctaaaaatgt 9480 cagtcaccac agtcagcctg ctcttcaaag tgtgatctaa atctcctcaa ctctaaacat 9540 gaagatctgt cttgcattgt gtggtaaacc ctaggagcag atgcattgaa actagggtga 9600 catggcacaa gggttagaga gcaaaagcca ccttcagctg atgaactatt gatgtttgca 9660 tggtcaggcc attagggact cgtgttggct agagcccggg tgaaagcctg ggtctcgccg 9720 ggctctcact gggtgaccac catatgcact ctctttcttg atgcagatac tataacagac 9780 ttgtccgaag cctgctggaa tgtgatgaag acacagtcag cacaatcaga gacagcctga 9840 tggagaaaat tgggcctaac atggccagcc tcttccacat cctgcagaca gaccactgtg 9900 cccaaacaca cccacgagct gacttcaaca ggagacgcac caatgagccg cagaagctga 9960 aagtcctcct caggaacctc cgaggtgagg aggactctcc ctcccacatc aaacgcacat 10020 cccatgagag tgcataacca gggagaggtt attcacaacc tcaccaaact agtatcattt 10080 taggggtgtt gacacaccag ttttgagtgt actgtgcctg gtttgatttt tttaaagtag 10140 ttcctatttt ctatccccct taaagaaaat tgcatgaaac taggcttctg taatcaatat 10200 cccaacattc tgcaatggca gcattcccac caacaaaatc catgtgacca ttctgcctct 10260 cctcaggaga aagtaccctc ttttaccaac ttcctctgcc atgtttttcc cctgctcccc 10320 tgagaccacc cccaaacaca aaacattcat gtaactctcc agccattgta atttgaagat 10380 gtggatccct ttagaacggt tgccccagta gagttagctg ataaggaaac tttatttaaa 10440 tgcatgtctt aaatgctcat aaagatgtta aatggaattc gtgttatgaa tctgtgctgg 10500 ccatggacga atatgaatgt cacatttgaa ttcttgatct ctaatgagct agtgtcttat 10560 ggtcttgatc ctccaatgtc taattttctt tccgacacat ttaccaaatt gcttgagcct 10620 ggctgtccaa ccagactttg agcctgcatc ttcttgcatc taatgaaaaa caaaaagcta 10680 acatctttac gtactgtaac tgctcagagc tttaaaagta tctttaacaa ttgtcttaaa 10740 accagagaat cttaaggtct aactgtggaa tataaatagc tgaaaactaa tgtactgtac 10800 ataaattcca gaggactctg cttaaacaaa gcagtatata ataactttat tgcatataga 10860 tttagttttg taacttagct ttatttttct tttcctggga atggaataac tatctcactt 10920 ccagatatcc acataaatgc tccttgtggc cttttttata actaaggggg tagaagtagt 10980 tttaattcaa catcaaaact taagatgggc ctgtatgaga caggaaaaac caacaggttt 11040 atctgaagga ccccaggtaa gatgttaatc tcccagccca cctcaaccca gaggctactc 11100 ttgacttaga cctatactga aagatctctg tcacatccaa ctggaaattc caggaaccaa 11160 aaagagcatc cctatgggct tggaccactt acagtgtgat aaggcctact atacattagg 11220 aagtggcagt tctttactcg tcccctttca tcggtgcctg gtactctggc aaatgatgat 11280 ggggtgggag actttccatt aaatcaatca ggaatgagtc aatcagcctt taggtcttta 11340 gtccggggga cttggggctg agagagtata aataaccctg ggctgtccag ccttaataga 11400 cttctcttac attttcgtcc tgtagcacgc tgcctgccaa agtagtcctg gcagctggac 11460 catctctgta ggatcgtaaa aaaatagaaa aaaagaaaaa aaaaagaaag aaagagggaa 11520 aaagagctgg tggtttgatc atttctgcca tgatgtttac aagatggcga ccaccaaagt 11580 caaacgacta acctatctat gaacaacagt agtttctcag ggtcactgtc cttgaaccca 11640 acagtccctt atgagcgtca ctgcccacca aaggtcaatg tcaagagagg aagagaggga 11700 ggaggggtag gactgcaggg gccactccaa actcgcttag gtagaaacta ttggtgcttg 11760 actctcacta ggctaaactc aagatttgac caaatcgagt gatagggatc ctggtgggag 11820 gagagagggc acatctccag aaaaatgaaa agcaatacaa ctttaccata aagcctttaa 11880 aaccagtaac gtgctgctca aggaccaaga gcaattgcag cagacccagc agcagcagca 11940 gcagcacaaa cattgctgcc tttgtcccca cacagcctct aagcgtgctg acatcagatt 12000 gttaagggca tttttatact cagaactgtc ccatccccag gtccccaaac ttatggacac 12060 tgccttagcc tcttggaaat caggtagacc atattctaag ttagactctt cccctccctc 12120 ccacacttcc cacccccagg caaggctgac ttctctgaat cagaaaagct attaaagttt 12180 gtgtgttgtg tccattttgc aaacccaact aagccaggac cccaatgcga caagtagttc 12240 atgagtattc ctagcaaatt tctctctttc ttcagttcag tagatttcct tttttctttt 12300 cttttttttt tttttttttt ttggctgtga cctcttcaaa ccgtggtacc cccccttttc 12360 tccccacgat gatatctata tatgtatcta caatacatat atctacacat acagaaagaa 12420 gcagttctca caatgttgct agttttttgc ttctctttcc cccaccctac tccctccaat 12480 tcccccttaa acttccaaag cttcgtcttg tgtttgctgc agagtgattc gggggctgac 12540 ctagaccagt ttgcatgatt cttctcttgt gatttggttg cactttagac atttttgtgc 12600 cattatattt gcattatgta tttataattt aaatgatatt taggtttttg gctgagtact 12660 ggaataaaca gtgagcatat ctggtatatg tcattattta ttgttaaatt acatttttaa 12720 gctccatgtg catataaagg ttatgaaaca tatcatggta atgacagatg caagttattt 12780 tatttgctta tttttataat taaagatgcc atagcataat atgaagcctt tggtgaattc 12840 cttctaagat aaaaataata ataaagtgtt acgtttta 12878 <210> 2 <211> 247 <212> PRT <213> Artificial Sequence <220> <223> Homo sapiens stanniocalcin 1 (STC1) amino acid sequence <400> 2 Met Leu Gln Asn Ser Ala Val Leu Leu Val Leu Val Ile Ser Ala Ser 1 5 10 15 Ala Thr His Glu Ala Glu Gln Asn Asp Ser Val Ser Pro Arg Lys Ser 20 25 30 Arg Val Ala Ala Gln Asn Ser Ala Glu Val Val Arg Cys Leu Asn Ser 35 40 45 Ala Leu Gln Val Gly Cys Gly Ala Phe Ala Cys Leu Glu Asn Ser Thr 50 55 60 Cys Asp Thr Asp Gly Met Tyr Asp Ile Cys Lys Ser Phe Leu Tyr Ser 65 70 75 80 Ala Ala Lys Phe Asp Thr Gln Gly Lys Ala Phe Val Lys Glu Ser Leu 85 90 95 Lys Cys Ile Ala Asn Gly Val Thr Ser Lys Val Phe Leu Ala Ile Arg 100 105 110 Arg Cys Ser Thr Phe Gln Arg Met Ile Ala Glu Val Gln Glu Glu Cys 115 120 125 Tyr Ser Lys Leu Asn Val Cys Ser Ile Ala Lys Arg Asn Pro Glu Ala 130 135 140 Ile Thr Glu Val Val Gln Leu Pro Asn His Phe Ser Asn Arg Tyr Tyr 145 150 155 160 Asn Arg Leu Val Arg Ser Leu Leu Glu Cys Asp Glu Asp Thr Val Ser 165 170 175 Thr Ile Arg Asp Ser Leu Met Glu Lys Ile Gly Pro Asn Met Ala Ser 180 185 190 Leu Phe His Ile Leu Gln Thr Asp His Cys Ala Gln Thr His Pro Arg 195 200 205 Ala Asp Phe Asn Arg Arg Arg Thr Asn Glu Pro Gln Lys Leu Lys Val 210 215 220 Leu Leu Arg Asn Leu Arg Gly Glu Glu Asp Ser Pro Ser His Ile Lys 225 230 235 240 Arg Thr Ser His Glu Ser Ala 245 <210> 3 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> STC1_qRT PCR primer F <400> 3 agcgctgcta aatttgacac t 21 <210> 4 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> STC1_qRT PCR primer R <400> 4 ctttggaaag tggagcacct ccg 23

Claims (15)

  1. STC1(Stanniocalcin-1)유전자를 포함하는 암의 진단용 바이오마커.
  2. STC1(Stanniocalcin-1)의 발현수준을 측정할 수 있는 제제를 포함하는, 암의 진단, 전이 또는 예후 예측용 바이오마커 조성물.
  3. 제 2항에 있어서,
    상기 STC1은 서열번호 1의 염기서열을 포함하는 것인, 조성물.
  4. 제 2항에 있어서,
    상기 암은 방광암, 유방암, 교모세포종, 전립선암, 뇌척수종양, 두경부암, 폐암, 흉선종, 중피종, 식도암, 위암, 대장암, 간암, 췌장암, 담도암, 신장암, 고환암, 생식세포종, 난소암, 자궁 경부암, 자궁 내막암, 림프종, 급성 백혈병, 만성 백혈병, 다발성 골수종, 육종, 악성 흑색종 및 피부암으로 이루어진 군에서 선택된 것인, 조성물.
  5. 제 2항에 있어서,
    상기 STC1의 발현이 대조군의 기준치와 비교하여 증가되면, 암세포의 성장, 침습(invasion) 또는 이동(migration)이 증가되는 것인, 조성물.
  6. 제 2항에 있어서,
    상기 STC1의 발현이 대조군의 기준치와 비교하여 증가되면, 암의 임상 병기(clinical stage)가 증가되는 것인, 조성물.
  7. 제 1항의 조성물을 포함하는 암의 진단, 전이 또는 예후 예측용 키트.
  8. 개체로부터 생물학적 시료를 분리하는 단계;
    상기 분리된 생물학적 시료에서 STC1(Stanniocalcin-1)의 발현수준을 측정하는 단계; 및
    상기 STC1의 발현 수준을 대조군의 기준치와 비교하는 단계;를 포함하는 암의 진단, 전이 또는 예후 예측을 위한 정보 제공 방법.
  9. 제 8항에 있어서,
    상기 생물학적 시료는 조직, 세포, 전혈, 혈청, 혈장, 타액, 객담, 뇌척수액 및 소변으로 이루어진 군에서 선택되는 것인, 방법.
  10. 제 8항에 있어서,
    상기 STC1의 발현이 대조군의 기준치와 비교하여 증가되면, 암인 것으로 판단하는 것인, 방법.
  11. 제 10항에 있어서,
    상기 암은 방광암, 유방암, 교모세포종, 전립선암, 뇌척수종양, 두경부암, 폐암, 흉선종, 중피종, 식도암, 위암, 대장암, 간암, 췌장암, 담도암, 신장암, 고환암, 생식세포종, 난소암, 자궁 경부암, 자궁 내막암, 림프종, 급성 백혈병, 만성 백혈병, 다발성 골수종, 육종, 악성 흑색종 및 피부암으로 이루어진 군에서 선택된 것인 방법.
  12. 제 8항에 있어서,
    상기 STC1의 발현이 대조군의 기준치와 비교하여 증가되면, 암세포의 성장, 침습(invasion) 또는 이동(migration)이 증가된 것으로 판단하는 것인, 방법.
  13. 제 8항에 있어서, 상기 STC1의 발현이 대조군의 기준치와 비교하여 증가되면, 암의 임상 병기(clinical stage)가 증가된 것으로 판단하는 것인, 방법.
  14. 개체로부터 생물학적 시료를 분리하는 단계;
    상기 분리된 생물학적 시료에 후보 물질을 처리하는 단계;
    상기 후보물질이 처리된 생물학적 시료에서 STC1(Stanniocalcin-1)의 발현 수준을 측정하는 단계; 및
    상기 STC1의 발현 수준을 대조군의 기준치와 비교하는 단계;를 포함하는 항암제의 스크리닝 방법.
  15. 제 14항에 있어서,
    상기 STC1의 발현이 대조군의 기준치와 비교하여 저발현 되면, 항암효과가 있는 것으로 판단하는 것인, 방법.
KR1020220076393A 2021-06-22 2022-06-22 암의 진단용 신규한 바이오마커 및 이의 용도 KR20220170379A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20210080807 2021-06-22
KR1020210080807 2021-06-22

Publications (1)

Publication Number Publication Date
KR20220170379A true KR20220170379A (ko) 2022-12-29

Family

ID=84539417

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220076393A KR20220170379A (ko) 2021-06-22 2022-06-22 암의 진단용 신규한 바이오마커 및 이의 용도

Country Status (1)

Country Link
KR (1) KR20220170379A (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116718784A (zh) * 2023-06-19 2023-09-08 十堰市太和医院(湖北医药学院附属医院) Stc1作为胶质瘤标记物的应用
KR102603707B1 (ko) 2023-05-24 2023-11-17 (주) 아이크로진 마커 및 컨텐츠 자동화 전산 시스템 및 이의 운영 방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102603707B1 (ko) 2023-05-24 2023-11-17 (주) 아이크로진 마커 및 컨텐츠 자동화 전산 시스템 및 이의 운영 방법
CN116718784A (zh) * 2023-06-19 2023-09-08 十堰市太和医院(湖北医药学院附属医院) Stc1作为胶质瘤标记物的应用

Similar Documents

Publication Publication Date Title
Wang et al. FABP5 correlates with poor prognosis and promotes tumor cell growth and metastasis in cervical cancer
Chen et al. Role of interleukin 1 beta in esophageal squamous cell carcinoma
Wang et al. RP11-323N12. 5 promotes the malignancy and immunosuppression of human gastric cancer by increasing YAP1 transcription
Meng et al. shRNA-mediated knockdown of Bmi-1 inhibit lung adenocarcinoma cell migration and metastasis
KR20220170379A (ko) 암의 진단용 신규한 바이오마커 및 이의 용도
Zhou et al. CCL19 suppresses gastric cancer cell proliferation, migration, and invasion through the CCL19/CCR7/AIM2 pathway
Zhang et al. ING5 inhibits cancer aggressiveness via preventing EMT and is a potential prognostic biomarker for lung cancer
Zhang et al. Rhomboid domain-containing protein 1 promotes breast cancer progression by regulating the p-Akt and CDK2 levels
Tang et al. Pre-metastatic niche triggers SDF-1/CXCR4 axis and promotes organ colonisation by hepatocellular circulating tumour cells via downregulation of Prrx1
Li et al. Silencing of CXCR7 gene represses growth and invasion and induces apoptosis in colorectal cancer through ERK and β-arrestin pathways
Liao et al. Heparin co‐factor II enhances cell motility and promotes metastasis in non‐small cell lung cancer
Zheng et al. CXCL6 fuels the growth and metastases of esophageal squamous cell carcinoma cells both in vitro and in vivo through upregulation of PD‐L1 via activation of STAT3 pathway
Lu et al. Antitumor efficacy of CC motif chemokine ligand 19 in colorectal cancer
Qazi et al. Subcellular proteomics: determination of specific location and expression levels of lymphatic metastasis associated proteins in hepatocellular carcinoma by subcellular fractionation
Yong et al. Overexpression of Semaphorin-3E enhances pancreatic cancer cell growth and associates with poor patient survival
Yao et al. LncRNA THEMIS2‐211, a tumor‐originated circulating exosomal biomarker, promotes the growth and metastasis of hepatocellular carcinoma by functioning as a competing endogenous RNA
Wu et al. B-cell lymphoma/leukemia 10 promotes oral cancer progression through STAT1/ATF4/S100P signaling pathway
Maayah et al. Breast cancer diagnosis is associated with relative left ventricular hypertrophy and elevated endothelin-1 signaling
Chen et al. miR‐190b promotes tumor growth and metastasis via suppressing NLRC3 in bladder carcinoma
Liu et al. RNA helicase DDX24 stabilizes LAMB1 to promote hepatocellular carcinoma progression
Diab-Assaf et al. Expression of eukaryotic initiation factor 4E and 4E binding protein 1 in colorectal carcinogenesis
Gu et al. Exosome EpCAM promotes the metastasis of glioma by targeting the CD44 signaling molecule on the surface of glioma cells.
Xu et al. Microdialysis combined with proteomics for protein identification in breast tumor microenvironment in vivo
Maekawa et al. Expression and localization of FOXO1 in non-small cell lung cancer
WO2022270926A1 (ko) 다양한 암의 진단, 전이 또는 예후 예측용 신규한 바이오마커 및 이의 용도