WO2022270606A1 - 解析システム、学習済みモデル生成装置および判別システムならびに解析方法、学習済みモデル生成方法および判別方法 - Google Patents

解析システム、学習済みモデル生成装置および判別システムならびに解析方法、学習済みモデル生成方法および判別方法 Download PDF

Info

Publication number
WO2022270606A1
WO2022270606A1 PCT/JP2022/025204 JP2022025204W WO2022270606A1 WO 2022270606 A1 WO2022270606 A1 WO 2022270606A1 JP 2022025204 W JP2022025204 W JP 2022025204W WO 2022270606 A1 WO2022270606 A1 WO 2022270606A1
Authority
WO
WIPO (PCT)
Prior art keywords
analysis
over time
substance
capture
target substance
Prior art date
Application number
PCT/JP2022/025204
Other languages
English (en)
French (fr)
Inventor
健 岡本
孝敏 末松
航 小野田
敦郎 巽
裕一郎 浅井
直子 古澤
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2022/011374 external-priority patent/WO2022270043A1/ja
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2023530131A priority Critical patent/JPWO2022270606A1/ja
Priority to US18/567,367 priority patent/US20240282405A1/en
Publication of WO2022270606A1 publication Critical patent/WO2022270606A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B15/00ICT specially adapted for analysing two-dimensional or three-dimensional molecular structures, e.g. structural or functional relations or structure alignment
    • G16B15/20Protein or domain folding
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
    • G16B40/10Signal processing, e.g. from mass spectrometry [MS] or from PCR
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
    • G16B40/20Supervised data analysis

Definitions

  • the present invention relates to an analysis system, a trained model generation device, a discrimination system, an analysis method, a trained model generation method, and a discrimination method.
  • SDGs3 Good health and well-being for all
  • SDGs9 Build a foundation for industry and technological innovation
  • Nanomaterials are used in a wide range of fields, from industrial fields to cosmetic/medical fields, and are important key materials.
  • Amyloid ⁇ is one of the proteins exemplified as nanomaterials.
  • a ⁇ is one of the proteins involved in the progression of Alzheimer's dementia. Management of aggregation state and surface state is also important for the measurement and evaluation of A ⁇ .
  • metal and inorganic nanoparticles for precision industrial products it is of course important to control the particle size on the order of a single nanometer (nm), and it is also important to control the aggregation state and surface state, as they greatly affect the function. It is
  • Non-Patent Document 1 for the detection of aggregates, for example, analysis by gel filtration chromatography, analysis by ThT fluorescence, analysis by spectrophotometer, analysis by dynamic light scattering (DLS), It is described that there are multiple techniques such as analysis by differential scanning calorimetry (DSC) and analysis by microscope. In addition, this non-patent document 1 states that the use of these techniques for quality control at biopharmaceutical production sites still has problems in terms of quantification and simplicity.
  • Patent Document 1 has been proposed as a method for measuring and evaluating these aggregation states and surface states.
  • US Pat. No. 6,200,000 describes the preparation of lipoproteins, such as HDL, LDL, Lp(a), IDL and VLDL, from biological samples for diagnostic purposes using differentially charged particle mobility analysis methods. An apparatus and method have been proposed for.
  • this patent document 1 describes a method for analyzing the size distribution of lipoproteins prepared by the above method by differentially charged particle mobility.
  • any of the techniques described in Non-Patent Document 1 still have problems in terms of quantification, simplicity, etc. when used for quality control at biopharmaceutical production sites. Further, the technique described in Patent Document 1 measures the particle mobility, and although the distribution size can be observed to some extent, the accuracy is not sufficient.
  • mass spectrometry has the disadvantage that the state of aggregation is dissolved in the pretreatment/detection process, making it impossible to distinguish between monomers and aggregates.
  • Size exclusion chromatography, dynamic light scattering, and simple evaluation methods have the drawback of not being able to detect low concentrations.
  • the dynamic light scattering method also has the drawback of low detectability for the single nm order or less.
  • the Western blotting method, the ELISA method and the SPFS method each require capture substances corresponding to a plurality of states of aggregation, and have the disadvantage that it is difficult to prepare capture substances corresponding to all aggregates.
  • nanomaterials such as nanoparticles have the disadvantage that there is no means for detecting them with high sensitivity, particularly on the order of single nm or less, and there is no means for simultaneously detecting particle size and surface state.
  • An object of the present invention is to provide an analysis system, a trained model generation device, a discrimination system, an analysis method, a trained model generation method, and a discrimination method that quantify at least one of an aggregation state and a surface state with high sensitivity. be.
  • the present inventors obtained a plurality of aggregation information and The inventors have found that surface information can be determined in one reaction field, and have completed the present invention.
  • an acquisition means for acquiring a signal change over time due to an interaction between a capture target substance and a capture substance by an electrical or optical detection method; and analysis means for analyzing at least one of the surface states.
  • a trained model generating apparatus comprising: analysis means for analyzing at least one of surface states; and machine learning means for performing machine learning using a plurality of analysis results obtained by the analysis means to generate a trained model.
  • a discrimination system having discrimination means for outputting a discrimination result of at least one of a state and a surface state.
  • a trained model generation method comprising: an analysis step of analyzing at least one of surface states; and a machine learning step of performing machine learning using a plurality of analysis results obtained by the analysis step to generate a trained model.
  • a discrimination method comprising a discrimination step of outputting a discrimination result of at least one of a state and a surface state.
  • an analysis system a trained model generation device, a discrimination system, an analysis method, a trained model generation method, and a discrimination method that quantify at least one of the aggregation state and the surface state with high sensitivity.
  • FIG. 1 is a schematic diagram showing the configuration of an analysis system according to one embodiment of the present invention
  • FIG. FIG. 4 is an explanatory diagram for explaining an example of detection using an electrical detection signal
  • FIG. 4 is an explanatory diagram for explaining an example of detection using an SPFS signal
  • a graph (left graph) showing the change in the threshold voltage Vth corresponding to the change in binding rate over time for each concentration of the capture target substance obtained by the electrical detection signal, and the height Vth max ( (maximum binding rate) and the capture target substance concentration can be used to calculate the Kd (right graph).
  • FIG. 10 is a graph showing an example of temporal change when K d is constant, k on and k off are slowed down due to aggregation size, and binding rate is constant.
  • FIG. 4B is a table showing K d , k on , and k off obtained from the results shown in FIG. 4A;
  • FIG. 10 is a conceptual diagram illustrating a state of having a plurality of arrayed reaction fields (capturing substances).
  • FIG. 1 is a schematic diagram showing an example of an apparatus configuration for observing and evaluating electrical detection signals over time. It is a graph explaining an example of the relationship between age and changes in biomarkers in Alzheimer's dementia.
  • 1 is a schematic diagram illustrating the configuration of a continuous-flow SPR apparatus;
  • FIG. 1 is a schematic diagram showing an example of a transistor-type biosensor;
  • FIG. 4 is a schematic diagram showing another example of a transistor-type biosensor;
  • 1 is a schematic diagram illustrating the configuration of a trained model generation device according to an embodiment of the present invention;
  • FIG. 1 is a schematic diagram illustrating the configuration of a discrimination system according to one embodiment of the present invention;
  • FIG. It is a flow chart explaining the analysis method concerning one embodiment of the present invention.
  • 4 is a flowchart illustrating a learned model generation method according to an embodiment of the present invention. It is a flowchart explaining the discrimination
  • 4 is a graph showing changes in threshold voltage Vth over time of a low-aggregation sample (A ⁇ 1-42 monomer) and a high-aggregation sample (A ⁇ 1-42 aggregate).
  • 4 is a graph showing temporal changes in the threshold voltage Vth of a low-aggregation sample (A ⁇ 1-42 monomer) and a high-aggregation sample (A ⁇ 1-42 aggregate) at various concentrations.
  • the change data over time of the threshold voltage Vth was dimensionally compressed by principal component analysis as an explanatory variable, and whether it was a low-cohesion sample or a high-cohesion sample was used as an objective variable, and an SVM (support vector machine), which is a machine learning model, was used. It is a graph which shows the result of having performed learning and classification prediction.
  • the aggregation state and surface state of nanomaterials are known to affect the function and quality of the material.
  • the present invention provides a system for sensitively quantifying aggregation distributions and surface states in nanomaterials. Specifically, it is proposed to discriminate multiple pieces of aggregation information and surface information in a single reaction field by acquiring signal changes over time due to the interaction of the target substance and the capture substance by an electrical or optical detection method. come true.
  • FIG. 1 is a schematic diagram showing the configuration of an analysis system 1 according to one embodiment of the present invention. As shown in FIG. 1, the analysis system 1 has acquisition means 2 and analysis means 3 . This analysis system 1 is used in a trained model generation device 1A (FIG. 11) and a discrimination system 1B (FIG. 12), which will be described later.
  • a trained model generation device 1A FIG. 11
  • a discrimination system 1B FIG. 12
  • Acquisition means 2 acquires a signal change over time due to the interaction between the capture target substance and the capture substance by an electrical or optical detection method.
  • the term "chronologically” refers to the order of elapsed time, and the order of time may be continuous or intermittent (intermittent).
  • Examples of such acquisition means 2 include a transistor-type biosensor using a surface plasmon resonance (SPR) device and a field effect transistor (FET). The SPR device and the transistor-type biosensor will be described later.
  • a competitive method using a fluorescence signal or an absorption signal may be used.
  • FIG. 2A is an explanatory diagram illustrating an example of detection using an electrical detection signal.
  • FIG. 2B is an explanatory diagram illustrating an example of detection using an SPFS signal.
  • the electric detection signal obtained by the SPR device or the transistor-type biosensor can detect the time-dependent change of the signal after the addition of the capture target substance.
  • this change over time may be in the same order as the time course described above, and may be continuous detection and a detection signal resulting from it, or intermittent detection and a detection signal resulting from it. good.
  • This electrical detection signal can separate, quantify, and discriminate mixed signals of a plurality of capture target substances (compounds A+B+C).
  • the SPFS signal fluorescence intensity
  • the electrical detection signal described above is more suitable than the SPFS signal in discriminating mixed signals of a plurality of compounds by machine learning, as will be described later.
  • the electrical detection signal is further described.
  • K d dissociation constant (unit: M)
  • k on binding rate constant (unit: M ⁇ 1 s ⁇ 1 )
  • k off dissociation rate constant (unit: s ⁇ 1 )
  • FIG. 3A shows a graph (left graph) showing changes in the threshold voltage Vth corresponding to changes in the binding rate over time at each concentration of the capture target substance obtained from the electrical detection signal, and It shows that K d can be calculated from the height Vth max (maximum binding rate) and the capture target substance concentration (right graph).
  • FIG. 3B is a graph (left graph) showing the change in the threshold voltage Vth corresponding to the change in the binding rate of the capture target substance over time obtained from the electrical detection signal, and the rate constant calculated therefrom. and k on and k off can be calculated from the capture target substance concentration (right graph).
  • the graph on the right side of FIG. 3B is a linear expression with a slope of k on and an intercept of k off .
  • FIG. 4A shows an example of temporal changes when the dissociation constant K d is constant, k on and k off are slowed by small, medium, and large aggregation sizes (cases A, B, and C), and the binding rate is constant.
  • FIG. 4B is a table showing K d , k on and k off obtained from the results shown in FIG. 4A. As shown in the graph of FIG. 4A and the table of FIG. 4B, as the size of aggregates increases, changes in k on (slow), k off (slow) occur at least, and signal changes occur. Vth max also changes.
  • a signal in which the electrical detection signals corresponding to each aggregate are mixed can be obtained.
  • the height rate of binding (change in Vth)
  • rate association rate constant (k on ), dissociation rate constant (k off )
  • the aggregate size component can be predicted from the separated component (signal change) by machine learning.
  • a trapping substance r1 for discriminating aggregate size is set in the arrayed first reaction field, as described with reference to FIG. 4A.
  • the arrayed second, third, and fourth reaction fields include trapping substances r2 and r3 that are sensitive to different size bands, trapping substance r4 that detects changes in the amount of charge, and the like.
  • Different types of capture substances may be changed to obtain results for each (detection of multiple states), and they may be used in combination.
  • Machine learning is then performed using the results.
  • bias and direction of charge at the time of aggregation and complex equilibrium reactions occur when the capture target substance is mixed, which may result in a complex signal. I will judge. By doing so, it is possible to obtain information on the aggregation distribution and the surface state more widely and more precisely.
  • FIG. 5 is a conceptual diagram explaining a state of having a plurality of arrayed reaction fields (capturing substances).
  • a measuring device using an electric signal such as an FET as described above, is used from the viewpoint of being able to acquire a large amount of signal information for aggregates and to acquire binding rate and binding rate information for each size.
  • Transistor biosensors, SPR devices, and the like are preferred. Both of these can follow signal changes over time. It is also effective for the acquisition means 2 to adopt a method of taking temperature dependency and intentionally changing the speed to increase the amount of information.
  • FIG. 6 is a schematic diagram showing an example of an apparatus configuration for observing and evaluating electrical detection signals over time. In the example shown in FIG.
  • the gate portion is an extended gate and the capture substance is formed on the Au electrode.
  • an Au electrode and a reference electrode are arranged in a container containing a predetermined measurement solution and brought into contact with the measurement solution. Then, when the capture target substance is added to the measurement solution, the semiconductor parameter analyzer can track changes in ⁇ Vth over time, as described above. Measurement with a semiconductor parameter analyzer can be performed with a fixed drain-source voltage (voltage Vds) and a variable gate-source voltage (voltage Vgs).
  • Areas to which substances to be captured belong include areas ranging from medical applications to industrial applications, where the aggregation state and surface state affect the function, quality, bio-permeability, and progression of disease of materials.
  • a ⁇ peptide (protein), antibodies, antibody-attached beads, fluorescent nanoparticles (PID (Phosphor Integrated Dot) particles), polyethylene glycol (PEG)-attached liposomes, and the like can be substances to be captured.
  • PEG polyethylene glycol
  • metal nanoparticles, carbon nanotubes, magnetic fluids, nanosilica (such as sealing fillers), crystalline zirconia, and the like can be capture target substances.
  • a ⁇ peptides proteins
  • antibodies metal nanoparticles, carbon nanotubes, magnetic fluids, nanosilica (sealing fillers, etc.), crystalline zirconia, etc.
  • a ⁇ peptides proteins
  • antibodies metal nanoparticles, carbon nanotubes, magnetic fluids, nanosilica (sealing fillers, etc.), crystalline zirconia, etc.
  • a ⁇ (Contribution to Alzheimer's disease)
  • a ⁇ positron emission tomography
  • PET positron emission tomography
  • cerebrospinal fluid is collected and examined.
  • PET is expensive and imposes a heavy burden on the patient
  • examination by collecting cerebrospinal fluid imposes a heavy burden on the patient in that lumbar puncture is required to collect the cerebrospinal fluid.
  • the substances to be captured in PET are A ⁇ aggregates (fibrils/fibers).
  • the substance to be captured in IP-MS is the ratio of blood A ⁇ 1-42 to APP699-711 or A ⁇ 1-40.
  • Substances to be captured in the MCI screening test are three proteins (C3, ApoA1, and TTR) involved in blood A ⁇ clearance.
  • the substance to be captured in Simoa TM analysis is p-tau in blood. Table 1 shows the concentration of each capture target substance detected in blood. In addition, "-" in Table 1 indicates that there is no noteworthy matter regarding the detected concentration.
  • IP-MS and Simoa TM analyzes like PET, are expensive and place a heavy burden on the patient.
  • the IP-MS and MCI screening tests have not reached a level where the progress of dementia can be determined by A ⁇ in the blood (accuracy cannot be said to be sufficient).
  • the analysis system acquires signal changes over time due to the interaction between the capture target substance and the capture substance by an electrical or optical detection method.
  • an electric or optical detection method as described above, an SPR device or a transistor-type biosensor is used, so it is possible to detect substances to be captured in an extremely low concentration range (for example, 10 fM to 100 ⁇ M) (aggregation distribution can be detected with high sensitivity). can be detected). Therefore, A ⁇ in blood can be evaluated without concentration by using electrical or optical detection methods.
  • the electrical or optical detection method of the present embodiment can detect the aggregation state of A ⁇ even at extremely low concentrations by utilizing this.
  • a low-molecular-weight compound having selectivity for A ⁇ monomers and A ⁇ oligomers is developed and searched, it will be possible to detect A ⁇ monomers and A ⁇ oligomers at extremely low concentrations. By doing so, it is possible to further improve the determination accuracy by detecting, verifying, and analyzing these in combination.
  • the analysis system 1, the trained model generation device 1A, and the discrimination system 1B according to this embodiment can contribute to the examination and treatment of Alzheimer's disease.
  • the analysis system 1, the trained model generation device 1A, and the discrimination system 1B according to this embodiment can contribute to the examination and treatment of Alzheimer's disease.
  • drugs that delay the progression of dementia and it is important to perform early diagnosis/treatment in the treatment of dementia.
  • all substances to be captured in clinical trials are A ⁇ .
  • FIG. 7 is a graph illustrating an example of the relationship between age and changes in biomarkers in Alzheimer's dementia.
  • the present proposal (the analysis system 1, the trained model generation device 1A, and the discrimination system 1B according to the present embodiment) can detect, analyze, and discriminate low-concentration capture target substances. Therefore, this proposal can be used in the pre-stage that causes brain atrophy and memory impairment and in MCI. For example, this proposal can be used for early diagnosis and early intervention (determination of progress, evaluation of drug efficacy) from an earlier stage than analysis by PET, IP-MS, MCI screening test, and Simoa TM .
  • the development of a therapeutic drug using A ⁇ as a capture target substance for the purpose of suppressing the exacerbation of symptoms at an early stage is underway, and this proposal can also be applied to this.
  • Nanomaterials are used in various industrial/medical products. Controlling the aggregation state of the liquid itself is also important for ensuring product quality and visualizing the reaction mechanism. Therefore, the particle size distribution is measured by a method centered on the dynamic light scattering method. Problems with the dynamic light scattering method and other techniques are that it is difficult to detect particles smaller than a single nm order, and that the capture target substance concentration can be evaluated only in the high concentration band of mM to M. In addition, since the surface state is measured by the zeta potential and the particle diameter is measured by another means, there is also a problem in the simplicity of evaluation.
  • This proposal is characterized by being able to evaluate the aggregation state and distribution even in nanomaterials with a size of a single nm order or less and in a low concentration range where the concentration of the substance to be captured is less than mM.
  • a detection signal is acquired by the interaction between the capture target substance and the capture substance, it is possible to observe the surface state.
  • quality control including surface condition and particle size distribution is important. Therefore, the field using nanomaterials is considered to be one of the promising fields to utilize this proposal.
  • nanoparticles used in drug delivery systems and wound treatments not only the particle size but also the surface state and particle size distribution including crystallinity, molecular state, and stealthiness (surface state including modification groups) are detected. is desirable.
  • An example of a case where the capture substance is a nanomaterial is a high-temperature lead solder alternative material subject to RoHS regulations, more specifically a die-bonding material.
  • Silver nanoparticles are a promising candidate for such a die-bonding material.
  • Die-bonding materials that use silver nanoparticles as materials are required to have lower firing temperatures and improved bonding properties. The smaller the particle size of the silver nanoparticles, the higher the surface energy per area and the lower the melting point. Therefore, the firing temperature can be lowered.
  • a die bonding material using silver nanoparticles as a material is required to have a small particle size (2 nm or less) and a particle size distribution width (0.5 mm or less).
  • the analysis means 3 which will be described later, can observe the particle size distribution and obtain information on the surface state, crystallinity, and modified chain from the signal information.
  • the analysis means 3, which will be described later, can determine the characteristics of the signal height, speed, and signal behavior for each corresponding content, and acquire information that distinguishes each content. Therefore, in the present proposal, it is possible to acquire, analyze, and discriminate the signal change over time due to the interaction between the capture target substance and the capture substance by an electrical or optical detection method that can detect low concentration bands. Therefore, it is suitable for evaluation in these areas.
  • FIG. 8 is a schematic diagram illustrating the configuration of a continuous-flow SPR apparatus 80. As shown in FIG. As shown in FIG.
  • this SPR device 80 includes a sensor chip 84 having a metal thin film 82 (for example, gold thin film) to which a trapping substance 81 is immobilized and a glass substrate 83 provided in contact with the metal thin film 82;
  • a liquid delivery system 86 for contacting and binding the capture target substance 85 (analyte) to the capture substance 81 of the sensor chip 84, and toward the surface of the metal thin film 82 opposite to the surface on which the capture substance 81 is fixed. It has a light source 87 for emitting laser light at a predetermined angle and an optical detector 88 for receiving and detecting the laser light emitted from the light source 87 and reflected by the opposite surface.
  • the metal thin film 82 can be made of the same metal as the metal thin film that constitutes the sensor chip used in a general SPR device. That is, the metal thin film 82 is preferably made of at least one metal selected from the group consisting of gold, silver, aluminum, copper and platinum, and more preferably made of gold. These metals may be in the form of an alloy thereof, or may be a laminate of metals.
  • Metal thin film 82 is preferably formed on the main surface of a dielectric member (not shown).
  • a method for forming the metal thin film 82 on the main surface of the dielectric member a commonly used method can be used. Such methods include, for example, electron beam heating vacuum deposition, resistance heating vacuum deposition, magnetron sputtering, plasma-assisted sputtering, ion-assisted deposition, ion plating, and other vacuum film formation methods.
  • a metal thin film 82 can be deposited on the main surface of the member.
  • the dielectric member can be made of any material commonly used for the sensor chip 84 used in the SPR device 80, such as SiO2 , ZrO2 , SixNy .
  • the thickness of the metal thin film 82 is 5 to 500 nm for gold, 5 to 500 nm for silver, 5 to 500 nm for aluminum, 5 to 500 nm for copper, and 5 to 500 nm for platinum.
  • 5 to 500 nm is preferable for alloys or laminates of From the viewpoint of the electric field enhancement effect, gold is 20 to 70 nm, silver is 20 to 70 nm, aluminum is 10 to 50 nm, copper is 20 to 70 nm, and platinum is 20 to 70 nm.
  • An alloy or laminate is more preferably 10 to 70 nm. If the thickness of the metal thin film 82 is within the above range, surface plasmons are likely to occur, which is preferable.
  • the sensor chip 84 has a sensor section (not shown).
  • the sensor section is provided in a partial area on the metal thin film 82 of the sensor chip 84, and the trapping substance 81 is fixed in this area.
  • a plurality of sensor units may be provided, and different capture substances 81 may be fixed to the respective sensor units.
  • the capture substance 81 is a substance that specifically captures the capture target substance 85 .
  • the capture substance 81 include antibodies against antigens such as A ⁇ protein, enzymes against substrates/coenzymes, receptors against hormones, protein A and protein G against antibodies, avidins against biotin, calmodulin against calcium, and lectins against sugars. be done.
  • the capture target substance 85 is a nucleic acid
  • a nucleic acid having a sequence that specifically binds to it can be used as the capture substance 81 .
  • the capture target substance 85 is a nanomaterial
  • metal ion chelating agents, crown ethers, ionophore groups, and the like can be used as the capture substance 81 .
  • the substances to be captured 85 include proteins, lipids, sugars, nucleic acids, and various other substances, and in the case of the present embodiment, specific examples include A ⁇ proteins and nanomaterials.
  • a commonly used method can be used.
  • a modifying group that produces a specific bond is introduced into the surface of the metal thin film 82, a reactive group corresponding to this modifying group is introduced into the capturing substance 81, and these modifying groups and the reactive group are combined. can fix the capture substance 81 on the metal thin film 82 .
  • the surface of the metal thin film 82 is treated with a silane coupling agent having an amino group at its terminal to modify it with an amino group, and then treated with NHS (N-hydroxysuccinimide)-PEG4-biotin. Then, biotin is bound to the amino group, and after this biotin is reacted with avidin, a biotinylated capture substance 81 (eg, an antibody) is reacted. By doing so, the trapping substance 81 can be immobilized on the metal thin film 82 .
  • a silane coupling agent having an amino group at its terminal to modify it with an amino group
  • NHS N-hydroxysuccinimide
  • the surface of the metal thin film 82 is treated with a silane coupling agent having a terminal carboxyl group to modify it with a carboxyl group, followed by treatment with EDC (1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide) and NHS.
  • EDC 1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide
  • NHS NHS
  • a SAM Self-Assembled Monolayer
  • the SAM serves as a base for fixing the trapping substance 81 on the metal thin film 82 .
  • a carboxyalkanethiol having about 4 to 20 carbon atoms for example, available from Dojindo Laboratories, Sigma-Aldrich Japan Co., Ltd., etc.
  • 10- Carboxy-1-decanethiol is used as the single molecule contained in this SAM.
  • Carboxyalkanethiols having 4 to 20 carbon atoms have properties such as high transparency, low refractive index, and thin film thickness, which have little optical effect on SAMs formed using them. It is suitable because
  • the method for forming the SAM is not particularly limited, but conventionally known methods such as the dipping method, the inkjet method, the dispenser, the applicator, the nozzle jet, and the direct dropping (pipet, quantitative weighing machine, etc.) can be used. can.
  • a specific example is a method of immersing the metal thin film 82 in an ethanol solution containing 10-carboxy-1-decanethiol (manufactured by Dojindo Laboratories).
  • the thiol group of 10-carboxy-1-decanethiol binds to and immobilizes the metal, self-assembles on the surface of the metal thin film 82, and forms SAM.
  • the method of immobilizing the capture substance 81 on the formed SAM is not particularly limited, either, and conventionally known methods can be used, for example, the method of treating with EDC and NHS described above can be used.
  • the solvent in which SAM is dissolved or dispersed is not particularly limited, and the following solvents can be used.
  • solvents include halogen solvents such as chloroform, carbon tetrachloride, dichloromethane, 1,2-dichloroethane, dichlorobenzene, dichlorohexanone, acetone, methyl ethyl ketone, diethyl ketone, methyl isobutyl ketone, n-propyl methyl ketone.
  • ketone solvents such as cyclohexanone, aromatic solvents such as benzene, toluene, xylene, mesitylene, cyclohexylbenzene, aliphatic solvents such as cyclohexane, decalin, dodecane, ethyl acetate, n-propyl acetate, n-butyl acetate, Ester solvents such as methyl propionate, ethyl propionate, ⁇ -butyrolactone and diethyl carbonate, ether solvents such as tetrahydrofuran and dioxane, amide solvents such as dimethylformamide and dimethylacetamide, methanol, ethanol, 1-butanol, ethylene glycol alcohol solvents such as acetonitrile, nitrile solvents such as propionitrile, dimethyl sulfoxide, water, various buffer solutions, or mixed solvents thereof.
  • aromatic solvents such as benzene
  • the boiling point of these solvents is preferably a boiling point lower than the temperature of the drying treatment from the viewpoint of drying the solvent quickly, specifically preferably in the range of 60 to 200 ° C., more preferably in the range of 80 to 180 ° C. is within.
  • the above solvents may be used in combination to adjust the viscosity and surface tension according to the method of forming the SAM.
  • the SAM solution (solvent containing monomolecules for SAM formation) is used for the purpose of controlling the coating range and suppressing liquid flow associated with the surface tension gradient after coating (for example, liquid flow that causes a phenomenon called coffee ring).
  • a surfactant can be contained depending on the purpose.
  • Surfactants include, for example, anionic or nonionic surfactants from the viewpoint of the influence of moisture contained in the solvent, leveling properties, wettability to the substrate (metal thin film 82), and the like.
  • fluorine-containing surfactants and surfactants listed in International Publication No. 08/146681, Japanese Patent Application Laid-Open No. 2-41308, etc. can be used.
  • the solvent used for the SAM may be either a solution in which the SAM is uniformly dissolved in the solvent or a dispersion in which the material is dispersed in the solvent as a solid content.
  • a dispersion method ultrasonic waves, high-shear force dispersion, media dispersion, or the like can be used for dispersion.
  • the viscosity of the SAM solution can be appropriately selected depending on the solubility or dispersibility, and specifically, it can be selected within the range of 0.3 to 100 mPa ⁇ s, for example.
  • a drying process for removing the solvent described above can be included.
  • the temperature of the drying process is not particularly limited, it is preferable to perform the drying process at a temperature that does not damage the substrate such as the metal thin film 82 .
  • the drying temperature varies depending on the composition of the SAM solution and the like, it cannot be generalized.
  • the drying time is preferably an appropriate time (for example, 80° C. for 30 minutes) depending on the materials such as the solvent used. By setting it as such conditions, drying can be performed rapidly.
  • the bond between the bidentate ligand and the tridentate ligand is stronger than that of the monodentate ligand, and the stability is enhanced.
  • Bidentate ligands, tridentate ligands, and higher ligands are more preferable than monodentate ligands because of stability and increased sensitivity.
  • silylene which is a derivative of silicon
  • germylene which is a germanium analog
  • the element positioned at X may be other than N, as in formulas (3) and (4) below.
  • elements positioned at X include, but are not limited to, bicoordinated carbon. Even such a compound can be expected to have the same effect as a carbene ligand.
  • R in formulas (3) and (4) represents hydrogen, an alkyl group, or an aryl group.
  • M indicates a metal.
  • LX indicates a ligand, and X in the LX indicates the number of ligands.
  • the cyclic structural portion may be a 5-membered ring or a 6-membered ring.
  • Five-membered rings include, for example, azole, imidazole, pyrrole, thiophene, furan, pyrazole, oxazole, isoxazole, thiazole, triazole, pentazole and the like.
  • Six-membered rings include, for example, pyridine, pyrimidine, pyridazine, triazine, tetrazine, pentazine, hexaazine, and the like. Any of the carbene ligands and the like described above can bond with the surface of the metal thin film 82 (preferably, the surface of the gold thin film).
  • the region where the trapping substance 81 is fixed on the metal thin film 82, that is, the shape and area of the sensor portion are not particularly limited, but the incident light (parallel light) passes through the prism and is irradiated to the entire chip surface, and is reflected.
  • the emitted light is detected by a photodiode (PD), charge-coupled device (CCD) detector, or the like. Only the interacted portion is observed as a brightened signal, or image.
  • the shape of the sensor section is preferably the same as that of the region irradiated with the excitation light.
  • the labeling agent is a complex containing a substance that specifically binds to the capture target substance 85 and a fluorescent substance that can change reflectance or emit fluorescence when irradiated with predetermined excitation light.
  • a substance that specifically binds to the capture target substance 85 is an antigen (for example, A ⁇ protein)
  • a complex labeled secondary antibody between an antibody that specifically binds to it and a reflectance-varying complex or a fluorescent substance is labeled. It can be used as an agent.
  • labeling agents can be produced by known techniques, and labeling agents for specific capture target substances 85 are also commercially available.
  • the SPR measurement method in this embodiment may be the same as the labeling agent used in known SPR measurement methods.
  • Various known fluorophores can be used when used for fluorescence signal change.
  • Typical phosphors include, for example, the following phosphors. Rhodamine-based dye molecules, squarylium-based dye molecules, cyanine-based dye molecules, aromatic ring-based dye molecules, oxazine-based dye molecules, carbopyronine-based dye molecules, pyromethene-based dye molecules, and the like can be used as fluorescent substances.
  • fluorescent substances include Alexa Fluor (registered trademark, manufactured by Invitrogen) dye molecules, BODIPY (registered trademark, manufactured by Invitrogen) dye molecules, Cy (registered trademark, manufactured by GE Healthcare) dye molecules, and DY. dye molecule (registered trademark, manufactured by DYOMICS), HiLyte (registered trademark, manufactured by Anaspec) dye molecule, DyLight (registered trademark, manufactured by Thermo Scientific) dye molecule, ATTO (registered trademark, ATTO-TEC) (manufactured by Mobitec) type dye molecules, MFP (registered trademark, manufactured by Mobitec) type dye molecules, and the like can be used.
  • Alexa Fluor registered trademark, manufactured by Invitrogen
  • BODIPY registered trademark, manufactured by Invitrogen
  • Cy registered trademark, manufactured by GE Healthcare
  • DY. dye molecule registered trademark, manufactured by DYOMICS
  • HiLyte registered trademark, manufactured by Anaspec
  • DyLight registered trademark, manufactured
  • rare-earth complex-based fluorescent dyes such as Eu and Tb can also be fluorescent dyes used in this embodiment.
  • Rare earth complexes generally have a large wavelength difference between the excitation wavelength (about 30 to 340 nm) and the emission wavelength (around 65 nm for Eu complexes and around 545 nm for Tb complexes), and are characterized by a long fluorescence lifetime of several hundred microseconds or more.
  • An example of a commercially available rare earth complex-based fluorescent dye is ATBTA-Eu 3+ .
  • the application and fixation of the trapping substance 81 to the metal thin film 82 can be performed as follows.
  • the same type of capture substance 81 eg, antibody
  • an inkjet method an applicator, a nozzle jet, or direct drop (pipette, quantitative weigher).
  • pipette quantitative weigher
  • FIG. 9 is a schematic diagram showing an example of a transistor-type biosensor.
  • the transistor-type biosensor 90 has a structure in which a sensor section 93 (to be described later) is provided on a metal thin film 92 provided on an insulating film 91 .
  • the sensor section 93 can have the same configuration as the sensor section described for the SPR device 80 . In other words, the sensor section 93 can have a configuration in which the trapping substance 95 is fixed on its surface.
  • the transistor section 94 that can be used in this embodiment can be configured with a known transistor structure.
  • the transistor section 94 may be an inorganic transistor or an organic transistor. Further, the transistor portion 94 may have a top-gate structure or a bottom-contact structure.
  • FIG. 9 shows a bottom contact structure as an example of the transistor section 94 .
  • the bottom contact structure transistor portion 94 shown in FIG. A source electrode 94d and a drain electrode 94e separately formed thereon, a semiconductor layer 94f formed so as to cover the source electrode 94d and the drain electrode 94e on the gate insulating film 94c, and a semiconductor layer 94f formed on the semiconductor layer 94f. and the insulating film 91 .
  • Inorganic transistors can be suitably used for the transistor section 94 from the viewpoint of durability.
  • a commercially available transistor may be used as the inorganic transistor.
  • a thin film transistor (TFT) is preferably used.
  • the substrate 94a an inorganic material such as glass, ceramics, or metal can be applied.
  • an organic material such as resin or paper can be applied.
  • the substrate 94a made of these organic materials is flexible.
  • the substrate 94a can be made of resin such as polyethylene naphthalate, polyethylene terephthalate, polyethylene, polyimide, polyparaxylylene (parylene (registered trademark)), paper, or the like.
  • Materials constituting the gate electrode 94b include, for example, aluminum, silver, gold, copper, titanium, ITO (Indium Tin Oxide), PEDOT:PSS (poly(3,4-ethylenedioxythiophene) (PEDOT) and polystyrene sulfonic acid). (abbreviation of compound consisting of (PSS)), etc. can be used.
  • Materials constituting the gate insulating film 94c include, for example, silica, alumina, self-assembled monolayer (SAM), polystyrene, polyvinylphenol, polyvinyl alcohol, polymethylmethacrylate, polydimethylsiloxane, polysilsesquioxane, and ionic liquid.
  • polytetrafluoroethylene Teflon (registered trademark) AF, Cytop (registered trademark)
  • gold, silver, copper, platinum, aluminum, PEDOT:PSS, or the like can be used as the constituent material of the source electrode 94d and the drain electrode 94e.
  • the constituent material of the semiconductor layer 94f is pentacene, dinaphthothienothiophene, benzothienobenzothiophene (Cn-BTBT), TIPS pentacene (6,13-bis[(triisopropylsilyl ) ethynyl]pentacene), TES-ADT ([5,11-bis(triethylsilylethynyl)anthradithiophene]), rubrene, P3HT (poly(3-hexylthiophene)), PBTTT (e.g., poly[2,5- Bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene]) and the like can be used. In the case of N-type, fullerene or the like can be used.
  • the manufacturing method of the TFT may be a dry process such as a vapor deposition method or a sputtering method, or may be a coating method such as spin coating, bar coating, or spray coating. Printing by a printer may be used. Printing can be made more efficiently and at a lower cost.
  • FIG. 10 is a schematic diagram showing another example of a transistor-type biosensor.
  • the transistor-type biosensor 100 according to another example is composed of a transistor section 110 and a detection section 120, and a transistor-type biosensor 90 in which these are integrated. (Fig. 9).
  • a transistor-type biosensor 100 according to another example will be described with a focus on differences from the transistor-type biosensor 90 .
  • the transistor section 110 includes a gate electrode 112 formed on a substrate 111 , a gate insulating film 113 formed to cover the gate electrode 112 , and a source electrode 114 and a drain separately formed on the gate insulating film 113 . an electrode 115, a semiconductor layer 116 formed to cover the source electrode 114 and the drain electrode 115 on the gate insulating film 113, and a liquid-repellent bank covering the gate insulating film 113 and the semiconductor layer 116 on the substrate 111. 117 , and a sealing film 118 formed over the semiconductor layer 116 and the liquid-repellent bank 117 .
  • the detection unit 120 includes a metal thin film 122 formed on the substrate 121, a sensor unit 123 formed on the metal thin film 122, a capture substance 124 formed on the sensor unit 123, and an upper portion of the capture substance 124. and a reference electrode 125 provided so as not to be in direct contact with the capture substance 124 at the . Droplet sample 126 is applied between capture substance 124 and reference electrode 125 .
  • the transistor section 110 and the detection section 120 are electrically connected by the gate electrode 112 of the transistor section 110 and the metal thin film 122 of the detection section 120, and the signal change detected by the detection section 120 can be obtained over time.
  • liquid-repellent bank 117 for example, a fluororesin such as polytetrafluoroethylene, polyvinylidene fluoride, or polyvinyl fluoride can be used. Liquid repellent bank 117 can be formed using any dispenser device. Further, examples of the constituent material of the sealing film 118 include polytetrafluoroethylene and polyparaxylylene.
  • the reference electrode 125 can be, for example, a silver/silver chloride electrode, a carbon electrode, a metal electrode deposited by physical vapor deposition (PVD, such as sputtering) or chemical vapor deposition (CVD), or the like.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • silver/silver chloride electrodes and carbon electrodes can be formed by various printing methods, and can be easily arranged arbitrarily, which is preferable.
  • the reference electrode 125 preferably exists in the same liquid as the liquid of the sensor section 123, and is preferably arranged in the vicinity of the sensor section 123 as shown in FIG.
  • the metal films 92 , 122 in the transistor biosensors 90 , 100 can be similar to the metal films 82 of the SPR device 80 .
  • the sensor units 93 and 123 in the transistor-type biosensors 90 and 100 can be similar to the sensor units in the SPR device 80 .
  • the application of the trapping substances 95 and 124 to the metal thin films 92 and 122 can also be the same as in the SPR device 80 .
  • Electric signals from the transistor-type biosensor can be detected by a commercially available sensor such as ISFET-F20 manufactured by Icefetocom and an ion image sensor manufactured by Hamamatsu Photonics.
  • the analyzing means 3 analyzes at least one of the aggregation state and the surface state of the capture target substance from the signal change over time acquired by the acquiring means 2 described above. Further, as described above, the analysis means 3 can observe the particle size distribution and obtain information on the surface state, crystallinity, and modified chain from the signal information. In addition, the analysis means 3 can determine the characteristics of the signal height, speed, and signal behavior for each corresponding content, and acquire information that distinguishes each content. The information obtained by the analysis by the analysis means 3 can be used by the machine learning means 4 of the trained model generation device 1A, which will be described later.
  • the analysis means 3 includes input means such as a keyboard and mouse (not shown), output means such as a monitor and printer, hard disk drive (HDD), solid state drive (SSD), and read only memory (ROM) for storing programs and data.
  • a general computer general-purpose computer having a storage means such as a central processing unit (CPU) for executing programs and performing calculation processing can be used. That is, it can be used as the analysis means 3 by installing an arbitrary program for analysis in a storage means of a general computer and executing it.
  • FIG. 11 is a schematic diagram illustrating the configuration of a trained model generation device 1A according to one embodiment of the present invention.
  • the trained model generation device 1A has an acquisition means 2, an analysis means 3, and a machine learning means 4.
  • FIG. Note that the acquiring means 2 and the analyzing means 3 of the trained model generation device 1A are the same as the acquiring means 2 and the analyzing means 3 of the analysis system 1 described above, respectively, so the description thereof will be omitted. will be explained.
  • the machine learning means 4 performs machine learning using a plurality of analysis results obtained by the analysis means 3 to generate a learned model (prediction model).
  • the machine learning means 4 also includes input means such as a keyboard and mouse (not shown), output means such as a monitor and printer, and storage means such as HDD, SSD, and ROM for storing programs and data.
  • input means such as a keyboard and mouse (not shown)
  • output means such as a monitor and printer
  • storage means such as HDD, SSD, and ROM for storing programs and data.
  • a general computer general-purpose computer having a CPU for executing programs and performing calculation processing can be used. That is, it can be used as the machine learning means 4 by installing an arbitrary program for performing machine learning in a storage means of a general computer and executing it.
  • a prediction model is constructed for each aggregation size of the target substance to be captured and the amount thereof.
  • a prediction model is constructed for each aggregation size of the target substance to be captured and the amount thereof.
  • Machine learning applied to this embodiment may be supervised learning or unsupervised learning.
  • supervised learning is a learning method for learning the “relationship between input and output” from learning data labeled with correct answers.
  • Unsupervised learning refers to a learning method for learning the "structure of a data group" from learning data without correct labels.
  • the machine learning may be reinforcement learning, deep learning or deep reinforcement learning.
  • Reinforcement learning is a learning method that learns the "optimal action sequence" by trial and error.
  • Deep learning is a learning method in which features included in data are learned step by step from a large amount of data (deeper). Deep reinforcement learning is a learning method that combines reinforcement learning and deep learning.
  • Machine learning for example, linear regression (multiple regression analysis, partial least squares (PLS) regression, LASSO regression, Ridge regression, principal component regression (PCR), etc.), random forests, decision trees, support vector machines (SVM), support Prediction models built by analysis techniques selected by vector regression (SVR), (deep) neural networks, discriminant analysis, etc. are applicable.
  • linear regression multiple regression analysis, partial least squares (PLS) regression, LASSO regression, Ridge regression, principal component regression (PCR), etc.
  • PLS partial least squares
  • PCR principal component regression
  • SVM support vector machines
  • SVR support Prediction models built by analysis techniques selected by vector regression
  • discriminant analysis etc.
  • Explanatory variables numerical values representing characteristics of each signal obtained from the acquiring means 2 and numerical values calculated therefrom can be used.
  • Explanatory variables include, for example, the slope of the rise of each signal, the maximum value, the time until the signal rises, the dissociation constant (K d ), the binding rate constant (k on ), the dissociation rate constant (k off ), and the like. .
  • the objective variable is the aggregation amount for each aggregation size of the substance to be captured, but the objective variable is not limited to these.
  • the target variable may be, for example, the surface structure of aggregation of the capture target substance, the mode of aggregation, the amount of charge, the magnitude of interaction, and the like.
  • explanatory variables are not limited to signal features and values calculated from them.
  • the explanatory variable may be, for example, the name of the capture substance of each sensor, the manufacturing time (manufacturing date) of the sensor, or the like.
  • FIG. 12 is a schematic diagram illustrating the configuration of a discrimination system 1B according to one embodiment of the present invention.
  • the discrimination system 1B uses the learned model generation device 1A and has discrimination means 5 . Since the trained model generation device 1A in the discrimination system 1B has already been explained, the explanation thereof will be omitted, and the discrimination means 5 will be explained.
  • the analysis system 1 and the trained model generation device 1A described above prepare the prepared trained model (program), and provide a user (user) who can discriminate unknown signal changes over time to use it. It is used by The discriminating means 5 of the discriminating system 1B is used by a user who wants to discriminate an unknown signal change over time using a trained model prepared by a provider.
  • the discriminating means 5 discriminates the acquired unknown signal change over time using the learned model generated by the learned model generating device 1A described above, and capture targets having the unknown signal change over time A result of determining at least one of the aggregation state and surface state of the substance is output.
  • the unknown signal change over time may be obtained by the acquisition means 2 described above, or may be acquired by other acquisition means (other measuring equipment (SPR device), etc.). good.
  • SPR device other measuring equipment
  • the result of prediction differs depending on the analysis method applied in machine learning, but can be obtained as a discrimination result of, for example, classification, regression, clustering, anomaly detection (outlier detection), or the like.
  • the discriminating means 5 when an unknown signal change over time (e.g., change in height, inclination, speed, etc.) is input, the learned model is used to obtain the aggregation distribution answer (predicted result (discrimination result) ) can be obtained.
  • the determination means 5 also includes input means such as a keyboard and a mouse (not shown), output means such as a monitor and a printer, and HDD, SSD, and ROM for storing programs and data.
  • input means such as a keyboard and a mouse (not shown)
  • output means such as a monitor and a printer
  • HDD, SSD, and ROM for storing programs and data.
  • a general computer general-purpose computer having a storage means such as a CPU for executing programs and performing calculation processing can be used. In other words, it can be used as the discrimination means 5 by installing an arbitrary program for performing the discrimination means 5 in a storage means of a general computer and executing this.
  • FIG. 13 is a flowchart illustrating an analysis method according to one embodiment of the invention.
  • the analysis method has an acquisition step S1 and an analysis step S2.
  • Acquisition step S1 is a step of acquiring a signal change over time due to the interaction between the capture target substance and the capture substance by an electrical or optical detection method.
  • the analysis step S2 is a step of analyzing at least one of the aggregation state and the surface state of the capture target substance from the signal change over time acquired in the acquisition step S1.
  • the acquisition step S1 can be performed by the acquisition means 2 described above, and the analysis step S2 can be performed by the analysis means 3 described above.
  • FIG. 14 is a flow chart explaining a learned model generation method according to an embodiment of the present invention.
  • the learned model generation method has an acquisition step S1, an analysis step S2, and a machine learning step S3.
  • the obtaining step S1 and the analyzing step S2 of the trained model generation method are the same as the obtaining step S1 and the analyzing step S2 of the above-described analysis method, respectively. .
  • the machine learning step S3 is a step of performing machine learning using a plurality of analysis results obtained in the analysis step S2 to generate a trained model.
  • the machine learning step S3 can be performed by the machine learning means 4 described above.
  • FIG. 15 is a flow chart illustrating a determination method according to one embodiment of the present invention.
  • the discrimination method according to the present embodiment uses the learned model generated by the learned model generation method described with reference to FIG. 14 to discriminate the acquired unknown signal change over time, a determination step S4 of outputting a determination result of at least one of the aggregation state and surface state of the capture target substance having a significant signal change.
  • the user who wants to obtain the discrimination result inputs an unknown signal change over time into the trained model and obtains the discrimination result.
  • Acquisition step S1, analysis step S2, and machine learning step S3 in the discrimination method are performed by a provider who allows the user to use the created trained model (program).
  • the determination method according to the present embodiment is performed in the order of an acquisition step S1, an analysis step S2, and a machine learning step S3 as a whole, and these are performed before the determination step S4 is performed. be.
  • the acquisition step S1, the analysis step S2, and the machine learning step S3 of the discrimination method are the same as the acquisition step S1, the analysis step S2, and the machine learning step S3 of the learned model generation method, respectively, and thus the description thereof will be omitted.
  • the determination step S4 can be performed by the determination means 5 described above.
  • the analysis system, learned model generation device, discrimination system, analysis method, learned model generation method, and discrimination method according to the present embodiment described above have the acquisition means/acquisition step and the analysis means/analysis step described above. ing. Therefore, in any of these methods, an electrical or optical detection method is used to acquire a signal change over time due to the interaction between the capture target substance and the capture substance, and from the signal change over time, the aggregation state of the capture target substance and the surface of the capture target substance. At least one of the states can be analyzed. Therefore, they are both capable of sensitively quantifying aggregation and/or surface states.
  • a ⁇ 1-42 Preparation of A ⁇ 1-42 aggregates
  • a dry product of A ⁇ 1-42 (total synthetic peptide; manufactured by Peptide Institute) was dissolved in dimethylsulfoxide (DMSO) to 1 mM and diluted with phosphate buffer to prepare a low-aggregation sample.
  • DMSO dimethylsulfoxide
  • a ⁇ 1-42 dissolved in DMSO was sonicated for 10 minutes, diluted with a phosphate buffer, and allowed to stand at 37° C. for 24 hours to obtain a highly aggregated sample.
  • Au was pattern-deposited on the surface of a polyethylene naphthalate (PEN) film as a substrate using a vapor deposition device (manufactured by ALS Technology).
  • the film thickness of the deposited Au film was set to 100 nm.
  • a reaction portion and an extension portion were prepared, and the reaction portion was a 6 mm ⁇ 6 mm square in order to create a reaction field described later.
  • the reaction portion of the Au film was immersed in a hexane solution containing 1 mM 10-carboxy-1-decanethiol (Dojindo Laboratories) at 37° C. for 2 hours to form a SAM film. After that, the SAM film was washed with ethanol and ultrapure water.
  • a FET (2SK241, manufactured by Toshiba) and a semiconductor parameter analyzer (manufactured by Keysight Technologies) were connected as shown in FIG.
  • a blank solution initial buffer (D-PBS buffer)
  • D-PBS buffer initial buffer
  • measurement was started a little before 2 hours after the start of blank drop dropping (0:00 ), and the blank solution is dripped until about 0:07).
  • 100 ⁇ l of a 50 ⁇ M low-aggregation sample (capture target substance liquid) diluted with D-PBS was dropped (in FIG. 16, the sample was dropped at a timing of about 0:15).
  • FIG. 16 is a graph showing temporal changes in the threshold voltage Vth of a low-aggregation sample (A ⁇ 1-42 monomer) and a high-aggregation sample (A ⁇ 1-42 aggregate).
  • Example 2 Electric detection: nanomaterials (production of extended gates) Au was pattern-deposited on the surface of the PEN film serving as the substrate using a deposition device (manufactured by ALS Technology). The film thickness of the deposited Au film was set to 100 nm. For the Au pattern, a reaction portion and an extension portion were prepared, and the reaction portion was a 6 mm ⁇ 6 mm square in order to create a reaction field described later. The reaction portion of the Au film was immersed in an ethanol solution containing 0.1 mM Biotin-SAM Formation Reagent (Dojindo Laboratories) at 37° C. for 2 hours to form a Biotin-bound SAM film. After that, it was washed with D-PBS buffer.
  • D-PBS buffer D-PBS buffer
  • Example 3 Machine learning model and classification prediction: A ⁇ 1-42
  • a low-aggregation sample (A ⁇ 1-42 monomer) and a high-aggregation sample (A ⁇ 1-42 aggregate) were prepared and titrated in the same manner as in Example 1, except that the concentrations were varied. Signal changes over time were obtained as measured by FET electrical detection. The results are shown in FIG. FIG. 17 is a graph showing temporal changes in the threshold voltage Vth of a low-aggregation sample (A ⁇ 1-42 monomer) and a high-aggregation sample (A ⁇ 1-42 aggregate) at various concentrations. Note that FIG. 17 shows the measurement results after dropping the capture target substance liquid.
  • Example 3 the signal changes over time measured by electrical detection of FET in the low-aggregation sample (A ⁇ 1-42 monomer) and the high-aggregation sample (A ⁇ 1-42 aggregate). It was confirmed that there is a difference in Then, using these measurement results in Example 3, the temporal change data of the threshold voltage Vth was dimensionally compressed by principal component analysis as an explanatory variable, and whether it was a low-aggregation sample or a high-aggregation sample was used as an objective variable. As such, learning and classification prediction of SVM (support vector machine), which is a machine learning model, were performed. The results are shown in FIG. FIG.
  • FIG. 18 shows the learning of the SVM, which is a machine learning model, using the temporal change data of the threshold voltage Vth that has been dimensionally compressed by the principal component analysis as an explanatory variable and whether it was a low-aggregation sample or a high-aggregation sample as an objective variable. and classification prediction.
  • a machine learning model (learned model) was generated and used to classify (discriminate) low-aggregation samples and high-aggregation samples.
  • Example 3 since such a difference was confirmed and analyzed by FET, optical detection, for example, SPR device can Different signal changes over time can be acquired and analyzed.
  • explanatory variables in machine learning include, for example, k on , k off , drain-source voltage Vds, numerical values and character strings representing the amount and properties of reagents used, and FET Numerical values, character strings, or numerical values obtained by processing them can be used.
  • machine learning not only qualitative variables such as whether the sample was low-aggregation or high-aggregation, but also quantitative variables such as the amount and ratio of samples in each aggregation state can be used as target variables. can.
  • classification models such as logistic regression and discriminant analysis can be used in addition to SVM.
  • prediction models such as linear regression, PLS regression (partial least squares regression), and Lasso regression (least absolute shrinkage and selection operator regression) can be used as machine learning models.
  • machine learning models can use decision trees, random forests, deep neural networks, and the like.
  • a ⁇ protein fragments (A ⁇ 1-42), Streptavidin, Gold Colloidal Particles 5 nm, 15 nm and 60 nm were fine and low-concentration targets (capturing substances). It was confirmed that the signal change over time can be acquired and analyzed by an electrical or optical detection method. It was also confirmed that the signal changes over time differed depending on the state of the object, for example, the state of monomers and aggregates. Then, it was confirmed that a learned model can be created by collecting a large amount of data of signal changes over time that vary depending on the object and its state and performing machine learning on a computer or the like (as described above, for example, SVM training and classification prediction). Furthermore, using the created trained model, analysis (discrimination) such as classification, regression, clustering, and anomaly detection (outlier detection) can be performed on the acquired unknown continuous signal changes (data). was confirmed.
  • analysis discrimination
  • anomaly detection anomaly detection

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Medical Informatics (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Public Health (AREA)
  • Evolutionary Computation (AREA)
  • Epidemiology (AREA)
  • Databases & Information Systems (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Software Systems (AREA)
  • Bioethics (AREA)
  • Artificial Intelligence (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Signal Processing (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)

Abstract

凝集状態および表面状態のうちの少なくとも一方を感度良く定量化する解析システム、学習済みモデル生成装置および判別システムならびに解析方法、学習済みモデル生成方法および判別方法を提供する。本発明に係る解析システム(1)は、電気または光学による検出法によって捕捉対象物質と捕捉物質との相互作用による経時的なシグナル変化を取得する取得手段(2)と、前記取得手段(2)で取得した経時的なシグナル変化から前記捕捉対象物質の凝集状態および表面状態のうちの少なくとも一方を解析する解析手段(3)と、を有する。

Description

解析システム、学習済みモデル生成装置および判別システムならびに解析方法、学習済みモデル生成方法および判別方法
 本発明は、解析システム、学習済みモデル生成装置および判別システムならびに解析方法、学習済みモデル生成方法および判別方法に関する。
(SDGs解決に向けて)
 SDGs(Sustainable Development Goals(持続可能な開発目標))解決に向けて企業活動を行うことが企業の持続成長性を維持していくために、必要不可欠になっている。本発明では、SDGsの17課題の内、主に3:すべての人に健康と福祉を、および、9:産業と技術革新の基盤をつくろうをターゲットとし、社会課題の解決に向け、人の健康と福祉への貢献、および強靭なインフラ構築に取り組む。
(SDGs3:すべての人に健康と福祉を)
 SDGs3の課題に対し、人の健康と福祉に取り組み、健康とは、病気でないとか、弱っていないということではなく、肉体的にも、精神的にもそして社会的にも、すべてが満たされた状態にあることをいうことが世界保健機関憲章前文に定義されている。そのためには、認知症、感染症の抑制/治療、および医薬品の開発/品質管理に対し貢献していくことが必要となっている。
(SDGs9:産業と技術革新の基盤をつくろう)
 SDGs9の課題に対し、経済発展と人間の福祉を支援するために、地域・越境インフラを含む質が高く信頼でき、持続可能かつ強靱なインフラを開発することが求められている。強靭なインフラとして、本発明では医薬用途から精密工業品に至る領域にて、状態の可視化、品質管理、薬効評価に貢献する方法を提案する。
(DX)
 一方、ドイツで提唱されたIndustry 4.0(第4次産業革命)の理念を包含し、AIやロボットを新たに使うことを手段と捉え、様々なモノやコトがつながりを持つConnected Industriesによってもたらされる新しい超スマート社会“Society 5.0”の実現が重要である。そのためには、見えていない世界を可視化する、および速やかに次の解を得るためにサイバー空間を有効活用していく必要がある。その手法として機械学習を用いていくことにより、DX(デジタルトランスフォーメーション:デジタルの手段を用いて変革)を推進し、それにより実現に導いていくことが重要となる。
(本発明の分野)
 SDGs3、9の解決に向け、本発明者らはナノ材料に着目した。ナノ材料における凝集状態および表面状態が、その材料の機能および品質へ影響することが知られている。ナノ材料としては、例えば、生体分子(ペプチド、タンパク質、抗体など)、有機化合物、ナノ粒子などが挙げられ、多岐にわたる。ナノ材料は、工業分野から化粧/医療分野といった広い領域で使用されているとともに、重要なキー材料となっている。
 ナノ材料として例示したタンパク質の一つにアミロイドβ(Aβ)がある。Aβは、アルツハイマー型認知症の進行に関わるタンパク質の1種である。Aβの測定や評価には、凝集状態および表面状態の管理も重要とされている。また、精密工業品向けの金属・無機ナノ粒子はシングルナノメートル(nm)オーダーの粒径制御が重要であることはもちろんのこと、機能に大きく影響するため凝集状態および表面状態の管理も重要とされている。
 従来、これらの凝集状態や表面状態を測定したり評価したりする手法として、非特許文献1に挙げられているように、複数の手法があることが知られている。なお、この非特許文献1には、凝集体の検出には、例えば、ゲルろ過クロマトグラフィによる分析、ThT fluoresenceによる分析、分光光度計による分析、動的光散乱(Dynamic Light Scattering:DLS)による分析、示差走査熱量測定(Differential Scanning Calorimetry:DSC)による分析、顕微鏡による分析などの複数の手法がある旨記載されている。また、この非特許文献1には、バイオ医薬生産現場の品質管理にこれらの手法を用いるには、定量性や簡便性などに課題が残っている旨記載されている。
 さらに、従来、これらの凝集状態や表面状態を測定したり評価したりする手法として、特許文献1に記載の技術が提案されている。具体的に、特許文献1には、診断目的で、差異荷電粒子移動度分析方法を用いて、生物学的サンプルからリポ蛋白質、例えば、HDL、LDL、Lp(a)、IDLおよびVLDLを調製するための装置および方法が提案されている。さらに、この特許文献1には、前記方法により調製したリポ蛋白質のサイズ分布を差異荷電粒子移動度により分析する方法が記載されている。
 なお、タンパク質などの有機化合物やナノ粒子などのナノマテリアルを検出する手法として、質量分析法、サイズ排除クロマトグラフィ(Size Exclusion Chromatography:SEC)、簡易評価法、ウエスタンブロッティング法、ELISA(Enzyme-Linked Immuno Sorbent Assay)法、表面プラズモン励起増強蛍光分光(Surface Plasmon-field enhanced Fluorescence Spectroscopy:SPFS)法などが知られている。
特表2010-529463号公報
吉野哲也著、「モノクローナル抗体の凝集状態の多様な方法による評価」、群馬大学大学院博士論文([URL]https://gair.media.gunma-u.ac.jp/dspace/bitstream/10087/6652/1/Ph.D%20E-429.pdf[検索日2021年3月19日])
 前記したように、非特許文献1に記載されているいずれの手法にも、バイオ医薬生産現場の品質管理にそれらを用いるには、定量性や簡便性などに課題が残っている。
 また、特許文献1に記載の技術は、粒子移動度により測定するものであるが、ある程度の分布サイズを見ることはできるものの、精度は十分ではなかった。
 また、質量分析法には、前処理/検出過程にて凝集状態が解け、モノマーと凝集体の区別がつかないという欠点がある。サイズ排除クロマトグラフィ、動的光散乱法、簡易評価法には、低濃度帯では検出が不可能であるという欠点がある。また、動的光散乱法には、シングルnmオーダー以下の検出能が低いという欠点もある。ウエスタンブロッティング法、ELISA法、SPFS法には、複数の凝集状態に対応した捕捉物質が各々必要であり、全ての凝集体に対応する捕捉物質は準備が困難であるという欠点がある。なお、ナノ粒子などのナノマテリアルに対しては、特に、シングルnmオーダー以下および高感度に検出する手段がなく、粒径および表面状態を同時に検出できる手段もないという欠点がある。
 従って、健康状態への影響および抗体医薬品の品質に対し、バイオマーカーのサイズ変化(凝集)が影響していることが知られているが、高感度にて凝集分布を定量的に判別する手段がない。また、ナノマテリアルに対しても、粒径・表面状態の制御により機能が大きく変わると言われているが、シングルnm以下のサイズや高感度に検出したい材料に対し、検出する手段がないか、または限定されている。
 本発明の課題は、凝集状態および表面状態のうちの少なくとも一方を感度良く定量化する解析システム、学習済みモデル生成装置および判別システムならびに解析方法、学習済みモデル生成方法および判別方法を提供することにある。
 本発明者らは前記課題を解決するため鋭意研究した結果、電気または光学による検出法によって、捕捉対象物質と捕捉物質の相互作用による経時的なシグナル変化を取得することにより、複数の凝集情報および表面情報を1つの反応場で判別できることを見出し、本発明を完成するに至った。
 すなわち、本発明に係る上記課題は、以下の手段により解決される。
1.電気または光学による検出法によって捕捉対象物質と捕捉物質との相互作用による経時的なシグナル変化を取得する取得手段と、前記取得手段で取得した経時的なシグナル変化から前記捕捉対象物質の凝集状態および表面状態のうちの少なくとも一方を解析する解析手段と、を有する解析システム。
2.電気または光学による検出法によって捕捉対象物質と捕捉物質との相互作用による経時的なシグナル変化を取得する取得手段と、前記取得手段で取得した経時的なシグナル変化から前記捕捉対象物質の凝集状態および表面状態のうちの少なくとも一方を解析する解析手段と、前記解析手段によって得られた解析結果を複数用いて機械学習を行い、学習済みモデルを生成する機械学習手段と、を有する学習済みモデル生成装置。
3.前記2に記載の学習済みモデル生成装置で生成した前記学習済みモデルを用いて、取得した未知の経時的なシグナル変化を判別して、前記未知の経時的なシグナル変化を有する捕捉対象物質の凝集状態および表面状態のうちの少なくとも一方の判別結果を出力する判別手段を有する判別システム。
4.電気または光学による検出法によって捕捉対象物質と捕捉物質との相互作用による経時的なシグナル変化を取得する取得工程と、前記取得工程で取得した経時的なシグナル変化から前記捕捉対象物質の凝集状態および表面状態のうちの少なくとも一方を解析する解析工程と、を有する解析方法。
5.電気または光学による検出法によって捕捉対象物質と捕捉物質との相互作用による経時的なシグナル変化を取得する取得工程と、前記取得工程で取得した経時的なシグナル変化から前記捕捉対象物質の凝集状態および表面状態のうちの少なくとも一方を解析する解析工程と、前記解析工程によって得られた解析結果を複数用いて機械学習を行い、学習済みモデルを生成する機械学習工程と、を有する学習済みモデル生成方法。
6.前記5に記載の学習済みモデル生成方法で生成した前記学習済みモデルを用いて、取得した未知の経時的なシグナル変化を判別して、前記未知の経時的なシグナル変化を有する捕捉対象物質の凝集状態および表面状態のうちの少なくとも一方の判別結果を出力する判別工程を有する判別方法。
 本発明によれば、凝集状態および表面状態のうちの少なくとも一方を感度良く定量化する解析システム、学習済みモデル生成装置および判別システムならびに解析方法、学習済みモデル生成方法および判別方法を提供できる。
本発明の一実施形態に係る解析システムの構成を示す概略図である。 電気検出シグナルによる検出例を説明する説明図である。 SPFSシグナルによる検出例を説明する説明図である。 電気検出シグナルによって得られた捕捉対象物質の各濃度の経時的な結合率の変化に対応したしきい値電圧Vthの変化を示すグラフ(左のグラフ)と、それから算出された高さVthmax(最大結合率)および捕捉対象物質濃度からKを算出できることを示している(右のグラフ)。 電気検出シグナルによって得られた捕捉対象物質の経時的な結合率の変化に対応したしきい値電圧Vthの変化を示すグラフ(左のグラフ)と、それから算出された速度定数および捕捉対象物質濃度からkonとkoffとを算出できることを示している(右のグラフ)。 一定時に、凝集サイズによってkon、koffが遅くなり、結合率が一定とした際の時間変化の一例を示すグラフである。 図4Aに示す結果から得られるK、kon、koffを示す表である。 アレイ化した複数の反応場(捕捉物質)を有する様子を説明する概念図である。 電気検出シグナルを経時的に観測し、評価する装置構成の一例を示す概略図である。 アルツハイマー型認知症における年齢とバイオマーカーの変化の関係の一例を説明するグラフである。 連続フロー方式のSPR装置の構成を説明する概略図である。 トランジスタ型バイオセンサの一例を示す概略図である。 トランジスタ型バイオセンサの他の一例を示す概略図である。 本発明の一実施形態に係る学習済みモデル生成装置の構成を説明する概略図である。 本発明の一実施形態に係る判別システムの構成を説明する概略図である。 本発明の一実施形態に係る解析方法を説明するフローチャートである。 本発明の一実施形態に係る学習済みモデル生成方法を説明するフローチャートである。 本発明の一実施形態に係る判別方法を説明するフローチャートである。 低凝集試料(Aβ1-42モノマー)および高凝集試料(Aβ1-42凝集体)のしきい値電圧Vthの経時変化を示すグラフである。 種々濃度を異ならせた低凝集試料(Aβ1-42モノマー)および高凝集試料(Aβ1-42凝集体)のしきい値電圧Vthの経時変化を示すグラフである。 しきい値電圧Vthの経時変化データを主成分分析により次元圧縮したものを説明変数とし、低凝集試料であったか高凝集試料であったかを目的変数とし、機械学習モデルであるSVM(サポートベクトルマシン)の学習と分類予測とを行った結果を示すグラフである。
 前述したように、ナノ材料における凝集状態および表面状態が、その材料の機能および品質へ影響することが知られている。
 本発明は、ナノ材料における凝集分布および表面状態を感度良く定量化するシステムを提供するものである。具体的には、電気または光学による検出法によって捕捉対象物質と捕捉物質の相互作用による経時的なシグナル変化を取得することにより、複数の凝集情報および表面情報を1つの反応場で判別することを実現する。
 以下、適宜図面を参照して本発明とその構成要素および本発明を実施するための形態・態様について詳細な説明をする。なお、以下に本発明を実施するための形態について詳細に説明するが、本発明はこれらに限定されるものではない。
<解析システム>
 はじめに、本発明の一実施形態に係る解析システムについて簡単に説明する。
 図1は、本発明の一実施形態に係る解析システム1の構成を示す概略図である。
 図1に示すように、解析システム1は、取得手段2と、解析手段3とを有する。この解析システム1は、後述する学習済みモデル生成装置1A(図11)および判別システム1B(図12)で用いられる。
(取得手段)
 取得手段2は、電気または光学による検出法によって捕捉対象物質と捕捉物質との相互作用による経時的なシグナル変化を取得する。本明細書において、「経時的」とは、経過する時間順であることをいい、その時間順は連続的なものであってもよいし、断続的なもの(間欠)であってもよい。
 このような取得手段2としては、例えば、表面プラズモン共鳴(Surface Plasmon Resonance:SPR)装置や電界効果トランジスタ(Field Effect Transistor:FET)などを用いたトランジスタ型バイオセンサなどが挙げられる。なお、SPR装置およびトランジスタ型バイオセンサについては後述する。また、このような取得手段2としてはこれらの他にも、例えば、蛍光シグナル・吸収シグナルを利用した競合法などが挙げられる。
(取得手段の一態様)
 ここで、取得手段2の一態様について説明する。
 図2Aは、電気検出シグナルによる検出例を説明する説明図である。図2Bは、SPFSシグナルによる検出例を説明する説明図である。
 図2Aに示すように、SPR装置やトランジスタ型バイオセンサによって得られる電気検出シグナルは、捕捉対象物質添加後のシグナルの経時変化を検出することができる。なお、この経時変化は、前記した経時的と同様に時間順であればよく、連続的な検出とそれによる検出シグナルであってもよいし、断続的な検出とそれによる検出シグナルであってもよい。この電気検出シグナルは、複数の捕捉対象物質(化合物A+B+C)の混合シグナルを分離・定量し、判別することができる。つまり、1反応場(1シグナル)に対し、複数の化合物の混合シグナルを得て、複数の化合物の情報を得ることができる。なお、図2Bに示すように、SPFSシグナル(蛍光強度)では、1反応場(1シグナル)に対し、1つの化合物しか定量できない。従って、前記した電気検出シグナルは、後述するように、複数の化合物の混合シグナルを機械学習で判別するにあたって、SPFSシグナルよりも好適であるといえる。
(電気検出シグナルと捕捉物質)
 電気検出シグナルについてさらに説明する。
 1反応場(1シグナル)に対し、複数の化合物の混合シグナルを経時的に得ることのできる電気検出シグナルによれば、その経時変化から、図3Aおよび図3Bに示すように、K(解離定数(単位:M))、kon(結合速度定数(単位:M-1-1))、koff(解離速度定数(単位:s-1))を算出できる。なお、図3Aは、電気検出シグナルによって得られた捕捉対象物質の各濃度の経時的な結合率の変化に対応したしきい値電圧Vthの変化を示すグラフ(左のグラフ)と、それから算出された高さVthmax(最大結合率)および捕捉対象物質濃度からKを算出できることを示している(右のグラフ)。また、図3Bは、電気検出シグナルによって得られた捕捉対象物質の経時的な結合率の変化に対応したしきい値電圧Vthの変化を示すグラフ(左のグラフ)と、それから算出された速度定数および捕捉対象物質濃度からkonとkoffとを算出できることを示している(右のグラフ)。図3Bの右のグラフでは、傾きがkonで切片がkoffの一次式となる。
 なお、凝集サイズによって、捕捉物質と捕捉対象物質の相互作用に関わる物理パラメータおよび結合量が変化することにより、電気検出シグナル(高さ、速度)が変化する。図4Aは、解離定数K一定時に、凝集サイズ小、中、大(ケースA、B、C)によってkon、koffが遅くなり、結合率が一定とした際の時間変化の一例を示すグラフである。図4Bは、図4Aに示す結果から得られるK、kon、koffを示す表である。図4Aのグラフおよび図4Bの表に示すように、凝集物のサイズが大きくなると、kon(遅く)、koff(遅く)の変化は少なくとも起こり、シグナル変化が起こる。また、Vthmaxも変わる。
 さらに、1つの捕捉物質と凝集体混合物の反応において、各凝集体に対応する電気検出シグナルが混在したシグナル(混在シグナル)が取得できる。その混在シグナルから、高さ(結合率(Vthの変化量))および速度(結合速度定数(kon)、解離速度定数(koff))の成分を分離することができる。そして、分離した成分(シグナル変化)から凝集サイズの成分予測を機械学習によって予測させることができる。その一例として、図5に示すように、アレイ化した第1の反応場では図4Aを参照して説明したように、凝集サイズを見分けるための捕捉物質r1を設定する。そして、図5に示すように、アレイ化した第2、3、4の反応場には、別サイズ帯に感応する捕捉物質r2、r3、電荷量変化を検出する捕捉物質r4などのように、捕捉物質の種類(前記捕捉物質とは相互作用する凝集体サイズ帯が異なる)を変えてそれぞれに結果が得られるようにし(複数状態の検出)、それらを併用してもよい。そして、その結果を用いて機械学習が行われる。なお、凝集時の電荷の偏り、向きなどの因子があり、捕捉対象物質混合時は複合的な平衡反応が起こり、複雑なシグナルとなる可能性があるが、その変化ポイントを見極め、機械学習で判別していく。このようにすることにより、より広く細かく精度良く、凝集分布および表面状態の情報を得ることができる。なお、図5は、アレイ化した複数の反応場(捕捉物質)を有する様子を説明する概念図である。
 取得手段2としては、凝集体に対するシグナル情報量を多く取得でき、サイズ毎の結合率、結合速度情報が取得できる観点から、電気信号による計測装置、例えば、前記したように、FETなどを用いたトランジスタ型バイオセンサやSPR装置などが好ましい。これらはともに、シグナルの変化を経時的に追うことができる。また、取得手段2としては、温度依存性を取り、意図的に速度変化を起こし、情報量を増やしていく手法を採用することも有効である。
(電気検出シグナルの評価法)
 電気検出シグナルの評価法の一例について説明する。例えば、FETを用いた電気検出手段(トランジスタ型バイオセンサ)を用い、ゲート部に捕捉物質を形成し、捕捉対象物質添加時に捕捉対象物質と捕捉物質との相互作用が起こる部位を形成する。このようにすれば、ゲート部の電荷変化に伴い、半導体パラメータアナライザがΔVth(初期値とのしきい値電圧Vthの差異)の変化を経時的に追うことができ、捕捉対象物質と捕捉物質との相互作用の変化を経時的に観測し、評価することができる。図6は、電気検出シグナルを経時的に観測し、評価する装置構成の一例を示す概略図である。図6に示す例では、ゲート部を延長ゲートとし、Au電極上に捕捉物質を形成している。そして、図6に示す例では、所定の測定溶液が収容された容器内にAu電極と参照電極とを配置して当該測定溶液にそれらを接触させている。そして、当該測定溶液に捕捉対象物質を添加すると、前記したように、半導体パラメータアナライザがΔVthの変化を経時的に追うことができる。半導体パラメータアナライザでの測定は、ドレイン・ソース間電圧(電圧Vds)固定、ゲート・ソース間電圧(電圧Vgs)可変で行うことができる。
(捕捉対象物質の領域)
 捕捉対象物質の属する領域としては、医療用途から工業用途に亘る、凝集状態と表面状態が材料の機能・品質・生体浸透性・病気の進行度に影響する領域が挙げられる。医療用途で言えば、Aβペプチド(タンパク質)、抗体、抗体付きビーズ、蛍光ナノ粒子(PID(Phosphor Integrated Dot)粒子)、ポリエチレングリコール(PEG)付きリポソームなどが捕捉対象物質となり得る。また、工業用途で言えば、金属ナノ粒子、カーボンナノチューブ、磁性流体、ナノシリカ(封止フィラーなど)、結晶質ジルコニアなどが捕捉対象物質となり得る。これらの中でも、Aβペプチド(タンパク質)、抗体、金属ナノ粒子、カーボンナノチューブ、磁性流体、ナノシリカ(封止フィラーなど)、結晶質ジルコニアなどは、シングルnmオーダーから10nmオーダーの大きさであり、本実施形態において好適な捕捉対象物質となり得る。
(アルツハイマー型認知症への貢献)
 有望視されている捕捉対象物質の一例としてAβが挙げられる。Aβの凝集が進み、凝集体の蓄積が脳内で起こり、その後、軽度認知障害、認知症が起こると報告されている。従来のAβの検出には、陽電子放出断層撮影法(Positron Emission Tomography;PET)を使用したり、脳髄液を採取して検査したりすることが多い。しかし、PETは費用が高い点で患者負荷が大きく、脳髄液採取による検査は、脳髄液の採取にあたって腰椎穿刺による侵襲がある点で患者負荷が大きい。また、血中に流れてくる成分(Aβ)は分解が起こる(Aβオリゴマーは可溶性であり、血中に溶解していることが示唆されている)ため、特定成分を定量化するだけでは判定は難しい。現在、免疫沈降-質量分析法(IP-MS)、軽度認知障害(Mild Cognitive Impairment:MCI)スクリーニング検査、SimoaTM(single-molecule array)による解析など様々な方法について検討が重ねられているが、血中のAβなどで認知症の進行度を判定できるレベルには至っていない。
 なお、アルツハイマー型認知症に関して、PETにおける捕捉対象物質はAβ凝集物(フィブリル/繊維)である。IP-MSにおける捕捉対象物質は血中のAβ1-42とAPP699-711またはAβ1-40との比である。MCIスクリーニング検査における捕捉対象物質は、血中のAβクリアランスに関わる3種のタンパク質(C3、ApoA1、TTR)である。SimoaTMによる解析における捕捉対象物質は血中のp-tauである。各捕捉対象物質の血中における検出濃度は、表1に記載のとおりである。なお、表1中の「-」は検出濃度について特筆すべき事項がないことを示している。
Figure JPOXMLDOC01-appb-T000001
 IP-MSおよびSimoaTMによる解析はいずれもPET同様、費用が高い点で患者負荷が大きい。また、前記したように、IP-MSおよびMCIスクリーニング検査は、血中のAβなどで認知症の進行度を判定できるレベルには至っていない(精度が十分とは言えない)。
 従って、脳脊髄液および血中でのAβ凝集分布を高感度で可視化できれば、認知症の進行度の判定および薬効評価に利用できると考えられる。本実施形態に係る解析システムは、電気または光学による検出法によって、捕捉対象物質と捕捉物質との相互作用による経時的なシグナル変化を取得する。電気または光学による検出法として、前記したように、SPR装置やトランジスタ型バイオセンサなどを用いるため、極めて低濃度な範囲(例えば、10fM~100μM)の捕捉対象物質を検出できる(凝集分布を高感度に検出できる)。従って、電気または光学による検出法を用いることにより血中のAβを濃縮せずに評価でき得る。
 Aβタンパク質のモノマーは数個凝集してオリゴマーとなり、さらに凝集してプレフィブリルとなり、さらに凝集してAβフィブリルとなる。コンゴーレッドはAβフィブリルに特異的に結合して染色する。従って、本実施形態における電気または光学による検出法でもこれを利用することにより極めて低濃度な範囲であってもAβの凝集状態を検出できる。また、このことから、AβモノマーやAβオリゴマーに選択性のある低分子化合物が開発・探索されれば、AβモノマーやAβオリゴマーも極めて低濃度な範囲で検出できるようになる。そうすれば、これらを組み合わせて検出・検証・解析することで判定精度をより高めることが可能となる。さらに、Aβの蓄積を判定するとともに、他の関連バイオマーカー(C3、ApoA1、TTRなど)を組み合わせて検出・検証・解析することで判定精度をさらに高めることも可能である。これらのことから、本実施形態に係る解析システム1、学習済みモデル生成装置1A、判別システム1Bは、アルツハイマー型認知症の検査や治療に貢献できる。なお、現在、治療薬は進行を遅らせる薬しかなく、認知症の治療において、早期診断/治療を行うことが重要である。また、現在、治験での捕捉対象物質は全てAβである。
 ここで、図7は、アルツハイマー型認知症における年齢とバイオマーカーの変化の関係の一例を説明するグラフである。図7に示すように、本提案(本実施形態に係る解析システム1、学習済みモデル生成装置1A、判別システム1B)は、低濃度の捕捉対象物質を検出し、解析し、判別できる。そのため、本提案は、脳萎縮や記憶障害を引き起こす前段階およびMCIでの利用が可能となる。例えば、本提案は、PET、IP-MS、MCIスクリーニング検査、SimoaTMによる解析よりもさらに早い段階から早期診断、早期介入(進行度判定、薬効評価)に利用できる。また、現在、早期段階の症状悪化の抑制を目的とする、Aβを捕捉対象物質とした治療薬開発が進められているが、これにも本提案を利用できる。
(ナノマテリアルの凝集制御/リアルタイム監視)
 様々な工業/医療製品にナノマテリアルが利用されている。製品の品質確保、反応機構の可視化に対しても、液そのものの凝集状態を制御することは重要である。そこで、動的光散乱法を中心とした手法により、粒度分布が計測されている。動的光散乱法やその他の手法での課題は、シングルnmオーダーサイズ以下の検出が困難であること、捕捉対象物質濃度が、mM~Mの高濃度帯でのみ評価ができることである。また、表面状態はゼータ電位、粒径は別手段で測定するため、評価の簡便性にも課題があった。
 本提案は、シングルnmオーダーサイズ以下のナノマテリアル、および捕捉対象物質濃度がmM未満の低濃度帯においても、凝集状態・分布を評価できることを特長とする。また、捕捉対象物質と捕捉物質の間の相互作用による検出信号を取得するため、表面状態の観測も可能となる。
 医療用途では、表面状態・粒径分布を含め、品質管理が重要となる。そのため、ナノマテリアルを利用する分野は本提案を活用する有望な分野のうちの一つであると考えられる。ドラッグデリバリーシステムや創傷治療向けなどでのナノ粒子は、粒子径だけでなく、結晶性・分子状態、ステルス性(修飾基を含めた表面状態)を含めた表面状態・粒径分布の検出を行うことが望ましい。また、精密工業品向けの樹脂フィラーの品質管理や、金属触媒・ナノゼオライトといった粒子径によって機能(流動性、吸着力、触媒性)が変わり、かつ小さいナノサイズが高機能化に必要となるものについても同様に表面状態・粒径分布の検出が望ましい。なお、捕捉物質がナノマテリアルである場合、これを捕捉するための設計思想として、1)修飾基との相互作用、2)サイズ捕捉空間(サイズ別)、3)金属との相互作用が挙げられる。
 捕捉物質がナノマテリアルである場合の一例として、RohS規制対象の高温鉛はんだ代替材、より具体的にはダイボンド材が挙げられる。そして、そのようなダイボンド材の材料として銀ナノ粒子が有力な候補となっている。銀ナノ粒子を材料に用いたダイボンド材には焼成温度の低温化や接合特性の向上が求められている。銀ナノ粒子の粒径が小さいほど、面積当たりの表面エネルギーが増大し、融点降下が起こる。そのため、焼成温度の低温化が図られる。これらを実現するために、銀ナノ粒子を材料に用いたダイボンド材には、小粒径(2nm以下)、粒径分布幅(0.5mm以下)が求められている。しかし、現評価手法では粒子のできの評価に十分に応えられていない。後述する解析手段3では、粒径分布を観測するとともに、表面状態・結晶性・修飾鎖の情報をシグナル情報から取得することができる。また、後述する解析手段3では、シグナルの高さ、速度、シグナル挙動を対応内容別に特徴を判定し、各内容を区別した情報を取得することができる。従って、本提案では、低濃度帯の検出が可能な電気または光学による検出法によって、捕捉対象物質と捕捉物質との相互作用による経時的なシグナル変化を取得したり、解析したり、判別したりするため、こういった領域での評価に適する。
(抗体医薬品の品質検査への貢献)
 高濃度(50~100mg/mL)液であればDLS、SECなどでも評価できるが、定量性および簡便性に課題があることが知られている。しかし、本提案では、低濃度帯の検出が可能な電気または光学による検出法によって、捕捉対象物質と捕捉物質との相互作用による経時的なシグナル変化を取得したり、解析したり、判別したりするため、定量性と簡便性とを併せ持つ評価法を提供できる。
(取得手段の一例:表面プラズモン共鳴(SPR)装置)
 取得手段2の一例として、前記したようにSPR装置が挙げられる。SPR装置は従来公知の一般的なもの、例えば、連続フロー方式のものを使用できる。図8は、連続フロー方式のSPR装置80の構成を説明する概略図である。図8に示すように、このSPR装置80は、捕捉物質81が固定された金属薄膜82(例えば、金薄膜)およびこの金属薄膜82と接して設けられるガラス基板83を有するセンサチップ84と、このセンサチップ84の捕捉物質81に捕捉対象物質85(アナライト)を接触・結合させるための送液システム86と、金属薄膜82の捕捉物質81が固定されている面の反対側の面に向けて所定の角度でレーザ光を照射する光源87と、光源87から照射されて前記反対側の面で反射したレーザ光を受光して検出する光学検出器88とを有している。
(金属薄膜)
 金属薄膜82は、一般的なSPR装置に用いられるセンサチップを構成する金属薄膜と同様の金属を用いることができる。すなわち、金属薄膜82は、金、銀、アルミニウム、銅および白金からなる群から選ばれる少なくとも1種の金属からなることが好ましく、その中でも金からなることがより好ましい。これらの金属については、その合金の形態であってもよく、金属を積層したものであってもよい。
 金属薄膜82は、誘電体部材(図示せず)の主面上に形成されていることが好ましい。誘電体部材の主面上に金属薄膜82を形成する方法としては、通常行われている方法を用いることができる。そのような方法としては、例えば、電子ビーム加熱真空蒸着法、抵抗加熱真空蒸着法、マグネトロンスパッタ法、プラズマ支援スパッタ法、イオンアシスト蒸着法、イオンプレーティング法などの真空成膜法によって、誘電体部材の主面上に金属薄膜82を成膜することができる。誘電体部材は、SPR装置80に用いられるセンサチップ84として一般的に用いられる任意の材料、例えば、SiO、ZrO、Siで形成することができる。
 金属薄膜82の厚さとしては、金であれば5~500nm、銀であれば5~500nm、アルミニウムであれば5~500nm、銅であれば5~500nm、白金であれば5~500nm、これらの合金または積層したものであれば5~500nmが好ましい。電場増強効果の観点からは、金であれば20~70nm、銀であれば20~70nm、アルミニウムであれば10~50nm、銅であれば20~70nm、白金であれば20~70nm、これらの合金または積層したものは10~70nmがより好ましい。金属薄膜82の厚さが上記範囲内であると、表面プラズモンが発生し易いので好適である。
(センサ部)
 センサチップ84はセンサ部(図示せず)を有している。センサ部は、センサチップ84の金属薄膜82上の一部の領域に設けられており、この領域に捕捉物質81が固定されている。この場合、センサ部は複数個設けられていてもよく、それぞれのセンサ部には異なる捕捉物質81が固定されていてもよい。
 捕捉物質81は、捕捉対象物質85を特異的に捕捉する物質である。捕捉物質81としては、例えば、Aβタンパク質などの抗原に対する抗体、基質・補酵素に対する酵素、ホルモンに対するレセプタ、抗体に対するプロテインA、プロテインG、ビオチンに対するアビジン類、カルシウムに対するカルモジュリン、糖に対するレクチンなどが挙げられる。また、捕捉対象物質85が核酸である場合、それと特異的に結合する配列を有する核酸を捕捉物質81として使用可能である。また、捕捉対象物質85がナノマテリアルである場合、金属イオンキレート剤、クラウンエーテル、およびイオノフォア群などを捕捉物質81として使用可能である。
 捕捉対象物質85としては、例えば、タンパク質、脂質、糖、核酸、その他の種々の物質が挙げられるが、本実施形態の場合、具体的な一例としてAβタンパク質やナノマテリアルが挙げられる。
 捕捉物質81を金属薄膜82上に固定する方法としては、通常行われている方法を用いることができる。そのような方法としては、例えば、金属薄膜82の表面に特定の結合を生じる修飾基を導入し、捕捉物質81にこの修飾基に対応した反応基を導入し、これらの修飾基と反応基とを結合させることにより、捕捉物質81を金属薄膜82上に固定することができる。
 具体的には、例えば、末端にアミノ基を有するシランカップリング剤で金属薄膜82の表面を処理してアミノ基で修飾し、続いてNHS(N-ヒドロキシコハク酸イミド)-PEG4-ビオチンで処理して上記アミノ基にビオチンを結合させ、このビオチンにアビジンを反応させた後に、ビオチン化した捕捉物質81(例えば、抗体)を反応させる。このようにすることにより、金属薄膜82上に捕捉物質81を固定することができる。また、末端にカルボキシル基を有するシランカップリング剤で金属薄膜82の表面を処理してカルボキシル基で修飾し、続いてEDC(1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride)およびNHSで処理してそのカルボキシル基を活性エステル化した後に、アミノ基を有する捕捉物質81(例えば、抗体)を反応させる。このようにすることによっても、金属薄膜82上に捕捉物質81を固定することができる。
 また、必要に応じて、金属薄膜82の表面にSAM(Self-Assembled Monolayer:自己組織化単分子膜)を形成させ、捕捉物質81を金属薄膜82上に固定してもよい。SAMは、捕捉物質81を金属薄膜82上に固定する際の土台としての役割を有する。
 このSAMが含む単分子としては、例えば、炭素原子数4~20程度のカルボキシアルカンチオール(例えば、(株)同仁化学研究所、シグマ アルドリッチ ジャパン(株)などから入手可能)、特に好ましくは10-カルボキシ-1-デカンチオールが用いられる。炭素原子数4~20のカルボキシアルカンチオールは、それを用いて形成されたSAMの光学的な影響が少ない、すなわち透明性が高く、屈折率が低く、膜厚が薄いなどの性質を有していることから好適である。
 SAMの形成方法としては、特に限定されるものではないが、浸漬法、インクジェット法、ディスペンサ、アプリケータ、ノズルジェット、直接滴下(ピペット、定量秤量機、)などの従来公知の方法を用いることができる。具体例として、10-カルボキシ-1-デカンチオール((株)同仁化学研究所製)を含むエタノール溶液に金属薄膜82を浸漬する方法などが挙げられる。10-カルボキシ-1-デカンチオールが有するチオール基が、金属と結合し固定化され、金属薄膜82の表面上で自己組織化し、SAMを形成する。形成したSAM上へ捕捉物質81を固定する方法も特に限定されず、従来公知の方法を用いることができ、例えば、上記のEDCおよびNHSで処理する方法を用いることができる。
 SAMが溶解または分散する溶媒は特に制限はなく、下記の溶媒を用いることができる。そのような溶媒としては、例えば、クロロホルム、四塩化炭素、ジクロロメタン、1,2-ジクロロエタン、ジクロロベンゼン、ジクロロヘキサノンなどのハロゲン系溶媒、アセトン、メチルエチルケトン、ジエチルケトン、メチルイソブチルケトン、n-プロピルメチルケトン、シクロヘキサノンなどのケトン系溶媒、ベンゼン、トルエン、キシレン、メシチレン、シクロヘキシルベンゼンなどの芳香族系溶媒、シクロヘキサン、デカリン、ドデカンなどの脂肪族系溶媒、酢酸エチル、酢酸n-プロピル、酢酸n-ブチル、プロピオン酸メチル、プロピオン酸エチル、γ-ブチロラクトン、炭酸ジエチルなどのエステル系溶媒、テトラヒドロフラン、ジオキサンなどのエーテル系溶媒、ジメチルホルムアミド、ジメチルアセトアミドなどのアミド系溶媒、メタノール、エタノール、1-ブタノール、エチレングリコールなどのアルコール系溶媒、アセトニトリル、プロピオニトリルなどのニトリル系溶媒、ジメチルスルホキシド、水、各種緩衝液、またはこれらの混合溶媒などが挙げられる。
 これらの溶媒の沸点としては、迅速に溶媒を乾燥させる観点から乾燥処理の温度未満の沸点が好ましく、具体的には60~200℃の範囲内が好ましく、さらに好ましくは、80~180℃の範囲内である。
 溶媒は、SAMの形成方法に合わせて粘度や表面張力を調整するため、上記の溶媒を組み合わせて使用してもよい。
 SAM溶液(SAM形成用の単分子を含んでいる溶媒)は、塗布範囲を制御する目的や、塗布後の表面張力勾配に伴う液流動(例えば、コーヒーリングと呼ばれる現象を引き起こす液流動)を抑制する目的に応じて、界面活性剤を含有することができる。
 界面活性剤としては、溶媒に含まれる水分の影響、レベリング性、基板(金属薄膜82)への濡れ性などの観点から、例えば、アニオン性またはノニオン性の界面活性剤などが挙げられる。具体的には、含フッ素系活性剤などや、国際公開第08/146681号、特開平2-41308号公報などに挙げられた界面活性剤を用いることができる。
 SAMに用いる溶媒は、SAMが溶媒に均一に溶解される溶液でも、材料が固形分として溶媒に分散される分散液でもよい。分散方法としては、超音波、高剪断力分散やメディア分散などの分散方法により分散することができる。
 SAM溶液の粘度は、溶解度または分散性により、適宜選択することが可能で、具体的には、例えば、0.3~100mPa・sの範囲内で選択することができる。
 本実施形態では、SAM溶液を金属薄膜82上に形成した後、上述した溶媒を除去する乾燥工程を有することができる。乾燥工程の温度は特に制限されないが、金属薄膜82などの基材が損傷しない程度の温度で乾燥処理することが好ましい。乾燥温度は、SAM溶液の組成などによって異なるため一概には言えないが、例えば、80℃以上の温度とすることができ、上限は200℃程度までは可能な領域と考えられる。乾燥時間は、用いる溶媒などの材料に応じて適切な時間(例えば、80℃で30分間など)にすることが好ましい。このような条件とすることにより、乾燥を迅速に行うことができる。
 また、カルベン配位子が強固に金に結合することが知られている(Renee W. Y. Man et.al., J. Am. Chem. Soc. 2018, 140, 1576-1579)。そのため、カルベン配位子を用いると、その結合安定性によって金属薄膜82(好ましくは金薄膜)への捕捉物質81(例えば、抗体)の結合密度が向上し、それによって感度アップが期待される。カルベン配位子を金属薄膜82に結合させ、上記と同様に捕捉物質81(例えば、標識抗体)を結合すると、金属薄膜82-カルベン配位子-捕捉物質81という構成とすることができる。また、カルベン配位子の配位座は1座配位子より2座配位子、3座配位子の方が金属薄膜82との結合が強くなり、安定性が高まる方向に進行する。1座配位子よりも2座配位子、3座配位子、それ以上の配位子の方が、1座配位子に対し、安定性と感度アップにより好ましい。
 また、カルベン以外にも、ケイ素の誘導体のシリレン、ゲルマニウム類縁体のゲルミレンなどを用いることができる。また、配位飽和から二電子少ない化学種としてはニトレンがあり、本実施形態では当該ニトレンを用いることもできる。なお、カルベン配位子の一例を下記式(1)、(2)に示す。式(1)、(2)において、R’は捕捉物質81を示している。
Figure JPOXMLDOC01-appb-C000002
 なお、式(1)、(2)で示すカルベン配位子は、下記式(3)、(4)のように、Xに位置する元素はN以外でもよい。Xに位置する元素としては、例えば、二配位の炭素が挙げられるが、これに限定されない。このような化合物であっても、カルベン配位子と同様の作用が期待できる。なお、式(3)、(4)におけるRは水素、アルキル基またはアリール基を示している。Mは金属を示している。Lは配位子を示しており、当該L中のXは配位子の数を示している。
Figure JPOXMLDOC01-appb-C000003
 なお、式(1)~(4)に示すカルベン配位子において、環状構造部分は5員環であってもよいし、6員環であってもよい。5員環としては、例えば、アゾール、イミダゾール、ピロール、チオフェン、フラン、ピラゾール、オキサゾール、イソオキサゾール、チアゾール、トリアゾール、ペンタゾールなどが挙げられる。6員環としては、例えば、ピリジン、ピリミジン、ピリダジン、トリアジン、テトラジン、ペンタジン、ヘキサジンなどが挙げられる。以上に説明したカルベン配位子などは、いずれも金属薄膜82の表面(好ましくは、金薄膜の表面)と結合することができる。
 金属薄膜82上に捕捉物質81が固定された領域、すなわちセンサ部の形状および面積は特に限定されるものではないが、入射光(平行光)はプリズムを通ってチップ表面全体に照射され、反射した光はフォトダイオード(PD)や電荷結合素子(CCD)検出器などで検出される。相互作用した部分だけが明るく変化したシグナル、または画像として観察される。特に、センサ部で励起され測定時のS/Nを向上させるためには、センサ部の形状は、励起光が照射される領域と同じ形状であることが好ましい。
(標識剤)
 標識剤は、捕捉対象物質85と特異的に結合する物質と、所定の励起光を照射することで反射率変動、或いは蛍光を発することのできる蛍光体とを含む複合体である。例えば、捕捉対象物質85が抗原(例えば、Aβタンパク質)である場合は、それと特異的に結合する抗体と反射率変動する複合体、或いは蛍光体との複合体(標識化二次抗体)を標識剤として用いることができる。このような標識剤は、公知の手法によって作製することができ、特定の捕捉対象物質85に対する標識剤は市販もされている。
 本実施形態におけるSPR測定法は、公知のSPR測定法における標識剤と同様のものであればよい。蛍光シグナル変化で用いる際には、公知の各種の蛍光体を用いることができる。代表的な蛍光体としては例えば下記の蛍光物質が挙げられる。
 蛍光物質としては、ローダミン系色素分子、スクアリリウム系色素分子、シアニン系色素分子、芳香環系色素分子、オキサジン系色素分子、カルボピロニン系色素分子、ピロメセン系色素分子などを用いることができる。また、蛍光物質としては、Alexa Fluor(登録商標、インビトロジェン社製)系色素分子、BODIPY(登録商標、インビトロジェン社製)系色素分子、Cy(登録商標、GEヘルスケア社製)系色素分子、DY系色素分子(登録商標、DYOMICS社製)、HiLyte(登録商標、アナスペック社製)系色素分子、DyLight(登録商標、サーモサイエンティフィック社製)系色素分子、ATTO(登録商標、ATTO-TEC社製)系色素分子、MFP(登録商標、Mobitec社製)系色素分子などを用いることができる。なお、このような色素分子の総称は、化合物中の主要な構造(骨格)または登録商標に基づき命名されており、それぞれに属する蛍光物質の範囲は当業者であれば過度の試行錯誤を要することなく適切に把握できる。また、蛍光物質は、上記のものに限られない。例えば、Eu、Tbなどの希土類錯体系の蛍光色素も、本実施形態で用いられる蛍光色素となり得る。希土類錯体は、一般的に励起波長(30~340nm程度)と発光波長(Eu錯体で65nm付近、Tb錯体で545nm付近)との波長差が大きく、蛍光寿命が数百マイクロ秒以上と長い特徴がある。市販されている希土類錯体系の蛍光色素の一例としては、ATBTA-Eu3+が挙げられる。
(捕捉物質の金属薄膜への塗布および付着)
 捕捉物質81の金属薄膜82への塗布および固定は次のようにして行うことができる。例えば、インクジェット法、アプリケータ、ノズルジェット、直接滴下(ピペット、定量秤量機)などにより、同一種の捕捉物質81(例えば、抗体)を金属薄膜82上の所定の塗布区画(図示せず)ごとに塗布することができる。塗布後、通常は、洗浄を繰り返し行い、捕捉物質81を付着させるが、捕捉物質81毎に1液で固相させる方法が望ましい。
(取得手段の他の一例:トランジスタ型バイオセンサ)
 前述したように、本実施形態における高感度検出の方法としてトランジスタ型バイオセンサを用いた検出方法も好適に適用できる。図9は、トランジスタ型バイオセンサの一例を示す概略図である。
 図9に示すように、トランジスタ型バイオセンサ90は、絶縁膜91の上に設けられた金属薄膜92上に後述のセンサ部93が設けられた構造を有する。センサ部93で起こる反応により生じるしきい値電圧、ドレイン電流値または電荷移動度の変化が、トランジスタ部94を介して計測されることにより、簡便かつ高感度に捕捉対象物質の検出が可能となる。センサ部93は、SPR装置80で説明したセンサ部と同様の構成とすることができる。すなわち、センサ部93は、その表面に捕捉物質95を固定した構成とすることができる。
 本実施形態で用いることのできるトランジスタ部94は、公知のトランジスタ構造により構成することができる。トランジスタ部94は、無機トランジスタであってもよいし、有機トランジスタであってもよい。また、トランジスタ部94は、トップゲート構造であってもよいし、ボトムコンタクト構造であってもよい。図9では、トランジスタ部94の一例として、ボトムコンタクト構造を図示している。
 図9に示すボトムコンタクト構造のトランジスタ部94は、基板94a上に形成されたゲート電極94bと、基板94a上のゲート電極94bを覆うようにして形成されたゲート絶縁膜94cと、ゲート絶縁膜94c上に別個に形成されたソース電極94dおよびドレイン電極94eと、ゲート絶縁膜94c上のソース電極94dおよびドレイン電極94eを覆うようにして形成された半導体層94fと、半導体層94f上に形成された前記絶縁膜91とを有する。
 トランジスタ部94は、耐久性の観点からは無機トランジスタを好適に用いることができる。無機トランジスタとしては、市販のトランジスタを使用してもよい。
 また、小型で簡易的の観点からは薄膜トランジスタ(Thin Film Transistor:TFT)が好適に用いられる。この場合、基板94aとしては、ガラス、セラミックス、金属などの無機材料を適用することができる。また、基板94aとしては、樹脂、紙などの有機材料などを適用することができる。これらの有機材料の基板94aとすると、フレキシブル性が備わる。
 有機TFTの場合は、基板94aとしては、例えば、ポリエチレンナフタレート、ポリエチレンテレフタレート、ポリエチレン、ポリイミド、ポリパラキシリレン(パリレン(登録商標))などの樹脂、紙などを用いることができる。
 ゲート電極94bの構成材料としては、例えば、アルミニウム、銀、金、銅、チタン、ITO(Indium Tin Oxide)、PEDOT:PSS(ポリ(3,4-エチレンジオキシチオフェン)(PEDOT)とポリスチレンスルホン酸(PSS)から成る複合物の略称)などを用いることができる。
 ゲート絶縁膜94cの構成材料としては、例えば、シリカ、アルミナ、自己組織化単分子膜(SAM)、ポリスチレン、ポリビニルフェノール、ポリビニルアルコール、ポリメチルメタクリレート、ポリジメチルシロキサン、ポリシルセスキオキサン、イオン液体、ポリテトラフルオロエチレン(テフロン(登録商標)AF、サイトップ(登録商標))などを用いることができる。
 ソース電極94dおよびドレイン電極94eの構成材料としては、例えば、金、銀、銅、白金、アルミニウム、PEDOT:PSSなどを用いることができる。
 有機TFTの場合、半導体層94fの構成材料としては、P型の場合は、ペンタセン、ジナフトチエノチオフェン、ベンゾチエノベンゾチオフェン(Cn-BTBT)、TIPSペンタセン(6,13-ビス[(トリイソプロピルシリル)エチニル]ペンタセン)、TES-ADT([5,11-ビス(トリエチルシリルエチニル)アントラジチオフェン])、ルブレン、P3HT(ポリ(3-ヘキシルチオフェン))、PBTTT(例えば、ポリ[2,5-ビス(3-ヘキサデシルチオフェン-2-イル)チエノ[3,2-b]チオフェン])などを用いることができる。N型の場合は、フラーレンなどを用いることができる。
 また、TFTの作製方法は、蒸着法、スパッタリング法などのドライプロセスでもよく、スピンコート、バーコート、スプレーコートなどによる塗布でもよく、スクリーン印刷、グラビアオフセット印刷、凸版反転印刷、インクジェット印刷などの各種印刷機による印刷でもよい。印刷によれば、より効率的に低コストで作製することができる。
(トランジスタ型バイオセンサの他の一例)
 トランジスタ型バイオセンサの他の一例について説明する。図10は、トランジスタ型バイオセンサの他の一例を示す概略図である。
 図10に示すように、他の一例に係るトランジスタ型バイオセンサ100は、トランジスタ部110と検出部120とで構成されている点で、これらが一体化されて構成されているトランジスタ型バイオセンサ90(図9)と相違している。他の一例に係るトランジスタ型バイオセンサ100については、トランジスタ型バイオセンサ90との相違点を中心に説明する。
 トランジスタ部110は、基板111上に形成されたゲート電極112と、ゲート電極112を覆うようにして形成されたゲート絶縁膜113と、ゲート絶縁膜113上に別個に形成されたソース電極114およびドレイン電極115と、ゲート絶縁膜113上のソース電極114およびドレイン電極115を覆うようにして形成された半導体層116と、基板111上においてゲート絶縁膜113および半導体層116の周囲を覆う撥液性バンク117と、半導体層116および撥液性バンク117の上部に形成された封止膜118とを有する。
 また、検出部120は、基板121上に形成された金属薄膜122と、金属薄膜122上に形成されたセンサ部123と、センサ部123上に形成された捕捉物質124と、捕捉物質124の上部において捕捉物質124と直接接触しないように設けられた参照電極125とを有する。捕捉物質124と参照電極125との間に液滴試料126が供給される。
 トランジスタ部110と検出部120とは、トランジスタ部110のゲート電極112と検出部120の金属薄膜122とにより電気的に接続されており、検出部120で検出したシグナル変化を経時的に取得できる。
 撥液性バンク117の構成材料としては、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリフッ化ビニルなどのフッ素樹脂を用いることができる。撥液性バンク117は、任意のディスペンサ装置を用いて形成することができる。
 また、封止膜118の構成材料としては、例えば、ポリテトラフルオロエチレン、ポリパラキシリレンなどが挙げられる。
 参照電極125は、例えば、銀/塩化銀電極、カーボン電極、物理蒸着(PVD、例えばスパッタリング)または化学蒸着(CVD)によって成膜した金属電極などとすることができる。特に、銀/塩化銀電極やカーボン電極は、各種印刷方式により形成することができ、任意に配置することが容易であり、好ましい。また、参照電極125はセンサ部123の液と同じ液内に存在することが好ましく、図10に示すように、センサ部123近傍に配置されることが好ましい。
(金属薄膜、センサ部、捕捉物質の金属薄膜への塗布)
 トランジスタ型バイオセンサ90、100における金属薄膜92、122は、SPR装置80の金属薄膜82と同様とすることができる。
 トランジスタ型バイオセンサ90、100におけるセンサ部93、123は、SPR装置80のセンサ部と同様とすることができる。
 捕捉物質95、124の金属薄膜92、122への塗布も、SPR装置80と同様とすることができる。
(電気検出)
 トランジスタ型バイオセンサからの電気シグナルの検出は、市販品を例示すると、アイスフエトコム社製ISFET-F20や浜松ホトニクス社製イオンイメージセンサなどのセンサで行うことができる。
(解析手段)
 図1に戻って解析手段3について説明する。
 解析手段3は、前記した取得手段2で取得した経時的なシグナル変化から捕捉対象物質の凝集状態および表面状態のうちの少なくとも一方を解析する。また、前述したように、解析手段3では、粒径分布を観測するとともに、表面状態・結晶性・修飾鎖の情報をシグナル情報から取得することができる。また、解析手段3では、シグナルの高さ、速度、シグナル挙動を対応内容別に特徴を判定し、各内容を区別した情報を取得することができる。解析手段3で解析して得られた情報は、後述する学習済みモデル生成装置1Aの機械学習手段4で用いることができる。
 解析手段3としては、図示しないキーボードやマウスなどの入力手段、モニタやプリンタなどの出力手段、プログラムやデータなどを記憶するハードディスクドライブ(HDD)、ソリッドステートドライブ(SSD)、リードオンリーメモリ(ROM)などの記憶手段、プログラムの実行や計算処理などを行う中央処理装置(CPU)を備えた一般的なコンピュータ(汎用コンピュータ)を用いることができる。つまり、一般的なコンピュータの記憶手段に解析を行うための任意のプログラムをインストールし、これを実行させることで、解析手段3として使用することができる。
<学習済みモデル生成装置>
 次に、図11を参照して、本発明の一実施形態に係る学習済みモデル生成装置について説明する。図11は、本発明の一実施形態に係る学習済みモデル生成装置1Aの構成を説明する概略図である。
 図11に示すように、学習済みモデル生成装置1Aは、取得手段2と、解析手段3と、機械学習手段4とを有する。
 なお、学習済みモデル生成装置1Aの取得手段2および解析手段3は、前述した解析システム1の取得手段2および解析手段3とそれぞれ同様であるので、それらについての説明は省略し、機械学習手段4について説明する。
(機械学習手段)
 機械学習手段4は、解析手段3によって得られた解析結果を複数用いて機械学習を行い、学習済みモデル(予測モデル)を生成する。機械学習手段4も解析システム1の解析手段3と同様に、図示しないキーボードやマウスなどの入力手段、モニタやプリンタなどの出力手段、プログラムやデータなどを記憶するHDD、SSD、ROMなどの記憶手段、プログラムの実行や計算処理などを行うCPUを備えた一般的なコンピュータ(汎用コンピュータ)を用いることができる。つまり、一般的なコンピュータの記憶手段に機械学習を行うための任意のプログラムをインストールし、これを実行させることで、機械学習手段4として使用することができる。
(機械学習による予測モデルの構築)
 取得手段2から得られる複数のシグナルの特徴から、例えば、捕捉対象物質の凝集サイズごとに、その凝集量について、それぞれ予測モデルを構築する。これら複数の予測モデルの結果を組み合わせることで、捕捉対象物質の凝集サイズと凝集量の分布を予測することができる。例えば、横軸が凝集サイズ、縦軸が凝集量の分布図(イメージ図)を作成することができる。前記したこれらの予測モデルは、捕捉対象物質の凝集サイズおよび凝集量が予め判明している試験データについて、取得手段2から得られる複数のシグナルの特徴を説明変数とし、捕捉対象物質の凝集サイズごとの凝集量を目的変数とする機械学習をそれぞれ行うことで構築される。
 本実施形態に適用する機械学習は、教師あり学習であってもよいし、教師なし学習であってもよい。なお、教師あり学習とは、正解ラベルのついた学習データから「入力と出力の関係」を学習する学習方法をいう。教師なし学習とは、正解ラベルのない学習データから「データ群の構造」を学習する学習方法をいう。
 また、機械学習は、強化学習、深層学習または深層強化学習であってもよい。なお、強化学習とは、試行錯誤をすることで「最適な行動系列」を学習する学習方法をいう。深層学習とは、大量のデータから、データに含まれる特徴を段階的により深く(深層で)学習する学習方法をいう。深層強化学習とは、強化学習と深層学習を組み合わせた学習方法をいう。
 機械学習は、一般的な解析手法(アルゴリズム)を適用できる。機械学習は、例えば、線形回帰(重回帰分析、部分最小二乗(PLS)回帰、LASSO回帰、Ridge回帰、主成分回帰(PCR)など)、ランダムフォレスト、決定木、サポートベクターマシン(SVM)、サポートベクター回帰(SVR)、(ディープ)ニューラルネットワーク、判別分析などにより選択される解析手法により構築された予測モデルを適用可能である。
 説明変数としては、取得手段2から得られる各シグナルの特徴を表す数値、およびそれらから計算された数値を用いることができる。説明変数としては、例えば、各シグナルの立ち上がりの傾き、最大値、シグナルが立ち上がるまでの時間、解離定数(K)、結合速度定数(kon)、解離速度定数(koff)などが挙げられる。
 なお、上記実施形態は、本発明を実施するにあたっての具体化の一例を示したものに過ぎず、上記実施形態によって本発明の技術的範囲が限定的に解釈されてはならない。本提案はその要旨、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。上記実施形態では、捕捉対象物質の凝集サイズごとの凝集量を目的変数としていたが、目的変数はこれらには限定されない。目的変数は、例えば、捕捉対象物質の凝集の表面構造、凝集の様式、電荷量、相互作用の大きさなどとしてもよい。また、説明変数についても、シグナルの特徴、およびそれらから計算される値だけに限定されない。説明変数は、例えば、各センサの捕捉物質の名称や、センサの製造時期(製造日)などとしてもよい。
<判別システム>
 次に、図12を参照して、本発明の一実施形態に係る判別システムについて説明する。図12は、本発明の一実施形態に係る判別システム1Bの構成を説明する概略図である。
 図12に示すように、判別システム1Bは、前述した学習済みモデル生成装置1Aを用いるとともに、判別手段5を有する。なお、判別システム1Bにおける学習済みモデル生成装置1Aについては既に説明しているので、その説明は省略し、判別手段5について説明する。
 なお、前述した解析システム1および学習済みモデル生成装置1Aは、作成した学習済みモデル(プログラム)を用意し、これを未知の経時的なシグナル変化の判別を有するユーザ(利用者)に使用させる提供者が用いるものである。
 判別システム1Bの判別手段5は、提供者が用意した学習済みモデルを使用して、未知の経時的なシグナル変化の判別を行いたい利用者が用いるものである。
(判別手段)
 判別手段5は、前述した学習済みモデル生成装置1Aで生成した学習済みモデルを用いて、取得した未知の経時的なシグナル変化を判別して、前記した未知の経時的なシグナル変化を有する捕捉対象物質の凝集状態および表面状態のうちの少なくとも一方の判別結果を出力する。なお、未知の経時的なシグナル変化は、前述した取得手段2で取得したものであってもよいし、他の取得手段(他の測定機器(SPR装置)など)で取得したものであってもよい。判別結果としては、例えば、判別対象となる捕捉対象物質がどのような凝集状態および/もしくは表面状態であるか、または、どのような凝集状態および/もしくは表面状態となるかを予測・想定した結果を挙げることができる。予測した結果は、機械学習で適用した解析手法によって異なるが、例えば、分類、回帰、クラスタリング、異常検出(外れ値検出)などの判別結果として得ることができる。例えば、判別手段5では、未知の経時的なシグナル変化(例えば、高さ、傾き、速度などの変化)を入力すると、学習済みモデルを用いて、凝集分布の答え(予測した結果(判別結果))を得ることができる。
 判別手段5も解析システム1の解析手段3や機械学習手段4と同様に、図示しないキーボードやマウスなどの入力手段、モニタやプリンタなどの出力手段、プログラムやデータなどを記憶するHDD、SSD、ROMなどの記憶手段、プログラムの実行や計算処理などを行うCPUを備えた一般的なコンピュータ(汎用コンピュータ)を用いることができる。つまり、一般的なコンピュータの記憶手段に判別手段5を行うための任意のプログラムをインストールし、これを実行させることで、判別手段5として使用することができる。
<解析方法、学習済みモデル生成方法および判別方法>
 次に、適宜図面を参照して本発明の一実施形態に係る解析方法、学習済みモデル生成方法および判別方法について説明する。
(解析方法)
 図13は、本発明の一実施形態に係る解析方法を説明するフローチャートである。
 図13に示すように、解析方法は、取得工程S1と、解析工程S2とを有する。
 取得工程S1は、電気または光学による検出法によって捕捉対象物質と捕捉物質との相互作用による経時的なシグナル変化を取得する工程である。
 解析工程S2は、取得工程S1で取得した経時的なシグナル変化から捕捉対象物質の凝集状態および表面状態のうちの少なくとも一方を解析する工程である。
 なお、取得工程S1は前述した取得手段2で行うことができ、解析工程S2は前述した解析手段3で行うことができる。
(学習済みモデル生成方法)
 図14は、本発明の一実施形態に係る学習済みモデル生成方法を説明するフローチャートである。
 図14に示すように、学習済みモデル生成方法は、取得工程S1と、解析工程S2と、機械学習工程S3とを有する。なお、学習済みモデル生成方法の取得工程S1および解析工程S2はそれぞれ、前記した解析方法の取得工程S1および解析工程S2と同様であるので、これらの説明は省略し、機械学習工程S3について説明する。
 機械学習工程S3は、解析工程S2によって得られた解析結果を複数用いて機械学習を行い、学習済みモデルを生成する工程である。
 なお、機械学習工程S3は、前述した機械学習手段4で行うことができる。
(判別方法)
 図15は、本発明の一実施形態に係る判別方法を説明するフローチャートである。
 本実施形態に係る判別方法は、図14を参照して説明した学習済みモデル生成方法で生成した学習済みモデルを用いて、取得した未知の経時的なシグナル変化を判別して、その未知の経時的なシグナル変化を有する捕捉対象物質の凝集状態および表面状態のうちの少なくとも一方の判別結果を出力する判別工程S4を有する。この判別工程S4は、前記判別結果を得たい利用者が、未知の経時的なシグナル変化を学習済みモデルに入力してその判別結果を得るものである。なお、判別方法における取得工程S1、解析工程S2および機械学習工程S3は、作成した学習済みモデル(プログラム)を前記利用者に使用させる提供者が行うものである。本実施形態に係る判別方法は、図15に示すように、全体としては、取得工程S1、解析工程S2および機械学習工程S3の順に行われるとともに、これらは判別工程S4が行われる前に実施される。
 なお、判別方法の取得工程S1、解析工程S2および機械学習工程S3はそれぞれ、学習済みモデル生成方法の取得工程S1、解析工程S2および機械学習工程S3と同様であるので、これらの説明は省略する。
 判別工程S4は、前述した判別手段5で行うことができる。
 以上に説明した本実施形態に係る解析システム、学習済みモデル生成装置および判別システムならびに解析方法、学習済みモデル生成方法および判別方法は、前述した取得手段・取得工程および解析手段・解析工程を有している。従って、これらはいずれも、電気または光学による検出法によって捕捉対象物質と捕捉物質との相互作用による経時的なシグナル変化を取得し、その経時的なシグナル変化から前記捕捉対象物質の凝集状態および表面状態のうちの少なくとも一方を解析できる。従って、これらはいずれも、凝集状態および表面状態のうちの少なくとも一方を感度良く定量化できる。
〔実施例1〕電気による検出:Aβ1-42
(Aβ1-42凝集体作製)
 Aβ1-42(全合成ペプチド;ペプチド研究所製)の乾燥物をジメチルスルホキシド(DMSO)で1mMとなるように溶解し、リン酸緩衝液で希釈して、低凝集試料を調製した。
 また、DMSOに溶解したAβ1-42を10分間超音波処理し、リン酸緩衝液にて希釈した後に37℃で24時間静置した試料を高凝集試料とした。
(延長ゲートの作製)
 基材となるポリエチレンナフタレート(PEN)フィルムの表面に、蒸着装置(エイエルエステクノロジー社製)を用い、Auをパターン蒸着した。蒸着したAu膜の膜厚は100nmとした。Auのパターンは反応部と延長部を用意し、反応部は以降記載の反応場を作製するために6mm×6mmの正方形とした。
 Au膜の反応部を、濃度1mM 10-カルボキシ-1-デカンチオール(同仁化学研究所社)を含むヘキサン溶液に37℃、2時間浸漬し、SAM膜を形成した。その後、SAM膜はエタノールと超純水で洗浄した。
 SAM膜を形成した反応部に濃度5mM Sulfo-NHS(N-hydroxysulfosuccinimide、Thermo Scientific社製)、濃度40mM N,N’-ジイソプロピルカルボジイミド(東京化成工業社製)、濃度0.5M NaCl(関東化学社製)を含む100mM MES buffer(同仁化学研究所)を30μl滴下し、37℃、15分静置した。
 反応後、滴下した液を除去したのち、濃度0.5mg/mlストレプトアビジン(ナカライテスク社製)を含む炭酸buffer(15mM NaCO(関東化学社製)、35mM NaHCO(関東化学社製))を50μl滴下し、37℃、2時間静置した。
 滴下した液を除去したのち、濃度1M 2-アミノエタノールを含むD-PBS buffer(富士フィルム和光純薬社製)を20μl滴下し、37℃、15分静置した。
 濃度0.05wt% Tween20(関東化学社製)と濃度0.1wt% BSA(富士フィルム和光純薬社製)を含むD-PBS bufferを20μl滴下し、37℃、15分静置した。
 滴下した液を除去したのち、超純水で洗浄を行い、高分子アミロイドβオリゴマーELISAキットワコーVer.2(富士フィルム和光純薬社製)に含まれるビオチン結合抗体(BAN50)溶液を3倍希釈した溶液を20μl滴下し、37℃、30分静置した。
 滴下した液を除去したのち、濃度0.1wt% BSA、濃度5wt%ジメチルスルホキシド(DMSO)を含むD-PBS bufferで洗浄した。
(滴定)
 マイクロチューブに700μlの濃度0.1wt% BSA、濃度5wt%ジメチルスルホキシド(DMSO)を含むD-PBS bufferを準備し、延長ゲートのSAM膜と参照電極Ag/AgCl(RE-1、BAS社製)をセットした。
 先に参照して説明した図6に示すように、FET(2SK241、東芝社製)および半導体パラメータアナライザ(キーサイトテクノロジー社製)を接続した。
 安定化のため、セットしてから2時間ブランク液(初期buffer(D-PBS buffer))を滴下した(図16では、ブランク液滴下開始から2時間になる少し前から測定を開始(0:00)し、0:07ぐらいまでブランク液を滴下している様子を示している)。
 次いで、セットしてから2時間経過後にD-PBSで希釈した濃度50μM 低凝集試料(捕捉対象物質液)を100μl滴下した(図16では、0:15ぐらいのタイミングで当該試料を滴下した)。
 そして、ドレイン-ソース間電圧Vdsを1Vで固定し、ゲート-ソース間電圧Vgsを-1.5Vから1.5Vの間で変化させ、ドレイン-ソース間電流Idsの変化を測定し、約40分の間(図16では、0:57まで)、30秒おきに、しきい値電圧Vthの経時変化を測定した。すなわち、しきい値電圧Vthは、30秒おきに間欠測定を行った。
 さらに、前記と同様にして、高凝集試料(濃度50μM)についても滴定操作を行った。その結果を図16に示す。図16は、低凝集試料(Aβ1-42モノマー)および高凝集試料(Aβ1-42凝集体)のしきい値電圧Vthの経時変化を示すグラフである。
(結果)
 図16に示すように、低凝集試料(Aβ1-42モノマー)と高凝集試料(Aβ1-42凝集体)とでは、FETの電気による検出で測定される経時的なシグナル変化に違いがあることが確認・解析された。FETでこのような違いが確認・解析されたことから、光学による検出、例えば、SPR装置でも同様に低凝集試料(Aβ1-42モノマー)と高凝集試料(Aβ1-42凝集体)とで違う経時的なシグナル変化が取得され、解析することができる。
〔実施例2〕電気による検出:ナノ材料
(延長ゲートの作製)
 基材となるPENフィルムの表面に、蒸着装置(エイエルエステクノロジー社製)を用い、Auをパターン蒸着した。蒸着したAu膜の膜厚は100nmとした。Auのパターンは反応部と延長部を用意し、反応部は以降記載の反応場を作製するために6mm×6mmの正方形とした。
 Au膜の反応部を、濃度0.1mM Biotin-SAM Formation Reagent(同仁化学研究所社)を含むエタノール溶液に37℃、2時間浸漬し、Biotin結合SAM膜を形成した。その後、D-PBS bufferで洗浄した。
(滴定)
 マイクロチューブに700μlの濃度0.1wt% BSA、濃度2wt%グリセロールを含むD-PBS bufferを準備し、延長ゲートのSAM膜と参照電極Ag/AgCl(RE-1、BAS社製)をセットした。
 そして、前述同様、先に参照して説明した図6に示すように、FET(2SK241、東芝社製)、半導体パラメータアナライザ(キーサイトテクノロジー社製)を接続した。
 安定化のため、セットしてから2時間ブランク液(初期buffer(D-PBS buffer))を滴下した。
 次いで、セットしてから2時間経過後にStreptavidin,Gold Colloidal Particle 5nm(OD=3、コスモバイオ社製)(ターゲット液)を70μl滴下した。
 そして、ドレイン-ソース間電圧Vdsを1Vで固定し、ゲート-ソース間電圧Vgsを-1.5Vから1.5Vの間で変化させ、ドレイン-ソース間電流Idsの変化を測定し、約40分の間、30秒おきに、しきい値電圧Vthの経時変化を測定した。
 さらに、Streptavidin,Gold Colloidal Particle 15nmおよび60nm(OD=3、コスモバイオ社製)についても同様の滴定操作を行った。
(結果)
 FETの電気による検出により、ナノ材料に対しても、粒子径に応じた、経時的なシグナル変化を取得できることが確認されるとともに、それらのシグナル変化に違いがあることが確認・解析された。また、5nm、15nm、60nm Streptavidin,Gold Colloidal ParticleのODから粒子濃度を調整し、同様の検討を行い、それぞれのシグナル変化について違いが検出された。
〔実施例3〕機械学習モデルおよび分類予測:Aβ1-42
 実施例3では、種々濃度を異ならせた以外は実施例1と同様にして、低凝集試料(Aβ1-42モノマー)および高凝集試料(Aβ1-42凝集体)を調製し、滴定を行って、FETの電気による検出で測定される経時的なシグナル変化を得た。その結果を図17に示す。図17は、種々濃度を異ならせた低凝集試料(Aβ1-42モノマー)および高凝集試料(Aβ1-42凝集体)のしきい値電圧Vthの経時変化を示すグラフである。なお、図17は、捕捉対象物質液を滴下した後の測定結果を掲載している。
 図17に示すように、実施例3においても、低凝集試料(Aβ1-42モノマー)と高凝集試料(Aβ1-42凝集体)とでは、FETの電気による検出で測定される経時的なシグナル変化に違いがあることが確認できた。
 そして、実施例3におけるこれらの測定結果を用いて、しきい値電圧Vthの経時変化データを主成分分析により次元圧縮したものを説明変数とし、低凝集試料であったか高凝集試料であったかを目的変数として、機械学習モデルであるSVM(サポートベクトルマシン)の学習と分類予測とを行った。その結果を図18に示す。図18は、しきい値電圧Vthの経時変化データを主成分分析により次元圧縮したものを説明変数とし、低凝集試料であったか高凝集試料であったかを目的変数とし、機械学習モデルであるSVMの学習と分類予測とを行った結果を示すグラフである。図18に示すように、機械学習モデル(学習済みモデル)を生成し、それを用いて低凝集試料と高凝集試料とを分類(判別)することができた。
 実施例3においても、FETでこのような違いが確認・解析されたことから、光学による検出、例えば、SPR装置でも同様に低凝集試料(Aβ1-42モノマー)と高凝集試料(Aβ1-42凝集体)とで違う経時的なシグナル変化が取得され、解析することができる。また、機械学習における説明変数には、しきい値電圧Vthの他にも、例えばkon、koff、ドレイン-ソース間電圧Vds、用いた試薬の量や性質を表す数値や文字列、FETの性質を表す数値や文字列、あるいはそれらを加工した数値などを用いることができる。また、機械学習における目的変数には、低凝集試料であったか高凝集試料であったかのような質的変数だけでなく、例えば各凝集状態にある試料の量や比率などの量的変数を用いることができる。機械学習のモデルについても、SVMの他にも例えばロジスティック回帰、判別分析のような分類モデルを用いることができる。また、機械学習のモデルは、線形回帰、PLS回帰(偏最小二乗回帰)、Lasso回帰(least absolute shrinkage and selection operator回帰)などの予測モデルを用いることができる。さらに、機械学習のモデルは、決定木、ランダムフォレスト、ディープニューラルネットワークなどを用いることができる。
〔考察〕
 実施例1、実施例2および実施例3の結果から、Aβタンパク質フラグメント(Aβ1-42)やStreptavidin,Gold Colloidal Particle 5nm、15nm、60nmのような微小かつ低濃度な対象物(捕捉物質)であっても電気または光学による検出法で経時的なシグナル変化を取得し、解析できることが確認された。そして、その経時的なシグナル変化は、対象物の状態、例えば、モノマーや凝集体などの状態によって違っていることが確認された。
 そして、対象物およびその状態によって種々異なる経時的なシグナル変化のデータを多数集め、コンピュータ等で機械学習を行うことにより、学習済みモデルを作成できることが確認された(前記したように、例えばSVMの学習と分類予測とを行うことができた)。さらに、作成した学習済みモデルを用いて、取得された未知の継続的なシグナル変化(データ)に対して、分類、回帰、クラスタリング、異常検出(外れ値検出)などの分析(判別)を行えることが確認された。
 1   解析システム
 1A  学習済みモデル生成装置
 1B  判別システム
 2   取得手段
 3   解析手段
 4   機械学習手段
 5   判別手段
 S1  取得工程
 S2  解析工程
 S3  機械学習工程
 S4  判別工程

Claims (6)

  1.  電気または光学による検出法によって捕捉対象物質と捕捉物質との相互作用による経時的なシグナル変化を取得する取得手段と、
     前記取得手段で取得した経時的なシグナル変化から前記捕捉対象物質の凝集状態および表面状態のうちの少なくとも一方を解析する解析手段と、
     を有する解析システム。
  2.  電気または光学による検出法によって捕捉対象物質と捕捉物質との相互作用による経時的なシグナル変化を取得する取得手段と、
     前記取得手段で取得した経時的なシグナル変化から前記捕捉対象物質の凝集状態および表面状態のうちの少なくとも一方を解析する解析手段と、
     前記解析手段によって得られた解析結果を複数用いて機械学習を行い、学習済みモデルを生成する機械学習手段と、
     を有する学習済みモデル生成装置。
  3.  請求項2に記載の学習済みモデル生成装置で生成した前記学習済みモデルを用いて、取得した未知の経時的なシグナル変化を判別して、前記未知の経時的なシグナル変化を有する捕捉対象物質の凝集状態および表面状態のうちの少なくとも一方の判別結果を出力する判別手段を有する判別システム。
  4.  電気または光学による検出法によって捕捉対象物質と捕捉物質との相互作用による経時的なシグナル変化を取得する取得工程と、
     前記取得工程で取得した経時的なシグナル変化から前記捕捉対象物質の凝集状態および表面状態のうちの少なくとも一方を解析する解析工程と、
     を有する解析方法。
  5.  電気または光学による検出法によって捕捉対象物質と捕捉物質との相互作用による経時的なシグナル変化を取得する取得工程と、
     前記取得工程で取得した経時的なシグナル変化から前記捕捉対象物質の凝集状態および表面状態のうちの少なくとも一方を解析する解析工程と、
     前記解析工程によって得られた解析結果を複数用いて機械学習を行い、学習済みモデルを生成する機械学習工程と、
     を有する学習済みモデル生成方法。
  6.  請求項5に記載の学習済みモデル生成方法で生成した前記学習済みモデルを用いて、取得した未知の経時的なシグナル変化を判別して、前記未知の経時的なシグナル変化を有する捕捉対象物質の凝集状態および表面状態のうちの少なくとも一方の判別結果を出力する判別工程を有する判別方法。
PCT/JP2022/025204 2021-06-25 2022-06-23 解析システム、学習済みモデル生成装置および判別システムならびに解析方法、学習済みモデル生成方法および判別方法 WO2022270606A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023530131A JPWO2022270606A1 (ja) 2021-06-25 2022-06-23
US18/567,367 US20240282405A1 (en) 2021-06-25 2022-06-23 Analysis system, learned model generation device, discrimination system, analysis method, learned model generation method, and discrimination method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-106124 2021-06-25
JP2021106124 2021-06-25
JPPCT/JP2022/011374 2022-03-14
PCT/JP2022/011374 WO2022270043A1 (ja) 2021-06-25 2022-03-14 解析システム、学習済みモデル生成装置および判別システムならびに解析方法、学習済みモデル生成方法および判別方法

Publications (1)

Publication Number Publication Date
WO2022270606A1 true WO2022270606A1 (ja) 2022-12-29

Family

ID=84544388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025204 WO2022270606A1 (ja) 2021-06-25 2022-06-23 解析システム、学習済みモデル生成装置および判別システムならびに解析方法、学習済みモデル生成方法および判別方法

Country Status (3)

Country Link
US (1) US20240282405A1 (ja)
JP (1) JPWO2022270606A1 (ja)
WO (1) WO2022270606A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118258447A (zh) * 2024-05-28 2024-06-28 山东鑫顺包装科技有限公司 一种薄膜性能监测和评估系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100087011A1 (en) * 2007-03-16 2010-04-08 Matthew Cooper Detection and/or Characterisation of Oligomers
JP2013518280A (ja) * 2010-01-29 2013-05-20 ジーイー・ヘルスケア・バイオサイエンス・アクチボラグ 凝集体決定法
WO2016139335A1 (en) * 2015-03-04 2016-09-09 Université Libre de Bruxelles Method for determining the degree of phosphorylation and the degree of glycosylation of a protein in a protein sample
US20160327500A1 (en) * 2015-05-05 2016-11-10 Maxim Integrated Products, Inc. Electric-field imager for assays
JP2019215314A (ja) * 2018-06-12 2019-12-19 国立大学法人愛媛大学 ナノ粒子の判別方法
WO2020047177A1 (en) * 2018-08-28 2020-03-05 Essenlix Corporation Assay accuracy improvement
WO2020141463A2 (en) * 2019-01-03 2020-07-09 Pixcell Medical Technologies Ltd. Systems and methods for analyzing a fluid sample
JP2021504075A (ja) * 2017-11-27 2021-02-15 レティスペック インコーポレイテッドRetispec Inc. アルツハイマー病の病状のためのハイパースペクトル画像誘導ラマン眼球撮像装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100087011A1 (en) * 2007-03-16 2010-04-08 Matthew Cooper Detection and/or Characterisation of Oligomers
JP2013518280A (ja) * 2010-01-29 2013-05-20 ジーイー・ヘルスケア・バイオサイエンス・アクチボラグ 凝集体決定法
WO2016139335A1 (en) * 2015-03-04 2016-09-09 Université Libre de Bruxelles Method for determining the degree of phosphorylation and the degree of glycosylation of a protein in a protein sample
US20160327500A1 (en) * 2015-05-05 2016-11-10 Maxim Integrated Products, Inc. Electric-field imager for assays
JP2021504075A (ja) * 2017-11-27 2021-02-15 レティスペック インコーポレイテッドRetispec Inc. アルツハイマー病の病状のためのハイパースペクトル画像誘導ラマン眼球撮像装置
JP2019215314A (ja) * 2018-06-12 2019-12-19 国立大学法人愛媛大学 ナノ粒子の判別方法
WO2020047177A1 (en) * 2018-08-28 2020-03-05 Essenlix Corporation Assay accuracy improvement
WO2020141463A2 (en) * 2019-01-03 2020-07-09 Pixcell Medical Technologies Ltd. Systems and methods for analyzing a fluid sample

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118258447A (zh) * 2024-05-28 2024-06-28 山东鑫顺包装科技有限公司 一种薄膜性能监测和评估系统
CN118258447B (zh) * 2024-05-28 2024-07-26 山东鑫顺包装科技有限公司 一种薄膜性能监测和评估系统

Also Published As

Publication number Publication date
US20240282405A1 (en) 2024-08-22
JPWO2022270606A1 (ja) 2022-12-29

Similar Documents

Publication Publication Date Title
Yang et al. Progress in infrared spectroscopy as an efficient tool for predicting protein secondary structure
Kesler et al. Going beyond the Debye length: overcoming charge screening limitations in next-generation bioelectronic sensors
Belushkin et al. Nanoparticle-enhanced plasmonic biosensor for digital biomarker detection in a microarray
Kim et al. Surface enhanced Raman scattering artificial nose for high dimensionality fingerprinting
Zhou et al. Surface plasmon resonance microscopy: from single‐molecule sensing to single‐cell imaging
Tabakman et al. Plasmonic substrates for multiplexed protein microarrays with femtomolar sensitivity and broad dynamic range
Pallaoro et al. Rapid identification by surface-enhanced Raman spectroscopy of cancer cells at low concentrations flowing in a microfluidic channel
Fu et al. Flow-through multianalyte chemiluminescent immunosensing system with designed substrate zone-resolved technique for sequential detection of tumor markers
Gatterdam et al. Focal molography is a new method for the in situ analysis of molecular interactions in biological samples
US11480541B2 (en) Optical imaging of single molecule size, charge, mobility, binding and conformational change
WO2016015701A1 (de) Vorrichtung zur bioanalytik, deren herstellung und verfahren zum nachweis von bioanalyten mittels der vorrichtung
CN104155266A (zh) 一种多通道并行检测表面等离子体共振生物传感器及其制备和检测方法
US10422764B2 (en) Sensing platform for quantum transduction of chemical information
Beyene et al. Nanoparticle‐Templated Molecular Recognition Platforms for Detection of Biological Analytes
Sevenler et al. Nanoparticle biosensing with interferometric reflectance imaging
EP3218717B1 (en) Dynamic switching biosensor
WO2022270606A1 (ja) 解析システム、学習済みモデル生成装置および判別システムならびに解析方法、学習済みモデル生成方法および判別方法
Chen et al. Near-infrared surface plasmon resonance sensor with a graphene-gold surface architecture for ultra-sensitive biodetection
JP3778248B2 (ja) 偏光を用いたspr装置及びspr測定方法
Liang et al. [Retracted] A Review of Detection of Antibiotic Residues in Food by Surface‐Enhanced Raman Spectroscopy
Wang et al. Probing single-molecule binding event by the dynamic counting and mapping of individual nanoparticles
Ma et al. Three-Dimensional Tracking of Tethered Particles for Probing Nanometer-Scale Single-Molecule Dynamics Using a Plasmonic Microscope
Albarghouthi et al. Addressing Signal Drift and Screening for Detection of Biomarkers with Carbon Nanotube Transistors
WO2022270043A1 (ja) 解析システム、学習済みモデル生成装置および判別システムならびに解析方法、学習済みモデル生成方法および判別方法
Zhang et al. Plasmonic Scattering Microscopy for Label‐Free Imaging of Molecular Binding Kinetics: From Single Molecules to Single Cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22828522

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023530131

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18567367

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22828522

Country of ref document: EP

Kind code of ref document: A1