WO2022270494A1 - Collagen decomposition device and method for operating collagen decomposition device - Google Patents

Collagen decomposition device and method for operating collagen decomposition device Download PDF

Info

Publication number
WO2022270494A1
WO2022270494A1 PCT/JP2022/024660 JP2022024660W WO2022270494A1 WO 2022270494 A1 WO2022270494 A1 WO 2022270494A1 JP 2022024660 W JP2022024660 W JP 2022024660W WO 2022270494 A1 WO2022270494 A1 WO 2022270494A1
Authority
WO
WIPO (PCT)
Prior art keywords
collagen
heat source
stress
source device
irradiation
Prior art date
Application number
PCT/JP2022/024660
Other languages
French (fr)
Japanese (ja)
Inventor
一平 八木
Original Assignee
東京都公立大学法人
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京都公立大学法人 filed Critical 東京都公立大学法人
Priority to JP2023530476A priority Critical patent/JPWO2022270494A1/ja
Publication of WO2022270494A1 publication Critical patent/WO2022270494A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/067Radiation therapy using light using laser light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy

Definitions

  • the present invention relates to a collagen decomposing device and a method of operating the collagen decomposing device.
  • Fibrous stenosis in which stenosis occurs due to the progress of fibrosis in the treated area after treatment of the gastrointestinal tract, is known. Fibrous strictures can be surgically resected.
  • balloon dilatation is known, in which a balloon catheter is placed at a site of stenosis in the gastrointestinal tract and the balloon is inflated to dilate the site of stenosis.
  • balloon ablation in which a balloon is guided to a lesion area and the balloon is heated to cauterize the lesion area (see, for example, Patent Document 1).
  • An object of the present invention is to provide a collagen degradation device and a method of operating the collagen degradation device that can selectively destroy collagen fibers while suppressing damage to cells.
  • a collagen degradation device includes a stress applying device that applies stress to a first area of a target tissue, and a second area that has at least a portion that overlaps with the first area and applies thermal energy to the second area. and a heat source device that supplies heat.
  • a method for operating a collagen decomposing device is the method for operating a collagen decomposing device according to the first aspect, wherein the control device causes the heat source device to heat in the second range.
  • the step of outputting a heating start instruction to start the step of the control device outputting an addition start instruction to cause the stress applying device to start applying stress to the first range after the heating start instruction, the step of controlling a step of the device outputting a heating stop instruction to the heat source device to stop heating; and a step of the control device outputting an addition stop instruction to the stress applying device to stop applying the stress after the heating stop instruction. and including.
  • the collagen degrading device can selectively destroy collagen fibers while suppressing damage to cells.
  • FIG. 10 is a diagram showing Young's modulus-stress characteristics for different temperatures obtained from the results of the first experiment;
  • FIG. 4 is a diagram showing the relationship between temperature and Young's modulus obtained as a result of a first experiment;
  • FIG. 10 is a diagram showing the relationship between the traction force and the elongation rate of the test piece I according to the second experiment;
  • FIG. 10 is a diagram showing the relationship between the traction force and the elongation rate of the test piece I according to the second experiment;
  • FIG. 10 is a diagram showing the relationship between the traction force and the elongation rate of the test piece II according to the second experiment; It is a figure which shows the relationship between the traction force of the test piece and elongation rate which concern on a 3rd experiment.
  • FIG. 10 is a diagram showing the relationship between the internal pressure of the balloon and the diameter of the stenosis model according to the fourth experiment; FIG. 11 shows the results of a fifth experiment;
  • FIG. 12 is a diagram showing the relationship between the diameter of the balloon and the diameter of the stenosis model without heating according to the sixth experiment.
  • FIG. 10 is a diagram showing the relationship between the diameter of a balloon and the diameter of a heated stenosis model according to the sixth experiment.
  • FIG. 11 is a diagram showing changes in the state of tissue according to the seventh experiment
  • Fig. 3 is a perspective view showing the configuration of a collagen decomposing device 1 according to a second embodiment
  • Fig. 2 is a cross-sectional view of a collagen decomposing device 1 according to a second embodiment
  • FIG. 1 is a diagram showing the configuration of a gastrointestinal tract expansion device 2 according to the first embodiment.
  • the gastrointestinal tract expansion device 2 according to the first embodiment is a device for dilating a constricted portion of the gastrointestinal tract while suppressing the possibility of restenosis.
  • the balloon catheter 23 has an inner shaft 231 , a balloon 232 and an outer shaft 233 .
  • the inner shaft 231 is provided from the proximal end to the distal end of the balloon catheter 23 .
  • the inner shaft 231 has a hollow structure for passing a guide wire for guiding the balloon 232 to a desired position.
  • the balloon 232 is provided near the distal end of the balloon catheter 23 so as to cover the inner shaft 231 .
  • the tip of the inner shaft 231 may protrude outside the balloon 232 or may be covered with the balloon 232 .
  • the outer shaft 233 is provided so as to cover the inner shaft 231 from the proximal end of the balloon catheter 23 to the proximal end of the balloon 232 .
  • the outer shaft 233 has a hollow structure.
  • a first lumen L1 for supplying the heat medium to the balloon 232 and a second lumen L2 for recovering the heat medium from the balloon 232 are provided between the outer shaft 233 and the inner shaft 231 .
  • a first lumen L1 connects the pump 22 and the balloon 232 .
  • a second lumen L2 connects the balloon 232 and the tank 21 .
  • the maximum diameter of the balloon catheter 23 when stored is narrower than the inner diameter of the forceps channel of the endoscope.
  • the maximum diameter of the balloon catheter 23 when stored is 3.2 mm or less.
  • the gastrointestinal tract expansion device 2 After positioning the balloon 232 at the constricted part of the gastrointestinal tract, the gastrointestinal tract expansion device 2 supplies a heated heat medium to heat the constricted part and pressurize the constricted part from the inside to the outside. .
  • the temperature of the narrowed portion rises to near the denaturation temperature of the collagen fibers due to heat exchange between the narrowed portion and the heat medium, part of the collagen fibers is denatured into gelatin.
  • Gelatin has a random coil structure, whereas collagen fibers have a triple-stranded helix structure. Therefore, gelatin has low strength compared to collagen fibers. Specifically, the material strength of collagen is about 1.3N, while the material strength of gelatin is about 0.6N.
  • the balloon 232 pressurizes the stenotic site to expand it, but the stenotic site is softened due to the denaturation of part of the collagen fibers into gelatin, which causes destruction of the cell tissue of the gastrointestinal tract wall. can be suppressed.
  • the gastrointestinal tract expansion device 2 is an example of a collagen degradation device.
  • FIG. 2 is a flow chart showing a control method for the gastrointestinal tract expansion device 2 according to the first embodiment.
  • a user for example, a doctor
  • the gastrointestinal tract expansion device 2 first inserts the endoscope into the patient's body and positions the distal end of the endoscope near the stenotic site.
  • the user injects a contrast agent into the stenotic site through the forceps channel of the endoscope, and obtains information such as the length and diameter of the stenotic site by imaging with X-rays.
  • the user passes the balloon catheter 23 through the forceps channel of the endoscope and advances the balloon catheter 23 so that the balloon 232 resides across the stenosis.
  • the user operates the control device 24 to start extended control by the control device 24.
  • the controller 24 supplies power to the temperature controller 211 to heat the heat medium (step S1).
  • the temperature of the heat medium required to apply the desired heat to the constricted portion can be obtained in advance using the specifications (thermal conductivity, thickness, surface area, etc.) of the balloon 232 and the outer shaft 233 .
  • the required temperature of the heat medium in the balloon 232 can be obtained by solving the equation (1).
  • Equation ( 1 ) Q is the amount of heat that passes through, T h is the temperature of the heat medium in the balloon 232, T c is the temperature of the constriction (body temperature), h1 is the heat transfer coefficient between the heat medium and the balloon 232 , and h2 is the heat transfer coefficient between the constricted portion and the balloon 232, ⁇ is the heat conductivity of the balloon 232, L is the thickness of the balloon 232, and A is the surface area of the balloon 232.
  • the temperature of the heat medium in the balloon 232 is T h should be about 90°C.
  • the control device 24 drives the pump 22 so as to discharge the heat medium at the first flow rate, and supplies the heat medium to the balloon 232 (step S2).
  • Heat transfer medium is supplied to the balloon 232 through the first lumen L1 and returns to the tank 21 through the second lumen L2.
  • the internal pressure of balloon 232 is determined by the first flow rate.
  • the first flow rate is such that the balloon 232 is in contact with the stenotic site, and the flow rate is such that the stress (for example, less than 100 kPa) is applied to the extent that the stenotic site does not expand (crack does not occur).
  • the controller 24 continues supplying the heat medium at the first flow rate for a certain period of time (for example, 60 seconds) (step S3). During this time, it can be expected that the constricted site is heated by heat exchange between the heat medium and the constricted site, and the collagen fibers are denatured into gelatin.
  • the control device 24 drives the pump 22 so as to discharge the heat medium at the second flow rate (step S4).
  • the second flow rate is larger than the first flow rate, and is a flow rate that gives a predetermined stress (for example, a stress of 40 kPa or more and 500 kPa or less) to the constricted portion.
  • a predetermined stress for example, a stress of 40 kPa or more and 500 kPa or less
  • the narrowed portion is pressed from the inside to the outside, and the narrowed portion can be expanded.
  • a stress of 100 kPa or more and 500 kPa or less is applied, but according to the gastrointestinal dilation device according to the first embodiment, the stricture can be expanded even in a range of 40 kPa or more and less than 100 kPa. be able to. Since the collagen fibers are denatured into gelatin, the Young's modulus at the stenosis site is reduced, and the possibility of cracking at the stenosis
  • the control device 24 cools the heat medium (step S5).
  • the temperature controller 211 is a heater
  • the control device 24 stops the heating of the heat medium by stopping the heater.
  • the control device 24 cools the heat medium by supplying the heat exchanger with a low-temperature refrigerant (for example, below the gelling temperature of gelatin).
  • the controller 24 continues supplying the heat medium at the second flow rate for a certain period of time (for example, 60 seconds) (step S6).
  • the gastrointestinal tract expansion device 2 cools the constricted site while dilating the constricted site.
  • the control device 24 stops the pump 22 and stops the supply of the heat medium (step S7). After the heat medium is recovered from the balloon catheter 23, the user pulls out the balloon catheter 23 from the forceps channel of the endoscope.
  • the gastrointestinal tract expansion device 2 applies thermal energy to the constricted portion of the gastrointestinal tract and further applies stress.
  • the gastrointestinal tract expansion device 2 can dilate the constricted site while reducing the Young's modulus by denaturing the collagen fibers at the constricted site to gelatin.
  • collagen fibers can be prevented from being ruptured, so that collagen fibers can be selectively destroyed while suppressing damage to the cell tissue of the gastrointestinal tract wall.
  • the gastrointestinal tract expansion device 2 can expand the constricted site without causing cracks in the constricted site.
  • the gastrointestinal tract expansion device 2 heats the fluid for expanding the balloon 232 to supply thermal energy to the constricted portion. Accordingly, the temperature controller 211 is provided outside the balloon catheter 23, and the size of the balloon catheter 23 can be reduced. This allows the balloon catheter 23 to pass through the forceps channel of the endoscope. Note that in other embodiments, a heater or the like may be provided inside the balloon.
  • the gastrointestinal tract expansion device 2 supplies thermal energy to the constricted portion by supplying a heated heat medium to the balloon 232, but the present invention is not limited to this.
  • heat energy may be supplied to the stenotic portion from the outside of the balloon catheter 23 by means of waves (for example, electromagnetic waves such as near-infrared light).
  • the gastrointestinal tract expansion device 2 according to the first embodiment presses the constricted portion with the balloon 232, but the present invention is not limited to this.
  • pressing may be performed using other devices such as bougies.
  • a test piece of collagen fiber was immersed in water at different temperatures for 5 minutes and pulled until it broke, and the relationship between load and displacement was measured.
  • bovine Achilles tendons embedded in silicone resin and sliced to a thickness of 1.0 ⁇ 0.1 mm were used as collagen fiber test pieces.
  • similar specimens were used for tensile tests.
  • FIG. 3 is a diagram showing Young's modulus-stress characteristics by temperature obtained from the results of the first experiment. As a result of the first experiment, it was found that there is no large difference in Young's modulus up to 4 MPa at 25°C and 60°C, but the Young's modulus drops significantly at 70°C.
  • FIG. 4 is a diagram showing the relationship between temperature and Young's modulus obtained as a result of the first experiment.
  • the Young's modulus exceeds 30 kPa when the temperature of the water is 60°C or lower, while the Young's modulus becomes 10 kPa or lower when the temperature exceeds 65°C.
  • the Young's modulus at 65°C was 1/5 of the Young's modulus at 60°C. From these results, it can be read that denaturation of collagen fibers occurs at around 65°C.
  • FIG. 5 is a diagram showing the procedure of the second experiment.
  • a tensile test was performed on the test piece I with a pulling force of 4 N (0.8 MPa) (T1). After that, the test piece I was immersed in water at 65° C. for 10 minutes, and then subjected to a tensile test with a traction force of 4N (T2). After that, the test piece I was immersed in water at 35° C.
  • FIG. 6 is a diagram showing the relationship between the traction force and the elongation rate of the test piece I according to the second experiment.
  • the test piece elongates during traction regardless of the temperature, but returns to its original length when the traction is stopped. For this reason, conventionally, it was necessary to expand until collagen fibers were broken, and it can be said that there was no choice but to give damage to cell tissues.
  • the length of the test piece is shortened by about 20% by heating. This is considered to be due to shrinkage due to thermal denaturation of the collagen tissue. In other words, it can be seen from the second experiment that the stricture cannot be dilated simply by applying heat.
  • FIG. 7 is a diagram showing the relationship between the traction force and the elongation rate of the test piece II according to the second experiment. As shown in FIG. 7, it can be seen that the length of the specimen was shortened by heating, but the length of the specimen was elongated by continuing to apply a traction force during cooling. When the traction was stopped after cooling, the length was shortened, but it was elongated by about 80% compared to when the test was started. From this, it can be seen that the collagen fibers are fixed while maintaining the state at the time of being pulled by cooling while applying a pulling force.
  • a specimen of collagen fibers was immersed in water at 65°C for 10 minutes, then the specimen was immersed in water at 35°C for 5 minutes while applying a traction force, and the specimen was subjected to a tensile test with the same traction force.
  • the traction force during cooling was varied from 0.8 MPa, 2 MPa, 4 MPa, 5 MPa, 6 MPa and 7 MPa. Note that the traction force was set to 4 N (0.8 MPa) during the tensile test.
  • FIG. 8 is a diagram showing the relationship between the traction force and elongation rate of the test piece according to the third experiment.
  • the tensile force is less than 4 MPa
  • the elongation rate of the test piece after cooling is less than the elongation rate before heating.
  • the tensile force is 4 MPa
  • the elongation rate of the test piece after cooling is approximately the same as the elongation rate before heating.
  • the tensile force exceeds 4 MPa
  • the elongation of the specimen after cooling is greater than that before heating.
  • a pressure greater than 4 MPa should be applied when dilating the stricture.
  • a test piece of collagen fibers was rolled into a cylindrical shape and fixed to a diameter of 4 mm with a cyanoacrylate adhesive to create a stricture model simulating an esophageal stricture.
  • a balloon catheter was passed through the stenosis model, and the internal pressure of the balloon was gradually increased.
  • the internal pressure of the balloon reached 30 kPa, the balloon was put into hot water, and then the internal pressure of the balloon was further increased.
  • FIG. 9 is a diagram showing the relationship between the internal pressure of the balloon and the diameter of the stenosis model according to the fourth experiment. As shown in FIG. 9, it can be seen that the diameter of the constricted model changes significantly before and after hot water injection. On the other hand, when the stenosis model was observed after the fourth experiment, it was confirmed that fibrous structures remained in the stenosis model. Then, when the sample removed from the balloon catheter was put into hot water again, contraction of the stenosis model was confirmed. It is presumed that this is because many collagen fibers that were not denatured into gelatin remained during the experiment. In other words, it is presumed that even if heating is performed while a traction force is being applied, denaturation of the collagen fibers does not progress easily.
  • FIG. 10 is a diagram showing the results of the fifth experiment. As shown in FIG. 10, it can be seen that the denaturation of collagen fibers progresses by heating, and that the denaturation progresses greatly by applying a traction force after heating. In addition, as hypothesized above, there was no significant difference when heating was performed halfway through traction compared to heating only. From the results of the fifth experiment, it can be seen that in order to effectively denature the collagen fibers, it is preferable to apply traction force after heating the collagen fibers.
  • ⁇ Sixth experiment ⁇ The inventor conducted a sixth experiment in order to confirm the expansion effect of the balloon catheter when heating was performed.
  • a balloon catheter was passed through a stenosis model at 37° C. (equivalent to body temperature) and a stenosis model heated to 70° C., the internal pressure of the balloon was gradually increased, and the diameter of the balloon and the diameter of each stenosis model were adjusted. compared.
  • FIG. 11 is a diagram showing the relationship between the diameter of the balloon and the diameter of the stenosis model without heating according to the sixth experiment.
  • the diameter of all stenosis models without heating was well below the diameter of the balloon until the internal pressure of the balloon was 100 kPa.
  • all stenosis models ruptured when the internal pressure of the balloon reached 160 kPa. Plots that greatly exceed the balloon diameter in FIG. 11 indicate rupture.
  • FIG. 12 is a diagram showing the relationship between the diameter of the balloon and the diameter of the heated stenosis model according to the sixth experiment.
  • the diameters of all of the heated stenosis models became almost equal to the diameter of the balloon. This indicates that the stenosis model has expanded sufficiently to follow the diameter of the balloon.
  • all constriction models with heating were expanded to 160 kPa without breaking.
  • a sixth experiment confirmed that application of traction followed by heating can expand the diameter of the stenosis to the balloon diameter without causing rupture of the stenosis.
  • a bovine Achilles tendon was HE-stained, heated at 70° C. for 15 minutes, then pulled so that a stress of 6 MPa was applied, and observed before heating, after heating, and after pulling.
  • FIG. 13 is a diagram showing changes in tissue state according to the seventh experiment.
  • cell nuclei were stained bluish purple (dark gray in FIG. 13), and collagen fibers were stained red (light gray in FIG. 13). Heating turned the unstained area (white in FIG. 13) red. This is because the fibrous structure was destroyed by the denaturation of collagen fibers into gelatin.
  • focusing on the cell nucleus it can be seen that the cell nucleus remains both after heating and after pulling. In other words, no morphological change in cells was observed within the range of heat load/stress load of the method according to the first embodiment. From this, it can be seen that according to the first embodiment, it is possible to selectively destroy collagen fibers while suppressing damage to cells.
  • HIFU High Intensity Focused Ultrasound
  • An object of the second embodiment is to provide a collagen decomposition device and a method of operating the collagen decomposition device that can selectively destroy collagen fibers in a range narrower than the irradiation range of ultrasonic waves.
  • FIG. 14 is a perspective view showing the configuration of the collagen decomposing device 1 according to the second embodiment.
  • FIG. 15 is a cross-sectional view of the collagen decomposing device 1 according to the second embodiment.
  • Collagen degradation device 1 includes housing 11 , gel pad 12 , ultrasonic irradiation device 13 , laser device 14 and control device 15 .
  • the housing 11 is configured in a substantially cylindrical shape having a through hole 111 . That is, the housing 11 has a disk-shaped bottom surface with a hole in the center.
  • Gel pad 12 is provided to cover the bottom surface of housing 11 .
  • the gel pad 12 is made of polyurethane gel, for example.
  • the gel pad 12 does not have to have through-holes at locations corresponding to the through-holes 111 of the housing 11 .
  • the ultrasonic irradiation device 13 is provided inside the housing 11 .
  • the ultrasonic irradiation device 13 irradiates ultrasonic waves from the bottom surface of the housing 11 .
  • the laser device 14 is provided inside the through hole 111 of the housing 11 .
  • Laser device 14 irradiates laser light through through hole 111 and gel pad 12 .
  • the control device 15 controls outputs of the ultrasonic irradiation device 13 and the laser device 14 .
  • the collagen decomposition apparatus 1 brings the bottom surface of the housing 11 and an object T (for example, a living body) into close contact with each other via the gel pad 12, and irradiates the object T with laser light and ultrasonic waves. , selectively destroys collagen fibers at target locations of the object T, resulting in tissue softening.
  • an object T for example, a living body
  • water or jelly may be used instead of the gel pad 12 .
  • the ultrasonic irradiation device 13 uses the bottom surface of the housing 11 as an opening surface. Therefore, the irradiation range R1 of the ultrasonic waves covers at least the range obtained by extending the bottom surface of the housing 11 in the direction of irradiation of the ultrasonic waves.
  • the ultrasonic irradiation device 13 irradiates ultrasonic waves having a frequency of 200 kHz or more and 10 MHz or less, a power of 0.4 kW/cm 2 or more and 10 kW/cm 2 or less, and a sound pressure of 1 MPa or more and 150 MPa or less.
  • the sound pressure of the ultrasonic waves is preferably 1 MPa or more and 25 MPa or less.
  • the ultrasonic irradiation device 13 applies ultrasonic waves under the conditions of 250 kHz, 0.4 kW/cm 2 and 3.5 MPa. Under these conditions, the ultrasonic waves emitted by the ultrasonic irradiation device 13 do not damage non-target tissues such as skin, muscles, blood vessels, and nerves among living tissues, and collagen fibers are thermally denatured. gelatin can be selectively destroyed. If the frequency of the ultrasonic wave is less than 200 kHz, the focal area becomes large with respect to the living tissue, so the damage to the non-target tissue becomes large.
  • the ultrasonic irradiation device 13 irradiates ultrasonic waves having a frequency that generates cavitation having an intensity capable of destroying gelatin without destroying living tissue.
  • the laser device 14 emits laser light having an absorption wavelength of collagen fibers. Specifically, the laser device 14 emits laser light with a wavelength of 400 nm or more and 900 nm or less. Laser light is an example of thermal energy.
  • the irradiation range R2 of the laser light output by the laser device 14 is narrower than the irradiation range R1 of the ultrasonic irradiation device 13 .
  • a wavelength of 400 nm or more and 900 nm or less is a wavelength at which the absorption coefficient of collagen is higher than that of hemoglobin, lipid, and water, which are components of biological tissue having relatively high absorption coefficients.
  • the control device 15 is connected to the ultrasonic irradiation device 13 and the laser device 14 via cables, and outputs control signals to the ultrasonic irradiation device 13 and the laser device 14 . Further, the control device 15 may supply power for driving the ultrasonic irradiation device 13 and the laser device 14 through cables. When the collagen decomposition device 1 is operated, the control device 15 starts irradiation of ultrasonic waves by the ultrasonic irradiation device 13 and irradiation of laser light by the laser device 14 .
  • the control device 15 controls the laser device 14 so as to repeat irradiation of pulsed light with a pulse time width of 1 ns or more and 20 ms or less at a frequency of 0.1 Hz or more and 100 kHz or less. Irradiation of pulsed light is preferably performed at a frequency of 0.1 Hz or more and 1 kHz or less and a pulse time width of 1 ns or more and 1 ms or less.
  • the controller 15 can raise the temperature of the collagen fibers irradiated with the laser beam to near the denaturation temperature (45° C.), thereby partially denaturing the collagen fibers into gelatin. That is, the laser device 14 irradiates thermal energy with a power that raises the temperature of the collagen fibers present within the irradiation range R2 of the laser light to a temperature near the denaturation temperature of collagen.
  • the controller 15 can suppress the occurrence of thermal diffusion of the laser light. That is, the laser device 14 irradiates heat energy for a period of time shorter than the period of time required for the temperature of collagen fibers existing outside the irradiation range R2 of the laser light to rise to the denaturation temperature due to thermal diffusion. Preferably, the laser device 14 irradiates laser light under the conditions of 532 nm and 1 mJ/mm 2 .
  • ⁇ Action and effect of collagen decomposition device 1>> When the user inputs an irradiation instruction to the control device 15 while the bottom surface of the housing 11 is in close contact with the object T, the control device 15 outputs a laser light irradiation instruction to the laser device 14, and simultaneously emits ultrasonic waves. An ultrasonic wave irradiation instruction is output to the irradiation device 13 . That is, the control device 15 outputs an irradiation instruction to the ultrasonic irradiation device 13 at least while the laser device 14 is operating.
  • the object T is irradiated with the laser light from the laser device 14, the temperature of the collagen fibers present in the irradiation range R2 rises.
  • the temperature of the collagen fibers reaches the denaturation temperature, some of the collagen fibers are denatured into gelatin.
  • Gelatin has a random coil structure, whereas collagen fibers have a triple-stranded helix structure. Therefore, gelatin has low strength compared to collagen fibers. Specifically, the material strength of collagen is about 1.3N, while the material strength of gelatin is about 0.6N. Therefore, cavitation caused by ultrasonic waves emitted from the ultrasonic irradiation device 13 is often generated in locations where gelatin in which collagen fibers are denatured exists. When cavitation caused by ultrasound expands and ruptures, weak gelatin is destroyed, while collagen fibers and other living tissues, which are stronger than gelatin, are not damaged.
  • the acoustic energy of ultrasonic waves damages gelatin, which is weak in intensity, but does not damage collagen fibers and other living tissues.
  • gelatin which is weak in intensity, but does not damage collagen fibers and other living tissues.
  • cavitation bursting or acoustic energy portions of collagen fibers irradiated with laser light are selectively destroyed.
  • cavitation expands and ruptures between the tangled collagen fibers, so that a force can be generated in the direction of separating the collagen fibers from each other. As a result, even if the irradiation of the laser light is stopped and the heating of the collagen fibers is stopped, the flexibility of the fibers as a whole can be maintained.
  • the laser beam partially denatures collagen existing in a portion narrower than the irradiation range R1 of the ultrasonic wave to gelatin, and then irradiates the collagen with the ultrasonic wave. .
  • the collagen degradation device 1 can selectively destroy collagen fibers in a range narrower than the ultrasonic wave irradiation range.
  • the collagen decomposition device 1 according to the second embodiment is provided with a laser device 14 in the through hole 111 of the housing 11, and the ultrasonic irradiation device 13 irradiates laser light to the center of the ultrasonic irradiation range.
  • the irradiation direction of ultrasonic waves and the irradiation direction of laser light may not match.
  • the collagen decomposition device 1 may be provided with the ultrasonic irradiation device 13 and the laser device 14 so that the irradiation range of ultrasonic waves and the irradiation range of laser light intersect.
  • the collagen decomposition device 1 according to the second embodiment includes one laser device 14 and one ultrasonic irradiation device 13, the present invention is not limited to this.
  • the collagen degradation device 1 according to another embodiment may include multiple laser devices 14 and ultrasonic irradiation devices 13 .
  • the collagen decomposition device 1 according to another embodiment is provided with a plurality of laser devices 14 so that the laser beams intersect at one point, so that the collagen fibers at the points where the laser beams intersect can be denatured into gelatin. may be configured.
  • the control device 15 may adjust the angle of the laser device 14 to change the depth to the epidermis of the point where the laser beams intersect.
  • the collagen decomposition device 1 instead of the laser device 14, another heat source device capable of irradiating thermal energy to a range narrower than the range of ultrasonic wave irradiation may be used.
  • the collagen decomposing device 1 according to another embodiment may be equipped with a heater by thermal radiation.
  • the control device 15 includes a processor, a memory, an auxiliary storage device, etc. connected via a bus, and functions as the control device 15 that controls the ultrasonic irradiation device 13 and the laser device 14 by executing a program.
  • processors include CPUs (Central Processing Units), GPUs (Graphic Processing Units), microprocessors, and the like.
  • the program may be recorded on a computer-readable recording medium.
  • a computer-readable recording medium is, for example, a storage device such as a magnetic disk, a magneto-optical disk, an optical disk, or a semiconductor memory.
  • the program may be transmitted over telecommunications lines.
  • All or part of each function of the control device 15 may be realized using a custom LSI (Large Scale Integrated Circuit) such as an ASIC (Application Specific Integrated Circuit) or a PLD (Programmable Logic Device).
  • PLDs include PAL (Programmable Array Logic), GAL (Generic Array Logic), CPLD (Complex Programmable Logic Device), and FPGA (Field Programmable Gate Array).
  • PAL Programmable Array Logic
  • GAL Generic Array Logic
  • CPLD Complex Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the collagen degrading device can selectively destroy collagen fibers while suppressing damage to cells.

Abstract

This collagen decomposition device comprises: a stress application device for applying stress to a first range of a subject tissue; and a heat source device for imparting thermal energy to a second range, at least a portion of which overlaps the first range.

Description

コラーゲン分解装置およびコラーゲン分解装置の作動方法Collagen degrading device and method of operating the collagen degrading device
 本発明は、コラーゲン分解装置およびコラーゲン分解装置の作動方法に関する。本願は、2021年6月21日に日本に出願された特願2021-102278号について優先権を主張し、その内容をここに援用する。 The present invention relates to a collagen decomposing device and a method of operating the collagen decomposing device. This application claims priority to Japanese Patent Application No. 2021-102278 filed in Japan on June 21, 2021, the contents of which are incorporated herein.
 消化管の治療後に、治療箇所の線維化が進むことで狭窄をきたす線維性狭窄が知られている。線維性狭窄は外科手術によって切除することができる。また線維性狭窄の非侵襲な治療方法として、消化管の狭窄箇所にバルーンカテーテルを配し、バルーンを膨らませることで狭窄箇所を拡張するバルーン拡張術が知られている。  Fibrous stenosis, in which stenosis occurs due to the progress of fibrosis in the treated area after treatment of the gastrointestinal tract, is known. Fibrous strictures can be surgically resected. As a non-invasive treatment method for fibrous stenosis, balloon dilatation is known, in which a balloon catheter is placed at a site of stenosis in the gastrointestinal tract and the balloon is inflated to dilate the site of stenosis.
 また、バルーンカテーテルを用いた治療法として、バルーンを病変部へ案内し、バルーンを加熱することで病変部を焼灼するバルーンアブレーション術も知られている(例えば、特許文献1を参照)。 Also known as a treatment method using a balloon catheter is balloon ablation, in which a balloon is guided to a lesion area and the balloon is heated to cauterize the lesion area (see, for example, Patent Document 1).
特開2007-229095号公報JP 2007-229095 A
 狭窄箇所を外科手術によって切除したとしても、術後に同じ箇所に炎症が発生し、再度線維化が進み、同じ箇所に再狭窄を生じることが多いことが知られている。また、非侵襲なバルーン拡張術においても、コラーゲン線維は硬く、バルーンの拡張によって拡張箇所の消化管壁に亀裂が入ることがあり、外科手術と同様に再狭窄を生じることが多い。つまり、拡張術によって細胞にダメージが与えられることにより炎症を生じ、コラーゲン線維が作られることで再狭窄が生じると考えられる。
 本発明の目的は、細胞にダメージが加わることを抑えながらコラーゲン線維を選択的に破壊することができるコラーゲン分解装置およびコラーゲン分解装置の作動方法を提供することにある。
It is known that even if the site of stenosis is surgically resected, inflammation often occurs at the same site after surgery, and fibrosis progresses again, resulting in restenosis at the same site in many cases. In addition, even in non-invasive balloon dilatation, collagen fibers are hard, and dilation of the balloon may crack the gastrointestinal tract wall at the dilated site, often resulting in restenosis as in surgical procedures. In other words, it is thought that restenosis occurs due to inflammation caused by cell damage due to dilatation, and collagen fibers being produced.
SUMMARY OF THE INVENTION An object of the present invention is to provide a collagen degradation device and a method of operating the collagen degradation device that can selectively destroy collagen fibers while suppressing damage to cells.
 本発明の第1の態様によれば、コラーゲン分解装置は、対象組織の第1範囲に応力を付加する応力付加装置と、前記第1範囲と重複する部分を少なくとも有する第2範囲に熱エネルギーを与える熱源装置とを備える。 According to a first aspect of the present invention, a collagen degradation device includes a stress applying device that applies stress to a first area of a target tissue, and a second area that has at least a portion that overlaps with the first area and applies thermal energy to the second area. and a heat source device that supplies heat.
 本発明の第2の態様によれば、コラーゲン分解装置の作動方法は、第1の態様に係るコラーゲン分解装置の作動方法であって、制御装置が、前記熱源装置に前記第2範囲の加熱を開始させる加熱開始指示を出力するステップと、前記制御装置が、前記加熱開始指示の後に前記応力付加装置に前記第1範囲への応力の付加を開始させる付加開始指示を出力するステップと、前記制御装置が、前記熱源装置に加熱を停止させる加熱停止指示を出力するステップと、前記制御装置が、前記加熱停止指示の後に前記応力付加装置に前記応力の付加を停止させる付加停止指示を出力するステップと、を含む。 According to a second aspect of the present invention, a method for operating a collagen decomposing device is the method for operating a collagen decomposing device according to the first aspect, wherein the control device causes the heat source device to heat in the second range. the step of outputting a heating start instruction to start, the step of the control device outputting an addition start instruction to cause the stress applying device to start applying stress to the first range after the heating start instruction, the step of controlling a step of the device outputting a heating stop instruction to the heat source device to stop heating; and a step of the control device outputting an addition stop instruction to the stress applying device to stop applying the stress after the heating stop instruction. and including.
 上記少なくとも1つの態様によれば、コラーゲン分解装置は、細胞にダメージが加わることを抑えながらコラーゲン線維を選択的に破壊することができる。 According to at least one aspect described above, the collagen degrading device can selectively destroy collagen fibers while suppressing damage to cells.
第1の実施形態に係る消化管拡張装置2の構成を示す図である。It is a figure which shows the structure of the gastrointestinal tract expansion apparatus 2 which concerns on 1st Embodiment. 第1の実施形態に係る消化管拡張装置2の制御方法を示すフローチャートである。4 is a flow chart showing a control method of the gastrointestinal tract expansion device 2 according to the first embodiment. 第1の実験の結果から得られた温度別のヤング率-応力特性を示す図である。FIG. 10 is a diagram showing Young's modulus-stress characteristics for different temperatures obtained from the results of the first experiment; 第1の実験の結果得られた、温度とヤング率の関係を示す図である。FIG. 4 is a diagram showing the relationship between temperature and Young's modulus obtained as a result of a first experiment; 第2の実験の手順を示す図である。It is a figure which shows the procedure of a 2nd experiment. 第2の実験に係る試験片Iの牽引力と伸長率との関係を示す図である。FIG. 10 is a diagram showing the relationship between the traction force and the elongation rate of the test piece I according to the second experiment; 第2の実験に係る試験片IIの牽引力と伸長率との関係を示す図である。FIG. 10 is a diagram showing the relationship between the traction force and the elongation rate of the test piece II according to the second experiment; 第3の実験に係る試験片の牽引力と伸長率との関係を示す図である。It is a figure which shows the relationship between the traction force of the test piece and elongation rate which concern on a 3rd experiment. 第4の実験に係るバルーンの内圧と狭窄モデルの径との関係を示す図である。FIG. 10 is a diagram showing the relationship between the internal pressure of the balloon and the diameter of the stenosis model according to the fourth experiment; 第5の実験の結果を示す図である。FIG. 11 shows the results of a fifth experiment; 第6の実験に係るバルーンの径と加熱を行わない狭窄モデルの径との関係を示す図である。FIG. 12 is a diagram showing the relationship between the diameter of the balloon and the diameter of the stenosis model without heating according to the sixth experiment. 第6の実験に係るバルーンの径と加熱を行った狭窄モデルの径との関係を示す図である。FIG. 10 is a diagram showing the relationship between the diameter of a balloon and the diameter of a heated stenosis model according to the sixth experiment. 第7の実験に係る組織の状態の変化を示す図である。FIG. 11 is a diagram showing changes in the state of tissue according to the seventh experiment; 第2の実施形態に係るコラーゲン分解装置1の構成を示す斜視図である。Fig. 3 is a perspective view showing the configuration of a collagen decomposing device 1 according to a second embodiment; 第2の実施形態に係るコラーゲン分解装置1の断面図である。Fig. 2 is a cross-sectional view of a collagen decomposing device 1 according to a second embodiment;
〈第1の実施形態〉
 図1は、第1の実施形態に係る消化管拡張装置2の構成を示す図である。第1の実施形態に係る消化管拡張装置2は、再狭窄が生じる可能性を抑えながら消化管の狭窄箇所を拡張するための装置である。
<First embodiment>
FIG. 1 is a diagram showing the configuration of a gastrointestinal tract expansion device 2 according to the first embodiment. The gastrointestinal tract expansion device 2 according to the first embodiment is a device for dilating a constricted portion of the gastrointestinal tract while suppressing the possibility of restenosis.
《消化管拡張装置2の構成》
 消化管拡張装置2は、タンク21、ポンプ22、バルーンカテーテル23、制御装置24を備える。タンク21には、バルーンカテーテル23に供給するための熱媒体(例えば希釈造影剤、蒸留水など)が充填されている。タンク21の内部には、熱媒体を加熱するための調温器211が設けられる。調温器211は、ヒータや熱交換器であってよい。ポンプ22は、タンク21に充填された熱媒体をバルーンカテーテル23に圧送する。
<<Structure of gastrointestinal tract expansion device 2>>
The digestive tract expansion device 2 includes a tank 21 , a pump 22 , a balloon catheter 23 and a control device 24 . The tank 21 is filled with a heat medium (for example, diluted contrast medium, distilled water, etc.) for supplying the balloon catheter 23 . A temperature controller 211 for heating the heat medium is provided inside the tank 21 . The temperature controller 211 may be a heater or a heat exchanger. The pump 22 pressure-feeds the heat medium filled in the tank 21 to the balloon catheter 23 .
 バルーンカテーテル23は、インナーシャフト231と、バルーン232と、アウターシャフト233とを備える。
 インナーシャフト231は、バルーンカテーテル23の基端から先端に亘って設けられる。インナーシャフト231には、バルーン232を所望の位置まで案内するガイドワイヤを通すための中空構造を有する。
 バルーン232は、バルーンカテーテル23の先端近傍において、インナーシャフト231を覆うように設けられる。インナーシャフト231の先端は、バルーン232の外に出ていてもよいし、バルーン232に覆われていてもよい。
 アウターシャフト233は、バルーンカテーテル23の基端からバルーン232の基端に亘って、インナーシャフト231を覆うように設けられる。アウターシャフト233は、中空構造を有する。アウターシャフト233とインナーシャフト231との間には、バルーン232へ熱媒体を供給するための第一ルーメンL1と、バルーン232から熱媒体を回収するための第二ルーメンL2とが設けられる。第一ルーメンL1はポンプ22とバルーン232とを接続する。第二ルーメンL2はバルーン232とタンク21とを接続する。
The balloon catheter 23 has an inner shaft 231 , a balloon 232 and an outer shaft 233 .
The inner shaft 231 is provided from the proximal end to the distal end of the balloon catheter 23 . The inner shaft 231 has a hollow structure for passing a guide wire for guiding the balloon 232 to a desired position.
The balloon 232 is provided near the distal end of the balloon catheter 23 so as to cover the inner shaft 231 . The tip of the inner shaft 231 may protrude outside the balloon 232 or may be covered with the balloon 232 .
The outer shaft 233 is provided so as to cover the inner shaft 231 from the proximal end of the balloon catheter 23 to the proximal end of the balloon 232 . The outer shaft 233 has a hollow structure. A first lumen L1 for supplying the heat medium to the balloon 232 and a second lumen L2 for recovering the heat medium from the balloon 232 are provided between the outer shaft 233 and the inner shaft 231 . A first lumen L1 connects the pump 22 and the balloon 232 . A second lumen L2 connects the balloon 232 and the tank 21 .
 バルーンカテーテル23の収納時の最大径は、内視鏡の鉗子チャネルの内径より狭い。例えば、バルーンカテーテル23の収納時の最大径は、3.2mm以下である。 The maximum diameter of the balloon catheter 23 when stored is narrower than the inner diameter of the forceps channel of the endoscope. For example, the maximum diameter of the balloon catheter 23 when stored is 3.2 mm or less.
 消化管拡張装置2は、バルーン232を消化管の狭窄箇所に位置させた後、加熱された熱媒体に供給させることで、狭窄箇所を加熱しながら、狭窄箇所を内側から外側へ向けて加圧する。狭窄箇所と熱媒体との熱交換により、狭窄箇所の温度がコラーゲン線維の変性温度の近傍まで上昇すると、コラーゲン線維の一部がゼラチンに変性する。コラーゲン線維が3本鎖重らせん構造を有するのに対し、ゼラチンは、ランダムコイル構造を有する。そのため、ゼラチンはコラーゲン線維と比較して強度が低い。具体的には、コラーゲンの材料強度が1.3N程度であるのに対し、ゼラチンの材料強度は0.6N程度である。バルーン232によって狭窄箇所が加圧されることで狭窄箇所が拡張されるが、コラーゲン線維の一部がゼラチンに変性したことで狭窄箇所が軟化していることで、消化管壁の細胞組織の破壊を抑えることができる。消化管拡張装置2は、コラーゲン分解装置の一例である。 After positioning the balloon 232 at the constricted part of the gastrointestinal tract, the gastrointestinal tract expansion device 2 supplies a heated heat medium to heat the constricted part and pressurize the constricted part from the inside to the outside. . When the temperature of the narrowed portion rises to near the denaturation temperature of the collagen fibers due to heat exchange between the narrowed portion and the heat medium, part of the collagen fibers is denatured into gelatin. Gelatin has a random coil structure, whereas collagen fibers have a triple-stranded helix structure. Therefore, gelatin has low strength compared to collagen fibers. Specifically, the material strength of collagen is about 1.3N, while the material strength of gelatin is about 0.6N. The balloon 232 pressurizes the stenotic site to expand it, but the stenotic site is softened due to the denaturation of part of the collagen fibers into gelatin, which causes destruction of the cell tissue of the gastrointestinal tract wall. can be suppressed. The gastrointestinal tract expansion device 2 is an example of a collagen degradation device.
《消化管拡張装置2の制御方法》
 図2は、第1の実施形態に係る消化管拡張装置2の制御方法を示すフローチャートである。
 消化管拡張装置2の利用者(例えば、医師)は、まず内視鏡を患者の体内に挿入し、内視鏡の先端部を狭窄箇所の近傍に位置させる。利用者は内視鏡の鉗子チャネルを通して造影剤を狭窄箇所に注入し、エックス線により造影することで、狭窄箇所の長さや径などの情報を得る。次に、利用者は、内視鏡の鉗子チャネルにバルーンカテーテル23を通し、バルーン232が狭窄箇所に亘って存在するように、バルーンカテーテル23を進める。
<<Method for controlling gastrointestinal tract expansion device 2>>
FIG. 2 is a flow chart showing a control method for the gastrointestinal tract expansion device 2 according to the first embodiment.
A user (for example, a doctor) of the gastrointestinal tract expansion device 2 first inserts the endoscope into the patient's body and positions the distal end of the endoscope near the stenotic site. The user injects a contrast agent into the stenotic site through the forceps channel of the endoscope, and obtains information such as the length and diameter of the stenotic site by imaging with X-rays. The user then passes the balloon catheter 23 through the forceps channel of the endoscope and advances the balloon catheter 23 so that the balloon 232 resides across the stenosis.
 利用者は制御装置24を操作し、制御装置24による拡張制御を開始させる。制御装置24は、調温器211に電力を供給し、熱媒体を加熱させる(ステップS1)。狭窄箇所に所望の熱を与えるために必要な熱媒体の温度は、バルーン232およびアウターシャフト233の仕様(熱伝導率、厚み、表面積など)を用いて予め求めておくことができる。例えば、バルーン232と狭窄箇所との熱輸送は以下の式(1)で示されることから、式(1)を解くことで、バルーン232における熱媒体の必要温度を求めることができる。 The user operates the control device 24 to start extended control by the control device 24. The controller 24 supplies power to the temperature controller 211 to heat the heat medium (step S1). The temperature of the heat medium required to apply the desired heat to the constricted portion can be obtained in advance using the specifications (thermal conductivity, thickness, surface area, etc.) of the balloon 232 and the outer shaft 233 . For example, since the heat transfer between the balloon 232 and the narrowed portion is expressed by the following equation (1), the required temperature of the heat medium in the balloon 232 can be obtained by solving the equation (1).
Figure JPOXMLDOC01-appb-M000001
 式(1)において、Qは通過熱量、Tはバルーン232内における熱媒体の温度、Tは狭窄箇所の温度(体温)、hは熱媒体とバルーン232との熱伝達率、hは狭窄箇所とバルーン232との熱伝達率、λはバルーン232の熱伝導率、Lはバルーン232の厚み、Aはバルーン232の表面積を示す。例えば、熱伝導率λが0.27W/mK、厚みLが0.03mm、表面積Aが0.2mmのバルーンを用いて狭窄箇所に36Wの熱を与える場合、バルーン232内における熱媒体の温度Tを約90℃にすればよい。
Figure JPOXMLDOC01-appb-M000001
In equation ( 1 ), Q is the amount of heat that passes through, T h is the temperature of the heat medium in the balloon 232, T c is the temperature of the constriction (body temperature), h1 is the heat transfer coefficient between the heat medium and the balloon 232 , and h2 is the heat transfer coefficient between the constricted portion and the balloon 232, λ is the heat conductivity of the balloon 232, L is the thickness of the balloon 232, and A is the surface area of the balloon 232. For example, when a balloon with a thermal conductivity λ of 0.27 W/mK, a thickness L of 0.03 mm, and a surface area A of 0.2 mm 2 is used to apply heat of 36 W to the constriction site, the temperature of the heat medium in the balloon 232 is T h should be about 90°C.
 次に制御装置24は、熱媒体を第1の流量で吐出させるようにポンプ22を駆動させ、バルーン232に熱媒体を供給する(ステップS2)。熱媒体は、第一ルーメンL1を通ってバルーン232に供給され、第二ルーメンL2を通ってタンク21に戻る。バルーン232の内圧は、第1の流量によって決定される。第1の流量は、バルーン232が狭窄箇所に接する程度であり、狭窄箇所が拡張しない程度(亀裂が生じない程度)の応力(例えば、100kPa未満)を与える流量とする。制御装置24は、第1の流量による熱媒体の供給を一定時間(例えば、60秒間)継続する(ステップS3)。この間、熱媒体と狭窄箇所との間の熱交換によって、狭窄箇所が加熱され、コラーゲン線維がゼラチンに変性することが期待できる。 Next, the control device 24 drives the pump 22 so as to discharge the heat medium at the first flow rate, and supplies the heat medium to the balloon 232 (step S2). Heat transfer medium is supplied to the balloon 232 through the first lumen L1 and returns to the tank 21 through the second lumen L2. The internal pressure of balloon 232 is determined by the first flow rate. The first flow rate is such that the balloon 232 is in contact with the stenotic site, and the flow rate is such that the stress (for example, less than 100 kPa) is applied to the extent that the stenotic site does not expand (crack does not occur). The controller 24 continues supplying the heat medium at the first flow rate for a certain period of time (for example, 60 seconds) (step S3). During this time, it can be expected that the constricted site is heated by heat exchange between the heat medium and the constricted site, and the collagen fibers are denatured into gelatin.
 次に制御装置24は、熱媒体を第2の流量で吐出させるようにポンプ22を駆動させる(ステップS4)。第2の流量は第1の流量より大きく、狭窄箇所に所定の応力(例えば、40kPa以上500kPa以下の応力)を与える程度の流量とする。これにより、狭窄箇所が内側から外側へ押圧され、狭窄箇所を拡張することができる。なお、従来のバルーン拡張術においては、100kPa以上500kPa以下の応力をかけるところ、第1の実施形態に係る消化管拡張装置によれば、40kPa以上100kPa未満の範囲でも、狭窄箇所の拡張を実現することができる。コラーゲン線維がゼラチンに変性しているため、狭窄箇所のヤング率が低下しており、狭窄箇所に亀裂が生じる可能性が低い。 Next, the control device 24 drives the pump 22 so as to discharge the heat medium at the second flow rate (step S4). The second flow rate is larger than the first flow rate, and is a flow rate that gives a predetermined stress (for example, a stress of 40 kPa or more and 500 kPa or less) to the constricted portion. As a result, the narrowed portion is pressed from the inside to the outside, and the narrowed portion can be expanded. In the conventional balloon dilatation, a stress of 100 kPa or more and 500 kPa or less is applied, but according to the gastrointestinal dilation device according to the first embodiment, the stricture can be expanded even in a range of 40 kPa or more and less than 100 kPa. be able to. Since the collagen fibers are denatured into gelatin, the Young's modulus at the stenosis site is reduced, and the possibility of cracking at the stenosis site is low.
 次に、制御装置24は、熱媒体を冷却させる(ステップS5)。調温器211がヒータである場合、制御装置24はヒータを停止させることで、熱媒体の加熱を停止させる。調温器211が熱交換器である場合、制御装置24は熱交換器に低温(例えば、ゼラチンのゲル化温度以下)の冷媒を供給させることで、熱媒体を冷却させる。制御装置24は、第2の流量による熱媒体の供給を一定時間(例えば、60秒間)継続する(ステップS6)。つまり、消化管拡張装置2は、狭窄箇所を拡張したまま、狭窄箇所を冷却する。これにより、狭窄箇所が拡張した状態で、ゼラチンのゾル状態からゲル状態への相変化や、ゼラチンからコラーゲン線維への再変性が期待できる。拡張した状態でコラーゲン線維に変性することで、バルーン232による押圧を終了した後も拡張後の径が維持されることが期待できる。 Next, the control device 24 cools the heat medium (step S5). When the temperature controller 211 is a heater, the control device 24 stops the heating of the heat medium by stopping the heater. When the temperature controller 211 is a heat exchanger, the control device 24 cools the heat medium by supplying the heat exchanger with a low-temperature refrigerant (for example, below the gelling temperature of gelatin). The controller 24 continues supplying the heat medium at the second flow rate for a certain period of time (for example, 60 seconds) (step S6). In other words, the gastrointestinal tract expansion device 2 cools the constricted site while dilating the constricted site. As a result, a phase change of gelatin from a sol state to a gel state and redenaturation of gelatin to collagen fibers can be expected in a state in which the constriction site is dilated. By degenerating into collagen fibers in an expanded state, it can be expected that the expanded diameter will be maintained even after the end of the pressing by the balloon 232 .
 制御装置24は、ポンプ22を停止させ、熱媒体の供給を停止する(ステップS7)。利用者は、バルーンカテーテル23から熱媒体が回収された後、内視鏡の鉗子チャネルからバルーンカテーテル23を抜きさる。 The control device 24 stops the pump 22 and stops the supply of the heat medium (step S7). After the heat medium is recovered from the balloon catheter 23, the user pulls out the balloon catheter 23 from the forceps channel of the endoscope.
 このように、第1の実施形態に係る消化管拡張装置2は、消化管の狭窄箇所に熱エネルギーを与え、さらに応力を付加する。これにより、消化管拡張装置2は、狭窄箇所のコラーゲン線維をゼラチンに変性させてヤング率を低下させながら、狭窄箇所を拡張することができる。これにより、コラーゲン線維の破断が生じることを防ぐことができるため、消化管壁の細胞組織にダメージが加わることを抑えながらコラーゲン線維を選択的に破壊することができる。これにより、消化管拡張装置2は、狭窄箇所に亀裂を生じさせることなく狭窄箇所を拡張することができる。 In this way, the gastrointestinal tract expansion device 2 according to the first embodiment applies thermal energy to the constricted portion of the gastrointestinal tract and further applies stress. As a result, the gastrointestinal tract expansion device 2 can dilate the constricted site while reducing the Young's modulus by denaturing the collagen fibers at the constricted site to gelatin. As a result, collagen fibers can be prevented from being ruptured, so that collagen fibers can be selectively destroyed while suppressing damage to the cell tissue of the gastrointestinal tract wall. As a result, the gastrointestinal tract expansion device 2 can expand the constricted site without causing cracks in the constricted site.
 また、第1の実施形態に係る消化管拡張装置2は、バルーン232を拡張するための流体を加熱することで、狭窄部分に熱エネルギーを供給する。これにより、調温器211をバルーンカテーテル23の外部に設け、バルーンカテーテル23の小型化を実現できる。これにより、バルーンカテーテル23を内視鏡の鉗子チャネルに通すことが可能となる。なお、他の実施形態においては、バルーン内部にヒータなどを設けてもよい。 Further, the gastrointestinal tract expansion device 2 according to the first embodiment heats the fluid for expanding the balloon 232 to supply thermal energy to the constricted portion. Accordingly, the temperature controller 211 is provided outside the balloon catheter 23, and the size of the balloon catheter 23 can be reduced. This allows the balloon catheter 23 to pass through the forceps channel of the endoscope. Note that in other embodiments, a heater or the like may be provided inside the balloon.
 第1の実施形態に係る消化管拡張装置2は、バルーン232に加熱した熱媒体を供給することで、狭窄部分に熱エネルギーを供給するが、これに限られない。例えば、他の実施形態においては、バルーンカテーテル23の外部から、波動(例えば近赤外光などの電磁波)によって狭窄部分に熱エネルギーを供給してもよい。
 また、第1の実施形態に係る消化管拡張装置2は、バルーン232により狭窄部分の押圧を行うが、これに限られない。例えば、他の実施形態においては、ブジー等の他の装置を用いて押圧を行ってもよい。
The gastrointestinal tract expansion device 2 according to the first embodiment supplies thermal energy to the constricted portion by supplying a heated heat medium to the balloon 232, but the present invention is not limited to this. For example, in another embodiment, heat energy may be supplied to the stenotic portion from the outside of the balloon catheter 23 by means of waves (for example, electromagnetic waves such as near-infrared light).
In addition, the gastrointestinal tract expansion device 2 according to the first embodiment presses the constricted portion with the balloon 232, but the present invention is not limited to this. For example, in other embodiments, pressing may be performed using other devices such as bougies.
 以下、第1の実施形態に係る消化管拡張装置2の効果を裏付ける実験結果について説明する。 Experimental results that support the effects of the gastrointestinal tract expansion device 2 according to the first embodiment will be described below.
《第1の実験》
 発明者は、コラーゲン線維の温度によるヤング率の変化を検証するために第1の実験を行った。第1の実験では、コラーゲン線維の試験片を温度の異なる水に5分間漬けて破断するまで引っ張り、荷重と移動量との関係を計測した。第1の実験では、コラーゲン線維の試験片として、牛アキレス腱をシリコーン樹脂で包埋し、厚さ1.0±0.1mmにスライスしたものを用いた。以下の実験において、引張試験の試験片は、同様のものを用いた。
《First experiment》
The inventor conducted a first experiment to verify changes in Young's modulus of collagen fibers with temperature. In the first experiment, a test piece of collagen fiber was immersed in water at different temperatures for 5 minutes and pulled until it broke, and the relationship between load and displacement was measured. In the first experiment, bovine Achilles tendons embedded in silicone resin and sliced to a thickness of 1.0±0.1 mm were used as collagen fiber test pieces. In the following experiments, similar specimens were used for tensile tests.
 図3は、第1の実験の結果から得られた温度別のヤング率-応力特性を示す図である。第1の実験の結果、25℃および60℃では4MPaまでのヤング率に大きな差がみられないが、70℃のときにヤング率が大きく低下することが分かった。 FIG. 3 is a diagram showing Young's modulus-stress characteristics by temperature obtained from the results of the first experiment. As a result of the first experiment, it was found that there is no large difference in Young's modulus up to 4 MPa at 25°C and 60°C, but the Young's modulus drops significantly at 70°C.
 図4は、第1の実験の結果得られた、温度とヤング率の関係を示す図である。第1の実験の結果、水の温度が60℃以下であるときのヤング率は30kPaを超えるのに対し、65℃を超えるとヤング率が10kPa以下となることが分かった。65℃のときのヤング率は、60℃のときのヤング率の1/5となった。
 これらの結果から、コラーゲン線維の変性が65℃付近で生じることが読み取られる。
FIG. 4 is a diagram showing the relationship between temperature and Young's modulus obtained as a result of the first experiment. As a result of the first experiment, it was found that the Young's modulus exceeds 30 kPa when the temperature of the water is 60°C or lower, while the Young's modulus becomes 10 kPa or lower when the temperature exceeds 65°C. The Young's modulus at 65°C was 1/5 of the Young's modulus at 60°C.
From these results, it can be read that denaturation of collagen fibers occurs at around 65°C.
《第2の実験》
 発明者は、コラーゲン線維を加熱した状態で牽引力をかけ、その後に冷却することで、コラーゲン線維が固まるとの仮説を立て、これを検証するために第2の実験を行った。図5は、第2の実験の手順を示す図である。第2の実験では、コラーゲン線維の試験片Iを35℃の水に5分間漬けた後、4N(0.8MPa)の牽引力で試験片Iの引張試験を行った(T1)。その後、試験片Iを65℃の水に10分間漬けた後、4Nの牽引力で試験片Iの引張試験を行った(T2)。その後、試験片Iを35℃の水に5分間漬けた後、4Nの牽引力で試験片Iの引張試験を行った(T3)。また、コラーゲン線維の試験片IIを、35℃の水に5分間漬けた後、4Nの牽引力で試験片IIの引張試験を行った(T1)。その後、試験片IIを65℃の水に10分間漬けた後、4Nの牽引力で試験片IIの引張試験を行った(T2)。その後、手動で30Nの牽引力をかけながら試験片IIを35℃の水に5分間漬けた後、4Nの牽引力で試験片IIの引張試験を行った(T3)。
《Second experiment》
The inventor hypothesized that the collagen fibers would harden by applying a pulling force to the heated collagen fibers and then cooling them, and conducted a second experiment to verify this hypothesis. FIG. 5 is a diagram showing the procedure of the second experiment. In the second experiment, after immersing the collagen fiber test piece I in water at 35° C. for 5 minutes, a tensile test was performed on the test piece I with a pulling force of 4 N (0.8 MPa) (T1). After that, the test piece I was immersed in water at 65° C. for 10 minutes, and then subjected to a tensile test with a traction force of 4N (T2). After that, the test piece I was immersed in water at 35° C. for 5 minutes, and then subjected to a tensile test with a traction force of 4N (T3). Also, after immersing the collagen fiber test piece II in water at 35° C. for 5 minutes, a tensile test was performed on the test piece II with a pulling force of 4 N (T1). After that, the test piece II was immersed in water at 65° C. for 10 minutes, and then subjected to a tensile test with a traction force of 4N (T2). After that, the test piece II was immersed in water at 35° C. for 5 minutes while manually applying a pulling force of 30 N, and then a tensile test was performed on the test piece II with a pulling force of 4 N (T3).
 図6は、第2の実験に係る試験片Iの牽引力と伸長率との関係を示す図である。図6に示すように、温度によらず、牽引中は試験片が伸長するが、牽引をやめると元の長さに戻ることが分かる。このために、従来はコラーゲン線維の破断が生じるまで拡張する必要があり、細胞組織へのダメージを与えざるをえなかったといえる。また、図6によれば、加熱によって試験片の長さが20%程度短くなることが分かる。これは、コラーゲン組織の熱変性による収縮が生じたためであると考えられる。つまり、第2の実験から、単に熱を加えるだけでは狭窄箇所を拡張することができないことが分かる。 FIG. 6 is a diagram showing the relationship between the traction force and the elongation rate of the test piece I according to the second experiment. As shown in FIG. 6, the test piece elongates during traction regardless of the temperature, but returns to its original length when the traction is stopped. For this reason, conventionally, it was necessary to expand until collagen fibers were broken, and it can be said that there was no choice but to give damage to cell tissues. Moreover, according to FIG. 6, it can be seen that the length of the test piece is shortened by about 20% by heating. This is considered to be due to shrinkage due to thermal denaturation of the collagen tissue. In other words, it can be seen from the second experiment that the stricture cannot be dilated simply by applying heat.
 図7は、第2の実験に係る試験片IIの牽引力と伸長率との関係を示す図である。図7に示すように、加熱によって試験片の長さが短くなることが分かるが、冷却する際に牽引力をかけ続けることによって、試験片の長さが伸長した。冷却後に牽引をやめると、その長さは短くなったものの、試験開始時と比較すると80%程度伸長していた。このことから、コラーゲン線維は牽引力をかけながら冷却されることで、牽引されたときの状態を保ったまま固定されることが分かる。 FIG. 7 is a diagram showing the relationship between the traction force and the elongation rate of the test piece II according to the second experiment. As shown in FIG. 7, it can be seen that the length of the specimen was shortened by heating, but the length of the specimen was elongated by continuing to apply a traction force during cooling. When the traction was stopped after cooling, the length was shortened, but it was elongated by about 80% compared to when the test was started. From this, it can be seen that the collagen fibers are fixed while maintaining the state at the time of being pulled by cooling while applying a pulling force.
《第3の実験》
 発明者は、コラーゲン線維の伸長のために必要な牽引力を調べるために第3の実験を行った。第3の実験では、コラーゲン線維の試験片を65℃の水に10分間漬けた後、牽引力をかけながら試験片を35℃の水に5分間漬け、同じ牽引力で試験片の引張試験を行った。第3の実験では、冷却中の牽引力を、0.8MPa、2MPa、4MPa、5MPa、6MPa、7MPaと変化させた。なお、引張試験時は牽引力を4N(0.8MPa)とした。
《Third experiment》
The inventors conducted a third experiment to examine the traction force required for elongation of collagen fibers. In a third experiment, a specimen of collagen fibers was immersed in water at 65°C for 10 minutes, then the specimen was immersed in water at 35°C for 5 minutes while applying a traction force, and the specimen was subjected to a tensile test with the same traction force. . In a third experiment, the traction force during cooling was varied from 0.8 MPa, 2 MPa, 4 MPa, 5 MPa, 6 MPa and 7 MPa. Note that the traction force was set to 4 N (0.8 MPa) during the tensile test.
 図8は、第3の実験に係る試験片の牽引力と伸長率との関係を示す図である。図8に示すように、牽引力が4MPa未満のとき、冷却後の試験片の伸長率は加熱前の伸長率未満となることが分かる。牽引力が4MPaのとき、冷却後の試験片の伸長率は加熱前の伸長率と同程度となることが分かる。牽引力が4MPaを超えるとき、冷却後の試験片の伸長率は加熱前の伸長率より大きくなることが分かる。つまり、第3の実験から、狭窄箇所を拡張する際に4MPaを超える圧力をかけるべきであることが分かる。 FIG. 8 is a diagram showing the relationship between the traction force and elongation rate of the test piece according to the third experiment. As shown in FIG. 8, when the tensile force is less than 4 MPa, the elongation rate of the test piece after cooling is less than the elongation rate before heating. It can be seen that when the tensile force is 4 MPa, the elongation rate of the test piece after cooling is approximately the same as the elongation rate before heating. It can be seen that when the tensile force exceeds 4 MPa, the elongation of the specimen after cooling is greater than that before heating. Thus, from the third experiment, it can be seen that a pressure greater than 4 MPa should be applied when dilating the stricture.
《第4の実験》
 発明者は、バルーンカテーテルによる拡張効果について確認するために、第4の実験を行った。第4の実験では、コラーゲン線維の試験片を筒状に巻き、シアノアクリレート系接着剤で径を4mmに固定したものを、食道狭窄部を模擬した狭窄モデルとして生成した。そして当該狭窄モデルにバルーンカテーテルを通し、バルーンの内圧を徐々に増加させた。バルーンの内圧が30kPaに至ったときに、バルーンを熱水に投入し、その後さらにバルーンの内圧を増加させた。
《Fourth Experiment》
The inventor conducted a fourth experiment in order to confirm the expansion effect of the balloon catheter. In the fourth experiment, a test piece of collagen fibers was rolled into a cylindrical shape and fixed to a diameter of 4 mm with a cyanoacrylate adhesive to create a stricture model simulating an esophageal stricture. Then, a balloon catheter was passed through the stenosis model, and the internal pressure of the balloon was gradually increased. When the internal pressure of the balloon reached 30 kPa, the balloon was put into hot water, and then the internal pressure of the balloon was further increased.
 図9は、第4の実験に係るバルーンの内圧と狭窄モデルの径との関係を示す図である。図9に示すように、熱水投入の前後で狭窄モデルの径が大きく変化することが分かる。他方、第4の実験の後、狭窄モデルを観察すると、狭窄モデルに線維状の構造が残っていることが確認された。そして、バルーンカテーテルから取り外したサンプルを熱水に再度投入したところ、狭窄モデルの収縮が確認された。これは、実験中にゼラチンに変性しなかったコラーゲン線維が多く残っていたためであると推測される。つまり、牽引力をかけている間に加熱を行っても、コラーゲン線維の変性が進みづらいことが推測される。 FIG. 9 is a diagram showing the relationship between the internal pressure of the balloon and the diameter of the stenosis model according to the fourth experiment. As shown in FIG. 9, it can be seen that the diameter of the constricted model changes significantly before and after hot water injection. On the other hand, when the stenosis model was observed after the fourth experiment, it was confirmed that fibrous structures remained in the stenosis model. Then, when the sample removed from the balloon catheter was put into hot water again, contraction of the stenosis model was confirmed. It is presumed that this is because many collagen fibers that were not denatured into gelatin remained during the experiment. In other words, it is presumed that even if heating is performed while a traction force is being applied, denaturation of the collagen fibers does not progress easily.
《第5の実験》
 発明者は、第4の実験で得た知見から、コラーゲン線維を効果的に変性させるためには、コラーゲン線維を加熱した後に、牽引力をかけることが好ましいという仮説を立てた。この仮説を実証するため、発明者は第5の実験を行った。
 第5の実験では、牽引および加熱を行わない試験片A、牽引を行い加熱を行わない試験片B、牽引を行い途中から加熱を行う試験片C、加熱を行い途中から牽引を行う試験片D、のそれぞれについて、コラーゲン線維の変性の度合いを確認した。コラーゲン線維の変性の度合いは、試験片に添加したCHP(Collagen Hybridizing Peptide)の蛍光検出によって行った。CHPは、損傷したコラーゲン鎖に特異的に結合するプローブである。
《Fifth Experiment》
Based on the knowledge obtained in the fourth experiment, the inventor hypothesized that it is preferable to heat the collagen fibers and then apply a traction force in order to effectively denature the collagen fibers. To prove this hypothesis, the inventor conducted a fifth experiment.
In the fifth experiment, test piece A that is not pulled and heated, test piece B that is pulled and not heated, test piece C that is pulled and heated in the middle, and test piece D that is heated and pulled in the middle , the degree of collagen fiber denaturation was confirmed. The degree of collagen fiber denaturation was determined by fluorescence detection of CHP (Collagen Hybridizing Peptide) added to the test piece. CHP is a probe that specifically binds to damaged collagen chains.
 図10は、第5の実験の結果を示す図である。図10に示すように、加熱によってコラーゲン線維の変性が進むことが分かり、さらに加熱した後に牽引力を加えることで、変性が大きく進むことが分かる。また、上記の仮説の通り、牽引を行い途中から加熱を行った場合、加熱のみの場合と比較して有意な差が見られなかった。第5の実験の結果から、コラーゲン線維を効果的に変性させるためにはコラーゲン線維を加熱した後に、牽引力をかけることが好ましいことが分かる。 FIG. 10 is a diagram showing the results of the fifth experiment. As shown in FIG. 10, it can be seen that the denaturation of collagen fibers progresses by heating, and that the denaturation progresses greatly by applying a traction force after heating. In addition, as hypothesized above, there was no significant difference when heating was performed halfway through traction compared to heating only. From the results of the fifth experiment, it can be seen that in order to effectively denature the collagen fibers, it is preferable to apply traction force after heating the collagen fibers.
《第6の実験》
 発明者は、加熱を行ったときのバルーンカテーテルによる拡張効果について確認するために、第6の実験を行った。第6の実験では、37℃(体温相当)の狭窄モデルと70℃に加熱した狭窄モデルとにバルーンカテーテルを通し、バルーンの内圧を徐々に増加させ、バルーンの径と各狭窄モデルの径とを比較した。
《Sixth experiment》
The inventor conducted a sixth experiment in order to confirm the expansion effect of the balloon catheter when heating was performed. In the sixth experiment, a balloon catheter was passed through a stenosis model at 37° C. (equivalent to body temperature) and a stenosis model heated to 70° C., the internal pressure of the balloon was gradually increased, and the diameter of the balloon and the diameter of each stenosis model were adjusted. compared.
 図11は、第6の実験に係るバルーンの径と加熱を行わない狭窄モデルの径との関係を示す図である。バルーンの内圧が100kPaに至るまで、加熱を行わないすべての狭窄モデルの径は、バルーンの径を大きく下回った。また、すべての狭窄モデルは、バルーンの内圧が160kPaに至るまでに破断した。図11においてバルーン直径を大きく超えるプロットは破断を示す。 FIG. 11 is a diagram showing the relationship between the diameter of the balloon and the diameter of the stenosis model without heating according to the sixth experiment. The diameter of all stenosis models without heating was well below the diameter of the balloon until the internal pressure of the balloon was 100 kPa. In addition, all stenosis models ruptured when the internal pressure of the balloon reached 160 kPa. Plots that greatly exceed the balloon diameter in FIG. 11 indicate rupture.
 図12は、第6の実験に係るバルーンの径と加熱を行った狭窄モデルの径との関係を示す図である。バルーンの内圧が40kPaを超えると、加熱を行ったすべての狭窄モデルの径は、バルーンの径とほぼ等しくなった。これは、狭窄モデルが十分に拡張し、バルーンの径に追従していることを示す。また、加熱を行ったすべての狭窄モデルは、破断することなく160kPaまで拡張された。
 第6の実験により、加熱の後に牽引力を加えることで、狭窄部分の破断を生じることなく、狭窄部分の径をバルーン直径まで拡張できることが確認された。
FIG. 12 is a diagram showing the relationship between the diameter of the balloon and the diameter of the heated stenosis model according to the sixth experiment. When the internal pressure of the balloon exceeded 40 kPa, the diameters of all of the heated stenosis models became almost equal to the diameter of the balloon. This indicates that the stenosis model has expanded sufficiently to follow the diameter of the balloon. Also, all constriction models with heating were expanded to 160 kPa without breaking.
A sixth experiment confirmed that application of traction followed by heating can expand the diameter of the stenosis to the balloon diameter without causing rupture of the stenosis.
《第7の実験》
 発明者は、加熱および牽引による組織の状態の変化を確認するために、第7の実験を行った。第7の実験では、牛のアキレス腱をHE染色し、70℃で15分間加熱し、その後6MPaの応力が掛かるように牽引を行い、加熱前、加熱後、牽引後のそれぞれのタイミングで観察した。
《Seventh Experiment》
The inventor conducted a seventh experiment to confirm changes in the state of tissue due to heating and traction. In the seventh experiment, a bovine Achilles tendon was HE-stained, heated at 70° C. for 15 minutes, then pulled so that a stress of 6 MPa was applied, and observed before heating, after heating, and after pulling.
 図13は、第7の実験に係る組織の状態の変化を示す図である。図13において、HE染色によって、細胞核は青紫色(図13では暗灰色)に染色され、コラーゲン線維は赤色(図13では明灰色)に染色された。加熱によって、染色されない領域(図13では白色)が赤色に変化した。これは、コラーゲン線維がゼラチンに変性したことによって、線維構造が破壊されたためである。他方、細胞核に着目すると、加熱後および牽引後の何れにおいても細胞核が残存していることが分かる。つまり、第1の実施形態に係る手法の熱負荷・応力負荷の範囲では細胞の形態的な変化は確認されなかった。このことから、第1の実施形態によれば、細胞にダメージが加わることを抑えながらコラーゲン線維を選択的に破壊することができることがわかる。 FIG. 13 is a diagram showing changes in tissue state according to the seventh experiment. In FIG. 13, by HE staining, cell nuclei were stained bluish purple (dark gray in FIG. 13), and collagen fibers were stained red (light gray in FIG. 13). Heating turned the unstained area (white in FIG. 13) red. This is because the fibrous structure was destroyed by the denaturation of collagen fibers into gelatin. On the other hand, focusing on the cell nucleus, it can be seen that the cell nucleus remains both after heating and after pulling. In other words, no morphological change in cells was observed within the range of heat load/stress load of the method according to the first embodiment. From this, it can be seen that according to the first embodiment, it is possible to selectively destroy collagen fibers while suppressing damage to cells.
〈第2の実施形態〉
 超音波により非侵襲的に生体組織を選択的に破壊することで、治療効果を得るHIFU(High Intensity Focused Ultrasound)と呼ばれる技術が知られている。また、コラーゲン線維を含む組織を軟化させるために、強度の高いコラーゲン線維の一部を切断する技術が知られているが、非侵襲的にコラーゲン線維を含む組織の軟化する技術が求められている。
<Second embodiment>
A technique called HIFU (High Intensity Focused Ultrasound) that obtains a therapeutic effect by selectively destroying living tissue noninvasively with ultrasound is known. Also, in order to soften a tissue containing collagen fibers, there is known a technique of cutting a part of collagen fibers with high strength, but a technique for non-invasively softening a tissue containing collagen fibers is desired. .
 HIFUによる破壊範囲は超音波発信器の開口面積および超音波の波長によって決定される。そのため、HIFUによる破壊範囲は小さくても5mm程度の大きさとなる。コラーゲン線維はマイクロメートルスケールでランダムに分布しており、コラーゲン線維の近傍には神経や血管が走行している。そのため、超音波を用いて目的外の生体組織を破壊せずにコラーゲン線維を選択的に破壊することは困難であった。
 第2の実施形態の目的は、超音波の照射範囲より狭い範囲においてコラーゲン線維を選択的に破壊することができるコラーゲン分解装置およびコラーゲン分解装置の作動方法を提供することにある。
The range of destruction by HIFU is determined by the aperture area of the ultrasonic transmitter and the wavelength of the ultrasonic waves. Therefore, the destruction range by HIFU is about 5 mm 3 at the smallest. Collagen fibers are randomly distributed on a micrometer scale, and nerves and blood vessels run near the collagen fibers. Therefore, it has been difficult to selectively destroy collagen fibers using ultrasonic waves without destroying unintended biological tissues.
An object of the second embodiment is to provide a collagen decomposition device and a method of operating the collagen decomposition device that can selectively destroy collagen fibers in a range narrower than the irradiation range of ultrasonic waves.
《コラーゲン分解装置1の構成》
 以下、図面を参照しながら実施形態について詳しく説明する。
 図14は、第2の実施形態に係るコラーゲン分解装置1の構成を示す斜視図である。図15は、第2の実施形態に係るコラーゲン分解装置1の断面図である。
 コラーゲン分解装置1は、筐体11、ゲルパッド12、超音波照射装置13、レーザ装置14および制御装置15を備える。筐体11は、貫通孔111を有する略円筒形に構成される。つまり、筐体11は、中心に孔部を有するディスク状の底面を有する。ゲルパッド12は、筐体11の底面を覆うように設けられる。ゲルパッド12は、例えばポリウレタンゲルによって構成される。ゲルパッド12は、筐体11の貫通孔111に対応する箇所に貫通孔を有しなくてよい。超音波照射装置13は、筐体11の内部に設けられる。超音波照射装置13は、筐体11の底面から超音波を照射する。レーザ装置14は、筐体11の貫通孔111内に設けられる。レーザ装置14は、貫通孔111およびゲルパッド12を通してレーザ光を照射する。制御装置15は、超音波照射装置13およびレーザ装置14の出力を制御する。
<<Configuration of Collagen Decomposition Device 1>>
Hereinafter, embodiments will be described in detail with reference to the drawings.
FIG. 14 is a perspective view showing the configuration of the collagen decomposing device 1 according to the second embodiment. FIG. 15 is a cross-sectional view of the collagen decomposing device 1 according to the second embodiment.
Collagen degradation device 1 includes housing 11 , gel pad 12 , ultrasonic irradiation device 13 , laser device 14 and control device 15 . The housing 11 is configured in a substantially cylindrical shape having a through hole 111 . That is, the housing 11 has a disk-shaped bottom surface with a hole in the center. Gel pad 12 is provided to cover the bottom surface of housing 11 . The gel pad 12 is made of polyurethane gel, for example. The gel pad 12 does not have to have through-holes at locations corresponding to the through-holes 111 of the housing 11 . The ultrasonic irradiation device 13 is provided inside the housing 11 . The ultrasonic irradiation device 13 irradiates ultrasonic waves from the bottom surface of the housing 11 . The laser device 14 is provided inside the through hole 111 of the housing 11 . Laser device 14 irradiates laser light through through hole 111 and gel pad 12 . The control device 15 controls outputs of the ultrasonic irradiation device 13 and the laser device 14 .
 第2の実施形態に係るコラーゲン分解装置1は、ゲルパッド12を介して筐体11の底面と対象物T(例えば生体)とを密着させ、レーザ光および超音波を対象物Tに照射することで、対象物Tの目的箇所のコラーゲン線維を選択的に破壊し、組織の軟化をもたらすことができる。なお、他の実施形態においては、ゲルパッド12に代えて、水やゼリーを用いてもよい。 The collagen decomposition apparatus 1 according to the second embodiment brings the bottom surface of the housing 11 and an object T (for example, a living body) into close contact with each other via the gel pad 12, and irradiates the object T with laser light and ultrasonic waves. , selectively destroys collagen fibers at target locations of the object T, resulting in tissue softening. Note that in other embodiments, water or jelly may be used instead of the gel pad 12 .
 超音波照射装置13は、筐体11の底面を開口面とする。したがって、超音波の照射範囲R1は、少なくとも筐体11の底面を超音波の照射方向に延長した範囲に及ぶ。超音波照射装置13は、200kHz以上10MHz以下の周波数、0.4kW/cm以上10kW/cm以下のパワー、1MPa以上150MPa以下の音圧を有する超音波を照射する。超音波の音圧は、1MPa以上25MPa以下であることが好ましい。より好ましくは、超音波照射装置13は、250kHz、0.4kW/cm、3.5MPaの条件で超音波を照射する。このような条件とすることで、超音波照射装置13が照射する超音波は、生体組織のうち、皮膚、筋肉、血管、神経などの非対象組織にダメージを与えずに、コラーゲン線維が熱変性したゼラチンを選択的に破壊することができる。超音波の周波数が200kHzを下回る場合、焦点領域が生体組織に対して大きくなるため、非対象組織に与えるダメージが大きくなってしまう。パワーが10kW/cmを超える場合、または超音波の音圧が150MPaを超える場合、キャビテーションの発生数が過多となり、非対象組織に与えるダメージが大きくなってしまう。また超音波の周波数が10MHzを超え、またはパワーが0.4kW/cmを下回る場合、体外から照射した超音波が生体内で減衰するため、キャビテーションの発生閾値を下回り、ゼラチンに対する破壊力が小さくなってしまう。また、超音波の音圧が1MPaを下回る場合、キャビテーションの発生数が過少となり、ゼラチンに対する破壊力が小さくなってしまう。つまり、超音波照射装置13は、生体組織を破壊せずゼラチンを破壊可能な強度を有するキャビテーションを発生させる周波数の超音波を照射する。 The ultrasonic irradiation device 13 uses the bottom surface of the housing 11 as an opening surface. Therefore, the irradiation range R1 of the ultrasonic waves covers at least the range obtained by extending the bottom surface of the housing 11 in the direction of irradiation of the ultrasonic waves. The ultrasonic irradiation device 13 irradiates ultrasonic waves having a frequency of 200 kHz or more and 10 MHz or less, a power of 0.4 kW/cm 2 or more and 10 kW/cm 2 or less, and a sound pressure of 1 MPa or more and 150 MPa or less. The sound pressure of the ultrasonic waves is preferably 1 MPa or more and 25 MPa or less. More preferably, the ultrasonic irradiation device 13 applies ultrasonic waves under the conditions of 250 kHz, 0.4 kW/cm 2 and 3.5 MPa. Under these conditions, the ultrasonic waves emitted by the ultrasonic irradiation device 13 do not damage non-target tissues such as skin, muscles, blood vessels, and nerves among living tissues, and collagen fibers are thermally denatured. gelatin can be selectively destroyed. If the frequency of the ultrasonic wave is less than 200 kHz, the focal area becomes large with respect to the living tissue, so the damage to the non-target tissue becomes large. When the power exceeds 10 kW/cm 2 or when the sound pressure of the ultrasonic waves exceeds 150 MPa, the number of cavitation occurrences becomes excessive, resulting in greater damage to non-target tissues. When the frequency of ultrasonic waves exceeds 10 MHz or the power is less than 0.4 kW/cm 2 , the ultrasonic waves irradiated from the outside of the body are attenuated inside the body, so the cavitation generation threshold is exceeded and the destructive force against gelatin is small. turn into. In addition, when the sound pressure of the ultrasonic waves is less than 1 MPa, the number of cavitation occurrences becomes too small, and the destructive force against gelatin becomes small. In other words, the ultrasonic irradiation device 13 irradiates ultrasonic waves having a frequency that generates cavitation having an intensity capable of destroying gelatin without destroying living tissue.
 レーザ装置14は、コラーゲン線維の吸収波長のレーザ光を照射する。具体的には、レーザ装置14は、400nm以上900nm以下の波長のレーザ光を照射する。レーザ光は熱エネルギーの一例である。レーザ装置14が出力するレーザ光の照射範囲R2は、超音波照射装置13の照射範囲R1と比較して狭い。400nm以上900nm以下の波長は、生体組織のうち比較的吸収係数の高い成分であるヘモグロビン、脂質および水と比較して、コラーゲンの吸収係数が高くなる波長である。 The laser device 14 emits laser light having an absorption wavelength of collagen fibers. Specifically, the laser device 14 emits laser light with a wavelength of 400 nm or more and 900 nm or less. Laser light is an example of thermal energy. The irradiation range R2 of the laser light output by the laser device 14 is narrower than the irradiation range R1 of the ultrasonic irradiation device 13 . A wavelength of 400 nm or more and 900 nm or less is a wavelength at which the absorption coefficient of collagen is higher than that of hemoglobin, lipid, and water, which are components of biological tissue having relatively high absorption coefficients.
 制御装置15は、ケーブルを介して超音波照射装置13およびレーザ装置14に接続され、超音波照射装置13およびレーザ装置14に制御信号を出力する。また制御装置15はケーブルを介して超音波照射装置13およびレーザ装置14を駆動するための電力を供給してもよい。
 制御装置15は、コラーゲン分解装置1を稼働させると、超音波照射装置13による超音波の照射を開始するとともに、レーザ装置14によるレーザ光の照射も開始する。制御装置15は、0.1Hz以上100kHz以下の周波数で、パルス時間幅1ns以上20ms以下のパルス光の照射を繰り返すようにレーザ装置14を制御する。パルス光の照射は、好ましくは0.1Hz以上1kHz以下の周波数で、パルス時間幅1ns以上1ms以下で行われるとよい。これにより、制御装置15は、レーザ光が照射されたコラーゲン線維の温度を変性温度(45℃)の近傍まで上昇させ、コラーゲン線維を部分的にゼラチンに変性させることができる。つまり、レーザ装置14は、レーザ光の照射範囲R2内に存在するコラーゲン線維の温度をコラーゲンの変性温度の近傍の温度まで上昇させるパワーの熱エネルギーを照射する。
The control device 15 is connected to the ultrasonic irradiation device 13 and the laser device 14 via cables, and outputs control signals to the ultrasonic irradiation device 13 and the laser device 14 . Further, the control device 15 may supply power for driving the ultrasonic irradiation device 13 and the laser device 14 through cables.
When the collagen decomposition device 1 is operated, the control device 15 starts irradiation of ultrasonic waves by the ultrasonic irradiation device 13 and irradiation of laser light by the laser device 14 . The control device 15 controls the laser device 14 so as to repeat irradiation of pulsed light with a pulse time width of 1 ns or more and 20 ms or less at a frequency of 0.1 Hz or more and 100 kHz or less. Irradiation of pulsed light is preferably performed at a frequency of 0.1 Hz or more and 1 kHz or less and a pulse time width of 1 ns or more and 1 ms or less. As a result, the controller 15 can raise the temperature of the collagen fibers irradiated with the laser beam to near the denaturation temperature (45° C.), thereby partially denaturing the collagen fibers into gelatin. That is, the laser device 14 irradiates thermal energy with a power that raises the temperature of the collagen fibers present within the irradiation range R2 of the laser light to a temperature near the denaturation temperature of collagen.
 なお、ゼラチンへの変性はレーザ光の照射範囲R2に限られるため、レーザ光の照射がなされない間に温度が下がり、再びコラーゲン線維に戻る。対象物Tにおいて、レーザ光の照射範囲R2外への熱拡散は20ms程度で発生する。そのため、制御装置15はレーザ光のパルス時間幅を20ms以下とすることで、レーザ光の熱拡散が生じることを抑制することができる。つまり、レーザ装置14は、熱拡散によってレーザ光の照射範囲R2外に存在するコラーゲン線維の温度が変性温度まで上昇する時間より短い時間だけ熱エネルギーを照射する。
 好ましくは、レーザ装置14は、532nm、1mJ/mmの条件でレーザ光を照射する。
Since the denaturation to gelatin is limited to the irradiation range R2 of the laser beam, the temperature drops while the laser beam is not irradiated, and the collagen fibers return to collagen fibers. In the object T, thermal diffusion outside the irradiation range R2 of the laser light occurs in about 20 ms. Therefore, by setting the pulse time width of the laser light to 20 ms or less, the controller 15 can suppress the occurrence of thermal diffusion of the laser light. That is, the laser device 14 irradiates heat energy for a period of time shorter than the period of time required for the temperature of collagen fibers existing outside the irradiation range R2 of the laser light to rise to the denaturation temperature due to thermal diffusion.
Preferably, the laser device 14 irradiates laser light under the conditions of 532 nm and 1 mJ/mm 2 .
《コラーゲン分解装置1の作用・効果》
 筐体11の底面を対象物Tに密着させた状態で、利用者が制御装置15に照射指示を入力すると、制御装置15は、レーザ装置14にレーザ光の照射指示を出力し、同時に超音波照射装置13に超音波の照射指示を出力する。つまり、制御装置15は、少なくともレーザ装置14の動作中に超音波照射装置13に照射指示を出力する。レーザ装置14のレーザ光が対象物Tに照射されると、照射範囲R2に存在するコラーゲン線維の温度が上昇する。コラーゲン線維の温度が変性温度に至ると、コラーゲン線維の一部がゼラチンに変性する。コラーゲン線維が3本鎖重らせん構造を有するのに対し、ゼラチンは、ランダムコイル構造を有する。そのため、ゼラチンはコラーゲン線維と比較して強度が低い。具体的には、コラーゲンの材料強度が1.3N程度であるのに対し、ゼラチンの材料強度は0.6N程度である。そのため、超音波照射装置13から照射される超音波によるキャビテーションは、コラーゲン線維が変性したゼラチンが存在する箇所に多く発生する。超音波によって発生したキャビテーションが膨張し破裂すると、強度の弱いゼラチンは破壊される一方で、ゼラチンより強度の高いコラーゲン線維や他の生体組織はダメージを受けない。また、超音波の音響エネルギーも強度の弱いゼラチンにダメージを与えつつ、コラーゲン線維や他の生体組織へダメージを与えない。キャビテーションの破裂や音響エネルギーによってゼラチンが選択的に破壊されることで、コラーゲン線維のうち、レーザ光が照射された部分が選択的に破壊される。また、絡み合ったコラーゲン線維の間でキャビテーションが膨張し破裂することで、コラーゲン線維どうしを離間させる方向に力を発生させることができる。これにより、レーザ光の照射をやめ、コラーゲン線維の加熱がなくなっても線維全体の柔軟性を保つことができる。
<<Action and effect of collagen decomposition device 1>>
When the user inputs an irradiation instruction to the control device 15 while the bottom surface of the housing 11 is in close contact with the object T, the control device 15 outputs a laser light irradiation instruction to the laser device 14, and simultaneously emits ultrasonic waves. An ultrasonic wave irradiation instruction is output to the irradiation device 13 . That is, the control device 15 outputs an irradiation instruction to the ultrasonic irradiation device 13 at least while the laser device 14 is operating. When the object T is irradiated with the laser light from the laser device 14, the temperature of the collagen fibers present in the irradiation range R2 rises. When the temperature of the collagen fibers reaches the denaturation temperature, some of the collagen fibers are denatured into gelatin. Gelatin has a random coil structure, whereas collagen fibers have a triple-stranded helix structure. Therefore, gelatin has low strength compared to collagen fibers. Specifically, the material strength of collagen is about 1.3N, while the material strength of gelatin is about 0.6N. Therefore, cavitation caused by ultrasonic waves emitted from the ultrasonic irradiation device 13 is often generated in locations where gelatin in which collagen fibers are denatured exists. When cavitation caused by ultrasound expands and ruptures, weak gelatin is destroyed, while collagen fibers and other living tissues, which are stronger than gelatin, are not damaged. Also, the acoustic energy of ultrasonic waves damages gelatin, which is weak in intensity, but does not damage collagen fibers and other living tissues. By selectively destroying gelatin by cavitation bursting or acoustic energy, portions of collagen fibers irradiated with laser light are selectively destroyed. In addition, cavitation expands and ruptures between the tangled collagen fibers, so that a force can be generated in the direction of separating the collagen fibers from each other. As a result, even if the irradiation of the laser light is stopped and the heating of the collagen fibers is stopped, the flexibility of the fibers as a whole can be maintained.
 このように、第2の実施形態に係るコラーゲン分解装置1によれば、レーザ光によって超音波の照射範囲R1より狭い部分に存在するコラーゲンを部分的にゼラチンに変性させて、超音波を照射する。これにより、コラーゲン分解装置1は、超音波の照射範囲より狭い範囲においてコラーゲン線維を選択的に破壊することができる。 As described above, according to the collagen degradation apparatus 1 according to the second embodiment, the laser beam partially denatures collagen existing in a portion narrower than the irradiation range R1 of the ultrasonic wave to gelatin, and then irradiates the collagen with the ultrasonic wave. . As a result, the collagen degradation device 1 can selectively destroy collagen fibers in a range narrower than the ultrasonic wave irradiation range.
〈他の実施形態〉
 以上、図面を参照して一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、様々な設計変更等をすることが可能である。
<Other embodiments>
Although one embodiment has been described in detail above with reference to the drawings, the specific configuration is not limited to the one described above, and various design changes and the like can be made.
 第2の実施形態に係るコラーゲン分解装置1は、筐体11の貫通孔111にレーザ装置14を設け、超音波照射装置13による超音波の照射範囲の中心にレーザ光を照射する。一方で、他の実施形態においてはこの構成に限られない。例えば、他の実施形態に係るコラーゲン分解装置1は、超音波の照射方向と、レーザ光の照射方向が一致していなくてもよい。この場合、例えばコラーゲン分解装置1は、超音波の照射範囲と、レーザ光の照射範囲とが交差するように超音波照射装置13およびレーザ装置14が設けられてもよい。 The collagen decomposition device 1 according to the second embodiment is provided with a laser device 14 in the through hole 111 of the housing 11, and the ultrasonic irradiation device 13 irradiates laser light to the center of the ultrasonic irradiation range. On the other hand, other embodiments are not limited to this configuration. For example, in the collagen degradation device 1 according to another embodiment, the irradiation direction of ultrasonic waves and the irradiation direction of laser light may not match. In this case, for example, the collagen decomposition device 1 may be provided with the ultrasonic irradiation device 13 and the laser device 14 so that the irradiation range of ultrasonic waves and the irradiation range of laser light intersect.
 また、第2の実施形態に係るコラーゲン分解装置1は、レーザ装置14および超音波照射装置13を1つずつ備えるが、これに限られない。例えば、他の実施形態に係るコラーゲン分解装置1は、複数のレーザ装置14および超音波照射装置13を備えてもよい。例えば、他の実施形態に係るコラーゲン分解装置1は、レーザ光が1点で交差するように複数のレーザ装置14を設けることで、レーザ光が交差する点のコラーゲン線維をゼラチンに変性できるように構成してもよい。この場合、制御装置15がレーザ装置14の角度を調整することで、レーザ光が交差する点の表皮に対する深度を変更可能としてもよい。 In addition, although the collagen decomposition device 1 according to the second embodiment includes one laser device 14 and one ultrasonic irradiation device 13, the present invention is not limited to this. For example, the collagen degradation device 1 according to another embodiment may include multiple laser devices 14 and ultrasonic irradiation devices 13 . For example, the collagen decomposition device 1 according to another embodiment is provided with a plurality of laser devices 14 so that the laser beams intersect at one point, so that the collagen fibers at the points where the laser beams intersect can be denatured into gelatin. may be configured. In this case, the control device 15 may adjust the angle of the laser device 14 to change the depth to the epidermis of the point where the laser beams intersect.
 また、他の実施形態に係るコラーゲン分解装置1は、レーザ装置14に代えて、超音波の照射範囲より狭い範囲に熱エネルギーを照射可能な他の熱源装置を用いてもよい。例えば、他の実施形態に係るコラーゲン分解装置1は、熱放射によるヒータを備えてもよい。 Also, in the collagen decomposition device 1 according to another embodiment, instead of the laser device 14, another heat source device capable of irradiating thermal energy to a range narrower than the range of ultrasonic wave irradiation may be used. For example, the collagen decomposing device 1 according to another embodiment may be equipped with a heater by thermal radiation.
〈コンピュータ構成〉
 制御装置15は、バスで接続されたプロセッサ、メモリ、補助記憶装置などを備え、プログラムを実行することによって超音波照射装置13およびレーザ装置14を制御する制御装置15として機能する。プロセッサの例としては、CPU(Central Processing Unit)、GPU(Graphic Processing Unit)、マイクロプロセッサなどが挙げられる。
 プログラムは、コンピュータ読み取り可能な記録媒体に記録されてもよい。コンピュータ読み取り可能な記録媒体とは、例えば磁気ディスク、光磁気ディスク、光ディスク、半導体メモリ等の記憶装置である。プログラムは、電気通信回線を介して送信されてもよい。
<Computer configuration>
The control device 15 includes a processor, a memory, an auxiliary storage device, etc. connected via a bus, and functions as the control device 15 that controls the ultrasonic irradiation device 13 and the laser device 14 by executing a program. Examples of processors include CPUs (Central Processing Units), GPUs (Graphic Processing Units), microprocessors, and the like.
The program may be recorded on a computer-readable recording medium. A computer-readable recording medium is, for example, a storage device such as a magnetic disk, a magneto-optical disk, an optical disk, or a semiconductor memory. The program may be transmitted over telecommunications lines.
 なお、制御装置15の各機能の全て又は一部は、ASIC(Application Specific Integrated Circuit)やPLD(Programmable Logic Device)等のカスタムLSI(Large Scale Integrated Circuit)を用いて実現されてもよい。PLDの例としては、PAL(Programmable Array Logic)、GAL(Generic Array Logic)、CPLD(Complex Programmable Logic Device)、FPGA(Field Programmable Gate Array)が挙げられる。このような集積回路も、プロセッサの一例に含まれる。 All or part of each function of the control device 15 may be realized using a custom LSI (Large Scale Integrated Circuit) such as an ASIC (Application Specific Integrated Circuit) or a PLD (Programmable Logic Device). Examples of PLDs include PAL (Programmable Array Logic), GAL (Generic Array Logic), CPLD (Complex Programmable Logic Device), and FPGA (Field Programmable Gate Array). Such an integrated circuit is also included as an example of a processor.
 上記少なくとも1つの態様によれば、コラーゲン分解装置は、細胞にダメージが加わることを抑えながらコラーゲン線維を選択的に破壊することができる。 According to at least one aspect described above, the collagen degrading device can selectively destroy collagen fibers while suppressing damage to cells.
 1…コラーゲン分解装置 11…筐体 12…ゲルパッド 13…超音波照射装置 14…レーザ装置 15…制御装置 1... Collagen decomposition device 11... Housing 12... Gel pad 13... Ultrasonic irradiation device 14... Laser device 15... Control device

Claims (20)

  1.  対象組織の第1範囲に応力を付加する応力付加装置と、
     前記第1範囲と重複する部分を少なくとも有する第2範囲に熱エネルギーを与える熱源装置と
     を備えるコラーゲン分解装置。
    a stress applying device for applying stress to a first area of target tissue;
    and a heat source device that applies thermal energy to a second area that has at least a portion that overlaps with the first area.
  2.  前記応力付加装置は、前記対象組織内の非対象組織にダメージを与えずに、コラーゲン線維が熱変性した部位を選択的に破壊する応力を前記第1範囲に付加する、
     請求項1に記載のコラーゲン分解装置。
    The stress applying device applies a stress to the first area that selectively destroys sites where collagen fibers are thermally denatured without damaging non-target tissues within the target tissue.
    Collagen degradation device according to claim 1.
  3.  前記応力付加装置は、前記第1範囲に40kPa以上500kPa以下の応力を付加する
     請求項2に記載のコラーゲン分解装置。
    The collagen degradation device according to claim 2, wherein the stress application device applies a stress of 40 kPa or more and 500 kPa or less to the first area.
  4.  前記熱源装置は、前記第2範囲内に存在するコラーゲン線維の温度をコラーゲンの変性温度以上に上昇させるパワーの熱エネルギーを与える
     請求項1から請求項3の何れか1項に記載のコラーゲン分解装置。
    4. The collagen decomposition apparatus according to any one of claims 1 to 3, wherein the heat source device provides thermal energy with a power that raises the temperature of collagen fibers existing within the second range to a collagen denaturation temperature or higher. .
  5.  前記応力付加装置は、前記対象組織である管状器官を内部から径方向外側へ向かって押圧する 
     請求項1から請求項3の何れか1項に記載のコラーゲン分解装置。
    The stress applying device presses the tubular organ, which is the target tissue, radially outward from the inside.
    The device for decomposing collagen according to any one of claims 1 to 3.
  6.  流体の供給によって膨張するバルーンを備え、
     前記第1範囲および前記第2範囲は、前記管状器官のうち前記バルーンが接触する範囲であり、
     前記応力付加装置は、前記バルーンに前記流体を供給することで、前記管状器官を内部から径方向外側へ向かって押圧し、
     前記熱源装置は、前記流体を加熱することで、前記管状器官に熱エネルギーを与える
     請求項5に記載のコラーゲン分解装置。
    comprising a balloon that is inflated by a supply of fluid;
    The first range and the second range are ranges of the tubular organ with which the balloon contacts,
    the stress applying device presses the tubular organ radially outward from the inside by supplying the fluid to the balloon;
    The collagen decomposition device according to claim 5, wherein the heat source device heats the fluid to apply thermal energy to the tubular organ.
  7.  前記応力付加装置および前記熱源装置を制御する制御装置を備え、
     前記制御装置は、
     前記熱源装置に加熱開始指示を出力し、
     前記熱源装置による加熱の開始後に、前記応力付加装置にコラーゲン線維が熱変性した部位を選択的に破壊可能な第1応力を付加させる第1付加開始指示を出力し、
     前記熱源装置に加熱停止指示を出力し、
     前記熱源装置による加熱の停止後に、前記応力付加装置による応力の付加を停止させる付加停止指示を出力する
     請求項6に記載のコラーゲン分解装置。
    A control device that controls the stress applying device and the heat source device,
    The control device is
    outputting a heating start instruction to the heat source device;
    After starting heating by the heat source device, outputting a first addition start instruction for causing the stress applying device to apply a first stress capable of selectively destroying the site where the collagen fibers are thermally denatured,
    outputting a heating stop instruction to the heat source device;
    7. The collagen decomposition apparatus according to claim 6, wherein after stopping the heating by the heat source device, an addition stop instruction for stopping the stress application by the stress application device is output.
  8.  前記応力付加装置および前記熱源装置を制御する制御装置を備え、
     前記制御装置は、
     前記加熱開始指示の出力より前に、前記応力付加装置に前記対象組織内の非対象組織にダメージを与えない第2応力を付加させる第2付加開始指示を出力する
     請求項7に記載のコラーゲン分解装置。
    A control device that controls the stress applying device and the heat source device,
    The control device is
    8. Collagen decomposition according to claim 7, wherein before outputting the heating start instruction, a second addition start instruction is output to cause the stress applying device to apply a second stress that does not damage non-target tissues within the target tissue. Device.
  9.  前記熱源装置は、波動を媒体として前記熱エネルギーを出力し、
     前記波動は、前記対象組織のうちコラーゲン線維が存在する箇所で収束するように照射される
     請求項1から請求項3の何れか1項に記載のコラーゲン分解装置。
    The heat source device outputs the thermal energy using waves as a medium,
    The collagen degradation device according to any one of claims 1 to 3, wherein the waves are irradiated so as to converge at a portion of the target tissue where collagen fibers are present.
  10.  前記第2範囲は、前記第1範囲より狭い
     請求項1から請求項3の何れか1項に記載のコラーゲン分解装置。
    The collagen degradation device according to any one of claims 1 to 3, wherein the second range is narrower than the first range.
  11.  第1照射範囲に超音波を照射する超音波照射装置と、
     前記第1照射範囲の内側であって前記第1照射範囲より狭い第2照射範囲に熱エネルギーを照射する熱源装置と
     を備えるコラーゲン分解装置。
    an ultrasonic irradiation device for applying ultrasonic waves to a first irradiation range;
    and a heat source device that irradiates thermal energy to a second irradiation range that is inside the first irradiation range and narrower than the first irradiation range.
  12.  前記熱源装置は、前記第2照射範囲に400nm以上900nm以下の波長のレーザ光を照射する
     請求項11に記載のコラーゲン分解装置。
    The collagen decomposition apparatus according to claim 11, wherein the heat source device irradiates the second irradiation range with laser light having a wavelength of 400 nm or more and 900 nm or less.
  13.  前記熱源装置は、前記第2照射範囲に1ns以上20ms以下のパルス時間幅で、400nm以上900nm以下の波長のレーザ光を照射する
     請求項12に記載のコラーゲン分解装置。
    The collagen decomposition apparatus according to claim 12, wherein the heat source device irradiates the second irradiation range with a laser beam having a wavelength of 400 nm or more and 900 nm or less with a pulse time width of 1 ns or more and 20 ms or less.
  14.  前記熱源装置は、前記第2照射範囲内に存在するコラーゲン線維の温度をコラーゲンの変性温度の近傍の温度まで上昇させるパワーの熱エネルギーを照射する
     請求項11から請求項13の何れか1項に記載のコラーゲン分解装置。
    14. The heat source device according to any one of claims 11 to 13, wherein the heat source device irradiates thermal energy with a power that raises the temperature of collagen fibers existing within the second irradiation range to a temperature near the denaturation temperature of collagen. Collagen degradation device as described.
  15.  前記熱源装置は、熱拡散によって前記第2照射範囲外に存在するコラーゲン線維の温度が前記変性温度まで上昇する時間より短い時間だけ熱エネルギーを照射する
     請求項14に記載のコラーゲン分解装置。
    15. The collagen decomposition apparatus according to claim 14, wherein the heat source device irradiates heat energy for a period of time shorter than a period of time for temperature of collagen fibers existing outside the second irradiation range to rise to the denaturation temperature due to thermal diffusion.
  16.  前記超音波照射装置は、生体組織を破壊せずゼラチンを破壊可能な強度を有するキャビテーションを発生させる周波数の超音波を照射する
     請求項11から請求項13の何れか1項に記載のコラーゲン分解装置。
    14. The collagen decomposition apparatus according to any one of claims 11 to 13, wherein the ultrasonic irradiation device emits ultrasonic waves having a frequency that generates cavitation having an intensity capable of destroying gelatin without destroying biological tissue. .
  17.  前記超音波照射装置は、200kHz以上10MHz以下の周波数の超音波を、0.4kW/cm以上10kW/cm以下のパワーで照射する
     請求項11から請求項13の何れか1項に記載のコラーゲン分解装置。
    14. The ultrasonic irradiation device according to any one of claims 11 to 13, wherein the ultrasonic irradiation device irradiates ultrasonic waves having a frequency of 200 kHz or more and 10 MHz or less with a power of 0.4 kW/cm 2 or more and 10 kW/cm 2 or less. Collagen degradation device.
  18.  中心に孔部を有するディスク状の底面を有する筐体を備え、
     前記超音波照射装置は、前記筐体の底面から前記超音波を照射し、
     前記熱源装置は、前記孔部を通して前記熱エネルギーを照射する
     請求項11から請求項13の何れか1項に記載のコラーゲン分解装置。
    A housing having a disk-shaped bottom surface with a hole in the center,
    The ultrasonic irradiation device irradiates the ultrasonic waves from the bottom surface of the housing,
    The collagen decomposition device according to any one of claims 11 to 13, wherein the heat source device irradiates the thermal energy through the hole.
  19.  超音波照射装置と熱源装置と制御装置とを備えるコラーゲン分解装置の作動方法であって、
     前記制御装置が、第2照射範囲に熱エネルギーを照射させる照射指示を熱源装置に出力するステップと
     前記制御装置が、前記熱源装置の動作中に、前記第2照射範囲を含む範囲であって、前記第2照射範囲より広い第1照射範囲に超音波を照射させる照射指示を前記超音波照射装置に出力するステップと、
     を含むコラーゲン分解装置の作動方法。
    A method for operating a collagen decomposition device comprising an ultrasonic irradiation device, a heat source device, and a control device,
    a step in which the control device outputs an irradiation instruction to a heat source device to irradiate a second irradiation range with thermal energy; and a range including the second irradiation range during operation of the heat source device, A step of outputting an irradiation instruction to the ultrasonic irradiation device to irradiate ultrasonic waves in a first irradiation range wider than the second irradiation range;
    A method of operating a collagen degrading device comprising:
  20.  請求項1から請求項3の何れか1項に記載のコラーゲン分解装置の作動方法であって、
     制御装置が、前記熱源装置に前記第2範囲の加熱を開始させる加熱開始指示を出力するステップと、
     前記制御装置が、前記加熱開始指示の後に前記応力付加装置に前記第1範囲への応力の付加を開始させる付加開始指示を出力するステップと、
     前記制御装置が、前記熱源装置に加熱を停止させる加熱停止指示を出力するステップと、
     前記制御装置が、前記加熱停止指示の後に前記応力付加装置に前記応力の付加を停止させる付加停止指示を出力するステップと、
     を有するコラーゲン分解装置の作動方法。
    A method for operating the collagen degradation device according to any one of claims 1 to 3,
    a control device outputting a heating start instruction for causing the heat source device to start heating the second range;
    a step in which the control device outputs an addition start instruction for causing the stress applying device to start applying stress to the first area after the heating start instruction;
    a step in which the control device outputs a heating stop instruction to the heat source device to stop heating;
    a step in which the control device outputs an application stop instruction for causing the stress application device to stop applying the stress after the heating stop instruction;
    A method of operating a collagen degrading device comprising:
PCT/JP2022/024660 2021-06-21 2022-06-21 Collagen decomposition device and method for operating collagen decomposition device WO2022270494A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023530476A JPWO2022270494A1 (en) 2021-06-21 2022-06-21

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-102278 2021-06-21
JP2021102278 2021-06-21

Publications (1)

Publication Number Publication Date
WO2022270494A1 true WO2022270494A1 (en) 2022-12-29

Family

ID=84545754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024660 WO2022270494A1 (en) 2021-06-21 2022-06-21 Collagen decomposition device and method for operating collagen decomposition device

Country Status (2)

Country Link
JP (1) JPWO2022270494A1 (en)
WO (1) WO2022270494A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014533130A (en) * 2011-10-04 2014-12-11 べシックス・バスキュラー・インコーポレイテッド Apparatus and method for treating in-stent restenosis
JP2021510614A (en) * 2018-01-16 2021-04-30 エルメディカル リミテッドElmedical Ltd. Devices, systems, and methods for the treatment of heat in body tissues

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014533130A (en) * 2011-10-04 2014-12-11 べシックス・バスキュラー・インコーポレイテッド Apparatus and method for treating in-stent restenosis
JP2021510614A (en) * 2018-01-16 2021-04-30 エルメディカル リミテッドElmedical Ltd. Devices, systems, and methods for the treatment of heat in body tissues

Also Published As

Publication number Publication date
JPWO2022270494A1 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
US20050228318A1 (en) Method and apparatus for altering activity of tissue layers
JP4970037B2 (en) Method and apparatus for non-invasive treatment of atrial fibrillation using high intensity focused ultrasound
US5207672A (en) Instrument and method for intraluminally relieving stenosis
US6572609B1 (en) Phototherapeutic waveguide apparatus
EP2341839B1 (en) System for vascular ultrasound treatments
US7294125B2 (en) Methods of delivering energy to body portions to produce a therapeutic response
US6953457B2 (en) Phototherapeutic wave guide apparatus
US5524620A (en) Ablation of blood thrombi by means of acoustic energy
US10499937B2 (en) Ablation device with optimized input power profile and method of using the same
JP2000507857A (en) Tissue treatment with intensive ultrasound
JP2009542260A (en) Apparatus and method for treatment of benign prostatic hyperplasia
KR20090121292A (en) Treating weakened vessel wall such as vulnerable plaque or aneurysms
US20030018256A1 (en) Therapeutic ultrasound system
JP2009502212A (en) Apparatus and method for cosmetic treatment of local lipodystrophy and slack
US20200237388A1 (en) Methods and apparatus for delivering a stimulus to an occlusive implant
EP2046222A1 (en) Device for irradiating an internal body surface
WO1999011190A1 (en) System for prostate treatment while preventing urethral constriction
WO2007067268A1 (en) Cylindrical device for delivering energy to tissue
JP2004215862A (en) Shock wave producing device
US20050209588A1 (en) HIFU resculpturing and remodeling of heart valves
WO2022270494A1 (en) Collagen decomposition device and method for operating collagen decomposition device
Muratore et al. High-intensity focused ultrasound ablation of ex vivo bovine Achilles tendon
EP4342407A1 (en) Laser system and method for detecting and processing information
RU2067015C1 (en) Method for treating benign hyperplasia of the prostate
US20110213348A1 (en) Method and device for valve repair

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22828411

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023530476

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE