JP2004215862A - Shock wave producing device - Google Patents

Shock wave producing device Download PDF

Info

Publication number
JP2004215862A
JP2004215862A JP2003006489A JP2003006489A JP2004215862A JP 2004215862 A JP2004215862 A JP 2004215862A JP 2003006489 A JP2003006489 A JP 2003006489A JP 2003006489 A JP2003006489 A JP 2003006489A JP 2004215862 A JP2004215862 A JP 2004215862A
Authority
JP
Japan
Prior art keywords
shock wave
optical fiber
diaphragm
tube
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003006489A
Other languages
Japanese (ja)
Inventor
Atsuhiro Nakagawa
敦寛 中川
Takayuki Hirano
孝幸 平野
Takashi Yoshimoto
高志 吉本
Kazuyoshi Takayama
和喜 高山
Akira Takahashi
明 高橋
Reizo Shirane
礼造 白根
Yasuko Kusaka
康子 日下
Koji Uenohara
広司 上之原
Mariko Sato
真理子 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Techno Arch Co Ltd
Original Assignee
Tohoku Techno Arch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Techno Arch Co Ltd filed Critical Tohoku Techno Arch Co Ltd
Priority to JP2003006489A priority Critical patent/JP2004215862A/en
Publication of JP2004215862A publication Critical patent/JP2004215862A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1657Bone breaking devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Laser Surgery Devices (AREA)
  • Radiation-Therapy Devices (AREA)
  • Surgical Instruments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exceedingly small shock wave producing device which is applied to various treatments by producing shock waves inside or outside the human body. <P>SOLUTION: An optical fiber 110 of the device applies a laser of a pulse wave from a laser oscillator. The distal end part of the optical fiber is fixed in a narrow tube 120. These are placed in a mantle tube 130 which is closed with an elastic diaphragm 140 at the opening part and is filled with a liquid. The mantle tube 130 is connected with a Y-shaped connector side tube 132 and cools the inside of the mantle tube 130 by the constant flow of the liquid. If the laser of the pulse wave is applied to the optical fiber 110, the liquid at the distal end part of the optical fiber 110 is heated rapidly, and the bubbles are produced. Then, the shock waves are produced with a liquid jet. The liquid jet is stopped at the diaphragm 140, and only shock waves are transmitted through the diaphragm 140. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、人間の体の内外で衝撃波を発生して、いろいろな治療に応用するための、超小型衝撃波発生装置に関する。
【0002】
【技術的背景】
衝撃波は、1980年代に尿路結石破砕に医療応用されてから、従来外科的治療手段しかなかったものが非侵襲的に治療可能になる点や、服薬などが不要となることが多い点が評価され、適応疾患も胆管・胆道・唾液腺結石へと拡大した。その後も衝撃波のもつ生物学的な影響に関する研究が進み、以下の領域でも臨床応用・実験的応用がなされている。
1.整形外科領域で、四肢長管骨の遅延性骨癒合・非癒合症例に対し、骨癒合促進のための非観血的治療手段として臨床応用された。機序としては、治癒過程の停止している部位に衝撃波を照射し、微小骨折・出血を発生させ、再度炎症(治癒過程)を起こす説と、衝撃波照射そのものにより、骨形成タンパクが発現し、骨形成細胞を活性化させるという説もあるが、一般的には前者が定説となっている。以下の2で示す応用とともに、衝撃波は音響インピーダンスが低いところから高いところへ移行する際にエネルギーを発生するため、音響インピーダンスの高い骨組織は衝撃波の作用を発揮できる組織であるといえる。
【0003】
2.石灰化を伴った関節症症例に疼痛を合併した症例の疼痛コントロール手段として臨床応用された(整形外科領域)。疼痛制御の機序は石灰化病変の破砕・消失により、機械的刺激がなくなることによるものなのか、衝撃波自体が疼痛伝達物質に対して何らかの影響を及ぼしているためなのかは現在研究されている。
3.実験段階であるが、細胞膜の膜透過性を変化させることが知られており、薬物を局所高濃度で分布させるためのドラッグ・デリバリー・システムとして研究が進んでおり、Cancer Research などの誌上にも掲載されている。
この分野では、衝撃波源はレーザー誘発衝撃波(金属にレーザーを照射して発生する衝撃波:高い過剰圧を供給できる反面、装置が大きく、高エネルギーを要し、単発照射しかできない欠点がある)と従来の体外衝撃波発生装置が使用されているが、体内に導入できる衝撃波源は存在しない。
【0004】
4.実験段階ではあるが、衝撃波は微小気泡と干渉することにより微小ジェットを発生することが分かっており、心臓・脳血栓を想定したモデルにおいて in vitroで有効性が示唆されている。
しかし、上記の応用に対し、臨床応用例では結石破砕装置(電気放電式・電磁方式・圧電素子方式により衝撃波を発生し、楕円回転体・音響レンズ・パラボナなどを用いて焦点に収束させる)が用いられていたため、装置が大きく、体表の接触面積も大きかった。また、四肢なら神経や血管を避けて照射することが可能であったものの、照射野が広いことから腎結石破砕などではしばしば血尿を含めた出血性の合併症が生じていた。また、インピーダンス・ミスマッチングを避けるために照射時の患者の体位にも制限があった。
一方、上述の3に関しても今後の臨床応用を考慮すると適当な衝撃波源であるとはいいがたい。体内導入を目的とした微小爆薬式の衝撃波発生源もあるが、熱損傷を含めた安全性は保証されているとはいえず、衝撃波中心は高温になるため、焦点から離して被照射物を静置せざるを得ないのが現状である。
【0005】
また、従来の電気水圧式衝撃波発生装置は先端がファイバ状になっている利点を持ち、尿路に存在する結石の破砕には使用されているが、尿路・膀胱内のような比較的大きな水で充満した空間内で使用しないと周囲に熱的損傷が及んでしまう。また、この装置はファイバ先端で高熱が発生するために、ターゲットに直接衝撃波中心を当てることができず、結果的に周囲へ組織損傷を与えるため、事実上結石破砕以外への応用は困難であると考えられる。
【0006】
【発明が解決しようとする課題】
本発明の目的は、医療に適用するための、超小型の衝撃波発生装置を提供するものである。
【課題を解決するための手段】
上記目的を達成するために、本発明は、衝撃波発生装置であって、細管内に挿入された光ファイバと、液体で満たしており、開口部をダイヤフラムで閉ざしている外套管とを備え、前記光ファイバ及び前記細管は、前記細管の開口部をダイヤフラムに向けて前記外套管内に設置しており、前記光ファイバに、パルスのレーザ光を印加することで、前記ダイヤフラムから衝撃波を発生することを特徴とする。
前記外套管は、前記液体を流すことで冷却するとよい。
【0007】
【発明の実施の形態】
本発明の実施形態を、図面を用いて説明する。
図1は、本発明の実施形態である衝撃波発生装置の構成を示す図である。図1において、光ファイバ110は、レーザ発振器(図示せず)からのパルス波のレーザ光を印加している。この光ファイバの先端部は、細管120内に固定されている。これらは、開口部に弾性のダイヤフラム140で塞いであり、液体で満たしてある外套管130の中に設置している。外套管130は、Y字型コネクタ側管132に接続されており、Y字型コネクタ側管132に液体を流すことで、外套管130内を冷却することができる。
この構成で、光ファイバ110にパルス波のレーザ光を印加すると、光ファイバ110の先端部の液体が急激に熱せられてバブルが発生し、液体ジェットが生じるとともに衝撃波が発生する。液体ジェットはダイヤフラム140で止められるが、衝撃波のみがダイヤフラム140を介して伝達される。例えばダイヤフラムを直接ターゲットに接触することで、衝撃波を照射することができる。
光ファイバ110に印加するレーザ光として、細管120や外套管130を満たしている液体に対して吸収性のよいものを使用することで、レーザエネルギを衝撃波エネルギへと効率よく変換することができる。
なお、液体で満たされた細管120内の光ファイバ110により液体ジェットが発生することは、発明者らによる特許出願である特願2001−307088号出願を参照されたい。
【0008】
図2は、上述の衝撃波発生装置による衝撃波を発生するメカニズムを説明するための図である。この図を用いて、衝撃波の発生のメカニズムを詳しく説明する。
例えば蒸留水で満たされた細管120内にレーザ光を照射すると、レーザプラズマ152によりレーザ誘起気泡153が発生することで、その反跳現象により液体ジェット154と衝撃波158が細管120から発生する。細管120の前方に設置されているダイヤフラム140により、液体ジェット154が遮断されて、衝撃波158のみが衝撃波発生装置100の外部に伝達される。なお、細管120の開口端から射出された液体ジェットが開口端付近に乱流を引き起こし、それに伴うキャビテーション現象が衝撃波発生のメカニズムに関与している可能性もある。
ここで、外套管130の大きさは、バブル153の膨張・収縮が、自由水(フリーウォータ)の場合と同程度に起きるだけのスペースが必要である。
衝撃波の中心は、細管120と光ファイバの先端間距離、細管120とダイヤフラム140間距離、外套管130の内径を調節することで、位置調整が可能で、ダイヤフラム上に局在化させることができるとともに、熱的、物理的に損傷のない位置とすることができる。
【0009】
【実施例】
図3に上述の衝撃波発生装置により発生した衝撃波の写真を示している。この写真は、衝撃波発生装置から水中に衝撃波を発生させ、影写真法により可視化して撮影した。
使用した衝撃波発生装置は、真鍮製の細管120として内径:1.3mm,外径:1.5mmであり、アクリル製の外套管130は内径:12mm,外径:15mmで、ダイヤフラム140はゴムの薄膜を使用している。外套管内部は蒸留水で満たし、Y字コネクタ側管からは、蒸留水を120ml/hで持続注入した。
光ファイバ110(コア径:600μm)には、Ho−YAGレーザ発振器からのパルス波(波長:2.1μm,パルス幅:350μs,最大レーザエネルギ:700mJ)を印加した。印加したレーザエネルギは、光ファイバ射出端で、700mJ/パルスに固定した。細管120の先端とダイヤフラム140との距離は4mmとした。
観測された衝撃波は、レーザ照射後1000μsから1200μs後に、図3に示されている様に、衝撃波中心がダイヤフラム上に局在化した球状衝撃波として観察され、その過剰圧はPVDFハイドロフォンで計測した結果、5MPaであった。
なお、上述の実施例では、Ho−YAGレーザ発振器からのパルス波レーザを使用したが、水吸収性波長係数が高いEr−YAGレーザ、炭酸ガスレーザを含めた赤外線レーザ発振器を使用してもよい。
【0010】
この衝撃波発生装置は、衝撃波発生部を被照射箇所の近傍に近づけて使用できるため、焦点化機構が必要なく、小型化が可能である。また、小型化の結果、衝撃波発生部をカテーテルや内視鏡内に挿入することができる。
この衝撃波発生装置は、例えば、頭蓋骨の骨折に対して、骨の再生を外部から促すことに適用することができる。これは、損傷箇所の周囲に、本発明の衝撃波発生装置により発生する衝撃波を患部の外部から照射する。
【0011】
【発明の効果】
上述した本発明の衝撃波発生装置は、超小型で、衝撃波を発生することができるので、人間の体の内外で衝撃波を発生して、いろいろな治療に応用することができる。
【図面の簡単な説明】
【図1】本発明の実施形態である衝撃波発生装置の構成例を示す図である。
【図2】衝撃波発生装置における衝撃波の発生メカニズムを示す図である。
【図3】実施例の衝撃波発生装置からの衝撃波を影写真法により可視化した連続写真である。
【符号の説明】
100 衝撃波発生装置
110 光ファイバ
120 細管
130 外套管
132 Y字コネクタ側管
140 ダイヤフラム
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a microminiature shockwave generator for generating shockwaves inside and outside a human body and applying it to various treatments.
[0002]
[Technical background]
Shock waves were medically applied to urinary calculus crushing in the 1980s, and were evaluated for their non-invasive treatment, which was previously only possible with surgical treatment, and the fact that medication is often unnecessary. The indications have also expanded to bile ducts, biliary tracts, and salivary gland stones. Since then, research on the biological effects of shock waves has progressed, and clinical and experimental applications have been made in the following areas.
1. In the field of orthopedic surgery, it has been clinically applied as a non-invasive treatment to promote bone union in patients with delayed bone fusion and non-union of long limb long bones. The mechanism is that shock waves are irradiated to the part where the healing process has stopped, causing microfractures and bleeding and causing inflammation (healing process) again. There is a theory that bone formation cells are activated, but the former is generally accepted. In addition to the applications described in 2 below, a shock wave generates energy when moving from a place where the acoustic impedance is low to a place where the acoustic impedance is high. Therefore, it can be said that a bone tissue having a high acoustic impedance is a tissue that can exert the action of the shock wave.
[0003]
2. It has been clinically applied as a pain control means in patients with pain associated with calcification-related arthropathy (orthopedic surgery). It is currently being investigated whether the mechanism of pain control is due to the elimination of mechanical stimuli due to the crushing and disappearance of calcified lesions, or whether the shock wave itself has any effect on pain transmitters .
3. Although it is an experimental stage, it is known to change the membrane permeability of cell membranes, and research is progressing as a drug delivery system for distributing drugs at a high local concentration, and it has been published in journals such as Cancer Research. Has been posted.
In this field, conventional shock wave sources are laser-induced shock waves (shock waves generated by irradiating a metal with a laser: a high excess pressure can be supplied, but the equipment is large, requires high energy, and has the disadvantage of being able to perform only one shot). However, there is no shock wave source that can be introduced into the body.
[0004]
4. Although it is in the experimental stage, it has been known that the shock wave generates a micro jet by interfering with the micro bubble, and its effectiveness is suggested in vitro in a model assuming a heart / cerebral thrombus.
However, in contrast to the above application, in the clinical application example, a calculus crushing device (which generates a shock wave by an electric discharge type, electromagnetic type, piezoelectric element type and converges to the focal point using an elliptical rotator, an acoustic lens, a parabona, etc.) Since it was used, the device was large and the contact area on the body surface was large. In addition, although it was possible to irradiate the limbs avoiding nerves and blood vessels, bleeding complications including hematuria often occurred in renal stone crushing due to the large irradiation field. In addition, the patient's position at the time of irradiation was limited in order to avoid impedance mismatching.
On the other hand, the above-mentioned item 3 cannot be said to be an appropriate shock wave source in consideration of future clinical applications. There are also micro explosive-type shock wave sources intended for introduction into the body, but safety including thermal damage cannot be said to be guaranteed. At present, it has to be left still.
[0005]
Also, the conventional electro-hydraulic shock wave generator has the advantage that the tip is in the form of a fiber, and is used for crushing calculi present in the urinary tract. If not used in a space filled with water, the surroundings will be thermally damaged. In addition, since this device generates high heat at the fiber tip, it cannot directly apply the center of the shock wave to the target, resulting in tissue damage to the surroundings, making it practically difficult to apply to anything other than calculus breaking. it is conceivable that.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a microminiature shock wave generator for medical applications.
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a shock wave generator, comprising: an optical fiber inserted into a thin tube; and an outer tube filled with a liquid and having an opening closed by a diaphragm. The optical fiber and the thin tube are installed in the outer tube with the opening of the thin tube facing the diaphragm, and by applying a pulsed laser beam to the optical fiber, it is possible to generate a shock wave from the diaphragm. Features.
The mantle tube may be cooled by flowing the liquid.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram illustrating a configuration of a shock wave generator according to an embodiment of the present invention. In FIG. 1, an optical fiber 110 applies pulsed laser light from a laser oscillator (not shown). The tip of the optical fiber is fixed in the thin tube 120. These are closed by an elastic diaphragm 140 in the opening, and are installed in a mantle tube 130 filled with liquid. The mantle tube 130 is connected to the Y-shaped connector side tube 132, and by flowing a liquid through the Y-shaped connector side tube 132, the inside of the mantle tube 130 can be cooled.
In this configuration, when pulsed laser light is applied to the optical fiber 110, the liquid at the tip of the optical fiber 110 is rapidly heated to generate a bubble, thereby generating a liquid jet and generating a shock wave. The liquid jet is stopped at the diaphragm 140, but only the shock waves are transmitted through the diaphragm 140. For example, a shock wave can be applied by directly contacting the diaphragm with the target.
By using a laser beam to be applied to the optical fiber 110 that is highly absorbable with respect to the liquid filling the thin tube 120 and the outer tube 130, laser energy can be efficiently converted into shock wave energy.
The generation of a liquid jet by the optical fiber 110 in the thin tube 120 filled with liquid is described in Japanese Patent Application No. 2001-307088, which is a patent application by the present inventors.
[0008]
FIG. 2 is a diagram for explaining a mechanism for generating a shock wave by the above-described shock wave generator. The mechanism of the generation of the shock wave will be described in detail with reference to FIG.
For example, when a thin tube 120 filled with distilled water is irradiated with laser light, a laser-induced bubble 153 is generated by the laser plasma 152, and a liquid jet 154 and a shock wave 158 are generated from the thin tube 120 by the recoil phenomenon. The liquid jet 154 is cut off by the diaphragm 140 installed in front of the thin tube 120, and only the shock wave 158 is transmitted to the outside of the shock wave generator 100. The liquid jet ejected from the open end of the thin tube 120 may cause a turbulent flow near the open end, and the cavitation phenomenon may be involved in the shock wave generation mechanism.
Here, the size of the mantle tube 130 needs to have enough space for the expansion and contraction of the bubble 153 to occur to the same extent as in the case of free water (free water).
The center of the shock wave can be adjusted in position by adjusting the distance between the thin tube 120 and the tip of the optical fiber, the distance between the thin tube 120 and the diaphragm 140, and the inner diameter of the mantle tube 130, and can be localized on the diaphragm. At the same time, it can be a position that is not thermally and physically damaged.
[0009]
【Example】
FIG. 3 shows a photograph of a shock wave generated by the above-described shock wave generator. In this photograph, a shock wave was generated in water from a shock wave generator and visualized by shadow photography.
The shock wave generator used was a brass thin tube 120 having an inner diameter of 1.3 mm and an outer diameter of 1.5 mm, an acrylic outer tube 130 having an inner diameter of 12 mm, an outer diameter of 15 mm, and a diaphragm 140 made of rubber. Uses a thin film. The inside of the mantle tube was filled with distilled water, and distilled water was continuously injected at 120 ml / h from the Y-shaped connector side tube.
A pulse wave (wavelength: 2.1 μm, pulse width: 350 μs, maximum laser energy: 700 mJ) from a Ho-YAG laser oscillator was applied to the optical fiber 110 (core diameter: 600 μm). The applied laser energy was fixed at 700 mJ / pulse at the optical fiber emission end. The distance between the tip of the thin tube 120 and the diaphragm 140 was 4 mm.
The observed shock wave was observed as a spherical shock wave in which the center of the shock wave was localized on the diaphragm, as shown in FIG. 3, 1000 to 1200 μs after the laser irradiation, and the excess pressure was measured with a PVDF hydrophone. As a result, it was 5 MPa.
In the above embodiment, the pulse wave laser from the Ho-YAG laser oscillator is used, but an infrared laser oscillator including an Er-YAG laser having a high water absorption wavelength coefficient and a carbon dioxide laser may be used.
[0010]
Since this shock wave generator can be used with the shock wave generator closer to the vicinity of the irradiated area, a focusing mechanism is not required and the size can be reduced. In addition, as a result of miniaturization, the shock wave generator can be inserted into a catheter or an endoscope.
This shock wave generator can be applied to, for example, externally promoting bone regeneration for a skull fracture. In this method, a shock wave generated by the shock wave generator according to the present invention is radiated around the damaged portion from outside the affected part.
[0011]
【The invention's effect】
Since the shock wave generator of the present invention described above is very small and can generate a shock wave, it can generate a shock wave inside and outside a human body and can be applied to various treatments.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a configuration example of a shock wave generator according to an embodiment of the present invention.
FIG. 2 is a diagram illustrating a shock wave generation mechanism in the shock wave generator.
FIG. 3 is a series of photographs in which a shock wave from the shock wave generator of the example is visualized by shadow photography.
[Explanation of symbols]
REFERENCE SIGNS LIST 100 Shock wave generator 110 Optical fiber 120 Thin tube 130 Outer tube 132 Y-shaped connector side tube 140 Diaphragm

Claims (2)

衝撃波発生装置であって、
細管内に挿入された光ファイバと、
液体で満たしており、開口部をダイヤフラムで閉ざしている外套管とを備え、
前記光ファイバ及び前記細管は、前記細管の開口部を前記ダイヤフラムに向けて前記外套管内に設置しており、
前記光ファイバに、パルスのレーザ光を印加することで、前記ダイヤフラムから衝撃波を発生することを特徴とする衝撃波発生装置。
A shock wave generator,
An optical fiber inserted into the capillary,
A mantle tube filled with liquid and having an opening closed by a diaphragm,
The optical fiber and the thin tube are installed in the outer tube with the opening of the thin tube facing the diaphragm,
A shock wave generator, wherein a shock wave is generated from the diaphragm by applying a pulsed laser beam to the optical fiber.
請求項1に記載の衝撃波発生装置において、
前記外套管は、前記液体を流すことで冷却されていることを特徴とする衝撃波発生装置。
The shock wave generator according to claim 1,
The shock wave generator, wherein the outer tube is cooled by flowing the liquid.
JP2003006489A 2003-01-15 2003-01-15 Shock wave producing device Pending JP2004215862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003006489A JP2004215862A (en) 2003-01-15 2003-01-15 Shock wave producing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003006489A JP2004215862A (en) 2003-01-15 2003-01-15 Shock wave producing device

Publications (1)

Publication Number Publication Date
JP2004215862A true JP2004215862A (en) 2004-08-05

Family

ID=32896834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003006489A Pending JP2004215862A (en) 2003-01-15 2003-01-15 Shock wave producing device

Country Status (1)

Country Link
JP (1) JP2004215862A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009061083A (en) * 2007-09-06 2009-03-26 Hi-Lex Corporation Shock wave ablation system
US7594930B2 (en) 2006-07-06 2009-09-29 General Patent Llc Method of attaching soft tissue to bone
JP2011229911A (en) * 2010-04-29 2011-11-17 Richard Wolf Gmbh Impact wave therapeutic device for external impact wave therapy
US8162859B2 (en) 2005-06-09 2012-04-24 General Patent , LLC Shock wave treatment device and method of use
JP2012085812A (en) * 2010-10-19 2012-05-10 Tohoku Univ Optical fiber, and underwater shock wave generator using the same
WO2014104075A1 (en) * 2012-12-26 2014-07-03 国立大学法人東北大学 Shock wave focusing device, shock wave generation apparatus, and shock wave ablation system
JP2014528286A (en) * 2011-09-30 2014-10-27 バイオレイズ,インク. Pressure wave root canal cleaning system
US20160184022A1 (en) * 2013-03-13 2016-06-30 The Spectranetics Corporation Laser-induced pressure wave emitting catheter sheath
WO2016109731A1 (en) * 2014-12-30 2016-07-07 The Spectranetics Corporation Laser-induced pressure wave emitting catheter sheath
EP3117784A1 (en) * 2009-07-08 2017-01-18 Sanuwave, Inc. Usage of intracorporeal pressure shock waves in medicine
US20170333132A1 (en) * 2014-12-30 2017-11-23 The Spectranetics Corporation Laser-induced pressure wave emitting catheter sheath
US20180008348A1 (en) * 2014-08-25 2018-01-11 The Spectranetics Corporation Liquid laser-induced pressure wave emitting catheter sheath
WO2018022593A1 (en) * 2016-07-25 2018-02-01 The Spectranetics Corporation Laser-induced pressure wave emitting catheter sheath
KR20180117765A (en) * 2017-04-19 2018-10-30 주식회사 리메드 Extracorporeal therapy device with easy adjusting focus
US10201387B2 (en) 2013-03-13 2019-02-12 The Spectranetics Corporation Laser-induced fluid filled balloon catheter
US10786661B2 (en) 2013-03-13 2020-09-29 The Spectranetics Corporation Apparatus and method for balloon angioplasty
US10842567B2 (en) 2013-03-13 2020-11-24 The Spectranetics Corporation Laser-induced fluid filled balloon catheter
US10850078B2 (en) 2014-12-30 2020-12-01 The Spectranetics Corporation Electrically-induced fluid filled balloon catheter
CN112153947A (en) * 2018-03-29 2020-12-29 声波创新株式会社 Shock wave generation device and shock wave ablation system

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8162859B2 (en) 2005-06-09 2012-04-24 General Patent , LLC Shock wave treatment device and method of use
US7594930B2 (en) 2006-07-06 2009-09-29 General Patent Llc Method of attaching soft tissue to bone
JP4635233B2 (en) * 2007-09-06 2011-02-23 株式会社ハイレックスコーポレーション Shock wave ablation system
JP2009061083A (en) * 2007-09-06 2009-03-26 Hi-Lex Corporation Shock wave ablation system
US12004760B2 (en) 2009-07-08 2024-06-11 Sanuwave, Inc. Catheter with shock wave electrodes aligned on longitudinal axis
US10058340B2 (en) 2009-07-08 2018-08-28 Sanuwave, Inc. Extracorporeal pressure shock wave devices with multiple reflectors and methods for using these devices
US12004759B2 (en) 2009-07-08 2024-06-11 Sanuwave, Inc. Catheter with shock wave electrodes aligned on longitudinal axis
US11925366B2 (en) 2009-07-08 2024-03-12 Sanuwave, Inc. Catheter with multiple shock wave generators
US11666348B2 (en) 2009-07-08 2023-06-06 Sanuwave, Inc. Intracorporeal expandable shock wave reflector
US10639051B2 (en) 2009-07-08 2020-05-05 Sanuwave, Inc. Occlusion and clot treatment with intracorporeal pressure shock waves
US10238405B2 (en) 2009-07-08 2019-03-26 Sanuwave, Inc. Blood vessel treatment with intracorporeal pressure shock waves
EP3117784A1 (en) * 2009-07-08 2017-01-18 Sanuwave, Inc. Usage of intracorporeal pressure shock waves in medicine
JP2011229911A (en) * 2010-04-29 2011-11-17 Richard Wolf Gmbh Impact wave therapeutic device for external impact wave therapy
JP2012085812A (en) * 2010-10-19 2012-05-10 Tohoku Univ Optical fiber, and underwater shock wave generator using the same
EP2630918A1 (en) * 2010-10-19 2013-08-28 Tohoku University Optical fiber and underwater shockwave generating device employing same
EP2630918A4 (en) * 2010-10-19 2014-06-25 Univ Tohoku Optical fiber and underwater shockwave generating device employing same
US9433466B2 (en) 2010-10-19 2016-09-06 Tohoku University Optical fiber and an underwater shockwave generating device employing the same
JP2014528286A (en) * 2011-09-30 2014-10-27 バイオレイズ,インク. Pressure wave root canal cleaning system
JPWO2014104075A1 (en) * 2012-12-26 2017-01-12 国立大学法人東北大学 Shock wave converging device, shock wave generating device, and shock wave ablation system
WO2014104075A1 (en) * 2012-12-26 2014-07-03 国立大学法人東北大学 Shock wave focusing device, shock wave generation apparatus, and shock wave ablation system
CN104955414A (en) * 2012-12-26 2015-09-30 国立大学法人东北大学 Shock wave converging device, shock wave generating device, and shock wave ablation system
US20150359557A1 (en) * 2012-12-26 2015-12-17 Tohoku University Shock wave focusing device, shock wave generation apparatus, and shock wave ablation system
CN104955414B (en) * 2012-12-26 2017-11-24 国立大学法人东北大学 Shock wave converging device, shock wave generating device, and shock wave ablation system
US10182838B2 (en) * 2012-12-26 2019-01-22 Tohoku University Shock wave focusing device, shock wave generation apparatus, and shock wave ablation system
US10786661B2 (en) 2013-03-13 2020-09-29 The Spectranetics Corporation Apparatus and method for balloon angioplasty
US10201387B2 (en) 2013-03-13 2019-02-12 The Spectranetics Corporation Laser-induced fluid filled balloon catheter
US10842567B2 (en) 2013-03-13 2020-11-24 The Spectranetics Corporation Laser-induced fluid filled balloon catheter
US20160184022A1 (en) * 2013-03-13 2016-06-30 The Spectranetics Corporation Laser-induced pressure wave emitting catheter sheath
US20180008348A1 (en) * 2014-08-25 2018-01-11 The Spectranetics Corporation Liquid laser-induced pressure wave emitting catheter sheath
US11246659B2 (en) 2014-08-25 2022-02-15 The Spectranetics Corporation Liquid laser-induced pressure wave emitting catheter sheath
US20170333132A1 (en) * 2014-12-30 2017-11-23 The Spectranetics Corporation Laser-induced pressure wave emitting catheter sheath
WO2016109731A1 (en) * 2014-12-30 2016-07-07 The Spectranetics Corporation Laser-induced pressure wave emitting catheter sheath
US10850078B2 (en) 2014-12-30 2020-12-01 The Spectranetics Corporation Electrically-induced fluid filled balloon catheter
US10898213B2 (en) 2014-12-30 2021-01-26 The Spectranetics Corporation Electrically-induced pressure wave emitting catheter sheath
US11058492B2 (en) 2014-12-30 2021-07-13 The Spectranetics Corporation Laser-induced pressure wave emitting catheter sheath
WO2018022593A1 (en) * 2016-07-25 2018-02-01 The Spectranetics Corporation Laser-induced pressure wave emitting catheter sheath
KR20180117765A (en) * 2017-04-19 2018-10-30 주식회사 리메드 Extracorporeal therapy device with easy adjusting focus
KR101967355B1 (en) * 2017-04-19 2019-04-10 주식회사 리메드 Extracorporeal therapy device with easy adjusting focus
CN112153947A (en) * 2018-03-29 2020-12-29 声波创新株式会社 Shock wave generation device and shock wave ablation system

Similar Documents

Publication Publication Date Title
US6491685B2 (en) Laser and acoustic lens for lithotripsy
JP2004215862A (en) Shock wave producing device
US7883482B2 (en) Pressure pulse/shock wave therapy methods and an apparatus for conducting the therapeutic methods
US6206843B1 (en) Ultrasound system and methods utilizing same
EP1355696B1 (en) Ultrasound wound treatment device using standing waves
US8257282B2 (en) Pressure pulse/shock wave apparatus for generating waves having plane, nearly plane, convergent off target or divergent characteristics
JP4987958B2 (en) Medical laser equipment
Capaccio et al. Salivary lithotripsy in the era of sialendoscopy
Raif et al. An Er: YAG laser endoscopic fiber delivery system for lithotripsy of salivary stones
JPS62120846A (en) Method and apparatus for positioning and treating stone by ultrasonic wave
US20040162508A1 (en) Shock wave therapy method and device
US20200237388A1 (en) Methods and apparatus for delivering a stimulus to an occlusive implant
EP1011449A1 (en) An ultrasound system and methods utilizing same
JPH01308544A (en) Body cavity laser operation apparatus
Ito et al. Pulsed dye laser lithotripsy of submandibular gland salivary calculus
Hofmann et al. First clinical experience with a Q-switched neodymium: YAG laser for urinary calculi
Verdaasdonk Medical lasers: fundamentals and applications
Zenk et al. Extracorporeal and intracorporeal lithotripsy of salivary gland stones: basic investigations
Nakagawa et al. Application of shock waves as a treatment modality in the vicinity of the brain and skull
Vaezy et al. Acoustic surgery
Kudo Shock wave lithotripsy and therapy
WO2021091590A1 (en) A method of treating the lungs
Zharov New technology in surgery: combination of laser and ultrasound
US20020151940A1 (en) Transcutaneous spine trauma and disorders treatment using ultrasonically induced confined heat (ulich) zone
Minaev Laser apparatus for surgery and force therapy based on high-power semiconductor and fibre lasers