WO2022270489A1 - 通信装置および通信方法 - Google Patents

通信装置および通信方法 Download PDF

Info

Publication number
WO2022270489A1
WO2022270489A1 PCT/JP2022/024645 JP2022024645W WO2022270489A1 WO 2022270489 A1 WO2022270489 A1 WO 2022270489A1 JP 2022024645 W JP2022024645 W JP 2022024645W WO 2022270489 A1 WO2022270489 A1 WO 2022270489A1
Authority
WO
WIPO (PCT)
Prior art keywords
bits
information
frame
parity
communication device
Prior art date
Application number
PCT/JP2022/024645
Other languages
English (en)
French (fr)
Inventor
良太 山田
拓広 佐藤
宏道 留場
淳 白川
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2022270489A1 publication Critical patent/WO2022270489A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/13Linear codes
    • H03M13/19Single error correction without using particular properties of the cyclic codes, e.g. Hamming codes, extended or generalised Hamming codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present invention relates to a communication device and communication method.
  • This application claims priority to Japanese Patent Application No. 2021-102165 filed in Japan on June 21, 2021, the contents of which are incorporated herein.
  • IEEE 802.11 a wireless LAN standard, in order to achieve faster speeds and more efficient frequency usage for wireless LAN (Local Area Network) communications. I am working on it. In recent years, with the rapid spread of wireless LAN devices, it is expected that the use of real-time applications such as telemedicine and VR/AR will expand. The standardization of IEEE802.11be, which realizes standardization, is underway.
  • FEC forward error correction
  • ARQ automatic repeat request
  • Packet errors during decoding are detected by Medium Access Control (MAC) on the receiving side and discarded without being stored in a buffer.
  • An acknowledgment (ACK) is conveyed to the sender if the packet is successfully decoded and a negative acknowledgment (NACK) if a packet error is detected.
  • Packet retransmission processing is performed by ARQ when a NACK is delivered to the transmitting side or when an ACK is not delivered to the transmitting side within a certain period of time.
  • hybrid ARQ HARQ
  • HARQ hybrid ARQ
  • HARQ transmits the same packet at the time of retransmission and combines it on the receiving side to improve the signal to noise power ratio (SNR) of the received signal. ) is newly transmitted to increase the error correction decoding capability of the receiving side, Incremental redundancy (IR) combining is widely studied.
  • SNR signal to noise power ratio
  • IR Incremental redundancy
  • One aspect of the present invention has been made in view of such circumstances, and its object is to enable efficient packet synthesis at the time of retransmission in the IEEE 802.11 standard, and to contribute to improvement of reception SNR.
  • a communication method is provided.
  • a communication device and a communication method according to one aspect of the present invention for solving the above-described problems are as follows.
  • a communication device includes an upper layer unit that sets a retransmission method, a physical layer frame generation unit that generates a frame using a codeword, and a wireless transmission unit that transmits the frame,
  • the physical layer frame generator encodes an LDPC (Low Density Parity Check) information block including information bits at a predetermined coding rate, and parity generating a bit sequence, dividing the parity bit sequence into the number of blocks given by the coding rate indicated by MCS (Modulation and Coding Scheme) to generate a plurality of parity blocks, each of the parity blocks having the number of retransmissions and associated, the codeword is generated based on the information bits and one of the parity blocks, and at least one parity block of the plurality of parity blocks if the LDPC information block includes the information bits and shortening bits; is reduced based on the number of shortening bits.
  • LDPC Low Density Parity Check
  • the number of blocks given by the coding rate indicated by the MCS increases as the coding rate increases.
  • the physical layer frame generation unit punctures a predetermined number of bits from the parity bit sequence, and then The plurality of parity blocks are generated by dividing into the number of blocks given by the coding rate indicated by MCS.
  • the physical layer frame generation unit punctures a predetermined number of bits from one parity block when the LDPC information block includes the information bits and the shortening bits, The codeword is generated based on the punctured parity block and the information bits.
  • the physical layer frame generation unit when the LDPC information block includes the information bits and the shortening bits, the physical layer frame generation unit, at the time of initial transmission, the number of bits of the parity block included in the codeword is decreased based on the number of shortening bits, and at retransmission, the number of information bits included in the codeword is decreased based on the number of shortening bits.
  • a communication method comprises the steps of setting a retransmission scheme, generating a frame using a codeword, and transmitting the frame, wherein the setting of the retransmission scheme is HARQ ( Hybrid Auto Repeat reQuest), an LDPC (Low Density Parity Check) information block containing information bits is encoded at a predetermined coding rate to generate a parity bit sequence, and the parity bit sequence is MCS (Modulation and Coding).
  • HARQ Hybrid Auto Repeat reQuest
  • LDPC Low Density Parity Check
  • a plurality of parity blocks are generated by dividing into the number of blocks given by the coding rate indicated by Scheme), each of the parity blocks is associated with the number of retransmissions, and the codeword is composed of the information bits and one parity If the LDPC information block includes the information bits and shortening bits, the number of bits in at least one parity block of the plurality of parity blocks is reduced based on the number of shortening bits.
  • the IEEE 802.11 standard enables efficient packet synthesis during retransmission, which contributes to improved low-delay communication and faster user throughput due to improved reception SNR.
  • FIG. 1 is a schematic diagram showing an example of division of radio resources according to one aspect of the present invention
  • FIG. FIG. 4 is a diagram showing an example of a frame structure according to one aspect of the present invention
  • FIG. 4 is a diagram showing an example of a frame structure according to one aspect of the present invention
  • FIG. 3 is a diagram illustrating an example of communication according to one aspect of the present invention
  • 1 is a diagram showing one configuration example of a communication system according to one aspect of the present invention
  • FIG. 1 is a block diagram showing one configuration example of a wireless communication device according to one aspect of the present invention
  • FIG. 1 is a block diagram showing one configuration example of a wireless communication device according to one aspect of the present invention
  • FIG. 1 is a block diagram showing one configuration example of a wireless communication device according to one aspect of the present invention
  • FIG. 1 is a block diagram showing one configuration example of a wireless communication device according to one aspect of the present invention
  • FIG. 1 is a block diagram showing one configuration example of a wireless communication
  • FIG. 1 is a schematic diagram showing an example of a modulation and coding scheme according to one aspect of the present invention
  • FIG. FIG. 4 is a schematic diagram illustrating an example of block lengths for LDPC encoding processing according to an aspect of the present invention
  • FIG. 4 is a schematic diagram illustrating an example of block lengths for LDPC encoding processing according to an aspect of the present invention
  • FIG. 4 is a schematic diagram illustrating an example of block lengths for LDPC encoding processing according to an aspect of the present invention
  • FIG. 4 is a schematic diagram illustrating an example of block lengths for LDPC encoding processing according to an aspect of the present invention
  • FIG. 4 is a schematic diagram illustrating an example of block lengths for LDPC encoding processing according to an aspect of the present invention
  • FIG. 4 is a schematic diagram illustrating an example of block lengths for LDPC encoding processing according to an aspect of the present invention
  • FIG. 2 is a schematic diagram showing an example of puncturing processing according to one aspect of the present invention
  • FIG. 2 is a schematic diagram showing an example of puncturing processing according to one aspect of the present invention
  • FIG. 4 is a schematic diagram showing an example of blocking processing according to one aspect of the present invention
  • FIG. 4 is a schematic diagram showing an example of blocking processing according to one aspect of the present invention
  • FIG. 4 is a schematic diagram showing control information regarding a PHY layer packet synthesis method according to an aspect of the present invention
  • a communication system includes an access point device (also called a base station device) and a plurality of station devices (also called a terminal device).
  • a communication system or network composed of access point devices and station devices is called a basic service set (BSS: Basic service set, management range, cell).
  • BSS Basic service set, management range, cell.
  • the station device can have the function of an access point device.
  • the access point device can have the functions of the station device. Therefore, hereinafter, when simply referring to a communication device, the communication device can indicate both a station device and an access point device.
  • the base station apparatus and the terminal apparatus within the BSS each perform communication based on CSMA/CA (Carrier sense multiple access with collision avoidance).
  • This embodiment targets the infrastructure mode in which the base station apparatus communicates with a plurality of terminal apparatuses, but the method of this embodiment can also be implemented in the ad-hoc mode in which the terminal apparatuses directly communicate with each other.
  • the terminal device forms a BSS on behalf of the base station device.
  • a BSS in ad-hoc mode is also called an IBSS (Independent Basic Service Set).
  • IBSS Independent Basic Service Set
  • a terminal device forming an IBSS in ad-hoc mode can also be regarded as a base station device.
  • the method of this embodiment can also be implemented in WiFi Direct (registered trademark) in which terminal devices directly communicate with each other.
  • WiFi In Direct a terminal device forms a group instead of a base station device.
  • a terminal device of a group owner that forms a group in WiFi Direct can also be regarded as a base station device.
  • each device can transmit transmission frames of multiple frame types with a common frame format.
  • a transmission frame is defined in a physical (PHY) layer, a medium access control (MAC) layer, and a logical link control (LLC) layer, respectively.
  • the physical layer is also called a PHY layer
  • the MAC layer is also called a MAC layer.
  • a PHY layer transmission frame is called a physical protocol data unit (PPDU: PHY protocol data unit, physical layer frame).
  • PPDU consists of a physical layer header (PHY header) that includes header information for performing signal processing in the physical layer, and a physical service data unit (PSDU: PHY service data unit) that is a data unit processed in the physical layer.
  • PHY header physical layer header
  • PSDU physical service data unit
  • MAC layer frame physical layer frame
  • PSDU can be composed of aggregated MPDU (A-MPDU: Aggregated MPDU) in which multiple MAC protocol data units (MPDU: MAC protocol data units) that are retransmission units in the wireless section are aggregated.
  • MPDU aggregated MPDU
  • the PHY header includes a short training field (STF) used for signal detection and synchronization, a long training field (LTF) used to acquire channel information for data demodulation, etc. and a control signal such as a signal (Signal: SIG) containing control information for data demodulation.
  • STF can be legacy STF (L-STF: Legacy-STF), high-throughput STF (HT-STF: High throughput-STF), or ultra-high-throughput STF (VHT-STF: Very high throughput-STF), high efficiency STF (HE-STF), ultra-high throughput STF (EHT-STF: Extremely High Throughput-STF), etc.
  • LTF and SIG are also L- It is classified into LTF, HT-LTF, VHT-LTF, HE-LTF, L-SIG, HT-SIG, VHT-SIG, HE-SIG and EHT-SIG.
  • VHT-SIG is further classified into VHT-SIG-A1, VHT-SIG-A2 and VHT-SIG-B.
  • HE-SIG is classified into HE-SIG-A1 to 4 and HE-SIG-B.
  • U-SIG Universal SIGNAL
  • the PHY header can include information identifying the BSS that is the transmission source of the transmission frame (hereinafter also referred to as BSS identification information).
  • the information identifying the BSS can be, for example, the SSID (Service Set Identifier) of the BSS or the MAC address of the base station device of the BSS.
  • the information that identifies the BSS can be a value unique to the BSS (for example, BSS Color, etc.) other than the SSID and MAC address.
  • the PPDU is modulated according to the corresponding standard. For example, according to the IEEE 802.11n standard, it is modulated into an Orthogonal Frequency Division Multiplexing (OFDM) signal.
  • OFDM Orthogonal Frequency Division Multiplexing
  • MPDU is a MAC layer header that contains header information etc. for signal processing in the MAC layer, and a MAC service data unit (MSDU: MAC service data unit) that is a data unit processed in the MAC layer or It consists of a frame body and a frame check sequence (FCS) that checks if there are any errors in the frame. Also, multiple MSDUs can be aggregated as an aggregated MSDU (A-MSDU: Aggregated MSDU).
  • MSDU MAC service data unit
  • FCS frame check sequence
  • the frame type of the transmission frame of the MAC layer is roughly classified into three types: a management frame that manages the connection state between devices, a control frame that manages the communication state between devices, and a data frame that contains actual transmission data. Each is further classified into a plurality of types of subframe types.
  • the control frame includes a reception completion notification (ACK: Acknowledge) frame, a transmission request (RTS: Request to send) frame, a reception preparation completion (CTS: Clear to send) frame, and the like.
  • Management frames include Beacon frames, Probe request frames, Probe response frames, Authentication frames, Association request frames, Association response frames, etc. included.
  • the data frame includes a data (Data) frame, a polling (CF-poll) frame, and the like. Each device can recognize the frame type and subframe type of the received frame by reading the contents of the frame control field included in the MAC header.
  • the ACK may include a Block ACK.
  • Block ACK can implement reception completion notifications for multiple MPDUs.
  • the ACK may include a Multi STA Block ACK including reception completion notifications for multiple communication devices.
  • a beacon frame contains a field describing the beacon interval and the SSID.
  • the base station apparatus can periodically broadcast a beacon frame within the BSS, and the terminal apparatus can recognize base station apparatuses around the terminal apparatus by receiving the beacon frame. It is called passive scanning that a terminal device recognizes a base station device based on a beacon frame broadcast from the base station device. On the other hand, searching for a base station apparatus by broadcasting a probe request frame in the BSS by a terminal apparatus is called active scanning.
  • the base station apparatus can transmit a probe response frame as a response to the probe request frame, and the description content of the probe response frame is equivalent to that of the beacon frame.
  • connection processing is classified into an authentication procedure and an association procedure.
  • a terminal device transmits an authentication frame (authentication request) to a base station device that desires connection.
  • the base station apparatus Upon receiving the authentication frame, the base station apparatus transmits to the terminal apparatus an authentication frame (authentication response) including a status code indicating whether or not the terminal apparatus can be authenticated.
  • the terminal device can determine whether or not the terminal device is permitted to be authenticated by the base station device. Note that the base station apparatus and the terminal apparatus can exchange authentication frames multiple times.
  • the terminal device transmits a connection request frame to perform the connection procedure to the base station device.
  • the base station apparatus determines whether or not to permit the connection of the terminal apparatus, and transmits a connection response frame to notify that effect.
  • the connection response frame contains an association identifier (AID) for identifying the terminal device, in addition to a status code indicating whether connection processing is possible.
  • the base station apparatus can manage a plurality of terminal apparatuses by setting different AIDs for the terminal apparatuses that have issued connection permission.
  • the base station device and the terminal device After the connection process is performed, the base station device and the terminal device perform actual data transmission.
  • a distributed control mechanism DCF: Distributed Coordination Function
  • PCF centralized control mechanism
  • EDCA enhanced distributed channel access
  • HCF Hybrid coordination function
  • base station equipment and terminal equipment perform carrier sense (CS) to check the usage status of wireless channels around their own equipment prior to communication. For example, when a base station apparatus, which is a transmitting station, receives a signal higher than a predetermined clear channel evaluation level (CCA level: Clear channel assessment level) on the radio channel, the transmission of the transmission frame on the radio channel is performed. put off.
  • CCA level Clear channel evaluation level
  • a state in which a signal of the CCA level or higher is detected in the radio channel is called a busy state, and a state in which a signal of the CCA level or higher is not detected is called an idle state.
  • CCA level is also called a carrier sense level (CS level) or a CCA threshold (CCAT).
  • the base station device performs carrier sense for the frame interval (IFS: Inter frame space) according to the type of transmission frame to be transmitted, and determines whether the radio channel is busy or idle.
  • the period during which the base station apparatus performs carrier sensing differs depending on the frame type and subframe type of the transmission frame to be transmitted by the base station apparatus.
  • IFS Inter frame space
  • the period during which the base station apparatus performs carrier sensing differs depending on the frame type and subframe type of the transmission frame to be transmitted by the base station apparatus.
  • multiple IFSs with different durations are defined.
  • PCF IFS polling frame interval
  • DCF IFS distributed control frame interval
  • the base station apparatus uses DIFS.
  • the base station device After waiting for DIFS, the base station device further waits for a random backoff time to prevent frame collision.
  • a random backoff time called contention window (CW) is used.
  • CSMA/CA assumes that a transmission frame transmitted by a certain transmitting station is received by a receiving station without interference from other transmitting stations. Therefore, if the transmitting stations transmit transmission frames at the same timing, the frames collide with each other and the receiving stations cannot receive the frames correctly. Therefore, each transmitting station waits for a randomly set time before starting transmission, thereby avoiding frame collision.
  • the base station apparatus determines that the radio channel is in an idle state by carrier sense, it starts counting down the CW and acquires the transmission right only when the CW becomes 0, and can transmit the transmission frame to the terminal apparatus. If the base station apparatus determines that the radio channel is busy by carrier sense during the CW countdown, the CW countdown is stopped. Then, when the radio channel becomes idle, following the previous IFS, the base station apparatus resumes counting down remaining CWs.
  • a terminal device which is a receiving station, receives the transmission frame, reads the PHY header of the transmission frame, and demodulates the received transmission frame. By reading the MAC header of the demodulated signal, the terminal device can recognize whether or not the transmission frame is addressed to itself. In addition, the terminal device may determine the destination of the transmission frame based on the information described in the PHY header (for example, the group identification number (GID: Group identifier, Group ID) described in VHT-SIG-A). It is possible.
  • GID Group identifier, Group ID
  • the terminal device When the terminal device determines that the received transmission frame is addressed to itself and demodulates the transmission frame without error, the terminal device transmits an ACK frame indicating that the frame has been correctly received to the base station device, which is the transmitting station. Must.
  • the ACK frame is one of the highest priority transmission frames that is transmitted only waiting for the SIFS period (no random backoff time).
  • the base station apparatus terminates a series of communications upon receiving the ACK frame transmitted from the terminal apparatus.
  • the terminal device cannot receive the frame correctly, the terminal device does not transmit ACK. Therefore, if the base station apparatus does not receive an ACK frame from the receiving station for a certain period of time (SIFS+ACK frame length) after frame transmission, it assumes that the communication has failed and terminates the communication.
  • the end of one communication (also called a burst) in the IEEE 802.11 system is limited to special cases such as the transmission of a notification signal such as a beacon frame, or the use of fragmentation to divide transmission data. Except for this, the determination is always based on whether or not an ACK frame has been received.
  • the network allocation vector (NAV: Network allocation vector).
  • NAV Network allocation vector
  • the terminal device does not attempt communication during the period set in NAV.
  • the terminal device performs the same operation as when the radio channel is determined to be busy by the physical CS for the period set in the NAV. Therefore, communication control by the NAV is also called virtual carrier sense (virtual CS).
  • virtual CS virtual carrier sense
  • NAV is a request to send (RTS) frame introduced to solve the hidden terminal problem, and a clear reception (CTS) frame. to send) frame.
  • RTS request to send
  • CTS clear reception
  • PCF point coordinator
  • the base station apparatus becomes a PC and acquires the transmission right of the terminal apparatus within the BSS.
  • the communication period by PCF includes non-period (CFP: Contention free period) and contention period (CP: Contention period).
  • CFP Contention free period
  • CP Contention period
  • a base station apparatus which is a PC, notifies a beacon frame in which a CFP duration (CFP Max duration) and the like are described within the BSS prior to PCF communication.
  • CFP Max duration CFP duration
  • PIFS is used to transmit the beacon frame notified at the start of PCF transmission, and is transmitted without waiting for the CW.
  • a terminal device that receives the beacon frame sets the period of the CFP described in the beacon frame to NAV.
  • the terminal equipment signals acquisition of the transmission right transmitted from the PC.
  • the right to transmit can only be obtained when a signal (eg a data frame containing a CF-poll) is received. Note that during the CFP period, packet collisions do not occur within the same BSS, so each terminal device does not take the random backoff time used in DCF.
  • the wireless medium can be divided into multiple resource units (RU).
  • FIG. 1 is a schematic diagram showing an example of a division state of a wireless medium.
  • the wireless communication device can divide frequency resources (subcarriers), which are wireless media, into nine RUs.
  • the wireless communication device can divide subcarriers, which are wireless media, into five RUs.
  • the example of resource division shown in FIG. 1 is only an example, and for example, a plurality of RUs can be configured with different numbers of subcarriers.
  • the wireless medium divided as RUs can include spatial resources as well as frequency resources.
  • a wireless communication device can simultaneously transmit frames to a plurality of terminal devices (for example, a plurality of STAs) by arranging frames addressed to different terminal devices in each RU.
  • the AP can write information (Resource allocation information) indicating the division state of the wireless medium in the PHY header of the frame transmitted by the AP as common control information.
  • the AP can describe information (resource unit assignment information) indicating the RU in which the frame addressed to each STA is allocated in the PHY header of the frame transmitted by the AP as unique control information.
  • a plurality of terminal devices can transmit frames simultaneously by arranging frames in assigned RUs and transmitting the frames.
  • a plurality of STAs can transmit a frame after waiting for a predetermined period after receiving a frame (Trigger frame: TF) containing trigger information transmitted from the AP.
  • TF Trigger frame
  • Each STA can grasp the RU assigned to itself based on the information described in the TF. Also, each STA can acquire RUs through random access based on the TF.
  • the AP can allocate multiple RUs to one STA at the same time.
  • the plurality of RUs can be composed of continuous subcarriers or discontinuous subcarriers.
  • the AP can transmit one frame using multiple RUs assigned to one STA, or can transmit multiple frames by assigning them to different RUs.
  • At least one of the plurality of frames can be a frame containing common control information for a plurality of terminal devices transmitting resource allocation information.
  • One STA can be assigned multiple RUs by the AP.
  • a STA can transmit one frame using multiple assigned RUs.
  • the STA can use the assigned multiple RUs to assign multiple frames to different RUs and transmit them.
  • the plurality of frames can be frames of different frame types.
  • An AP can allocate multiple AIDs to one STA.
  • the AP can assign RUs to multiple AIDs assigned to one STA.
  • the AP can transmit different frames to multiple AIDs assigned to one STA using the assigned RUs.
  • the different frames can be frames of different frame types.
  • a single STA can be assigned multiple AIDs by the AP.
  • One STA can be assigned RUs for each of the assigned AIDs.
  • One STA recognizes all RUs assigned to multiple AIDs assigned to itself as RUs assigned to itself, and uses the assigned multiple RUs to transmit one frame. can do.
  • one STA can transmit multiple frames using the multiple assigned RUs.
  • information indicating the AID associated with each assigned RU can be described in the plurality of frames and transmitted.
  • the AP can transmit different frames to multiple AIDs assigned to one STA using the assigned RUs.
  • the different frames can be frames of different frame types.
  • base station devices and terminal devices are also collectively referred to as wireless communication devices or communication devices.
  • Information exchanged when one wireless communication device communicates with another wireless communication device is also called data. That is, a wireless communication device includes a base station device and a terminal device.
  • a wireless communication device has either or both of a function to transmit and a function to receive PPDU.
  • FIG. 2 is a diagram showing an example of the configuration of a PPDU transmitted by a wireless communication device.
  • a PPDU that supports the IEEE802.11a/b/g standard has a configuration that includes L-STF, L-LTF, L-SIG and Data frames (MAC frames, MAC frames, payloads, data parts, data, information bits, etc.). be.
  • a PPDU conforming to the IEEE802.11n standard has a configuration including L-STF, L-LTF, L-SIG, HT-SIG, HT-STF, HT-LTF and Data frames.
  • the PPDU corresponding to the IEEE802.11ac standard includes part or all of L-STF, L-LTF, L-SIG, VHT-SIG-A, VHT-STF, VHT-LTF, VHT-SIG-B and MAC frames.
  • configuration. PPDU in the IEEE802.11ax standard is L-STF, L-LTF, L-SIG, RL-SIG, HE-SIG-A, HE-STF, HE-LTF, HE- This configuration includes part or all of SIG-B and Data frames.
  • the PPDU considered in the IEEE802.11be standard is L-STF, L-LTF, L-SIG, RL-SIG, U-SIG, EHT-SIG, EHT-STF, EHT-LTF and a part of Data frame or It is an all-inclusive configuration.
  • L-STF, L-LTF and L-SIG surrounded by dotted lines in FIG. collectively referred to as the L-header).
  • a wireless communication device compatible with the IEEE 802.11a/b/g standard can properly receive an L-header in a PPDU compatible with the IEEE 802.11n/ac standard.
  • a wireless communication device conforming to the IEEE802.11a/b/g standard can receive a PPDU conforming to the IEEE802.11n/ac standard as a PPDU conforming to the IEEE802.11a/b/g standard.
  • the wireless communication device compatible with the IEEE802.11a/b/g standard cannot demodulate the PPDU compatible with the IEEE802.11n/ac standard following the L-header, the transmission address (TA: Transmitter Address) , receiver address (RA), and Duration/ID field used for setting NAV cannot be demodulated.
  • TA Transmitter Address
  • RA receiver address
  • Duration/ID field used for setting NAV cannot be demodulated.
  • IEEE 802.11 inserts Duration information into L-SIG as a method for a wireless communication device compatible with IEEE 802.11a/b/g standards to appropriately set NAV (or perform reception operation for a predetermined period). stipulates the method.
  • Information about the transmission rate in L-SIG (RATE field, L-RATE field, L-RATE, L_DATARATE, L_DATARATE field), information about the transmission period (LENGTH field, L-LENGTH field, L-LENGTH) is IEEE802.11a
  • a wireless communication device supporting the /b/g standard is used to properly set the NAV.
  • FIG. 3 is a diagram showing an example of how Duration information is inserted into L-SIG.
  • FIG. 3 shows a PPDU configuration corresponding to the IEEE802.11ac standard as an example, but the PPDU configuration is not limited to this.
  • a PPDU configuration compatible with the IEEE802.11n standard and a PPDU configuration compatible with the IEEE802.11ax standard may be used.
  • TXTIME comprises information on the length of the PPDU
  • aPreambleLength comprises information on the length of the preamble (L-STF+L-LTF)
  • aPLCPHeaderLength comprises information on the length of the PLCP header (L-SIG).
  • L_LENGTH is Signal Extension, which is a virtual period set for compatibility with the IEEE 802.11 standard; Nops related to L_RATE ; It is calculated based on aPLCPServiceLength indicating the number of bits included in the PLCP Service field and aPLCPConvolutionalTailLength indicating the number of tail bits of the convolutional code.
  • the wireless communication device can calculate L_LENGTH and insert it into L-SIG. Also, the wireless communication device can calculate the L-SIG Duration.
  • L-SIG Duration indicates information on the total duration of the PPDU including L_LENGTH and the duration of ACK and SIFS expected to be transmitted from the destination wireless communication device as a response.
  • FIG. 4 is a diagram showing an example of L-SIG Duration in L-SIG TXOP Protection.
  • DATA frame, payload, data, etc.
  • BA is Block ACK or ACK.
  • the PPDU includes L-STF, L-LTF, L-SIG, and may further include any or more of DATA, BA, RTS or CTS.
  • MAC Duration is the period indicated by the value of Duration/ID field.
  • the Initiator can transmit a CF_End frame to notify the end of the L-SIG TXOP Protection period.
  • the wireless communication device that transmits the PPDU should include information for identifying the BSS (BSS color, BSS identification information, value unique to the BSS) in the PPDU. It is preferable to insert, and it is possible to describe information indicating the BSS color in HE-SIG-A.
  • the wireless communication device can transmit L-SIG multiple times (L-SIG Repetition).
  • L-SIG Repetition For example, the radio communication apparatus on the receiving side receives the L-SIG transmitted multiple times using MRC (Maximum Ratio Combining), thereby improving the demodulation accuracy of the L-SIG.
  • MRC Maximum Ratio Combining
  • the wireless communication device can interpret that the PPDU including the L-SIG is a PPDU conforming to the IEEE802.11ax standard.
  • the wireless communication device shall perform the reception operation of a part of the PPDU other than the PPDU (for example, the preamble, L-STF, L-LTF, PLCP header, etc. specified by IEEE 802.11) even during the reception operation of the PPDU. (also called double receive operation).
  • a wireless communication device detects part of a PPDU other than the relevant PPDU during a PPDU reception operation, the wireless communication device updates part or all of the information on the destination address, the source address, the PPDU, or the DATA period. can be done.
  • ACK and BA can also be called responses (response frames). Also, probe responses, authentication responses, and connection responses can be referred to as responses.
  • FIG. 5 is a diagram showing an example of a wireless communication system according to this embodiment.
  • the radio communication system 3-1 includes a radio communication device 1-1 and radio communication devices 2-1 to 2-3.
  • the wireless communication device 1-1 is also called the base station device 1-1, and the wireless communication devices 2-1 to 2-3 are also called terminal devices 2-1 to 2-3.
  • the wireless communication devices 2-1 to 2-3 and the terminal devices 2-1 to 2-3 are also referred to as a wireless communication device 2A and a terminal device 2A as devices connected to the wireless communication device 1-1.
  • the wireless communication device 1-1 and the wireless communication device 2A are wirelessly connected and are in a state of being able to transmit and receive PPDUs to and from each other.
  • the radio communication system may include a radio communication system 3-2 in addition to the radio communication system 3-1.
  • the radio communication system 3-2 includes a radio communication device 1-2 and radio communication devices 2-4 to 2-6.
  • the wireless communication device 1-2 is also called the base station device 1-2, and the wireless communication devices 2-4 to 2-6 are also called terminal devices 2-4 to 2-6.
  • the wireless communication devices 2-4 to 2-6 and the terminal devices 2-4 to 2-6 are also referred to as a wireless communication device 2B and a terminal device 2B as devices connected to the wireless communication device 1-2.
  • the radio communication system 3-1 and the radio communication system 3-2 form different BSSs, this does not necessarily mean that ESSs (Extended Service Sets) are different.
  • ESS indicates a service set forming a LAN (Local Area Network). That is, wireless communication devices belonging to the same ESS can be regarded as belonging to the same network from higher layers. Also, the BSSs are combined via a DS (Distribution System) to form an ESS.
  • Each of the radio communication systems 3-1 and 3-2 can further include a plurality of radio communication devices.
  • the signal transmitted by the radio communication device 2A reaches the radio communication devices 1-1 and 2B, but does not reach the radio communication device 1-2. do. That is, when the radio communication device 2A transmits a signal using a certain channel, the radio communication device 1-1 and the radio communication device 2B determine that the channel is busy, while the radio communication device 1-2 The channel is determined to be idle. It is also assumed that the signal transmitted by the radio communication device 2B reaches the radio transmission device 1-2 and the radio communication device 2A, but does not reach the radio communication device 1-1. That is, when radio communication device 2B transmits a signal using a certain channel, radio communication device 1-2 and radio communication device 2A determine that the channel is busy, while radio communication device 1-1 The channel is determined to be idle.
  • FIG. 6 shows an example of the device configuration of radio communication devices 1-1, 1-2, 2A and 2B (hereinafter collectively referred to as radio communication device 10-1, station device 10-1, or simply station device). It is a diagram.
  • the wireless communication device 10-1 includes an upper layer section (upper layer processing step) 10001-1, an autonomous distributed control section (autonomous distributed control step) 10002-1, a transmitting section (transmitting step) 10003-1, and a receiving section. (Receiving step)
  • This configuration includes 10004-1 and antenna section 10005-1.
  • the upper layer section 10001-1 is connected to another network and can notify the autonomous distributed control section 10002-1 of information on traffic.
  • Information about traffic may be, for example, control information included in a management frame such as a beacon, or may be measurement information reported by another wireless communication device addressed to the wireless communication device itself.
  • the destination is not limited (it may be addressed to its own device, may be addressed to another device, or may be broadcast or multicast), even if it is control information included in a management frame or control frame. good.
  • FIG. 7 is a diagram showing an example of the device configuration of the autonomous decentralized control unit 10002-1.
  • the control section 10002-1 includes a CCA section (CCA step) 10002a-1, a backoff section (backoff step) 10002b-1, and a transmission determination section (transmission determination step) 10002c-1.
  • CCA step CCA step
  • backoff step backoff step
  • transmission determination section transmission determination step
  • CCA section 10002a-1 receives one or both of information about received signal power received via radio resources and information about received signals (including information after decoding) notified from receiving section 10004-1. can be used to determine the state of the radio resource (including busy or idle determination).
  • the CCA section 10002a-1 can notify the back-off section 10002b-1 and the transmission decision section 10002c-1 of the radio resource state determination information.
  • the backoff unit 10002b-1 can perform backoff using the radio resource state determination information.
  • the backoff unit 10002b-1 generates CW and has a countdown function. For example, when the radio resource state determination information indicates idle, the CW countdown can be executed, and when the radio resource state determination information indicates busy, the CW countdown can be stopped.
  • the backoff unit 10002b-1 can notify the transmission determination unit 10002c-1 of the CW value.
  • the transmission decision unit 10002c-1 makes a transmission decision using either one or both of the radio resource status decision information and the CW value. For example, when the radio resource state determination information indicates idle and the value of CW is 0, the transmission determination information can be notified to the transmitting section 10003-1. Further, when the radio resource state determination information indicates idle, the transmission determination information can be notified to the transmitting section 10003-1.
  • the transmission section 10003-1 includes a physical layer frame generation section (physical layer frame generation step) 10003a-1 and a radio transmission section (radio transmission step) 10003b-1.
  • the physical layer frame generation unit 10003a-1 has a function of generating a physical layer frame (hereinafter also referred to as PPDU) based on transmission determination information notified from the transmission determination unit 10002c-1.
  • Physical layer frame generation section 10003a-1 performs error correction coding, modulation, precoding filter multiplication, and the like on a transmission frame sent from an upper layer.
  • the physical layer frame generator 10003a-1 notifies the radio transmitter 10003b-1 of the generated physical layer frame.
  • Control information is included in the frame generated by the physical layer frame generation unit 10003a-1.
  • the control information includes information indicating in which RU (here, RU includes both frequency resources and space resources) data addressed to each wireless communication device is allocated.
  • the frame generated by the physical layer frame generation unit 10003a-1 includes a trigger frame that instructs the wireless communication device, which is the destination terminal, to transmit the frame.
  • the trigger frame contains information indicating the RU used when the wireless communication device instructed to transmit the frame transmits the frame.
  • the radio transmission unit 10003b-1 converts the physical layer frame generated by the physical layer frame generation unit 10003a-1 into a radio frequency (RF) band signal to generate a radio frequency signal. Processing performed by the radio transmission unit 10003b-1 includes digital/analog conversion, filtering, frequency conversion from the baseband band to the RF band, and the like.
  • the receiving section 10004-1 includes a radio receiving section (radio receiving step) 10004a-1 and a signal demodulating section (signal demodulating step) 10004b-1.
  • Receiving section 10004-1 generates information about received signal power from the RF band signal received by antenna section 10005-1.
  • Receiving section 10004-1 can report information on received signal power and information on received signals to CCA section 10002a-1.
  • the radio receiving section 10004a-1 has a function of converting an RF band signal received by the antenna section 10005-1 into a baseband signal and generating a physical layer signal (for example, a physical layer frame).
  • the processing performed by the radio reception unit 10004a-1 includes frequency conversion processing from the RF band to the baseband band, filtering, and analog/digital conversion.
  • the signal demodulator 10004b-1 has a function of demodulating the physical layer signal generated by the radio receiver 10004a-1. Processing performed by the signal demodulator 10004b-1 includes channel equalization, demapping, error correction decoding, and the like.
  • the signal demodulator 10004b-1 can extract, for example, information contained in the physical layer header, information contained in the MAC header, and information contained in the transmission frame from the physical layer signal.
  • the signal demodulation section 10004b-1 can notify the extracted information to the upper layer section 10001-1.
  • the signal demodulator 10004b-1 can extract any or all of the information included in the physical layer header, the information included in the MAC header, and the information included in the transmission frame.
  • the antenna section 10005-1 has a function of transmitting a radio frequency signal generated by the radio transmission section 10003b-1 to radio space. Also, the antenna section 10005-1 has a function of receiving a radio frequency signal and transferring it to the radio receiving section 10004a-1.
  • the wireless communication device 10-1 writes information indicating the period during which the wireless communication device uses the wireless medium in the PHY header or MAC header of the frame to be transmitted, thereby notifying wireless communication devices around the wireless communication device 10-1 of the period.
  • NAV can be set only for a period of time.
  • wireless communication device 10-1 can write information indicating the duration in the Duration/ID field or Length field of the frame to be transmitted.
  • the NAV period set in the wireless communication devices around the own wireless communication device is called the TXOP period (or simply TXOP) acquired by the wireless communication device 10-1. Then, the wireless communication device 10-1 that has acquired the TXOP is called a TXOP holder.
  • the frame type of the frame that is transmitted by the wireless communication device 10-1 to acquire the TXOP is not limited to anything, and may be a control frame (for example, an RTS frame or a CTS-to-self frame) or a data frame. But it's okay.
  • the wireless communication device 10-1 which is a TXOP holder, can transmit frames to wireless communication devices other than its own wireless communication device during the TXOP. If the radio communication device 1-1 is a TXOP holder, the radio communication device 1-1 can transmit frames to the radio communication device 2A within the period of the TXOP. Further, the radio communication device 1-1 can instruct the radio communication device 2A to transmit a frame addressed to the radio communication device 1-1 within the TXOP period. Within the TXOP period, the radio communication device 1-1 can transmit to the radio communication device 2A a trigger frame containing information instructing frame transmission addressed to the radio communication device 1-1.
  • the wireless communication device 1-1 may secure TXOP for all communication bands (for example, operation bandwidth) in which frame transmission may be performed, or a communication band for actually transmitting frames (for example, transmission bandwidth). may be reserved for a specific communication band (Band).
  • the wireless communication device that instructs the frame transmission within the period of the TXOP acquired by the wireless communication device 1-1 is not necessarily limited to the wireless communication device connected to the own wireless communication device.
  • a wireless communication device is not connected to its own wireless communication device in order to transmit a management frame such as a Reassociation frame or a control frame such as an RTS/CTS frame to wireless communication devices around itself.
  • a wireless communication device can be instructed to transmit a frame.
  • TXOP in EDCA which is a data transmission method different from DCF
  • the IEEE802.11e standard is related to EDCA, and defines TXOP from the viewpoint of QoS (Quality of Service) assurance for various services such as video transmission and VoIP.
  • Services are roughly classified into four access categories: VO (VOice), VI (VIdeo), BE (BestEffort), and BK (Background).
  • VO VOice
  • VI VI
  • BE BestEffort
  • BK Background
  • the order of priority is VO, VI, BE, and BK.
  • Each access category has parameters such as CW minimum value CWmin, maximum value CWmax, AIFS (Arbitration IFS), which is a type of IFS, and TXOP limit, which is the upper limit of transmission opportunities. Value is set.
  • CWmin, CWmax, and AIFS of the VO with the highest priority for voice transmission are set to relatively small values compared to other access categories, thereby giving priority to other access categories.
  • setting a large TXOP limit makes it possible to secure a longer transmission opportunity than in other access categories.
  • the values of the four parameters of each access category are adjusted for the purpose of guaranteeing QoS according to various services.
  • the radio communication device 1-1 base station device 1-1) transmits and the radio communication device 2-1 (terminal device 2-1) receives.
  • the mode is not limited to this, and includes the case where the wireless communication device 2-1 (terminal device 2-1) transmits and the wireless communication device 1-1 (base station device 1-1) receives.
  • the device configurations of the wireless communication device 1-1 and the wireless communication device 2-1 are the same as the device configuration examples described with reference to FIGS. 6 and 7 unless otherwise specified.
  • the upper layer unit 10001-1 of the wireless communication device 1-1 is a MAC layer payload A- MPDU is transferred to the transmitting section 10003-1. Also, the upper layer section 10001-1 transfers control information including the setting of the retransmission method to the transmission section 10003-1.
  • the retransmission scheme setting is, for example, information indicating either ARQ or HARQ, or HARQ setting information.
  • the HARQ configuration information is information indicating whether HARQ is configured and/or the HARQ scheme. HARQ schemes include Chase Combining (CC) or Incremental Redundancy (IR). Note that when HARQ is not configured, the PHY layer determines that ARQ is configured.
  • the setting of the MPDU, MPDU length, and retransmission scheme is transferred to the transmission section of the lower layer.
  • the A-MPDUs and the A-MPDU length are transferred to the lower layer transmission section.
  • the retransmission scheme setting indicates HARQ
  • the A-MPDU, the A-MPDU length, each MPDU length, and part or all of the MPDU count are transferred to the lower layer transmitter.
  • the MPDU may constitute one MSDU or an A-MSDU that aggregates two or more MSDUs.
  • the MAC layer control information of the upper layer section 10001-1 does not necessarily add an information field for storing the MPDU length and the number of MPDUs when the retransmission scheme is not designated as HARQ.
  • the physical layer frame generation unit 10003a-1 of the wireless communication device 1-1 first generates PSDU, which is the payload of the PHY layer, from the A-MPDU transferred by the upper layer unit 10001-1.
  • PSDU is appended with a PHY header to generate the PPDU of the transmission frame.
  • the PHY header includes a PLCP preamble for synchronization detection, a PLCP header for determining a modulation and coding scheme according to the received signal strength, and control information notified by the MAC layer of the upper layer section 10001-1.
  • an MPDU-length information field when an MPDU-length information field is added to the control information, it includes an information field of a predetermined information bit length (encoding block length) for performing error correction coding corresponding to each information field. If the MAC layer of the upper layer section 10001-1 does not set MPDU aggregation, the PHY header may store the predetermined information bit length in the information field.
  • error correction coding using IEEE802.11 standard low density parity check code First obtains a generator matrix from a low density parity check matrix, and the generator matrix and the information bit matrix Generate a parity bit calculated from the product. Next, the parity bit is added to the information bit sequence to form a codeword. That is, the physical layer frame generating section 10003a-1 calculates a predetermined information bit length for error correction coding based on the parity check matrix size set by the MCS coding rate.
  • An information bit sequence used for LDPC encoding is also called an LDPC information block
  • a bit sequence obtained by LDPC encoding an LDPC information block is also called an LDPC codeword block.
  • FIG. 8 shows an example of associations between MCS, modulation schemes, and coding rates.
  • the modulation scheme is QPSK and the coding rate is 1/2
  • the modulation scheme is 16QAM and the coding rate is 3/4.
  • FIG. 9 shows an example of associations between coding rates, LDPC information block lengths, and LDPC codeword block lengths.
  • the LDPC information block length is obtained by multiplying the LDPC codeword block length by the coding rate.
  • candidates for (LDPC information block length, LDPC codeword block length) are (972, 1944), (648, 1296), and (324, 648).
  • the LDPC information block length and the LDPC codeword block length are default values, and may differ from the transmitted information block length and codeword block length.
  • the LDPC codeword block length is determined by at least the coding bit length (also referred to as the first coding bit length) calculated based on the PSDU length (A-MPDU length) and the coding rate. For example, in the example of FIG. 9, when the first encoding bit length is 648 bits or less, the LDPC codeword block length (L CW ) is 648 bits. Next, if the first encoded bit length is greater than 648 bits and less than or equal to 1296 bits, the LDPC codeword block length will be 1296 bits.
  • the LDPC codeword block length is 1944 bits.
  • the number of LDPC codeword blocks (N CW ) is 1 when the first encoding bit length is 1944 bits or less. If the first encoded bit length is greater than 1944 bits and less than or equal to 2592 bits, the LDPC codeword block length is 1296 bits and the number of LDPC codeword blocks is two. When the LDPC codeword block length is greater than 2592 bits, the LDPC codeword block length is 1944 bits, and the number of LDPC codeword blocks is the first encoding bit length and the LDPC codeword block length of 1944 bits. It can be calculated as the encoded bit length of 1/1944). Note that ceil(x) is a ceiling function and represents the smallest integer greater than or equal to x.
  • N shrt The difference between N CW ⁇ L CW ⁇ R and the PSDU length is represented as N shrt .
  • the N shorts are equally distributed to each information block. That is, the shortening bit N shblk of each information block is floor(N shrt /N CW ). However, floor(x) is a floor function and represents the largest integer less than or equal to x. Note that the first N short mod N CW blocks have one more shortening bit than the other blocks. However, mod represents a remainder.
  • the shortening process appends N shblk (or N shblk +1) bits to the information block to generate the LDPC information block. For this reason, the PSDU is divided into individual information blocks taking into account the shortening process.
  • the LDPC information blocks are LDPC encoded to produce LDPC codeword blocks, but the shortening bits are discarded.
  • N CW ⁇ L CW and (first encoded bit length+N shrt ) are different, puncturing processing is performed to discard (thin out) parity bits.
  • the difference between N CW ⁇ L CW and (first encoded bit length+N shrt ) is represented as N punc .
  • the N puncs are evenly distributed to each codeword block. That is, the puncturing bits Npcblk of each codeword block are floor( Npunc / NCW ). Note that the first N punct mod N CW blocks have one more puncturing bit than the other blocks.
  • the last N pcblk (or N pcblk +1) bits of the LDPC codeword block are discarded.
  • the shortening and puncturing processes produce codeword blocks to be transmitted.
  • the physical layer frame generation unit 10003a-1 encodes the LDPC information block at the mother coding rate and then punctures it. Generate a codeword block.
  • the codeword block indicating initial transmission is also referred to as the first codeword block
  • the codeword block indicating retransmission is also referred to as the second codeword block.
  • the first codeword block length and the second codeword block length are the same in this embodiment, one aspect of the present invention is not limited to this. Note that although the following embodiments are described with a mother coding rate of 1/2, one aspect of the present invention is not limited to this.
  • a coding rate equal to or lower than the coding rate indicated by the MCS such as a mother coding rate of 1/3, may be used.
  • a parity bit obtained by encoding an LDPC information block at a mother coding rate is also called a mother parity bit.
  • An LDPC codeword block obtained by encoding the LDPC information block at the mother coding rate is also called a mother codeword block.
  • a different mother coding rate may be set for each MCS.
  • FIG. 10 shows an example of the same LDPC information block length as in FIG.
  • the numerical value shown in FIG. 10 is an example.
  • the LDPC information block length is coded with a mother coding rate of 1 ⁇ 2 using a parity check matrix based on the LDPC information block length.
  • the mother parity bits are divided into one or a plurality of parity blocks based on the coding rate indicated by the MCS. For example, when the coding rate indicated by MCS is 1/2, the number of parity blocks is one. Also, when the coding rate indicated by MCS is 2/3, the number of parity blocks is two. When the coding rate indicated by MCS is 3/4, the number of parity blocks is three.
  • the first codeword block or the second codeword block is generated from the LDPC information block and one parity block.
  • the first codeword length and the second codeword length are the same as the codeword length when the HARQ setting indicates ARQ.
  • a parity block number is associated with a redundancy version (RV).
  • RV0 to RV4 in the figure indicate that RV is 0, 1, 2, 3, and 4, respectively.
  • RV value can also be interpreted as the number of retransmissions. That is, RV0 indicates the first transmission, RV1 indicates the first retransmission (second transmission), . . .
  • RV4 indicates the fourth retransmission (fifth transmission). Also, the number of retransmissions and the value of RV do not have to match. For example, RV0 indicates the first transmission, RV2 is the first retransmission (second transmission), RV4 is the second retransmission (third transmission), RV1 is the third retransmission (fourth transmission), RV3 is A fourth retransmission (fifth transmission) can be indicated. Also, not all RVs may be transmitted. For example, whether it is the first transmission or retransmission, only RV0 may be transmitted, or RV0 and RV3 may be alternately transmitted for each retransmission. The number of RVs (the number of parity blocks) is also called Nrv .
  • RV may also be associated with the number of retransmissions.
  • RV0 is transmitted in the first transmission (the number of retransmissions is 0), and RVx is transmitted in the n-th retransmission.
  • mod represents a remainder.
  • the first codeword block is composed of the LDPC information block and the parity block of RV0
  • the second codeword block is composed of the LDPC information block and the parity block other than RV0.
  • FIG. 11 is an example in which the LDPC information block length does not change depending on the coding rate indicated by MCS. Therefore, LDPC encoding uses a parity check matrix with a mother coding rate of 1/2 for LDPC information block lengths of 1620 bits, 1080 bits, or 540 bits. Mother parity bits are associated with redundancy versions and divided into one or more parity blocks based on the coding rate indicated by the MCS, as in the example of FIG. Since an LDPC codeword is generated from an LDPC information block and one parity block, in the example of FIG. 11, the LDPC codeword length varies depending on the coding rate indicated by the MCS.
  • the second codeword block includes the LDPC information block, so even if the retransmission signal is received alone, it can be decoded. Also, if parity blocks with different RV values are transmitted between initial transmission and retransmission, and HARQ combining is performed on the receiving side, the coding rate will decrease, and error correction capability will also improve.
  • LDPC can be decoded even if some information bits are thinned out from the codeword, depending on the coding rate. Taking advantage of this, N rv can be reduced.
  • FIG. 12 shows an example in which Nrv is reduced to 4 when the coding rate of MCS is 5/6.
  • the LDPC information block length is 1620 bits, 1080 bits or 540 bits, and the information bit length included in the first codeword block is the same as the LDPC information block length.
  • the parity block length included in the first codeword block is 324 bits, 216 bits, or 108 bits.
  • the information bit length contained in the second codeword block is 1512 bits, 1008 bits or 504 bits, which is smaller than the LDPC information block length.
  • the parity block length included in the first codeword block is 432 bits, 288 bits, or 144 bits, which is longer than the parity block length included in the first codeword block. Note that the second codeword block can be decoded even when the retransmission signal is received alone. Also, since Nrv is reduced, the mother coding rate can be achieved with a smaller number of retransmissions.
  • the mother coding rate can be achieved by transmitting all the parity bits that were not transmitted in the initial transmission in the retransmission.
  • the first codeword block consists of 1458 information bits and 486 parity bits
  • the second codeword block consists of 972 information bits and 486 parity bits. It consists of 972 parity bits.
  • the first codeword block consists of 1620 information bits and 324 parity bits
  • the second codeword block consists of 648 information bits and 324 parity bits. It consists of 1296 bits of parity bits.
  • FIG. 13 is an example of thinning out information bits in all RVs to reduce Nrv .
  • the LDPC information block length is 1458 bits, 972 bits, or 486 bits.
  • Nrv can be reduced to 2 by thinning the information bits transmitted at the initial transmission or retransmission to 1215 bits, 808 bits, or 405 bits, respectively, and increasing the parity block length.
  • the LDPC information block length is 1620 bits, 1080 bits, or 540 bits.
  • Nrv can be reduced to 3 by thinning the information bits transmitted at the initial transmission or retransmission to 1404 bits, 936 bits, or 468 bits, respectively, and increasing the parity block length.
  • the information bits to be transmitted may be obtained by thinning the leading bits or the trailing bits of the LDPC information block.
  • the value of RV may change whether the front bits of the LDPC information block are thinned out or the rear bits are thinned out. For example, if the RV is an even number (RV0 or RV2), the information bits to be transmitted are obtained by thinning out the bits after the LDPC information block, and if the RV is an odd number (RV1), the information bits to be transmitted are LDPC The bits in front of the information block can be thinned out.
  • the mother codeword block is composed of 1600 bits of information bits 2000, 20 bits of shortening bits 2001, 320 bits of parity blocks 2002-1 to 2002-5, and 20 bits of puncturing bits 2003. .
  • Parity bits of the mother codeword block are divided into parity blocks 2002-1 to 2002-5 after puncturing bits 2003 are thinned out.
  • the mother codeword block has 1600 bits of information bits 2004, 20 bits of shortening bits 2005, 320 bits of parity blocks 2006-1 to 2006-5, and 4 bits of puncturing bits 2007-1 to 2007. -5.
  • the parity bits of the mother codeword block are divided into blocks of 324 bits.
  • a 320-bit parity block is generated by thinning out 4 puncturing bits from this block.
  • FIG. 15 is an example of puncturing information bits without puncturing parity bits in the case of retransmission.
  • the mother codeword block includes 1600-bit information bits 2100, 20-bit shortening bits 2101, 324-bit initial transmission (RV0) parity block, and 324-bit retransmission (RV1 to RV4) parity blocks. 2104-1 to 2104-4.
  • the initial transmission parity block consists of 320-bit initial transmission parity bits 2102 and 4-bit initial transmission puncturing bits 2103 .
  • the information bit length of the second codeword block becomes 1596 bits because the puncturing performed in the parity block of the first transmission is performed with the information bits. Moreover, when transmitting the parity block of RV0 by retransmission, the puncturing bit 2103 may be transmitted and the information bit may be punctured. At this time, the second codeword block is composed of 1596 information bits and 324 parity bits.
  • the thinning may be performed from the bits other than the shortening bits.
  • FIG. 16 is a schematic diagram showing an example of blocking processing of the physical layer frame generation unit 10003a-1 when the setting of the retransmission method indicates ARQ.
  • the physical layer frame generation unit 10003a-1 in the figure divides the PSDU into information blocks, which are a plurality of payloads, with a predetermined information bit length defined by the MCS included in the PHY header, and performs error correction on each information block.
  • a transmission frame is generated by encoding.
  • An error correction encoded information block is also called a codeword block.
  • the predetermined bit length for separating PSDUs by the MAC layer may not match the array of a plurality of predetermined bit lengths for separating PSDUs by the PHY layer.
  • the physical layer frame generator 10003a-1 allows each information block to contain two or more MPDUs.
  • Block #3 and block #6 in FIG. 11 each contain two or more MPDUs, the former storing MPDU #1-2 and the latter storing some information bit sequences included in MPDU #2-3. become.
  • the MAC layer of the upper layer section 10001-1 that received the Block ACK in the transmission frame retransmits MPDU#2 because an error is detected in MPDU#2.
  • the PHY layer blocks the PSDU and transmits it.
  • the PHY layer block contains multiple MPDUs, it may be divided into blocks different from those at the time of the first transmission. , different codeword blocks are transmitted. In this case, the receiving side cannot synthesize MPDU#2 for initial transmission and MPDU#2 for retransmission.
  • FIG. 17 is a schematic diagram showing an example of blocking processing of the physical layer frame generation unit 10003a-1 when the MAC layer control information includes an MPDU length information field (when the retransmission method setting indicates HARQ). is.
  • the physical layer frame generation unit 10003a-1 in the figure converts each MPDU that constitutes the PSDU into a plurality of respective MPDUs based on the MPDU length of the control information in addition to the predetermined information bit length defined by the MCS included in the PHY header. Divide into information blocks. Also, the physical layer frame generator 10003a-1 calculates the information block length and stores it in the information field of the same header. When the MPDU length is an integral multiple of the information block length, the number of information blocks may be stored in the PHY header.
  • each information block is subjected to error correction coding to generate a transmission frame.
  • one MPDU is composed of one or more information blocks. That is, the physical layer frame generation unit 10003a-1 is not permitted for each block to contain two or more MPDUs.
  • Blocks #4 to #6 in the figure each store an information bit sequence of MPDU#2.
  • the MAC layer of the upper layer section 10001-1 that received the Block ACK in the transmission frame retransmits MPDU#2 because an error is detected in MPDU#2. Since each MPDU is divided into information blocks, the same codeword block as the first transmission can be transmitted at the time of retransmission. In this case, the reception side can improve the reception quality by combining MPDU#2 of initial transmission and MPDU#2 of retransmission.
  • the LDPC codeword block length is determined by at least the encoding bit length (also referred to as the second encoding bit length) calculated based on the MPDU length and the MCS encoding rate. be. Note that when the MPDU length changes for each MPDU, the second coded bit length is calculated for each MPDU. For example, if the second encoding bit length is 648 bits or less, the LDPC codeword block length will be 648 bits. Also, if the second encoded bit length is greater than 648 bits and less than or equal to 1296 bits, the LDPC codeword block length is 1296 bits.
  • the LDPC codeword block length is 1944 bits. Note that when the second encoding bit length is 1944 bits or less, the number of LDPC codeword blocks is one. If the second encoded bit length is greater than 1944 bits and less than or equal to 2592 bits, the LDPC codeword block length is 1296 bits and the number of LDPC codeword blocks is two. When the LDPC codeword block length is greater than 2592 bits, the LDPC codeword block length is 1944 bits, and the number of LDPC codeword blocks is the second encoding bit length and the LDPC codeword block length of 1944 bits. It can be calculated as the encoded bit length of 2/1944).
  • the LDPC codeword length is determined by at least the second coding bit length and the MCS coding rate.
  • the LDPC codeword length is determined by at least the second coding bit length and the MCS coding rate.
  • three LDPC information block lengths of a first LDPC information block length, a second LDPC information block length, and a third LDPC information block length are provided for one MCS coding rate.
  • the first LDPC information block length is 540 bits
  • the second LDPC information block length is 1080 bits
  • the third LDPC information block length is 1620 bits.
  • the LDPC codeword block length for the first LDPC information block length is also called the first LDPC codeword block length
  • the LDPC codeword block length for the second LDPC information block length is also called the second LDPC codeword block length
  • the LDPC codeword block length for the third LDPC information block length is also called the third LDPC codeword block length.
  • the LDPC codeword block length becomes the first LDPC codeword block length. Also, when the second encoded bit length is greater than the first LDPC codeword block length and equal to or less than the second LDPC codeword block length, the LDPC codeword block length is equal to the second LDPC codeword block length. Become. Also, when the second encoded bit length is greater than the second LDPC codeword block length and equal to or less than the third LDPC codeword block length, the LDPC codeword block length is the third LDPC codeword block length. .
  • the number of LDPC codeword blocks is one. If the second LDPC encoded bit length is greater than the third LDPC codeword block length and less than or equal to twice the second LDPC codeword block length, then the LDPC codeword block length is equal to the second LDPC codeword block length length, and the number of LDPC codeword blocks is two. Also, if the LDPC codeword block length is greater than twice the second LDPC codeword block length, the LDPC codeword block length is the third LDPC codeword length, and the number of LDPC codeword blocks is the second encoding. It is calculated as ceil (second encoded bit length/third LDPC codeword block length) from the bit length and the third LDPC codeword block length.
  • shortening processing is performed for each MPDU. If the N CW ⁇ L CW ⁇ R is different from the MPDU length, the shortening process is performed.
  • the difference between N CW L CW R and the MPDU length is represented as N shrt .
  • the N shorts are equally distributed to each information block. That is, the shortening bit N shblk of each information block is floor(N shrt /N CW ).
  • the first N short mod N CW blocks have one more shortening bit than the other blocks. However, mod represents a remainder.
  • the shortening process appends N shblk (or N shblk +1) bits to the information block to generate the LDPC information block. For this reason, the PSDU is divided into individual information blocks taking into account the shortening process.
  • the LDPC information blocks are LDPC encoded to produce LDPC codeword blocks, but the shortening bits are discarded.
  • N punc A difference between N CW ⁇ L CW and (second encoded bit length + N shrt ) is represented as N punc .
  • the N puncs are evenly distributed to each codeword block. That is, the puncturing bits Npcblk of each codeword block are floor( Npunc / NCW ). Note that the first N punct mod N CW blocks have one more puncturing bit than the other blocks. In the puncturing process, the last N pcblk (or N pcblk +1) bits of the LDPC codeword block are discarded. The shortening and puncturing processes produce codeword blocks to be transmitted.
  • the physical layer frame generation unit 10003a-1 when the MAC layer control information includes an MPDU length information field (when the retransmission scheme setting indicates ARQ), the physical layer frame generation unit 10003a-1 according to the present embodiment, according to MCS and MPDU length By referring to a table or a calculation formula that can calculate the encoded block length, it is possible to perform PSDU blocking processing with the encoded block length.
  • the transmitting apparatus can use a binary convolutional code (BCC).
  • BCC binary convolutional code
  • the transmitting device can use the BCC to use the blocking processing method shown above, that is, the blocking processing when ARQ is configured and when HARQ is configured.
  • the transmitting device can match the number of information bits included in the information block with the number of bits included in the MPDU.
  • the transmitting device can match the integer multiple of the number of information bits included in the information block with the number of bits included in the MPDU.
  • the transmitting apparatus can switch blocking processing according to the error correction coding method set in the PHY layer. For example, when BCC is set as the error correction coding method, the transmitting device performs blocking processing assuming ARQ, and when LDPC is set, the transmitting device performs blocking processing assuming HARQ. can do. Also, the transmitting apparatus can perform blocking processing assuming HARQ when BCC is configured, and can perform blocking processing assuming ARQ when LDPC is configured.
  • the table or formula includes multiple MPDU length candidate values for each maximum MPDU size (for example 11ac: 3895, 7991, 11454 bytes), and each MPDU length given information to be encoded for each MCS Bit length candidate values can be stored. For example, if the length of one MPDU that constitutes the A-MPDU transferred from the upper layer unit 10001-1 according to the present embodiment is 3895 bytes or less, the transmitting unit refers to the above table or formula. , a candidate value that is the same as the MPDU length of the MPDU or a candidate value that has the closest MPDU length is selected, and candidate values for the coding block length corresponding to the MCS can be obtained in series as an index. It should be noted that the station apparatus, access point, etc. according to the present embodiment can update the table or the calculation formula using a management frame such as a beacon frame, and can share the encoding block length index.
  • a management frame such as a beacon frame
  • the PHY header included in the transmission frame is a PLCP preamble that performs synchronization detection, a PLCP header that defines a modulation coding scheme (MCS) according to the received signal strength, and an upper layer part 10001 -1 includes control information for notifying ARQ/HARQ in the MAC layer and an index that can refer to the coded block length.
  • MCS modulation coding scheme
  • the MPDU length and /MCS so that one information block does not contain multiple MPDU bits.
  • the MPDU length is limited to an integer multiple of the LDPC information block length that makes the LDPC codeword block length 1944 bits, and the use of MCS other than the coding rate that becomes the LDPC block length that is a divisor of the MPDU is limited.
  • the MPDU length is divisible by LDPC information blocks with coding rates of 1/2, 2/3, and 3/4. Even if block processing is performed for each MPDU, the result does not change.
  • the setting of the retransmission method indicates HARQ
  • MCS7 and MCS9 with an encoding rate of 5/6, which is an indivisible LDPC information block length
  • the retransmission scheme may indicate ARQ.
  • the wireless communication device 1-1 blocks and transmits the PSDU.
  • Radio communication apparatus 1-1 designates ARQ/HARQ as the retransmission method included in control information notified by the MAC layer of upper layer section 10001-1, thereby adding A-MPDU to the control information. It is possible to set whether or not to add the information field of each MPDU length that constitutes it, and it is possible to switch between blocking processing for PSDU and blocking processing for MPDU according to the control information. make it possible.
  • FIG. 18 is a schematic diagram showing an example of control information related to the PHY layer packet combining method generated in the upper layer.
  • the upper layer unit 10001-1 of the wireless communication device 1-1 according to the present embodiment first generates an MPDU addressed to the destination information (AID) from the information bit sequence transferred to the MAC layer, and is not allowed to allocate more than one MPDU to a resource unit, and the MPDUs allocated to the resource unit are distinguished as a first MPDU and a second MPDU, respectively.
  • the first MPDU and the second MPDU respectively correspond to MPDU1 and MPDU2 in the drawing.
  • resource unit 1 to which MPDU1 is allocated is also called a first resource unit
  • resource unit 2 to which MPDU2 is allocated is also called a second resource unit.
  • the upper layer unit 10001-1 generates control information on the PHY layer packet synthesis method for the first MPDU and the second MPDU in the MAC layer, so that the first MPDU and the second MPDU A plurality of different AIDs can be assigned, and HARQ can be set for the AIDs.
  • each HARQ can be set for the retransmission frame corresponding to AID2 by setting AID2 indicating a retransmission frame to the AID addressed to the resource unit.
  • the upper layer section 10001-1 of the wireless communication device 1-1 does not limit the assignment of each resource unit to the MPDU in the frequency direction, regardless of whether it is the first transmission or the retransmission. Instead, it can be implemented in the time axis direction as well.
  • the upper layer section 10001-1 of the wireless communication device 1-1 includes a method of allocating the first MPDU and the second MPDU of the MAC layer to resource units, and the first MPDU and the second MPDU. 2 MPDU, and HARQ settings, control information relating to the PHY layer packet combining method is generated. The control information is transmitted to the PHY layer by the control unit 10002-1 of the wireless communication device 1-1 according to this embodiment.
  • the setting/release of HARQ for the AID is performed when a request for an acknowledgment (ACK, block ACK, multi-STA block ACK) times out, or when the acknowledgment is the first MPDU or the second MPDU. It may be implemented when notifying AID.
  • HARQ setting/release for the AID can also be performed by connection authentication/reconnection authentication (association/re-association), respectively. may be used.
  • the AID included in the management frame and the control frame may be used to notify setting/release of HARQ for the AID.
  • control information is not limited to any HARQ packet combining method.
  • the same packet is transmitted at the initial transmission and the retransmission, and the packet is combined at the receiving side to improve the SNR of the received signal, or the parity signal representing the redundant signal is added at the time of retransmission. By doing so, incremental redundancy combining that enhances the error correction decoding capability of the receiving side may be used.
  • the frame generator permits the control information to include additional information required for the packet combining method.
  • the upper layer section 10001-1 of the wireless communication device 1-1 may be capable of setting either ARQ or HARQ.
  • ARQ when ARQ is set in the upper layer, the wireless communication device 1-1 generates AID1.
  • HARQ is set in the upper layer, the wireless communication device 1-1 generates AID1 or AID2.
  • multiple MPDUs are not allocated to one resource unit.
  • AID1 or AID2 is associated with each MPDU or each resource unit.
  • the wireless communication device 1-1 associates AID1 with the MPDU or resource unit in the case of initial transmission, and associates AID1 or AID2 with the MPDU or resource unit in the case of retransmission.
  • the frame generation unit 10003a-1 of the wireless communication device 1-1 generates a PHY header based on the control information regarding the PHY layer packet synthesis method transmitted by the control unit 10002-1. and generate a PPDU containing the first MPDU and the second MPDU.
  • FIG. 18 shows an outline example of the PPDU. That is, the PHY header consists of a PLCP preamble for synchronization detection and a PLCP header for determining the modulation and coding scheme (MCS) according to the received signal strength, and HARQ is added to the control information.
  • MCS modulation and coding scheme
  • the AID for the first MPDU and the second MPDU modulation and coding scheme (MCS), coding scheme, RU allocation information, information on the packet combining method of the PHY layer such as RV Elements may be included in the PLCP preamble or the PLCP header, and information elements addressed to multiple station equipment may be included in the user specific information field.
  • MCS modulation and coding scheme
  • coding scheme coding scheme
  • RU allocation information information on the packet combining method of the PHY layer such as RV Elements
  • information elements addressed to multiple station equipment may be included in the user specific information field.
  • the information element may be included in the 11ac standard VHT-SIG-B field, the 11ax standard HE-SIG-B field, and the 11be standard EHT-SIG field shown in FIG.
  • the frame generation unit 10003a-1 generates a first codeword block and a second codeword block corresponding to the first MPDU and the second MPDU based on the PHY header
  • the transmitting section 10003b-1 of the device 1-1 transmits the PPDU containing the first codeword block and the second codeword block assigned to the resource units in the radio channel.
  • the transmitting unit 10003b-1 when the transmitting unit 10003b-1 according to the present embodiment retransmits the first MPDU or the second MPDU under the same conditions as the initial transmission, the PHY header overlapping with the initial transmission HARQ may be set in the field and packet combining may be performed on the first MPDU or the second MPDU retransmitted using the control information stored in the receive buffer.
  • the upper layer section 10001-1 of the wireless communication device 1-1 for AID, the MPDU at the time of initial transmission (hereinafter also referred to as MPDU at the time of initial transmission) is AID1, the MPDU at the time of retransmission (hereinafter also referred to as MPDU (also referred to as retransmission MPDU) is set as AID2, ARQ may be set for the retransmission MPDU corresponding to AID2.
  • the upper layer section 10001-1 has a method of allocating the first MPDU and the second MPDU of the MAC layer to resource units, and assigning the first MPDU and the second MPDU to the MAC layer.
  • the frame generation unit 10003a-1 of the wireless communication device 1-1 first generates a PPDU including a PHY header reflecting the control information, a first MPDU, and a second MPDU. Then, in the PHY header, a PLCP preamble for synchronization detection and a PLCP header for determining a modulation and coding scheme (MCS) according to the received signal strength are configured. is added, the PLCP preamble or PLCP header does not include the information element regarding the packet synthesis method of the PHY layer.
  • MCS modulation and coding scheme
  • the frame generation unit 10003a-1 generates a first codeword block and a second codeword block corresponding to the first MPDU and the second MPDU based on the PHY header
  • the transmission unit 10003b-1 of the communication device 1-1 transmits a PPDU including the first codeword block and the second codeword block assigned to resource units in the radio channel.
  • the radio communication apparatus 1-1 designates ARQ/HARQ as the retransmission method included in the control information notified by the MAC layer of the upper layer section 10001-1. It is possible to set whether or not to generate control information regarding the composition method.
  • the wireless communication device 1-1 When the wireless communication device 1-1 according to the present embodiment notifies the function information (Capability, Capability element, Capability information) provided by the device using a beacon frame, a probe response frame, etc., for the function information,
  • the PHY header of the frame transmitted by the wireless communication device 1-1 can contain control information indicating whether to set ARQ/HARQ. Also, the wireless communication device 1-1 can reject communication devices that cannot interpret ARQ/HARQ-configured frames from connecting to the wireless communication device 1-1.
  • the wireless communication device 1-1 can determine whether or not to configure HARQ for the frame containing the PSDU, based on the length of the PSDU transmitted by the wireless communication device 1-1. For example, when the length of a PSDU exceeds a predetermined length, the wireless communication device may not configure HARQ for the frame containing the PSDU.
  • the length of the PSDU can be the number of information bits included in the PSDU, the number of bits included in the codeword block after error correction coding, the time length of the frame included in the PSDU, or the like. .
  • the wireless communication device 1-1 can change the format of the control information between initial transmission and retransmission.
  • the control information format for initial transmission is also called the first control information format
  • the control information format for retransmission is also called the second control information format.
  • the first control information format includes part or all of AID1, coding scheme, and MCS (modulation mode).
  • the second control information format includes part or all of AID2, modulation scheme, and RV. Note that at least the coding rate and coding method are common between the initial transmission and the retransmission, so they do not need to be included in the second control information. If the initial transmission is RV0, RV is not included in the first control information format. Therefore, the second control information format may be obtained by replacing the encoding method and/or the encoding rate with RV in the first control information format.
  • the wireless communication device 1-1 can set ARQ/HARQ in the transmission frame only within the period of the TXOP acquired by the control frame such as the RTS frame or the CTS frame.
  • the wireless communication device indicates that ARQ/HARQ is set, or that ARQ/HARQ may be set, for frames transmitted within the period of the TXOP, for frames that acquire the TXOP.
  • a wireless communication device may transmit frames to acquire the TXOP to multiple wireless communication devices.
  • the wireless communication device can include information indicating a plurality of wireless communication devices as destinations (for example, information including a plurality of AIDs or information directly indicating a plurality of AIDs) in the frame that acquires the TXOP.
  • a wireless communication device that receives the frame that acquires the TXOP and whose destination includes itself can transmit a response frame to the frame that acquires the TXOP.
  • the response frame may include information indicating whether the ARQ/HARQ-configured frame can be interpreted.
  • the response frame can be transmitted only when the own device can interpret the frame in which ARQ/HARQ is set for the frame that acquires the TXOP.
  • ARQ/HARQ configuration can be associated with resource unit size (the number of subcarriers or tones that make up a resource unit).
  • the wireless communication device 1-1 can configure HARQ for resource units having a size greater than or equal to a predetermined value.
  • the wireless communication device 1-1 can set HARQ to resource units configured by a predetermined number of OFDM signals or more.
  • the setting of ARQ/HARQ can be related to the number of resource units that a frame comprises. For example, when the number of resource units set within a predetermined bandwidth is greater than or equal to a predetermined value, the radio communication device 1-1 can set HARQ for each resource unit.
  • the setting of ARQ/HARQ can be associated with the spatial multiplexing number of data or users set in resource units.
  • the wireless communication device 1-1 may not configure HARQ for resource units for which spatial multiplexing is configured.
  • the wireless communication device 1-1 can configure HARQ in resource units in which spatial multiplexing numbers equal to or less than a predetermined value are configured.
  • the ARQ/HARQ settings can be related to the length of the TXOP obtained prior to transmitting the frame.
  • the wireless communication device 1-1 can set HARQ for frames transmitted within a TXOP longer than a predetermined value.
  • the wireless communication device 1-1 can set HARQ for frames transmitted within TXOPs acquired by other devices instead of the TXOPs acquired by the wireless communication device 1-1.
  • a trigger frame transmitted by the communication device that acquired the TXOP (frame transmission to the wireless communication device 1-1 is
  • the HARQ configuration can be determined based on the information described in the triggering frame).
  • the radio communication device 1-1 When a predetermined period elapses from the transmission of the first transmission frame to the transmission of the retransmission frame for the retransmission frame for the frame in which HARQ is set, the radio communication device 1-1 adds HARQ to the retransmission frame. Can not be set. In other words, if there is an elapsed time equal to or greater than a predetermined value between the transmission timing of the initial transmission frame and the transmission timing of the retransmission frame, the radio communication device 1-1 combines the frames in the PHY layer.
  • the PHY layer packet combining can be set to not occur.
  • the wireless communication device 1-1 can set HARQ in the retransmission frame, it is possible that the retransmission frame can be transmitted before a predetermined time elapses after the first transmission frame is transmitted.
  • the wireless communication device 1-1 can prohibit transmission of frames in which HARQ is set in the TXOP acquired by the device itself. Also, the wireless communication device 1-1 can set a period during which transmission of frames in which HARQ is set is prohibited in the TXOP acquired by the wireless communication device 1-1.
  • the section in which the period for prohibiting the transmission of HARQ-configured frames is set is not limited to TXOP. It is possible to set a period of time during which the transmission of the frame that has been detected is prohibited. Of course, instead of setting prohibited periods, it is also possible to set permitted periods.
  • the wireless communication device 2-1 receives transmission frames from the wireless communication device 1-1.
  • the signal demodulator 10004b-1 of the wireless communication device 2-1 according to this embodiment decodes the PSDU codeword included in the received transmission frame. Then, the decoding result is transferred to the upper layer section 10001-1.
  • the upper layer section 10001-1 performs error detection on the frame and determines whether or not it has been correctly decoded. Error detection includes error detection using an error detection code (for example, a cyclic redundancy check (CRC) code) attached to a received transmission frame, or error correction code (for example, a low-density parity check code (LDPC)) includes error detection.
  • error detection code for example, a cyclic redundancy check (CRC) code
  • error correction code for example, a low-density parity check code (LDPC)
  • the signal demodulator 10004b-1 of the wireless communication device 2-1 reads out the predetermined information bit length and coding rate determined by the MCS from the PHY header and decodes it. A predetermined information bit length (codeword block length) is calculated. Then, decoding processing is performed for each codeword block on the PSDU that has been error-correction coded.
  • the MAC layer of the upper layer section 10001-1 determines whether or not the MPDU or A-MPDU can be correctly decoded from the decoded PSDU. For example, in the example of FIG.
  • radio communication apparatus 1-1 since the MAC layer of the upper layer section 10001-1 detects an error in MPDU#2, it transmits Block ACK indicating that MPDU#2 is NACK to the wireless communication device 1-1. .
  • radio communication apparatus 1-1 In order to transmit MPDU#2 and new MPDU#4-5 that follow, radio communication apparatus 1-1 generates blocks #9-16 with the coding block length and generates a retransmission frame. Note that the retransmission frame can also include only the MPDU#2.
  • the predetermined bit length with which the MAC layer delimits the PSDU does not match the arrangement of a plurality of predetermined bit lengths with which the PHY layer delimits the PSDU. Therefore, since MPDU#2 included in the retransmission frame and MPDU#2 in the initial transmission form different codewords, the signal demodulator 10004b-1 of the wireless communication device 2-1 does not perform packet combining.
  • the first coded bit length for the PSDU is obtained based on the number of OFDM symbols in the received frame and the MCS.
  • the LDPC codeword block length is obtained from the first encoded bit length. For example, in the example of FIG. 9, when the first encoding bit length is 648 bits or less, the LDPC codeword block length is 648 bits. Also, when the first encoded bit length is greater than 648 bits and 1296 bits or less, the LDPC codeword block length is 1296 bits.
  • the LDPC codeword block length is 1944 bits. Note that when the first encoding bit length is 1944 bits or less, the number of LDPC codeword blocks is one. If the first encoded bit length is greater than 1944 bits and less than or equal to 2592 bits, the LDPC codeword block length is 1296 bits and the number of LDPC codeword blocks is two. When the LDPC codeword block length is greater than 2592 bits, the LDPC codeword block length is 1944 bits, and the number of LDPC codeword blocks is the first encoding bit length and the LDPC codeword block length of 1944 bits. It can be calculated as the encoded bit length of 1/1944).
  • the shortening bit length and puncturing bit length are calculated to obtain the codeword block length.
  • the first coded bits are then divided into codeword blocks.
  • An LDPC codeword block is generated by performing reverse processing of the shortening processing and puncturing processing performed on the transmitting side on the codeword block.
  • the reverse process of the shortening process inserts an LLR (Log Likelihood Ratio) with a large absolute value indicating bit 0 at the position of the shortening bit discarded on the transmitting side.
  • the inverse of the puncturing process inserts LLRs with a value of 0 at the positions of puncturing bits discarded by the transmitter. Error correction decoding is performed on the LDPC codeword block to obtain an LDPC information block.
  • the signal demodulation unit 10004b-1 of the wireless communication device 2-1 reads the information field of the coding rate and coding block length determined by the MCS from the PHY header, Calculate the codeword block length. Then, the PSDU is subjected to decoding processing for each codeword block, and the decoding result is transferred to the upper layer section 10001-1.
  • the MAC layer of the upper layer section 10001-1 performs error detection and determines whether MPDU or A-MPDU can be correctly decoded from the decoded PSDU. In the example of FIG.
  • the Block ACK frame can include in the information field the sequence number of the information block corresponding to the sequence number of the MPDU in which the error was detected.
  • the wireless communication device 1-1 can transmit MPDU#2 and subsequent new MPDU#4-5, generate blocks #10-18 with the information block length, and construct a retransmission frame. Note that the retransmission frame can also include only the MPDU#2.
  • the signal demodulation unit 10004b-1 of the radio communication device 2-1 can packet-synthesize the retransmitted MPDU#2 and the first-transmission MPDU#2 stored in the buffer, thereby improving reception power and obtaining a time diversity effect. be done.
  • the second coded bit length for MPDU is obtained based on the number of OFDM symbols in the received frame and the MCS.
  • the LDPC codeword block length is obtained from the second encoded bit length. For example, if the second encoding bit length is 648 bits or less, the LDPC codeword block length will be 648 bits. Then, if the second encoded bit length is greater than 648 bits and less than or equal to 1296 bits, the LDPC codeword block length will be 1296 bits.
  • the LDPC codeword block length is 1944 bits. Note that when the second encoded bit length is 1944 bits or less, the number of LDPC codeword blocks is one. If the second encoded bit length is greater than 1944 bits and less than or equal to 2592 bits, the LDPC codeword block length is 1296 bits and the number of LDPC codeword blocks is two. When the LDPC codeword block length is greater than 2592 bits, the LDPC codeword block length is 1944 bits, and the number of LDPC codeword blocks is the second encoding bit length and the LDPC codeword block length of 1944 bits. It can be calculated as the encoded bit length of 2/1944).
  • An LDPC codeword block is generated by performing reverse processing of the shortening processing and puncturing processing performed on the transmitting side on the codeword block.
  • the reverse process of the shortening process inserts an LLR (Log Likelihood Ratio) with a large absolute value indicating bit 0 at the position of the shortening bit discarded on the transmitting side.
  • the inverse of the puncturing process inserts LLRs with a value of 0 at the positions of puncturing bits discarded by the transmitter.
  • Error correction decoding is performed on the LDPC codeword block to obtain an LDPC information block. In the case of retransmission, error correction decoding is performed after LLR-combining the initial transmission LDPC codeword block and the retransmission LDPC codeword block. For IR, decoding is performed at the mother coding rate.
  • each of the MCS coding rates has the first LDPC codeword block length, the second LDPC codeword block length, and the third LDPC codeword block length
  • the decoding procedure will be explained.
  • the second encoded bit length is less than or equal to the first LDPC codeword block length
  • the LDPC codeword block length becomes the first LDPC codeword block length.
  • the second encoded bit length is greater than the first LDPC codeword block length and equal to or less than the second LDPC codeword block length
  • the LDPC codeword block length is equal to the second LDPC codeword block length.
  • the LDPC codeword block length is the third LDPC codeword block length.
  • the number of LDPC codeword blocks is one. If the second LDPC encoded bit length is greater than the third LDPC codeword block length and less than or equal to twice the second LDPC codeword block length, then the LDPC codeword block length is equal to the second LDPC codeword block length length, and the number of LDPC codeword blocks is two.
  • the LDPC codeword block length is greater than twice the second LDPC codeword block length
  • the LDPC codeword block length is the third LDPC codeword length
  • the number of LDPC codeword blocks is the second encoding. It is calculated as ceil (second encoded bit length/third LDPC codeword block length) from the bit length and the third LDPC codeword block length. Then, the shortening bit length and puncturing bit length are calculated to obtain the codeword block length. The second coded bits are then divided into codeword blocks.
  • An LDPC codeword block is generated by performing reverse processing of the shortening processing and puncturing processing performed on the transmitting side on the codeword block.
  • the reverse process of the shortening process inserts an LLR (Log Likelihood Ratio) with a large absolute value indicating bit 0 at the position of the shortening bit discarded on the transmitting side.
  • the inverse of the puncturing process inserts LLRs with a value of 0 at the positions of puncturing bits discarded by the transmitter.
  • Error correction decoding is performed on the LDPC codeword block to obtain an LDPC information block.
  • Error correction decoding at retransmission is performed after LLR-combining the first codeword block and one or more second LDPC codeword blocks.
  • the decoding process of the signal demodulation unit 10004b-1 when the information field of the PHY header of the received transmission frame stores the index of the encoded block length, the decoding process of the signal demodulation unit 10004b-1 according to the present embodiment stores the index in the table or The codeword block length can also be calculated by referring to the calculation formula. Then, the signal demodulation section 10004b-1 decodes each MPDU for each codeword block length and transfers the decoding result to the upper layer section 10001-1.
  • the signal demodulation section 10004b-1 When storing a plurality of block lengths corresponding to each MPDU length constituting the A-MPDU in the PHY header, as the number of MPDU aggregations increases in the MAC layer, the proportion of overhead in the PHY layer increases. A decrease in transmission efficiency is suggested. In the decoding process using the table or calculation formula, each MPDU length can be referenced from the index, and packet synthesis with high transmission efficiency due to overhead reduction is possible.
  • the wireless communication device 2-1 uses the codeword block for decoding from the first coded bit length for PSDU. You can ask for
  • the wireless communication device 2-1 receives transmission frames from the wireless communication device 1-1.
  • the signal demodulation unit 10004b-1 of the wireless communication device 2-1 according to the present embodiment first decodes the PHY header of the PPDU, which is the received transmission frame, and if HARQ is set in the PHY header, the Packet combining of the frame based on information elements related to packet combining methods such as modulation coding scheme (MCS), coding scheme, RU-related information, and RV for the first MPDU and second MPDU in the PHY header. to decode the codewords of the PPDU including the first codeword block and the second codeword block. Then, the decoding result is transferred to the upper layer section 10001-1.
  • MCS modulation coding scheme
  • RU-related information RU-related information
  • the upper layer section 10001-1 performs error detection on the PPDU and determines whether or not it has been correctly decoded. Error detection includes error detection using an error detection code (for example, a cyclic redundancy check (CRC) code) attached to a received transmission frame, or error correction code (for example, a low-density parity check code (LDPC)) includes error detection.
  • error detection code for example, a cyclic redundancy check (CRC) code
  • error correction code for example, a low-density parity check code (LDPC)
  • the decoding result of the PHY layer PPDU in the signal demodulator 10004b-1 is transferred to the MAC layer.
  • the MAC layer restores the frame of the MAC layer from the transferred decoding result.
  • the signal demodulator 10004b-1 can perform decoding processing and error detection on the received signal in the PHY layer.
  • the decoding processing here includes decoding processing for the error correction code applied to the received signal.
  • the error detection includes error detection using an error detection code (for example, a cyclic redundancy check (CRC) code) assigned in advance to the received signal, or error correction code (for example, a low-density parity code) originally provided with an error detection function. Includes error detection by check code (LDPC).
  • LDPC error detection by check code
  • the wireless communication device 2-1 receives AID1 from the wireless communication device 1-1 when ARQ is set. Further, when HARQ is set, the wireless communication device 2-1 receives AID1 or AID2 from the wireless communication device 1-1. Further, when HARQ is set, the wireless communication device 2-1 can determine that it is an initial transmission when AID1 is received, and can determine that it is a retransmission when AID2 is received. Further, when HARQ is set, the wireless communication device 2-1 receives AID1 or AID2 in each MPDU or each resource unit.
  • the wireless communication device 2-1 when HARQ is set, can receive different control information formats for initial transmission and retransmission.
  • the wireless communication device 2-1 can determine that it is an initial transmission, and when receiving the second control information format, it can determine that it is a retransmission.
  • the first control information format includes part or all of AID1, coding scheme, and MCS (modulation mode).
  • the second control information format includes part or all of AID2, modulation scheme, and RV.
  • the wireless communication device 2-1 can determine RV0 at the time of initial transmission. Further, when receiving the second control information format, the wireless communication device 2-1 can replace the encoding method and/or the encoding rate with RV in the first control information format.
  • a communication device can communicate in a frequency band (frequency spectrum) called an unlicensed band that does not require a license from a country or region.
  • frequency band is not limited to this.
  • a communication device is not actually used for the purpose of preventing interference between frequencies, for example, even though the country or region has given permission to use it for a specific service.
  • frequency bands called white bands for example, frequency bands that are allocated for television broadcasting but are not used in some regions
  • shared spectrum that is expected to be shared by multiple operators
  • a program that operates on a wireless communication device is a program that controls a CPU or the like (a program that causes a computer to function) so as to implement the functions of the above embodiments according to one aspect of the present invention.
  • Information handled by these devices is temporarily stored in RAM during processing, then stored in various ROMs and HDDs, and read, modified, and written by the CPU as necessary.
  • Recording media for storing programs include semiconductor media (eg, ROM, nonvolatile memory cards, etc.), optical recording media (eg, DVD, MO, MD, CD, BD, etc.), magnetic recording media (eg, magnetic tapes, flexible disk, etc.).
  • the program when distributing to the market, can be distributed by storing it in a portable recording medium, or it can be transferred to a server computer connected via a network such as the Internet.
  • the storage device of the server computer is also included in one aspect of the present invention.
  • part or all of the communication device in the above-described embodiments may be typically implemented as an LSI, which is an integrated circuit.
  • Each functional block of the communication device may be individually chipped, or part or all of them may be integrated and chipped. When each functional block is integrated, an integrated circuit control unit for controlling them is added.
  • the method of circuit integration is not limited to LSIs, but may be realized with dedicated circuits or general-purpose processors.
  • the method of circuit integration is not limited to LSIs, but may be realized with dedicated circuits or general-purpose processors.
  • a technology for integrating circuits to replace LSIs emerges due to advances in semiconductor technology, it is possible to use an integrated circuit based on this technology.
  • the wireless communication device of the present invention is not limited to application to mobile station devices, but can be applied to stationary or non-movable electronic devices installed indoors and outdoors, such as AV equipment, kitchen equipment, cleaning/washing equipment, etc. Needless to say, it can be applied to equipment, air conditioners, office equipment, vending machines, and other household equipment.
  • One aspect of the present invention is suitable for use in a communication device and a communication method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

再送方式を設定する上位層部と、符号語を用いてフレームを生成する物理層フレーム生成部と、前記フレームを送信する無線送信部と、を備え、前記再送方式の設定がHARQ (Hybrid Auto Repeat reQuest)を示す場合、前記物理層フレーム生成部は、情報ビットを含むLDPC (Low Density Parity Check)情報ブロックを所定の符号化率で符号化して、パリティビット系列を生成し、前記パリティビット系列をMCS (Modulation and Coding Scheme)が示す符号化率で与えられるブロック数に分割して複数のパリティブロックを生成し、各々の前記パリティブロックは、再送回数と関連付けられ、前記符号語は、前記情報ビット及び1つの前記パリティブロックに基づいて生成される。

Description

通信装置および通信方法
 本発明は、通信装置および通信方法に関する。
 本願は、2021年6月21日に日本に出願された特願2021-102165号について優先権を主張し、その内容をここに援用する。
 IEEE(The Institute of Electrical and Electronics Engineers Inc.)は、無線LAN(Local Area Network)通信の速度高速化、周波数利用効率化を実現するために無線LAN標準規格であるIEEE802.11の仕様更新に継続して取り組んでいる。近年、無線LANデバイスの急速な普及に伴って、遠隔医療やVR/ARといったリアルタイムアプリケーションとしての利用用途の拡大が見込まれており、IEEE802.11ax標準規格のさらなる低遅延化と通信容量の大容量化を実現するIEEE802.11beの標準化が進められている。
 IEEE802.11標準では、スループットの高速化技術として誤り制御が導入されている。誤り制御は、前方誤り訂正(Forward Error Correction:FEC)と自動再送要求(Automatic repeat request:ARQ)に大別される。前方誤り訂正は、誤り訂正符号を用いて伝送路で生じる誤りを受信側で訂正する方式であり、誤ったパケットに対する送信側への再送要求を不要とする。誤り訂正能力は、符号語に占める冗長ビットの割合を増やすことで向上するが、復号処理の増大や伝送効率の低下などとトレードオフの関係にある。一方、ARQは、受信側で適切に復号化されなかったパケットの再送を送信側に要求する方式である。復号時のパケット誤りは、受信側の媒体アクセス制御(Medium Access Control:MAC)で検出され、バッファに蓄積されることなく破棄される。パケットが正常に復号された場合は確認応答(Acknowledgement:ACK)が、パケット誤りが検出された場合には否定応答(Negative Acknowledgement:NACK)が送信側へと伝達される。パケットの再送処理は、送信側にNACKが伝達されるか一定期間内にACKが送信側へと伝達されなかった場合にARQによって実施される。前記したIEEE802.11標準での誤り制御に加え、IEEE802.11beの標準化活動では、前方誤り訂正符号とARQを組み合わせたハイブリッドARQ(Hybrid ARQ:HARQ)が検討されている。HARQは、再送時に同じパケットを送信し、受信側で合成することで、受信信号の信号対雑音電力比(Signal to Noise power ratio:SNR)を改善させるチェイス合成と、再送時に冗長信号(パリティ信号)を新たに送信することで、受信側の誤り訂正復号能力を高めるインクリメンタルリダンダンシー(Incremental redundancy:IR)合成が広く検討されている。
IEEE802.11-19/1578-00-0be、September.2018 IEEE802.11-20/482-01-0be、June.2020
 しかしながら、従来のIEEE802.11標準においてHARQによるパケット合成は考慮されておらず、効率的なパケット合成の実施は困難である。
 本発明の一態様はこのような事情を鑑みてなされたものであり、その目的はIEEE802.11標準において、再送時の効率的なパケット合成を可能とし、受信SNRの改善に寄与する通信装置および通信方法を提供するものである。
 上述した課題を解決するための本発明の一態様に係る通信装置および通信方法は、次の通りである。
 本発明の一態様に係る通信装置は、再送方式を設定する上位層部と、符号語を用いてフレームを生成する物理層フレーム生成部と、前記フレームを送信する無線送信部と、を備え、前記再送方式の設定がHARQ (Hybrid Auto Repeat reQuest)を示す場合、前記物理層フレーム生成部は、情報ビットを含むLDPC (Low Density Parity Check)情報ブロックを所定の符号化率で符号化して、パリティビット系列を生成し、前記パリティビット系列をMCS (Modulation and Coding Scheme)が示す符号化率で与えられるブロック数に分割して複数のパリティブロックを生成し、前記パリティブロックの各々は、再送回数と関連付けられ、前記符号語は、前記情報ビット及び1つの前記パリティブロックに基づいて生成され、前記LDPC情報ブロックが前記情報ビット及びショートニングビットを含む場合、前記複数のパリティブロックのうち少なくとも1つのパリティブロックのビット数は前記ショートニングビット数に基づいて削減される。
 本発明の一態様に係る通信装置において、前記MCSが示す符号化率で与えられるブロック数は、符号化率が高くなるにつれて増加する。
 本発明の一態様に係る通信装置において、前記物理層フレーム生成部は、前記LDPC情報ブロックが前記情報ビット及びショートニングビットを含む場合、前記パリティビット系列から所定数のビットをパンクチャリングした後、前記MCSが示す符号化率で与えられるブロック数に分割して前記複数のパリティブロックを生成する。
 本発明の一態様に係る通信装置において、前記物理層フレーム生成部は、前記LDPC情報ブロックが前記情報ビット及びショートニングビットを含む場合、1つの前記パリティブロックから所定数のビットをパンクチャリングし、該パンクチャリング後のパリティブロック及び前記情報ビットに基づいて前記符号語を生成する。
 本発明の一態様に係る通信装置において、前記物理層フレーム生成部は、前記LDPC情報ブロックが前記情報ビット及びショートニングビットを含む場合、初送時は、前記符号語に含まれるパリティブロックのビット数が前記ショートニングビット数に基づいて減少し、再送時は、前記符号語に含まれる前記情報ビットのビット数が前記ショートニングビット数に基づいて減少する。
 本発明の一態様に係る通信方法は、再送方式を設定するステップと、符号語を用いてフレームを生成するステップと、前記フレームを送信するステップと、を備え、前記再送方式の設定がHARQ (Hybrid Auto Repeat reQuest)を示す場合、情報ビットを含むLDPC (Low Density Parity Check)情報ブロックを所定の符号化率で符号化して、パリティビット系列を生成し、前記パリティビット系列をMCS (Modulation and Coding Scheme)が示す符号化率で与えられるブロック数に分割して複数のパリティブロックを生成し、各々の前記パリティブロックは、再送回数と関連付けられ、前記符号語は、前記情報ビット及び1つの前記パリティブロックに基づいて生成され、前記LDPC情報ブロックが前記情報ビット及びショートニングビットを含む場合、前記複数のパリティブロックのうち少なくとも1つのパリティブロックのビット数は前記ショートニングビット数に基づいて減少する。
 本発明の一態様によれば、IEEE802.11標準にて、再送時の効率的なパケット合成が可能となり、受信SNRの改善による低遅延通信の向上やユーザースループットの高速化に寄与できる。
本発明の一態様に係る無線リソースの分割例を示す概要図である。 本発明の一態様に係るフレーム構成の一例を示す図である。 本発明の一態様に係るフレーム構成の一例を示す図である。 本発明の一態様に係る通信の一例を示す図である。 本発明の一態様に係る通信システムの一構成例を示す図である。 本発明の一態様に係る無線通信装置の一構成例を示すブロック図である。 本発明の一態様に係る無線通信装置の一構成例を示すブロック図である。 本発明の一態様に係る変調符号化方式の一例を示す概要図である。 本発明の一態様に係るLDPC符号化処理のブロック長の一例を示す概要図である。 本発明の一態様に係るLDPC符号化処理のブロック長の一例を示す概要図である。 本発明の一態様に係るLDPC符号化処理のブロック長の一例を示す概要図である。 本発明の一態様に係るLDPC符号化処理のブロック長の一例を示す概要図である。 本発明の一態様に係るLDPC符号化処理のブロック長の一例を示す概要図である。 本発明の一態様に係るパンクチャリング処理の一例を示す概要図である。 本発明の一態様に係るパンクチャリング処理の一例を示す概要図である。 本発明の一態様に係るブロック化処理の一例を示す概要図である。 本発明の一態様に係るブロック化処理の一例を示す概要図である。 本発明の一態様に係るPHYレイヤのパケット合成方法に関する制御情報を示す概要図である。
 本実施形態における通信システムは、アクセスポイント装置(もしくは、基地局装置とも呼称)、および複数のステーション装置(もしくは、端末装置とも呼称)を備える。また、アクセスポイント装置とステーション装置とで構成される通信システム、ネットワークを基本サービスセット(BSS: Basic service set、管理範囲、セル)と呼ぶ。また、本実施形態に係るステーション装置は、アクセスポイント装置の機能を備えることができる。同様に、本実施形態に係るアクセスポイント装置は、ステーション装置の機能を備えることができる。そのため、以下では、単に通信装置と述べた場合、該通信装置は、ステーション装置とアクセスポイント装置の両方を示すことができる。
 BSS内の基地局装置および端末装置は、それぞれCSMA/CA(Carrier sense multiple access with collision avoidance)に基づいて、通信を行なうものとする。本実施形態においては、基地局装置が複数の端末装置と通信を行なうインフラストラクチャモードを対象とするが、本実施形態の方法は、端末装置同士が通信を直接行なうアドホックモードでも実施可能である。アドホックモードでは、端末装置が、基地局装置の代わりとなりBSSを形成する。アドホックモードにおけるBSSを、IBSS(Independent Basic Service Set)とも呼称する。以下では、アドホックモードにおいてIBSSを形成する端末装置を、基地局装置とみなすこともできる。本実施形態の方法は、端末装置同士が通信を直接行なうWiFi Direct(登録商標)でも実施可能である。WiFi
 Directでは、端末装置が、基地局装置の代わりとなりGroupを形成する。以下では、WiFi DirectにおいてGroupを形成するGroup ownerの端末装置を、基地局装置とみなすこともできる。
 IEEE802.11システムでは、各装置は、共通のフレームフォーマットを持った複数のフレームタイプの送信フレームを送信することが可能である。送信フレームは、物理(Physical:PHY)層、媒体アクセス制御(Medium access control:MAC)層、論理リンク制御(LLC: Logical Link Control)層、でそれぞれ定義されている。それぞれ前記物理層はPHYレイヤ、前記MAC層はMACレイヤとも呼称される。
 PHYレイヤの送信フレームは、物理プロトコルデータユニット(PPDU: PHY protocol data unit、物理層フレーム)と呼ばれる。PPDUは、物理層での信号処理を行なうためのヘッダ情報等が含まれる物理層ヘッダ(PHYヘッダ)と、物理層で処理されるデータユニットである物理サービスデータユニット(PSDU: PHY service data unit、MACレイヤフレーム)等から構成される。PSDUは無線区間における再送単位となるMACプロトコルデータユニット(MPDU: MAC protocol data unit)が複数集約された集約MPDU(A-MPDU: Aggregated MPDU)で構成されることが可能である。
 PHYヘッダには、信号の検出・同期等に用いられるショートトレーニングフィールド(STF: Short training field)、データ復調のためのチャネル情報を取得するために用いられるロングトレーニングフィールド(LTF: Long training field)などの参照信号と、データ復調のための制御情報が含まれているシグナル(Signal:SIG)などの制御信号が含まれる。また、STFは、対応する規格に応じて、レガシーSTF(L-STF: Legacy-STF)や、高スループットSTF(HT-STF: High throughput-STF)や、超高スループットSTF(VHT-STF: Very high throughput-STF)や、高効率STF(HE-STF: High efficiency-STF)や、超高スループットSTF(EHT-STF:Extremely High Throughput-STF)等に分類され、LTFやSIGも同様にL-LTF,HT-LTF,VHT-LTF,HE-LTF,L-SIG,HT-SIG,VHT-SIG,HE-SIG,EHT-SIGに分類される。VHT-SIGは更にVHT-SIG-A1とVHT-SIG-A2とVHT-SIG-Bに分類される。同様に、HE-SIGは、HE-SIG-A1~4と、HE-SIG-Bに分類される。また、同一規格における技術更新を想定し、追加の制御情報が含まれているUniversal SIGNAL(U-SIG)フィールドが含まれることができる。
 さらに、PHYヘッダは当該送信フレームの送信元のBSSを識別する情報(以下、BSS識別情報とも呼称する)を含むことができる。BSSを識別する情報は、例えば、当該BSSのSSID(Service Set Identifier)や当該BSSの基地局装置のMACアドレスであることができる。また、BSSを識別する情報は、SSIDやMACアドレス以外の、BSSに固有な値(例えばBSS Color等)であることができる。
 PPDUは対応する規格に応じて変調される。例えば、IEEE802.11n規格であれば、直交周波数分割多重(OFDM: Orthogonal frequency division multiplexing)信号に変調される。
 MPDUはMACレイヤでの信号処理を行なうためのヘッダ情報等が含まれるMACレイヤヘッダ(MAC header)と、MACレイヤで処理されるデータユニットであるMACサービスデータユニット(MSDU: MAC service data unit)もしくはフレームボディ、ならびにフレームに誤りがないかをどうかをチェックするフレーム検査部(Frame check sequence:FCS)で構成されている。また、複数のMSDUは集約MSDU(A-MSDU: Aggregated MSDU)として集約されることも可能である。
 MACレイヤの送信フレームのフレームタイプは、装置間の接続状態などを管理するマネジメントフレーム、装置間の通信状態を管理するコントロールフレーム、および実際の送信データを含むデータフレームの3つに大きく分類され、それぞれは更に複数種類のサブフレームタイプに分類される。コントロールフレームには、受信完了通知(ACK: Acknowledge)フレーム、送信要求(RTS: Request to send)フレーム、受信準備完了(CTS: Clear to send)フレーム等が含まれる。マネジメントフレームには、ビーコン(Beacon)フレーム、プローブ要求(Probe request)フレーム、プローブ応答(Probe response)フレーム、認証(Authentication)フレーム、接続要求(Association request)フレーム、接続応答(Association response)フレーム等が含まれる。データフレームには、データ(Data)フレーム、ポーリング(CF-poll)フレーム等が含まれる。各装置は、MACヘッダに含まれるフレームコントロールフィールドの内容を読み取ることで、受信したフレームのフレームタイプおよびサブフレームタイプを把握することができる。
 なお、ACKには、Block ACKが含まれても良い。Block ACKは、複数のMPDUに対する受信完了通知を実施可能である。また、ACKには、複数の通信装置に対する受信完了通知を含むMulti STA Block ACKが含まれても良い。
 ビーコンフレームには、ビーコンが送信される周期(Beacon interval)やSSIDを記載するフィールド(Field)が含まれる。基地局装置は、ビーコンフレームを周期的にBSS内に報知することが可能であり、端末装置はビーコンフレームを受信することで、端末装置周辺の基地局装置を把握することが可能である。端末装置が基地局装置より報知されるビーコンフレームに基づいて基地局装置を把握することを受動的スキャニング(Passive scanning)と呼ぶ。一方、端末装置がプローブ要求フレームをBSS内に報知することで、基地局装置を探査することを能動的スキャニング(Active scanning)と呼ぶ。基地局装置は該プローブ要求フレームへの応答としてプローブ応答フレームを送信することが可能であり、該プローブ応答フレームの記載内容は、ビーコンフレームと同等である。
 端末装置は基地局装置を認識したあとに、該基地局装置に対して接続処理を行なう。接続処理は認証(Authentication)手続きと接続(Association)手続きに分類される。端末装置は接続を希望する基地局装置に対して、認証フレーム(認証要求)を送信する。基地局装置は、認証フレームを受信すると、該端末装置に対する認証の可否などを示すステータスコードを含んだ認証フレーム(認証応答)を該端末装置に送信する。端末装置は、該認証フレームに記載されたステータスコードを読み取ることで、自装置が該基地局装置に認証を許可されたか否かを判断することができる。なお、基地局装置と端末装置は認証フレームを複数回やり取りすることが可能である。
 端末装置は認証手続きに続いて、基地局装置に対して接続手続きを行なうために、接続要求フレームを送信する。基地局装置は接続要求フレームを受信すると、該端末装置の接続を許可するか否かを判断し、その旨を通知するために、接続応答フレームを送信する。接続応答フレームには、接続処理の可否を示すステータスコードに加えて、端末装置を識別するためのアソシエーション識別番号(AID: Association identifier)が記載されている。基地局装置は接続許可を出した端末装置にそれぞれ異なるAIDを設定することで、複数の端末装置を管理することが可能となる。
 接続処理が行われたのち、基地局装置と端末装置は実際のデータ伝送を行なう。IEEE802.11システムでは、分散制御機構(DCF: Distributed Coordination Function)と集中制御機構(PCF: Point Coordination Function)、およびこれらが拡張された機構(拡張分散チャネルアクセス(EDCA: Enhanced distributed channel access)や、ハイブリッド制御機構(HCF: Hybrid coordination function)等)が定義されている。以下では、基地局装置が端末装置にDCFで信号を送信する場合を例にとって説明するが、端末装置から基地局装置にDCFで信号を送信する場合も同様である。
 DCFでは、基地局装置および端末装置は、通信に先立ち、自装置周辺の無線チャネルの使用状況を確認するキャリアセンス(CS: Carrier sense)を行なう。例えば、送信局である基地局装置は予め定められたクリアチャネル評価レベル(CCAレベル: Clear channel assessment level)よりも高い信号を該無線チャネルで受信した場合、該無線チャネルでの送信フレームの送信を延期する。以下では、該無線チャネルにおいて、CCAレベル以上の信号が検出される状態をビジー(Busy)状態、CCAレベル以上の信号が検出されない状態をアイドル(Idle)状態と呼ぶ。このように、各装置が実際に受信した信号の電力(受信電力レベル)に基づいて行なうCSを物理キャリアセンス(物理CS)と呼ぶ。なおCCAレベルをキャリアセンスレベル(CS level)、もしくはCCA閾値(CCA threshold:CCAT)とも呼ぶ。なお、基地局装置および端末装置は、CCAレベル以上の信号を検出した場合は、少なくともPHYレイヤの信号を復調する動作に入る。
 基地局装置は送信する送信フレームに種類に応じたフレーム間隔(IFS: Inter frame space)だけキャリアセンスを行ない、無線チャネルがビジー状態かアイドル状態かを判断する。基地局装置がキャリアセンスする期間は、これから基地局装置が送信する送信フレームのフレームタイプおよびサブフレームタイプによって異なる。IEEE802.11システムでは、期間の異なる複数のIFSが定義されており、最も高い優先度が与えられた送信フレームに用いられる短フレーム間隔(SIFS: Short IFS)、優先度が比較的高い送信フレームに用いられるポーリング用フレーム間隔(PCF IFS: PIFS)、最も優先度の低い送信フレームに用いられる分散制御用フレーム間隔(DCF IFS: DIFS)などがある。基地局装置がDCFでデータフレームを送信する場合、基地局装置はDIFSを用いる。
 基地局装置はDIFSだけ待機したあとで、フレームの衝突を防ぐためのランダムバックオフ時間だけ更に待機する。IEEE802.11システムにおいては、コンテンションウィンドウ(CW: Contention window)と呼ばれるランダムバックオフ時間が用いられる。CSMA/CAでは、ある送信局が送信した送信フレームは、他送信局からの干渉が無い状態で受信局に受信されることを前提としている。そのため、送信局同士が同じタイミングで送信フレームを送信してしまうと、フレーム同士が衝突してしまい、受信局は正しく受信することができない。そこで、各送信局が送信開始前に、ランダムに設定される時間だけ待機することで、フレームの衝突が回避される。基地局装置はキャリアセンスによって無線チャネルがアイドル状態であると判断すると、CWのカウントダウンを開始し、CWが0となって初めて送信権を獲得し、端末装置に送信フレームを送信できる。なお、CWのカウントダウン中に基地局装置がキャリアセンスによって無線チャネルをビジー状態と判断した場合は、CWのカウントダウンを停止する。そして、無線チャネルがアイドル状態となった場合、先のIFSに続いて、基地局装置は残留するCWのカウントダウンを再開する。
 次に、フレーム受信の詳細について説明する。受信局である端末装置は、送信フレームを受信し、該送信フレームのPHYヘッダを読み取り、受信した送信フレームを復調する。そして、端末装置は復調した信号のMACヘッダを読み取ることで、該送信フレームが自装置宛てのものか否かを認識することができる。なお、端末装置は、PHYヘッダに記載の情報(例えばVHT-SIG-Aの記載されるグループ識別番号(GID: Group identifier, Group ID))に基づいて、該送信フレームの宛先を判断することも可能である。
 端末装置は、受信した送信フレームが自装置宛てのものと判断し、そして誤りなく送信フレームを復調できた場合、フレームを正しく受信できたことを示すACKフレームを送信局である基地局装置に送信しなければならない。ACKフレームは、SIFS期間の待機だけ(ランダムバックオフ時間は取られない)で送信される最も優先度の高い送信フレームの一つである。基地局装置は端末装置から送信されるACKフレームの受信をもって、一連の通信を終了する。なお、端末装置がフレームを正しく受信できなかった場合、端末装置はACKを送信しない。よって基地局装置は、フレーム送信後、一定期間(SIFS+ACKフレーム長)の間、受信局からのACKフレームを受信しなかった場合、通信は失敗したものとして、通信を終了する。このように、IEEE802.11システムの1回の通信(バーストとも呼ぶ)の終了は、ビーコンフレームなどの報知信号の送信の場合や、送信データを分割するフラグメンテーションが用いられる場合などの特別な場合を除き、必ずACKフレームの受信の有無で判断されることになる。
 端末装置は、受信した送信フレームが自装置宛てのものではないと判断した場合、PHYヘッダ等に記載されている該送信フレームの長さ(Length)に基づいて、ネットワークアロケーションベクタ(NAV: Network allocation vector)を設定する。端末装置は、NAVに設定された期間は通信を試行しない。つまり、端末装置は物理CSによって無線チャネルがビジー状態と判断した場合と同じ動作をNAVに設定された期間行なうことになるから、NAVによる通信制御は仮想キャリアセンス(仮想CS)とも呼ばれる。NAVは、PHYヘッダに記載の情報に基づいて設定される場合に加えて、隠れ端末問題を解消するために導入される送信要求(RTS: Request to send)フレームや、受信準備完了(CTS: Clear to send)フレームによっても設定される。
 各装置がキャリアセンスを行ない、自律的に送信権を獲得するDCFに対して、PCFは、ポイントコーディネータ(PC: Point coordinator)と呼ばれる制御局が、BSS内の各装置の送信権を制御する。一般に基地局装置がPCとなり、BSS内の端末装置の送信権を獲得することになる。
 PCFによる通信期間には、非期間(CFP: Contention free period)と競合期間(CP: Contention period)が含まれる。CPの間は、前述してきたDCFに基づいて通信が行われ、PCが送信権を制御するのはCFPの間となる。PCである基地局装置は、CFPの期間(CFP Max duration)などが記載されたビーコンフレームをPCFの通信に先立ちBSS内に報知する。なお、PCFの送信開始時に報知されるビーコンフレームの送信にはPIFSが用いられ、CWを待たずに送信される。該ビーコンフレームを受信した端末装置は、該ビーコンフレームに記載されたCFPの期間をNAVに設定する。以降、NAVが経過する、もしくはCFPの終了をBSS内に報知する信号(例えばCF-endを含んだデータフレーム)が受信されるまでは、端末装置はPCより送信される送信権獲得をシグナリングする信号(例えばCF-pollを含んだデータフレーム)を受信した場合のみ、送信権を獲得可能である。なお、CFPの期間内では、同一BSS内でのパケットの衝突は発生しないから、各端末装置はDCFで用いられるランダムバックオフ時間を取らない。
 無線媒体は複数のリソースユニット(Resource unit:RU)に分割されることができる。図1は無線媒体の分割状態の1例を示す概要図である。例えば、リソース分割例1では、無線通信装置は無線媒体である周波数リソース(サブキャリア)を9個のRUに分割することができる。同様に、リソース分割例2では、無線通信装置は無線媒体であるサブキャリアを5個のRUに分割することができる。当然ながら、図1に示すリソース分割例はあくまで1例であり、例えば、複数のRUはそれぞれ異なるサブキャリア数によって構成されることも可能である。また、RUとして分割される無線媒体には周波数リソースだけではなく空間リソースも含まれることができる。無線通信装置(例えばAP)は、各RUに異なる端末装置宛てのフレームを配置することで、複数の端末装置(例えば複数のSTA)に同時にフレームを送信することができる。APは、無線媒体の分割の状態を示す情報(Resource allocation information)を、共通制御情報として、自装置が送信するフレームのPHYヘッダに記載することができる。更に、APは、各STA宛てのフレームが配置されたRUを示す情報(resource unit assignment information)を、固有制御情報として、自装置が送信するフレームのPHYヘッダに記載することができる。
 また、複数の端末装置(例えば複数のSTA)は、それぞれ割り当てられたRUにフレームを配置して送信することで、同時にフレームを送信することができる。複数のSTAは、APから送信されるトリガ情報を含んだフレーム(Trigger frame:TF)を受信した後、所定の期間待機したのち、フレーム送信を行なうことができる。各STAは、該TFに記載の情報に基づいて自装置に割り当てられたRUを把握することができる。また、各STAは、該TFを基準としたランダムアクセスによりRUを獲得することができる。
 APは、1つのSTAに複数のRUを同時に割り当てることができる。該複数のRUは、連続するサブキャリアで構成されることも出来るし、不連続のサブキャリアで構成されることも出来る。APは、1つのSTAに割り当てた複数のRUを用いて、1つのフレームを送信することが出来るし、複数のフレームをそれぞれ異なるRUに割り当てて送信することができる。該複数のフレームの少なくとも1つは、Resource allocation informationを送信する複数の端末装置に対する共通の制御情報を含むフレームであることができる。
 1つのSTAは、APより複数のRUを割り当てられることができる。STAは、割り当てられた複数のRUを用いて、1つのフレームを送信することができる。また、STAは割り当てられた複数のRUを用いて、複数のフレームをそれぞれ異なるRUに割り当てて送信することができる。該複数のフレームは、それぞれ異なるフレームタイプのフレームであることができる。
 APは、1つのSTAに複数のAIDを割り当てることができる。APは、1つのSTAに割り当てた複数のAIDに対して、それぞれRUを割り当てることができる。APは、1つのSTAに割り当てた複数のAIDに対して、それぞれ割り当てたRUを用いて、それぞれ異なるフレームを送信することができる。該異なるフレームは、それぞれ異なるフレームタイプのフレームであることができる。
 1つのSTAは、APより複数のAIDを割り当てられることができる。1つのSTAは割り当てられた複数のAIDに対して、それぞれRUを割り当てられることができる。1つのSTAは、自装置に割り当てられた複数のAIDにそれぞれ割り当てられたRUは、全て自装置に割り当てられたRUと認識し、該割り当てられた複数のRUを用いて、1つのフレームを送信することができる。また、1つのSTAは、該割り当てられた複数のRUを用いて、複数のフレームを送信することができる。このとき、該複数のフレームには、それぞれ割り当てられたRUに関連付けられたAIDを示す情報を記載して送信することができる。APは、1つのSTAに割り当てた複数のAIDに対して、それぞれ割り当てたRUを用いて、それぞれ異なるフレームを送信することができる。該異なるフレームは、異なるフレームタイプのフレームであることができる。
 以下では、基地局装置、端末装置を総称して、無線通信装置もしくは通信装置とも呼称する。また、ある無線通信装置が別の無線通信装置と通信を行う際にやりとりされる情報をデータ(data)とも呼称する。つまり、無線通信装置は、基地局装置及び端末装置を含む。
 無線通信装置は、PPDUを送信する機能と受信する機能のいずれか、または両方を備える。図2は、無線通信装置が送信するPPDUの構成の一例を示した図である。IEEE802.11a/b/g規格に対応するPPDUはL-STF、L-LTF、L-SIG及びDataフレーム(MAC Frame、MACフレーム、ペイロード、データ部、データ、情報ビット等)を含んだ構成である。IEEE802.11n規格に対応するPPDUはL-STF,L-LTF,L-SIG,HT-SIG,HT-STF,HT-LTF及びDataフレームを含んだ構成である。IEEE802.11ac規格に対応するPPDUはL-STF,L-LTF,L-SIG,VHT-SIG-A,VHT-STF,VHT-LTF,VHT-SIG-B及びMACフレームの一部あるいは全てを含んだ構成である。IEEE802.11ax標準におけるPPDUは、L-STF,L-LTF,L-SIG,L-SIGが時間的に繰り返されたRL-SIG,HE-SIG-A,HE-STF,HE-LTF,HE-SIG-B及びDataフレームの一部あるいは全てを含んだ構成である。IEEE802.11be標準で検討されているPPDUは、L-STF,L-LTF,L-SIG,RL-SIG,U-SIG,EHT-SIG,EHT-STF,EHT-LTF及びDataフレームの一部あるいは全てを含んだ構成である。
 図2中の点線で囲まれているL-STF,L-LTF及びL-SIGはIEEE802.11規格において共通に用いられる構成である(以下では、L-STF,L-LTF及びL-SIGをまとめてL-ヘッダとも呼称する)。例えばIEEE802.11a/b/g規格に対応する無線通信装置は、IEEE802.11n/ac規格に対応するPPDU内のL-ヘッダを適切に受信することが可能である。IEEE802.11a/b/g規格に対応する無線通信装置は、IEEE802.11n/ac規格に対応するPPDUを、IEEE802.11a/b/g規格に対応するPPDUとみなして受信することができる。
 ただし、IEEE802.11a/b/g規格に対応する無線通信装置はL-ヘッダの後に続く、IEEE802.11n/ac規格に対応するPPDUを復調することができないため、送信アドレス(TA:Transmitter Address)や受信アドレス(RA:Receiver Address)やNAVの設定に用いられるDuration/IDフィールドに関する情報を復調することができない。
 IEEE802.11a/b/g規格に対応する無線通信装置が適切にNAVを設定する(あるいは所定の期間受信動作を行う)ための方法として、IEEE802.11は、L-SIGにDuration情報を挿入する方法を規定している。L-SIG内の伝送速度に関する情報(RATE field,L-RATE field,L-RATE,L_DATARATE,L_DATARATE field)、伝送期間に関する情報(LENGTH field,L-LENGTH field,L-LENGTH)は、IEEE802.11a/b/g規格に対応する無線通信装置が適切にNAVを設定するために使用される。
 図3は、L-SIGに挿入されるDuration情報の方法の一例を示す図である。図3においては、一例としてIEEE802.11ac規格に対応するPPDU構成を示しているが、PPDU構成はこれに限定されない。IEEE802.11n規格に対応のPPDU構成及びIEEE802.11ax規格に対応するPPDU構成でも良い。TXTIMEは、PPDUの長さに関する情報を備え、aPreambleLengthは、プリアンブル(L-STF+L-LTF)の長さに関する情報を備え、aPLCPHeaderLengthは、PLCPヘッダ(L-SIG)の長さに関する情報を備える。L_LENGTHは、IEEE802.11規格の互換性をとるために設定される仮想的な期間であるSignal Extension,L_RATEに関連するNops,1シンボル(symbol,OFDM symbol等)の期間に関する情報であるaSymbolLength,PLCP Service fieldが含むビット数を示すaPLCPServiceLength,畳みこみ符号のテールビット数を示すaPLCPConvolutionalTailLengthに基づいて算出される。無線通信装置は、L_LENGTHを算出し、L-SIGに挿入することができる。また、無線通信装置は、L-SIG Durationを算出することができる。L-SIG Durationは、L_LENGTHを含むPPDUと、その応答として宛先の無線通信装置より送信されることが期待されるACKとSIFSの期間を合計した期間に関する情報を示す。
 図4は、L-SIG TXOP Protectionにおける、L-SIG Durationの一例を示した図である。DATA(フレーム、ペイロード、データ等)は、MACフレームとPLCPヘッダの一部または両方から構成される。また、BAはBlock ACK、またはACKである。PPDUは、L-STF,L-LTF,L-SIGを含み、さらにDATA,BA,RTSあるいはCTSのいずれかまたはいずれか複数を含んで構成されることができる。図4に示す一例では、RTS/CTSを用いたL-SIG TXOP Protectionを示しているが、CTS-to-Selfを用いても良い。ここで、MAC Durationは、Duration/ID fieldの値によって示される期間である。また、InitiatorはL-SIG TXOP Protection期間の終了を通知するためにCF_Endフレームを送信することができる。
 続いて、無線通信装置が受信するフレームからBSSを識別する方法について説明する。無線通信装置が、受信するフレームからBSSを識別するためには、PPDUを送信する無線通信装置が当該PPDUにBSSを識別するための情報(BSS color,BSS識別情報、BSSに固有な値)を挿入することが好適であり、BSS colorを示す情報をHE-SIG-Aに記載することが可能である。
 無線通信装置は、L-SIGを複数回送信する(L-SIG Repetition)ことができる。例えば、受信側の無線通信装置は、複数回送信されるL-SIGをMRC(Maximum Ratio Combining)を用いて受信することで、L-SIGの復調精度が向上する。さらに無線通信装置は、MRCによりL-SIGを正しく受信完了した場合に、当該L-SIGを含むPPDUがIEEE802.11ax規格に対応するPPDUであると解釈することができる。
 無線通信装置は、PPDUの受信動作中も、当該PPDU以外のPPDUの一部(例えば、IEEE802.11により規定されるプリアンブル、L-STF、L-LTF、PLCPヘッダ等)の受信動作を行うことができる(二重受信動作とも呼称する)。無線通信装置は、PPDUの受信動作中に、当該PPDU以外のPPDUの一部を検出した場合に、宛先アドレスや、送信元アドレスや、PPDUあるいはDATA期間に関する情報の一部または全部を更新することができる。
 ACK及びBAは、応答(応答フレーム)とも呼称されることができる。また、プローブ応答や、認証応答、接続応答を応答と呼称することができる。
 図5は、本実施形態に係る無線通信システムの一例を示した図である。無線通信システム3-1は、無線通信装置1-1及び無線通信装置2-1~2-3を備えている。なお、無線通信装置1-1を基地局装置1-1とも呼称し、無線通信装置2-1~2-3を端末装置2-1~3とも呼称する。また、無線通信装置2-1~2-3および端末装置2-1~2-3を、無線通信装置1-1に接続されている装置として、無線通信装置2Aおよび端末装置2Aとも呼称する。無線通信装置1-1及び無線通信装置2Aは、無線接続されており、お互いにPPDUの送受信を行うことができる状態にある。また、本実施形態に係る無線通信システムは、無線通信システム3-1の他に無線通信システム3-2を備えてもよい。無線通信システム3-2は、無線通信装置1-2及び無線通信装置2-4~6を備えている。なお、無線通信装置1-2を基地局装置1-2とも呼称し、無線通信装置2-4~6を端末装置2-4~6とも呼称する。また、また、無線通信装置2-4~6および端末装置2-4~6を、無線通信装置1-2に接続されている装置として、無線通信装置2Bおよび端末装置2Bとも呼称する。無線通信システム3-1、無線通信システム3-2は異なるBSSを形成するが、これはESS(Extended Service Set)が異なることを必ずしも意味していない。ESSは、LAN(Local Area Network)を形成するサービスセットを示している。つまり、同じESSに属する無線通信装置は、上位層から同一のネットワークに属しているとみなされることができる。また、BSSはDS(Distribution System)を介して結合されてESSを形成する。なお、無線通信システム3-1、3-2のそれぞれは、さらに複数の無線通信装置を備えることも可能である。
 図5において、以下の説明においては、無線通信装置2Aが送信する信号は、無線通信装置1-1および無線通信装置2Bには到達する一方で、無線通信装置1-2には到達しないものとする。つまり、無線通信装置2Aがあるチャネルを使って信号を送信すると、無線通信装置1-1と、無線通信装置2Bは、当該チャネルをビジー状態と判断する一方で、無線通信装置1-2は、当該チャネルをアイドル状態と判断する。また、無線通信装置2Bが送信する信号は、無線送信装置1-2および無線通信装置2Aには到達する一方で、無線通信装置1-1には到達しないものとする。つまり、無線通信装置2Bがあるチャネルを使って信号を送信すると、無線通信装置1-2と、無線通信装置2Aは、当該チャネルをビジー状態と判断する一方で、無線通信装置1-1は、当該チャネルをアイドル状態と判断する。
 図6は、無線通信装置1-1、1-2、2A及び2B(以下では、まとめて無線通信装置10-1もしくはステーション装置10-1もしくは単にステーション装置とも呼称)の装置構成の一例を示した図である。無線通信装置10-1は、上位層部(上位層処理ステップ)10001-1と、自律分散制御部(自律分散制御ステップ)10002-1と、送信部(送信ステップ)10003-1と、受信部(受信ステップ)10004-1と、アンテナ部10005-1と、を含んだ構成である。
 上位層部10001-1は、他のネットワークと接続され、自律分散制御部10002-1にトラフィックに関する情報を通知することができる。トラフィックに関する情報とは、例えば、ビーコンなどのマネジメントフレームに含まれる制御情報であってもよいし、自無線通信装置宛てに他の無線通信装置が報告する測定情報であってもよい。さらには、宛先を限定せず(自装置宛であってもよいし、他装置宛であってもよいし、ブロードキャスト、マルチキャストでもよい)、マネジメントフレームやコントロールフレームに含まれる制御情報であってもよい。
 図7は、自律分散制御部10002-1の装置構成の一例を示した図である。制御部10002-1は、CCA部(CCAステップ)10002a-1と、バックオフ部(バックオフステップ)10002b-1と、送信判断部(送信判断ステップ)10002c-1とを含んだ構成である。
 CCA部10002a-1は、受信部10004-1から通知される、無線リソースを介して受信する受信信号電力に関する情報と、受信信号に関する情報(復号後の情報を含む)のいずれか一方、または両方を用いて、当該無線リソースの状態判断(busyまたはidleの判断を含む)を行うことができる。CCA部10002a-1は、当該無線リソースの状態判断情報を、バックオフ部10002b-1及び送信判断部10002c-1に通知することができる。
 バックオフ部10002b-1は、無線リソースの状態判断情報を用いて、バックオフを行うことができる。バックオフ部10002b-1は、CWを生成し、カウントダウン機能を有する。例えば、無線リソースの状態判断情報がidleを示す場合に、CWのカウントダウンを実行し、無線リソースの状態判断情報がbusyを示す場合に、CWのカウントダウンを停止することができる。バックオフ部10002b-1は、CWの値を送信判断部10002c-1に通知することができる。
 送信判断部10002c-1は、無線リソースの状態判断情報、またはCWの値のいずれか一方、あるいは両方を用いて送信判断を行う。例えば、無線リソースの状態判断情報がidleを示し、CWの値が0の時に送信判断情報を送信部10003-1に通知することができる。また、無線リソースの状態判断情報がidleを示す場合に送信判断情報を送信部10003-1に通知することができる。
 送信部10003-1は、物理層フレーム生成部(物理層フレーム生成ステップ)10003a-1と、無線送信部(無線送信ステップ)10003b-1とを含んだ構成である。物理層フレーム生成部10003a-1は、送信判断部10002c-1から通知される送信判断情報に基づき、物理層フレーム(以下、PPDUとも呼称する)を生成する機能を有する。物理層フレーム生成部10003a-1は、上位層から送られる送信フレームに対して誤り訂正符号化、変調、プレコーディングフィルタ乗算等を施す。物理層フレーム生成部10003a-1は、生成した物理層フレームを無線送信部10003b-1に通知する。
 物理層フレーム生成部10003a-1が生成するフレームには、制御情報が含まれる。該制御情報には、各無線通信装置宛てのデータが、どのRU(ここでRUには周波数リソースと空間リソースの両方を含む)に配置されているかを示す情報が含まれる。また、物理層フレーム生成部10003a-1が生成するフレームには、宛先端末である無線通信装置にフレーム送信を指示するトリガーフレームが含まれる。該トリガーフレームには、フレーム送信を指示された無線通信装置がフレームを送信する際に用いるRUを示す情報が含まれている。
 無線送信部10003b-1は、物理層フレーム生成部10003a-1が生成する物理層フレームを、無線周波数(RF: Radio Frequency)帯の信号に変換し、無線周波数信号を生成する。無線送信部10003b-1が行う処理には、デジタル・アナログ変換、フィルタリング、ベースバンド帯からRF帯への周波数変換等が含まれる。
 受信部10004-1は、無線受信部(無線受信ステップ)10004a-1と、信号復調部(信号復調ステップ)10004b-1を含んだ構成である。受信部10004-1は、アンテナ部10005-1が受信するRF帯の信号から受信信号電力に関する情報を生成する。受信部10004-1は、受信信号電力に関する情報と、受信信号に関する情報をCCA部10002a-1に通知することができる。
 無線受信部10004a-1は、アンテナ部10005-1が受信するRF帯の信号をベースバンド信号に変換し、物理層信号(例えば、物理層フレーム)を生成する機能を有する。無線受信部10004a-1が行う処理には、RF帯からベースバンド帯への周波数変換処理、フィルタリング、アナログ・デジタル変換が含まれる。
 信号復調部10004b-1は、無線受信部10004a-1が生成する物理層信号を復調する機能を有する。信号復調部10004b-1が行う処理には、チャネル等化、デマッピング、誤り訂正復号化等が含まれる。信号復調部10004b-1は、物理層信号から、例えば、物理層ヘッダが含む情報と、MACヘッダが含む情報と、送信フレームが含む情報とを取り出すことができる。信号復調部10004b-1は、取り出した情報を上位層部10001-1に通知することができる。なお、信号復調部10004b-1は、物理層ヘッダが含む情報と、MACヘッダが含む情報と、送信フレームが含む情報のいずれか、あるいは全てを取り出すことができる。
 アンテナ部10005-1は、無線送信部10003b-1が生成する無線周波数信号を、無線空間に送信する機能を有する。また、アンテナ部10005-1は、無線周波数信号を受信し、無線受信部10004a-1に渡す機能を有する。
 無線通信装置10-1は、送信するフレームのPHYヘッダやMACヘッダに、自無線通信装置が無線媒体を利用する期間を示す情報を記載することにより、自無線通信装置周辺の無線通信装置に当該期間だけNAVを設定させることができる。例えば、無線通信装置10-1は送信するフレームのDuration/IDフィールドまたはLengthフィールドに当該期間を示す情報を記載することができる。自無線通信装置周辺の無線通信装置に設定されたNAV期間を、無線通信装置10-1が獲得したTXOP期間(もしくは単にTXOP)と呼ぶこととする。そして、該TXOPを獲得した無線通信装置10-1を、TXOP獲得者(TXOP holder、TXOPホルダー)と呼ぶ。無線通信装置10-1がTXOPを獲得するために送信するフレームのフレームタイプは何かに限定されるものではなく、コントロールフレーム(例えばRTSフレームやCTS-to-selfフレーム)でも良いし、データフレームでも良い。
 TXOPホルダーである無線通信装置10-1は、該TXOPの間で、自無線通信装置以外の無線通信装置に対して、フレームを送信することができる。無線通信装置1-1がTXOPホルダーであった場合、該TXOPの期間内で、無線通信装置1-1は無線通信装置2Aに対してフレームを送信することができる。また、無線通信装置1-1は、該TXOP期間内で、無線通信装置2Aに対して、無線通信装置1-1宛てのフレーム送信を指示することができる。無線通信装置1-1は、該TXOP期間内で、無線通信装置2Aに対して、無線通信装置1-1宛てのフレーム送信を指示する情報を含むトリガーフレームを送信することができる。
 無線通信装置1-1は、フレーム送信を行なう可能性のある全通信帯域(例えばOperation bandwidth)に対してTXOPを確保してもよいし、実際にフレームを送信する通信帯域(例えばTransmission bandwidth)等の特定の通信帯域(Band)に対して確保してもよい。
 無線通信装置1-1が獲得したTXOPの期間内でフレーム送信の指示を行なう無線通信装置は、必ずしも自無線通信装置に接続されている無線通信装置には限定されない。例えば、無線通信装置は、自無線通信装置の周辺にいる無線通信装置にReassociationフレームなどのマネジメントフレームや、RTS/CTSフレーム等のコントロールフレームを送信させるために、自無線通信装置に接続されていない無線通信装置に、フレームの送信を指示することができる。
 さらに、DCFとは異なるデータ伝送方法であるEDCAにおけるTXOPについても説明する。IEEE802.11e規格はEDCAに関わるもので、映像伝送やVoIPなどの各種サービスのためのQoS(Quality of Service)保証の観点からTXOPについて規定されている。サービスは大きくは、VO(VOice),VI(VIdeo),BE(BestEffort),BK(BacK ground)の4つのアクセスカテゴリに分類されている。一般的には、優先度の高い方からVO,VI,BE,BKの順番である。それぞれのアクセスカテゴリでは、CWの最小値CWmin,最大値CWmax,IFSの一種であるAIFS(Arbitration IFS),送信機会の上限値であるTXOP limitのパラメータがあり、優先度の高低差をつけるように値が設定される。例えば、音声伝送を目的とした優先度の一番高いVOのCWmin,CWmax,AIFSは、他のアクセスカテゴリに比較して相対的に小さい値を設定することで、他のアクセスカテゴリに優先したデータ伝送が可能となる。例えば、映像伝送のため送信データ量が比較的大きくなるVIでは、TXOP limitを大きく設定することで、他のアクセスカテゴリよりも送信機会を長くとることが可能となる。このように、各種サービスに応じたQoS保証を目的として、各アクセスカテゴリの4つのパラメータの値が調整される。
 以下の実施形態では、無線通信装置1-1(基地局装置1-1)が送信し、無線通信装置2-1(端末装置2-1)が受信する場合を説明するが、本発明の一態様はこれに限らず、無線通信装置2-1(端末装置2-1)が送信し、無線通信装置1-1(基地局装置1-1)が受信する場合も含まれる。なお、無線通信装置1-1及び無線通信装置2-1の装置構成は、特に断らない限り、図6、図7を用いて説明した装置構成例と同様である。
 本実施形態に係る無線通信装置1-1の上位層部10001-1は、MACレイヤに転送された情報ビット系列から1つのMPDUもしくは2つ以上のMPDUを集約したMACレイヤのペイロードであるA-MPDUを、送信部10003-1へと転送する。また、上位層部10001-1は、再送方式の設定を含む制御情報を送信部10003-1へ転送する。再送方式の設定は、例えば、ARQ又はHARQのいずれか一方を示す情報、もしくはHARQの設定情報である。HARQの設定情報は、HARQが設定されているか否かを示す情報及び/又はHARQ方式である。HARQ方式は、チェイス合成 (Chase Combining; CC)、又はインクリメンタルリダンダンシー (Incremental Redundancy; IR)を含む。なお、HARQが設定されていない場合、PHYレイヤはARQが設定されていると判断する。情報ビット系列が1つのMPDUで構成される場合は、MPDU、MPDU長、及び再送方式の設定を、下位レイヤの送信部へ転送する。一方、情報ビット系列がA-MPDUで構成される場合に、再送方式の設定がARQを示すとき、A-MPDU、及びA-MPDU長を下位レイヤの送信部へ転送する。再送方式の設定がHARQを示す場合、A-MPDU、A-MPDU長、各々のMPDU長、及びMPDU数の一部又は全部を下位レイヤの送信部へ転送する。前記MPDUは、1つのMSDUもしくは2つ以上のMSDUを集約したA-MSDUを構成してもよい。なお、当該上位層部10001-1のMACレイヤの制御情報は、前記再送方式をHARQに指定しない場合、必ずしも当該MPDU長、及びMPDU数を格納する情報フィールドを付加するものではない。
 本実施形態に係る無線通信装置1-1の物理層フレーム生成部10003a-1は、まず上位層部10001-1が転送したA-MPDUからPHYレイヤのペイロードであるPSDUを生成する。PSDUはPHYヘッダを付与され、送信フレームのPPDUを生成する。当該PHYヘッダは、同期検出のためのPLCPプリアンブル、受信信号強度に応じて変調符号化方式(Modulation and Coding Scheme)を定めるためのPLCPヘッダ、上位層部10001-1のMACレイヤが通知する制御情報、そして当該制御情報にMPDU長の情報フィールドが付加されている場合に、当該各々の情報フィールドに対応した誤り訂正符号化を施す所定の情報ビット長(符号化ブロック長)の情報フィールドを含む。なお、当該上位層部10001-1のMACレイヤがMPDUのアグリゲーションを設定しない場合、当該PHYヘッダは、当該所定の情報ビット長を情報フィールドに格納してもよい。
 例えば、IEEE802.11標準の低密度パリティ検査符号(Low Density Parity Check:LDPC)を用いた誤り訂正符号化は、まず低密度なパリティ検査行列から生成行列を求め、当該生成行列と情報ビットの行列積から算出されるパリティビットを生成する。次に、当該情報ビット系列に当該パリティビットを付与し、符号語を構成する。すなわち、当該物理層フレーム生成部10003a-1は、MCSの符号化率が設定する当該パリティ検査行列のサイズに基づいて、誤り訂正符号化を施す所定の情報ビット長を算出する。なお、LDPC符号化に用いる情報ビット系列をLDPC情報ブロック、LDPC情報ブロックがLDPC符号化されて得られるビット系列をLDPC符号語ブロックとも呼ぶ。
 図8はMCSと変調方式、符号化率との関連付けの一例を示している。例えばMCSが1のとき、変調方式はQPSKで符号化率は1/2であり、MCSが4のとき変調方式は16QAMで符号化率は3/4である。また、図9は符号化率とLDPC情報ブロック長、及びLDPC符号語ブロック長の関連付けの一例を示している。LDPC符号語ブロック長に符号化率を乗算するとLDPC情報ブロック長となる。例えば符号化率が1/2の場合、(LDPC情報ブロック長、LDPC符号語ブロック長)の候補は、(972、1944)、(648、1296)、(324、648)である。なお、LDPC情報ブロック長及びLDPC符号語ブロック長は、既定の値であり、送信される情報ブロック長や符号語ブロック長とは異なる可能性がある。
 再送方式の設定がARQを示す場合において、物理層フレーム生成部10003a-1がPSDU(A-MPDU)を情報ブロックに分割する手順の一例を説明する。LDPC符号語ブロック長は、少なくともPSDU長(A-MPDU長)と符号化率に基づいて計算される符号化ビット長(第1の符号化ビット長とも呼ぶ)によって決定される。例えば、図9の例では、第1の符号化ビット長が648ビット以下の場合、LDPC符号語ブロック長(LCW)は648ビットとなる。次に、第1の符号化ビット長が648ビットより大きく、1296ビット以下の場合、LDPC符号語ブロック長は1296ビットとなる。そして、第1の符号化ビット長が1296ビットより大きく、1944以下の場合、LDPC符号語ブロック長は1944ビットとなる。なお、第1の符号化ビット長が1944ビット以下の場合、LDPC符号語ブロック数(NCW)は1である。第1の符号化ビット長が1944ビットよりも大きくて、2592ビット以下の場合、LDPC符号語ブロック長は1296ビットとなり、LDPC符号語ブロック数は2である。LDPC符号語ブロック長が2592ビットよりも大きい場合、LDPC符号語ブロック長は1944ビットとなり、LDPC符号語ブロック数は第1の符号化ビット長とLDPC符号語ブロック長である1944ビットからceil(第1の符号化ビット長/1944)として計算できる。なお、ceil(x)は天井関数であり、x以上の最小の整数を表す。
 NCW・LCW・RがPSDU長と異なる場合、ショートニング処理を行う。なお、Rは符号化率を示す。NCW・LCW・RとPSDU長との差分をNshrtと表す。Nshrtは各情報ブロックに等分配される。つまり、各情報ブロックのショートニングビットNshblkはfloor(Nshrt/NCW)となる。ただし、floor(x)は床関数であり、x以下の最大の整数を表す。なお、最初のNshrt mod NCW ブロックは他のブロックよりもショートニングビットは1ビット多くする。ただしmodは剰余を表す。ショートニング処理は、情報ブロックにNshblk(又はNshblk+1)ビットを付加してLDPC情報ブロックを生成する。このため、PSDUはショートニング処理を考慮して各情報ブロックに分割される。LDPC情報ブロックはLDPC符号化されてLDPC符号語ブロックが生成されるが、ショートニングビットは破棄される。
 NCW・LCWと(第1の符号化ビット長+Nshrt)が異なる場合、パリティビットを破棄する(間引く)パンクチャリング処理を行う。NCW・LCWと(第1の符号化ビット長+Nshrt)の差分をNpuncと表す。Npuncは各符号語ブロックに等分配される。つまり、各符号語ブロックのパンクチャリングビットNpcblkはfloor(Npunc/NCW)となる。なお、最初のNpunc mod NCW ブロックは他のブロックよりもパンクチャリングビットは1ビット多くする。パンクチャリング処理では、LDPC符号語ブロックの最後のNpcblk(又はNpcblk+1)ビットは破棄される。ショートニング処理及びパンクチャリング処理によって、送信される符号語ブロックが生成される。
 なお、再送方式の設定がHARQを示す場合、又はHARQ方式がIRを示す場合、物理層フレーム生成部10003a-1は、LDPC情報ブロックをマザー符号化率で符号化してから、パンクチャリングを行って符号語ブロックを生成する。また、符号語ブロックのうち、初送を示す符号語ブロックを第1の符号語ブロック、再送を示す符号語ブロックを第2の符号語ブロックとも呼ぶ。なお、本実施形態では第1の符号語ブロック長と第2の符号語ブロック長は同じとして説明するが、本発明の一態様はこれに限らない。なお、以降の実施形態ではマザー符号化率を1/2として説明するが、本発明の一態様はこれに限らない。例えば、マザー符号化率1/3など、MCSが示す符号化率以下の符号化率であればよい。なお、LDPC情報ブロックをマザー符号化率で符号化して得られるパリティビットをマザーパリティビットとも呼ぶ。また、LDPC情報ブロックをマザー符号化率で符号化して得られるLDPC符号語ブロックをマザー符号語ブロックとも呼ぶ。また、MCS毎に異なるマザー符号化率が設定されても良い。
 図10は、図9と同じLDPC情報ブロック長の場合の例を示す。なお、図10に示している数値は一例である。図10の例では、まず、LDPC情報ブロック長は、LDPC情報ブロック長に基づくパリティ検査行列を用いて、マザー符号化率1/2で符号化される。そして、MCSが示す符号化率に基づいて、マザーパリティビットを1又は複数のパリティブロックに分割する。例えば、MCSが示す符号化率が1/2の場合、パリティブロック数は1つである。また、MCSが示す符号化率が2/3の場合、パリティブロック数は2つである。MCSが示す符号化率が3/4の場合、パリティブロック数は3つである。MCSが示す符号化率が5/6の場合、パリティブロック数は5つである。図10の例では、LDPC情報ブロック及び1つのパリティブロックから第1の符号語ブロック又は第2の符号語ブロックが生成される。なお、図10の例では、第1の符号語長及び第2の符号語長は、HARQの設定がARQを示す場合の符号語長と同じになる。パリティブロックの番号は、リダンダンシーバージョン(Redundancy Version;RV)と関連付けられる。なお、図中のRV0からRV4は、それぞれRVが0、1、2、3、4であることを示す。なお、RVの値は再送回数と解釈することも可能である。つまり、RV0は初送を示し、RV1は1回目の再送(2回目の送信)、・・・、RV4は4回目の再送(5回目の送信)を示すことができる。また、再送回数とRVの値は一致しなくてもよい。例えば、RV0は初送を示し、RV2は1回目の再送(2回目の送信)、RV4は2回目の再送(3回目の送信)、RV1は3回目の再送(4回目の送信)、RV3は4回目の再送(5回目の送信)を示すことができる。また、全てのRVは送信されなくてもよい。例えば、初送でも再送でも、RV0のみが送信されても良いし、再送回数ごとにRV0とRV3を交互に送信しても良い。また、RVの数(パリティブロックの数)をNrvとも呼ぶ。例えば、符号化率1/2では、Nrv=1、符号化率2/3では、Nrv=2、符号化率3/4では、Nrv=3、符号化率5/6では、Nrv=5である。Nrv回の送信により、HARQ合成後の符号化率はマザー符号化率となる。また、RVは再送回数と関連付けられても良い。例えば、初送(再送回数0回)ではRV0が送信され、n回目の再送ではRVxが送信される。なお、nは0以上の整数であり、x=n mod Nrvである。なお、modは剰余を表す。この場合、第1の符号語ブロックは、LDPC情報ブロックとRV0のパリティブロックで構成され、第2の符号語ブロックは、LDPC情報ブロックとRV0以外のパリティブロックで構成される。なお、無線LANのようにランダムアクセスが行われる通信環境では、パケット衝突によって、通信品質が著しく劣化したり、受信すらできず復調・復号できなかったりする場合がある。仮に、初送にパケット衝突が生じた場合、第2の符号語ブロックに十分な情報ビットを含まないと、どんなに通信品質が良くても復号できない。図10の例では、第2の符号語ブロックはLDPC情報ブロックを含むため、再送信号を単独で受信した場合でも復号可能となる。また、初送と再送でRVの値が異なるパリティブロックを送信し、受信側でHARQ合成すれば、符号化率が下がるため、誤り訂正能力も向上する。
 図11は、MCSが示す符号化率によってLDPC情報ブロック長は変わらない例である。そのため、LDPC符号化には、LDPC情報ブロック長である1620ビット、1080ビット、又は540ビットに対するマザー符号化率1/2のパリティ検査行列が用いられる。マザーパリティビットは、図10の例と同様に、MCSが示す符号化率に基づいて、リダンダンシーバージョンと関連付けられて1又は複数のパリティブロックに分割される。LDPC符号語はLDPC情報ブロック及び1つのパリティブロックから生成されるため、図11の例では、MCSが示す符号化率によって、LDPC符号語長は変わる。例えば、LDPC情報ブロック長が1620ビットのとき、MCSが示す符号化率が1/2、2/3、3/4、5/6で、第1の符号語ブロック長はそれぞれ3240ビット、2430ビット、2160ビット、1944ビットである。図11の例でも、図10の例と同様に、第2の符号語ブロックはLDPC情報ブロックを含むため、再送信号を単独で受信した場合でも復号可能となる。また、初送と再送でRVの値が異なるパリティブロックを送信し、受信側でHARQ合成すれば、符号化率が下がるため、誤り訂正能力も向上する。
 LDPCは、符号化率にもよるが、符号語から若干の情報ビットを間引いても復号することが可能である。このことを利用すれば、Nrvを削減することができる。図12はMCSの符号化率5/6の場合に、Nrvを4に削減した例である。初送(RV0)の場合、LDPC情報ブロック長は1620ビット、1080ビット、又は540ビットであり、第1の符号語ブロックに含まれる情報ビット長はLDPC情報ブロック長と同じである。第1の符号語ブロックに含まれるパリティブロック長は324ビット、216ビット、又は108ビットとなる。再送(RV1からRV3)の場合、第2の符号語ブロックに含まれる情報ビット長は、1512ビット、1008ビット、又は504ビットであり、LDPC情報ブロック長より小さい。また、第1の符号語ブロックに含まれるパリティブロック長は、432ビット、288ビット、又は144ビットであり、第1の符号語ブロックに含まれるパリティブロック長よりも大きい。なお、第2の符号語ブロックは再送信号を単独で受信した場合でも復号可能である。また、Nrvを削減しているため、より少ない再送回数でマザー符号化率が達成できる。
 なお、再送において、初送で送信されなかったパリティビットを全て送信すれば、マザー符号化率を達成することができる。例えば、MCSが示す符号化率が3/4の場合、第1の符号語ブロックは1458ビットの情報ビット及び486ビットのパリティビットで構成され、第2の符号語ブロックは972ビットの情報ビット及び972ビットのパリティビットで構成される。また、MCSが示す符号化率が5/6の場合、第1の符号語ブロックは1620ビットの情報ビット及び324ビットのパリティビットで構成され、第2の符号語ブロックは648ビットの情報ビット及び1296ビットのパリティビットで構成される。
 図13は、全てのRVで情報ビットを間引き、Nrvを削減する例である。MCSが示す符号化率が3/4のとき、LDPC情報ブロック長は、1458ビット、972ビット、又は486ビットである。初送又は再送時に送信する情報ビットを、それぞれ1215ビット、808ビット、又は405ビットに間引き、パリティブロック長を大きくすることで、Nrvを2に削減することができる。また、MCSが示す符号化率が5/6のとき、LDPC情報ブロック長は、1620ビット、1080ビット、又は540ビットである。初送又は再送時に送信する情報ビットを、それぞれ1404ビット、936ビット、又は468ビットに間引き、パリティブロック長を大きくすることで、Nrvを3に削減することができる。なお、送信する情報ビットは、LDPC情報ブロックの前方のビットを間引いたものでも、後方のビットを間引いたものでもよい。また、RVの値でLDPC情報ブロックの前方のビットを間引くか、後方のビットを間引くかが変わっても良い。例えば、RVが偶数の場合(RV0又はRV2の場合)、送信する情報ビットはLDPC情報ブロックの後方のビットを間引いたものとし、RVが奇数の場合(RV1の場合)、送信する情報ビットはLDPC情報ブロックの前方のビットを間引いたものとすることができる。
 上述のように、LDPC符号ではショートニング処理及び/又はパンクチャリング処理が必要な場合がある。図14は、MCSが示す符号化率が5/6で、LDPC情報ブロックは1600ビットの情報ビットと20ビットのショートニングビットで構成され、Nrv=5とした例である。再送方式の設定がHARQを示す場合、又は、HARQ方式がIRを示す場合、ショートニング処理及び/又はパンクチャリング処理の手順は図14(a)と図14(b)の2通りが考えられる。図14(a)では、マザー符号語ブロックは1600ビットの情報ビット2000、20ビットのショートニングビット2001、320ビットのパリティブロック2002-1~2002-5、20ビットのパンクチャリングビット2003で構成される。マザー符号語ブロックのパリティビットは、パンクチャリングビット2003を間引いた後に、パリティブロック2002-1~2002-5に分割される。図14(b)では、マザー符号語ブロックは1600ビットの情報ビット2004、20ビットのショートニングビット2005、320ビットのパリティブロック2006-1~2006-5、4ビットのパンクチャリングビット2007-1~2007-5で構成される。マザー符号語ブロックのパリティビットは、324ビットのブロックに分割される。このブロックから4ビットのパンクチャリングビットを間引くと320ビットのパリティブロックが生成される。図14(b)の例では、20ビットのパンクチャリングビットをNrv=5で割った4ビットが各ブロックにおけるパンクチャリングビットとなる。なお、図14ではMCSが示す符号化率5/6を用いて説明したが、本発明の一態様はこれに限らず、その他の符号化率でも同様に適用することができる。また、MCSが示す符号化率5/6において、Nrvを4に削減した場合も同様に適用可能である。この場合、Nrv=4であるため、各ブロックのパンクチャリングビットは5ビットとなる。
 図15は、再送の場合に、パリティビットをパンクチャリングせずに、情報ビットをパンクチャリングする例である。ここでは、MCSが示す符号化率5/6、Nrv=5を例に説明する。図15の例では、マザー符号語ブロックは、1600ビットの情報ビット2100、20ビットのショートニングビット2101、324ビットの初送(RV0)のパリティブロック、324ビットの再送(RV1~RV4)のパリティブロック2104-1~2104-4で構成される。初送のパリティブロックは、320ビットの初送のパリティビット2102、4ビットの初送のパンクチャリングビット2103から構成される。再送時は、初送のパリティブロックで行われたパンクチャリングを情報ビットで行うため、第2の符号語ブロックの情報ビット長は1596ビットになる。また、再送でRV0のパリティブロックを送信する場合、パンクチャリングビット2103を送信し、情報ビットをパンクチャリングしても良い。このとき、第2の符号語ブロックは、1596ビットの情報ビットと324ビットのパリティビットで構成される。
 なお、図12、13の例のように、ショートニング以外で情報ビットを間引く場合、ショートニングビットを除いたビットから間引けばよい。
 図16は、再送方式の設定がARQを示す場合の物理層フレーム生成部10003a-1のブロック化処理の一例を示した概要図である。当該図中の物理層フレーム生成部10003a-1は、PHYヘッダが含むMCSの定める所定の情報ビット長で、PSDUを複数のペイロードである情報ブロックへ分割し、各々の情報ブロックに対して誤り訂正符号化を施すことで、送信フレームを生成する。なお情報ブロックを誤り訂正符号化したものを符号語ブロックとも呼ぶ。当該図中のブロック化処理において、MACレイヤがPSDUを区切る所定のビット長は、PHYレイヤがPSDUを区切る所定のビット長を複数並べたものと一致しない可能性がある。すなわち、当該物理層フレーム生成部10003a-1は、各々の情報ブロックが2つ以上のMPDUを含むことを許可する。図11のブロック#3とブロック#6は、それぞれ2つ以上のMPDUを含み、前者はMPDU#1-2、後者はMPDU#2-3が含む一部の情報ビット系列を格納していることになる。なお、この一例において、当該送信フレームにおけるBlock ACKを受信した上位層部10001-1のMACレイヤは、MPDU#2で誤りが検出されているため、MPDU#2を再送する。MPDU#2を再送する場合、PHYレイヤはPSDUをブロック化して送信するが、PHYレイヤのブロックが複数のMPDUを含む場合、初送時とは異なるブロックに分割される可能性があり、この場合、異なる符号語ブロックが送信される。この場合、受信側では初送のMPDU#2と再送のMPDU#2は合成できない。
 図17は、前記MACレイヤの制御情報がMPDU長の情報フィールドを含む場合(再送方式の設定がHARQを示す場合)における物理層フレーム生成部10003a-1のブロック化処理の一例を示した概要図である。当該図中の物理層フレーム生成部10003a-1は、PHYヘッダが含むMCSの定める所定の情報ビット長に加え、当該制御情報のMPDU長に基づいて、PSDUを構成する各々のMPDUをそれぞれ複数の情報ブロックへ分割する。また物理層フレーム生成部10003a-1は情報ブロック長を算出し、同ヘッダの情報フィールドに格納する。なお、当該情報ブロック長の整数倍がMPDU長となるときは、当該PHYヘッダに情報ブロック数を格納してもよい。その後、各々の情報ブロックに対して誤り訂正符号化を施すことで、送信フレームを生成する。当該図中のブロック化処理において、1つのMPDUは1又は複数の情報ブロックで構成される。すなわち、当該物理層フレーム生成部10003a-1は、各々のブロックが2つ以上のMPDUを含むことを許可されない。当該図中のブロック#4―#6は、それぞれがMPDU#2の情報ビット系列を格納する。なお、この一例において、当該送信フレームにおけるBlock ACKを受信した上位層部10001-1のMACレイヤは、MPDU#2で誤りが検出されているため、MPDU#2を再送する。MPDU毎に情報ブロックに分割しているため、再送時は初送時と同じ符号語ブロックが送信されることが可能である。この場合、受信側では初送のMPDU#2と再送のMPDU#2を合成することで、受信品質を向上させることが可能となる。
 再送方式の設定がHARQを示す場合、LDPC符号語ブロック長は、少なくともMPDU長とMCSの符号化率に基づいて計算される符号化ビット長(第2の符号化ビット長とも呼ぶ)によって決定される。なお、MPDU毎にMPDU長が変わる場合、MPDU毎に第2の符号化ビット長は計算される。例えば、第2の符号化ビット長が648ビット以下の場合、LDPC符号語ブロック長は648ビットとなる。また、第2の符号化ビット長が648ビットよりも大きくて、1296ビット以下の場合、LDPC符号語ブロック長は1296ビットとなる。また、第2の符号化ビット長が1296ビットよりも大きくて、1944以下の場合、LDPC符号語ブロック長は1944ビットとなる。なお、第2の符号化ビット長が1944ビット以下の場合、LDPC符号語ブロック数は1である。第2の符号化ビット長が1944ビットよりも大きくて、2592ビット以下の場合、LDPC符号語ブロック長は1296ビットとなり、LDPC符号語ブロック数は2である。LDPC符号語ブロック長が2592ビットよりも大きい場合、LDPC符号語ブロック長は1944ビットとなり、LDPC符号語ブロック数は第2の符号化ビット長とLDPC符号語ブロック長である1944ビットからceil(第2の符号化ビット長/1944)として計算できる。
 なお、図11のように、MCSの符号化率によってLDPC符号語ブロック長が変わる場合は、少なくとも第2の符号化ビット長とMCSの符号化率によってLDPC符号語長が決定される。例えば、図11のように、1つのMCSの符号化率に対し、第1のLDPC情報ブロック長、第2のLDPC情報ブロック長、及び第3のLDPC情報ブロック長の3つのLDPC情報ブロック長があるとする。なお、第1のLDPC情報ブロック長<第2のLDPC情報ブロック長<第3のLDPC情報ブロック長である。例えば、図11では、MCSの符号化率が1/2の場合、第1のLDPC情報ブロック長は540ビット、第2のLDPC情報ブロック長は1080ビット、第3のLDPC情報ブロック長は1620ビットである。また、第1のLDPC情報ブロック長に対するLDPC符号語ブロック長を第1のLDPC符号語ブロック長とも呼び、第2のLDPC情報ブロック長に対するLDPC符号語ブロック長を第2のLDPC符号語ブロック長とも呼び、第3のLDPC情報ブロック長に対するLDPC符号語ブロック長を第3のLDPC符号語ブロック長とも呼ぶ。このとき、第2の符号化ビット長が第1のLDPC符号語ブロック長以下の場合、LDPC符号語ブロック長は第1のLDPC符号語ブロック長となる。また、第2の符号化ビット長が第1のLDPC符号語ブロック長よりも大きくて、第2のLDPC符号語ブロック長以下の場合、LDPC符号語ブロック長は第2のLDPC符号語ブロック長となる。また、第2の符号化ビット長が第2のLDPC符号語ブロック長よりも大きくて、第3のLDPC符号語ブロック以下の場合、LDPC符号語ブロック長は第3のLDPC符号語ブロック長となる。なお、LDPC符号語ブロック長が第3のLDPC符号語ブロック長以下の場合、LDPC符号語ブロック数は1である。第2のLDPC符号化ビット長が第3のLDPC符号語ブロック長よりも大きくて、第2のLDPC符号語ブロック長の2倍以下の場合、LDPC符号語ブロック長は第2のLDPC符号語ブロック長となり、LDPC符号語ブロック数は2となる。また、LDPC符号語ブロック長が第2のLDPC符号語ブロック長の2倍よりも大きい場合、LDPC符号語ブロック長は第3のLDPC符号語長となり、LDPC符号語ブロック数は第2の符号化ビット長と第3のLDPC符号語ブロック長からceil(第2の符号化ビット長/第3のLDPC符号語ブロック長)として計算される。
 再送方式の設定がHARQを示す場合、MPDU毎にショートニング処理を行う。NCW・LCW・RがMPDU長と異なる場合、ショートニング処理を行う。NCWCWRとMPDU長との差分をNshrtと表す。Nshrtは各情報ブロックに等分配される。つまり、各情報ブロックのショートニングビットNshblkはfloor(Nshrt/NCW)となる。なお、最初のNshrt mod NCW ブロックは他のブロックよりもショートニングビットは1ビット多くする。ただしmodは剰余を表す。ショートニング処理は、情報ブロックにNshblk(又はNshblk+1)ビットを付加してLDPC情報ブロックを生成する。このため、PSDUはショートニング処理を考慮して各情報ブロックに分割される。LDPC情報ブロックはLDPC符号化されてLDPC符号語ブロックが生成されるが、ショートニングビットは破棄される。
 再送方式の設定がHARQを示す場合、MPDU毎にパンクチャリング処理を行う。NCW・LCWと(第2の符号化ビット長+Nshrt)が異なる場合、パンクチャリング処理を行う。NCW・LCWと(第2の符号化ビット長+Nshrt)の差分をNpuncと表す。Npuncは各符号語ブロックに等分配される。つまり、各符号語ブロックのパンクチャリングビットNpcblkはfloor(Npunc/NCW)となる。なお、最初のNpunc mod NCW ブロックは他のブロックよりもパンクチャリングビットは1ビット多くする。パンクチャリング処理では、LDPC符号語ブロックの最後のNpcblk(又はNpcblk+1)ビットは破棄される。ショートニング処理及びパンクチャリング処理によって、送信される符号語ブロックが生成される。
 一方、前記MACレイヤの制御情報がMPDU長の情報フィールドを含む場合(再送方式の設定がARQを示す場合)、本実施形態に係る物理層フレーム生成部10003a-1は、MCSとMPDU長に応じた符号化ブロック長を算出可能なテーブルまたは計算式を参照することで、当該符号化ブロック長でPSDUのブロック化処理を実施することも可能である。
 なお、本実施形態に係る符号化方法は、LDPCに限定されない。例えば、本実施形態に係る送信装置は2値畳み込み符号(Binary Convolutional Code:BCC)を用いることも可能である。その際、送信装置は、BCCを用いて、先に示したブロック化処理の方法、すなわちARQが設定されている場合と、HARQが設定されている場合のブロック化処理を用いることができる。例えば、HARQが設定されている場合、送信装置は情報ブロックに含まれる情報ビット数を、MPDUに含まれるビット数に一致させることができる。また、送信装置は情報ブロックに含まれる情報ビット数の整数倍を、MPDUに含まれるビット数に一致させることができる。
 また、本実施形態帯に係る送信装置は、PHYレイヤで設定される誤り訂正符号化の方法によって、ブロック化処理を切り替えることができる。例えば、送信装置は、誤り訂正符号化の方法として、BCCが設定されている場合、ARQを想定したブロック化処理を実施し、LDPCが設定されている場合、HARQを想定したブロック化処理を実施することができる。また、送信装置は、BCCが設定されている場合、HARQを想定したブロック化処理を実施し、LDPCが設定されている場合、ARQを想定したブロック化処理を実施することも可能である。
 前記テーブルまたは計算式は、最大MPDUサイズ(例11acの場合:3895,7991,11454バイト)ごとに複数のMPDU長の候補値を含み、前記各々のMPDU長にMCS毎の符号化する所定の情報ビット長の候補値を格納することができる。例えば、本実施形態に係る上位層部10001-1から転送されたA-MPDUを構成する、ある1つのMPDU長が3895バイト以下である場合、送信部は、上記テーブルまたは計算式を参照することで、前記MPDUのMPDU長と同一となる候補値もしくは最も近いMPDU長の候補値を選択し、MCSに応じた符号化ブロック長の候補値をインデックスとして一連に取得することができる。なお、本実施形態に係るステーション装置やアクセスポイントなどは、ビーコンフレーム等のマネジメントフレームによって当該テーブルまたは計算式を更新することができ、符号化ブロック長のインデックスを共有することが可能である。
 前記テーブルと計算式を用いたブロック化処理において、送信フレームが含むPHYヘッダは、同期検出を行うPLCPプリアンブル、受信信号強度に応じた変調符号化方式(MCS)を定めるPLCPヘッダ、上位層部10001-1のMACレイヤにおいてARQ/HARQを通知する制御情報、そして符号化ブロック長を参照可能なインデックスを含む。
 なお、再送方式の設定がHARQを示す場合、1つの情報ブロックが複数のMPDUのビットを含まないように、MPDU長及び/MCSを制限することも可能である。例えば、MPDU長をLDPC符号語ブロック長が1944ビットとなるLDPC情報ブロック長の整数倍に制限し、MPDUの約数となるLDPCブロック長となる符号化率以外のMCSの使用を制限する。例えば1458バイトのMPDUが複数アグリゲーションされてPSDUを構成する場合、MPDU長は符号化率が1/2、2/3、3/4であるLDPC情報ブロックで割り切れるため、PSDUをブロック化処理してもMPDU毎にブロック化処理しても結果は変わらない。そのため、再送方式の設定がHARQを示す場合で、MPDU長が1458バイトのとき、割り切れないLDPC情報ブロック長となる符号化率5/6のMCS7とMCS9を使用しないようにすれば、再送方式の設定がARQを示す場合と同様にPSDUをフロック化処理しても受信側でHARQ合成が可能となる。また、再送方式の設定がHARQの場合でも、制限されたMCSを用いる場合、ARQを意味してもよい。例えば、MPDU長が1458バイトのときにMCS7を適用したとき、再送方式はARQを示しても良い。この場合、再送方式の設定がHARQを示していても、無線通信装置1-1はPSDUをブロック化処理して送信する。
 本実施形態に係る無線通信装置1-1は、上位層部10001-1のMACレイヤが通知する制御情報に含まれる再送方式をARQ/HARQと指定することで、当該制御情報にA-MPDUを構成する各々のMPDU長の情報フィールドを付与するか否かを設定することができ、当該制御情報によってPSDUに対してブロック化処理をするかMPDUに対してブロック化処理をするかを切り替えることを可能とする。
 以上、本実施形態に係る無線通信装置を踏まえ、図18は上位層部で生成されたPHYレイヤのパケット合成方法に関する制御情報の一例を示した概要図である。本実施形態に係る無線通信装置1-1の上位層部10001-1は、まず、MACレイヤへと転送された情報ビット系列から宛先情報(AID)に宛てられたMPDUを生成し、無線チャネル内のリソースユニットに2つ以上のMPDUを割り当てることを許可せず、当該リソースユニットに割り当てられた当該MPDUをそれぞれ第1のMPDU、第2のMPDUとして区別する。なお、当該第1のMPDUと第2のMPDUは、それぞれ当該図中のMPDU1とMPDU2に対応する。また、当該図中において、MPDU1が割当てられたリソースユニット1を第1のリソースユニット、MPDU2が割当てられたリソースユニット2を第2のリソースユニットとも呼ぶ。次に、当該上位層部10001-1は、MACレイヤで第1のMPDU、第2のMPDUに対するPHYレイヤのパケット合成方法に関する制御情報を生成するため、当該第1のMPDU、第2のMPDUにそれぞれ異なる複数のAIDを付与し、当該AIDにHARQを設定することができる。例えば、当該図中において、送信フレームが初送である場合に、各々のリソースユニットに宛てられたAIDに初送フレームであることを示すAID1を、また、送信フレームが再送である場合に、各々のリソースユニットに宛てられたAIDに再送フレームであることを示すAID2を設定することで、当該AID2に対応する当該再送フレームにHARQを設定できる。なお、本実施形態に係る無線通信装置1-1の上位層部10001-1は、初送時および再送時に関わらず、当該各々のリソースユニットに対する当該MPDUへの割り当てを周波数方向に限定するものではなく、時間軸方向においても実施することができる。
 すなわち、本実施形態に係る無線通信装置1-1の上位層部10001-1は、MACレイヤの第1のMPDU、第2のMPDUをリソースユニットに割り当てる方法と、当該第1のMPDUと当該第2のMPDUにそれぞれ付与されたAIDとHARQの設定と、を含んだPHYレイヤのパケット合成方法に関する制御情報を生成する。当該制御情報は、本実施形態に係る無線通信装置1-1の制御部10002-1によってPHYレイヤへと伝達される。
 なお、前記AIDに対するHARQの設定/解除は、確認応答(ACK、ブロックACK、マルチSTAブロックACK)の要求がタイムアウトするか、または、当該確認応答が前記第1のMPDU、前記第2のMPDUのAIDを通知する場合に実施してもよい。また、前記AIDに対するHARQの設定/解除は、それぞれ接続認証/再接続認証(アソシエーション/リアソシエーション)によっても実施可能であって、前記通信装置に対する認証の可否を示す認証フレーム(認証応答)のAIDを用いてもよい。また、マネジメントフレームとコントロールフレームに含まれるAIDを用いて、前記AID対するHARQの設定/解除を通知してもよい。
 なお、前記制御情報は、HARQによるパケット合成方法を何かに限定するものではない。例えば、前記パケット合成方法は、初送時と再送時で同一パケットを送信し、受信側でパケット合成することで受信信号のSNRを改善させるチェイス合成や再送時に冗長信号を表すパリティ信号を付加することで、受信側の誤り訂正復号能力を高めるインクリメンタルリダンダンシー合成であってもよい。前記フレーム生成部は、前記制御情報に当該パケット合成方法に必要となる追加情報を含めることを許可する。
 また、本実施形態に係る無線通信装置1-1の上位層部10001-1は、ARQ又はHARQのいずれかを設定可能であってもよい。例えば、当該上位層部でARQが設定された場合、無線通信装置1-1はAID1を生成する。当該上位層部でHARQが設定された場合、無線通信装置1-1はAID1又はAID2を生成する。また、当該上位層部でHARQが設定された場合、1つのリソースユニットには複数のMPDUを割当てない。また、HARQが設定された場合、各MPDU又は各リソースユニットにAID1又はAID2が関連付けられる。無線通信装置1-1は、初送の場合、MPDU又はリソースユニットにAID1を関連付け、再送の場合、MPDU又はリソースユニットにAID1またはAID2を関連付けられる。
 本実施形態に係る無線通信装置1-1のフレーム生成部10003a-1は、前記制御部10002-1が伝達するPHYレイヤのパケット合成方法に関する制御情報に基づいてPHYヘッダを生成し、当該PHYヘッダと第1のMPDUと第2のMPDUを含んだPPDUを生成する。前記図18に当該PPDUの概要例を示す。すなわち、当該PHYヘッダは、同期検出のためのPLCPプリアンブルと受信信号強度に応じて変調符号化方式(Modulation and Coding Scheme; MCS)を定めるためのPLCPヘッダから構成され、当該制御情報にHARQが付加されている場合に、当該第1のMPDUと当該第2のMPDUに対する前記AID、変調符号化方式(MCS)、符号化方式、RUの割り当て情報、RVなどの前記PHYレイヤのパケット合成方法に関する情報エレメントを当該PLCPプリアンブル又は当該PLCPヘッダに含め、複数のステーション装置に宛てられた当該情報エレメントをユーザ固有の情報フィールドに含めることができる。例えば、当該情報エレメントは、図2に示す11ac標準のVHT-SIG-Bフィールド、11ax標準のHE-SIG-Bフィールド、そして11be標準EHT-SIGフィールドなどに含めてもよい。また、当該フレーム生成部10003a-1は、PHYヘッダに基づいて当該第1のMPDUと当該第2のMPDUに対応する第1の符号語ブロックと第2の符号語ブロックを生成し、当該無線通信装置1-1の送信部10003b-1は、無線チャネル内のリソースユニットに割り当てられた当該第1の符号語ブロックと、当該第2の符号語ブロックと、を含む当該PPDUを送信する。
 また、本実施形態に係る前記送信部10003b-1は、前記第1のMPDU、または、前記第2のMPDUを初送時と同一条件で再送する場合において、初送時と重複するPHYヘッダのフィールドへのHARQの設定を許可し、受信バッファに格納された前記制御情報を用いて再送される当該第1のMPDU、または、当該第2のMPDUにパケット合成を実施してもよい。
 また、本実施形態に係る無線通信装置1-1の上位層部10001-1は、AIDについて、初送時のMPDU(以下、初送MPDUとも呼称する)をAID1、再送時のMPDU(以下、再送MPDUとも呼称する)をAID2と設定することで、AID2に対応する再送MPDUにARQを設定してもよい。AIDにARQを設定する場合、当該上位層部10001-1は、MACレイヤの第1のMPDU、第2のMPDUをリソースユニットに割り当てる方法と、当該第1のMPDU、当該第2のMPDUに付与されたAIDとARQの設定と、を含んだPHYレイヤのパケット合成方法に関する制御情報を生成してもよい。また、本実施形態に係る無線通信装置1-1のフレーム生成部10003a-1は、まず当該制御情報を反映したPHYヘッダと、第1のMPDUと第2のMPDUと、を含んだPPDUを生成し、次に当該PHYヘッダに同期検出のためのPLCPプリアンブルと受信信号強度に応じて変調符号化方式(Modulation and Coding Scheme; MCS)を定めるためのPLCPヘッダを構成するが、当該制御情報にARQが付加されている場合には、当該PLCPプリアンブル又はPLCPヘッダに前記PHYレイヤのパケット合成方法に関する情報エレメントを含めない。また、当該フレーム生成部10003a-1は、当該PHYヘッダに基づいて当該第1のMPDUと当該第2のMPDUに対応する第1の符号語ブロックと第2の符号語ブロックを生成し、前記無線通信装置1-1の送信部10003b-1は、無線チャネル内のリソースユニットに割り当てられた前記第1の符号語ブロックと、前記第2の符号語ブロックと、を含むPPDUを送信する。
 本実施形態に係る無線通信装置1-1は、上位層部10001-1のMACレイヤが通知する制御情報に含まれる再送方式をARQ/HARQと指定することで、当該制御情報にPHYレイヤのパケット合成方法に関する制御情報を生成するか否かを設定することができる。
 本実施形態に係る無線通信装置1-1は、ビーコンフレームおよびプローブ応答フレーム等を用いて、自装置が備える機能情報(Capability, Capability element, Capabilityinformation)を報知する場合、該機能情報に対して、無線通信装置1-1が送信するフレームのPHYヘッダにARQ/HARQを設定するか否かを示す制御情報を含めることができる。また、無線通信装置1-1は、ARQ/HARQが設定されたフレームを解釈できない通信装置が、自装置に接続することを拒絶することができる。
 また、無線通信装置1-1は、自装置が送信するPSDUの長さによって、該PSDUを含むフレームにHARQを設定するか否かを判断することができる。例えば、無線通信装置は、PSDUの長さが所定の長さを超える場合、該PSDUを含むフレームにHARQを設定しないことができる。ここでPSDUの長さは、PSDUに含まれる情報ビット数や、誤り訂正符号化を施した後の符号語ブロックに含まれるビット数や、該PSDUの含むフレームの時間長等であることができる。
 また、無線通信装置1-1は、HARQが設定された場合に、初送と再送で制御情報のフォーマットを変えることができる。初送の制御情報フォーマットを第1の制御情報フォーマット、再送の制御情報フォーマットを第2の制御情報フォーマットとも呼ぶ。第1の制御情報フォーマットは、AID1、符号化方式、MCS(変調モード)の一部又は全部を含む。また、第2の制御情報フォーマットは、AID2、変調方式、RVの一部又は全部を含む。なお、少なくとも符号化率と符号化方式は初送と再送で共通のため、第2の制御情報には含まなくて良い。また初送はRV0とすれば、第1の制御情報フォーマットにRVは含まない。そのため、第1の制御情報フォーマットにおいて、符号化方式及び/又は符号化率をRVで読み替えたものが第2の制御情報フォーマットであってもよい。
 また、無線通信装置1-1は、RTSフレームやCTSフレーム等のコントロールフレームによって獲得したTXOPの期間内でのみ、送信フレームにARQ/HARQを設定することができる。無線通信装置は、該TXOPを獲得するフレームに対して、該TXOPの期間内で送信されるフレームにはARQ/HARQが設定される、もしくはARQ/HARQが設定される可能性があることを示す情報を含めることができる。無線通信装置は該TXOPを獲得するフレームを複数の無線通信装置に向けて送信することができる。また無線通信装置は該TXOPを獲得するフレームに宛先となる複数の無線通信装置を示す情報(例えば、複数のAIDを含む情報、もしくは複数のAIDを直接示す情報)を含めることができる。該TXOPを獲得するフレームを受信し、かつ自装置が宛先に含まれる無線通信装置は、該TXOPを獲得するフレームへの応答フレームを送信することができる。このとき、該応答フレームには、ARQ/HARQが設定されたフレームを解釈できるか否かを示す情報が含まれることができる。また、該TXOPを獲得するフレームに対して、自装置が、ARQ/HARQが設定されたフレームを解釈できる場合にのみ、応答フレームを送信することができる。
 ARQ/HARQの設定は、リソースユニットのサイズ(リソースユニットを構成するサブキャリアもしくはトーンの数)に関連付けられることができる。例えば、無線通信装置1-1は、所定の値以上のサイズとなるリソースユニットにHARQを設定することができる。また、無線通信装置1-1は、所定の値以上の数のOFDM信号によって構成されるリソースユニットにHARQを設定することができる。
 ARQ/HARQの設定は、フレームが備えるリソースユニットの数に関連付けられることができる。例えば、無線通信装置1-1は、所定の帯域幅内に設定されるリソースユニットの数が、所定の値以上となる場合、各リソースユニットにHARQを設定することができる。
 ARQ/HARQの設定は、リソースユニットに設定されるデータもしくはユーザの空間多重数に関連付けられることができる。例えば、無線通信装置1-1は、空間多重が設定されたリソースユニットには、HARQの設定を行なわないことができる。また、無線通信装置1-1は、所定の値以下の数の空間多重数が設定されたリソースユニットにHARQを設定することができる。
 ARQ/HARQの設定は、フレームを送信するに先立って獲得されるTXOPの長さに関連付けられることができる。例えば、無線通信装置1-1は、所定の値より長いTXOP内で送信するフレームに対して、HARQを設定することができる。また、無線通信装置1-1は、自装置が獲得したTXOPではなく、他の装置が獲得したTXOP内で送信するフレームに対してもHARQを設定することができる。無線通信装置1-1が、他の装置が獲得したTXOP内で送信するフレームにHARQを設定する場合、該TXOPを獲得した通信装置が送信するトリガーフレーム(無線通信装置1―1にフレーム送信を引き起こすフレーム)に記載された情報に基づいて、HARQの設定を決定することができる。
 無線通信装置1-1は、HARQを設定したフレームに対する再送フレームについて、初送フレームが送信されてから、再送フレームを送信するまでに、所定の期間を経過した場合は、再送フレームにはHARQを設定しないことができる。つまり、無線通信装置1-1は、初送フレームの送信タイミングと、再送フレームの送信タイミングの間に、所定の値以上の経過時間が発生している場合は、当該フレームがPHYレイヤで合成されることを期待しない。同様に、初送フレームとしてHARQが設定されたフレームを受信した通信装置も、再送フレームの受信が、該初送フレームが受信されてから所定の時間が経過した後であった場合、PHYレイヤでのパケット合成は行わないように設定されることができる。無線通信装置1―1が、再送フレームにHARQを設定できる条件として、初送フレームが送信されてから所定の時間が経過する前に再送フレームが送信可能である場合とすることが可能である。
 無線通信装置1-1は、自装置が獲得したTXOPにおいて、HARQが設定されたフレームの送信を禁止することができる。また、無線通信装置1-1は、自装置が獲得したTXOPにおいて、HARQが設定されたフレームの送信を禁止する期間を設定することができる。HARQが設定されたフレームの送信を禁止する期間が設定される区間は、TXOPに限定されず、例えば、無線通信装置1-1は、周期的に送信されるビーコンフレームの間において、HARQが設定されたフレームの送信を禁止する期間を設定することができる。当然ながら、禁止する期間を設定するのではなく、許可される期間が設定されることも可能である。
 本実施形態に係る無線通信装置2-1は無線通信装置1-1から送信フレームを受信する。本実施形態に係る無線通信装置2-1の信号復調部10004b-1は、受信した送信フレームが含むPSDUの符号語を復号する。そして、当該復号結果は上位層部10001-1に転送される。上位層部10001-1は当該フレームの誤り検出を行い、正しく復号されたか否かを判断する。誤り検出は、受信した送信フレームに付与されている誤り検出符号(例えば巡回冗長検査(CRC)符号)を用いた誤り検出や、もともと誤り検出機能を備える誤り訂正符号(例えば低密度パリティ検査符号(LDPC))による誤り検出を含む。
 再送方式の設定がARQを示す場合、本実施形態に係る無線通信装置2-1の信号復調部10004b-1は、PHYヘッダからMCSの定める所定の情報ビット長と符号化率を読み出し、復号する所定の情報ビット長(符号語ブロック長)を算出する。そして、誤り訂正符号化されたPSDUに対して当該符号語ブロック毎に復号処理を施す。上位層部10001-1のMACレイヤは復号されたPSDUからMPDUもしくはA-MPDUが正しく復号できたか否かを判断する。例えば図16の例において、当該上位層部10001-1のMACレイヤは、MPDU#2における誤りを検出したため、無線通信装置1-1にMPDU#2がNACKであることを示すBlock ACKを送信する。無線通信装置1-1は、当該MPDU#2と後続する新たなMPDU#4-5を送信するため、当該符号化ブロック長でブロック#9-16を生成し、再送フレームを生成する。なお、再送フレームは、当該MPDU#2のみを含むことも可能である。図16のブロック化処理において、MACレイヤがPSDUを区切る所定のビット長はPHYレイヤがPSDUを区切る所定のビット長を複数並べたものと一致しない。そのため、前記再送フレームが含むMPDU#2と初送のMPDU#2はそれぞれ異なる符号語を構成するため、無線通信装置2-1の信号復調部10004b-1はパケット合成を実施しない。
 再送方式の設定がARQを示す場合において、無線通信装置2-1の信号復調部10004b-1が復号する手順の一例を説明する。まず受信したフレームのOFDMシンボル数、MCSに基づいてPSDUに対する第1の符号化ビット長を求める。そして第1の符号化ビット長からLDPC符号語ブロック長を求める。例えば、図9の例では、第1の符号化ビット長が648ビット以下の場合、LDPC符号語ブロック長は648ビットとなる。また、第1の符号化ビット長が648ビットよりも大きくて、1296ビット以下の場合、LDPC符号語ブロック長は1296ビットとなる。そして、第1の符号化ビット長が1296ビットより大きくてで、1944以下の場合、LDPC符号語ブロック長は1944ビットとなる。なお、第1の符号化ビット長が1944ビット以下の場合、LDPC符号語ブロック数は1である。第1の符号化ビット長が1944ビットよりも大きくて、2592ビット以下の場合、LDPC符号語ブロック長は1296ビットとなり、LDPC符号語ブロック数は2である。LDPC符号語ブロック長が2592ビットよりも大きい場合、LDPC符号語ブロック長は1944ビットとなり、LDPC符号語ブロック数は第1の符号化ビット長とLDPC符号語ブロック長である1944ビットからceil(第1の符号化ビット長/1944)として計算できる。そして、ショートニングビット長、パンクチャリングビット長を計算し、符号語ブロック長を求める。そして、第1の符号化ビットを符号語ブロックに分割する。符号語ブロックに対し、送信側で行ったショートニング処理とパンクチャリング処理の逆処理を行い、LDPC符号語ブロックを生成する。ショートニング処理の逆処理は、送信側で破棄されたショートニングビットの位置にビット0を示す絶対値の大きいLLR(Log Likelihood Ratio)を挿入する。パンクチャリング処理の逆処理は、送信側で破棄されたパンクチャリングビットの位置に値0のLLRを挿入する。LDPC符号語ブロックを誤り訂正復号し、LDPC情報ブロックを求める。
 再送方式の設定がHARQを示す場合、本実施形態に係る無線通信装置2-1の信号復調部10004b-1は、PHYヘッダからMCSの定める符号化率と符号化ブロック長の情報フィールドを読み出し、符号語ブロック長を算出する。そして、PSDUに対し、当該符号語ブロック毎に復号処理を施し、復号結果を上位層部10001-1へ転送する。当該上位層部10001-1のMACレイヤは、誤り検出を実施し、復号されたPSDUからMPDUもしくはA-MPDUが正しく復号できたか否かを判断する。図17の例では、当該上位層部10001-1のMACレイヤは、MPDU#2で誤りを検出したため、無線通信装置1-1にMPDU#2がNACKであることを示すBlock ACKを送信する。当該Block ACKフレームは、誤りを検出したMPDUのシーケンス番号に対応した当該情報ブロックのシーケンス番号を情報フィールドに含めることができる。無線通信装置1-1は当該MPDU#2と後続する新たなMPDU#4-5を送信でき、当該情報ブロック長でブロック#10-18を生成し、再送フレームを構成する。なお、再送フレームは、当該MPDU#2のみを含むこともできる。再送方式の設定がHARQを示す場合、MACレイヤがPSDUを区切る所定のビット長は、PHYレイヤがPSDUを区切る所定のビット長を複数並べたものに一致する。そのため、無線通信装置2-1の信号復調部10004b-1は、再送されたMPDU#2とバッファに格納した初送のMPDU#2をパケット合成でき、受信電力の向上、時間ダイバーシチ効果などが得られる。
 再送方式の設定がHARQを示す場合において、無線通信装置2-1の信号復調部10004b-1が復号する手順の一例を説明する。まず受信したフレームのOFDMシンボル数、MCSに基づいてMPDUに対する第2の符号化ビット長を求める。そして第2の符号化ビット長からLDPC符号語ブロック長を求める。例えば、第2の符号化ビット長が648ビット以下の場合、LDPC符号語ブロック長は648ビットとなる。次に、第2の符号化ビット長が648ビットよりも大きくて、1296ビット以下の場合、LDPC符号語ブロック長は1296ビットとなる。そして、第2の符号化ビット長が1296ビットよりも大きくて、1944以下の場合、LDPC符号語ブロック長は1944ビットとなる。なお、第2の符号化ビット長が1944ビット以下の場合、LDPC符号語ブロック数は1である。第2の符号化ビット長が1944ビットよりも大きくて、2592ビット以下の場合、LDPC符号語ブロック長は1296ビットとなり、LDPC符号語ブロック数は2である。LDPC符号語ブロック長が2592ビットよりも大きい場合、LDPC符号語ブロック長は1944ビットとなり、LDPC符号語ブロック数は第2の符号化ビット長とLDPC符号語ブロック長である1944ビットからceil(第2の符号化ビット長/1944)として計算できる。そして、ショートニングビット長、パンクチャリングビット長を計算し、符号語ブロック長を求める。そして、第2の符号化ビットを符号語ブロックに分割する。符号語ブロックに対し、送信側で行ったショートニング処理とパンクチャリング処理の逆処理を行い、LDPC符号語ブロックを生成する。ショートニング処理の逆処理は、送信側で破棄されたショートニングビットの位置にビット0を示す絶対値の大きいLLR(Log Likelihood Ratio)を挿入する。パンクチャリング処理の逆処理は、送信側で破棄されたパンクチャリングビットの位置に値0のLLRを挿入する。LDPC符号語ブロックを誤り訂正復号し、LDPC情報ブロックを求める。再送時の場合、誤り訂正復号は初送のLDPC符号語ブロックと再送のLDPC符号語ブロックをLLR合成してから行う。IRの場合は、マザー符号化率での復号が行われる。
 また、再送方式の設定がHARQを示し、MCSの符号化率の各々が第1のLDPC符号語ブロック長、第2のLDPC符号語ブロック長、及び第3のLDPC符号語ブロック長をもつ場合の復号手順の一例を説明する。第2の符号化ビット長が第1のLDPC符号語ブロック長以下の場合、LDPC符号語ブロック長は第1のLDPC符号語ブロック長となる。また、第2の符号化ビット長が第1のLDPC符号語ブロック長よりも大きくて、第2のLDPC符号語ブロック長以下の場合、LDPC符号語ブロック長は第2のLDPC符号語ブロック長となる。また、第2の符号化ビット長が第2のLDPC符号語ブロック長よりも大きくて、第3のLDPC符号語ブロック以下の場合、LDPC符号語ブロック長は第3のLDPC符号語ブロック長となる。なお、LDPC符号語ブロック長が第3のLDPC符号語ブロック長以下の場合、LDPC符号語ブロック数は1である。第2のLDPC符号化ビット長が第3のLDPC符号語ブロック長よりも大きくて、第2のLDPC符号語ブロック長の2倍以下の場合、LDPC符号語ブロック長は第2のLDPC符号語ブロック長となり、LDPC符号語ブロック数は2となる。また、LDPC符号語ブロック長が第2のLDPC符号語ブロック長の2倍よりも大きい場合、LDPC符号語ブロック長は第3のLDPC符号語長となり、LDPC符号語ブロック数は第2の符号化ビット長と第3のLDPC符号語ブロック長からceil(第2の符号化ビット長/第3のLDPC符号語ブロック長)として計算される。そして、ショートニングビット長、パンクチャリングビット長を計算し、符号語ブロック長を求める。そして、第2の符号化ビットを符号語ブロックに分割する。符号語ブロックに対し、送信側で行ったショートニング処理とパンクチャリング処理の逆処理を行い、LDPC符号語ブロックを生成する。ショートニング処理の逆処理は、送信側で破棄されたショートニングビットの位置にビット0を示す絶対値の大きいLLR(Log Likelihood Ratio)を挿入する。パンクチャリング処理の逆処理は、送信側で破棄されたパンクチャリングビットの位置に値0のLLRを挿入する。LDPC符号語ブロックを誤り訂正復号し、LDPC情報ブロックを求める。再送時の誤り訂正復号は、第1の符号語ブロックと1又は複数の第2のLDPC符号語ブロックをLLR合成してから行う。
 一方、受信した送信フレームのPHYヘッダの情報フィールドが符号化ブロック長のインデックスを格納している場合に、本実施形態に係る信号復調部10004b-1の復号処理においては、当該インデックスを前記テーブルまたは計算式に参照することで、符号語ブロック長を算出することもできる。そして、当該信号復調部10004b-1は、当該符号語ブロック長毎に各々のMPDUを復号し、復号結果を上位層部10001-1へ転送する。A-MPDUを構成する各々のMPDU長に対応した複数のブロック長をPHYヘッダに格納する場合、MACレイヤにおいてMPDUのアグリゲーション数の増大に伴い、PHYレイヤに占めるオーバーヘッドの割合が増加することで、伝送効率の低下が示唆される。前記テーブルまたは計算式を利用した復号処理では、各MPDU長は、当該インデックスから参照可能であり、オーバーヘッドの削減による伝送効率の高いパケット合成が可能である。
 なお、再送方式の設定がHARQを示す場合、所定のMPDU長で所定のMCSが適用された場合、無線通信装置2-1はPSDUに対する第1の符号化ビット長から復号のための符号語ブロックを求めても良い。
 一方、本実施形態に係る無線通信装置2-1は、無線通信装置1-1から送信フレームを受信する。本実施形態に係る無線通信装置2-1の信号復調部10004b-1は、まず、受信した送信フレームであるPPDUのPHYヘッダを復号し、当該PHYヘッダにHARQが設定されている場合に、当該PHYヘッダ内の第1のMPDUと第2のMPDUに対する変調符号化方式(MCS)、符号化方式、RUに関連した情報、RVなどのパケット合成方法に関する情報エレメントに基づいて前記フレームのパケット合成を実施し、第1の符号語ブロックと、第2の符号語ブロックと、を含むPPDUの符号語を復号する。そして、当該復号結果は、上位層部10001-1に転送される。当該上位層部10001-1は、当該PPDUの誤り検出を行い、正しく復号されたか否かを判断する。誤り検出は、受信した送信フレームに付与されている誤り検出符号(例えば巡回冗長検査(CRC)符号)を用いた誤り検出や、もともと誤り検出機能を備える誤り訂正符号(例えば低密度パリティ検査符号(LDPC))による誤り検出を含む。まず、信号復調部10004b-1におけるPHYレイヤのPPDUの復号結果をMACレイヤに転送する。MACレイヤでは、転送されてきた前記復号結果から、MACレイヤのフレームを復元する。そして、MACレイヤにおいて、誤り検出を行い、受信フレームの送信元のステーション装置が送信したMACレイヤのフレームを正しく復元できたか否かを判断する。信号復調部10004b-1は、受信した信号に対して、PHYレイヤにおいて、復号処理を行い、誤り検出を行うことができる。ここで復号処理は、受信した信号に適用されている誤り訂正符号に対する復号処理を含む。ここで、誤り検出は、受信した信号に予め付与されている誤り検出符号(例えば巡回冗長検査(CRC)符号)を用いた誤り検出や、もともと誤り検出機能を備える誤り訂正符号(例えば低密度パリティ検査符号(LDPC))による誤り検出を含む。PHYレイヤにおける復号処理は、符号化ブロック毎に適用されることが可能である。
 一方、受信した送信フレームのPHYヘッダにARQが設定されている場合に、本実施形態に係る信号復調部10004b-1の復号処理においては、前記フレームのパケット合成は実施せず、第1の符号語ブロックと、第2の符号語ブロックと、を含むPPDUの符号語を復号し、復号結果を上位層部10001-1へ転送する。
 また、本実施形態に係る無線通信装置2-1は、ARQが設定された場合、AID1を無線通信装置1-1から受信する。また、無線通信装置2-1は、HARQが設定された場合、AID1又はAID2を無線通信装置1-1から受信する。また、無線通信装置2-1は、HARQが設定された場合、AID1を受信した場合、初送と判断し、AID2を受信した場合、再送と判断することができる。また、無線通信装置2-1は、HARQが設定された場合、各MPDU又は各リソースユニットでAID1又はAID2を受信する。
 また、本実施形態に係る無線通信装置2-1は、HARQが設定された場合に、初送と再送で異なる制御情報のフォーマットを受信することができる。無線通信装置2-1は、第1の制御情報フォーマットを受信した場合、初送と判断し、第2の制御情報フォーマットを受信した場合、再送と判断することができる。また、第1の制御情報フォーマットは、AID1、符号化方式、MCS(変調モード)の一部又は全部を含む。また、第2の制御情報フォーマットは、AID2、変調方式、RVの一部又は全部を含む。無線通信装置2-1は、HARQが設定された場合、初送のときはRV0と判断することができる。また、無線通信装置2-1は、第2の制御情報フォーマットを受信した場合、第1の制御情報フォーマットにおいて符号化方式及び/又は符号化率をRVで読み替えることができる。
 本発明の一態様に係る通信装置は、国や地域からの使用許可を必要としない、いわゆるアンライセンスバンド(unlicensed band)と呼ばれる周波数バンド(周波数スペクトラム)において通信を行うことができるが、使用可能な周波数バンドはこれに限定されない。本発明の一態様に係る通信装置は、例えば、国や地域から特定サービスへの使用許可が与えられているにも関わらず、周波数間の混信を防ぐ等の目的により、実際には使われていないホワイトバンドと呼ばれる周波数バンド(例えば、テレビ放送用として割り当てられたものの、地域によっては使われていない周波数バンド)や、複数の事業者で共用することが見込まれる共用スペクトラム(共用周波数バンド)においても、その効果を発揮することが可能である。
 本発明の一態様に係る無線通信装置で動作するプログラムは、本発明の一態様に関わる上記実施形態の機能を実現するように、CPU等を制御するプログラム(コンピュータを機能させるプログラム)である。そして、これら装置で取り扱われる情報は、その処理時に一時的にRAMに蓄積され、その後、各種ROMやHDDに格納され、必要に応じてCPUによって読み出し、修正・書き込みが行なわれる。プログラムを格納する記録媒体としては、半導体媒体(例えば、ROM、不揮発性メモリカード等)、光記録媒体(例えば、DVD,MO,MD,CD,BD等)、磁気記録媒体(例えば、磁気テープ、フレキシブルディスク等)等のいずれであってもよい。また、ロードしたプログラムを実行することにより、上述した実施形態の機能が実現されるだけでなく、そのプログラムの指示に基づき、オペレーティングシステムあるいは他のアプリケーションプログラム等と共同して処理することにより、本発明の機能が実現される場合もある。
 また市場に流通させる場合には、可搬型の記録媒体にプログラムを格納して流通させたり、インターネット等のネットワークを介して接続されたサーバコンピュータに転送したりすることができる。この場合、サーバコンピュータの記憶装置も本発明の一態様に含まれる。また、上述した実施形態における通信装置の一部、または全部を典型的には集積回路であるLSIとして実現してもよい。通信装置の各機能ブロックは個別にチップ化してもよいし、一部、または全部を集積してチップ化してもよい。各機能ブロックを集積回路化した場合に、それらを制御する集積回路制御部が付加される。
 また、集積回路化の手法はLSIに限らず専用回路、または汎用プロセッサで実現しても良い。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。
 なお、本願発明は上述の実施形態に限定されるものではない。本願発明の無線通信装置は、移動局装置への適用に限定されるものではなく、屋内外に設置される据え置き型、または非可動型の電子機器、たとえば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、その他生活機器などに適用出来ることは言うまでもない。
 以上、この発明の実施形態を、図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も特許請求の範囲に含まれる。
 本発明の一態様は、通信装置、および通信方法に用いて好適である。
1-1、1-2、2-1~6、2A、2B 無線通信装置
3-1、3-2 管理範囲
10-1 無線通信装置
10001-1 上位層部
10002-1 制御部
10002a-1 CCA部
10002b-1 バックオフ部
10002c-1 送信判断部
10003-1 送信部
10003a-1 物理層フレーム生成部
10003b-1 無線送信部
10004-1 受信部
10004a-1 無線受信部
10004b-1 信号復調部
10005-1 アンテナ部
2000、2004、2100 情報ビット
2001、2005、2101 ショートニングビット
2002-1~2002-5、2006-1~2006-5 パリティブロック
2003、2007-1~2007-5 パンクチャリングビット
2102 初送のパリティビット
2103 初送のパンクチャリングビット
2104-1~2104-4 再送のパリティブロック

Claims (6)

  1.  再送方式を設定する上位層部と、
     符号語を用いてフレームを生成する物理層フレーム生成部と、
     前記フレームを送信する無線送信部と、を備え、
     前記再送方式の設定がHARQ (Hybrid Auto Repeat reQuest)を示す場合、
     前記物理層フレーム生成部は、
      情報ビットを含むLDPC (Low Density Parity Check)情報ブロックを所定の符号化率で符号化して、パリティビット系列を生成し、
      前記パリティビット系列をMCS (Modulation and Coding Scheme)が示す符号化率で与えられるブロック数に分割して複数のパリティブロックを生成し、
      前記パリティブロックの各々は、再送回数と関連付けられ、
      前記符号語は、前記情報ビット及び1つの前記パリティブロックに基づいて生成され、
      前記LDPC情報ブロックが前記情報ビット及びショートニングビットを含む場合、前記複数のパリティブロックのうち少なくとも1つのパリティブロックのビット数は前記ショートニングビット数に基づいて削減される、
     通信装置。
  2.  前記MCSが示す符号化率で与えられるブロック数は、符号化率が高くなるにつれて増加する、
     請求項1に記載の通信装置。
  3.  前記物理層フレーム生成部は、
      前記LDPC情報ブロックが前記情報ビット及びショートニングビットを含む場合、前記パリティビット系列から所定数のビットをパンクチャリングした後、前記MCSが示す符号化率で与えられるブロック数に分割して前記複数のパリティブロックを生成する、
     請求項1に記載の通信装置。
  4.  前記物理層フレーム生成部は、
      前記LDPC情報ブロックが前記情報ビット及びショートニングビットを含む場合、1つの前記パリティブロックから所定数のビットをパンクチャリングし、該パンクチャリング後のパリティブロック及び前記情報ビットに基づいて前記符号語を生成する、
     請求項1に記載の通信装置。
  5.  前記物理層フレーム生成部は、
      前記LDPC情報ブロックが前記情報ビット及びショートニングビットを含む場合、
       初送時は、前記符号語に含まれるパリティブロックのビット数が前記ショートニングビット数に基づいて減少し、
       再送時は、前記符号語に含まれる前記情報ビットのビット数が前記ショートニングビット数に基づいて減少する、
     請求項1に記載の通信装置。
  6.  再送方式を設定するステップと、
     符号語を用いてフレームを生成するステップと、
     前記フレームを送信するステップと、を備え、
     前記再送方式の設定がHARQ (Hybrid Auto Repeat reQuest)を示す場合、
      情報ビットを含むLDPC (Low Density Parity Check)情報ブロックを所定の符号化率で符号化して、パリティビット系列を生成し、
      前記パリティビット系列をMCS (Modulation and Coding Scheme)が示す符号化率で与えられるブロック数に分割して複数のパリティブロックを生成し、
      各々の前記パリティブロックは、再送回数と関連付けられ、
      前記符号語は、前記情報ビット及び1つの前記パリティブロックに基づいて生成され、
      前記LDPC情報ブロックが前記情報ビット及びショートニングビットを含む場合、前記複数のパリティブロックのうち少なくとも1つのパリティブロックのビット数は前記ショートニングビット数に基づいて減少する、
     通信方法。
PCT/JP2022/024645 2021-06-21 2022-06-21 通信装置および通信方法 WO2022270489A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-102165 2021-06-21
JP2021102165 2021-06-21

Publications (1)

Publication Number Publication Date
WO2022270489A1 true WO2022270489A1 (ja) 2022-12-29

Family

ID=84545744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024645 WO2022270489A1 (ja) 2021-06-21 2022-06-21 通信装置および通信方法

Country Status (1)

Country Link
WO (1) WO2022270489A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115882873A (zh) * 2023-02-23 2023-03-31 成都星联芯通科技有限公司 低密度奇偶校验码译码方法、装置、通信设备及存储介质

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003229813A (ja) * 2001-11-02 2003-08-15 Samsung Electronics Co Ltd 高速パケットデータの効率的再伝送のための送/受信装置及び方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003229813A (ja) * 2001-11-02 2003-08-15 Samsung Electronics Co Ltd 高速パケットデータの効率的再伝送のための送/受信装置及び方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHIMI SHILO (HUAWEI): "An HARQ Transmission Scheme for 11be", IEEE DRAFT; 11-19-1578-01-00BE-AN-HARQ-TRANSMISSION-SCHEME-FOR-11BE, IEEE-SA MENTOR, PISCATAWAY, NJ USA, vol. 802.11 EHT; 802.11be, no. 1, 11 November 2019 (2019-11-11), Piscataway, NJ USA , pages 1 - 15, XP068164411 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115882873A (zh) * 2023-02-23 2023-03-31 成都星联芯通科技有限公司 低密度奇偶校验码译码方法、装置、通信设备及存储介质

Similar Documents

Publication Publication Date Title
US9832057B2 (en) Control frame format for WLAN
US11894929B2 (en) Hybrid automatic repeat request (HARQ) in a wireless local area network (WLAN)
US11533133B2 (en) Method for transmitting or receiving frame in wireless LAN system and apparatus therefor
US11349612B2 (en) Hybrid automatic repeat request techniques in a wireless local area network
WO2021166924A1 (ja) ステーション装置、通信方法
US20240031853A1 (en) Station apparatus and access point apparatus
US11510095B2 (en) Method for transmitting or receiving frame in wireless LAN system and apparatus therefor
WO2022270489A1 (ja) 通信装置および通信方法
US20210051586A1 (en) Access point apparatus, station apparatus, and communication method
WO2022254897A1 (ja) 通信装置および通信方法
JP2023101035A (ja) 通信装置、通信方法
WO2023276907A1 (ja) 通信装置
WO2023033184A1 (ja) 通信装置および通信方法
WO2021166936A1 (ja) ステーション装置、通信方法
WO2021166944A1 (ja) ステーション装置、通信方法
WO2021166922A1 (ja) ステーション装置、通信方法
JP2024012732A (ja) 通信装置および通信方法
US20230199823A1 (en) Base station apparatus, terminal apparatus, and communication method
US20230199825A1 (en) Terminal apparatus, base station apparatus, and communication method
JP2023113977A (ja) 通信装置、通信方法
JP2023114921A (ja) 通信装置および通信方法
JP2023114923A (ja) 通信装置および通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22828406

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE