WO2022270381A1 - Power device for vehicle and bearing for wheel with power generator - Google Patents

Power device for vehicle and bearing for wheel with power generator Download PDF

Info

Publication number
WO2022270381A1
WO2022270381A1 PCT/JP2022/023985 JP2022023985W WO2022270381A1 WO 2022270381 A1 WO2022270381 A1 WO 2022270381A1 JP 2022023985 W JP2022023985 W JP 2022023985W WO 2022270381 A1 WO2022270381 A1 WO 2022270381A1
Authority
WO
WIPO (PCT)
Prior art keywords
inner ring
vehicle
ring
cooling
wheel
Prior art date
Application number
PCT/JP2022/023985
Other languages
French (fr)
Japanese (ja)
Inventor
雄司 矢田
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2022270381A1 publication Critical patent/WO2022270381A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B35/00Axle units; Parts thereof ; Arrangements for lubrication of axles
    • B60B35/12Torque-transmitting axles
    • B60B35/14Torque-transmitting axles composite or split, e.g. half- axles; Couplings between axle parts or sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C37/00Cooling of bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings

Definitions

  • the present invention relates to a vehicle power unit and a wheel bearing with a generator installed in a vehicle such as an automobile.
  • a vehicle power unit that incorporates an electric motor inside the wheel is a device that integrates the wheel bearings that support the wheels and the electric motor that drives and regenerates the wheels. It has many advantages such as stabilization of posture by control, and demand is expected in the future along with the electrification of automobiles.
  • the wheel bearing device disclosed in Patent Document 1 is small in size and can be placed on the inner diameter side of the outer circumference of the brake rotor. Easy.
  • the wheel bearing and the electric motor are closely housed in a narrow space, and moreover, compared to a normal wheel bearing that does not have an electric motor, it has many heat sources. .
  • the heat sources include the heat generated by the winding coils of the electric motor due to energization, the heat generated by the stator core accompanying the rotation of the motor, and the heat generated by the brake rotor. heat is transferred.
  • the bearing portion is filled with bearing grease for lubrication, and since this bearing grease deteriorates when the temperature exceeds the allowable temperature, there is concern that the service life of the wheel bearing may be shortened.
  • a vehicle power unit includes a cooling device for cooling wheel bearings and an electric motor (Patent Document 2).
  • this power plant for a vehicle is provided with an outer ring 50, which is a fixed ring of a wheel bearing, an electric motor 51, and a flow path 52 for circulating a coolant in peripheral members.
  • the flow path 52 is complicated, the cooling device becomes large-scaled, and the cost increases.
  • the present invention solves this problem.
  • An object of the present invention is to provide a vehicular power unit and a generator-equipped wheel bearing that can suppress the temperature rise of the bearing portion and simplify the structure.
  • a power unit for a vehicle has an inner ring that is a fixed ring and an outer ring that is a rotating ring that is rotatably supported by the inner ring via rolling elements.
  • a vehicular power unit comprising: an outer ring rotating type wheel bearing provided at an outboard side end of the outer ring; and an electric motor having a stator attached to the inner ring and a rotor attached to the outer ring,
  • a bracket interposed between the vehicle underbody frame part and the inner ring is provided, and a cooling flow path provided on a contact surface between the bracket and the underbody frame part facing each other and the inside of the inner ring are cooled. Either one or both of the inner ring cooling means are provided.
  • the bearing portion of the present invention is synonymous with the portion near the rolling elements in the inner and outer rings and the rolling elements. Therefore, even if the vehicle power unit includes an electric motor that is a heat source, the grease filled in the bearing portion does not deteriorate, and the service life of the wheel bearing can be prevented from being shortened.
  • the cooling passage is provided on the contact surface between the bracket and the undercarriage frame component, the simple structure makes it possible to reduce the cost of the vehicle power unit as compared with the above-described conventional vehicle power unit equipped with the cooling device, and reduce the cost of the vehicle power unit as a whole.
  • the size can be kept small.
  • the inner ring cooling means for cooling the inside of the inner ring When the inner ring cooling means for cooling the inside of the inner ring is provided, the inner ring cooling means can be easily installed because the inner ring is a fixed ring. In a general inner-ring rotating type wheel bearing, since the inner ring is a rotating ring, it is difficult to introduce a coolant or the like from the outside into the inner ring, which is a rotating ring. According to the present invention, even if heat is transferred to the inner ring from an electric motor or the like, the inner ring cooling means for cooling the inside of the inner ring, which is a fixed ring, suppresses the temperature rise of the inner ring to a certain level, and the bearing portion is filled with the heat. Degradation of grease can be prevented.
  • the service life of the wheel bearing can be extended.
  • the cooling portion of the inner ring cooling means can be completed only by the inner ring, it is possible to realize a compact, low-cost cooling means whose structure is simpler than that of the conventional cooling device.
  • the wheel bearing and the electric motor have a smaller diameter than the outer peripheral portion of the brake rotor against which the brake caliper is pressed, and the electric motor is connected to the wheel mounting flange and the outboard side of the suspension frame component. may be located in the axial range between According to this configuration, the wheel bearing and the electric motor are smaller in diameter than the outer peripheral portion of the brake rotor, and the electric motor is located in the axial range between the wheel mounting flange and the outboard side surface of the suspension frame component. Therefore, most of the electric motor and wheel bearings can be installed in the space surrounded by the brake rotor and the suspension frame parts, and the electric motor and wheel bearings can be compactly housed in the wheel.
  • the inner ring cooling means has a refrigerant passage for flowing a refrigerant inside the inner ring, and the refrigerant passage and the cooling passage are communicated with each other. good too.
  • the cooling performance of the bearing portion can be further improved, although the cooling structure is somewhat complicated, as compared with the vehicle power unit provided with either one of the cooling passage and the inner ring cooling means.
  • the inner ring cooling means may be a heat pipe provided on the inner ring.
  • the heat pipe is a component that seals a working fluid in a pipe, circulates the working fluid by convection caused by a temperature difference between both ends in the axial direction, and dissipates heat.
  • the heat transferred to the inner ring can be released to the outside of the vehicle power plant by the heat pipe alone, so the cooling structure is simplified without the need for a coolant from the outside and a device for circulating this coolant. be able to.
  • the inner ring cooling means may have a refrigerant passage for flowing a refrigerant inside the inner ring, and a pump for circulating the refrigerant along the refrigerant passage.
  • the bearing portion of the wheel bearing can be reliably cooled by circulating the coolant along the coolant path with the pump.
  • the inner ring cooling means may have a heat exchanger that releases heat from the inner ring to the outside in the middle of the refrigerant circulation flow path. In this case, by radiating heat from the heat exchanger to the outside, the temperature inside the inner ring as well as the bearing can be more effectively lowered.
  • the electric motor may be of direct drive type.
  • the wheels can be directly rotationally driven without intervening means for accelerating or decelerating the rotation of the electric motor. Therefore, the number of parts of the vehicle power plant can be reduced, and the structure can be simplified. As a result, the overall size of the power plant for a vehicle can be reduced.
  • a generator-equipped wheel bearing of the present invention has an inner ring as a fixed ring and an outer ring as a rotating ring rotatably supported by the inner ring via rolling elements.
  • a wheel bearing with a generator comprising: an outer ring rotating type wheel bearing having a flange at an outboard end of the outer ring; and a generator having a stator attached to the inner ring and a rotor attached to the outer ring.
  • a cooling channel provided on a contact surface between the bracket and the undercarriage frame part facing each other; and the inner race. Either one or both of the inner ring cooling means for cooling the inside of the
  • the cooling passage is provided on the contact surface between the bracket and the underbody frame component, the heat generated in the bearing portion of the wheel bearing is efficiently dissipated to the underbody frame component having a large heat capacity. . Therefore, the cooling performance of the bearing is improved. Therefore, even if the generator-equipped wheel bearing includes a generator that is a heat source, the grease filled in the bearing portion does not deteriorate, and the service life of the wheel bearing can be prevented from being shortened. Furthermore, due to the simple structure of providing a cooling channel on the contact surface between the bracket and the underbody frame part, the cost can be reduced compared to the vehicle power unit provided with the conventional cooling device, and the bearing for the wheel with a generator. The overall size can be kept small.
  • the inner ring cooling means for cooling the inside of the inner ring can be easily installed because the inner ring is a fixed ring.
  • the inner ring is a rotating ring, it is difficult to introduce a coolant or the like from the outside into the inner ring, which is a rotating ring.
  • the inner ring cooling means for cooling the inside of the inner ring which is a fixed ring, suppresses the temperature rise of the inner ring to a certain level, and the bearing portion is filled. It is possible to prevent the deterioration of the grease.
  • the service life of the wheel bearing can be extended.
  • the cooling portion of the inner ring cooling means can be completed only by the inner ring, it is possible to realize a compact, low-cost cooling means whose structure is simpler than that of the conventional cooling device.
  • FIG. 1 is a cross-sectional view of a vehicle power plant according to a first embodiment of the present invention
  • FIG. 2 is a sectional view taken along line III-III of FIG. 1
  • FIG. 6 is a cross-sectional view of a vehicle power plant according to a second embodiment of the present invention
  • FIG. 6 is a cross-sectional view of a vehicle power plant according to a third embodiment of the present invention
  • FIG. 4 is a cross-sectional view of a vehicle power plant according to a fourth embodiment of the present invention
  • FIG. 11 is a cross-sectional view of a vehicle power plant according to a fifth embodiment of the present invention
  • FIG. 7B is a sectional view taken along the line VIIB-VIIB of FIG. 7A
  • FIG. 11 is a cross-sectional view of a vehicle power plant according to a sixth embodiment of the present invention
  • FIG. 11 is a side view of the vehicle power plant according to the sixth embodiment
  • FIG. 11 is a side view of a vehicle power plant according to a modification of the sixth embodiment
  • FIG. 11 is a cross-sectional view of a vehicle power plant according to a seventh embodiment of the present invention.
  • FIG. 11 is a side view of the vehicle power plant according to the seventh embodiment;
  • 11 is a cross-sectional view taken along line XII-XII of FIG. 10;
  • FIG. 1 is a cross-sectional view of a conventional power plant for a vehicle;
  • FIG. 1 is a sectional view taken along line II of FIG.
  • the vehicle power unit 1 includes a wheel bearing 2, a bracket 24, and a running motor 3 with a power generation function, which is an electric motor that also serves as a generator.
  • This vehicle power unit 1 has an inner rotor type running motor 3 with a power generating function.
  • the generator-equipped wheel bearing is provided with the generator and the wheel bearing 2 .
  • the wheel bearing 2 holds an inner ring 5 which is a fixed ring, an outer ring 4 which is a rotating ring rotatably supported by the inner ring 5 via double rows of rolling elements 6, and the rolling elements 6 of each row. It is an outer ring rotating type having a retainer (not shown) that Bearing portions Bg in the vicinity of the rolling elements of the inner and outer rings 5 and 4 and the rolling elements 6 are filled with grease.
  • the outer ring 4 has an outer ring main body 4a on which a double-row raceway surface is formed, and a wheel mounting flange 7 provided at the end of the outer ring 4 on the outboard side.
  • the wheel mounting flange 7 extends radially outward from the outer peripheral surface of the outer ring main body 4a on the outboard side.
  • a plurality of hub bolts 13 are inserted through the wheel mounting flange 7 .
  • the brake rotor 12 and the wheel of the wheel W are attached to the wheel attachment flange 7 by the hub bolts 13 in a state in which they overlap in the axial direction.
  • a tire (not shown) is attached to the outer circumference of the wheel.
  • a threaded hole may be formed in the flange surface of the outer ring 4 instead of the hub bolt 13, and the outer ring 4, the brake rotor 12, and the wheel and tire may be fixed from the outside with wheel bolts (not shown).
  • the outboard side the side that is closer to the outside in the vehicle width direction of the vehicle
  • the inboard side the side that is closer to the center of the vehicle in the vehicle width direction
  • the board side the side that is closer to the center of the vehicle in the vehicle width direction.
  • the inner ring 5 has an inner ring main body 5a and a partial inner ring 5b fitted to the outer peripheral surface of the inner ring main body 5a on the inboard side.
  • An inner ring main body 5a which is an inner ring shaft, has an inboard side protruding portion 5i that protrudes toward the inboard side.
  • the inboard-side projecting portion 5i is provided coaxially with the inner ring main body 5a and integrally with the inner ring main body 5a, and protrudes toward the inboard side from the position where the partial inner ring 5b is disposed.
  • the above-mentioned "provided integrally” means that the inboard side projecting portion 5i and the inner ring main body 5a are not formed by combining a plurality of elements, but are made of a single material by, for example, forging, machining, or the like. or molded as a whole.
  • the inboard-side projecting portion 5i includes a fitting portion 9 and a male screw portion 11 in order from the outboard side toward the inboard side.
  • the fitting portion 9 is a fitting portion for a bracket 24, which will be described later, and is connected to the outer peripheral surface of the inner ring main body 5a on the inboard side via a step.
  • the fitting portion 9 includes a first fitting portion 9a formed with a slightly smaller diameter than the outer peripheral surface on the inboard side, and a second fitting portion 9a located on the out-inboard side of the first fitting portion 9a. and a portion 9b.
  • the second fitting portion 9b is formed with a spline Sm that is fitted to a portion of the bracket base portion 24a of the bracket 24 (the fitted portion 21).
  • the spline Sm is composed of a plurality of spline teeth formed at regular intervals in the circumferential direction, and is preferably an involute spline from the viewpoint of suppressing vibration.
  • the outer peripheral surface of the second fitting portion 9b, ie, the outer diameter surface of the spline Sm, is smaller in diameter than the first fitting portion 9a and larger in diameter than the male screw portion 11. As shown in FIG.
  • the bracket 24 includes a bracket base portion 24a fixed to the knuckle 8, which is a vehicle underbody frame component, and a bracket cylindrical portion 24b extending from the outer diameter side end of a large diameter portion (described later) of the bracket base portion 24a toward the outboard side. and
  • the bracket base portion 24a and the bracket cylindrical portion 24b are coaxially and integrally formed.
  • the bracket base portion 24a and the bracket cylindrical portion 24b may be configured from separate members and fixed.
  • the bracket base portion 24a is interposed between the knuckle 8 and the inner ring 5, and the inner ring 5 is detachably fixed thereto.
  • the bracket base portion 24a has a large-diameter portion 24aa on the outboard side and a small-diameter portion 24ab connected to the inboard side surface of the large-diameter portion 24aa and having a smaller diameter than the large-diameter portion 24aa.
  • the large-diameter portion 24aa is formed with a fitted portion 20 to be fitted with the first fitting portion 9a, and the small-diameter portion 24ab is formed with a spline groove that is fitted with the spline Sm, which is an involute spline.
  • a fitting portion 21 is formed.
  • the fitting between the first fitting portion 9a and the fitted portion 20 may be a clearance fit, but may be a press fit to further improve the accuracy of the axial center.
  • the knuckle 8 is formed with a through hole 8b that allows the small diameter portion 24ab to be fitted therein.
  • a plurality of screw holes are formed in the large diameter portion 24aa in the circumferential direction, and the bracket base portion 24a is attached to the knuckle 8 with a plurality of bolts 22 screwed into these screw holes.
  • the bracket base 24a is engaged with the knuckle 8 in a state in which the outer peripheral surface of the small diameter portion 24ab is fitted in the through hole 8b of the knuckle 8 and in a state in which the inboard side surface of the large diameter portion 24aa is in contact with the outboard side surface 8a of the knuckle 8. Fixed to 8.
  • the inboard side surface of the partial inner ring 5b is arranged to contact the outboard side surface of the large diameter portion 24aa.
  • the bracket base portion 24a is formed with an insertion hole through which the inboard-side projecting portion 5i is inserted.
  • the insertion hole is formed by the fitted portions 20 and 21 .
  • the first fitting portion 9a of the inboard-side projecting portion 5i and the fitted portion 20 of the large-diameter portion 24aa are fitted together, and the second fitting portion 9b of the inboard-side projecting portion 5i and the small-diameter portion 24ab are fitted together. is spline-fitted.
  • the wheel bearing 2 is fixed to the bracket 24 with a torque value that generates a predetermined axial force in the bearing portion Bg.
  • the second fitting portion 9b of the inner ring main body 5a and the fitted portion 21 of the bracket 24 are spline-fitted to each other, so that rotation of the inner ring 5 and vibration in the rotational direction can be suppressed.
  • the brake 17 is a friction brake comprising a disc-shaped brake rotor 12 and a brake caliper 16 .
  • the brake rotor 12 has a flat portion 12a and an outer peripheral portion 12b.
  • the flat plate-like portion 12 a is an annular flat plate-like member that overlaps the wheel mounting flange 7 .
  • the outer peripheral portion 12b includes a cylindrical portion 12ba that extends cylindrically toward the inboard side from the outer peripheral edge portion of the flat plate portion 12a, and a flat plate portion 12bb that extends in a flat plate shape from the inboard side end of the cylindrical portion 12ba toward the outer diameter side.
  • the flat plate portion 12bb is a portion against which the brake caliper 16 is pressed.
  • the brake caliper 16 may be hydraulic or mechanical, or may be of the electric motor type.
  • the power-generating running motor 3 of this example is equipped with a power-generating function for assisting running, which generates power with the rotation of the wheels W, and can drive the wheels W to rotate by being supplied with power. It is a running motor.
  • the running motor 3 with power generation function is an inner rotor type having a stator 18 attached to the inner circumference of the bracket cylindrical portion 24b and a rotor 19 attached to the outer circumference of the outer ring main body 4a on the inner circumference of the stator 18.
  • the running motor 3 with power generating function is of a direct drive type in which the rotor 19 is directly attached to the outer ring 4 .
  • the traveling motor 3 with power generating function and the wheel bearing 2 have a smaller diameter than the outer peripheral portion 12 b of the brake rotor 12 , and the traveling motor 3 with power generating function is attached to the wheel mounting flange 7 and the outboard side of the knuckle 8 . 8a in the axial direction range L1.
  • the running motor 3 with power generation function is, for example, a surface magnet type permanent magnet motor, that is, an SPM (Surface Permanent Magnet) synchronous motor (or SPMSM (Surface Permanent Magnet Synchronous Motor)).
  • the running motor 3 with power generation function may be an IPM (Interior Permanent Magnet) synchronous motor (or IPMSM (Interior Permanent Magnet Synchronous Motor)).
  • IPM Interior Permanent Magnet
  • IPMSM Interior Permanent Magnet Synchronous Motor
  • various forms such as a switched reluctance motor (abbreviated as SR motor), an induction motor (abbreviated as IM), etc. can be used as the running motor 3 with power generation function.
  • SR motor switched reluctance motor
  • IM induction motor
  • each type of distributed winding and concentrated winding can be adopted as the winding type of the stator 18 .
  • the stator 18 has an annular stator core 18a and a stator coil 18b wound around teeth of the stator core 18a via an insulating material (not shown). A resin bobbin or the like is applied as the insulating material.
  • the stator core 18a is made of, for example, an electromagnetic steel sheet, a dust core, an amorphous alloy, or the like.
  • the stator core 18 a is fitted to the inner peripheral surface of the bracket cylindrical portion 24 b of the bracket 24 .
  • the stator core 18a is fixed to the inner peripheral surface of the bracket cylindrical portion 24b by press-fitting, adhesion, restraint by another member, or the like.
  • a plurality of recesses or protrusions are formed on the outer peripheral surface of the stator core 18a at regular intervals in the circumferential direction, and the inner peripheral surface of the bracket cylindrical portion 24b is fitted into the plurality of recesses or protrusions.
  • a plurality of nesting protrusions or depressions may be formed. Thereby, the stator core 18 can be suppressed from moving in the rotational direction.
  • the rotor 19 is an inner rotor type provided so as to face the stator core 18a radially inward.
  • the rotor 19 has a cylindrical rotor core 19a fixed to the outer circumference of the outer ring main body 4a, and permanent magnets 19b fixed to the outer circumference of the rotor core 19a.
  • the rotor core 19a is made of, for example, a soft magnetic material, and is concentrically fixed to the outer ring main body 4a by, for example, press fitting, welding, or adhesion.
  • a plurality of recessed portions are formed on the outer peripheral surface of the rotor core 19a at regular intervals in the circumferential direction, and the permanent magnets 19b are fitted into the respective recessed portions and fixed by adhesion or the like.
  • This vehicle power plant 1 includes inner ring cooling means 26 for cooling the inside of the inner ring 5 .
  • the inner ring cooling means 26 has a refrigerant passage 27 provided inside the inner ring main body 5a for flowing the refrigerant, a pump P as a circulation force generating means, and a circulation passage 28 for circulating the refrigerant by the pump P.
  • a refrigerant passage 27 is provided inside the inner ring main body 5a for flowing a refrigerant such as water, oil, air, or the like.
  • the coolant passage 27 has first and second passages 27a and 27b, which are formed parallel to the axis of the inner ring main body 5a.
  • the first and second flow passages 27a and 27b are formed of through holes penetrating from the outboard side end of the inner ring main body 5a to the inboard side end thereof, respectively, and are provided at axially symmetrical positions 180 degrees out of phase with respect to the axial center. It is
  • a coolant inlet is formed at the inboard side end of the first flow path 27a, and a coolant outlet is formed at the inboard side end of the second flow path 27b.
  • Connected to the outboard end of the first flow path 27a is the outboard end of the second flow path 27b via a coupling 30, a U-shaped hose or tube 31, and a coupling 32, in turn.
  • the pump P is installed, for example, on the vehicle body.
  • the discharge port Pa of the pump P and the inboard side end of the first flow path 27a are connected by a discharge path 33, and the suction port Pb of the pump P and the inboard side end of the second flow path 27b are connected by a suction path 34.
  • the discharge passage 33 , the suction passage 34 , the joints 30 and 32 and the hose or pipe 31 constitute the circulation passage 28 .
  • the refrigerant is circulated along the first and second flow paths 27a and 27b and the circulation flow path 28.
  • FIG. Thereby, the bearing portion Bg of the wheel bearing 2 can be reliably cooled.
  • the wheel speed sensor Sa is a sensor that detects the rotational speed of the wheel W.
  • the magnetic encoder ring ER is installed at the inboard side end of the outer ring 4, and the magnetic encoder ring ER is provided with a predetermined gap therebetween. and a sensor portion (not shown) installed on the outer peripheral surface of the inner ring 5b.
  • the vehicle power plant 1 may be provided with a rotation detection sensor that controls the rotation of the running motor 3 with a power generation function.
  • the rotation detection sensor detects the rotation angle or rotation speed of the outer ring 4 with respect to the inner ring 5 .
  • This rotational speed is synonymous with the number of revolutions per unit time.
  • a resolver for example, is applied as this rotation detection sensor, but it is not limited to the resolver, and for example, an encoder, a pulser ring, a hall sensor, or the like can be adopted regardless of the type.
  • the wheel speed sensor Sa may be provided independently of the rotation detection sensor, or the rotation detection sensor may also function as the wheel speed sensor.
  • the wheel bearings 2 and the power-generating running motor 3 are smaller in diameter than the outer peripheral portion 12b of the brake rotor 12, and the power-generating running motor 3 is mounted on the wheel mounting flange. 7 and the outboard side 8a of the knuckle 8 in the axial range L1. Therefore, most of the power-generating running motor 3 and the wheel bearing 2 can be installed in the space surrounded by the brake rotor 12 and the knuckle 8, and the power-generating running motor 3 and the wheel can be installed in the wheel W.
  • the bearing 2 can be stored compactly.
  • the inner ring cooling means 26 for cooling the inside of the inner ring 5 can be easily installed because the inner ring 5 is a fixed ring.
  • the inner ring cooling means 26 for cooling the inside of the inner ring 5, which is a fixed ring transfers heat from the running motor 3 with power generation function to the inner ring 5. It is possible to suppress the temperature rise of the inner ring 5 to a certain level and prevent deterioration of the grease filled in the bearing portion Bg.
  • the life of the wheel bearing 2 can be extended. Further, since the cooling portion of the inner ring cooling means 26 can be completed only by the inner ring 5, the structure can be simplified, and a compact and low-cost cooling means can be realized as compared with the conventional cooling device.
  • the running motor 3 with power generation function is of the direct drive type
  • the wheels W can be directly rotationally driven without intervening means for accelerating or decelerating the rotation of the running motor 3 with power generation function. Therefore, the number of parts of the vehicle power plant 1 can be reduced, and the structure can be simplified. As a result, the overall size of the power plant for a vehicle can be reduced.
  • the inner ring cooling means 26 may be a cooling pipe 35 for cooling that is inserted into a through-hole penetrating the inner ring body 5a instead of the refrigerant passage, joint, hose or pipe described above.
  • the cooling pipe 35 for example, a stainless steel pipe or the like that is bent at the middle in the longitudinal direction can be applied. The outboard side ends of the first and second flow paths 27a and 27b are communicated with each other by the bent portion 35a. Other configurations are the same as those of the first embodiment.
  • the cooling pipe 35 can be prevented from rusting. Also, since joints and hoses or pipes can be reduced, the number of parts can be reduced and the cooling structure can be simplified.
  • the cooling pipe 35 is not limited to a stainless steel pipe, and may be made of iron or resin.
  • the inner ring cooling means 26 may be a heat pipe Hp provided in the inner ring main body 5a. Most of the heat pipe Hp is inserted inside the inner ring main body 5a along the axial direction of the inner ring main body 5a. The external member 36 at the inboard side end of the heat pipe Hp protrudes further toward the vehicle body than the inboard side surface of the knuckle 8 . In this case, since the heat transferred to the inner ring 5 can be released to the outer member 36 by the heat pipe alone, the cooling structure can be simplified without requiring a coolant from the outside and a device for circulating the coolant. can.
  • the inner ring cooling means 26 may have a heat exchanger 37 in the middle of the refrigerant circulation flow path 28 for releasing heat from the inner ring 5 to the outside.
  • a heat exchanger 37 is interposed in the middle of a suction path 34 that connects the suction port Pb of the pump P and the inboard side end of the second flow path 27b in the circulation flow path 28 .
  • the bent portion 35a communicating the outboard side ends of the first and second flow paths 27a and 27b is projected from the outboard side end of the inner ring main body 5a as in the first and second embodiments.
  • the inner ring cooling means 26 may include a third flow path 38 for cooling the outboard side end surface of the inner ring main body 5a.
  • the third flow path 38 is a communication path that communicates the outboard side end of the first flow path 27a and the outboard side end of the second flow path 27b, and is the outboard side end surface of the inner ring main body 5a. The whole can be cooled evenly.
  • the shape of the third flow path 38 is not limited to the shape shown in FIG. 7B, and various shapes are possible. According to this embodiment, not only the inside of the inner ring main body 5a but also the inner ring end surface can be cooled, so the cooling performance of the bearing portion Bg is further improved.
  • a cooling channel 39 may be provided on the contact surface between the inboard side surface of the bracket base 24a and the outboard side surface 8a of the knuckle 8, which face each other.
  • the cooling channel 39 in this example has a substantially annular shape and is arranged radially outward from the position where the bolt 22 is arranged.
  • One end 39 a and the other end 39 b of the cooling channel 39 are connected to a pump P, and the pump P is driven to circulate the coolant along the cooling channel 39 .
  • the refrigerant passage 27 of the inner ring cooling means 26 and the cooling passage 39 may communicate in series. Also in this case, the cooling performance of the bearing portion can be further improved.
  • the power-generating running motor 3 includes a stator 18 fitted to the outer peripheral surface of the bracket cylindrical portion 24b, and a rotor case positioned on the outer periphery of the stator 18 and attached to the wheel mounting flange 7. It may be of the outer rotor type with the rotor 19 attached via 40 .
  • the electric motor may be a main drive source for running, not for assisting running.
  • the generator-equipped wheel bearing 1 ⁇ /b>A may include a generator that does not function as an electric motor and the wheel bearing 2 .
  • a vehicle system in which the generator-equipped wheel bearing 1A is mounted has a function of generating power, but is configured not to rotate by power supply.
  • This generator-equipped wheel bearing 1A has the same configuration as the vehicle power unit 1 of each embodiment except for the electric motor.
  • a second-generation structure of an outer ring rotating type having an outer ring that is a rotating ring having a hub flange and an inner ring that is a fixed ring may be used.
  • the underbody frame component may be a suspension knuckle that supports the steered wheels, or may be a wheel bearing installation portion of the suspension that supports the non-steered wheels.
  • SYMBOLS 1 Vehicle power unit 1A... Wheel bearing with generator 2... Wheel bearing 3... Traveling motor with power generation function (electric motor, generator) 4... Outer ring 5... Inner ring 6... Rolling element 7... Wheel mounting flange 8... Knuckle (undercarriage frame part) DESCRIPTION OF SYMBOLS 12... Brake rotor 12b... Outer peripheral part 16... Brake caliper 18... Stator 19... Rotor 24... Bracket 26... Inner ring cooling means 27... Refrigerant path 37... Heat exchanger 39... Cooling path Hp... Heat pipe P... Pump W... Wheel

Abstract

A power device for vehicle (1) comprises: bearing for wheel (2) of an outer ring rotating type; and a motor for traveling (3) with a power generation function including a stator (18) mounted on an inner ring (5) and a rotor (19) mounted on an outer ring (4). The bearing for wheel (2) and the motor for traveling (3) with power generation function are smaller in diameter than the outer periphery of a brake rotor and the motor for traveling (3) with power generation function is positioned in an axial range between a wheel mounting flange (7) and an outboard side surface (8a) of a knuckle (8). A bracket (24) interposed between the knuckle (8) and the inner ring (5) is provided. Both a cooling channel (39) and an inner ring cooling means (26) are provided, the cooling channel (39) being provided on the contact surface between the bracket (24) and the knuckle (8) opposed to each other, and the inner ring cooling means (26) cooling the inside of the inner ring (5).

Description

車両用動力装置および発電機付き車輪用軸受Bearings for wheels with vehicle power units and generators 関連出願Related application
 この出願は、2021年6月22日出願の特願2021-103272の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。 This application claims the priority of Japanese Patent Application No. 2021-103272 filed on June 22, 2021, and is incorporated herein by reference in its entirety.
 この発明は、自動車等の車両に設置される車両用動力装置および発電機付き車輪用軸受に関する。 The present invention relates to a vehicle power unit and a wheel bearing with a generator installed in a vehicle such as an automobile.
 車輪内部に電動機を組み込んだ車両用動力装置は、車輪を支持する車輪用軸受と、車輪の駆動および回生を行う電動機が一体構造の装置で、車両の駆動アシスト、減速時の回生、各輪トルク制御による姿勢の安定化など多くの利点があり、自動車の電動化と相俟って今後需要が見込まれている。
 特許文献1に示す車輪用軸受装置は、装置が小型で、ブレーキロータの外周部よりも内径側に配置できるため、足回りフレーム部品の大きな設計変更もなく、現行の車輪用軸受からの置き換えが容易である。
A vehicle power unit that incorporates an electric motor inside the wheel is a device that integrates the wheel bearings that support the wheels and the electric motor that drives and regenerates the wheels. It has many advantages such as stabilization of posture by control, and demand is expected in the future along with the electrification of automobiles.
The wheel bearing device disclosed in Patent Document 1 is small in size and can be placed on the inner diameter side of the outer circumference of the brake rotor. Easy.
特開2018-52482号公報JP 2018-52482 A 特開2019-119360号公報JP 2019-119360 A
 しかしながら、特許文献1の車輪用軸受装置では、車輪用軸受および電動機が狭い空間内に密接して収められ、さらに、電動機を搭載しない通常の車輪用軸受と比較して、多くの発熱源を有する。発熱源としては、軸受部での発熱以外に、通電による電動機の巻き線コイルでの発熱、電動機の回転に伴うステータコアでの発熱、ブレーキロータでの発熱があり、これら発生した熱が軸受部に伝熱される。軸受部には、潤滑用の軸受グリースが充填されており、この軸受グリースは許容温度を上回ると劣化するため、車輪用軸受の寿命が縮まることが懸念される。 However, in the wheel bearing device of Patent Document 1, the wheel bearing and the electric motor are closely housed in a narrow space, and moreover, compared to a normal wheel bearing that does not have an electric motor, it has many heat sources. . In addition to the heat generated by the bearings, the heat sources include the heat generated by the winding coils of the electric motor due to energization, the heat generated by the stator core accompanying the rotation of the motor, and the heat generated by the brake rotor. heat is transferred. The bearing portion is filled with bearing grease for lubrication, and since this bearing grease deteriorates when the temperature exceeds the allowable temperature, there is concern that the service life of the wheel bearing may be shortened.
 この課題を解決するため、車輪用軸受および電動機を冷却する冷却装置を備えた車両用動力装置が提案されている(特許文献2)。
 この車両用動力装置は、図13に示すように、車輪用軸受の固定輪である外輪50、電動機51および周辺部材に冷媒を循環させる流路52を設け、電動機51での発熱および軸受部の温度上昇を抑える工夫をしている。しかしながら、流路52が複雑で、大掛かりな冷却装置となり、費用も増大する課題がある。本発明はこの課題を解決するものである。
In order to solve this problem, a vehicle power unit has been proposed that includes a cooling device for cooling wheel bearings and an electric motor (Patent Document 2).
As shown in FIG. 13, this power plant for a vehicle is provided with an outer ring 50, which is a fixed ring of a wheel bearing, an electric motor 51, and a flow path 52 for circulating a coolant in peripheral members. I'm trying to keep the temperature down. However, there is a problem that the flow path 52 is complicated, the cooling device becomes large-scaled, and the cost increases. The present invention solves this problem.
 本発明の目的は、軸受部の温度上昇を抑制し、構造を簡単化することができる車両用動力装置および発電機付き車輪用軸受を提供することである。 An object of the present invention is to provide a vehicular power unit and a generator-equipped wheel bearing that can suppress the temperature rise of the bearing portion and simplify the structure.
 本発明の車両用動力装置は、固定輪である内輪およびこの内輪に転動体を介して回転自在に支持された回転輪である外輪を有し、車両の車輪およびブレーキロータを取付ける車輪取付フランジを前記外輪のアウトボード側端に有する外輪回転型の車輪用軸受と、前記内輪に取付けられたステータおよび前記外輪に取付けられたロータを有する電動機と、を備えた車両用動力装置であって、
 前記車両の足回りフレーム部品と前記内輪との間に介在するブラケットを備え、互いに対向する前記ブラケットと前記足回りフレーム部品との当接面に設けられる冷却流路、および前記内輪の内部を冷却する内輪冷却手段のいずれか一方または両方を備えた。
A power unit for a vehicle according to the present invention has an inner ring that is a fixed ring and an outer ring that is a rotating ring that is rotatably supported by the inner ring via rolling elements. A vehicular power unit comprising: an outer ring rotating type wheel bearing provided at an outboard side end of the outer ring; and an electric motor having a stator attached to the inner ring and a rotor attached to the outer ring,
A bracket interposed between the vehicle underbody frame part and the inner ring is provided, and a cooling flow path provided on a contact surface between the bracket and the underbody frame part facing each other and the inside of the inner ring are cooled. Either one or both of the inner ring cooling means are provided.
 ブラケットと足回りフレーム部品との当接面に設けられる冷却流路を備えた場合、車輪用軸受の軸受部の発熱が、熱容量の大きい足回りフレーム部品へ効率よく放熱される。このため、軸受部の冷却性が向上する。本発明の軸受部とは、内外輪および転動体における転動体付近部と同義である。したがって、この車両用動力装置が発熱源である電動機を備えていても、軸受部に充填されたグリースが劣化せず、車輪用軸受の寿命が低下することを防止することができる。さらにブラケットと足回りフレーム部品との当接面に冷却流路を備える簡単な構成のため、前記従来の冷却装置を備えた車両用動力装置よりもコスト低減を図れると共に、車両用動力装置全体のサイズを小型に維持することができる。 When a cooling passage is provided on the contact surface between the bracket and the suspension frame component, the heat generated by the bearing portion of the wheel bearing is efficiently dissipated to the suspension frame component, which has a large heat capacity. Therefore, the cooling performance of the bearing is improved. The bearing portion of the present invention is synonymous with the portion near the rolling elements in the inner and outer rings and the rolling elements. Therefore, even if the vehicle power unit includes an electric motor that is a heat source, the grease filled in the bearing portion does not deteriorate, and the service life of the wheel bearing can be prevented from being shortened. Furthermore, since the cooling passage is provided on the contact surface between the bracket and the undercarriage frame component, the simple structure makes it possible to reduce the cost of the vehicle power unit as compared with the above-described conventional vehicle power unit equipped with the cooling device, and reduce the cost of the vehicle power unit as a whole. The size can be kept small.
 内輪の内部を冷却する内輪冷却手段を備えた場合、前記内輪は固定輪であるため、内輪冷却手段を容易に設置し得る。一般的な内輪回転型の車輪用軸受では、内輪が回転輪であるため、回転輪である内輪に対し外部から冷媒等を導入することが困難であった。本発明によれば、固定輪である内輪の内部を冷却する内輪冷却手段により、電動機等から熱が内輪に伝熱されても、内輪の温度上昇を一定水準に抑え、軸受部に充填されたグリースの劣化を防止し得る。これにより、車輪用軸受の寿命を延命させることができる。また、内輪冷却手段の冷却部が内輪のみで完結することが可能となるため、前記従来の冷却装置よりも構造を簡単化しコンパクトで低費用な冷却手段が実現できる。 When the inner ring cooling means for cooling the inside of the inner ring is provided, the inner ring cooling means can be easily installed because the inner ring is a fixed ring. In a general inner-ring rotating type wheel bearing, since the inner ring is a rotating ring, it is difficult to introduce a coolant or the like from the outside into the inner ring, which is a rotating ring. According to the present invention, even if heat is transferred to the inner ring from an electric motor or the like, the inner ring cooling means for cooling the inside of the inner ring, which is a fixed ring, suppresses the temperature rise of the inner ring to a certain level, and the bearing portion is filled with the heat. Degradation of grease can be prevented. As a result, the service life of the wheel bearing can be extended. Moreover, since the cooling portion of the inner ring cooling means can be completed only by the inner ring, it is possible to realize a compact, low-cost cooling means whose structure is simpler than that of the conventional cooling device.
 前記車輪用軸受および前記電動機が、前記ブレーキロータにおける、ブレーキキャリパが押し付けられる部分となる外周部よりも小径であり、且つ、前記電動機が、前記車輪取付フランジと前記足回りフレーム部品のアウトボード側面との間の軸方向範囲に位置してもよい。
 この構成によると、車輪用軸受および電動機がブレーキロータの前記外周部よりも小径で、且つ、電動機が車輪取付フランジと足回りフレーム部品のアウトボード側面との間の軸方向範囲に位置する。このため、ブレーキロータと足回りフレーム部品とで囲まれるスペース内に電動機および車輪用軸受の大部分を設置することができ車輪内に電動機および車輪用軸受をコンパクトに収めることができる。
The wheel bearing and the electric motor have a smaller diameter than the outer peripheral portion of the brake rotor against which the brake caliper is pressed, and the electric motor is connected to the wheel mounting flange and the outboard side of the suspension frame component. may be located in the axial range between
According to this configuration, the wheel bearing and the electric motor are smaller in diameter than the outer peripheral portion of the brake rotor, and the electric motor is located in the axial range between the wheel mounting flange and the outboard side surface of the suspension frame component. Therefore, most of the electric motor and wheel bearings can be installed in the space surrounded by the brake rotor and the suspension frame parts, and the electric motor and wheel bearings can be compactly housed in the wheel.
 前記冷却流路および前記内輪冷却手段の両方を備え、前記内輪冷却手段は、前記内輪の内部に冷媒を流すための冷媒路を有し、前記冷媒路と前記冷却流路とが連通されていてもよい。この場合、冷却流路および内輪冷却手段のいずれか一方を備えた車両用動力装置に対し、冷却構造がやや複雑化するものの軸受部の冷却性をさらに向上することができる。 Both the cooling passage and the inner ring cooling means are provided, the inner ring cooling means has a refrigerant passage for flowing a refrigerant inside the inner ring, and the refrigerant passage and the cooling passage are communicated with each other. good too. In this case, the cooling performance of the bearing portion can be further improved, although the cooling structure is somewhat complicated, as compared with the vehicle power unit provided with either one of the cooling passage and the inner ring cooling means.
 前記内輪冷却手段は、前記内輪に設けられるヒートパイプであってもよい。前記ヒートパイプとは、管内に作動液を密閉し、軸方向両端部の温度差による対流で作動液を循環し放熱する部品である。この場合、ヒートパイプ単体で内輪に伝熱された熱を車両用動力装置の外部へ逃がすことができるため、外部からの冷媒およびこの冷媒を循環させる装置等を必要とせず冷却構造を簡単化することができる。 The inner ring cooling means may be a heat pipe provided on the inner ring. The heat pipe is a component that seals a working fluid in a pipe, circulates the working fluid by convection caused by a temperature difference between both ends in the axial direction, and dissipates heat. In this case, the heat transferred to the inner ring can be released to the outside of the vehicle power plant by the heat pipe alone, so the cooling structure is simplified without the need for a coolant from the outside and a device for circulating this coolant. be able to.
 前記内輪冷却手段は、前記内輪の内部に冷媒を流すための冷媒路と、前記冷媒を前記冷媒路に沿って循環させるポンプとを有してもよい。この場合、ポンプにより冷媒を冷媒路に沿って循環させることで、車輪用軸受の軸受部を確実に冷却することができる。 The inner ring cooling means may have a refrigerant passage for flowing a refrigerant inside the inner ring, and a pump for circulating the refrigerant along the refrigerant passage. In this case, the bearing portion of the wheel bearing can be reliably cooled by circulating the coolant along the coolant path with the pump.
 前記内輪冷却手段は、前記冷媒の循環流路の途中に、前記内輪からの熱を外部へ放出する熱交換器を有してもよい。この場合、熱交換器から熱を外部へ放出することにより、内輪の内部さらには軸受部の温度をより効果的に下げることができる。 The inner ring cooling means may have a heat exchanger that releases heat from the inner ring to the outside in the middle of the refrigerant circulation flow path. In this case, by radiating heat from the heat exchanger to the outside, the temperature inside the inner ring as well as the bearing can be more effectively lowered.
 前記電動機はダイレクトドライブ形式であってもよい。この場合、電動機の回転を増速または減速させる手段を介在することなく車輪を直接回転駆動することができる。したがって、車両用動力装置の部品点数を低減でき構造を簡単化することができる。これにより車両用動力装置全体のコンパクト化を図れる。 The electric motor may be of direct drive type. In this case, the wheels can be directly rotationally driven without intervening means for accelerating or decelerating the rotation of the electric motor. Therefore, the number of parts of the vehicle power plant can be reduced, and the structure can be simplified. As a result, the overall size of the power plant for a vehicle can be reduced.
 本発明の発電機付き車輪用軸受は、固定輪である内輪およびこの内輪に転動体を介して回転自在に支持された回転輪である外輪を有し、車両の車輪およびブレーキロータを取付ける車輪取付フランジを前記外輪のアウトボード側端に有する外輪回転型の車輪用軸受と、前記内輪に取付けられたステータおよび前記外輪に取付けられたロータを有する発電機と、を備えた発電機付き車輪用軸受であって、前記車両の足回りフレーム部品と前記内輪との間に介在するブラケットを備え、互いに対向する前記ブラケットと前記足回りフレーム部品との当接面に設けられる冷却流路、および前記内輪の内部を冷却する内輪冷却手段のいずれか一方または両方を備えた。 A generator-equipped wheel bearing of the present invention has an inner ring as a fixed ring and an outer ring as a rotating ring rotatably supported by the inner ring via rolling elements. A wheel bearing with a generator, comprising: an outer ring rotating type wheel bearing having a flange at an outboard end of the outer ring; and a generator having a stator attached to the inner ring and a rotor attached to the outer ring. a cooling channel provided on a contact surface between the bracket and the undercarriage frame part facing each other; and the inner race. Either one or both of the inner ring cooling means for cooling the inside of the
 この構成によると、ブラケットと足回りフレーム部品との当接面に設けられる冷却流路を備えた場合、車輪用軸受の軸受部の発熱が、熱容量の大きい足回りフレーム部品へ効率よく放熱される。このため、軸受部の冷却性が向上する。したがって、この発電機付き車輪用軸受が発熱源である発電機を備えていても、軸受部に充填されたグリースが劣化せず、車輪用軸受の寿命が低下することを防止することができる。さらにブラケットと足回りフレーム部品との当接面に冷却流路を備える簡単な構成のため、前記従来の冷却装置を備えた車両用動力装置よりもコスト低減を図れると共に、発電機付き車輪用軸受全体のサイズを小型に維持することができる。 According to this configuration, when the cooling passage is provided on the contact surface between the bracket and the underbody frame component, the heat generated in the bearing portion of the wheel bearing is efficiently dissipated to the underbody frame component having a large heat capacity. . Therefore, the cooling performance of the bearing is improved. Therefore, even if the generator-equipped wheel bearing includes a generator that is a heat source, the grease filled in the bearing portion does not deteriorate, and the service life of the wheel bearing can be prevented from being shortened. Furthermore, due to the simple structure of providing a cooling channel on the contact surface between the bracket and the underbody frame part, the cost can be reduced compared to the vehicle power unit provided with the conventional cooling device, and the bearing for the wheel with a generator. The overall size can be kept small.
 内輪の内部を冷却する内輪冷却手段を備えた場合、前記内輪は固定輪であるため、内輪冷却手段を容易に設置し得る。一般的な内輪回転型の車輪用軸受では、内輪が回転輪であるため、回転輪である内輪に対し外部から冷媒等を導入することが困難であった。本発明によれば、固定輪である内輪の内部を冷却する内輪冷却手段により、発電機等から熱が内輪に伝熱されても、内輪の温度上昇を一定水準に抑え、軸受部に充填されたグリースの劣化を防止し得る。これにより、車輪用軸受の寿命を延命させることができる。また、内輪冷却手段の冷却部が内輪のみで完結することが可能となるため、前記従来の冷却装置よりも構造を簡単化しコンパクトで低費用な冷却手段が実現できる。 When the inner ring cooling means for cooling the inside of the inner ring is provided, the inner ring cooling means can be easily installed because the inner ring is a fixed ring. In a general inner-ring rotating type wheel bearing, since the inner ring is a rotating ring, it is difficult to introduce a coolant or the like from the outside into the inner ring, which is a rotating ring. According to the present invention, even if heat is transferred to the inner ring from a generator or the like, the inner ring cooling means for cooling the inside of the inner ring, which is a fixed ring, suppresses the temperature rise of the inner ring to a certain level, and the bearing portion is filled. It is possible to prevent the deterioration of the grease. As a result, the service life of the wheel bearing can be extended. Moreover, since the cooling portion of the inner ring cooling means can be completed only by the inner ring, it is possible to realize a compact, low-cost cooling means whose structure is simpler than that of the conventional cooling device.
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。 Any combination of at least two configurations disclosed in the claims and/or the specification and/or the drawings is included in the present invention. In particular, any combination of two or more of each claim is included in the invention.
 本発明は、添付の図面を参考にした以下の好適な実施形態の説明からより明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、本発明の範囲を定めるために利用されるべきものではない。本発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の部品番号は、同一または相当部分を示す。
本発明の第1の実施形態に係る車両用動力装置の断面図である。 同車両用動力装置の側面図である。 図1のIII-III線断面図である。 本発明の第2の実施形態に係る車両用動力装置の断面図である。 本発明の第3の実施形態に係る車両用動力装置の断面図である。 本発明の第4の実施形態に係る車両用動力装置の断面図である。 本発明の第5の実施形態に係る車両用動力装置の断面図である。 図7AのVIIB-VIIB線断面図である。 本発明の第6の実施形態に係る車両用動力装置の断面図である。 同第6の実施形態に係る車両用動力装置の側面図である。 同第6の実施形態の変形例に係る車両用動力装置の側面図である。 本発明の第7の実施形態に係る車両用動力装置の断面図である。 同第7の実施形態に係る車両用動力装置の側面図である。 図10のXII-XII線断面図である。 従来例の車両用動力装置の断面図である。
The present invention will be more clearly understood from the following description of preferred embodiments with reference to the accompanying drawings. However, the embodiments and drawings are for illustration and description only and should not be used to define the scope of the invention. The scope of the invention is defined by the appended claims. In the accompanying drawings, the same part number in multiple drawings indicates the same or corresponding part.
1 is a cross-sectional view of a vehicle power plant according to a first embodiment of the present invention; FIG. It is a side view of the power plant for the same vehicle. FIG. 2 is a sectional view taken along line III-III of FIG. 1; FIG. 6 is a cross-sectional view of a vehicle power plant according to a second embodiment of the present invention; FIG. 6 is a cross-sectional view of a vehicle power plant according to a third embodiment of the present invention; FIG. 4 is a cross-sectional view of a vehicle power plant according to a fourth embodiment of the present invention; FIG. 11 is a cross-sectional view of a vehicle power plant according to a fifth embodiment of the present invention; FIG. 7B is a sectional view taken along the line VIIB-VIIB of FIG. 7A; FIG. 11 is a cross-sectional view of a vehicle power plant according to a sixth embodiment of the present invention; FIG. 11 is a side view of the vehicle power plant according to the sixth embodiment; FIG. 11 is a side view of a vehicle power plant according to a modification of the sixth embodiment; FIG. 11 is a cross-sectional view of a vehicle power plant according to a seventh embodiment of the present invention; FIG. 11 is a side view of the vehicle power plant according to the seventh embodiment; 11 is a cross-sectional view taken along line XII-XII of FIG. 10; FIG. 1 is a cross-sectional view of a conventional power plant for a vehicle; FIG.
 [第1の実施形態]
 本発明の実施形態に係る車両用動力装置を図1ないし図3と共に説明する。
 図1は、図2のI-I線断面図である。図1に示すように、この車両用動力装置1は、車輪用軸受2と、ブラケット24と、発電機を兼ねる電動機である発電機能付き走行用モータ3とを備える。この車両用動力装置1は、インナーロータ型の発電機能付き走行用モータ3を有する。電動機を兼用しない発電機である場合、この発電機と車輪用軸受2とを備える発電機付き車輪用軸受となる。
[First embodiment]
A vehicle power plant according to an embodiment of the present invention will be described with reference to FIGS. 1 to 3. FIG.
FIG. 1 is a sectional view taken along line II of FIG. As shown in FIG. 1, the vehicle power unit 1 includes a wheel bearing 2, a bracket 24, and a running motor 3 with a power generation function, which is an electric motor that also serves as a generator. This vehicle power unit 1 has an inner rotor type running motor 3 with a power generating function. In the case of a generator that does not double as an electric motor, the generator-equipped wheel bearing is provided with the generator and the wheel bearing 2 .
 <車輪用軸受2について>
 車輪用軸受2は、固定輪である内輪5と、この内輪5に複列の転動体6を介して回転自在に支持された回転輪である外輪4と、各列の転動体6をそれぞれ保持する図示外の保持器とを有する外輪回転型である。内外輪5,4および転動体6における転動体付近部である軸受部Bgには、グリースが充填されている。
<Regarding the wheel bearing 2>
The wheel bearing 2 holds an inner ring 5 which is a fixed ring, an outer ring 4 which is a rotating ring rotatably supported by the inner ring 5 via double rows of rolling elements 6, and the rolling elements 6 of each row. It is an outer ring rotating type having a retainer (not shown) that Bearing portions Bg in the vicinity of the rolling elements of the inner and outer rings 5 and 4 and the rolling elements 6 are filled with grease.
 外輪4は、複列の軌道面が形成された外輪本体4aと、外輪4のアウトボード側端に設けられている車輪取付フランジ7とを有する。車輪取付フランジ7は、外輪本体4aのアウトボード側の外周面から外径側に延びる。車輪取付フランジ7に、複数のハブボルト13が挿通されている。車輪取付フランジ7には、ブレーキロータ12と車輪Wのホイールとが軸方向に重なった状態で、前記ハブボルト13により取付けられている。前記ホイールの外周に図示外のタイヤが取付けられている。 The outer ring 4 has an outer ring main body 4a on which a double-row raceway surface is formed, and a wheel mounting flange 7 provided at the end of the outer ring 4 on the outboard side. The wheel mounting flange 7 extends radially outward from the outer peripheral surface of the outer ring main body 4a on the outboard side. A plurality of hub bolts 13 are inserted through the wheel mounting flange 7 . The brake rotor 12 and the wheel of the wheel W are attached to the wheel attachment flange 7 by the hub bolts 13 in a state in which they overlap in the axial direction. A tire (not shown) is attached to the outer circumference of the wheel.
 前記ハブボルト13ではなく、外輪4のフランジ面にねじ孔を形成し、外方よりホイールボルト(図示せず)で外輪4とブレーキロータ12と前記ホイールおよびタイヤとが固定されてもよい。
 なおこの明細書において、車両用動力装置1が車両に搭載された状態で車両の車幅方向の外側寄りとなる側をアウトボード側と呼び、車両の車幅方向の中央寄りとなる側をインボード側と呼ぶ。
A threaded hole may be formed in the flange surface of the outer ring 4 instead of the hub bolt 13, and the outer ring 4, the brake rotor 12, and the wheel and tire may be fixed from the outside with wheel bolts (not shown).
In this specification, when the vehicle power plant 1 is mounted on the vehicle, the side that is closer to the outside in the vehicle width direction of the vehicle is called the outboard side, and the side that is closer to the center of the vehicle in the vehicle width direction is called the inboard side. called the board side.
 内輪5は、内輪本体5aと、この内輪本体5aのインボード側の外周面に嵌合された部分内輪5bとを有する。内輪シャフトである内輪本体5aは、インボード側に突出するインボード側突出部5iを有する。インボード側突出部5iは、内輪本体5aと同軸で内輪本体5aと一体に設けられ、且つ、部分内輪5bの配設位置よりもインボード側に突出する。前記「一体に設けられ」とは、インボード側突出部5iと内輪本体5aとが、複数の要素を結合したものではなく単一の材料から例えば鍛造、機械加工等により単独の物の一部または全体として成形されたことを意味する。 The inner ring 5 has an inner ring main body 5a and a partial inner ring 5b fitted to the outer peripheral surface of the inner ring main body 5a on the inboard side. An inner ring main body 5a, which is an inner ring shaft, has an inboard side protruding portion 5i that protrudes toward the inboard side. The inboard-side projecting portion 5i is provided coaxially with the inner ring main body 5a and integrally with the inner ring main body 5a, and protrudes toward the inboard side from the position where the partial inner ring 5b is disposed. The above-mentioned "provided integrally" means that the inboard side projecting portion 5i and the inner ring main body 5a are not formed by combining a plurality of elements, but are made of a single material by, for example, forging, machining, or the like. or molded as a whole.
 インボード側突出部5iは、アウトボード側からインボード側に向かって順次、嵌合部9および雄ねじ部11を含む。前記嵌合部9は、後述するブラケット24の嵌合部であり、内輪本体5aのインボード側の外周面に段差を介して繋がる。嵌合部9は、インボード側の外周面よりも若干小径に形成される第1の嵌合部9aと、この第1の嵌合部9aのアウトインボード側に位置する第2の嵌合部9bとを有する。第2の嵌合部9bには、ブラケット24のブラケット基部24aの一部(被嵌合部21)に嵌合されるスプラインSmが形成されている。スプラインSmは、円周方向一定間隔おきに形成される複数のスプライン歯から成り、特に振動を抑制する観点からインボリュートスプラインが好ましい。この第2の嵌合部9bの外周面つまりスプラインSmの外径面は、第1の嵌合部9aよりも小径で且つ雄ねじ部11よりも大径に形成されている。 The inboard-side projecting portion 5i includes a fitting portion 9 and a male screw portion 11 in order from the outboard side toward the inboard side. The fitting portion 9 is a fitting portion for a bracket 24, which will be described later, and is connected to the outer peripheral surface of the inner ring main body 5a on the inboard side via a step. The fitting portion 9 includes a first fitting portion 9a formed with a slightly smaller diameter than the outer peripheral surface on the inboard side, and a second fitting portion 9a located on the out-inboard side of the first fitting portion 9a. and a portion 9b. The second fitting portion 9b is formed with a spline Sm that is fitted to a portion of the bracket base portion 24a of the bracket 24 (the fitted portion 21). The spline Sm is composed of a plurality of spline teeth formed at regular intervals in the circumferential direction, and is preferably an involute spline from the viewpoint of suppressing vibration. The outer peripheral surface of the second fitting portion 9b, ie, the outer diameter surface of the spline Sm, is smaller in diameter than the first fitting portion 9a and larger in diameter than the male screw portion 11. As shown in FIG.
 <ブラケット24>
 ブラケット24は、車両の足回りフレーム部品であるナックル8に固定されるブラケット基部24aと、このブラケット基部24aにおける大径部(後述する)の外径側端からアウトボード側に延びるブラケット円筒部24bとを有する。これらブラケット基部24aとブラケット円筒部24bとは、同軸で且つ一体に形成されている。ブラケット基部24aとブラケット円筒部24bは別部材から構成されて固定されてもよい。ブラケット基部24aは、ナックル8と内輪5との間に介在し内輪5が着脱自在に固定される。ブラケット基部24aは、アウトボード側の大径部24aaと、この大径部24aaのインボード側面に繋がり大径部24aaよりも小径の小径部24abとを有する。
<Bracket 24>
The bracket 24 includes a bracket base portion 24a fixed to the knuckle 8, which is a vehicle underbody frame component, and a bracket cylindrical portion 24b extending from the outer diameter side end of a large diameter portion (described later) of the bracket base portion 24a toward the outboard side. and The bracket base portion 24a and the bracket cylindrical portion 24b are coaxially and integrally formed. The bracket base portion 24a and the bracket cylindrical portion 24b may be configured from separate members and fixed. The bracket base portion 24a is interposed between the knuckle 8 and the inner ring 5, and the inner ring 5 is detachably fixed thereto. The bracket base portion 24a has a large-diameter portion 24aa on the outboard side and a small-diameter portion 24ab connected to the inboard side surface of the large-diameter portion 24aa and having a smaller diameter than the large-diameter portion 24aa.
 大径部24aaには、第1の嵌合部9aに嵌合される被嵌合部20が形成され、小径部24abには、インボリュートスプラインであるスプラインSmに嵌合されるスプライン溝から成る被嵌合部21が形成されている。第1の嵌合部9aとその被嵌合部20との嵌合は、すきま嵌めでよいが、より軸心精度を上げるために圧入してもよい。 The large-diameter portion 24aa is formed with a fitted portion 20 to be fitted with the first fitting portion 9a, and the small-diameter portion 24ab is formed with a spline groove that is fitted with the spline Sm, which is an involute spline. A fitting portion 21 is formed. The fitting between the first fitting portion 9a and the fitted portion 20 may be a clearance fit, but may be a press fit to further improve the accuracy of the axial center.
 図1および図2に示すように、ナックル8には、小径部24abの嵌合を許す貫通孔8bが形成されている。大径部24aaには円周方向複数のねじ孔が形成され、ブラケット基部24aはこれらねじ孔に螺合される複数のボルト22でナックル8に取付けられる。ナックル8の貫通孔8bに小径部24abの外周面が嵌合された状態で、かつナックル8のアウトボード側面8aに大径部24aaのインボード側面が当接された状態でブラケット基部24aがナックル8に固定される。 As shown in FIGS. 1 and 2, the knuckle 8 is formed with a through hole 8b that allows the small diameter portion 24ab to be fitted therein. A plurality of screw holes are formed in the large diameter portion 24aa in the circumferential direction, and the bracket base portion 24a is attached to the knuckle 8 with a plurality of bolts 22 screwed into these screw holes. The bracket base 24a is engaged with the knuckle 8 in a state in which the outer peripheral surface of the small diameter portion 24ab is fitted in the through hole 8b of the knuckle 8 and in a state in which the inboard side surface of the large diameter portion 24aa is in contact with the outboard side surface 8a of the knuckle 8. Fixed to 8.
 部分内輪5bのインボード側面は、大径部24aaのアウトボード側面に当接するように配置されている。ブラケット基部24aには、インボード側突出部5iの挿通を許す挿通孔が形成されている。前記被嵌合部20,21により前記挿通孔が形成される。またインボード側突出部5iの第1の嵌合部9aと大径部24aaの被嵌合部20が嵌合すると共に、インボード側突出部5iの第2の嵌合部9bと小径部24abの被嵌合部21がスプライン嵌合する。さらに雄ねじ部11にナット25を螺合することにより、軸受部Bgに所定の軸力が発生するトルク値で車輪用軸受2がブラケット24に固定される。内輪本体5aの第2の嵌合部9bとブラケット24の被嵌合部21とが互いにスプライン嵌合することで、内輪5の回転、および回転方向への振動を抑制し得る。 The inboard side surface of the partial inner ring 5b is arranged to contact the outboard side surface of the large diameter portion 24aa. The bracket base portion 24a is formed with an insertion hole through which the inboard-side projecting portion 5i is inserted. The insertion hole is formed by the fitted portions 20 and 21 . The first fitting portion 9a of the inboard-side projecting portion 5i and the fitted portion 20 of the large-diameter portion 24aa are fitted together, and the second fitting portion 9b of the inboard-side projecting portion 5i and the small-diameter portion 24ab are fitted together. is spline-fitted. Further, by screwing a nut 25 onto the male threaded portion 11, the wheel bearing 2 is fixed to the bracket 24 with a torque value that generates a predetermined axial force in the bearing portion Bg. The second fitting portion 9b of the inner ring main body 5a and the fitted portion 21 of the bracket 24 are spline-fitted to each other, so that rotation of the inner ring 5 and vibration in the rotational direction can be suppressed.
  <ブレーキ17について>
 ブレーキ17は、ディスク状のブレーキロータ12と、ブレーキキャリパ16とを備える摩擦ブレーキである。ブレーキロータ12は、平板状部12aと、外周部12bとを有する。平板状部12aは、車輪取付フランジ7に重なる環状で且つ平板状の部材である。外周部12bは、平板状部12aの外周縁部からインボード側に円筒状に延びる円筒状部12baと、この円筒状部12baのインボード側端から外径側に平板状に延びる平板部12bbとを有する。平板部12bbは、ブレーキキャリパ16が押し付けられる部分となる。ブレーキキャリパ16は、油圧式および機械式のいずれであってもよく、また電動モータ式であってもよい。
<Regarding the brake 17>
The brake 17 is a friction brake comprising a disc-shaped brake rotor 12 and a brake caliper 16 . The brake rotor 12 has a flat portion 12a and an outer peripheral portion 12b. The flat plate-like portion 12 a is an annular flat plate-like member that overlaps the wheel mounting flange 7 . The outer peripheral portion 12b includes a cylindrical portion 12ba that extends cylindrically toward the inboard side from the outer peripheral edge portion of the flat plate portion 12a, and a flat plate portion 12bb that extends in a flat plate shape from the inboard side end of the cylindrical portion 12ba toward the outer diameter side. and The flat plate portion 12bb is a portion against which the brake caliper 16 is pressed. The brake caliper 16 may be hydraulic or mechanical, or may be of the electric motor type.
 <発電機能付き走行用モータ3について>
 図1および図3に示すように、この例の発電機能付き走行用モータ3は、車輪Wの回転で発電を行い、給電されることによって車輪Wを回転駆動可能な走行補助用の発電機能付き走行用モータである。発電機能付き走行用モータ3は、ブラケット円筒部24bの内周に取付けられるステータ18と、このステータ18の内周で外輪本体4aの外周に取付けられるロータ19とを有するインナーロータ型である。また発電機能付き走行用モータ3は、ロータ19が外輪4に直接取付けられたダイレクトドライブ形式である。
<Regarding the driving motor 3 with power generation function>
As shown in FIGS. 1 and 3, the power-generating running motor 3 of this example is equipped with a power-generating function for assisting running, which generates power with the rotation of the wheels W, and can drive the wheels W to rotate by being supplied with power. It is a running motor. The running motor 3 with power generation function is an inner rotor type having a stator 18 attached to the inner circumference of the bracket cylindrical portion 24b and a rotor 19 attached to the outer circumference of the outer ring main body 4a on the inner circumference of the stator 18. As shown in FIG. The running motor 3 with power generating function is of a direct drive type in which the rotor 19 is directly attached to the outer ring 4 .
 この発電機能付き走行用モータ3および車輪用軸受2は、ブレーキロータ12の外周部12bよりも小径であり、且つ、発電機能付き走行用モータ3が車輪取付フランジ7と、ナックル8のアウトボード側面8aとの間の軸方向範囲L1に設置されている。発電機能付き走行用モータ3は、例えば、表面磁石型永久磁石モータ、すなわちSPM(Surface Permanent Magnet)同期モータ(もしくはSPMSM(Surface Permanent Magnet Synchronous Motor)と標記)である。 The traveling motor 3 with power generating function and the wheel bearing 2 have a smaller diameter than the outer peripheral portion 12 b of the brake rotor 12 , and the traveling motor 3 with power generating function is attached to the wheel mounting flange 7 and the outboard side of the knuckle 8 . 8a in the axial direction range L1. The running motor 3 with power generation function is, for example, a surface magnet type permanent magnet motor, that is, an SPM (Surface Permanent Magnet) synchronous motor (or SPMSM (Surface Permanent Magnet Synchronous Motor)).
 もしくは発電機能付き走行用モータ3は、IPM(Interior Permanent Magnet)同期モータ(もしくはIPMSM(Interior Permanent Magnet Synchronous Motor)と標記)でもよい。その他、発電機能付き走行用モータ3は、スイッチトリラクタンスモータ(Switched reluctance motor;略称:SRモータ)、インダクションモータ(Induction Motor;略称:IM)等各種形式が採用できる。各モータ形式において、ステータ18の巻き線形式として分布巻、集中巻の各形式が採用できる。 Alternatively, the running motor 3 with power generation function may be an IPM (Interior Permanent Magnet) synchronous motor (or IPMSM (Interior Permanent Magnet Synchronous Motor)). In addition, various forms such as a switched reluctance motor (abbreviated as SR motor), an induction motor (abbreviated as IM), etc. can be used as the running motor 3 with power generation function. In each motor type, each type of distributed winding and concentrated winding can be adopted as the winding type of the stator 18 .
 <ステータ18>
 ステータ18は、環状のステータコア18aと、このステータコア18aのティース部に図示外の絶縁材を介して巻回されたステータコイル18bとを有する。前記絶縁材として樹脂ボビン等が適用される。ステータコア18aは、例えば、電磁鋼板、圧粉磁心、またはアモルファス合金等から構成される。ブラケット24のブラケット円筒部24bの内周面に、ステータコア18aが嵌合されている。ステータコア18aは、ブラケット円筒部24bの内周面に圧入、接着、別部材による拘束等により固定される。なお、図示しないが、ステータコア18aの外周面に円周方向一定間隔おきに複数の凹み部または凸部が形成され、ブラケット円筒部24bの内周面に、前記複数の凹み部または凸部に嵌まり込む複数の凸部または凹み部が形成されてもよい。これにより、ステータコア18が回転方向に動くことを抑制できる。
<Stator 18>
The stator 18 has an annular stator core 18a and a stator coil 18b wound around teeth of the stator core 18a via an insulating material (not shown). A resin bobbin or the like is applied as the insulating material. The stator core 18a is made of, for example, an electromagnetic steel sheet, a dust core, an amorphous alloy, or the like. The stator core 18 a is fitted to the inner peripheral surface of the bracket cylindrical portion 24 b of the bracket 24 . The stator core 18a is fixed to the inner peripheral surface of the bracket cylindrical portion 24b by press-fitting, adhesion, restraint by another member, or the like. Although not shown, a plurality of recesses or protrusions are formed on the outer peripheral surface of the stator core 18a at regular intervals in the circumferential direction, and the inner peripheral surface of the bracket cylindrical portion 24b is fitted into the plurality of recesses or protrusions. A plurality of nesting protrusions or depressions may be formed. Thereby, the stator core 18 can be suppressed from moving in the rotational direction.
 <ロータ19>
 ロータ19は、ステータコア18aに対し径方向内方に対向するように設けられているインナーロータ型である。ロータ19は、外輪本体4aの外周に固定される円筒形状のロータコア19aと、このロータコア19aの外周に固定される永久磁石19bとを有する。ロータコア19aは、例えば、軟磁性材料から成り、外輪本体4aと同心で外輪本体4aに例えば、圧入、溶接、接着等により固定されている。ロータコア19aの外周面に円周方向一定間隔おきに複数の凹み部が形成され、各凹み部に永久磁石19bが嵌り込んで接着等により固定されている。
<Rotor 19>
The rotor 19 is an inner rotor type provided so as to face the stator core 18a radially inward. The rotor 19 has a cylindrical rotor core 19a fixed to the outer circumference of the outer ring main body 4a, and permanent magnets 19b fixed to the outer circumference of the rotor core 19a. The rotor core 19a is made of, for example, a soft magnetic material, and is concentrically fixed to the outer ring main body 4a by, for example, press fitting, welding, or adhesion. A plurality of recessed portions are formed on the outer peripheral surface of the rotor core 19a at regular intervals in the circumferential direction, and the permanent magnets 19b are fitted into the respective recessed portions and fixed by adhesion or the like.
 <内輪冷却手段>
 この車両用動力装置1は、内輪5の内部を冷却する内輪冷却手段26を備える。内輪冷却手段26は、内輪本体5aの内部に設けられ冷媒を流すための冷媒路27と、循環力発生手段であるポンプPと、このポンプPにより冷媒を循環させる循環流路28とを有する。内輪本体5aの内部には、例えば、水、油、空気等の冷媒を流すための冷媒路27が設けられている。冷媒路27は第1,第2の流路27a,27bを有し、これら第1,第2の流路27a,27bは内輪本体5aの軸心に平行に形成されている。第1,第2の流路27a,27bは、それぞれ内輪本体5aのアウトボード側端からインボード側端に貫通する貫通孔から成り、前記軸心に対し180度位相が異なる軸対称位置に設けられている。
<Inner ring cooling means>
This vehicle power plant 1 includes inner ring cooling means 26 for cooling the inside of the inner ring 5 . The inner ring cooling means 26 has a refrigerant passage 27 provided inside the inner ring main body 5a for flowing the refrigerant, a pump P as a circulation force generating means, and a circulation passage 28 for circulating the refrigerant by the pump P. Inside the inner ring main body 5a, a refrigerant passage 27 is provided for flowing a refrigerant such as water, oil, air, or the like. The coolant passage 27 has first and second passages 27a and 27b, which are formed parallel to the axis of the inner ring main body 5a. The first and second flow passages 27a and 27b are formed of through holes penetrating from the outboard side end of the inner ring main body 5a to the inboard side end thereof, respectively, and are provided at axially symmetrical positions 180 degrees out of phase with respect to the axial center. It is
 第1の流路27aのインボード側端には冷媒の入口が形成され、第2の流路27bのインボード側端には冷媒の出口が形成されている。第1の流路27aのアウトボード側端に、順次、継手30、U字形状のホースまたは管31、および継手32を介して第2の流路27bのアウトボード側端が連結されている。ポンプPは、例えば、車体に設置される。ポンプPの吐き出しポートPaと第1の流路27aのインボード側端とが吐出路33により接続され、ポンプPの吸い込みポートPbと第2の流路27bのインボード側端とが吸引路34により接続されている。前記吐出路33、吸引路34、継手30,32およびホースまたは管31により前記循環流路28が構成される。ポンプPを駆動することで、第1,第2の流路27a,27bおよび循環流路28に沿って冷媒を循環させる。これにより車輪用軸受2の軸受部Bgを確実に冷却し得る。 A coolant inlet is formed at the inboard side end of the first flow path 27a, and a coolant outlet is formed at the inboard side end of the second flow path 27b. Connected to the outboard end of the first flow path 27a is the outboard end of the second flow path 27b via a coupling 30, a U-shaped hose or tube 31, and a coupling 32, in turn. The pump P is installed, for example, on the vehicle body. The discharge port Pa of the pump P and the inboard side end of the first flow path 27a are connected by a discharge path 33, and the suction port Pb of the pump P and the inboard side end of the second flow path 27b are connected by a suction path 34. connected by The discharge passage 33 , the suction passage 34 , the joints 30 and 32 and the hose or pipe 31 constitute the circulation passage 28 . By driving the pump P, the refrigerant is circulated along the first and second flow paths 27a and 27b and the circulation flow path 28. FIG. Thereby, the bearing portion Bg of the wheel bearing 2 can be reliably cooled.
 <シール構造等について>
 図1に示すように、ブラケット円筒部24bのアウトボード側の内周面と、車輪取付フランジ7の外周面との間には、発電機能付き走行用モータ3および車輪用軸受2内部への水および異物の侵入を防ぐシール部材23が配置されている。
 外輪4のアウトボード側端には、このアウトボード側端を覆うキャップCpが固定されている。このキャップCpにより、後述する車輪速センサSa等および軸受部Bgへの水の浸入を防止する。
<Seal structure, etc.>
As shown in FIG. 1, between the inner peripheral surface of the bracket cylindrical portion 24 b on the outboard side and the outer peripheral surface of the wheel mounting flange 7 , there is a gap between the running motor 3 with power generation function and the inside of the wheel bearing 2 . and a sealing member 23 for preventing foreign matter from entering.
A cap Cp is fixed to the outboard side end of the outer ring 4 to cover the outboard side end. The cap Cp prevents water from entering the wheel speed sensor Sa and the bearing portion Bg, which will be described later.
 <車輪速センサSa等>
 車輪速センサSaは、車輪Wの回転速度を検出するセンサであって、例えば、外輪4のインボード側端に設置される磁気エンコーダリングERと、この磁気エンコーダリングERに所定隙間を隔てて部分内輪5bの外周面に設置されるセンサ部(図示せず)とを有する。
<Wheel speed sensor Sa etc.>
The wheel speed sensor Sa is a sensor that detects the rotational speed of the wheel W. For example, the magnetic encoder ring ER is installed at the inboard side end of the outer ring 4, and the magnetic encoder ring ER is provided with a predetermined gap therebetween. and a sensor portion (not shown) installed on the outer peripheral surface of the inner ring 5b.
 車両用動力装置1に、発電機能付き走行用モータ3の回転を制御する回転検出センサが設けられてもよい。前記回転検出センサは、内輪5に対する外輪4の回転角度または回転速度を検出する。この回転速度は、単位時間当たりの回転数と同義である。この回転検出センサとして例えばレゾルバが適用されるが、レゾルバに限定されるものではなく、例えば、エンコーダ、パルサーリングあるいはホールセンサなど形式を問わず採用可能である。
 前記車輪速センサSaを前記回転検出センサと独立して設けてもよく、前記回転検出センサが車輪速センサとしての機能を兼ねるようにしてもよい。
The vehicle power plant 1 may be provided with a rotation detection sensor that controls the rotation of the running motor 3 with a power generation function. The rotation detection sensor detects the rotation angle or rotation speed of the outer ring 4 with respect to the inner ring 5 . This rotational speed is synonymous with the number of revolutions per unit time. A resolver, for example, is applied as this rotation detection sensor, but it is not limited to the resolver, and for example, an encoder, a pulser ring, a hall sensor, or the like can be adopted regardless of the type.
The wheel speed sensor Sa may be provided independently of the rotation detection sensor, or the rotation detection sensor may also function as the wheel speed sensor.
 <作用効果>
 以上説明した車両用動力装置1によれば、車輪用軸受2および発電機能付き走行用モータ3がブレーキロータ12の外周部12bよりも小径で、且つ、発電機能付き走行用モータ3が車輪取付フランジ7とナックル8のアウトボード側面8aとの間の軸方向範囲L1に位置する。このため、ブレーキロータ12とナックル8とで囲まれるスペース内に発電機能付き走行用モータ3および車輪用軸受2の大部分を設置することができ車輪W内に発電機能付き走行用モータ3および車輪用軸受2をコンパクトに収めることができる。
<Effect>
According to the vehicle power unit 1 described above, the wheel bearings 2 and the power-generating running motor 3 are smaller in diameter than the outer peripheral portion 12b of the brake rotor 12, and the power-generating running motor 3 is mounted on the wheel mounting flange. 7 and the outboard side 8a of the knuckle 8 in the axial range L1. Therefore, most of the power-generating running motor 3 and the wheel bearing 2 can be installed in the space surrounded by the brake rotor 12 and the knuckle 8, and the power-generating running motor 3 and the wheel can be installed in the wheel W. The bearing 2 can be stored compactly.
 内輪5の内部を冷却する内輪冷却手段26を備えた場合、前記内輪5は固定輪であるため、内輪冷却手段26を容易に設置し得る。一般的な内輪回転型の車輪用軸受では、内輪が回転輪であるため、回転輪である内輪に対し外部から冷媒等を導入することが困難であった。本実施形態の車両用動力装置1によれば、固定輪である内輪5の内部を冷却する内輪冷却手段26により、発電機能付き走行用モータ3等から熱が内輪5に伝熱されても、内輪5の温度上昇を一定水準に抑え、軸受部Bgに充填されたグリースの劣化を防止し得る。これにより、車輪用軸受2の寿命を延命させることができる。また、内輪冷却手段26の冷却部が内輪5のみで完結することが可能となるため、前記従来の冷却装置よりも構造を簡単化しコンパクトで低費用な冷却手段が実現できる。 When the inner ring cooling means 26 for cooling the inside of the inner ring 5 is provided, the inner ring cooling means 26 can be easily installed because the inner ring 5 is a fixed ring. In a general inner-ring rotating type wheel bearing, since the inner ring is a rotating ring, it is difficult to introduce a coolant or the like from the outside into the inner ring, which is a rotating ring. According to the vehicle power plant 1 of the present embodiment, the inner ring cooling means 26 for cooling the inside of the inner ring 5, which is a fixed ring, transfers heat from the running motor 3 with power generation function to the inner ring 5. It is possible to suppress the temperature rise of the inner ring 5 to a certain level and prevent deterioration of the grease filled in the bearing portion Bg. As a result, the life of the wheel bearing 2 can be extended. Further, since the cooling portion of the inner ring cooling means 26 can be completed only by the inner ring 5, the structure can be simplified, and a compact and low-cost cooling means can be realized as compared with the conventional cooling device.
 発電機能付き走行用モータ3はダイレクトドライブ形式であるため、発電機能付き走行用モータ3の回転を増速または減速させる手段を介在することなく車輪Wを直接回転駆動することができる。したがって、車両用動力装置1の部品点数を低減でき構造を簡単化することができる。これにより車両用動力装置全体のコンパクト化を図れる。 Since the running motor 3 with power generation function is of the direct drive type, the wheels W can be directly rotationally driven without intervening means for accelerating or decelerating the rotation of the running motor 3 with power generation function. Therefore, the number of parts of the vehicle power plant 1 can be reduced, and the structure can be simplified. As a result, the overall size of the power plant for a vehicle can be reduced.
 <他の実施形態について>
 以下の説明においては、各実施の形態で先行して説明している事項に対応している部分には同一の参照符号を付し、重複する説明を略する。構成の一部のみを説明している場合、構成の他の部分は、特に記載のない限り先行して説明している形態と同様とする。同一の構成から同一の作用効果を奏する。実施の各形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施の形態同士を部分的に組合せることも可能である。
<About other embodiments>
In the following description, the same reference numerals are given to the parts corresponding to the items previously described in each embodiment, and duplicate descriptions are omitted. When only a portion of the configuration is described, the other portions of the configuration are the same as those previously described unless otherwise specified. The same configuration has the same effect. It is possible not only to combine the parts specifically described in each embodiment, but also to partially combine the embodiments if there is no particular problem with the combination.
 [第2の実施形態:冷却管]
 図4に示すように、内輪冷却手段26は、前述の冷媒路、継手およびホースまたは管に代えて、内輪本体5aに貫通する貫通孔に挿入された冷却用の冷却管35であってもよい。この冷却管35は、例えば、ステンレス製の鋼管等を長手方向中間部で曲げ加工したものを適用可能である。曲げ加工した部分35aにより、第1,第2の流路27a,27bのアウトボード側端が連通するようになっている。その他の構成は第1の実施形態と同様である。
 冷却管35として前記ステンレス製の鋼管を適用する場合、冷却管35に錆が発生することを抑えることができる。また継手およびホースまたは管等を削減できるため、部品点数を低減して冷却構造を簡単化することができる。なお冷却管35はステンレス製の鋼管に限定されるものではなく鉄製または樹脂製であってもよい。
[Second embodiment: cooling pipe]
As shown in FIG. 4, the inner ring cooling means 26 may be a cooling pipe 35 for cooling that is inserted into a through-hole penetrating the inner ring body 5a instead of the refrigerant passage, joint, hose or pipe described above. . For the cooling pipe 35, for example, a stainless steel pipe or the like that is bent at the middle in the longitudinal direction can be applied. The outboard side ends of the first and second flow paths 27a and 27b are communicated with each other by the bent portion 35a. Other configurations are the same as those of the first embodiment.
When the stainless steel pipe is used as the cooling pipe 35, the cooling pipe 35 can be prevented from rusting. Also, since joints and hoses or pipes can be reduced, the number of parts can be reduced and the cooling structure can be simplified. The cooling pipe 35 is not limited to a stainless steel pipe, and may be made of iron or resin.
 [第3の実施形態:ヒートパイプ]
 図5に示すように、内輪冷却手段26は、内輪本体5aに設けられるヒートパイプHpであってもよい。ヒートパイプHpは、この大部分が内輪本体5aの内部でこの内輪本体5aの軸方向に沿って挿入されている。ヒートパイプHpのインボート側端の外部部材36は、ナックル8のインボード側面よりも車体側に突出する。この場合、ヒートパイプ単体で内輪5に伝熱された熱を外部部材36へ逃がすことができるため、外部からの冷媒およびこの冷媒を循環させる装置等を必要とせず冷却構造を簡単化することができる。
[Third Embodiment: Heat Pipe]
As shown in FIG. 5, the inner ring cooling means 26 may be a heat pipe Hp provided in the inner ring main body 5a. Most of the heat pipe Hp is inserted inside the inner ring main body 5a along the axial direction of the inner ring main body 5a. The external member 36 at the inboard side end of the heat pipe Hp protrudes further toward the vehicle body than the inboard side surface of the knuckle 8 . In this case, since the heat transferred to the inner ring 5 can be released to the outer member 36 by the heat pipe alone, the cooling structure can be simplified without requiring a coolant from the outside and a device for circulating the coolant. can.
 [第4の実施形態:熱交換器等]
 図6に示すように、内輪冷却手段26は、冷媒の循環流路28の途中に、内輪5からの熱を外部へ放出する熱交換器37を有するものとしてもよい。循環流路28のうち、ポンプPの吸い込みポートPbと第2の流路27bのインボード側端とを接続する吸引路34の途中に、熱交換器37を介在させている。この場合、熱交換器37から熱を外部へ放出することにより、内輪5の内部さらには軸受部Bgの温度をより効果的に下げることができる。なお第1,第2の流路27a,27bのアウトボード側端を連通する曲げ部分35aは、第1,第2の実施形態と同様に、内輪本体5aのアウトボード側端から突出するようにしてもよい。
[Fourth Embodiment: Heat Exchanger, etc.]
As shown in FIG. 6, the inner ring cooling means 26 may have a heat exchanger 37 in the middle of the refrigerant circulation flow path 28 for releasing heat from the inner ring 5 to the outside. A heat exchanger 37 is interposed in the middle of a suction path 34 that connects the suction port Pb of the pump P and the inboard side end of the second flow path 27b in the circulation flow path 28 . In this case, by radiating heat from the heat exchanger 37 to the outside, the temperature inside the inner ring 5 and further the temperature of the bearing portion Bg can be lowered more effectively. The bent portion 35a communicating the outboard side ends of the first and second flow paths 27a and 27b is projected from the outboard side end of the inner ring main body 5a as in the first and second embodiments. may
 [第5の実施形態:内輪端面等の冷却構造]
 図7Aおよび図7Bに示すように、内輪冷却手段26は、内輪本体5aのアウトボード側端面を冷却する第3の流路38を備えていてもよい。この第3の流路38は、第1の流路27aのアウトボード側端と、第2の流路27bのアウトボード側端とを連通する連通路であり、内輪本体5aのアウトボード側端面全体を万遍なく冷却可能である。第3の流路38の形状は、図7Bに示す形状に限定されるものではなく種々な形状にすることが可能である。
 この実施形態によれば、内輪本体5aの内部の冷却だけでなく内輪端面も冷却できるため、軸受部Bgの冷却性がより向上する。
[Fifth Embodiment: Cooling Structure for Inner Ring End Face, Etc.]
As shown in FIGS. 7A and 7B, the inner ring cooling means 26 may include a third flow path 38 for cooling the outboard side end surface of the inner ring main body 5a. The third flow path 38 is a communication path that communicates the outboard side end of the first flow path 27a and the outboard side end of the second flow path 27b, and is the outboard side end surface of the inner ring main body 5a. The whole can be cooled evenly. The shape of the third flow path 38 is not limited to the shape shown in FIG. 7B, and various shapes are possible.
According to this embodiment, not only the inside of the inner ring main body 5a but also the inner ring end surface can be cooled, so the cooling performance of the bearing portion Bg is further improved.
 [第6の実施形態:当接面に設けられる冷却流路]
 図8Aおよび図8Bに示すように、互いに対向するブラケット基部24aのインボード側面と、ナックル8のアウトボード側面8aとの当接面に、冷却流路39が設けられてもよい。この例の冷却流路39は、略円環状で且つ、ボルト22が配設される位置よりも半径方向外方に配設されている。冷却流路39の一端部39a、他端部39bがポンプPに接続され、このポンプPを駆動することで、冷却流路39に沿って冷媒を循環させる。
[Sixth Embodiment: Cooling Channel Provided on Contact Surface]
As shown in FIGS. 8A and 8B , a cooling channel 39 may be provided on the contact surface between the inboard side surface of the bracket base 24a and the outboard side surface 8a of the knuckle 8, which face each other. The cooling channel 39 in this example has a substantially annular shape and is arranged radially outward from the position where the bolt 22 is arranged. One end 39 a and the other end 39 b of the cooling channel 39 are connected to a pump P, and the pump P is driven to circulate the coolant along the cooling channel 39 .
 ブラケット基部24aとナックル8との当接面に、冷却流路39を備えた場合、車輪用軸受2の軸受部Bgの発熱が、熱容量の大きいナックル8へ効率よく放熱される。このため、軸受部Bgの冷却性が向上する。この構成によれば、前記冷却流路39および前記内輪冷却手段26の両方を備えているため、冷却流路および内輪冷却手段のいずれか一方を備えた車両用動力装置に対し、冷却構造がやや複雑化するものの軸受部Bgの冷却性をさらに向上することができる。 When the contact surface between the bracket base portion 24a and the knuckle 8 is provided with the cooling flow path 39, the heat generated in the bearing portion Bg of the wheel bearing 2 is efficiently radiated to the knuckle 8 having a large heat capacity. Therefore, the cooling performance of the bearing portion Bg is improved. According to this configuration, since both the cooling passage 39 and the inner ring cooling means 26 are provided, the cooling structure is slightly reduced compared to the vehicle power plant provided with either the cooling passage or the inner ring cooling means. Although complicated, the cooling performance of the bearing portion Bg can be further improved.
 [第6の実施形態の変形例:連通路]
 図9に示すように、内輪冷却手段26の冷媒路27と、冷却流路39とが直列に連通されていてもよい。この場合にも軸受部の冷却性をさらに向上することができる。
[Modification of Sixth Embodiment: Communication Path]
As shown in FIG. 9, the refrigerant passage 27 of the inner ring cooling means 26 and the cooling passage 39 may communicate in series. Also in this case, the cooling performance of the bearing portion can be further improved.
 [第7の実施形態:外輪回転、アウターロータ型]
 図10~図12に示すように、この発電機能付き走行用モータ3は、ブラケット円筒部24bの外周面に嵌合するステータ18と、このステータ18の外周に位置し車輪取付フランジ7にロータケース40を介して取付けられたロータ19とを有するアウターロータ型であってもよい。
[Seventh embodiment: outer ring rotation, outer rotor type]
As shown in FIGS. 10 to 12, the power-generating running motor 3 includes a stator 18 fitted to the outer peripheral surface of the bracket cylindrical portion 24b, and a rotor case positioned on the outer periphery of the stator 18 and attached to the wheel mounting flange 7. It may be of the outer rotor type with the rotor 19 attached via 40 .
 電動機は、走行補助用ではなく、主たる走行用駆動源であってもよい。
 各実施形態において、電動機を兼用しない発電機と、車輪用軸受2とを備える発電機付き車輪用軸受1Aとしてもよい。この発電機付き車輪用軸受1Aが搭載される車両用システムでは、発電を行う機能を有するが、給電による回転駆動をしない構成となっている。この発電機付き車輪用軸受1Aは、各実施形態の車両用動力装置1に対し電動機を除き同一構成である。
The electric motor may be a main drive source for running, not for assisting running.
In each embodiment, the generator-equipped wheel bearing 1</b>A may include a generator that does not function as an electric motor and the wheel bearing 2 . A vehicle system in which the generator-equipped wheel bearing 1A is mounted has a function of generating power, but is configured not to rotate by power supply. This generator-equipped wheel bearing 1A has the same configuration as the vehicle power unit 1 of each embodiment except for the electric motor.
 ハブフランジを有する回転輪である外輪と、固定輪である内輪とを備えた外輪回転形式の第2世代構造であってもよい。
 足回りフレーム部品は、操舵輪を支持する懸架装置のナックルであってもよく、非操舵輪を支持する懸架装置の車輪用軸受設置部であってもよい。
A second-generation structure of an outer ring rotating type having an outer ring that is a rotating ring having a hub flange and an inner ring that is a fixed ring may be used.
The underbody frame component may be a suspension knuckle that supports the steered wheels, or may be a wheel bearing installation portion of the suspension that supports the non-steered wheels.
 以上のとおり、図面を参照しながら本発明の好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲内で、種々の追加、変更または削除が可能である。したがって、そのようなものも本発明の範囲内に含まれる。 As described above, the preferred embodiments of the present invention have been described with reference to the drawings, but various additions, changes, or deletions are possible without departing from the scope of the present invention. Accordingly, such are also included within the scope of this invention.
 1…車両用動力装置
 1A…発電機付き車輪用軸受
 2…車輪用軸受
 3…発電機能付き走行用モータ(電動機、発電機)
 4…外輪
 5…内輪
 6…転動体
 7…車輪取付フランジ
 8…ナックル(足回りフレーム部品)
 12…ブレーキロータ
 12b…外周部
 16…ブレーキキャリパ
 18…ステータ
 19…ロータ
 24…ブラケット
 26…内輪冷却手段
 27…冷媒路
 37…熱交換器
 39…冷却流路
 Hp…ヒートパイプ
 P…ポンプ
 W…車輪
DESCRIPTION OF SYMBOLS 1... Vehicle power unit 1A... Wheel bearing with generator 2... Wheel bearing 3... Traveling motor with power generation function (electric motor, generator)
4... Outer ring 5... Inner ring 6... Rolling element 7... Wheel mounting flange 8... Knuckle (undercarriage frame part)
DESCRIPTION OF SYMBOLS 12... Brake rotor 12b... Outer peripheral part 16... Brake caliper 18... Stator 19... Rotor 24... Bracket 26... Inner ring cooling means 27... Refrigerant path 37... Heat exchanger 39... Cooling path Hp... Heat pipe P... Pump W... Wheel

Claims (8)

  1.  固定輪である内輪およびこの内輪に転動体を介して回転自在に支持された回転輪である外輪を有し、車両の車輪およびブレーキロータを取付ける車輪取付フランジを前記外輪のアウトボード側端に有する外輪回転型の車輪用軸受と、前記内輪に取付けられたステータおよび前記外輪に取付けられたロータを有する電動機と、を備えた車両用動力装置であって、
     前記車両の足回りフレーム部品と前記内輪との間に介在するブラケットを備え、互いに対向する前記ブラケットと前記足回りフレーム部品との当接面に設けられる冷却流路、および前記内輪の内部を冷却する内輪冷却手段のいずれか一方または両方を備えた車両用動力装置。
    It has an inner ring that is a fixed ring and an outer ring that is a rotating ring that is rotatably supported by the inner ring via rolling elements, and has a wheel mounting flange for mounting a vehicle wheel and a brake rotor on the outboard side end of the outer ring. A power plant for a vehicle, comprising: an outer ring rotating type wheel bearing; and an electric motor having a stator attached to the inner ring and a rotor attached to the outer ring,
    A bracket interposed between the vehicle underbody frame part and the inner ring is provided, and a cooling flow path provided on a contact surface between the bracket and the underbody frame part facing each other and the inside of the inner ring are cooled. A vehicle power plant provided with either one or both of the inner ring cooling means.
  2.  請求項1に記載の車両用動力装置において、前記車輪用軸受および前記電動機が、前記ブレーキロータにおける、ブレーキキャリパが押し付けられる部分となる外周部よりも小径であり、且つ、前記電動機が、前記車輪取付フランジと前記足回りフレーム部品のアウトボード側面との間の軸方向範囲に位置する車両用動力装置。 2. The vehicle power unit according to claim 1, wherein the wheel bearing and the electric motor have diameters smaller than an outer peripheral portion of the brake rotor against which the brake caliper is pressed, and the electric motor A power unit for a vehicle located in an axial range between a mounting flange and an outboard side of said undercarriage frame component.
  3.  請求項1または請求項2に記載の車両用動力装置において、前記冷却流路および前記内輪冷却手段の両方を備え、前記内輪冷却手段は、前記内輪の内部に冷媒を流すための冷媒路を有し、前記冷媒路と前記冷却流路とが連通されている車両用動力装置。 3. The vehicle power plant according to claim 1, wherein the cooling passage and the inner ring cooling means are both provided, and the inner ring cooling means has a refrigerant passage for flowing a refrigerant inside the inner ring. and a power plant for a vehicle, wherein the coolant passage and the cooling passage are communicated with each other.
  4.  請求項1または請求項2に記載の車両用動力装置において、前記内輪冷却手段は、前記内輪に設けられるヒートパイプである車両用動力装置。 A power plant for a vehicle according to claim 1 or claim 2, wherein said inner ring cooling means is a heat pipe provided on said inner ring.
  5.  請求項1ないし請求項3のいずれか1項に記載の車両用動力装置において、前記内輪冷却手段は、前記内輪の内部に冷媒を流すための冷媒路と、前記冷媒を前記冷媒路に沿って循環させるポンプとを有する車両用動力装置。 4. The vehicle power plant according to any one of claims 1 to 3, wherein said inner ring cooling means includes a refrigerant passage for flowing a refrigerant inside said inner ring, and a refrigerant passage for flowing said refrigerant along said refrigerant passage. A vehicular power unit having a circulating pump.
  6.  請求項5に記載の車両用動力装置において、前記内輪冷却手段は、前記冷媒の循環流路の途中に、前記内輪からの熱を外部へ放出する熱交換器を有する車両用動力装置。 A power plant for a vehicle according to claim 5, wherein said inner ring cooling means has a heat exchanger for releasing heat from said inner ring to the outside in the middle of said refrigerant circulation flow path.
  7.  請求項1ないし請求項6のいずれか1項に記載の車両用動力装置において、前記電動機はダイレクトドライブ形式である車両用動力装置。 The vehicle power unit according to any one of claims 1 to 6, wherein the electric motor is of a direct drive type.
  8.  固定輪である内輪およびこの内輪に転動体を介して回転自在に支持された回転輪である外輪を有し、車両の車輪およびブレーキロータを取付ける車輪取付フランジを前記外輪のアウトボード側端に有する外輪回転型の車輪用軸受と、前記内輪に取付けられたステータおよび前記外輪に取付けられたロータを有する発電機と、を備えた発電機付き車輪用軸受であって、
     前記車両の足回りフレーム部品と前記内輪との間に介在するブラケットを備え、互いに対向する前記ブラケットと前記足回りフレーム部品との当接面に設けられる冷却流路、および前記内輪の内部を冷却する内輪冷却手段のいずれか一方または両方を備えた発電機付き車輪用軸受。
    It has an inner ring that is a fixed ring and an outer ring that is a rotating ring that is rotatably supported by the inner ring via rolling elements, and has a wheel mounting flange for mounting a vehicle wheel and a brake rotor on the outboard side end of the outer ring. A wheel bearing with a generator, comprising: an outer ring rotating type wheel bearing; and a generator having a stator attached to the inner ring and a rotor attached to the outer ring,
    A bracket interposed between the vehicle underbody frame part and the inner ring is provided, and a cooling flow path provided on a contact surface between the bracket and the underbody frame part facing each other and the inside of the inner ring are cooled. A generator-equipped wheel bearing provided with either one or both of the inner ring cooling means.
PCT/JP2022/023985 2021-06-22 2022-06-15 Power device for vehicle and bearing for wheel with power generator WO2022270381A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021103272A JP2023002194A (en) 2021-06-22 2021-06-22 Vehicle power device and wheel bearing with generator
JP2021-103272 2021-06-22

Publications (1)

Publication Number Publication Date
WO2022270381A1 true WO2022270381A1 (en) 2022-12-29

Family

ID=84544850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023985 WO2022270381A1 (en) 2021-06-22 2022-06-15 Power device for vehicle and bearing for wheel with power generator

Country Status (2)

Country Link
JP (1) JP2023002194A (en)
WO (1) WO2022270381A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007269129A (en) * 2006-03-31 2007-10-18 Honda Motor Co Ltd Wheel rotating device of in-wheel motor vehicle
KR101323777B1 (en) * 2012-05-31 2013-10-29 김용환 Motor having motor axle with hole
KR20140044701A (en) * 2012-10-05 2014-04-15 현대모비스 주식회사 In wheel type running gear
JP2018052482A (en) 2016-09-21 2018-04-05 Ntn株式会社 Bearing device for wheel with auxiliary power unit and auxiliary power unit
CN108482105A (en) * 2018-05-22 2018-09-04 刘昱含 Dynamoelectric and power generation integral type outer rotor hub unit and electric vehicle
JP2019119360A (en) 2018-01-09 2019-07-22 Ntn株式会社 Wheel bearing device and vehicle including the same
CN111262360A (en) * 2020-01-21 2020-06-09 同济大学 Labyrinth dynamic seal outer rotor hub motor driving device
JP2020129893A (en) * 2019-02-08 2020-08-27 Ntn株式会社 Dynamo-electric motor, vehicle power device having the dynamo-electric motor, dynamo-electric generator, and bearing for wheel with the dynamo-electric generator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007269129A (en) * 2006-03-31 2007-10-18 Honda Motor Co Ltd Wheel rotating device of in-wheel motor vehicle
KR101323777B1 (en) * 2012-05-31 2013-10-29 김용환 Motor having motor axle with hole
KR20140044701A (en) * 2012-10-05 2014-04-15 현대모비스 주식회사 In wheel type running gear
JP2018052482A (en) 2016-09-21 2018-04-05 Ntn株式会社 Bearing device for wheel with auxiliary power unit and auxiliary power unit
JP2019119360A (en) 2018-01-09 2019-07-22 Ntn株式会社 Wheel bearing device and vehicle including the same
CN108482105A (en) * 2018-05-22 2018-09-04 刘昱含 Dynamoelectric and power generation integral type outer rotor hub unit and electric vehicle
JP2020129893A (en) * 2019-02-08 2020-08-27 Ntn株式会社 Dynamo-electric motor, vehicle power device having the dynamo-electric motor, dynamo-electric generator, and bearing for wheel with the dynamo-electric generator
CN111262360A (en) * 2020-01-21 2020-06-09 同济大学 Labyrinth dynamic seal outer rotor hub motor driving device

Also Published As

Publication number Publication date
JP2023002194A (en) 2023-01-10

Similar Documents

Publication Publication Date Title
JP4450208B2 (en) In-wheel motor
US9636999B2 (en) In-wheel assembly and vehicle with the in-wheel assembly
JP6194750B2 (en) Braking and driving device for vehicle
US20080067882A1 (en) Motor
JP5066925B2 (en) Wheel drive device
JP6508148B2 (en) In-wheel motor unit
US9729026B2 (en) In-wheel motor and in-wheel motor driving device
WO2014069280A1 (en) In-wheel motor drive device
JP7236816B2 (en) Power unit for vehicle and bearing unit for wheel with generator
WO2011108479A1 (en) In-wheel motor drive device and design method therefor
WO2019138965A1 (en) Wheel bearing apparatus and vehicle provided with wheel bearing apparatus
JP2012508671A (en) Electric motor wheel structure
JP2018114834A (en) In-wheel motor drive device
WO2022270381A1 (en) Power device for vehicle and bearing for wheel with power generator
JP2007182194A (en) In-wheel motor
WO2022264877A1 (en) Vehicular power device and vehicle wheel bearing device with power generator
JP6800670B2 (en) In-wheel motor drive
JP7349961B2 (en) Bearings for vehicle power units and wheels with generators
JPH02119550A (en) Motor having cooling device
WO2022137862A1 (en) This semiconductor device comprises: a semiconductor layer having a main surface; a first conductive-type well region formed on a surface layer portion of the main surface of the semiconductor layer; a first conductive-type first impurity region formed on a surface layer portion of the well region and having an inner wall portion; and a second conductive-type annular second impurity region formed on the surface layer portion of the well region inside the inner wall part so as to form a pn junction with the well region.
JP7373545B2 (en) in-wheel motor
WO2023032486A1 (en) In-wheel motor
WO2021095674A1 (en) In-wheel motor drive device
JP2006117124A (en) Wheel structure
WO2024003348A1 (en) Truck axle with direct drive electric motors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22828298

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022828298

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022828298

Country of ref document: EP

Effective date: 20240122

122 Ep: pct application non-entry in european phase

Ref document number: 22828298

Country of ref document: EP

Kind code of ref document: A1