WO2021095674A1 - In-wheel motor drive device - Google Patents

In-wheel motor drive device Download PDF

Info

Publication number
WO2021095674A1
WO2021095674A1 PCT/JP2020/041679 JP2020041679W WO2021095674A1 WO 2021095674 A1 WO2021095674 A1 WO 2021095674A1 JP 2020041679 W JP2020041679 W JP 2020041679W WO 2021095674 A1 WO2021095674 A1 WO 2021095674A1
Authority
WO
WIPO (PCT)
Prior art keywords
casing
holding plate
drive device
stator
motor drive
Prior art date
Application number
PCT/JP2020/041679
Other languages
French (fr)
Japanese (ja)
Inventor
真也 太向
四郎 田村
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2021095674A1 publication Critical patent/WO2021095674A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to an in-wheel motor drive device.
  • the in-wheel motor is known to have a direct method in which the rotational driving force of the motor is directly transmitted to the wheels and a reduction gear combined method in which the rotational driving force of the motor is decelerated by the reduction gear and transmitted to the wheels.
  • an angle sensor for detecting the rotation angle of the motor is further provided.
  • a resolver having excellent resistance to changes in the environment as compared with other sensors is preferably used because of its simple structure.
  • the stator of the resolver is fitted to a bracket constituting the housing case of the motor and fastened and fixed in the axial direction with bolts. Things are known.
  • the resolver stator portion is axially sandwiched between the motor housing (resolver stator portion side mounting portion) and the cover member, and an elastic ring is interposed between the housing and the resolver. It is known that the resolver stator portion is fixed to the housing by tightening and fixing the cover member to the housing with bolts in this state.
  • the resolver is accurately positioned and fixed while avoiding interference between the in-wheel motor drive device and peripheral parts, and excellent detection by the resolver is performed by maintaining this position accuracy. Making it possible to continuously demonstrate performance is a technical issue to be solved.
  • this drive device includes a motor unit that drives the wheels, a wheel bearing unit that rotationally supports the wheels, a resolver that detects the rotation angle of the motor unit, and at least a casing that accommodates the motor unit.
  • An in-wheel motor drive device having a rotor attached to a rotating shaft of a motor unit and a stator attached to a casing, further provided with a holding plate that holds the stator between the casing in the axial direction, and the holding plate is a circle thereof.
  • the in-wheel motor drive device is provided with a holding plate that presses the stator of the resolver in the axial direction between the resolver and the casing, and the holding plate holds the stator at a plurality of positions in the circumferential direction in the axial direction.
  • a plurality of claws to be pressed down and a bolt fixing portion are integrally provided at different positions in the circumferential direction from the claws.
  • the claw portion (or the portion extending from the bolt fixing portion to the claw portion) can be elastically deformed in the axial direction relatively easily. Therefore, as described in Patent Document 2, an elastic ring is formed between the stator and the casing.
  • the stator can be positioned and fixed in the axial direction by absorbing variations in the axial dimensions of the stator, in other words, elastically adjusting the holding position of the stator end surface by the claws without interposing.
  • it is a holding plate it is possible to form a holding plate including a portion that is elastically deformed by a material resistant to vibration such as metal, so that in an environment where vibration peculiar to an in-wheel motor drive device such as unsprung vibration acts.
  • excellent positioning accuracy can be maintained. Therefore, it is possible to continuously and stably exhibit the excellent detection performance of the resolver.
  • the bolt fixing portion can be arranged in the radial direction without interfering with the claw portion. it can.
  • This makes it possible to prevent the outer diameter of the holding plate from increasing, and to prevent the casing and thus the in-wheel motor drive device from becoming larger. Therefore, the resolver can be positioned with high accuracy while avoiding interference between the in-wheel motor drive device and peripheral parts.
  • the stator since the stator can be sandwiched and fixed by bolts, it is not necessary to extend the casing to the outer diameter side in order to provide the fitting and fixing surface as in Patent Document 1. Therefore, this also makes it possible to prevent the casing and thus the in-wheel motor drive device from becoming large in size, and to avoid interference with peripheral parts.
  • a bolt fixing portion may be provided between adjacent claw portions in the circumferential direction of the holding plate.
  • the elastic restoring force can be effectively applied to a plurality of claws with a minimum number of bolt fixing portions. Can be granted. Therefore, according to the above configuration, it is possible to exhibit good positioning performance while further reducing the size of the entire holding plate.
  • the claws may be provided at three or more locations in the circumferential direction of the holding plate.
  • the stator can be reliably pressed in the axial direction without tilting. Therefore, it is possible to stably obtain excellent positioning accuracy.
  • the claw portion and the bolt fixing portion are connected to each other in the circumferential direction of the holding plate via the arm portion, and the arm portion bulges outward in the radial direction of the holding plate. It may have a curved shape as described above.
  • the claw portion and the bolt fixing portion are connected via the arm portion, and the arm portion is curved so as to bulge outward in the radial direction of the holding plate, thereby preventing unnecessary interference with the stator. While avoiding it, it is possible to secure a substantially required distance (distance required for the required elastic deformation) between the claw portion and the bolt fixing portion. Therefore, according to the above configuration, a large elastic deformation can be generated in the arm portion without applying an excessive tightening force, so that it is possible to avoid an increase in the size of the holding plate and easily vary the axial dimensions of the stator. It becomes possible to correspond. In addition, it is possible to obtain sufficient elastic deformation while ensuring the required strength of the holding plate.
  • the portion of the outer peripheral edge of the pressing plate located on the outer peripheral edge of the claw portion may be retracted inward in the radial direction of the pressing plate.
  • the inboard side of the motor portion of the casing accommodating the motor portion is opened, and the rotor of the resolver is attached to the rotating shaft of the motor portion from this opening to attach the stator. Attach to the casing. Then, after the assembly of the resolver is completed, the opening of the casing is closed with a predetermined cover member, and the cover member is fixed to the casing with a bolt or the like.
  • the cover member is fixed to the casing with bolts in this way, the insertion space for the bolts is more radial outside than the outer peripheral edge of the resolver stator (diameter than the outer peripheral edge of the holding plate) in order to avoid interference with the holding plate.
  • the portion of the outer peripheral edge of the pressing plate located on the outer periphery of the claw portion has a shape retracted inward in the radial direction of the pressing plate, so that the retracted portion, that is, the outermost diameter of the pressing plate A bolt insertion space can be provided at a position radially inside the portion. Therefore, while both the holding plate and the cover member can be fixed to the casing by bolting, it is possible to prevent the diameter of the cover member and the casing from increasing.
  • the holding plate may be made of spring steel.
  • any material can be applied to the holding plate as long as it causes the required elastic deformation when it is fixed to the casing with bolts.
  • a steel material is preferable, and among them, a spring steel is preferable. .. Since spring steel has a feature that the elastic range is wider than that of other steel materials, it is possible to relatively easily exert the elastic deformation required for the holding plate while maintaining the strength as the holding plate.
  • the resolver is accurately positioned and fixed while avoiding interference between the in-wheel motor drive device and peripheral parts, and excellent detection by the resolver is achieved by maintaining this position accuracy. It is possible to continuously demonstrate the performance.
  • the first embodiment of the present invention will be described with reference to FIGS. 1 to 5.
  • the side far from the center of the vehicle in the axle direction of the vehicle is referred to as the outboard side
  • the side close to the center of the vehicle is referred to as the inboard side.
  • FIG. 1 is a vertical cross-sectional view of the in-wheel motor drive device 21 as seen by the line QQ of FIG. 2, and FIG. 2 is one of the in-wheel motor drive devices 21 as seen by the line RR of FIG. It is a front view including a partial cross section.
  • the in-wheel motor drive device 21 is arranged inside, for example, a wheel housing 11 (see FIG. 2) that constitutes a drive wheel (wheel) of an electric vehicle, and has a role of transmitting a driving force to the drive wheel. Is responsible for.
  • the in-wheel motor driving device 21 has a motor unit A that generates a rotational driving force and a speed reducer unit that decelerates and outputs the rotational driving force input by the motor unit A.
  • B a bearing portion C for wheels that transmits the output from the speed reducer portion B to the drive wheels, a resolver D that detects the rotation angle of the motor portion A, and a casing 22 that houses at least the motor portion A and the resolver D.
  • the motor unit A, the speed reducer unit B, and the resolver D are housed in the casing 22.
  • the casing 22 has a divided (two-divided or three-divided or more) structure in consideration of the assembling property of the parts.
  • each divided casing is referred to as a first divided casing 22a, a second divided casing 22b, and a third divided casing 22c in this order from the inboard side to the outboard side.
  • the first divided casing 22a located on the most inboard side has an opening on the inboard side, and the opening 22a1 is closed by the cover member 22d.
  • the cover member 22d is attached to the first divided casing 22a by fixing the cover member 22d to the first divided casing 22a with one or more bolts 23.
  • the motor unit A includes a motor stator 24 fixed to a casing 22, a motor rotor 25 arranged so as to face each other on the inner side in the radial direction of the motor stator 24 with a predetermined gap, and a motor rotor 25.
  • a radial gap type motor 27 having a motor rotating shaft 26 arranged inside in the radial direction of the motor rotor 25 and rotating integrally with the motor rotor 25 is provided.
  • the motor 27 can rotate at high speed at, for example, several thousand to several tens of thousands of revolutions per minute.
  • the motor stator 24 is configured by winding a coil 24b around a magnetic core 24a, and the motor rotor 25 is composed of a permanent magnet or the like.
  • the outboard side (left side in FIG. 1) of the motor rotating shaft 26 is rotatably supported by the bearing 28, and the inboard side (right side in FIG. 1) is rotatably supported by the bearing 29 with respect to the casing 22.
  • the pair of bearings 28 and 29 together with the motor 27 constitute the motor unit A.
  • the speed reducer unit B includes an input gear 30, a large-diameter intermediate gear 31, a small-diameter intermediate gear 32, an output gear 33, an input shaft 34, an intermediate shaft 35, and an output shaft 36.
  • the input gear 30 is integrally formed with the hollow input shaft 34
  • the input shaft 34 is spline-fitted (including serration fitting; the same applies hereinafter) to the outboard side end of the motor rotating shaft 26. It is coaxially connected to 26a.
  • the motor rotation shaft 26 and the input shaft 34 rotate around a common rotation center O1.
  • the large-diameter intermediate gear 31 and the small-diameter intermediate gear 32 are integrally formed with the intermediate shaft 35.
  • the large-diameter intermediate gear 31 and the small-diameter intermediate gear 32 rotate around a common center of rotation O2.
  • the output gear 33 is formed integrally with the output shaft 36, and rotates around the rotation center O3 which is the central axis of the output shaft 36.
  • the input shaft 34, the intermediate shaft 35, and the output shaft 36 which are all gear shafts, are arranged in parallel with each other.
  • the input shaft 34 is supported by a pair of bearings 37 and 38
  • the intermediate shaft 35 is supported by a pair of bearings 39 and 40
  • the output shaft 36 is rotated by the pair of bearings 41 and 42 with respect to the casing 22, respectively. It is freely supported.
  • the input gear 30 and the large-diameter intermediate gear 31 mesh with each other, and the small-diameter intermediate gear 32 coaxial with the large-diameter intermediate gear 31 and the output gear 33 mesh with each other. ..
  • the number of teeth of the large-diameter intermediate gear 31 is larger than the number of teeth of either the input gear 30 or the small-diameter intermediate gear 32, and the number of teeth of the output gear 33 is larger than the number of teeth of the small-diameter intermediate gear 32. It is set.
  • the speed reducer unit B has a reduction structure for reducing the rotational kinetic force input from the motor rotation shaft 26 in two stages, and has an input gear 30 and an output gear 33, a large diameter intermediate gear 31 and a small diameter intermediate gear.
  • Reference numeral 32 denotes a power transmission path from the input shaft 34 to the output shaft 36.
  • the rotation center of the intermediate shaft 35 is between the rotation center O1 of the input shaft 34 of the speed reducer unit B and the rotation center O3 of the output shaft 36 forming the axle of the wheel bearing portion C.
  • O2 is arranged so as to form a bent shape.
  • gears can be applied as the input gear 30, the intermediate gears 31 and 32, and the output gear 33 constituting the speed reducer unit B.
  • a helical gear is used.
  • Helical gears are effective in that the number of teeth that mesh with each other increases at the same time and the tooth contact is dispersed, so that the sound is quiet and the torque fluctuation is small.
  • the module of each gear can be set arbitrarily in consideration of the meshing ratio of the gears and the limit rotation speed, but when considering the meshing ratio of the gears and the limit rotation speed, for example, it is about 1 to 3. It is possible to set.
  • the wheel bearing portion C is composed of an inner ring rotation type wheel bearing 43 (see FIG. 1).
  • the wheel bearing 43 includes a pair of bearing inner rings 44, 45 arranged on the outer periphery of the output shaft 36 as an axle, a bearing outer ring 46 arranged on the outer periphery of the bearing inner rings 44, 45, and a bearing inner ring 44, A double-row inner race 47 formed on the outer peripheral surface of the 45, a double-row outer race 48 formed on the inner peripheral surface of the bearing outer ring 46, and a plurality of rolling elements arranged between the inner race 47 and the outer race 48.
  • This is a double-row angular contact ball bearing including a ball 49 as a bearing and a cage (not shown) for holding each ball 49.
  • the bearing outer ring 46 is provided with a flange portion 50 extending outward in the radial direction, and the flange portion 50 is connected to the hub attachment 12 of the suspension connecting member by a bolt 51.
  • the hub attachment 12 is connected to the casing 22 (here, the third divided casing 22c on the outboard side) with a bolt 52 at a position different in the circumferential direction or a different position in the radial direction from the connection position with the flange portion 50, for example. Has been done. As a result, the hub attachment 12 is fixed to the in-wheel motor drive device 21.
  • the bearing inner ring 44 on the outboard side is fixed to the outer circumference of the output shaft 36 as an axle by spline fitting.
  • the bearing inner ring 44 is provided with a flange portion 53 extending outward in the radial direction.
  • the flange portion 53 is a flange for mounting wheels.
  • the brake disc 13 and the wheel 14 of the drive wheel are mounted by the hub bolt 54. .. From the above configuration, the rotational driving force from the motor unit A is transmitted to the drive wheels in a state of being decelerated via the speed reducer unit B.
  • lubricating oil is supplied to each part by an oil pump (for example, a rotary type) (not shown) for cooling the motor part A and lubricating and cooling the speed reducer part B.
  • the inside of the wheel bearing 43 is lubricated with grease.
  • the resolver D is for detecting the rotation angle of the motor 27, and is arranged on the inboard side of the motor 27 as shown in FIG. Specifically, the resolver D includes a resolver rotor 55 attached to the inboard side end portion 26b of the motor rotating shaft 26, and a resolver stator 56 attached to the first partition casing 22a.
  • the resolver rotor 55 is fixed to the outer periphery of the inboard side end portion 26b of the motor rotating shaft 26 by a predetermined means (for example, press-fitting), whereby the resolver rotor 55 can rotate integrally with the motor rotating shaft 26.
  • the resolver stator 56 has an annular shape as a whole, and is formed by laminating, for example, a plurality of disc-shaped steel plates in the thickness direction thereof.
  • One or more coils 57 are wound around the resolver stator 56 (see FIG. 1 for each).
  • the resolver stator 56 is in contact with the stepped portion 22e provided on the inner circumference of the first divided casing 22a. Therefore, in this state, the pressing plate 58 is applied to the resolver stator 56 from the opposite side of the stepped portion 22e, and the bolt 59 is tightened so that the resolver stator 56 is sandwiched between the stepped portion 22e and the pressing plate 58 with axial positioning. Can be fixed.
  • the pressing plate 58 integrates a plurality of claw portions 60 extending inward in the radial direction and a bolt fixing portion 61 for fixing the pressing plate 58 to the first divided casing 22a by bolts 59.
  • the bolt fixing portion 61 is formed with an insertion hole 62 through which the bolt 59 can be inserted (see FIG. 4), and the positions of the fastening hole 22g and the insertion hole 62 provided in the first divided casing 22a.
  • the claw portion 60 and the bolt fixing portion 61 are provided at different positions in the circumferential direction. Further, the claw portion 60 overlaps with the resolver stator 56 in the radial direction and is located radially outside the outer peripheral edge of the coil 57 (separate in the radial direction). On the other hand, the bolt fixing portion 61 is located radially outside the outer peripheral edge of the resolver stator 56. Therefore, in a state where the pressing plate 58 is pressed against the resolver stator 56 by tightening the bolt 59, only the claw portion 60 comes into contact with the resolver stator 56, and the remaining portion of the pressing plate 58 including the bolt fixing portion 61 interferes with the resolver stator 56. Does not occur.
  • both the claw portion 60 and the bolt fixing portion 61 are formed as a part of the holding plate 58.
  • the claw portion 60 and the bolt fixing portion 61 are connected to each other by an arm portion 63 extending in the circumferential direction of the holding plate 58.
  • the axial position of the seat surface 61a of the bolt fixing portion 61 (the surface on the side that comes into contact with the first divided casing 22a) is P1
  • the seat surface 60a of the claw portion 60 (resolver stator 56).
  • the seat surface 60a of the claw portion 60 and the seat surface 61a of the bolt fixing portion 61 may or may not be on the same plane in a state where the pressing plate 58 is not deformed at all.
  • the axle direction position P2 of the seat surface 60a of the claw portion 60 with respect to the axle direction position P1 of the seat surface 61a of the bolt fixing portion 61 is inboard as compared with the state before fixing by the bolt 59. It is important to set the axle direction positions P1 and P2 of the seat surfaces 60a and 61a so as to move reliably to the side.
  • the resolver stator 56 is often formed by laminating a plurality of steel plates in the thickness direction thereof, so that the axial dimensional variation tends to be large (the dimensional tolerance tends to be large). Therefore, for example, even when the actual axial dimension is the lower limit of the tolerance, the pressing plate 58 (arm portion 63) is elastically deformed, and the resolver stator 56 can be reliably pressed in the axial direction by the claw portion 60. As described above, it is desirable to set the axle direction positions P1 and P2 of the seat surfaces 60a and 61a.
  • the arrangement and number of the claws 60 and the bolt fixing portions 61 are arbitrary, but in the present embodiment, the bolt fixing portions 61 are arranged between the claws 60 adjacent to each other in the circumferential direction of the holding plate 58.
  • the claw portions 60 are provided at three locations in the circumferential direction of the pressing plate 58 (that is, the number of the claw portions 60 is three).
  • the holding plate 58 has a shape (C shape) in which a part of the holding plate 58 is missing in the circumferential direction, the three claw portions 60 and the two bolt fixing portions 61 are different from each other in the circumferential direction. It is arranged at the position.
  • the arm portion 63 connecting the claw portion 60 and the bolt fixing portion 61 has a curved shape so as to bulge outward in the radial direction of the holding plate 58 (see FIG. 3).
  • the length of the arm portion 63 can be increased as much as possible without increasing the width direction dimension of the arm portion 63, so that the arm portion 63 can be further elastically deformed.
  • the arm portion 63 is curved so as to bulge toward the outer diameter side, there is no concern that it will interfere with the resolver stator 56.
  • the portion of the outer peripheral edge of the pressing plate 58 located on the outer periphery of the claw portion 60 is retracted inward in the radial direction of the pressing plate 58 (see FIG. 3).
  • the cover member 22d is fixed to the first partition casing 22a with bolts 23. Therefore, by designing the outer peripheral edge shape of the holding plate 58 as described above, the bolt 23 can be provided at a position that is radially inward from the outermost diameter portion (the portion in contact with the circumscribed circle) of the cover member 22d. it can. Therefore, while both the holding plate 58 and the cover member 22d can be fixed to the first divided casing 22a by bolting, it is possible to prevent the diameter of the cover member 22d and the first divided casing 22a from increasing in diameter.
  • the holding plate 58 having the above configuration can be formed of any material, but the holding plate 58 is made of metal, particularly spring steel, in consideration of the elastic deformability of the holding plate 58 when tightening bolts as described above. Is good.
  • the elastic deformability of the arm portion 63 can be adjusted as appropriate, for example, the thickness dimension of the holding plate 58, the length of the arm portion 63, etc. Therefore, depending on the conditions, it is more versatile than resin or the like, not limited to metal. It is also possible to select low cost materials.
  • the in-wheel motor drive device 21 having the above configuration is housed inside the wheel housing 11 (see FIG. 2) and affects the unsprung load, so that it is essential to reduce the size and weight.
  • the resolver stator 56 is provided with a pressing plate 58 for axially pressing the resolver stator 56 with the casing 22 (first divided casing 22a), and the pressing plate 58 is provided.
  • the plate 58 is integrally provided with a plurality of claw portions 60 for axially pressing the resolver stator 56 at a plurality of positions in the circumferential direction, and a bolt fixing portion 61 at different positions in the circumferential direction from the claw portion 60. ..
  • the claws 60 and the bolt fixing portions 61 both of which form a part of the pressing plate 58, at different positions in the circumferential direction of the pressing plate 58, the claws 60 and the bolt fixing portions 61 can be provided.
  • the holding plate 58 can be fixed to the first divided casing 22a with bolts 59 while keeping a sufficient distance.
  • the claw portion 60 or the arm portion 63 which is the connecting portion between the claw portion 60 and the bolt fixing portion 61 can be elastically deformed in the axial direction relatively easily.
  • the holding plate 58 is a kind of plate.
  • the holding plate 58 Since it can function as a spring, it absorbs variations in the axial dimensions of the resolver stator 56 and absorbs variations in the axial dimensions of the resolver stator 56 without interposing an elastic ring between the resolver stator 56 and the first split casing 22a as in the conventional case. 56 can be positioned and fixed in the axial direction. Further, if the holding plate 58 is used, the holding plate 58 including a portion elastically deformed by a material resistant to vibration (mainly the arm portion 63 in this case) can be formed, so that the in-wheel motor driving device 21 such as unsprung vibration can be formed. Excellent positioning accuracy can be maintained even in an environment where peculiar vibration acts. Therefore, it is possible to continuously and stably exhibit the excellent detection performance of the resolver D.
  • a material resistant to vibration mainly the arm portion 63 in this case
  • the bolt fixing portion 61 is radially inside without interfering with the claw portion 60. Can be placed in.
  • the resolver D can be positioned with high accuracy while avoiding interference between the in-wheel motor drive device 21 (particularly, the radial outside of the resolver D mounting portion) and peripheral parts.
  • the resolver stator 56 can be fixed to the first divided casing 22a with the bolt 59, so that the first divided casing 22a is extended to the outer diameter side in order to provide the fitting fixing surface as in the conventional case. You don't even have to. Therefore, this also makes it possible to prevent the first division casing 22a and thus the in-wheel motor drive device 21 from becoming large in size, and to avoid interference with peripheral parts.
  • the in-wheel motor drive device 21 is not limited to the above embodiment, and can take any form within the scope of the present invention.
  • the claw portions 60 are provided at three locations in the circumferential direction of the pressing plate 58 , but of course, this is not limited to this.
  • the claw portion 60 may be provided at two locations in the circumferential direction, or may be provided at four or more locations.
  • the case where the bolt fixing portion 61 is arranged between the claw portions 60 adjacent to each other in the circumferential direction is illustrated, but of course, other arrangement modes can be adopted.
  • the thickness dimension of the claw portion 60 is equal to the thickness dimension of the bolt fixing portion 61 and the arm portion 63 is illustrated, but of course, this is not limited to this.
  • the thickness dimension of the claw portion 60 can be made larger than that of the arm portion 63 (in other words, the thickness dimension of the arm portion 63 can be made smaller than the thickness dimension of the claw portion 60 or the bolt fixing portion 61. It is possible).
  • the thickness of the claw portion 60 may be reduced toward the inside of the pressing plate 58 in the radial direction.
  • the planar shape of the claw portion 60 is not particularly limited, and the claw portion 60 having an arbitrary shape can be adopted as long as a part of the resolver stator 56 in the circumferential direction can be pressed in the axial direction.
  • the case where the arm portion 63 connecting the claw portion 60 and the bolt fixing portion 61 has a curved shape so as to bulge outward in the radial direction of the holding plate 58 has been illustrated (see FIG. 3).
  • the arm portion 63 may have a shape that extends linearly, and the claw portion 60 and the bolt fixing portion 61 may be connected to both ends of the arm portion 63.
  • the claw portion 60, the bolt fixing portion 61, and the arm portion 63 are all integrally formed of the same material, but of course, the present invention is not limited to this.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

The in-wheel motor drive device 21 is provided with: a motor portion A for driving a wheel; a wheel bearing portion C for rotationally supporting the wheel; a resolver D for detecting a rotational angle of the motor portion A; and a casing 22 for housing at least the motor portion A. The resolver D has a rotor 55 attached to the rotational shaft 26 of the motor portion A and a stator 56 attached to the casing 22, and is further provided with a presser plate 58 for pressing the stator 56 in the axial direction between the casing 22 and the presser plate 58. The presser plate 58 integrally has: a plurality of nail portions 60 for pressing the stator 56 in the axial direction at a plurality positions in the circumferential direction thereof; and bolt fixing portions 61 provided at positions different from those of the nail portions 60 in the circumferential direction and fixed to the casing 22 by bolts 59.

Description

インホイールモータ駆動装置In-wheel motor drive
 本発明は、インホイールモータ駆動装置に関する。 The present invention relates to an in-wheel motor drive device.
 インホイールモータには、モータの回転駆動力をダイレクトに車輪に伝達するダイレクト方式と、モータの回転駆動力を減速機で減速して車輪に伝達する減速機併用方式とが知られている。 The in-wheel motor is known to have a direct method in which the rotational driving force of the motor is directly transmitted to the wheels and a reduction gear combined method in which the rotational driving force of the motor is decelerated by the reduction gear and transmitted to the wheels.
 また、この種のインホイールモータには、モータと、減速機と、車輪用軸受と、モータを収容するケーシングとに加えて、モータの回転角度を検知するための角度センサをさらに備えたものが知られている。この場合、上述のモータに適用される角度センサとしては、簡易な構造ゆえに他のセンサに比べて環境の変化に対する耐性に優れたレゾルバが好適に使用されている。 Further, in this type of in-wheel motor, in addition to a motor, a speed reducer, a bearing for wheels, and a casing for accommodating the motor, an angle sensor for detecting the rotation angle of the motor is further provided. Are known. In this case, as the angle sensor applied to the above-mentioned motor, a resolver having excellent resistance to changes in the environment as compared with other sensors is preferably used because of its simple structure.
 ここで、レゾルバをモータに取り付けるための構造としては、例えば特許文献1に記載のように、レゾルバのステータを、モータのハウジングケースを構成するブラケットに嵌合し、ボルトで軸方向に締付け固定したものが知られている。あるいは、特許文献2に記載のように、モータのハウジング(レゾルバステータ部側取付け部)とカバー部材とでレゾルバステータ部を軸方向に挟み込むと共に、ハウジングとレゾルバとの間に弾性リングを介在させた状態でカバー部材をボルトでハウジングに締付け固定することで、レゾルバステータ部をハウジングに固定したものが知られている。 Here, as a structure for attaching the resolver to the motor, for example, as described in Patent Document 1, the stator of the resolver is fitted to a bracket constituting the housing case of the motor and fastened and fixed in the axial direction with bolts. Things are known. Alternatively, as described in Patent Document 2, the resolver stator portion is axially sandwiched between the motor housing (resolver stator portion side mounting portion) and the cover member, and an elastic ring is interposed between the housing and the resolver. It is known that the resolver stator portion is fixed to the housing by tightening and fixing the cover member to the housing with bolts in this state.
特開2001-78393号公報Japanese Unexamined Patent Publication No. 2001-78393 特開2006-280117号公報Japanese Unexamined Patent Publication No. 2006-280117
 ところで、この種のインホイールモータは、車両の足回りに搭載されることから、サスペンション部品やボディ側部品との位置関係を考慮して、その外形やサイズを厳密に設定する必要が生じることがある。例えばモータの回転軸にレゾルバをインホイールモータのインボード側(ここでいうインボード側とは、対象となる車両の車軸方向において車両中央に近い側を意味する)から組付けることを考えたとき、特許文献1に記載のように、レゾルバのステータをケーシングに嵌合で固定しようとすると、ステータの外周面と嵌まり合うための嵌合面(嵌合固定用の内周面)をケーシングに設ける必要があり、この嵌合面の分だけケーシングの外径寸法を大きくとる必要が生じる。これではケーシングの大径化、ひいてはインホイールモータの大径化を招くことになるため、上述した周辺部品との干渉が生じるおそれがあった。 By the way, since this type of in-wheel motor is mounted on the undercarriage of a vehicle, it may be necessary to strictly set its outer shape and size in consideration of the positional relationship with the suspension parts and body side parts. is there. For example, when considering assembling a resolver to the rotating shaft of a motor from the inboard side of the in-wheel motor (the inboard side here means the side closer to the center of the vehicle in the axial direction of the target vehicle). As described in Patent Document 1, when the stator of the resolver is to be fixed to the casing by fitting, the fitting surface (inner peripheral surface for fitting and fixing) for fitting with the outer peripheral surface of the stator is attached to the casing. It is necessary to provide it, and it is necessary to increase the outer diameter of the casing by the amount of the fitting surface. This leads to an increase in the diameter of the casing and eventually an increase in the diameter of the in-wheel motor, which may cause interference with the above-mentioned peripheral parts.
 一方、特許文献2に記載のように、ケーシングとカバー部材とでレゾルバのステータを軸方向で挟み込んだ状態でカバー部材をボルトでケーシングに固定する方法ならば、特許文献1のようにケーシングに嵌合固定のための面を設ける必要がないので、ケーシングひいてはインホイールモータの大径化は防止できる。その一方で、特許文献2に記載の取付け構造のように、ケーシングとステータとの間に弾性リングを介在させた構造をとる場合、振動による弾性リングの劣化、及び劣化によるステータの位置精度の低下が問題となる。すなわち、この種のインホイールモータは、通常、ばね下振動が作用する環境下に適用される。そのため、弾性リングが継続的な振動の作用下で劣化し、ステータの軸方向への押さえ機能が低下することで、ステータの位置精度が低下し、レゾルバの検知精度が低下するおそれがあった。 On the other hand, as described in Patent Document 2, if the cover member is fixed to the casing with bolts while the resolver stator is sandwiched between the casing and the cover member in the axial direction, the cover member is fitted into the casing as in Patent Document 1. Since it is not necessary to provide a surface for joint fixing, it is possible to prevent the casing and thus the in-wheel motor from being increased in diameter. On the other hand, when an elastic ring is interposed between the casing and the stator as in the mounting structure described in Patent Document 2, the elastic ring deteriorates due to vibration and the position accuracy of the stator deteriorates due to the deterioration. Is a problem. That is, this type of in-wheel motor is usually applied in an environment where unsprung vibration acts. Therefore, the elastic ring deteriorates under the action of continuous vibration, and the axial pressing function of the stator is lowered, so that the position accuracy of the stator is lowered and the detection accuracy of the resolver may be lowered.
 以上の事情に鑑み、本明細書では、インホイールモータ駆動装置と周辺部品との干渉を避けつつも、レゾルバを精度よく位置決め固定して、かつこの位置精度を維持することでレゾルバによる優れた検知性能を継続して発揮可能とすることを、解決すべき技術課題とする。 In view of the above circumstances, in the present specification, the resolver is accurately positioned and fixed while avoiding interference between the in-wheel motor drive device and peripheral parts, and excellent detection by the resolver is performed by maintaining this position accuracy. Making it possible to continuously demonstrate performance is a technical issue to be solved.
 前記課題の解決は、本発明に係るインホイールモータ駆動装置によって達成される。すなわちこの駆動装置は、車輪を駆動するモータ部と、車輪を回転支持する車輪用軸受部と、モータ部の回転角を検出するレゾルバと、少なくともモータ部を収容するケーシングとを備え、レゾルバは、モータ部の回転軸に取付けられるロータと、ケーシングに取付けられるステータとを有するインホイールモータ駆動装置であって、ステータをケーシングとの間で軸方向に押さえる押さえ板をさらに備え、押さえ板はその円周方向の複数位置でステータを軸方向に押さえる複数の爪部と、爪部と円周方向で異なる位置に設けられ、ボルトでケーシングに固定されるボルト固定部とを一体的に有する点をもって特徴付けられる。 The solution to the above problems is achieved by the in-wheel motor drive device according to the present invention. That is, this drive device includes a motor unit that drives the wheels, a wheel bearing unit that rotationally supports the wheels, a resolver that detects the rotation angle of the motor unit, and at least a casing that accommodates the motor unit. An in-wheel motor drive device having a rotor attached to a rotating shaft of a motor unit and a stator attached to a casing, further provided with a holding plate that holds the stator between the casing in the axial direction, and the holding plate is a circle thereof. It is characterized by having a plurality of claws that press the stator axially at multiple positions in the circumferential direction and a bolt fixing portion that is provided at different positions in the circumferential direction from the claw and is fixed to the casing with bolts. Attached.
 このように、本発明に係るインホイールモータ駆動装置では、レゾルバのステータをケーシングとの間で軸方向に押さえる押さえ板を備えると共に、当該押さえ板にその円周方向の複数位置でステータを軸方向に押さえる複数の爪部と、爪部と円周方向で異なる位置にボルト固定部とを一体的に設けるようにした。このように、ともに押さえ板の一部をなす複数の爪部とボルト固定部とを押さえ板の円周方向で異なる位置に設けることによって、爪部とボルト固定部との距離を十分にとった状態で、押さえ板をボルトでケーシングに固定することができる。これにより、爪部(又はボルト固定部から爪部に至る部分)を比較的容易に軸方向に弾性変形させることができるので、特許文献2に記載のようにステータとケーシングとの間に弾性リングを介在させずとも、ステータの軸方向寸法のばらつきを吸収して、言い換えると爪部によるステータ端面の押さえ位置を弾力的に調整してステータを軸方向に位置決め固定できる。また、押さえ板であれば例えば金属など、振動に強い材料で弾性変形する部分を含む押さえ板を形成することができるので、ばね下振動などインホイールモータ駆動装置に特有の振動が作用する環境下においても、優れた位置決め精度を維持することができる。従って、レゾルバによる優れた検知性能を継続して安定的に発揮することが可能となる。 As described above, the in-wheel motor drive device according to the present invention is provided with a holding plate that presses the stator of the resolver in the axial direction between the resolver and the casing, and the holding plate holds the stator at a plurality of positions in the circumferential direction in the axial direction. A plurality of claws to be pressed down and a bolt fixing portion are integrally provided at different positions in the circumferential direction from the claws. In this way, by providing a plurality of claws and bolt fixing portions, both of which form a part of the holding plate, at different positions in the circumferential direction of the holding plate, a sufficient distance between the claws and the bolt fixing portions is obtained. In this state, the holding plate can be bolted to the casing. As a result, the claw portion (or the portion extending from the bolt fixing portion to the claw portion) can be elastically deformed in the axial direction relatively easily. Therefore, as described in Patent Document 2, an elastic ring is formed between the stator and the casing. The stator can be positioned and fixed in the axial direction by absorbing variations in the axial dimensions of the stator, in other words, elastically adjusting the holding position of the stator end surface by the claws without interposing. Further, if it is a holding plate, it is possible to form a holding plate including a portion that is elastically deformed by a material resistant to vibration such as metal, so that in an environment where vibration peculiar to an in-wheel motor drive device such as unsprung vibration acts. However, excellent positioning accuracy can be maintained. Therefore, it is possible to continuously and stably exhibit the excellent detection performance of the resolver.
 また、本発明のように、押さえ板の爪部とボルト固定部とを円周方向で異なる位置に設けることによって、ボルト固定部を、爪部と干渉することなく径方向内側に配置することができる。これにより、押さえ板の外径寸法が増大するのを防いで、ケーシングひいてはインホイールモータ駆動装置の大型化を防止することが可能となる。従って、インホイールモータ駆動装置と周辺部品との干渉を避けつつも、レゾルバの位置決めを高精度に行うことができる。もちろん本発明によれば、ボルトでステータを挟持固定することができるので、特許文献1のように嵌合固定面を設けるためにケーシングを外径側に拡張する必要もない。そのため、これによってもケーシングひいてはインホイールモータ駆動装置の大型化を防止して、周辺部品との干渉を避けることが可能となる。 Further, as in the present invention, by providing the claw portion of the holding plate and the bolt fixing portion at different positions in the circumferential direction, the bolt fixing portion can be arranged in the radial direction without interfering with the claw portion. it can. This makes it possible to prevent the outer diameter of the holding plate from increasing, and to prevent the casing and thus the in-wheel motor drive device from becoming larger. Therefore, the resolver can be positioned with high accuracy while avoiding interference between the in-wheel motor drive device and peripheral parts. Of course, according to the present invention, since the stator can be sandwiched and fixed by bolts, it is not necessary to extend the casing to the outer diameter side in order to provide the fitting and fixing surface as in Patent Document 1. Therefore, this also makes it possible to prevent the casing and thus the in-wheel motor drive device from becoming large in size, and to avoid interference with peripheral parts.
 また、本発明に係るインホイールモータ駆動装置においては、ボルト固定部が、押さえ板の円周方向で隣り合う爪部の間に設けられてもよい。 Further, in the in-wheel motor drive device according to the present invention, a bolt fixing portion may be provided between adjacent claw portions in the circumferential direction of the holding plate.
 このように、ボルト固定部を、押さえ板の円周方向で隣り合う爪部の間に設けることによって、複数の爪部に対して最小限の数のボルト固定部で効果的に弾性復元力を付与することができる。そのため、上記構成によれば、押さえ板全体の更なる小型化を図りつつも、良好な位置決め性能を発揮することが可能となる。 In this way, by providing the bolt fixing portions between the claws adjacent to each other in the circumferential direction of the holding plate, the elastic restoring force can be effectively applied to a plurality of claws with a minimum number of bolt fixing portions. Can be granted. Therefore, according to the above configuration, it is possible to exhibit good positioning performance while further reducing the size of the entire holding plate.
 また、この場合、本発明に係るインホイールモータ駆動装置においては、爪部が、押さえ板の円周方向の三箇所以上に設けられてもよい。 Further, in this case, in the in-wheel motor drive device according to the present invention, the claws may be provided at three or more locations in the circumferential direction of the holding plate.
 このように爪部を少なくとも押さえ板の円周方向の三箇所に設けることによって、ステータを傾きなく確実に軸方向に向けて押さえることができる。よって、優れた位置決め精度を安定的に得ることが可能となる。 By providing the claws at least at three locations in the circumferential direction of the pressing plate in this way, the stator can be reliably pressed in the axial direction without tilting. Therefore, it is possible to stably obtain excellent positioning accuracy.
 また、本発明に係るインホイールモータ駆動装置においては、爪部とボルト固定部とは、腕部を介して押さえ板の円周方向で互いに連結され、腕部は押さえ板の径方向外側に膨らむように湾曲した形状をなすものであってもよい。 Further, in the in-wheel motor drive device according to the present invention, the claw portion and the bolt fixing portion are connected to each other in the circumferential direction of the holding plate via the arm portion, and the arm portion bulges outward in the radial direction of the holding plate. It may have a curved shape as described above.
 このように、爪部とボルト固定部とを腕部を介して連結すると共に、この腕部を押さえ板の径方向外側に膨らむように湾曲した形状とすることによって、ステータとの不要な干渉を回避しつつ爪部とボルト固定部との間に実質的に必要な距離(所要の弾性変形に必要な距離)を確保することができる。従って、上記構成によれば、過度な締付け力を加ええずとも腕部に大きな弾性変形を生じさせることができるので、押さえ板の大型化を避けて、ステータの軸方向寸法のばらつきに容易に対応することが可能となる。また、押さえ板に所要の強度を確保しつつも十分な弾性変形を得ることが可能となる。 In this way, the claw portion and the bolt fixing portion are connected via the arm portion, and the arm portion is curved so as to bulge outward in the radial direction of the holding plate, thereby preventing unnecessary interference with the stator. While avoiding it, it is possible to secure a substantially required distance (distance required for the required elastic deformation) between the claw portion and the bolt fixing portion. Therefore, according to the above configuration, a large elastic deformation can be generated in the arm portion without applying an excessive tightening force, so that it is possible to avoid an increase in the size of the holding plate and easily vary the axial dimensions of the stator. It becomes possible to correspond. In addition, it is possible to obtain sufficient elastic deformation while ensuring the required strength of the holding plate.
 また、本発明に係るインホイールモータ駆動装置においては、押さえ板の外周縁のうち、爪部の外周に位置する部分が押さえ板の径方向内側に後退していてもよい。 Further, in the in-wheel motor drive device according to the present invention, the portion of the outer peripheral edge of the pressing plate located on the outer peripheral edge of the claw portion may be retracted inward in the radial direction of the pressing plate.
 レゾルバをインホイールモータに組み込むに際しては、通常、モータ部を収容するケーシングのうちモータ部のインボード側を開口した形状とし、この開口部からモータ部の回転軸にレゾルバのロータを取付け、ステータをケーシングに取付ける。そして、レゾルバの組付けが完了した後、ケーシングの開口部を所定のカバー部材で閉塞し、ボルト等によりカバー部材をケーシングに固定する。このようにボルトでカバー部材をケーシングに固定する場合、ボルトの挿通スペースは、押さえ板との干渉を避けるためにレゾルバステータの外周縁よりもさらに径方向外側(押さえ板の外周縁よりも径方向外側)にせざるを得ず、結果として、ケーシングの大径化を招くといった問題があった。これに対して、本発明では、押さえ板の外周縁のうち爪部の外周に位置する部分が押さえ板の径方向内側に後退した形状としたので、後退した部分、すなわち押さえ板の最外径部よりも径方向内側の位置にボルトの挿通スペースを設けることができる。よって、押さえ板及びカバー部材をともにケーシングにボルト締めで固定できつつも、カバー部材及びケーシングの大径化を防ぐことが可能となる。 When incorporating a resolver into an in-wheel motor, normally, the inboard side of the motor portion of the casing accommodating the motor portion is opened, and the rotor of the resolver is attached to the rotating shaft of the motor portion from this opening to attach the stator. Attach to the casing. Then, after the assembly of the resolver is completed, the opening of the casing is closed with a predetermined cover member, and the cover member is fixed to the casing with a bolt or the like. When the cover member is fixed to the casing with bolts in this way, the insertion space for the bolts is more radial outside than the outer peripheral edge of the resolver stator (diameter than the outer peripheral edge of the holding plate) in order to avoid interference with the holding plate. There is no choice but to use the outer side), and as a result, there is a problem that the diameter of the casing is increased. On the other hand, in the present invention, the portion of the outer peripheral edge of the pressing plate located on the outer periphery of the claw portion has a shape retracted inward in the radial direction of the pressing plate, so that the retracted portion, that is, the outermost diameter of the pressing plate A bolt insertion space can be provided at a position radially inside the portion. Therefore, while both the holding plate and the cover member can be fixed to the casing by bolting, it is possible to prevent the diameter of the cover member and the casing from increasing.
 また、本発明に係るインホイールモータ駆動装置においては、押さえ板は、ばね鋼で形成されていてもよい。 Further, in the in-wheel motor drive device according to the present invention, the holding plate may be made of spring steel.
 押さえ板には、上述のように、ボルトでケーシングに固定した際に所要の弾性変形を生じる限りにおいて任意の材料が適用可能であり、例えば鋼材などが好適であるが、その中でもばね鋼が好ましい。ばね鋼は他の鋼材に比べて弾性域が広いといった特徴を有するため、押さえ板としての強度は保ちつつも、押さえ板に要求される弾性変形を比較的容易に発揮することが可能となる。 As described above, any material can be applied to the holding plate as long as it causes the required elastic deformation when it is fixed to the casing with bolts. For example, a steel material is preferable, and among them, a spring steel is preferable. .. Since spring steel has a feature that the elastic range is wider than that of other steel materials, it is possible to relatively easily exert the elastic deformation required for the holding plate while maintaining the strength as the holding plate.
 以上のように、本発明によれば、インホイールモータ駆動装置と周辺部品との干渉を避けつつも、レゾルバを精度よく位置決め固定して、かつこの位置精度を維持することでレゾルバによる優れた検知性能を継続して発揮することが可能となる。 As described above, according to the present invention, the resolver is accurately positioned and fixed while avoiding interference between the in-wheel motor drive device and peripheral parts, and excellent detection by the resolver is achieved by maintaining this position accuracy. It is possible to continuously demonstrate the performance.
本発明の第一実施形態に係るインホイールモータ駆動装置の断面図で、図2のQ-Q線に沿った断面図である。It is sectional drawing of the in-wheel motor drive device which concerns on 1st Embodiment of this invention, and is sectional drawing along the QQ line of FIG. 図1のR-R線に沿ったインホイールモータ駆動装置の一部断面図である。It is a partial cross-sectional view of the in-wheel motor drive device along the RR line of FIG. 図1中のレゾルバの押さえ構造(カバー部材なし)を矢印Sの向きから見た図である。It is a figure which looked at the holding structure (without a cover member) of a resolver in FIG. 1 from the direction of arrow S. 図3のT-T線に沿ったレゾルバの押さえ構造の断面図である。It is sectional drawing of the holding structure of the resolver along the TT line of FIG. 図1中のレゾルバの押さえ構造(カバー部材あり)を矢印Sの向きから見た図である。It is a figure which looked at the holding structure (with a cover member) of a resolver in FIG. 1 from the direction of arrow S.
 以下、本発明の第一実施形態を図1~図5に基づき説明する。なお、以下の説明では、インホイールモータ駆動装置21を車両に搭載した状態で、車両の車軸方向において車両中央から遠い側をアウトボード側、車両中央に近い側をインボード側と称する。 Hereinafter, the first embodiment of the present invention will be described with reference to FIGS. 1 to 5. In the following description, with the in-wheel motor drive device 21 mounted on the vehicle, the side far from the center of the vehicle in the axle direction of the vehicle is referred to as the outboard side, and the side close to the center of the vehicle is referred to as the inboard side.
 図1は、図2のQ-Q線で矢視したインホイールモータ駆動装置21の縦断面図で、図2は、図1のR-R線で矢視したインホイールモータ駆動装置21の一部断面を含む正面図である。このインホイールモータ駆動装置21は、例えば電気自動車の駆動輪(車輪)を構成するホイールハウジング11(図2を参照)の内部に配設されるもので、当該駆動輪に駆動力を伝達する役割を担うものである。 FIG. 1 is a vertical cross-sectional view of the in-wheel motor drive device 21 as seen by the line QQ of FIG. 2, and FIG. 2 is one of the in-wheel motor drive devices 21 as seen by the line RR of FIG. It is a front view including a partial cross section. The in-wheel motor drive device 21 is arranged inside, for example, a wheel housing 11 (see FIG. 2) that constitutes a drive wheel (wheel) of an electric vehicle, and has a role of transmitting a driving force to the drive wheel. Is responsible for.
 ここでインホイールモータ駆動装置21は、図1及び図2に示すように、回転駆動力を発生させるモータ部Aと、モータ部Aにより入力された回転駆動力を減速して出力する減速機部Bと、減速機部Bからの出力を駆動輪に伝達する車輪用軸受部Cと、モータ部Aの回転角度を検出するレゾルバDと、少なくともモータ部A及びレゾルバDを収容するケーシング22とを備えている。 Here, as shown in FIGS. 1 and 2, the in-wheel motor driving device 21 has a motor unit A that generates a rotational driving force and a speed reducer unit that decelerates and outputs the rotational driving force input by the motor unit A. B, a bearing portion C for wheels that transmits the output from the speed reducer portion B to the drive wheels, a resolver D that detects the rotation angle of the motor portion A, and a casing 22 that houses at least the motor portion A and the resolver D. I have.
 本実施形態では、モータ部Aと減速機部Bと、レゾルバDとがケーシング22に収容されている。ケーシング22は、本実施形態では、図1に示すように、部品の組込み性を考慮して、分割(二分割又は図示の三分割以上)構造としている。この場合、各分割ケーシングをインボード側からアウトボード側にかけて順に第一分割ケーシング22a、第二分割ケーシング22b、及び第三分割ケーシング22cと称する。また、最もインボード側に位置する第一分割ケーシング22aはインボード側に開口しており、この開口部22a1がカバー部材22dにより閉塞される。カバー部材22dの第一分割ケーシング22aへの取付けは、カバー部材22dを一又は複数のボルト23で第一分割ケーシング22aに固定することにより行われる。 In the present embodiment, the motor unit A, the speed reducer unit B, and the resolver D are housed in the casing 22. In the present embodiment, as shown in FIG. 1, the casing 22 has a divided (two-divided or three-divided or more) structure in consideration of the assembling property of the parts. In this case, each divided casing is referred to as a first divided casing 22a, a second divided casing 22b, and a third divided casing 22c in this order from the inboard side to the outboard side. Further, the first divided casing 22a located on the most inboard side has an opening on the inboard side, and the opening 22a1 is closed by the cover member 22d. The cover member 22d is attached to the first divided casing 22a by fixing the cover member 22d to the first divided casing 22a with one or more bolts 23.
 図1に示すように、モータ部Aは、ケーシング22に固定されたモータステータ24と、モータステータ24の半径方向内側に所定の隙間を介して対向するように配置されたモータロータ25と、モータロータ25の半径方向内側に配置されてモータロータ25と一体的に回転するモータ回転軸26とを有するラジアルギャップ型のモータ27を具備する。このモータ27は、例えば毎分数千~数万回転で高速回転可能である。モータステータ24は磁性体コア24aにコイル24bを巻回することによって構成され、モータロータ25は永久磁石等で構成されている。 As shown in FIG. 1, the motor unit A includes a motor stator 24 fixed to a casing 22, a motor rotor 25 arranged so as to face each other on the inner side in the radial direction of the motor stator 24 with a predetermined gap, and a motor rotor 25. A radial gap type motor 27 having a motor rotating shaft 26 arranged inside in the radial direction of the motor rotor 25 and rotating integrally with the motor rotor 25 is provided. The motor 27 can rotate at high speed at, for example, several thousand to several tens of thousands of revolutions per minute. The motor stator 24 is configured by winding a coil 24b around a magnetic core 24a, and the motor rotor 25 is composed of a permanent magnet or the like.
 モータ回転軸26のアウトボード側(図1の左側)は軸受28により、インボード側(図1の右側)は軸受29により、ケーシング22に対してそれぞれ回転自在に支持されている。これら一対の軸受28,29は、モータ27と共にモータ部Aを構成している。 The outboard side (left side in FIG. 1) of the motor rotating shaft 26 is rotatably supported by the bearing 28, and the inboard side (right side in FIG. 1) is rotatably supported by the bearing 29 with respect to the casing 22. The pair of bearings 28 and 29 together with the motor 27 constitute the motor unit A.
 減速機部Bは、図1に示すように、入力歯車30と、大径中間歯車31と、小径中間歯車32と、出力歯車33と、入力軸34と、中間軸35と、出力軸36とを有する。このうち、入力歯車30は中空の入力軸34と一体に形成されており、この入力軸34はスプライン嵌合(セレーション嵌合を含む。以下、同じ)によってモータ回転軸26のアウトボード側端部26aと同軸に連結されている。この場合、モータ回転軸26と入力軸34は共通の回転中心O1まわりに回転するようになっている。大径中間歯車31及び小径中間歯車32は、中間軸35と一体に形成されている。この場合、大径中間歯車31と小径中間歯車32は、共通の回転中心O2まわりに回転するようになっている。また、出力歯車33は、出力軸36と一体に形成されており、出力軸36の中心軸線となる回転中心O3まわりに回転するようになっている。 As shown in FIG. 1, the speed reducer unit B includes an input gear 30, a large-diameter intermediate gear 31, a small-diameter intermediate gear 32, an output gear 33, an input shaft 34, an intermediate shaft 35, and an output shaft 36. Has. Of these, the input gear 30 is integrally formed with the hollow input shaft 34, and the input shaft 34 is spline-fitted (including serration fitting; the same applies hereinafter) to the outboard side end of the motor rotating shaft 26. It is coaxially connected to 26a. In this case, the motor rotation shaft 26 and the input shaft 34 rotate around a common rotation center O1. The large-diameter intermediate gear 31 and the small-diameter intermediate gear 32 are integrally formed with the intermediate shaft 35. In this case, the large-diameter intermediate gear 31 and the small-diameter intermediate gear 32 rotate around a common center of rotation O2. Further, the output gear 33 is formed integrally with the output shaft 36, and rotates around the rotation center O3 which is the central axis of the output shaft 36.
 また、何れも歯車軸となる入力軸34、中間軸35、及び出力軸36は互いに平行に配置されている。このうち、入力軸34は一対の軸受37、38によって支持され、中間軸35は一対の軸受39、40によって支持され、出力軸36は一対の軸受41,42によって、それぞれケーシング22に対して回転自在に支持されている。 Further, the input shaft 34, the intermediate shaft 35, and the output shaft 36, which are all gear shafts, are arranged in parallel with each other. Of these, the input shaft 34 is supported by a pair of bearings 37 and 38, the intermediate shaft 35 is supported by a pair of bearings 39 and 40, and the output shaft 36 is rotated by the pair of bearings 41 and 42 with respect to the casing 22, respectively. It is freely supported.
 また、図1に示すように、減速機部Bでは、入力歯車30と大径中間歯車31とが噛み合うと共に、大径中間歯車31と同軸の小径中間歯車32と出力歯車33とが噛み合っている。この際、大径中間歯車31の歯数は、入力歯車30と小径中間歯車32の何れの歯数よりも多く、出力歯車33の歯数は、小径中間歯車32の歯数よりも多くなるよう設定されている。以上の構成より、減速機部Bは、モータ回転軸26から入力された回転運動力を二段階に減速する減速構造をなし、入力歯車30と出力歯車33、大径中間歯車31と小径中間歯車32は、入力軸34から出力軸36に至る動力伝達経路を構成している。 Further, as shown in FIG. 1, in the speed reducer unit B, the input gear 30 and the large-diameter intermediate gear 31 mesh with each other, and the small-diameter intermediate gear 32 coaxial with the large-diameter intermediate gear 31 and the output gear 33 mesh with each other. .. At this time, the number of teeth of the large-diameter intermediate gear 31 is larger than the number of teeth of either the input gear 30 or the small-diameter intermediate gear 32, and the number of teeth of the output gear 33 is larger than the number of teeth of the small-diameter intermediate gear 32. It is set. From the above configuration, the speed reducer unit B has a reduction structure for reducing the rotational kinetic force input from the motor rotation shaft 26 in two stages, and has an input gear 30 and an output gear 33, a large diameter intermediate gear 31 and a small diameter intermediate gear. Reference numeral 32 denotes a power transmission path from the input shaft 34 to the output shaft 36.
 また、図2に示すように、減速機部Bの入力軸34の回転中心O1と車輪用軸受部Cの車軸をなす出力軸36の回転中心O3との間には、中間軸35の回転中心O2が折れ曲がった形状をなすように配置されている。このように各回転中心O1~O3が互いに近接するように入力軸34と中間軸35、及び出力軸36を配置することにより、インホイールモータ駆動装置21の外周輪郭の小型化を図っている。 Further, as shown in FIG. 2, the rotation center of the intermediate shaft 35 is between the rotation center O1 of the input shaft 34 of the speed reducer unit B and the rotation center O3 of the output shaft 36 forming the axle of the wheel bearing portion C. O2 is arranged so as to form a bent shape. By arranging the input shaft 34, the intermediate shaft 35, and the output shaft 36 so that the rotation centers O1 to O3 are close to each other in this way, the outer contour of the in-wheel motor drive device 21 is miniaturized.
 また、減速機部Bを構成する入力歯車30、各中間歯車31,32、及び出力歯車33としては、公知の種類の歯車が適用可能であり、例えば本実施形態でははすば歯車を用いている。はすば歯車は、同時に噛合う歯数が増え、歯当たりが分散されるので音が静かで、トルク変動が少ない点で有効である。歯車のかみあい率や限界の回転数などを考慮して、各歯車のモジュールについても任意に設定可能であるが、歯車の噛み合い率や限界の回転数などを考慮した場合、例えば1~3程度に設定することが可能である。 Further, known types of gears can be applied as the input gear 30, the intermediate gears 31 and 32, and the output gear 33 constituting the speed reducer unit B. For example, in the present embodiment, a helical gear is used. There is. Helical gears are effective in that the number of teeth that mesh with each other increases at the same time and the tooth contact is dispersed, so that the sound is quiet and the torque fluctuation is small. The module of each gear can be set arbitrarily in consideration of the meshing ratio of the gears and the limit rotation speed, but when considering the meshing ratio of the gears and the limit rotation speed, for example, it is about 1 to 3. It is possible to set.
 車輪用軸受部Cは、本実施形態では内輪回転タイプの車輪用軸受43で構成される(図1を参照)。この車輪用軸受43は、車軸としての出力軸36の外周に配置される一対の軸受内輪44,45と、これら軸受内輪44,45のさらに外周に配置される軸受外輪46と、軸受内輪44,45の外周面に形成された複列のインナレース47と、軸受外輪46の内周面に形成された複列のアウタレース48と、インナレース47とアウタレース48の間に配置された複数の転動体としての玉49と、各玉49を保持する保持器(図示省略)とを備えた複列アンギュラ玉軸受である。 In this embodiment, the wheel bearing portion C is composed of an inner ring rotation type wheel bearing 43 (see FIG. 1). The wheel bearing 43 includes a pair of bearing inner rings 44, 45 arranged on the outer periphery of the output shaft 36 as an axle, a bearing outer ring 46 arranged on the outer periphery of the bearing inner rings 44, 45, and a bearing inner ring 44, A double-row inner race 47 formed on the outer peripheral surface of the 45, a double-row outer race 48 formed on the inner peripheral surface of the bearing outer ring 46, and a plurality of rolling elements arranged between the inner race 47 and the outer race 48. This is a double-row angular contact ball bearing including a ball 49 as a bearing and a cage (not shown) for holding each ball 49.
 また、軸受外輪46には半径方向外側に伸びるフランジ部50が設けられており、このフランジ部50が懸架連結部材のハブアタッチメント12にボルト51で連結されている。また、ハブアタッチメント12は、例えばフランジ部50との連結位置とは円周方向で異なる位置あるいは半径方向で異なる位置でケーシング22(ここではアウトボード側の第三分割ケーシング22c)にボルト52で連結されている。これにより、ハブアタッチメント12がインホイールモータ駆動装置21に固定される。 Further, the bearing outer ring 46 is provided with a flange portion 50 extending outward in the radial direction, and the flange portion 50 is connected to the hub attachment 12 of the suspension connecting member by a bolt 51. Further, the hub attachment 12 is connected to the casing 22 (here, the third divided casing 22c on the outboard side) with a bolt 52 at a position different in the circumferential direction or a different position in the radial direction from the connection position with the flange portion 50, for example. Has been done. As a result, the hub attachment 12 is fixed to the in-wheel motor drive device 21.
 一方、一対の軸受内輪44,45のうちアウトボード側の軸受内輪44は、車軸としての出力軸36の外周にスプライン嵌合により固定されている。この軸受内輪44には、半径方向外側に伸びるフランジ部53が設けられている。このフランジ部53は車輪取付け用のフランジであり、例えば図1に示すように、ブレーキディスク13及び駆動輪のホイール14(何れも図1中の二点鎖線で示される)がハブボルト54で取り付けられる。以上の構成より、モータ部Aからの回転駆動力が、減速機部Bを介して減速された状態で駆動輪に伝達される。 On the other hand, of the pair of bearing inner rings 44 and 45, the bearing inner ring 44 on the outboard side is fixed to the outer circumference of the output shaft 36 as an axle by spline fitting. The bearing inner ring 44 is provided with a flange portion 53 extending outward in the radial direction. The flange portion 53 is a flange for mounting wheels. For example, as shown in FIG. 1, the brake disc 13 and the wheel 14 of the drive wheel (both are shown by the alternate long and short dash line in FIG. 1) are mounted by the hub bolt 54. .. From the above configuration, the rotational driving force from the motor unit A is transmitted to the drive wheels in a state of being decelerated via the speed reducer unit B.
 インホイールモータ駆動装置21では、モータ部Aの冷却や減速機部Bの潤滑および冷却のため、図示しないオイルポンプ(例えば回転式)で潤滑油が各部に供給される。車輪用軸受43の軸受内部はグリースにより潤滑される。 In the in-wheel motor drive device 21, lubricating oil is supplied to each part by an oil pump (for example, a rotary type) (not shown) for cooling the motor part A and lubricating and cooling the speed reducer part B. The inside of the wheel bearing 43 is lubricated with grease.
 レゾルバDは、モータ27の回転角度を検出するためのもので、図1に示すように、モータ27のインボード側に配設される。詳細には、レゾルバDは、モータ回転軸26のインボード側端部26bに取付けられるレゾルバロータ55と、第一分割ケーシング22aに取付けられるレゾルバステータ56とを有する。ここでレゾルバロータ55は、所定の手段(例えば圧入)でモータ回転軸26のインボード側端部26b外周に固定され、これによりモータ回転軸26と一体に回転可能とされる。 The resolver D is for detecting the rotation angle of the motor 27, and is arranged on the inboard side of the motor 27 as shown in FIG. Specifically, the resolver D includes a resolver rotor 55 attached to the inboard side end portion 26b of the motor rotating shaft 26, and a resolver stator 56 attached to the first partition casing 22a. Here, the resolver rotor 55 is fixed to the outer periphery of the inboard side end portion 26b of the motor rotating shaft 26 by a predetermined means (for example, press-fitting), whereby the resolver rotor 55 can rotate integrally with the motor rotating shaft 26.
 レゾルバステータ56は全体として環状をなすもので、例えば複数の円盤状鋼板をその厚み方向に積層してなる。レゾルバステータ56には一又は複数のコイル57が巻き付けられている(何れも図1を参照)。この場合、レゾルバステータ56は、図4に示すように、第一分割ケーシング22aの内周に設けた段差部22eに当接している。よって、この状態で段差部22eの反対側から押さえ板58をレゾルバステータ56に当て、ボルト59を締め付けることにより、レゾルバステータ56が軸方向の位置決めを伴って段差部22eと押さえ板58とで挟持固定され得る。なお、段差部22eよりもインボード側の内周面22fは、レゾルバステータ56に対して径方向の位置決めが可能な程度のはめ合いを有するようにその内径寸法を調整するのがよい。なお、図4においては、レゾルバロータ55とモータ回転軸26の双方を省略している。 The resolver stator 56 has an annular shape as a whole, and is formed by laminating, for example, a plurality of disc-shaped steel plates in the thickness direction thereof. One or more coils 57 are wound around the resolver stator 56 (see FIG. 1 for each). In this case, as shown in FIG. 4, the resolver stator 56 is in contact with the stepped portion 22e provided on the inner circumference of the first divided casing 22a. Therefore, in this state, the pressing plate 58 is applied to the resolver stator 56 from the opposite side of the stepped portion 22e, and the bolt 59 is tightened so that the resolver stator 56 is sandwiched between the stepped portion 22e and the pressing plate 58 with axial positioning. Can be fixed. It is preferable to adjust the inner diameter of the inner peripheral surface 22f on the inboard side of the step portion 22e so that the inner peripheral surface 22f has a fitting that allows positioning in the radial direction with respect to the resolver stator 56. In FIG. 4, both the resolver rotor 55 and the motor rotating shaft 26 are omitted.
 押さえ板58は、図3に示すように、径方向内側に延びる複数の爪部60と、ボルト59により第一分割ケーシング22aに押さえ板58を固定可能とするためのボルト固定部61とを一体的に有する。この場合、ボルト固定部61には、ボルト59を挿通可能な挿通穴62が形成されており(図4を参照)、第一分割ケーシング22aに設けられた締結穴22gと挿通穴62との位置を合わせた状態でボルト59を挿通し、締め付けることで、押さえ板58の円周方向複数位置に設けられた爪部60でレゾルバステータ56を軸方向に押さえ可能としている。 As shown in FIG. 3, the pressing plate 58 integrates a plurality of claw portions 60 extending inward in the radial direction and a bolt fixing portion 61 for fixing the pressing plate 58 to the first divided casing 22a by bolts 59. Have a target. In this case, the bolt fixing portion 61 is formed with an insertion hole 62 through which the bolt 59 can be inserted (see FIG. 4), and the positions of the fastening hole 22g and the insertion hole 62 provided in the first divided casing 22a. By inserting and tightening the bolts 59 in the same state, the resolver stator 56 can be pressed in the axial direction by the claws 60 provided at a plurality of positions in the circumferential direction of the pressing plate 58.
 爪部60とボルト固定部61とは互いに円周方向で異なる位置に設けられている。また、爪部60はレゾルバステータ56と径方向で重複し、かつコイル57の外周縁よりも径方向外側に位置している(径方向に離れている)。一方、ボルト固定部61はレゾルバステータ56の外周縁よりも径方向外側に位置している。そのため、ボルト59の締付けにより押さえ板58をレゾルバステータ56に押し付けた状態において、爪部60のみがレゾルバステータ56と当接し、ボルト固定部61を含む押さえ板58の残部とレゾルバステータ56との干渉は生じない。 The claw portion 60 and the bolt fixing portion 61 are provided at different positions in the circumferential direction. Further, the claw portion 60 overlaps with the resolver stator 56 in the radial direction and is located radially outside the outer peripheral edge of the coil 57 (separate in the radial direction). On the other hand, the bolt fixing portion 61 is located radially outside the outer peripheral edge of the resolver stator 56. Therefore, in a state where the pressing plate 58 is pressed against the resolver stator 56 by tightening the bolt 59, only the claw portion 60 comes into contact with the resolver stator 56, and the remaining portion of the pressing plate 58 including the bolt fixing portion 61 interferes with the resolver stator 56. Does not occur.
 本実施形態では、爪部60とボルト固定部61はともに押さえ板58の一部として形成されている。そして、爪部60とボルト固定部61とは、押さえ板58の円周方向に延びる腕部63で相互に連結されている。ここで、図4に示すように、ボルト固定部61の座面61a(第一分割ケーシング22aと当接する側の表面)の車軸方向位置をP1、爪部60の座面60a(レゾルバステータ56の軸方向端面と当接する側の表面)の車軸方向位置P2としたとき、これら座面60a,61aの車軸方向位置P1,P2は、以下に述べるような条件を満たすように設定されるのがよい。すなわち、押さえ板58が何らの変形も生じていない状態における爪部60の座面60aとボルト固定部61の座面61aは同一平面上にあっても無くてもかまわないが、押さえ板58をボルト59でケーシング22aに固定したときに、ボルト固定部61の座面61aの車軸方向位置P1に対する爪部60の座面60aの車軸方向位置P2がボルト59による固定前の状態と比べてインボード側に確実に移動するように、各座面60a,61aの車軸方向位置P1,P2を設定することが肝要である。レゾルバステータ56は、上述のように、複数の鋼板をその厚み方向に積層してなることが多いために、どうしても軸方向寸法のばらつきが大きくなりやすい(寸法公差が大きくなりやすい)。そのため、例えば実際の軸方向寸法が公差の下限であった場合においても押さえ板58(の腕部63)が弾性変形を生じて爪部60によりレゾルバステータ56を軸方向に確実に押さえることができるように、各座面60a,61aの車軸方向位置P1,P2を設定することが望ましい。 In the present embodiment, both the claw portion 60 and the bolt fixing portion 61 are formed as a part of the holding plate 58. The claw portion 60 and the bolt fixing portion 61 are connected to each other by an arm portion 63 extending in the circumferential direction of the holding plate 58. Here, as shown in FIG. 4, the axial position of the seat surface 61a of the bolt fixing portion 61 (the surface on the side that comes into contact with the first divided casing 22a) is P1, and the seat surface 60a of the claw portion 60 (resolver stator 56). When the axle direction position P2 of the surface on the side that comes into contact with the axial end surface) is set, the axle direction positions P1 and P2 of these seat surfaces 60a and 61a should be set so as to satisfy the following conditions. .. That is, the seat surface 60a of the claw portion 60 and the seat surface 61a of the bolt fixing portion 61 may or may not be on the same plane in a state where the pressing plate 58 is not deformed at all. When fixed to the casing 22a with the bolt 59, the axle direction position P2 of the seat surface 60a of the claw portion 60 with respect to the axle direction position P1 of the seat surface 61a of the bolt fixing portion 61 is inboard as compared with the state before fixing by the bolt 59. It is important to set the axle direction positions P1 and P2 of the seat surfaces 60a and 61a so as to move reliably to the side. As described above, the resolver stator 56 is often formed by laminating a plurality of steel plates in the thickness direction thereof, so that the axial dimensional variation tends to be large (the dimensional tolerance tends to be large). Therefore, for example, even when the actual axial dimension is the lower limit of the tolerance, the pressing plate 58 (arm portion 63) is elastically deformed, and the resolver stator 56 can be reliably pressed in the axial direction by the claw portion 60. As described above, it is desirable to set the axle direction positions P1 and P2 of the seat surfaces 60a and 61a.
 なお、爪部60とボルト固定部61の配置、個数は原則として任意であるが、本実施形態では、押さえ板58の円周方向で隣り合う爪部60の間にボルト固定部61が配設されている。また、爪部60は押さえ板58の円周方向の三箇所に設けられている(すなわち爪部60の個数は三つ)。図示例では、押さえ板58はその円周方向の一部が欠けた形状(C形状)をなしているので、三つの爪部60と、二つのボルト固定部61とが互いに円周方向の異なる位置に配設されている。 In principle, the arrangement and number of the claws 60 and the bolt fixing portions 61 are arbitrary, but in the present embodiment, the bolt fixing portions 61 are arranged between the claws 60 adjacent to each other in the circumferential direction of the holding plate 58. Has been done. Further, the claw portions 60 are provided at three locations in the circumferential direction of the pressing plate 58 (that is, the number of the claw portions 60 is three). In the illustrated example, since the holding plate 58 has a shape (C shape) in which a part of the holding plate 58 is missing in the circumferential direction, the three claw portions 60 and the two bolt fixing portions 61 are different from each other in the circumferential direction. It is arranged at the position.
 また、本実施形態では、爪部60とボルト固定部61とを連結する腕部63が、押さえ板58の径方向外側に膨らむように湾曲した形状をなしている(図3を参照)。これにより、腕部63の幅方向寸法を大きくすることなく腕部63の長さを極力大きくとることができるので、腕部63をさらに弾性変形させ易くなる。また、外径側に膨らむように腕部63を湾曲させているので、レゾルバステータ56と干渉する心配もない。 Further, in the present embodiment, the arm portion 63 connecting the claw portion 60 and the bolt fixing portion 61 has a curved shape so as to bulge outward in the radial direction of the holding plate 58 (see FIG. 3). As a result, the length of the arm portion 63 can be increased as much as possible without increasing the width direction dimension of the arm portion 63, so that the arm portion 63 can be further elastically deformed. Further, since the arm portion 63 is curved so as to bulge toward the outer diameter side, there is no concern that it will interfere with the resolver stator 56.
 また、本実施形態では、押さえ板58の外周縁のうち爪部60の外周に位置する部分が押さえ板58の径方向内側に後退している(図3を参照)。ここで、図1に示すように、カバー部材22dは第一分割ケーシング22aにボルト23で固定される。そのため、押さえ板58の外周縁形状を上述のように設計することにより、ボルト23をカバー部材22dの最外径部(外接円と接する部分)よりも径方向内側に寄せた位置に設けることができる。よって、押さえ板58及びカバー部材22dをともに第一分割ケーシング22aにボルト締めで固定できつつも、カバー部材22d及び第一分割ケーシング22aの大径化を防ぐことが可能となる。 Further, in the present embodiment, the portion of the outer peripheral edge of the pressing plate 58 located on the outer periphery of the claw portion 60 is retracted inward in the radial direction of the pressing plate 58 (see FIG. 3). Here, as shown in FIG. 1, the cover member 22d is fixed to the first partition casing 22a with bolts 23. Therefore, by designing the outer peripheral edge shape of the holding plate 58 as described above, the bolt 23 can be provided at a position that is radially inward from the outermost diameter portion (the portion in contact with the circumscribed circle) of the cover member 22d. it can. Therefore, while both the holding plate 58 and the cover member 22d can be fixed to the first divided casing 22a by bolting, it is possible to prevent the diameter of the cover member 22d and the first divided casing 22a from increasing in diameter.
 上記構成の押さえ板58は任意の材料で形成することができるが、上述のように押さえ板58のボルト締付け時における弾性変形性を考慮した場合、押さえ板58を金属、特にばね鋼で形成するのがよい。もちろん、腕部63の弾性変形性は、例えば押さえ板58の厚み寸法、腕部63の長さなどを適宜調整することも可能であるから、条件によっては、金属に限らず樹脂などより汎用で低コストな材料を選択することも可能である。 The holding plate 58 having the above configuration can be formed of any material, but the holding plate 58 is made of metal, particularly spring steel, in consideration of the elastic deformability of the holding plate 58 when tightening bolts as described above. Is good. Of course, the elastic deformability of the arm portion 63 can be adjusted as appropriate, for example, the thickness dimension of the holding plate 58, the length of the arm portion 63, etc. Therefore, depending on the conditions, it is more versatile than resin or the like, not limited to metal. It is also possible to select low cost materials.
 上記構成のインホイールモータ駆動装置21は、ホイールハウジング11(図2を参照)の内部に収容され、ばね下荷重に影響するため、小型軽量化が必須である。上述した平行軸歯車式の減速機部Bをモータ部Aと組み合わせることで、低トルクかつ高回転型でありかつ小型のモータ27を使用することが可能となる。これにより、コンパクトなインホイールモータ駆動装置21を実現することができ、ばね下重量を抑えて走行安定性およびNVH特性に優れた電気自動車を得ることができる。 The in-wheel motor drive device 21 having the above configuration is housed inside the wheel housing 11 (see FIG. 2) and affects the unsprung load, so that it is essential to reduce the size and weight. By combining the parallel shaft gear type speed reducer unit B described above with the motor unit A, it is possible to use a motor 27 having a low torque, a high rotation speed, and a small size. As a result, a compact in-wheel motor drive device 21 can be realized, and an electric vehicle having excellent running stability and NVH characteristics can be obtained by suppressing the unsprung weight.
 また、本発明に係るインホイールモータ駆動装置21においては、上述したように、レゾルバステータ56をケーシング22(第一分割ケーシング22a)との間で軸方向に押さえる押さえ板58を備えると共に、この押さえ板58にその円周方向の複数位置でレゾルバステータ56を軸方向に押さえる複数の爪部60と、爪部60と円周方向で異なる位置にボルト固定部61とを一体的に設けるようにした。このように、ともに押さえ板58の一部をなす複数の爪部60とボルト固定部61とを押さえ板58の円周方向で異なる位置に設けることによって、爪部60とボルト固定部61との距離を十分にとった状態で、押さえ板58をボルト59で第一分割ケーシング22aに固定することができる。これにより、爪部60又は爪部60とボルト固定部61との連結部分となる腕部63を比較的容易に軸方向に弾性変形させることができるので、言い換えると、押さえ板58を一種の板ばねとして機能させることができるので、従来のようにレゾルバステータ56と第一分割ケーシング22aとの間に弾性リングを介在させずとも、レゾルバステータ56の軸方向寸法のばらつきを吸収して、レゾルバステータ56を軸方向に位置決め固定できる。また、押さえ板58であれば振動に強い材料で弾性変形する部分(ここでは主に腕部63)を含む押さえ板58を形成することができるので、ばね下振動などインホイールモータ駆動装置21に特有の振動が作用する環境下においても、優れた位置決め精度を維持することができる。従って、レゾルバDによる優れた検知性能を継続して安定的に発揮することが可能となる。 Further, in the in-wheel motor drive device 21 according to the present invention, as described above, the resolver stator 56 is provided with a pressing plate 58 for axially pressing the resolver stator 56 with the casing 22 (first divided casing 22a), and the pressing plate 58 is provided. The plate 58 is integrally provided with a plurality of claw portions 60 for axially pressing the resolver stator 56 at a plurality of positions in the circumferential direction, and a bolt fixing portion 61 at different positions in the circumferential direction from the claw portion 60. .. In this way, by providing the plurality of claws 60 and the bolt fixing portions 61, both of which form a part of the pressing plate 58, at different positions in the circumferential direction of the pressing plate 58, the claws 60 and the bolt fixing portions 61 can be provided. The holding plate 58 can be fixed to the first divided casing 22a with bolts 59 while keeping a sufficient distance. As a result, the claw portion 60 or the arm portion 63 which is the connecting portion between the claw portion 60 and the bolt fixing portion 61 can be elastically deformed in the axial direction relatively easily. In other words, the holding plate 58 is a kind of plate. Since it can function as a spring, it absorbs variations in the axial dimensions of the resolver stator 56 and absorbs variations in the axial dimensions of the resolver stator 56 without interposing an elastic ring between the resolver stator 56 and the first split casing 22a as in the conventional case. 56 can be positioned and fixed in the axial direction. Further, if the holding plate 58 is used, the holding plate 58 including a portion elastically deformed by a material resistant to vibration (mainly the arm portion 63 in this case) can be formed, so that the in-wheel motor driving device 21 such as unsprung vibration can be formed. Excellent positioning accuracy can be maintained even in an environment where peculiar vibration acts. Therefore, it is possible to continuously and stably exhibit the excellent detection performance of the resolver D.
 また、本発明のように、押さえ板58の爪部60とボルト固定部61とを円周方向で異なる位置に設けることによって、ボルト固定部61を、爪部60と干渉することなく径方向内側に配置することができる。これにより、押さえ板58の外径寸法が増大するのを防いで、第一分割ケーシング22aひいてはインホイールモータ駆動装置21の大型化を防止することが可能となる。従って、インホイールモータ駆動装置21(特にレゾルバD取付け部の径方向外側)と周辺部品との干渉を避けつつも、レゾルバDの位置決めを高精度に行うことができる。もちろん本発明によれば、ボルト59でレゾルバステータ56を第一分割ケーシング22aに固定することができるので、従来のように嵌合固定面を設けるために第一分割ケーシング22aを外径側に拡張する必要もない。そのため、これによっても第一分割ケーシング22aひいてはインホイールモータ駆動装置21の大型化を防止して、周辺部品との干渉を避けることが可能となる。 Further, as in the present invention, by providing the claw portion 60 of the holding plate 58 and the bolt fixing portion 61 at different positions in the circumferential direction, the bolt fixing portion 61 is radially inside without interfering with the claw portion 60. Can be placed in. As a result, it is possible to prevent the outer diameter of the holding plate 58 from increasing, and to prevent the first division casing 22a and thus the in-wheel motor drive device 21 from becoming larger. Therefore, the resolver D can be positioned with high accuracy while avoiding interference between the in-wheel motor drive device 21 (particularly, the radial outside of the resolver D mounting portion) and peripheral parts. Of course, according to the present invention, the resolver stator 56 can be fixed to the first divided casing 22a with the bolt 59, so that the first divided casing 22a is extended to the outer diameter side in order to provide the fitting fixing surface as in the conventional case. You don't even have to. Therefore, this also makes it possible to prevent the first division casing 22a and thus the in-wheel motor drive device 21 from becoming large in size, and to avoid interference with peripheral parts.
 以下、本発明の一実施形態を説明したが、このインホイールモータ駆動装置21は上記実施形態には限定されず、本発明の範囲内で任意の形態をとることが可能である。 Hereinafter, an embodiment of the present invention has been described, but the in-wheel motor drive device 21 is not limited to the above embodiment, and can take any form within the scope of the present invention.
 例えば上記実施形態では、爪部60が押さえ板58の円周方向の三箇所に設けられた場合を例示したが、もちろんこれには限られない。爪部60の円周方向の二箇所に設けてもよく、あるいは四箇所以上に設けてもよい。また、上記実施形態では、円周方向で隣り合う爪部60の間にボルト固定部61を配設した場合を例示したが、もちろんこれ以外の配置態様をとることも可能である。 For example, in the above embodiment, the case where the claw portions 60 are provided at three locations in the circumferential direction of the pressing plate 58 is illustrated, but of course, this is not limited to this. The claw portion 60 may be provided at two locations in the circumferential direction, or may be provided at four or more locations. Further, in the above embodiment, the case where the bolt fixing portion 61 is arranged between the claw portions 60 adjacent to each other in the circumferential direction is illustrated, but of course, other arrangement modes can be adopted.
 また、上記実施形態では、爪部60の厚み寸法がボルト固定部61及び腕部63の厚み寸法に等しい場合を例示したが、もちろんこれには限られない。例えば爪部60の厚み寸法を腕部63よりも大きくすることも可能である(言い方を変えると、腕部63の厚み寸法を爪部60又はボルト固定部61の厚み寸法よりも小さくすることも可能である)。あるいは、爪部60の厚み寸法を押さえ板58の径方向内側に向かうにつれて減少させた形状とすることも可能である。さらには爪部60の平面形状についても特に制限はなく、レゾルバステータ56の円周方向の一部を軸方向に押さえ可能な限りにおいて任意の形状の爪部60を採用することができる。 Further, in the above embodiment, the case where the thickness dimension of the claw portion 60 is equal to the thickness dimension of the bolt fixing portion 61 and the arm portion 63 is illustrated, but of course, this is not limited to this. For example, the thickness dimension of the claw portion 60 can be made larger than that of the arm portion 63 (in other words, the thickness dimension of the arm portion 63 can be made smaller than the thickness dimension of the claw portion 60 or the bolt fixing portion 61. It is possible). Alternatively, the thickness of the claw portion 60 may be reduced toward the inside of the pressing plate 58 in the radial direction. Further, the planar shape of the claw portion 60 is not particularly limited, and the claw portion 60 having an arbitrary shape can be adopted as long as a part of the resolver stator 56 in the circumferential direction can be pressed in the axial direction.
 また、上記実施形態では、爪部60とボルト固定部61とを連結する腕部63が押さえ板58の径方向外側に膨らむように湾曲した形状をなす場合を例示したが(図3を参照)、もちろんこれ以外の形状をとることも可能である。例えば図示は省略するが、腕部63を直線的に延びる形状とし、腕部63の両端に爪部60とボルト固定部61とが連結される構造としてもよい。 Further, in the above embodiment, the case where the arm portion 63 connecting the claw portion 60 and the bolt fixing portion 61 has a curved shape so as to bulge outward in the radial direction of the holding plate 58 has been illustrated (see FIG. 3). Of course, it is also possible to take other shapes. For example, although not shown, the arm portion 63 may have a shape that extends linearly, and the claw portion 60 and the bolt fixing portion 61 may be connected to both ends of the arm portion 63.
 また、上記実施形態では、爪部60とボルト固定部61、及び腕部63を何れも同一の材料で一体に形成した場合を例示したが、もちろんこれには限定されない。例えば爪部60を押さえ板58本体とは別体に形成し、腕部63の端部に爪部60を取り付けた構造をとることも可能である。 Further, in the above embodiment, the case where the claw portion 60, the bolt fixing portion 61, and the arm portion 63 are all integrally formed of the same material has been illustrated, but of course, the present invention is not limited to this. For example, it is possible to form the claw portion 60 separately from the main body of the holding plate 58, and to adopt a structure in which the claw portion 60 is attached to the end portion of the arm portion 63.
11  ホイールハウジング
12  ハブアタッチメント
13  ブレーキディスク
14  ホイール
21  インホイールモータ駆動装置
22  ケーシング
22a,22b,22c 分割ケーシング
22d カバー部材
23  ボルト
24  モータステータ
25  モータロータ
26  モータ回転軸
27  モータ
30  入力歯車
31,32 中間歯車
33  出力歯車
34  入力軸
35  中間軸
36  出力軸
28,29,37,38,39,40,41,42 軸受
43  車輪用軸受
44,45 軸受内輪
46  軸受外輪
50,53 フランジ部
55  レゾルバロータ
56  レゾルバステータ
57  コイル
58  押さえ板
59  ボルト
60  爪部
61  ボルト固定部
62  挿通穴
63  腕部
A   モータ部
B   減速機部
C   車輪用軸受部
D   レゾルバ
P1,P2 車軸方向位置
11 Wheel housing 12 Hub attachment 13 Brake disc 14 Wheel 21 In-wheel motor drive 22 Casing 22a, 22b, 22c Divided casing 22d Cover member 23 Bolt 24 Motor stator 25 Motor rotor 26 Motor rotating shaft 27 Motor 30 Input gear 31, 32 Intermediate gear 33 Output gear 34 Input shaft 35 Intermediate shaft 36 Output shaft 28, 29, 37, 38, 39, 40, 41, 42 Bearing 43 Wheel bearing 44, 45 Bearing inner ring 46 Bearing outer ring 50, 53 Flange 55 Resolver rotor 56 Resolver Stator 57 Coil 58 Holding plate 59 Bolt 60 Claw part 61 Bolt fixing part 62 Insertion hole 63 Arm part A Motor part B Reducer part C Wheel bearing part D Resolver P1, P2 Axle position

Claims (6)

  1.  車輪を駆動するモータ部と、前記車輪を回転支持する車輪用軸受部と、前記モータ部の回転角を検出するレゾルバと、少なくとも前記モータ部を収容するケーシングとを備え、 前記レゾルバは、前記モータ部の回転軸に取付けられるロータと、前記ケーシングに取付けられるステータとを有するインホイールモータ駆動装置であって、
     前記ステータを前記ケーシングとの間で軸方向に押さえる押さえ板をさらに備え、
     前記押さえ板はその円周方向の複数位置で前記ステータを軸方向に押さえる複数の爪部と、前記爪部と円周方向で異なる位置に設けられ、ボルトで前記ケーシングに固定されるボルト固定部とを一体的に有するインホイールモータ駆動装置。
    A motor unit for driving the wheels, a wheel bearing unit for rotationally supporting the wheels, a resolver for detecting the rotation angle of the motor unit, and a casing accommodating at least the motor unit are provided, and the resolver is the motor. An in-wheel motor drive device having a rotor attached to a rotating shaft of a unit and a stator attached to the casing.
    Further provided with a holding plate that presses the stator in the axial direction between the stator and the casing.
    The holding plate has a plurality of claws that press the stator axially at a plurality of positions in the circumferential direction, and a bolt fixing portion that is provided at different positions in the circumferential direction from the claw and is fixed to the casing with bolts. An in-wheel motor drive device that integrally has.
  2.  前記ボルト固定部は、前記押さえ板の円周方向で隣り合う前記爪部の間に設けられている請求項1に記載のインホイールモータ駆動装置。 The in-wheel motor drive device according to claim 1, wherein the bolt fixing portion is provided between the claw portions adjacent to each other in the circumferential direction of the holding plate.
  3.  前記前記爪部は、前記押さえ板の円周方向の三箇所以上に設けられている請求項1又は2に記載のインホイールモータ駆動装置。 The in-wheel motor drive device according to claim 1 or 2, wherein the claws are provided at three or more locations in the circumferential direction of the holding plate.
  4.  前記爪部と前記ボルト固定部とは、腕部を介して前記押さえ板の円周方向で互いに連結され、
     前記腕部は前記押さえ板の径方向外側に膨らむように湾曲した形状をなす請求項1~3の何れか一項に記載のインホイールモータ駆動装置。
    The claw portion and the bolt fixing portion are connected to each other in the circumferential direction of the holding plate via the arm portion.
    The in-wheel motor drive device according to any one of claims 1 to 3, wherein the arm portion has a shape curved so as to bulge outward in the radial direction of the holding plate.
  5.  前記押さえ板の外周縁のうち、前記爪部の外周に位置する部分が前記押さえ板の径方向内側に後退している請求項1~4の何れか一項に記載のインホイールモータ駆動装置。 The in-wheel motor drive device according to any one of claims 1 to 4, wherein a portion of the outer peripheral edge of the holding plate located on the outer periphery of the claw portion is retracted inward in the radial direction of the holding plate.
  6.  前記押さえ板は、ばね鋼で形成されている請求項1~5の何れか一項に記載のインホイールモータ駆動装置。 The in-wheel motor drive device according to any one of claims 1 to 5, wherein the holding plate is made of spring steel.
PCT/JP2020/041679 2019-11-12 2020-11-09 In-wheel motor drive device WO2021095674A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-204752 2019-11-12
JP2019204752A JP2021075201A (en) 2019-11-12 2019-11-12 In-wheel motor driving device

Publications (1)

Publication Number Publication Date
WO2021095674A1 true WO2021095674A1 (en) 2021-05-20

Family

ID=75899351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/041679 WO2021095674A1 (en) 2019-11-12 2020-11-09 In-wheel motor drive device

Country Status (2)

Country Link
JP (1) JP2021075201A (en)
WO (1) WO2021095674A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5593685A (en) * 1979-01-08 1980-07-16 Shibaura Eng Works Ltd Brush unit
JP2002165403A (en) * 2000-11-20 2002-06-07 Fujitsu General Ltd Electric motor
JP2006187130A (en) * 2004-12-28 2006-07-13 Hitachi Ltd Electric power steering system using winding lead-acid battery, and motor and inverter device used therefor
JP2007104764A (en) * 2005-09-30 2007-04-19 Jatco Ltd Drive apparatus in hybrid vehicle
JP2008148451A (en) * 2006-12-11 2008-06-26 Mitsuba Corp Electric motor and method of assembling same
JP2013201878A (en) * 2012-02-24 2013-10-03 Nissan Motor Co Ltd Mechano-electric motor and assembly method of mechano-electric motor
JP2016135005A (en) * 2015-01-20 2016-07-25 多摩川精機株式会社 Resolver
CN210327344U (en) * 2019-06-26 2020-04-14 苏州朗高电机有限公司 Fixing structure of rotary transformer stator for new energy automobile

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5593685A (en) * 1979-01-08 1980-07-16 Shibaura Eng Works Ltd Brush unit
JP2002165403A (en) * 2000-11-20 2002-06-07 Fujitsu General Ltd Electric motor
JP2006187130A (en) * 2004-12-28 2006-07-13 Hitachi Ltd Electric power steering system using winding lead-acid battery, and motor and inverter device used therefor
JP2007104764A (en) * 2005-09-30 2007-04-19 Jatco Ltd Drive apparatus in hybrid vehicle
JP2008148451A (en) * 2006-12-11 2008-06-26 Mitsuba Corp Electric motor and method of assembling same
JP2013201878A (en) * 2012-02-24 2013-10-03 Nissan Motor Co Ltd Mechano-electric motor and assembly method of mechano-electric motor
JP2016135005A (en) * 2015-01-20 2016-07-25 多摩川精機株式会社 Resolver
CN210327344U (en) * 2019-06-26 2020-04-14 苏州朗高电机有限公司 Fixing structure of rotary transformer stator for new energy automobile

Also Published As

Publication number Publication date
JP2021075201A (en) 2021-05-20

Similar Documents

Publication Publication Date Title
US8002060B2 (en) Vehicle wheel driving apparatus and electric motor
JP5709373B2 (en) In-wheel motor drive device
EP2808581B1 (en) Wheel driving apparatus
JP5685111B2 (en) Electric vehicle drive
JP5778433B2 (en) In-wheel motor drive device
JP5690153B2 (en) In-wheel motor drive device
WO2011108329A1 (en) In-wheel motor driven device
WO2012120651A1 (en) Drive device for electric vehicle
WO2013047695A1 (en) Bearing device for wheel with built-in in-wheel motor
WO2015064407A1 (en) In-wheel motor and in-wheel motor driving device
WO2012120650A1 (en) Drive device for electric vehicle
JP6781608B2 (en) In-wheel motor drive
WO2021095678A1 (en) In-wheel motor drive device
WO2014168031A1 (en) In-wheel motor unit for vehicles
WO2021095674A1 (en) In-wheel motor drive device
JP4567616B2 (en) Electric motor
JP2014206193A (en) Drive unit
JP2016151321A (en) In-wheel motor drive device
WO2018083809A1 (en) Motor drive device for vehicle
WO2017098853A1 (en) In-wheel motor drive device
WO2018083810A1 (en) In-wheel motor drive device
JP2012097903A (en) In-wheel motor driving device
WO2019065712A1 (en) In-wheel motor drive device
JP2017032006A (en) In-wheel motor drive unit
JP5830133B2 (en) In-wheel motor drive device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20888587

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20888587

Country of ref document: EP

Kind code of ref document: A1