WO2022137862A1 - This semiconductor device comprises: a semiconductor layer having a main surface; a first conductive-type well region formed on a surface layer portion of the main surface of the semiconductor layer; a first conductive-type first impurity region formed on a surface layer portion of the well region and having an inner wall portion; and a second conductive-type annular second impurity region formed on the surface layer portion of the well region inside the inner wall part so as to form a pn junction with the well region. - Google Patents

This semiconductor device comprises: a semiconductor layer having a main surface; a first conductive-type well region formed on a surface layer portion of the main surface of the semiconductor layer; a first conductive-type first impurity region formed on a surface layer portion of the well region and having an inner wall portion; and a second conductive-type annular second impurity region formed on the surface layer portion of the well region inside the inner wall part so as to form a pn junction with the well region. Download PDF

Info

Publication number
WO2022137862A1
WO2022137862A1 PCT/JP2021/041431 JP2021041431W WO2022137862A1 WO 2022137862 A1 WO2022137862 A1 WO 2022137862A1 JP 2021041431 W JP2021041431 W JP 2021041431W WO 2022137862 A1 WO2022137862 A1 WO 2022137862A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
liquid refrigerant
electric machine
rotary electric
coil end
Prior art date
Application number
PCT/JP2021/041431
Other languages
French (fr)
Japanese (ja)
Inventor
哲也 須藤
暁史 高橋
誠 伊藤
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2022137862A1 publication Critical patent/WO2022137862A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/173Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil

Definitions

  • the present invention relates to a rotary electric machine and a vehicle.
  • Patent Document 1 An in-wheel motor built into a wheel is known for a rotary electric machine equipped with a stator fixed to a stator case and a rotor fixed to a rotor case rotatably joined to the stator case via bearings.
  • Patent Document 1 describes an in-wheel motor system in which a reservoir tank containing a coolant is arranged outside the in-wheel motor, and the reservoir tank and the gap between the stator and the rotor are communicated by a pipe. It has been disclosed.
  • the present invention aims to extend the life of bearings of rotary electric machines.
  • the rotary electric machine can rotate the stator core in which a plurality of coils are wound, the stator case that supports the stator core, and the stator core through a gap.
  • a rotor core arranged in, a rotor case that supports the rotor core, and a first bearing and a second bearing that connect the stator case and the rotor case are provided, and the first bearing and the second bearing are rolled.
  • the moving body and the coil end portion of the coil are arranged in a liquid refrigerant path in which the liquid refrigerant is housed, the gap is a first flow path through which the liquid refrigerant flows in the axial direction, and the first bearing is the first bearing.
  • the second bearing is arranged on the liquid refrigerant inlet side of the first flow path, the second bearing is arranged on the liquid refrigerant outlet side of the first flow path, and the inner diameter of the second bearing is larger than the inner diameter of the first bearing. It is a rotary electric machine.
  • the bearing of a rotary electric machine can be extended in life.
  • the schematic diagram which shows the structure of the vehicle which concerns on 1st Embodiment.
  • the exploded perspective view which shows the structure of the electric wheel which concerns on 1st Embodiment.
  • the schematic cross-sectional view which shows the structure of the in-wheel motor which concerns on 1st Embodiment.
  • Partial sectional perspective view which shows the structure of the in-wheel motor which concerns on 2nd Embodiment.
  • the perspective view of the annular flow path of the liquid refrigerant passage which concerns on 2nd Embodiment.
  • FIG. 6 is a partial cross-sectional view showing the configuration of an in-wheel motor according to a fourth embodiment. Explanatory drawing of thrust force in comparative example. The explanatory view of the thrust force in the in-wheel motor which concerns on 4th Embodiment.
  • FIG. 6 is a partial cross-sectional view showing the configuration of an in-wheel motor according to a fifth embodiment.
  • FIG. 1 is a schematic view showing the configuration of a vehicle 1000 according to the first embodiment of the present invention.
  • the vehicle 1000 of the present embodiment includes a vehicle body frame 1010, a battery base 1020 arranged inside the vehicle body frame 1010, a battery 1030 mounted on the battery base 1020, and wheels (front wheels). And rear wheels).
  • Each wheel left and right front wheels and left and right rear wheels
  • the inverter 150 is mounted on the electric wheel 200.
  • Each electric wheel 200 is connected to the battery 1030 by the power cable PL.
  • the inverter 150 converts the DC power supplied from the battery 1030 into AC power and supplies it to the in-wheel motor 50 mounted on the electric wheel 200.
  • the in-wheel motor 50 mounted on the electric wheel 200 of the present embodiment has a high torque density. Therefore, the in-wheel motor 50 can directly drive the wheels of the vehicle 1000. That is, in the present embodiment, it is possible to make the vehicle 1000 gearless, that is, to directly drive the wheels.
  • the vehicle 1000 has the same running performance as a vehicle equipped with a gasoline engine.
  • the vehicle 1000 can operate at a constant speed of 50 km in an urban area.
  • the acceleration performance is equal to or better than that of a vehicle equipped with a gasoline engine.
  • the size of the electric wheel 200 of this embodiment will be described.
  • Wheel size is usually expressed in terms of rim diameter.
  • the rim diameter is shown in inches.
  • the electric wheel 200 has, for example, a rim diameter of 14 inches (355.6 mm), 15 inches (381 mm), 16 inches (406.4 mm), 17 inches (431.8 mm), 18 inches (457.2 mm), and 19 inches. It can be mounted on a (482.6 mm) or 20 inch (508 mm) wheel.
  • the electric wheel 200 having a wheel having a rim diameter of 19 inches (482.6 mm) and a rim width of 8.5 inches (21.6 mm) will be described.
  • FIG. 2 shows an exploded perspective view of the electric wheel 200.
  • the electric wheel 200 of the present embodiment includes a wheel 100 to which a tire is attached and an in-wheel motor 50 attached to the wheel 100.
  • a disc brake 106 that generates a braking force for braking the wheel is attached to the electric wheel 200.
  • the electric wheel 200 is attached to the vehicle body frame 1010 via the suspension device 110.
  • the suspension device 110 has a knuckle 107 fixed to the in-wheel motor 50 and a lower arm 108 rotatably attached to the knuckle 107.
  • the suspension device 110 includes a shock absorber 109a rotatably connected to the knuckle 107, and a spring 109b attached between the shock absorber 109a and the support member provided on the vehicle body frame 1010.
  • a hub bearing HUB that supports the wheel is arranged near the wheel axle AX of the wheel 100.
  • the stator 2 is joined to the wheel via the hub bearing HUB.
  • Part of the weight of the vehicle body is supported by the suspension device 110 including the knuckle 107 via the wheel 100, the hub bearing HUB, and the stator 2.
  • the suspension device 110 including the knuckle 107 via the wheel 100, the hub bearing HUB, and the stator 2.
  • main parts for driving the electric wheel 200 are housed.
  • the in-wheel motor 50 mounted on the electric wheel 200 is supplied with a liquid refrigerant for cooling each component constituting the in-wheel motor 50.
  • the liquid refrigerant is supplied into the in-wheel motor 50 by a pump (not shown) provided outside the electric wheel 200.
  • the pipe through which the liquid refrigerant flows is taken out from the side surface of the electric wheel 200 on the vehicle body side, and is connected to a heat exchanger (not shown) arranged at the front portion of the vehicle body.
  • the liquid refrigerant is cooled by an air-cooled or water-cooled heat exchanger.
  • FIG. 3 shows a schematic cross-sectional view of the in-wheel motor 50.
  • FIG. 3 shows the arrangement relationship of the main structural parts of the in-wheel motor 50, for example, the stator core 2X, the rotor core 4X, the gap 7, the first bearing 11A, and the second bearing 11B.
  • the periphery of the hub bearing HUB of the in-wheel motor 50 and the structure of the oil seal are not shown.
  • the in-wheel motor 50 includes a stator 2 and a rotor 4.
  • the stator 2 includes a cylindrical stator core 2X, a plurality of coils 2Z wound around the stator core 2X, and a main body 2C that supports the stator core 2X.
  • the rotor 4 includes a rotor core 4X rotatably arranged with respect to the stator core 2X via a gap 7, and a rotor case 4W that supports the rotor core 4X.
  • a plurality of slots (not shown) parallel to the central axis direction of the stator core 2X are formed on the outer peripheral portion of the stator core 2X.
  • the plurality of slots are formed at equal intervals in the circumferential direction of the stator core 2X.
  • the coil 2Z is accommodated in the slot.
  • Teeth 2T is formed between the slots (see FIGS. 6 and 7).
  • the plurality of teeth 2T are integrated with the annular core back 2Q (see FIG. 6). That is, the stator core 2X is a core in which a plurality of teeth 2T and a core back 2Q are integrally molded.
  • a split core is used in the circumferential direction.
  • the teeth 2T guides the rotating magnetic field generated by the coil 2Z to the rotor core 4X, and generates a rotational torque in the rotor core 4X.
  • Coil 2Z is formed by connecting a plurality of conductor pieces.
  • the conductor piece is formed by punching a plate of a low resistance conductor such as copper.
  • the coil 2Z may be formed by a flat wire having a rectangular cross section.
  • the coil 2Z is accommodated in the slot of the stator core 2X in a layered manner in the radial direction.
  • the radial direction refers to the radial direction of a cylindrical rotary electric machine.
  • the axial direction refers to the rotating shaft on which the rotor 4 of the rotary electric machine rotates.
  • the circumferential direction refers to the circumferential direction of the stator 2 or the rotor 4 having a cylindrical shape.
  • the rotary electric machine refers to an in-wheel motor that can be incorporated in a wheel.
  • the coil 2Z has an in-slot conductor arranged in the slot of the stator core 2X, and a coil end portion protruding from both ends of the stator core 2X to the outside of the slot.
  • the coil end portion arranged on one end side (outside the vehicle) of the stator core 2X is referred to as the first coil end portion 2ZA
  • the coil end portion arranged on the other end side (vehicle body side) of the stator core 2X is referred to as the second coil end portion 2ZB. It is written as.
  • the first coil end portion 2ZA and the second coil end portion 2ZB generate heat during the operation of the in-wheel motor 50 and become hot.
  • the first coil end portion 2ZA and the second coil end portion 2ZB are arranged in the liquid refrigerant passage 15 in which the liquid refrigerant is housed, and are cooled by the liquid refrigerant.
  • the stator 2 includes a cylindrical main body 2C, a first end bracket 2A fixed to an opening on one end side of the main body 2C, and a second end bracket 2B fixed to an opening on the other end side of the main body 2C.
  • the stator core 2X is shrink-fitted to the outer peripheral portion of the main body 2C, and is fitted and fixed by press fitting or the like.
  • the main body 2C is formed by a die casting method using a light metal such as aluminum or magnesium alloy, for example.
  • the main body 2C may be formed by a layered manufacturing method such as a 3D printer molding method.
  • the degree of freedom in the shape of the main body 2C is improved.
  • the inside of the main body 2C is a space, and the inverter 150 is accommodated.
  • a motor unit having an integrated mechanical and electrical structure is formed in which the in-wheel motor 50 and the inverter (power conversion device) are integrated.
  • the main body 2C, the first end bracket 2A, and the second end bracket 2B are also referred to as a stator case 2W.
  • a plurality of permanent magnets are fixed to the rotor core 4X.
  • the permanent magnet forms the field pole of the rotor 4.
  • the rotor 4 rotates about the wheel shaft by guiding the rotating magnetic field generated by the coil 2Z.
  • the rotor case 4W has a bottomed cylindrical case body 4C and an end bracket 4B fixed to the opening of the case body 4C.
  • the case body 4C has a cylindrical portion 4CH and a disk-shaped bottom portion 4CD provided on one end side of the tubular portion.
  • the rotor core 4X is shrink-fitted into the inner peripheral portion of the case body 4C, and is fitted and fixed by press fitting or the like. That is, the case body 4C rotates together with the rotor core 4X.
  • the case body 4C is formed of, for example, a light metal such as aluminum die-cast and a lightweight structural material such as carbon fiber reinforced plastic (CFRP).
  • CFRP carbon fiber reinforced plastic
  • the case body 4C is formed by an integral molding method having high processing accuracy such as a tub-shaped die casting method.
  • the fixed portion 4MA of the first bearing 11A By integrally molding the fixed portion 4MA of the first bearing 11A to the fixed portion 4MB of the second bearing 11B, it is easier to secure the dimensional accuracy between the fixed portions of the bearing 11 as compared with the assembled product. This makes it possible to realize a narrow gap. It is preferable that the parts are manufactured by die-casting aluminum without bolting or gluing. Alternatively, it may be manufactured by carving from one material.
  • the bottom 4CD of the case body 4C can be formed in a split type in relation to the allowable dimensional accuracy and rigidity, and the ease of assembling the parts to be used.
  • the first bearing 11A and the second bearing 11B connecting the outer peripheral portion of the main body 2C and the case main body 4C are arranged between the outer peripheral portion of the main body 2C and the inner peripheral portion of the case main body 4C. Since the first bearing 11A and the second bearing 11B have different diameter sizes but the same configuration, the first bearing 11A and the second bearing 11B are collectively referred to as the bearing 11 below. Further, the rolling element 10A of the first bearing 11A and the rolling element 10B of the second bearing 11B are collectively referred to as a rolling element 10.
  • the first bearing 11A is arranged on one end side in the axial direction of the stator core 2X (right side in the drawing), and the second bearing 11B is arranged on the other end side in the axial direction of the stator core 2X (left side in the drawing).
  • a fixed portion 2LA into which the inner ring of the first bearing 11A is gap-fitted is formed on one end side in the axial direction of the main body 2C, and a second axial end side of the outer peripheral portion of the main body 2C is formed.
  • a fixed portion 2LB is formed in which the inner ring of the two bearings 11B is gap-fitted.
  • a fixing portion 4MA to which the outer ring of the first bearing 11A is press-fitted and fixed is formed on one end side in the axial direction of the case body 4C, and the outer ring of the second bearing 11B is press-fitted and fixed to the other end side in the axial direction of the case body 4C.
  • the fixed portion 4MB to be formed is formed.
  • the weight of the rotor 4 itself is not applied. This is because, as described above, the weight of the vehicle body is transmitted to the wheel axle AX via the hub bearing HUB and is finally supported by the suspension device 110.
  • the rotor 4 may have rigidity that is not deformed by the rotational torque.
  • a first oil seal (not shown) is placed between the first end bracket 2A and the bottom 4CD, and a second oil seal (not shown) is placed between the second end bracket 2B and the end bracket 4B.
  • the in-wheel motor 50 is assembled, for example, as follows. First, the first bearing 11A is press-fitted and fixed to the fixing portion 4MA of the case body 4C of the rotor case 4W. After that, the stator 2 is inserted into the case main body 4C, and the fixing portion 2LA on the outer peripheral portion of the main body 2C is fitted to the inner ring of the first bearing 11A.
  • the second bearing 11B is fitted between the fixing portion 4MB of the case main body 4C and the fixing portion 2LB of the main body 2C.
  • the stator 2 is assembled to the case body 4C.
  • the liquid refrigerant passage 15 of this embodiment will be described.
  • a liquid refrigerant passage 15 is formed between the stator 2 and the rotor 4.
  • the liquid refrigerant passage 15 has an outer internal passage 15A formed between the gap 7 between the stator core 2X and the rotor core 4X, the bottom portion 4CD of the case body 4C of the rotor case 4W, and the axial end portion of the main body 2C.
  • the liquid refrigerant passage 15 includes an inner internal passage 15B formed between the end bracket 4B of the rotor case 4W and the stator case 2W, the bearing internal 11AS of the first bearing 11A, and the bearing internal 11BS of the second bearing 11B. And have. This is because the rotor case 4W is rotatably arranged with respect to the stator 2. Therefore, the rolling elements 10 of the first bearing 11A and the second bearing 11B and the coil end portion of the coil 2Z are arranged in the liquid refrigerant passage 15 in which the liquid refrigerant is housed.
  • the liquid refrigerant passage 15 corresponds to the above-mentioned first flow path.
  • the gap 7 is a narrow space where the stator core 2X and the rotor core 4X face each other.
  • the rotating magnetic field generated by the stator core 2X acts electromagnetically on the rotor core 4X through the gap 7, and generates torque in the rotor 4.
  • liquid refrigerant not air, is accommodated in the gap 7 of the in-wheel motor 50 to cool the periphery of the gap 7.
  • the outer inner passage 15A is arranged between the bottom 4CD on the outside (outside of the vehicle) of the case body 4C and the first end bracket 2A.
  • a first oil seal is arranged between the bottom 4CD and the first end bracket 2A (not shown).
  • the inner internal passage 15B is a space between the bottom 4CD of the rotor case 4W and the stator case 2W located inside the rotor case 4W (on the vehicle body side).
  • a second oil seal is arranged between the bottom 4CD and the second end bracket 2B (not shown).
  • the outer inner passage 15A and the inner inner passage 15B have a thin donut-shaped structure centered on the wheel shaft of the in-wheel motor 51.
  • the liquid refrigerant is housed inside the outer inner passage 15A and the inner inner passage 15B.
  • the bearing 11 is arranged between the stator 2 and the case body 4C.
  • the bearing inner 11AS and 11BS are spaces formed between the inner ring and the outer ring of the bearing (see FIG. 8).
  • the rolling element 10 is arranged inside the bearing inner 11AS and 11BS.
  • the bearing inner 11AS, the gap 7, and the outer inner passage 15A of the first bearing 11A communicate with each other.
  • the bearing internal 11BS, the gap 7, and the inner internal passage 15B of the second bearing 11B communicate with each other. In this way, the outer inner passage 15A, the gap 7, and the inner inner passage 15B are all communicated with each other through the bearing inner 11AS and 11BS of the bearing 11.
  • the rolling elements 10 of the bearing 11 and the outer rings 10A OR and 10B OR rotate with respect to the stator 2 fixed to the vehicle body frame 1010 as the case body 4C rotates (see FIG. 8). Since the bearing internal 11AS and 11BS of the bearing 11 communicate with the liquid refrigerant passage 15, the rolling elements 10 of the bearing internal 11AS and 11BS are in contact with the liquid refrigerant. Therefore, the rolling element 10 is directly cooled by the liquid refrigerant. Some liquid refrigerants rotate in the circumferential direction as the bearing 11 rotates. As described above, the bearing internal 11AS and 11BS are configured as a part of the liquid refrigerant passage 15. In this way, the liquid refrigerant is accommodated in the plurality of spaces, that is, the liquid refrigerant passage 15 including the gap 7, the outer inner passage 15A, the inner inner passage 15B, the bearing inner 11AS, and 11BS.
  • the bearing interiors 11AS and 11BS are only filled with the liquid refrigerant.
  • the liquid refrigerant at least lubricates and cools the rolling elements 10.
  • the space filled with the above liquid refrigerant is referred to as a liquid refrigerant passage 15.
  • a supply through hole for supplying the liquid refrigerant to the inside of the in-wheel motor 50 is provided at one place directly under the first coil end portion 2ZA. ..
  • the outside of the supply through hole is the external intake 13A, and the inside is the liquid refrigerant inlet 14A.
  • the liquid refrigerant inlet 14A is connected to the liquid refrigerant passage 15 near the first coil end portion 2ZA.
  • a discharge through hole for discharging the liquid refrigerant supplied from the liquid refrigerant inlet 14A to the inside of the in-wheel motor 50 to the outside is provided at one place directly under the second coil end portion 2ZB.
  • the outside of the discharge through hole is the external outlet 13B, and the inside is the liquid refrigerant outlet 14B.
  • the distance between the first bearing 11A and the first coil end portion 2ZA is longer than the distance between the liquid refrigerant inlet 14A and the first coil end portion 2ZA, and the distance between the second bearing 11B and the second coil end portion 2ZB is longer.
  • the distance between them is set to be longer than the distance between the liquid refrigerant outlet 14B and the second coil end portion 2ZB.
  • the external intake 13A and the external outlet 13B are provided at positions shifted by about 180 degrees in the circumferential direction.
  • the external intake 13A and the external outlet 13B may be arranged in reverse.
  • a modified example of the arrangement configuration can be considered, such as the positional relationship between the liquid refrigerant outlet 14B and the liquid refrigerant inlet 14A being substantially the same position (about 0 degrees) in the circumferential direction or substantially opposite positions (about 180 degrees).
  • the liquid refrigerant is accommodated in the gap 7 communicating inside the in-wheel motor 50, the bearing inner 11AS, 11BS (see FIG. 8), the outer inner passage 15A, the inner inner passage 15B, and the like.
  • a first oil seal for separating the inner and outer spaces and sealing the liquid refrigerant is provided between the bottom 4CD on the rotor side and the first end bracket 2A on the stator side. It is placed in between.
  • a second oil seal for separating the inner and outer spaces and sealing the liquid refrigerant is provided in the end bracket 4B on the rotor side and the second end bracket on the stator side. It is placed between 2B.
  • a pipe may be connected to the external intake 13A, the external outlet 13B may be opened, and the liquid refrigerant may be supplied until the inside is filled.
  • a pipe or a hose is connected to the external outlet 13B to form a circulation path with a heat exchanger or the like.
  • Pressure is applied to the liquid refrigerant by the pump and supplied to the liquid refrigerant passage 15.
  • the liquid refrigerant flows through the liquid refrigerant passage 15, further exits from the liquid refrigerant outlet 14B and the external outlet 13B, and circulates with the external heat exchanger.
  • the liquid refrigerant supplied from the liquid refrigerant inlet 14A to the inside of the in-wheel motor 50 becomes a liquid refrigerant flow 15R from the first coil end portion 2ZA toward the second coil end portion 2ZB and flows inside the gap 7.
  • the space of the gap 7 through which the liquid refrigerant flows in the axial direction is the liquid refrigerant passage 15.
  • the external inlet 13A and the external outlet 13B are provided near the first coil end portion 2ZA and the second coil end portion 2ZB, respectively, with respect to the liquid refrigerant passage 15. That is, the external inlet 13A and the external outlet 13B are provided in the space on the inner peripheral side of the main body 2C.
  • the external heat exchanger (not shown) and the external connection port 13 are connected by a pipe or a hose.
  • the liquid refrigerant passage 15 is formed so that each rolling element (ball) 10 of the two bearings 11 arranged between the stator 2 and the rotor case 4W is in contact with the liquid refrigerant.
  • the rolling element 10 of the bearing 11 moves in the circumferential direction while rotating at the bearing inner portions 11AS and 11BS along the rotation direction of the case body 4C. Therefore, the liquid refrigerant in the vicinity of the rolling element 10 in the bearing inner portions 11AS and 11BS moves in the circumferential direction in the same manner as the rolling element 10.
  • the liquid refrigerant in the bearing inner 11AS and 11BS absorbs frictional heat and the like generated by the rolling element 10 itself.
  • the liquid refrigerant contained in the outer inner passage 15A and the inner inner passage 15B hardly moves significantly in the axial direction inside the in-wheel motor 50.
  • the liquid refrigerant is drawn to the end bracket 4B or the bottom 4CD in contact with the liquid refrigerant.
  • the liquid refrigerant contained in the outer inner passage 15A and the inner inner passage 15B rotates to some extent in the circumferential direction. In that case, heat is dissipated from the liquid refrigerant to the outside via the bottom 4CD and the end bracket 4B.
  • the liquid refrigerant passage 15 has a function of efficiently cooling the in-wheel motor 50 having a high output.
  • the liquid refrigerant flows in a fixed direction from the first coil end portion 2ZA to the second coil end portion 2ZB through the thin cylindrical gap 7.
  • the liquid refrigerant cools the stator core 2X, the rotor core 4X, and the like.
  • the in-wheel motor 50 of the present embodiment outputs a high torque by passing a large current through the coil 2Z. Therefore, since the coil 2Z generates heat due to the Joule loss, the temperatures of the coil 2Z and the stator core 2X tend to rise as compared with the rotor core 4X.
  • the liquid refrigerant is continuously flowed in the gap 7 between the stator core 2X and the rotor core 4X.
  • the liquid refrigerant is taken in from the external intake 13A and supplied to the inside of the liquid refrigerant passage 15 from the liquid refrigerant inlet 14A. Since the liquid refrigerant is sent by a pump placed outside, the liquid refrigerant has a relatively higher pressure at the position of the liquid refrigerant inlet 14A than the liquid refrigerant outlet 14B side.
  • the liquid refrigerant continuously flows in the cylindrical gap 7 in the axial direction.
  • the liquid refrigerant can continuously absorb the heat generated in the vicinity of the stator core 2X and the coil 2Z and exhaust the heat to the outside.
  • the liquid refrigerant flows through the cylindrical gap 7 from the first coil end portion 2ZA to the second coil end portion 2ZB. Due to this flow of the liquid refrigerant, the liquid refrigerant absorbs the heat generated by the stator core 2X and the like, the temperature of the liquid refrigerant rises, and the temperature of the liquid refrigerant near the second bearing 11B rises, whereby the temperature of the second bearing 11B rises. It becomes higher than the temperature of the first bearing 11A.
  • the internal gap of the second bearing 11B becomes relatively smaller than the internal gap of the first bearing 11A due to thermal expansion. ..
  • the life of the second bearing 11B may be shorter than the life of the first bearing 11A due to the narrowing of the internal gap of the second bearing 11B due to thermal expansion.
  • the diameter of the second bearing 11B is set to be larger than the diameter of the first bearing 11A.
  • the life of the second bearing 11B is improved.
  • the gap 7 is a first flow path through which the liquid refrigerant flows in the axial direction, and the first bearing 11A is arranged on the liquid refrigerant inlet 14A side of the first flow path and is the second bearing.
  • 11B is arranged on the liquid refrigerant outlet 14B side of the first flow path, and the inner diameter of the second bearing 11B is set to be larger than the inner diameter of the first bearing 11A.
  • first bearing 11A and the second bearing 11B arranged between the case main body 4C and the main body 2C.
  • large diameter and thin bearings for the first bearing 11A and the second bearing 11B.
  • Thin bearings have the advantages of smaller bearing width and lighter weight than general bearings. Generally, the larger the diameter of a bearing, the larger the cross section of the rolling element 10.
  • the thin bearing is designed to have a larger bearing diameter while maintaining a small cross-sectional area of the rolling element. Therefore, since the cross section of the rolling element of the thin bearing is smaller than the diameter of the rolling element, the allowable load and the allowable peripheral speed are also smaller than those of a general bearing.
  • the thin bearing has an advantage that the entire bearing is small and lightweight.
  • the thin bearing applicable to this embodiment has an inner diameter of about 20 cm or more and a rolling element having a diameter of about several mm.
  • the weight of the vehicle body is separately supported by the hub bearing HUB (see FIG. 2). That is, the vehicle weight is not directly applied to the first bearing 11A and the second bearing 11B used in the present embodiment.
  • These two bearings 11 support the weight of the case body 4C of the rotor case 4W to which the bearings 11 are connected.
  • the deep groove ball bearing cannot receive the thrust load, but has a small coefficient of friction and a low rotational torque, so that a low-loss in-wheel motor can be configured. The structure and characteristics of the bearing 11 will be described later.
  • a bearing 11 having a small cross-sectional area of the rolling element 10 is selected. Can be used.
  • miniaturization and weight reduction are important technical elements, so it is important to select a bearing 11 having the smallest possible cross-sectional area of the rolling element 10.
  • the internal gap of a radial bearing refers to the amount of movement when one of the inner ring and the outer ring is fixed and the other is moved.
  • the amount of movement when the inner ring or outer ring is moved in the radial direction is called the radial internal gap.
  • the effective gap of the bearing is the amount of reduction of the gap due to the fitting of the bearing and the amount of reduction of the gap due to the temperature difference between the inner ring and the outer ring from the gap (true gap) before mounting the bearing. It is a thing.
  • the operating gap is the effective gap plus the amount of increase in the gap due to the load applied to the bearing.
  • the first bearing 11A of the present embodiment is arranged at a position closer to the liquid refrigerant inlet 14A than the second bearing 11B.
  • the approximate size of the rolling element 10A of the first bearing 11A is a cross section of 1.27 cm (1/2 inch) square and an inner diameter of 35.6 cm (14 inches).
  • the bearing internal 11AS and 11BS including the rolling element 10 of the bearing 11 are cooled by the liquid refrigerant (see FIG. 8).
  • the rolling elements 10 of the two bearings 11 are arranged so as to be in contact with the liquid refrigerant in the liquid refrigerant passage 15. A forced liquid refrigerant lubrication method for passing the liquid refrigerant in the axial direction of the bearing 11 will be described later.
  • the first bearing 11A and the second bearing 11B are provided with a cooling oil seal portion separately, but a seal type bearing may be used. Further, in order to narrow the gap 7 between the stator 2 and the rotor 4, it is preferable that the first bearing 11A and the second bearing 11B are arranged at positions as close as possible to the stator core 2X and the rotor core 4X. If a seal type bearing is adopted, it is not necessary to separately install a seal in addition to the bearing, so that the number of parts can be reduced.
  • the seal type bearing has a longer shaft length, and its withstand pressure is lower than that of the seal-separated type bearing. Further, since heat generation due to the rotation of the rolling element 10 of the bearing 11 and heat generation due to friction of the seal portion are generated at the same location, it is preferable to combine the bearing with a separate seal and the seal when comparing the whole.
  • Grease lubrication is also used as a cooling method for the bearing 11, but in the present embodiment, grease lubrication is not positively used.
  • the bearing steel SUJ2 As the material of the bearing used in this embodiment, it is preferable to use the bearing steel SUJ2. SUS may be used instead of SUJ2. A metal such as SUS is used for the rolling element 10. Since the coefficient of thermal expansion of a ceramic rolling element is smaller than that of a metal, it is not easily affected by a temperature rise, but it is not unapplicable.
  • the diameter of the first bearing 11A is close to the rim diameter of the wheel.
  • the true clearance inside the radial before assembling the bearing 11 can be selected from the range of about 80 to 130 ⁇ m. However, depending on the material of the main body 2C and the temperature setting of the liquid refrigerant, it is possible to select another series of bearings having different inner diameter sizes.
  • the second bearing 11B used in the present embodiment has a large diameter and a large bearing gap (true gap before mounting) is set in advance. Therefore, it is easy to absorb the thermal expansion of the rolling element 10B of the second bearing 11B based on the local heat generation generated in the second bearing 11B.
  • the setting of the operating gap will be described with reference to FIG.
  • the condition at which the fatigue life curve peaks is when the operating gap is negative. That is, it is often used by setting the operating gap slightly narrower than 0.
  • the curves (a) and (b) in FIG. 9 are for the case where the load conditions for the same bearing are different by about 6 times, but the life shows the maximum value when the operating gap is about -3 to -8 ⁇ m. ..
  • the operating clearance is set to the maximum value of the fatigue life curve in the region of 0 or less with the aim of extending the life of the bearing, the fatigue life curve will be maximized due to the dimensional variation of parts and assembly accuracy.
  • the actual operating gap may shift to the minus side from the value. Then, the life of the bearing deteriorates sharply.
  • the second bearing 11B is set in advance so that the operating gap is 0 or more, as shown in the range of the arrow in (c).
  • the bearing tolerance will be described with reference to FIG. As shown in FIG. 10, the larger the outer and inner diameters of the bearing, the larger the tolerance width.
  • the setting of the operating clearance of the bearing is not a plus or minus tolerance, but the lower limit of the setting of the operating clearance is set to 0. Set the operating clearance in consideration of the tolerance of the bearing to be used. As a result, the target value for setting the operating clearance of the bearing is larger than the general value.
  • the bearing inner portions 11AS and 11BS including the rolling elements 10 of the two bearings 11 are arranged in the liquid refrigerant passage 15 and are in contact with the liquid refrigerant.
  • the liquid refrigerant absorbs heat generated in the vicinity of the stator core 2X where the temperature rises remarkably inside the in-wheel motor 50, passes through the liquid refrigerant outlet 14B, and exits from the external outlet 13B. At that time, the liquid refrigerant that absorbs the heat generated in the vicinity of the stator core 2X becomes relatively hot as it passes through the gap 7 and progresses toward the outlet side rather than the inlet side.
  • the second bearing 11B in contact with the liquid refrigerant having a relatively higher temperature than the liquid refrigerant inlet 14A side is exposed to the temperature of the liquid refrigerant in contact with the second bearing 11B in addition to the heat generated by the rotational operation of the second bearing 11B itself. Will be. That is, in the present embodiment, the temperature of the second bearing 11B tends to be higher than that of the first bearing 11A during operation.
  • the inner ring 10B IR of the second bearing 11B is in direct contact with the main body 2C. That is, the inner ring 10B IR of the second bearing 11B is directly affected by the heat conduction from the main body 2C. As a result, the inner diameter of the second bearing 11B becomes larger than the inner diameter of the first bearing 11A when the in-wheel motor 50 is operated due to the temperature rise.
  • holes 2H are concentrically provided in the circumferential direction of the second end bracket 2B from the stator core 2X. It makes it difficult to receive heat conduction.
  • the hole 2H is located between the stator core 2X and the second bearing 11B in the radial direction.
  • the hole 2H is provided as a hole penetrating in the axial direction on the side surface of the second end bracket 2B within a range that does not affect the strength and rigidity of the component.
  • the heat conduction area of the main body 2C is reduced by the hole 2H, the heat of the coil 2Z is less likely to be transferred to the second bearing 11B.
  • the inner internal passage 15B and the gap 7 side are communicated with each other, and convection of the liquid refrigerant occurs inside. Since the liquid refrigerant is more in contact with the second bearing 11B due to this convection, the second bearing 11B is easily cooled. In this way, the inside of the hole 2H becomes a part of the liquid refrigerant passage 15.
  • the shape of the hole 2H may be a round hole or a long hole. Further, if a hole is provided at a position where the gap 7 can be seen, it can be used as a hole for inserting a protective plate into the gap 7 when assembling the stator / rotor.
  • the temperature rise of the second bearing 11B is predicted in the operating state, and the bearing gap of the second bearing 11B is set large in advance.
  • the second bearing 11B is a product of the same series as the first bearing 11A (the cross-sectional area of the rolling element is the same size) and has a diameter at least one size larger.
  • a component having an inner diameter of 40.6 cm (16 inches) is used as the second bearing 11B with respect to the first bearing 11A having an inner diameter of 35.6 cm (14 inches).
  • a bearing having a dimension corresponding to the numerical value of this internal clearance is selected from the product numbers of commercially available products and used.
  • the bearing used in this embodiment is not a custom-made product, but is preferably selected from parts produced as a general standard product and supplied to the market. That is, it is preferable that the internal clearance of the radial bearing is selected from the numerical range recommended as the catalog value.
  • Table 1 shows examples of bearing dimensional values that are generally available on the market.
  • the in-wheel motor (rotary electric machine) 50 of the present embodiment has the rolling elements 10 of the first bearing 11A and the second bearing 11B and the coil end portions of the coil 2Z, that is, the first coil end portions 2ZA and the second.
  • the coil end portion 2ZB is arranged in the liquid refrigerant passage in which the liquid refrigerant is housed.
  • the gap 7 is a first flow path through which the liquid refrigerant flows in the axial direction
  • the first bearing 11A is arranged on the liquid refrigerant inlet 14A side of the first flow path
  • the second bearing 11B is the liquid in the first flow path. It is arranged on the refrigerant outlet 14B side, and has a configuration in which the inner diameter of the second bearing 11B is larger than the inner diameter of the first bearing 11A.
  • FIG. 4 shows a partial cross-sectional perspective view of the present embodiment.
  • FIGS. 4 to 7 show the structure of this embodiment.
  • an annular flow path 18 surrounded by a cylindrical space between the inner peripheral side surface of the stator core 2X and the outer peripheral side surface of the main body 2C is provided. ..
  • the liquid refrigerant flow 15R is arranged in the gap 7 on the outer peripheral side of the stator core 2X, and the annular flow path 18 is arranged below the stator core 2X.
  • the annular flow path 18 is composed of circumferential passages 17a, 17b, 17c arranged in three stages in the axial direction, and oblique traffic passages 17ab, 17bc connecting each circumferential passage in series. Will be done.
  • the annular flow path 18 is formed by dividing the flow path by a plurality of walls having heights in the radial direction on the surface of the main body 2C.
  • the upstream end of the first-stage circumferential passage 17a of the annular passage 18 is connected to the annular passage inlet 16A, and the downstream end is connected to the oblique traffic passage 17ab.
  • the oblique traffic passage 17ab is continuously connected to the middle-stage circumferential passage 17b, the second-stage oblique traffic passage 17bc, the third-stage circumferential passage 17c, and the annular flow path exit 16B.
  • the annular flow path 18 in the present embodiment includes one or more oblique traffic paths 17ab and 17bc on the way from the annular flow path inlet 16A to the annular flow path outlet 16B.
  • the passage cross-sectional area in the traveling direction of each passage is set to be substantially the same in order to reduce the passage loss. Further, in order to reduce the passage resistance of the liquid refrigerant, it is preferable that the intersection angle between the oblique traffic path and the circumferential passage is not so large.
  • the liquid refrigerant travels through the annular flow path 18 having such a structure, the liquid refrigerant flows a plurality of times in the circumferential direction while being in contact with the inner surface of the stator core 2X. Therefore, when the liquid refrigerant passes through the annular flow path 18, the contact time with the stator core 2X becomes longer, and it becomes easier to absorb heat in the vicinity of the stator core 2X.
  • the heat absorption efficiency by the liquid refrigerant passing through the annular flow path 18 is increased, the difference between the temperature of the liquid refrigerant near the liquid refrigerant inlet 14A and the temperature of the liquid refrigerant near the liquid refrigerant outlet 14B becomes larger.
  • the annular flow path 18 corresponds to a second flow path that can coexist with the liquid refrigerant flow 15R, which is the first flow path passing through the gap 7.
  • the passage path of the liquid refrigerant in this embodiment is as follows.
  • the pipe connected to the heat exchanger (not shown) is attached to the external intake 13A located on the inner peripheral side of the main body 2C.
  • the liquid refrigerant is supplied to the inside of the in-wheel motor 50 from the external intake 13A.
  • the liquid refrigerant enters the space immediately below the first coil end portion 2ZA of the liquid refrigerant passage 15 from the liquid refrigerant inlet 14A.
  • the liquid refrigerant at the time of being supplied to the liquid refrigerant inlet 14A has a higher pressure than the other parts of the liquid refrigerant passage 15.
  • the liquid refrigerant supplied to the inside of the in-wheel motor 51 is roughly divided into two flow paths.
  • the first flow path is the liquid refrigerant flow 15R as in the case of the first embodiment.
  • the liquid refrigerant enters the first coil end space 9A from the liquid refrigerant inlet 14A near the first coil end portion 2ZA. Since the outermost peripheral side of the first coil end space 9A is directly connected to the gap 7, the liquid refrigerant flows in the circumferential direction in the first coil end space 9A and is second so as to cross the gap 7 which is a cylindrical space. It flows toward the coil end portion 2ZB.
  • FIGS. 6 and 7 schematically show the structure near the first coil end space 9A and the flow of the liquid refrigerant.
  • the liquid refrigerant enters the first coil end space 9A from the vicinity of the first coil end portion 2ZA, and is further divided into two directions on the left and right with respect to the circumferential direction. One of them is the first rotating flow 9F1 flowing in the first direction in the first coil end space 9A. The other is the second rotating flow 9F2 flowing in the opposite direction through the first coil end space 9A.
  • a ring road entrance 16A is provided near the confluence.
  • the annular flow path inlet 16A is a portion of the stator core 2X processed into a concave shape.
  • the first coil end space 9A communicates with the annular flow path 18 on the back surface side of the stator core 2X. Therefore, the liquid refrigerant can enter the annular flow path 18 from the annular flow path inlet 16A.
  • the first rotating flow 9F1 and the second rotating flow 9F2 make a half turn in the circumferential direction and then merge to form a downward flow 9F3.
  • the downward flow 9F3 is the inlet bottom of the annular flow path inlet 16A, and the flow direction is changed from the downward direction to the axial direction to become the introduction flow 9F4 toward the annular flow path 18.
  • FIG. 5 shows the configuration of the liquid refrigerant passage in the annular flow path 18.
  • the liquid refrigerant enters the first-stage circumferential passage 17a, and after about one round, enters the oblique traffic passage 17ab. Further, the liquid refrigerant passes through the circumferential passage 17b, the oblique traffic passage 17bc, and the circumferential passage 17c in this order, and reaches the annular passage outlet 16B.
  • the liquid refrigerant is a lead flow 9F5 from the circumferential flow to the axial direction near the annular flow path outlet 16B.
  • the lead flow 9F5 becomes an upward flow 9F6 inside the annular flow path outlet 16B.
  • the liquid refrigerant enters the second coil end space 9B near the second coil end portion 2ZB.
  • the liquid refrigerant is again split in two directions in the second coil end space 9B. It is the same as the first diversion in the case of the first coil end space 9A described above, and is divided into the third rotary flow 9F7 and the fourth rotary flow 9F8 flowing through the second coil end space 9B.
  • a small part of the liquid refrigerant may pass so as to cross the rolling element 10 of the bearing 11 in the axial direction. Further, a part of the liquid refrigerant that has crossed the bearing inner portions 11AS and 11BS (see FIG. 8) of the bearing 11 may reach the outer internal passage 15A which is a gap space between the first end bracket 2A and the case body 4C. .. Alternatively, the liquid refrigerant may reach the inner internal passage 15B, which is a gap space between the stator case 2W and the end bracket 4B. As described above, in the in-wheel motor 51 of the present embodiment, the liquid refrigerant is housed in the gap space between the stator case 2W and the rotor case 4W.
  • all of the coil 2Z wound around the stator core 2X, the first coil end portion 2ZA, and the second coil end portion 2ZB are covered with the liquid refrigerant.
  • a first coil end flow through which the liquid refrigerant passes through the first coil end space 9A and a second coil end flow through which the liquid refrigerant passes through the second coil end space 9B are provided.
  • an annular flow path 18 through which the liquid refrigerant flows in the circumferential direction and also travels in the axial direction is provided on the back surface of the stator core 2X. Therefore, the cooling efficiency of the in-wheel motor 51 is further improved.
  • a liquid refrigerant flow 15R in which the liquid refrigerant flows in the axial direction and an annular flow path 18.
  • the gap 7 of the in-wheel motor 51 is a narrow space between the stator core 2X and the rotor core 4X.
  • the liquid refrigerant passes through this narrow space. Therefore, if the pressure loss is relatively small with respect to the annular flow path 18, the liquid refrigerant does not flow into the annular flow path 18 but flows toward the gap 7.
  • the cooling efficiency of the in-wheel motor as a whole drops. Narrowing the gap 7 also leads to an improvement in torque as an in-wheel motor. Therefore, when the gap 7 is narrowed, the pressure loss in the liquid refrigerant path is sufficiently small, and the required torque can be generated.
  • 0.5 mm is an example of the design value of the gap 7.
  • FIG. 8 shows a partially enlarged view of the bearing 11 of the in-wheel motor 51.
  • the first bearing 11A has an outer ring 10A OR and an inner ring 10A IR .
  • the space between the outer ring 10A OR and the inner ring 10A IR is the bearing inner 11AS.
  • the gap between the outer ring 10A OR and the rolling element 10A is 10A GPH .
  • the gap between the inner ring 10A IR and the rolling element 10A is 10A GPL .
  • the outer diameter of the outer ring 10A OR is D 1-1 , and the inner diameter is L 1-2 .
  • the inner diameter of the inner ring 10A IR is L 1-1 and the inner diameter is d 1 .
  • the width of the outer ring 10A OR is W 1 .
  • the second bearing 11B has an outer ring 10B OR and an inner ring 10B IR .
  • the space between the outer ring 10B OR and the inner ring 10B IR is the bearing inner 11BS.
  • the gap between the outer ring 10B OR and the rolling element 10B is 10B GPH .
  • the gap between the inner ring 10B IR and the rolling element 10B is 10B GPL .
  • the outer diameter of the outer ring 10B OR is D 2-1 and the inner diameter is L 2-2 .
  • the inner diameter of the inner ring 10B IR is L 2-1 and the inner diameter is d 2 .
  • the width of the outer ring 10B OR is W 2. The dimensions of each of the above parts are standardized by the bearing manufacturer, and it is often possible to select a product number of a desired size. Inch and metric parts may be available.
  • the second bearing 11B is selected from thin flat bearings having a diameter one size larger than that of the first bearing 11A. Similar to the first embodiment described above, in this embodiment as well, the life of the second bearing 11B is extended by using a bearing having a larger diameter than the first bearing 11A for the second bearing 11B. Therefore, in the setting of the second bearing 11B, the condition is set so that the operating gap thereof is 0 or more.
  • FIG. 11 shows a partial cross-sectional perspective view of the third embodiment.
  • the first bearing 11A and the second bearing 11B are thin and flat bearings of the same system.
  • the second bearing 11B used has a diameter at least one size larger than that of the first bearing 11A.
  • the external inlet 13A for supplying the liquid refrigerant to the liquid refrigerant passage 15 and the external outlet 13B for discharging the liquid refrigerant are the first ends of the stator 2 on the inner peripheral side of the in-wheel motor 52. It is attached to the bracket 2A and the second end bracket 2B, respectively.
  • the liquid refrigerant inlet 14A is connected to the outer internal passage 15A.
  • the liquid refrigerant outlet 14B is connected to the inner internal passage 15B.
  • the first bearing 11A is arranged in the liquid refrigerant passage 15 between the liquid refrigerant inlet 14A and the first coil end portion 2ZA. Further, the second bearing 11B is arranged in the liquid refrigerant passage 15 between the liquid refrigerant outlet 14B and the second coil end portion 2ZB.
  • the liquid refrigerant supplied from the outside enters the outer internal passage 15A from the liquid refrigerant inlet 14A, further passes through the bearing inner 11AS of the first bearing 11A, and enters the first coil end space 9A.
  • the annular flow path inlet 16A is provided in the first coil end space 9A.
  • the annular flow path outlet 16B is provided in the second coil end space 9B.
  • the configuration of the annular flow path 18 is the same as that of the second embodiment.
  • the liquid refrigerant is taken into the outer inner passage 15A, and the first bearing 11A, the gap 7 or the annular flow path 18, the second coil end space 9B, the inner inner passage 15B, the liquid refrigerant outlet 14B, and the outer outlet 13B. And returns to the external liquid refrigerant tank.
  • the liquid refrigerant in the present embodiment is supplied to the liquid refrigerant passage 15 from the liquid refrigerant inlet 14A on the first bearing 11A side.
  • the pressure of the liquid refrigerant is increased by the pump when it enters the liquid refrigerant passage 15. Further, as the liquid refrigerant advances in the axial direction in the liquid refrigerant flow 15R and the annular flow path 18 inside the in-wheel motor 53, the pressure gradually decreases due to the internal loss. That is, pressure loss occurs in the liquid refrigerant passage 15. When the liquid refrigerant is discharged to the outside from the external outlet 13B, the pressure is the lowest.
  • the inlet side is relatively higher.
  • the liquid refrigerant contained in the outer internal passage 15A which is a part of the liquid refrigerant passage 15, exerts pressure on the bottom 4CD of the rotor case 4W. Further, the liquid refrigerant contained in the inner internal passage 15B exerts pressure on the end bracket 4B. Comparing the magnitudes of both pressures, the inlet side pressure 19A is higher than the outlet side pressure 19B by the amount of the internal pressure loss.
  • FIG. 13 schematically shows how the inside is affected by this pressure difference. Further, Table 2 below will explain a comparative example of internal pressure loss in comparison with the present embodiment.
  • a thrust force F1 due to an internal pressure difference in the liquid refrigerant passage 15 acts in the axial direction of the two bearings 11.
  • the pressure on the first bearing 11A side becomes high, and the pressure on the second bearing 11B side becomes low.
  • the projected area of the support structure that supports the two bearings 11 is set larger on the outlet side than on the inlet side. Therefore, for the second bearing 11B on the liquid refrigerant outlet 14B side, a bearing having a larger diameter than the first bearing 11A on the inlet side is used.
  • the inner ring diameter of either the first bearing 11A or the second bearing 11B is larger than the diameter of the stator 2, and the inner ring diameter of the other is smaller than the diameter of the stator 2.
  • the gap 7 is narrow and the pressure loss of the flow path from the first coil end portion 2ZA to the second coil end portion 2ZB is large, the refrigerant pressure on the first bearing 11A side is higher than the refrigerant pressure on the second bearing 11B side. Will also grow.
  • the first bearing 11A and the second bearing 11B have the same diameter, the pressure receiving areas are the same, and as shown in FIG. 13, a pressure difference occurs in the left-right direction of the schematic diagram. Therefore, a thrust force in the axial direction works.
  • the thrust force F2 can be offset.
  • the pressure loss generated inside causes the pressure on the first bearing 11A side to be high and the pressure on the second bearing 11B side to be low, and a thrust force acts on the rotor 4.
  • the contact angle of the bearing 11 is tilted by the force.
  • abnormal wear occurs in the bearing internal 11AS, 11BS and the rolling element 10, and the life of the bearing is shortened.
  • the generation of this unbalanced internal pressure can be compensated by making the diameter of the bearing 11 different.
  • the pressure of the liquid refrigerant applied to the first bearing 11A is higher than the pressure of the liquid refrigerant applied to the second bearing 11B.
  • the diameter of the second bearing 11B is set to be larger than the diameter of the first bearing 11A. In that case, the relatively small pressure on the second bearing 11B can be compensated for by changing the diameter of the bearing to compensate for the difference in internal pressure between the first bearing 11A and the second bearing 11B due to the large diameter size. can.
  • FIG. 14 schematically shows the state.
  • the area on the exit side is set relatively larger than the area on the bracket on the entrance side. Therefore, it is considered that the difference in internal pressure between the liquid refrigerant at the inlet and the outlet is comprehensively compensated, and the total internal pressure on the inlet side and the outlet side is balanced. Therefore, the shaft of the bearing 11 is less likely to be tilted.
  • FIG. 15 shows the structure of the in-wheel motor 54 of the fifth embodiment.
  • any one of the bearings 11 is arranged at the same position as the first coil end portion 2ZA and the second coil end portion 2ZB in the vicinity in the axial direction, or the first coil end portion 2ZA and the second coil end portion 2ZA. It is arranged inside the coil end portion 2ZB in the axial direction.
  • the component end position 11X of the second bearing 11B is arranged inside the axial position of the second coil end portion 2ZB.
  • the present invention is not limited to these examples, and further modifications can be considered.
  • the number of laps of the above-mentioned annular flow path can be deformed, and the positions of the liquid refrigerant inlet and the liquid refrigerant outlet can be freely combined in relation to improvement of cooling efficiency, component size, reduction of internal volume, and the like.
  • Various embodiments can be considered other than using the above-described embodiment and the illustrated parts.
  • Liquid refrigerant inlet, 14B ... Liquid refrigerant outlet, 15 ... Liquid refrigerant passage, 15 ... Liquid refrigerant passage , 15A ... outer inner passage, 15B ... inner inner passage, 15R ... liquid refrigerant flow, 16A ... annular flow path inlet, 16B ... annular flow path outlet, 18 ... annular flow path, 50 ... in-wheel motor (rotary electric machine), 100 ... wheels, 200 ... electric wheels, 1000 ... vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

The present invention comprises: a stator core (2X) around which a plurality of coils (2Z) are wound; a stator case (2W) that supports the stator core (2X); a rotor core (4X) disposed to be rotatable relative to the stator core (2X) with a gap (7) therebetween; a rotor case (4W) that supports the rotor core (4X); and a first bearing (11A) and a second bearing (11B) that connect the stator case (2W) and the rotor case (4W). Rolling elements (10) of the first bearing (11A) and the second bearing (11B) and coil end parts of the coils (2Z) are arranged in a liquid refrigerant path (15) in which a liquid refrigerant is accommodated. The gap (7) serves as a first flow path through which the liquid refrigerant flows in an axial direction. The first bearing (11A) is disposed on the upstream side of the first flow path. The second bearing (11B) is disposed on the downstream side of the first flow path. The inner diameter of the second bearing (11B) is greater than the inner diameter of the first bearing (11A).

Description

回転電機及び車両Rotating electric machine and vehicle
 本発明は、回転電機及び車両に関する。 The present invention relates to a rotary electric machine and a vehicle.
 ステータケースに固定されたステータと、軸受を介してステータケースに対して回転可能に接合されたロータケースに固定されたロータとを備えた回転電機が、ホイール内に組み込まれたインホイールモータが知られている(特許文献1参照)。特許文献1には、インホイールモータの外側に冷却液が収容されたリザーバタンクを配置し、このリザーバタンクと、ステータとロータとの間の隙間とをパイプにより連通させたインホイールモータのシステムが開示されている。 An in-wheel motor built into a wheel is known for a rotary electric machine equipped with a stator fixed to a stator case and a rotor fixed to a rotor case rotatably joined to the stator case via bearings. (See Patent Document 1). Patent Document 1 describes an in-wheel motor system in which a reservoir tank containing a coolant is arranged outside the in-wheel motor, and the reservoir tank and the gap between the stator and the rotor are communicated by a pipe. It has been disclosed.
特開2005-333706JP-A-2005-333706
 特許文献1に記載のシステムでは、モータの駆動を継続した場合に、ステータで発生する熱により冷却液の温度が上昇し、軸受が高温になることに起因して、その寿命が短くなってしまうおそれがある。 In the system described in Patent Document 1, when the motor is continuously driven, the temperature of the coolant rises due to the heat generated by the stator, and the bearing becomes hot, so that the life thereof is shortened. There is a risk.
 本発明は、回転電機の軸受を長寿命化することを目的とする。 The present invention aims to extend the life of bearings of rotary electric machines.
 上記の課題を解決するために、本発明の一態様の回転電機は、複数のコイルが巻回されたステータコアと、前記ステータコアを支持するステータケースと、前記ステータコアに対して隙間を介して回転可能に配置されるロータコアと、前記ロータコアを支持するロータケースと、前記ステータケースと前記ロータケースとを接続する第1軸受及び第2軸受と、を備え、前記第1軸受及び前記第2軸受の転動体並びに前記コイルのコイルエンド部は、液状冷媒が収容される液状冷媒路内に配置され、前記隙間は、前記液状冷媒が軸方向に流れる第1流路とされ、前記第1軸受は、前記第1流路の液状冷媒入口側に配置され、前記第2軸受は、前記第1流路の液状冷媒出口側に配置され、前記第2軸受の内径は、前記第1軸受の内径よりも大きい回転電機である。 In order to solve the above problems, the rotary electric machine according to one aspect of the present invention can rotate the stator core in which a plurality of coils are wound, the stator case that supports the stator core, and the stator core through a gap. A rotor core arranged in, a rotor case that supports the rotor core, and a first bearing and a second bearing that connect the stator case and the rotor case are provided, and the first bearing and the second bearing are rolled. The moving body and the coil end portion of the coil are arranged in a liquid refrigerant path in which the liquid refrigerant is housed, the gap is a first flow path through which the liquid refrigerant flows in the axial direction, and the first bearing is the first bearing. The second bearing is arranged on the liquid refrigerant inlet side of the first flow path, the second bearing is arranged on the liquid refrigerant outlet side of the first flow path, and the inner diameter of the second bearing is larger than the inner diameter of the first bearing. It is a rotary electric machine.
 本発明によれば、回転電機の軸受を長寿命化させることができる。 According to the present invention, the bearing of a rotary electric machine can be extended in life.
第1実施形態に係る車両の構成を示す模式図。The schematic diagram which shows the structure of the vehicle which concerns on 1st Embodiment. 第1実施形態に係る電動ホイールの構成を示す分解斜視図。The exploded perspective view which shows the structure of the electric wheel which concerns on 1st Embodiment. 第1実施形態に係るインホイールモータの構成を示す模式的断面図。The schematic cross-sectional view which shows the structure of the in-wheel motor which concerns on 1st Embodiment. 第2実施形態に係るインホイールモータの構成を示す部分断面斜視図。Partial sectional perspective view which shows the structure of the in-wheel motor which concerns on 2nd Embodiment. 第2実施形態に係る液状冷媒路の環状流路の斜視図。The perspective view of the annular flow path of the liquid refrigerant passage which concerns on 2nd Embodiment. 第2実施形態に係る液状冷媒路の第1コイルエンド部付近の環状流路入口を側面から見た部分断面斜視図。A partial cross-sectional perspective view of an annular flow path inlet near the first coil end portion of the liquid refrigerant path according to the second embodiment as viewed from the side surface. 第2実施形態に係る液状冷媒路の第1コイルエンド部付近の環状流路入口を上方から見た部分断面斜視図。A partial cross-sectional perspective view of an annular flow path inlet near the first coil end portion of the liquid refrigerant path according to the second embodiment as viewed from above. 第2実施形態に係る軸受の構成を示す部分断面図。The partial sectional view which shows the structure of the bearing which concerns on 2nd Embodiment. 軸受の運転隙間と疲れ寿命の関係を示すグラフ。A graph showing the relationship between bearing operating clearance and fatigue life. 軸受の内径と軸受隙間の関係を示すグラフ。The graph which shows the relationship between the inner diameter of a bearing and a bearing clearance. 第3実施形態に係るインホイールモータの構成を示す部分断面斜視図。A partial cross-sectional perspective view showing a configuration of an in-wheel motor according to a third embodiment. 第4実施形態に係るインホイールモータの構成を示す部分断面図。FIG. 6 is a partial cross-sectional view showing the configuration of an in-wheel motor according to a fourth embodiment. 比較例におけるスラスト力の説明図。Explanatory drawing of thrust force in comparative example. 第4実施形態に係るインホイールモータにおけるスラスト力の説明図。The explanatory view of the thrust force in the in-wheel motor which concerns on 4th Embodiment. 第5実施形態に係るインホイールモータの構成を示す部分断面図。FIG. 6 is a partial cross-sectional view showing the configuration of an in-wheel motor according to a fifth embodiment.
 [第1実施形態]
 以下に図1~図3を参照しながら本発明の第1実施形態に係る車両1000及びこの車両1000に搭載されるインホイールモータ50について説明する。図1は、本発明の第1実施形態に係る車両1000の構成を示す模式図である。図1に示すように、本実施形態の車両1000は、車体フレーム1010と、車体フレーム1010の内側に配置されるバッテリ台1020と、バッテリ台1020の上に搭載されるバッテリ1030と、車輪(前輪及び後輪)とを備える。各車輪(左右の前輪及び左右の後輪)は、電動ホイール200と電動ホイール200の外周に取り付けられるタイヤ800を有している。電動ホイール200には、インバータ150が搭載される。
[First Embodiment]
Hereinafter, the vehicle 1000 according to the first embodiment of the present invention and the in-wheel motor 50 mounted on the vehicle 1000 will be described with reference to FIGS. 1 to 3. FIG. 1 is a schematic view showing the configuration of a vehicle 1000 according to the first embodiment of the present invention. As shown in FIG. 1, the vehicle 1000 of the present embodiment includes a vehicle body frame 1010, a battery base 1020 arranged inside the vehicle body frame 1010, a battery 1030 mounted on the battery base 1020, and wheels (front wheels). And rear wheels). Each wheel (left and right front wheels and left and right rear wheels) has an electric wheel 200 and a tire 800 attached to the outer periphery of the electric wheel 200. The inverter 150 is mounted on the electric wheel 200.
 各電動ホイール200は、バッテリ1030と電源ケーブルPLによって接続される。インバータ150は、バッテリ1030から供給される直流電力を交流電力に変換し、電動ホイール200に搭載されるインホイールモータ50に供給する。 Each electric wheel 200 is connected to the battery 1030 by the power cable PL. The inverter 150 converts the DC power supplied from the battery 1030 into AC power and supplies it to the in-wheel motor 50 mounted on the electric wheel 200.
 本実施形態の電動ホイール200に搭載されるインホイールモータ50は、発生するトルク密度が高い。そのため、インホイールモータ50は、車両1000の車輪を直接駆動することができる。つまり、本実施形態では、車両1000の駆動におけるギアレス化、すなわち車輪のダイレクトドライブが可能となっている。 The in-wheel motor 50 mounted on the electric wheel 200 of the present embodiment has a high torque density. Therefore, the in-wheel motor 50 can directly drive the wheels of the vehicle 1000. That is, in the present embodiment, it is possible to make the vehicle 1000 gearless, that is, to directly drive the wheels.
 本実施形態に係る車両1000は、ガソリンエンジン搭載車と同等の走行性能を有している。例えば、車両1000は市街地における50kmの定速運転が可能である。また、加速性能に関しても、ガソリンエンジン搭載車と同等以上の性能を発揮する。 The vehicle 1000 according to this embodiment has the same running performance as a vehicle equipped with a gasoline engine. For example, the vehicle 1000 can operate at a constant speed of 50 km in an urban area. In addition, the acceleration performance is equal to or better than that of a vehicle equipped with a gasoline engine.
 次に本実施形態の電動ホイール200のサイズに関し説明する。現在、自動車に使用されるホイールのサイズは規格化されている。通常、ホイールのサイズはリム径で表される。リム径はインチで示される。電動ホイール200は、例えば、リム径が14インチ(355.6mm)、15インチ(381mm)、16インチ(406.4mm)、17インチ(431.8mm)、18インチ(457.2mm)、19インチ(482.6mm)、又は、20インチ(508mm)のホイールに取り付けられる。 Next, the size of the electric wheel 200 of this embodiment will be described. Currently, the size of wheels used in automobiles is standardized. Wheel size is usually expressed in terms of rim diameter. The rim diameter is shown in inches. The electric wheel 200 has, for example, a rim diameter of 14 inches (355.6 mm), 15 inches (381 mm), 16 inches (406.4 mm), 17 inches (431.8 mm), 18 inches (457.2 mm), and 19 inches. It can be mounted on a (482.6 mm) or 20 inch (508 mm) wheel.
 以下では、リム径が19インチ(482.6mm)、リム幅が8.5インチ(21.6mm)のホイールを有する電動ホイール200について説明する。 Below, the electric wheel 200 having a wheel having a rim diameter of 19 inches (482.6 mm) and a rim width of 8.5 inches (21.6 mm) will be described.
 図2に電動ホイール200の分解斜視図を示す。図2に示すように、本実施形態の電動ホイール200は、タイヤが取り付けられるホイール100と、ホイール100に取り付けられるインホイールモータ50と、を備える。電動ホイール200には、車輪を制動させる制動力を発生させるディスクブレーキ106が取り付けられる。電動ホイール200は、サスペンション装置110を介して車体フレーム1010に取り付けられる。サスペンション装置110は、インホイールモータ50に固定されるナックル107と、ナックル107に回転可能に取り付けられるロアアーム108を有する。さらに、サスペンション装置110は、ナックル107に回転可能に接続されるショックアブソーバ109aと、ショックアブソーバ109aと車体フレーム1010に設けられた支持部材との間に取り付けられるばね109bと、を備える。 FIG. 2 shows an exploded perspective view of the electric wheel 200. As shown in FIG. 2, the electric wheel 200 of the present embodiment includes a wheel 100 to which a tire is attached and an in-wheel motor 50 attached to the wheel 100. A disc brake 106 that generates a braking force for braking the wheel is attached to the electric wheel 200. The electric wheel 200 is attached to the vehicle body frame 1010 via the suspension device 110. The suspension device 110 has a knuckle 107 fixed to the in-wheel motor 50 and a lower arm 108 rotatably attached to the knuckle 107. Further, the suspension device 110 includes a shock absorber 109a rotatably connected to the knuckle 107, and a spring 109b attached between the shock absorber 109a and the support member provided on the vehicle body frame 1010.
 ホイール100の車輪軸AX付近に、車輪を支持するハブベアリングHUBが配置される。ステータ2はハブベアリングHUBを介してホイールと接合される。車体の重量の一部は、ホイール100、ハブベアリングHUB、ステータ2を介して、ナックル107を含むサスペンション装置110によって支持される。ホイール100の内部には、電動ホイール200を駆動するための主要な部品が収容されている。 A hub bearing HUB that supports the wheel is arranged near the wheel axle AX of the wheel 100. The stator 2 is joined to the wheel via the hub bearing HUB. Part of the weight of the vehicle body is supported by the suspension device 110 including the knuckle 107 via the wheel 100, the hub bearing HUB, and the stator 2. Inside the wheel 100, main parts for driving the electric wheel 200 are housed.
 電動ホイール200に搭載されるインホイールモータ50には、インホイールモータ50を構成する各部品を冷却するための液状冷媒が供給される。液状冷媒は、電動ホイール200の外部に設けられるポンプ(不図示)によって、インホイールモータ50内に供給される。液状冷媒が流れる配管は、電動ホイール200の車体側側面から取り出され、車体前部に配置された熱交換器(不図示)に接続される。液状冷媒は、空冷式又は水冷式の熱交換器により冷却される。 The in-wheel motor 50 mounted on the electric wheel 200 is supplied with a liquid refrigerant for cooling each component constituting the in-wheel motor 50. The liquid refrigerant is supplied into the in-wheel motor 50 by a pump (not shown) provided outside the electric wheel 200. The pipe through which the liquid refrigerant flows is taken out from the side surface of the electric wheel 200 on the vehicle body side, and is connected to a heat exchanger (not shown) arranged at the front portion of the vehicle body. The liquid refrigerant is cooled by an air-cooled or water-cooled heat exchanger.
 図3にインホイールモータ50の模式的断面図を示す。図3には、インホイールモータ50の主要構造部、例えば、ステータコア2X、ロータコア4X、隙間7、第1軸受11A、及び第2軸受11Bの配置関係を示している。インホイールモータ50のハブベアリングHUBの周辺、オイルシールの構造などの図示は省略している。 FIG. 3 shows a schematic cross-sectional view of the in-wheel motor 50. FIG. 3 shows the arrangement relationship of the main structural parts of the in-wheel motor 50, for example, the stator core 2X, the rotor core 4X, the gap 7, the first bearing 11A, and the second bearing 11B. The periphery of the hub bearing HUB of the in-wheel motor 50 and the structure of the oil seal are not shown.
 図3に示すように、インホイールモータ50は、ステータ2とロータ4を備える。ステータ2は、円筒状のステータコア2Xと、ステータコア2Xに巻回された複数のコイル2Zと、ステータコア2Xを支持する本体2Cと、を備える。ロータ4は、ステータコア2Xに対して隙間7を介して回転可能に配置されるロータコア4Xと、ロータコア4Xを支持するロータケース4Wと、を備える。 As shown in FIG. 3, the in-wheel motor 50 includes a stator 2 and a rotor 4. The stator 2 includes a cylindrical stator core 2X, a plurality of coils 2Z wound around the stator core 2X, and a main body 2C that supports the stator core 2X. The rotor 4 includes a rotor core 4X rotatably arranged with respect to the stator core 2X via a gap 7, and a rotor case 4W that supports the rotor core 4X.
 ステータコア2Xの外周部には、ステータコア2Xの中心軸方向に平行な複数のスロット(不図示)が形成される。複数のスロットは、ステータコア2Xの円周方向に等間隔で形成される。スロットには、コイル2Zが収容される。スロット間にはティース2Tが形成される(図6、7参照)。本実施形態では、複数のティース2Tが、環状のコアバック2Q(図6参照)と一体となっている。つまり、ステータコア2Xは、複数のティース2Tとコアバック2Qとが一体成形されたコアである。周方向については、分割型のコアを用いている。ティース2Tは、コイル2Zによって発生した回転磁界をロータコア4Xに導き、ロータコア4Xに回転トルクを発生させる。 A plurality of slots (not shown) parallel to the central axis direction of the stator core 2X are formed on the outer peripheral portion of the stator core 2X. The plurality of slots are formed at equal intervals in the circumferential direction of the stator core 2X. The coil 2Z is accommodated in the slot. Teeth 2T is formed between the slots (see FIGS. 6 and 7). In this embodiment, the plurality of teeth 2T are integrated with the annular core back 2Q (see FIG. 6). That is, the stator core 2X is a core in which a plurality of teeth 2T and a core back 2Q are integrally molded. A split core is used in the circumferential direction. The teeth 2T guides the rotating magnetic field generated by the coil 2Z to the rotor core 4X, and generates a rotational torque in the rotor core 4X.
 コイル2Zは、複数の導体片が接続されることにより形成される。導体片は、銅などの低抵抗導電体の板を打ち抜くことにより形成される。なお、コイル2Zは、断面が矩形状の平角線により形成してもよい。コイル2Zは、ステータコア2Xのスロットに、径方向に層状に収容される。本実施形態において、径方向とは円筒形状の回転電機の半径方向をさす。軸方向とは回転電機のロータ4が回転する回転軸をさす。周方向とは円筒形状を有するステータ2又はロータ4の円周方向をさす。以下の実施形態において、回転電機とはホイール内に組み込むことができるインホイールモータをさす。 Coil 2Z is formed by connecting a plurality of conductor pieces. The conductor piece is formed by punching a plate of a low resistance conductor such as copper. The coil 2Z may be formed by a flat wire having a rectangular cross section. The coil 2Z is accommodated in the slot of the stator core 2X in a layered manner in the radial direction. In the present embodiment, the radial direction refers to the radial direction of a cylindrical rotary electric machine. The axial direction refers to the rotating shaft on which the rotor 4 of the rotary electric machine rotates. The circumferential direction refers to the circumferential direction of the stator 2 or the rotor 4 having a cylindrical shape. In the following embodiments, the rotary electric machine refers to an in-wheel motor that can be incorporated in a wheel.
 コイル2Zは、ステータコア2Xのスロット内に配置されるスロット内導体と、ステータコア2Xの両端からスロット外に突出するコイルエンド部と、を有する。ステータコア2Xの一端側(車外側)に配置されるコイルエンド部を第1コイルエンド部2ZAと記し、ステータコア2Xの他端側(車体側)に配置されるコイルエンド部を第2コイルエンド部2ZBと記す。第1コイルエンド部2ZA及び第2コイルエンド部2ZBは、インホイールモータ50の動作時に発熱し、高温になる。後述するように、第1コイルエンド部2ZA及び第2コイルエンド部2ZBは、液状冷媒が収容されている液状冷媒路15内に配置され、液状冷媒によって冷却される。 The coil 2Z has an in-slot conductor arranged in the slot of the stator core 2X, and a coil end portion protruding from both ends of the stator core 2X to the outside of the slot. The coil end portion arranged on one end side (outside the vehicle) of the stator core 2X is referred to as the first coil end portion 2ZA, and the coil end portion arranged on the other end side (vehicle body side) of the stator core 2X is referred to as the second coil end portion 2ZB. It is written as. The first coil end portion 2ZA and the second coil end portion 2ZB generate heat during the operation of the in-wheel motor 50 and become hot. As will be described later, the first coil end portion 2ZA and the second coil end portion 2ZB are arranged in the liquid refrigerant passage 15 in which the liquid refrigerant is housed, and are cooled by the liquid refrigerant.
 ステータ2は、円筒状の本体2Cと、本体2Cの一端側の開口部に固定される第1エンドブラケット2Aと、本体2Cの他端側の開口部に固定される第2エンドブラケット2Bと、を備える。本体2Cの外周部には、ステータコア2Xが焼嵌め、圧入等により嵌合固定される。 The stator 2 includes a cylindrical main body 2C, a first end bracket 2A fixed to an opening on one end side of the main body 2C, and a second end bracket 2B fixed to an opening on the other end side of the main body 2C. To prepare for. The stator core 2X is shrink-fitted to the outer peripheral portion of the main body 2C, and is fitted and fixed by press fitting or the like.
 本体2Cは、例えば、アルミニウム、マグネシウム合金などの軽金属を用いたダイキャスト法により形成される。なお、本体2Cは、3Dプリンタ成型法などの積層造形法によって形成してもよい。積層造形法を採用することによって、本体2Cの形状の自由度が向上する。本体2Cの内側は空間になっており、インバータ150が収容される。これにより、インホイールモータ50とインバータ(電力変換装置)とが一体化された機電一体構造のモータユニットが形成される。以降、本体2C、第1エンドブラケット2A、及び第2エンドブラケット2Bをステータケース2Wともいう。 The main body 2C is formed by a die casting method using a light metal such as aluminum or magnesium alloy, for example. The main body 2C may be formed by a layered manufacturing method such as a 3D printer molding method. By adopting the additive manufacturing method, the degree of freedom in the shape of the main body 2C is improved. The inside of the main body 2C is a space, and the inverter 150 is accommodated. As a result, a motor unit having an integrated mechanical and electrical structure is formed in which the in-wheel motor 50 and the inverter (power conversion device) are integrated. Hereinafter, the main body 2C, the first end bracket 2A, and the second end bracket 2B are also referred to as a stator case 2W.
 ロータコア4Xには、複数の永久磁石が固定される。永久磁石は、ロータ4の界磁極を形成する。ロータ4は、コイル2Zによって発生した回転磁界が導かれることにより、車輪軸を中心に回転する。 A plurality of permanent magnets are fixed to the rotor core 4X. The permanent magnet forms the field pole of the rotor 4. The rotor 4 rotates about the wheel shaft by guiding the rotating magnetic field generated by the coil 2Z.
 ロータケース4Wは、有底円筒状のケース本体4Cと、ケース本体4Cの開口部に固定されるエンドブラケット4Bと、を有する。ケース本体4Cは、円筒部4CHと、筒部の一端側に設けられる円板状の底部4CDと、を有する。ケース本体4Cの内周部には、ロータコア4Xが焼嵌め、圧入等により嵌合固定される。つまり、ケース本体4Cは、ロータコア4Xと共に回転する。 The rotor case 4W has a bottomed cylindrical case body 4C and an end bracket 4B fixed to the opening of the case body 4C. The case body 4C has a cylindrical portion 4CH and a disk-shaped bottom portion 4CD provided on one end side of the tubular portion. The rotor core 4X is shrink-fitted into the inner peripheral portion of the case body 4C, and is fitted and fixed by press fitting or the like. That is, the case body 4C rotates together with the rotor core 4X.
 ケース本体4Cは、例えば、アルミダイキャストなどの軽金属、炭素繊維強化プラスチック(CFRP)などの軽量構造材により形成される。なお、ロータコア4Xとステータコア2Xとの間に狭小の隙間7を形成するために、ケース本体4Cは、桶型形状のダイキャスト法等の加工精度が高い一体成型法によって形成することが好ましい。 The case body 4C is formed of, for example, a light metal such as aluminum die-cast and a lightweight structural material such as carbon fiber reinforced plastic (CFRP). In order to form a narrow gap 7 between the rotor core 4X and the stator core 2X, it is preferable that the case body 4C is formed by an integral molding method having high processing accuracy such as a tub-shaped die casting method.
 第1軸受11Aの固定部4MAから第2軸受11Bの固定部4MBまでを一体成型することで、組立品に比べて軸受11の固定部同士の寸法精度を確保しやすい。これにより狭小間隙を実現できる。ボルト締結や接着などせずに、アルミダイキャストなどで一つの部品として製作されることが好ましい。又は、一つの材料から削り出して製作してもよい。 By integrally molding the fixed portion 4MA of the first bearing 11A to the fixed portion 4MB of the second bearing 11B, it is easier to secure the dimensional accuracy between the fixed portions of the bearing 11 as compared with the assembled product. This makes it possible to realize a narrow gap. It is preferable that the parts are manufactured by die-casting aluminum without bolting or gluing. Alternatively, it may be manufactured by carving from one material.
 但し、許容できる寸法精度や剛性、用いる部品相互の組立性等との関係で、ケース本体4Cの底部4CDを分割型で形成することもできる。 However, the bottom 4CD of the case body 4C can be formed in a split type in relation to the allowable dimensional accuracy and rigidity, and the ease of assembling the parts to be used.
 本体2Cの外周部とケース本体4Cの内周部との間には、本体2Cの外周部とケース本体4Cとを接続する第1軸受11A及び第2軸受11Bが配置されている。第1軸受11A及び第2軸受11Bは、口径サイズは異なるが構成は同じであるため、以下では、第1軸受11A及び第2軸受11Bを総称して軸受11とも記す。また、第1軸受11Aの転動体10Aと第2軸受11Bの転動体10Bを総称して、転動体10とも記す。 The first bearing 11A and the second bearing 11B connecting the outer peripheral portion of the main body 2C and the case main body 4C are arranged between the outer peripheral portion of the main body 2C and the inner peripheral portion of the case main body 4C. Since the first bearing 11A and the second bearing 11B have different diameter sizes but the same configuration, the first bearing 11A and the second bearing 11B are collectively referred to as the bearing 11 below. Further, the rolling element 10A of the first bearing 11A and the rolling element 10B of the second bearing 11B are collectively referred to as a rolling element 10.
 第1軸受11Aは、ステータコア2Xの軸方向一端側(図示右側)に配置され、第2軸受11Bは、ステータコア2Xの軸方向他端側(図示左側)に配置される。 The first bearing 11A is arranged on one end side in the axial direction of the stator core 2X (right side in the drawing), and the second bearing 11B is arranged on the other end side in the axial direction of the stator core 2X (left side in the drawing).
 図3に示すように、本体2Cの軸方向一端側には、第1軸受11Aの内輪が隙間嵌めされる固定部2LAが形成され、本体2Cの外周部の軸方他端側には、第2軸受11Bの内輪が隙間嵌めされる固定部2LBが形成される。 As shown in FIG. 3, a fixed portion 2LA into which the inner ring of the first bearing 11A is gap-fitted is formed on one end side in the axial direction of the main body 2C, and a second axial end side of the outer peripheral portion of the main body 2C is formed. A fixed portion 2LB is formed in which the inner ring of the two bearings 11B is gap-fitted.
 ケース本体4Cの軸方向一端側には、第1軸受11Aの外輪が圧入固定される固定部4MAが形成され、ケース本体4Cの軸方向他端側には、第2軸受11Bの外輪が圧入固定される固定部4MBが形成される。 A fixing portion 4MA to which the outer ring of the first bearing 11A is press-fitted and fixed is formed on one end side in the axial direction of the case body 4C, and the outer ring of the second bearing 11B is press-fitted and fixed to the other end side in the axial direction of the case body 4C. The fixed portion 4MB to be formed is formed.
 このため、ロータ4自身に車重はかからない。上記したように、車体の重量はハブベアリングHUBを介して車輪軸AXに伝わり、最終的にサスペンション装置110によって支持されているからである。 Therefore, the weight of the rotor 4 itself is not applied. This is because, as described above, the weight of the vehicle body is transmitted to the wheel axle AX via the hub bearing HUB and is finally supported by the suspension device 110.
 したがって、ロータ4は、回転トルクによって変形しない剛性を有していればよい。 Therefore, the rotor 4 may have rigidity that is not deformed by the rotational torque.
 第1エンドブラケット2Aと底部4CDの間に第1オイルシール(不図示)が配置され、第2エンドブラケット2Bとエンドブラケット4Bの間に第2オイルシール(不図示)が配置される。 A first oil seal (not shown) is placed between the first end bracket 2A and the bottom 4CD, and a second oil seal (not shown) is placed between the second end bracket 2B and the end bracket 4B.
 本実施形態に係るインホイールモータ50は、例えば、次のようにして組み立てられる。先ず、ロータケース4Wのケース本体4Cの固定部4MAに第1軸受11Aが圧入固定される。その後、ステータ2がケース本体4C内に挿入され、本体2Cの外周部の固定部2LAが第1軸受11Aの内輪に嵌め合わされる。 The in-wheel motor 50 according to this embodiment is assembled, for example, as follows. First, the first bearing 11A is press-fitted and fixed to the fixing portion 4MA of the case body 4C of the rotor case 4W. After that, the stator 2 is inserted into the case main body 4C, and the fixing portion 2LA on the outer peripheral portion of the main body 2C is fitted to the inner ring of the first bearing 11A.
 次に、第2軸受11Bがケース本体4Cの固定部4MBと本体2Cの固定部2LBとの間に嵌め合わされる。エンドブラケット4Bをケース本体4Cに固定することにより、ケース本体4Cにステータ2が組み付けられる。 Next, the second bearing 11B is fitted between the fixing portion 4MB of the case main body 4C and the fixing portion 2LB of the main body 2C. By fixing the end bracket 4B to the case body 4C, the stator 2 is assembled to the case body 4C.
 -液状冷媒路-
 本実施形態の液状冷媒路15について説明する。ステータ2と、アウターロータ型のロータ4とを嵌め合わせると、ステータ2とロータ4との間に、液状冷媒路15が形成される。液状冷媒路15は、ステータコア2Xとロータコア4Xとの間の隙間7と、ロータケース4Wのケース本体4Cの底部4CDと、本体2Cの軸方向端部との間に形成される外側内部通路15Aを有する。さらに、液状冷媒路15は、ロータケース4Wのエンドブラケット4Bと、ステータケース2Wとの間に形成される内側内部通路15Bと、第1軸受11Aの軸受内部11AS、第2軸受11Bの軸受内部11BSと、を有する。ロータケース4Wがステータ2に対して回転自在に配置されるからである。従って、第1軸受11A及び第2軸受11Bの転動体10並びにコイル2Zのコイルエンド部は、液状冷媒が収容される液状冷媒路15内に配置される。この液状冷媒路15が上記の第1流路に相当する。
-Liquid refrigerant path-
The liquid refrigerant passage 15 of this embodiment will be described. When the stator 2 and the outer rotor type rotor 4 are fitted together, a liquid refrigerant passage 15 is formed between the stator 2 and the rotor 4. The liquid refrigerant passage 15 has an outer internal passage 15A formed between the gap 7 between the stator core 2X and the rotor core 4X, the bottom portion 4CD of the case body 4C of the rotor case 4W, and the axial end portion of the main body 2C. Have. Further, the liquid refrigerant passage 15 includes an inner internal passage 15B formed between the end bracket 4B of the rotor case 4W and the stator case 2W, the bearing internal 11AS of the first bearing 11A, and the bearing internal 11BS of the second bearing 11B. And have. This is because the rotor case 4W is rotatably arranged with respect to the stator 2. Therefore, the rolling elements 10 of the first bearing 11A and the second bearing 11B and the coil end portion of the coil 2Z are arranged in the liquid refrigerant passage 15 in which the liquid refrigerant is housed. The liquid refrigerant passage 15 corresponds to the above-mentioned first flow path.
 (1)隙間
 ステータコア2Xとロータコア4Xとが対向する狭小な空間が隙間7である。ステータコア2Xが発生する回転磁界が隙間7を介して、ロータコア4Xに電磁的に作用し、ロータ4にトルクを発生させる。本実施形態では、空気ではなく、液状冷媒がインホイールモータ50の隙間7に収容され、隙間7の周辺を冷却する。
(1) Gap The gap 7 is a narrow space where the stator core 2X and the rotor core 4X face each other. The rotating magnetic field generated by the stator core 2X acts electromagnetically on the rotor core 4X through the gap 7, and generates torque in the rotor 4. In the present embodiment, liquid refrigerant, not air, is accommodated in the gap 7 of the in-wheel motor 50 to cool the periphery of the gap 7.
 液状冷媒が隙間7に収容されると、車輪軸AXの回りを回転するロータコア4Xの少なくとも一部が液状冷媒に直接接することになる。また、液状冷媒が隙間7に収容されるため、ロータコア4X、ステータコア2X及びコイル2Zの一部が液状冷媒に接する。 When the liquid refrigerant is accommodated in the gap 7, at least a part of the rotor core 4X rotating around the wheel shaft AX comes into direct contact with the liquid refrigerant. Further, since the liquid refrigerant is accommodated in the gap 7, a part of the rotor core 4X, the stator core 2X, and the coil 2Z comes into contact with the liquid refrigerant.
 ケース本体4Cが回転すると、それに伴って、底部4CD、エンドブラケット4Bに接している液状冷媒の少なくとも一部が回転電機の内部を周方向に回転する。本実施形態では、液状冷媒は外部から圧力を受けているので、液状冷媒入口14Aから液状冷媒出口14Bに向けて、インホイールモータ50の軸方向に向かう液状冷媒の流れが生ずる。そして、インホイールモータ50の内部に、隙間7を流路とする液状冷媒流15Rが形成される。 When the case body 4C rotates, at least a part of the liquid refrigerant in contact with the bottom 4CD and the end bracket 4B rotates in the circumferential direction inside the rotary electric machine. In the present embodiment, since the liquid refrigerant receives pressure from the outside, a flow of the liquid refrigerant in the axial direction of the in-wheel motor 50 is generated from the liquid refrigerant inlet 14A toward the liquid refrigerant outlet 14B. Then, a liquid refrigerant flow 15R having a gap 7 as a flow path is formed inside the in-wheel motor 50.
 (2)外側内部通路と内側内部通路
 外側内部通路15Aは、ケース本体4Cの外側(車外側)の底部4CDと第1エンドブラケット2Aとの間に配置される。底部4CDと第1エンドブラケット2Aとの間に第1オイルシールが配置されている(不図示)。内側内部通路15Bは、ロータケース4Wの内側(車体側)に位置するロータケース4Wの底部4CDとステータケース2Wとの間の空間である。底部4CDと第2エンドブラケット2Bとの間に第2オイルシールが配置されている(不図示)。外側内部通路15Aと内側内部通路15Bは、インホイールモータ51の車輪軸を中心とした、薄いドーナツ状構造になっている。外側内部通路15Aと内側内部通路15Bの内部に液状冷媒が収容される。
(2) Outer Inner Passage and Inner Inner Passage The outer inner passage 15A is arranged between the bottom 4CD on the outside (outside of the vehicle) of the case body 4C and the first end bracket 2A. A first oil seal is arranged between the bottom 4CD and the first end bracket 2A (not shown). The inner internal passage 15B is a space between the bottom 4CD of the rotor case 4W and the stator case 2W located inside the rotor case 4W (on the vehicle body side). A second oil seal is arranged between the bottom 4CD and the second end bracket 2B (not shown). The outer inner passage 15A and the inner inner passage 15B have a thin donut-shaped structure centered on the wheel shaft of the in-wheel motor 51. The liquid refrigerant is housed inside the outer inner passage 15A and the inner inner passage 15B.
 (3)軸受内部
 上述したように、ステータ2とケース本体4Cとの間に軸受11が配置される。軸受内部11AS、11BSは、軸受の内輪と外輪との間に形成される空間である(図8参照)。転動体10は、軸受内部11AS、11BSの中に配置される。第1軸受11Aの軸受内部11AS、隙間7、及び外側内部通路15Aとは相互に連通されている。第2軸受11Bの軸受内部11BS、隙間7、及び内側内部通路15Bとは相互に連通されている。このように、軸受11の軸受内部11AS、11BSを通して、外側内部通路15A、隙間7及び内側内部通路15Bが全て連通されている。
(3) Inside the bearing As described above, the bearing 11 is arranged between the stator 2 and the case body 4C. The bearing inner 11AS and 11BS are spaces formed between the inner ring and the outer ring of the bearing (see FIG. 8). The rolling element 10 is arranged inside the bearing inner 11AS and 11BS. The bearing inner 11AS, the gap 7, and the outer inner passage 15A of the first bearing 11A communicate with each other. The bearing internal 11BS, the gap 7, and the inner internal passage 15B of the second bearing 11B communicate with each other. In this way, the outer inner passage 15A, the gap 7, and the inner inner passage 15B are all communicated with each other through the bearing inner 11AS and 11BS of the bearing 11.
 また、軸受11の転動体10と外輪10AOR、10BORは、ケース本体4Cの回転に伴って、車体フレーム1010に固定されたステータ2に対して回転する(図8参照)。軸受11の軸受内部11AS、11BSは液状冷媒路15に連通しているので、軸受内部11AS、11BSの転動体10は液状冷媒に接している。そのため、液状冷媒によって転動体10は直接冷却される。一部の液状冷媒は、軸受11の回転動作に伴って周方向に回転する。このように軸受内部11AS、11BSは液状冷媒路15の一部として構成される。このようにして、上記の複数の空間、即ち、隙間7、外側内部通路15A、内側内部通路15B、軸受内部11AS、11BSを含む液状冷媒路15に液状冷媒が収容される。 Further, the rolling elements 10 of the bearing 11 and the outer rings 10A OR and 10B OR rotate with respect to the stator 2 fixed to the vehicle body frame 1010 as the case body 4C rotates (see FIG. 8). Since the bearing internal 11AS and 11BS of the bearing 11 communicate with the liquid refrigerant passage 15, the rolling elements 10 of the bearing internal 11AS and 11BS are in contact with the liquid refrigerant. Therefore, the rolling element 10 is directly cooled by the liquid refrigerant. Some liquid refrigerants rotate in the circumferential direction as the bearing 11 rotates. As described above, the bearing internal 11AS and 11BS are configured as a part of the liquid refrigerant passage 15. In this way, the liquid refrigerant is accommodated in the plurality of spaces, that is, the liquid refrigerant passage 15 including the gap 7, the outer inner passage 15A, the inner inner passage 15B, the bearing inner 11AS, and 11BS.
 上述したように、液状冷媒入口14A、隙間7、液状冷媒出口14B、及び外部のポンプ等との間で定常的な循環流が形成される。しかし、軸受11の軸受内部11AS、11BSと転動体10は液状冷媒路15の液状冷媒に接する状態にあり、液状冷媒の流路の中に配置されていない。そのため二つの軸受11の軸方向の内部空間においては軸方向の液状冷媒の流れが余り発生しない。このように、第1軸受11A、第2軸受11Bが液状冷媒路15の外に設置されることで、軸受内部11AS、11BSを軸方向に通過する液状冷媒が少ない。つまり、軸受内部11AS、11BSが液状冷媒で満たされているだけである。しかし、液状冷媒は少なくとも、転動体10の潤滑と冷却を行う。同時に、液状冷媒の流れが少ないので、異物混入の可能性が低くなるので好ましい。本実施形態では、上記の液状冷媒が満たされた空間を液状冷媒路15と記す。 As described above, a steady circulating flow is formed between the liquid refrigerant inlet 14A, the gap 7, the liquid refrigerant outlet 14B, an external pump, and the like. However, the bearing interiors 11AS and 11BS of the bearing 11 and the rolling element 10 are in contact with the liquid refrigerant in the liquid refrigerant passage 15, and are not arranged in the flow path of the liquid refrigerant. Therefore, the flow of the liquid refrigerant in the axial direction is not so much generated in the internal space in the axial direction of the two bearings 11. As described above, since the first bearing 11A and the second bearing 11B are installed outside the liquid refrigerant passage 15, the amount of liquid refrigerant that passes axially through the bearing internal 11AS and 11BS is small. That is, the bearing interiors 11AS and 11BS are only filled with the liquid refrigerant. However, the liquid refrigerant at least lubricates and cools the rolling elements 10. At the same time, since the flow of the liquid refrigerant is small, the possibility of foreign matter being mixed is reduced, which is preferable. In the present embodiment, the space filled with the above liquid refrigerant is referred to as a liquid refrigerant passage 15.
 (4)液状冷媒入口と液状冷媒出口
 本実施形態において、液状冷媒をインホイールモータ50の内部に供給するための供給貫通孔が、第1コイルエンド部2ZAの直下に一か所設けられている。その供給貫通孔の外側が外部取入口13Aであり、内側が液状冷媒入口14Aである。液状冷媒入口14Aは第1コイルエンド部2ZA付近で液状冷媒路15に接続されている。
(4) Liquid Refrigerant Inlet and Liquid Refrigerant Outlet In the present embodiment, a supply through hole for supplying the liquid refrigerant to the inside of the in-wheel motor 50 is provided at one place directly under the first coil end portion 2ZA. .. The outside of the supply through hole is the external intake 13A, and the inside is the liquid refrigerant inlet 14A. The liquid refrigerant inlet 14A is connected to the liquid refrigerant passage 15 near the first coil end portion 2ZA.
 また、液状冷媒入口14Aからインホイールモータ50の内部に供給された液状冷媒を外部に排出するための排出貫通孔が、第2コイルエンド部2ZBの直下に一か所設けられている。その排出貫通孔の外側が外部取出口13Bであり、内側が液状冷媒出口14Bである。 Further, a discharge through hole for discharging the liquid refrigerant supplied from the liquid refrigerant inlet 14A to the inside of the in-wheel motor 50 to the outside is provided at one place directly under the second coil end portion 2ZB. The outside of the discharge through hole is the external outlet 13B, and the inside is the liquid refrigerant outlet 14B.
 本実施形態では、第1軸受11Aと第1コイルエンド部2ZA間の距離が、液状冷媒入口14Aと第1コイルエンド部2ZA間の距離よりも長く、第2軸受11Bと第2コイルエンド部2ZB間の距離が、液状冷媒出口14Bと第2コイルエンド部2ZB間の距離よりも長くなるように設定されている。本実施形態の構成の場合、液状冷媒に接する軸受11に、外部から不要な異物が混入する可能性が低くなるので好ましい。 In the present embodiment, the distance between the first bearing 11A and the first coil end portion 2ZA is longer than the distance between the liquid refrigerant inlet 14A and the first coil end portion 2ZA, and the distance between the second bearing 11B and the second coil end portion 2ZB is longer. The distance between them is set to be longer than the distance between the liquid refrigerant outlet 14B and the second coil end portion 2ZB. In the case of the configuration of the present embodiment, it is preferable because the possibility that unnecessary foreign matter is mixed from the outside into the bearing 11 in contact with the liquid refrigerant is reduced.
 また、本実施形態において、外部取入口13Aと外部取出口13Bは、周方向で約180度ずれた位置に設けられている。外部取入口13Aと外部取出口13Bは、逆の配置構成にしてもよい。コイル2Z付近の液状冷媒の流れの状態によっては、周方向に液状冷媒の出口が複数箇所あってもよい。液状冷媒出口14Bと液状冷媒入口14Aの位置関係は周方向で略同一位置(約0度)とするか、又は略反対位置(約180度)にするなど、配置構成の変形例が考えられる。 Further, in the present embodiment, the external intake 13A and the external outlet 13B are provided at positions shifted by about 180 degrees in the circumferential direction. The external intake 13A and the external outlet 13B may be arranged in reverse. Depending on the state of the flow of the liquid refrigerant near the coil 2Z, there may be a plurality of outlets of the liquid refrigerant in the circumferential direction. A modified example of the arrangement configuration can be considered, such as the positional relationship between the liquid refrigerant outlet 14B and the liquid refrigerant inlet 14A being substantially the same position (about 0 degrees) in the circumferential direction or substantially opposite positions (about 180 degrees).
 -液状冷媒の注入-
 インホイールモータ50を組立てた後、その内部で連通している隙間7、軸受内部11AS、11BS(図8参照)、外側内部通路15A、及び内側内部通路15B等に液状冷媒が収容される。
-Injection of liquid refrigerant-
After assembling the in-wheel motor 50, the liquid refrigerant is accommodated in the gap 7 communicating inside the in-wheel motor 50, the bearing inner 11AS, 11BS (see FIG. 8), the outer inner passage 15A, the inner inner passage 15B, and the like.
 外側内部通路15Aの内部には、内外の空間を分離して液状冷媒を封止するための第1オイルシール(不図示)が、ロータ側の底部4CDとステータ側の第1エンドブラケット2Aとの間に配置されている。また、内側内部通路15Bの内部には、内外の空間を分離して液状冷媒を封止するための第2オイルシール(不図示)が、ロータ側のエンドブラケット4Bとステータ側の第2エンドブラケット2Bとの間に配置されている。 Inside the outer inner passage 15A, a first oil seal (not shown) for separating the inner and outer spaces and sealing the liquid refrigerant is provided between the bottom 4CD on the rotor side and the first end bracket 2A on the stator side. It is placed in between. Further, inside the inner inner passage 15B, a second oil seal (not shown) for separating the inner and outer spaces and sealing the liquid refrigerant is provided in the end bracket 4B on the rotor side and the second end bracket on the stator side. It is placed between 2B.
 液状冷媒を液状冷媒路15に収容するには、外部取入口13Aに配管を接続し、外部取出口13Bを開放し、液状冷媒が内部に充満するまで供給すればよい。その後、外部取出口13Bに配管又はホースを接続し、熱交換機等との循環路を形成する。ポンプによって液状冷媒に圧力が印加され、液状冷媒路15に供給される。このことにより、液状冷媒は液状冷媒路15の中を流れ、さらに液状冷媒出口14B、外部取出口13Bから外部に出て、外部の熱交換機との間を循環する。液状冷媒入口14Aからインホイールモータ50の内部に供給された液状冷媒は、第1コイルエンド部2ZAから第2コイルエンド部2ZBに向かって液状冷媒流15Rとなって隙間7の内部を流れる。液状冷媒が軸方向に向かって流れる隙間7の空間が液状冷媒路15である。 In order to accommodate the liquid refrigerant in the liquid refrigerant passage 15, a pipe may be connected to the external intake 13A, the external outlet 13B may be opened, and the liquid refrigerant may be supplied until the inside is filled. After that, a pipe or a hose is connected to the external outlet 13B to form a circulation path with a heat exchanger or the like. Pressure is applied to the liquid refrigerant by the pump and supplied to the liquid refrigerant passage 15. As a result, the liquid refrigerant flows through the liquid refrigerant passage 15, further exits from the liquid refrigerant outlet 14B and the external outlet 13B, and circulates with the external heat exchanger. The liquid refrigerant supplied from the liquid refrigerant inlet 14A to the inside of the in-wheel motor 50 becomes a liquid refrigerant flow 15R from the first coil end portion 2ZA toward the second coil end portion 2ZB and flows inside the gap 7. The space of the gap 7 through which the liquid refrigerant flows in the axial direction is the liquid refrigerant passage 15.
 本実施形態において、液状冷媒路15に対して、外部取入口13Aと外部取出口13Bは、それぞれ第1コイルエンド部2ZAと第2コイルエンド部2ZBの直下付近に設けている。つまり、本体2Cの内周側の空間に、外部取入口13Aと外部取出口13Bとが設けられている。外部の熱交換器(不図示)と外部接続口13とを配管又はホースで接続する。 In the present embodiment, the external inlet 13A and the external outlet 13B are provided near the first coil end portion 2ZA and the second coil end portion 2ZB, respectively, with respect to the liquid refrigerant passage 15. That is, the external inlet 13A and the external outlet 13B are provided in the space on the inner peripheral side of the main body 2C. The external heat exchanger (not shown) and the external connection port 13 are connected by a pipe or a hose.
 -液状冷媒の循環-
 本実施形態では、ステータ2とロータケース4Wとの間に配置される二つの軸受11の各転動体(ボール)10が液状冷媒に接するように、液状冷媒路15が形成されている。軸受11の転動体10は、ケース本体4Cの回転に伴って、その回転方向に沿って、軸受内部11AS、11BSで回転しながら周方向に移動する。そのため軸受内部11AS、11BSで転動体10の付近にある液状冷媒は、転動体10と同様に周方向に移動する。軸受内部11AS、11BSにある液状冷媒は、転動体10自身による摩擦熱などを吸収する。
-Circulation of liquid refrigerant-
In the present embodiment, the liquid refrigerant passage 15 is formed so that each rolling element (ball) 10 of the two bearings 11 arranged between the stator 2 and the rotor case 4W is in contact with the liquid refrigerant. The rolling element 10 of the bearing 11 moves in the circumferential direction while rotating at the bearing inner portions 11AS and 11BS along the rotation direction of the case body 4C. Therefore, the liquid refrigerant in the vicinity of the rolling element 10 in the bearing inner portions 11AS and 11BS moves in the circumferential direction in the same manner as the rolling element 10. The liquid refrigerant in the bearing inner 11AS and 11BS absorbs frictional heat and the like generated by the rolling element 10 itself.
 本実施形態において、外側内部通路15Aと内側内部通路15Bに収容された液状冷媒はインホイールモータ50の内部で軸方向に大きく移動することがほとんどない。但し、インホイールモータ50の回転動作に伴い、液状冷媒は、液状冷媒が接しているエンドブラケット4B又は底部4CDに引き連られる。そのことによって、外側内部通路15Aと内側内部通路15Bに収容された液状冷媒は、周方向にある程度回転する。その場合、底部4CDとエンドブラケット4Bを介して、液状冷媒から外部への放熱がおこる。このように、液状冷媒路15は、高出力化されたインホイールモータ50の冷却を効率良く行う機能を有している。 In the present embodiment, the liquid refrigerant contained in the outer inner passage 15A and the inner inner passage 15B hardly moves significantly in the axial direction inside the in-wheel motor 50. However, with the rotational operation of the in-wheel motor 50, the liquid refrigerant is drawn to the end bracket 4B or the bottom 4CD in contact with the liquid refrigerant. As a result, the liquid refrigerant contained in the outer inner passage 15A and the inner inner passage 15B rotates to some extent in the circumferential direction. In that case, heat is dissipated from the liquid refrigerant to the outside via the bottom 4CD and the end bracket 4B. As described above, the liquid refrigerant passage 15 has a function of efficiently cooling the in-wheel motor 50 having a high output.
 また、本実施形態では、第1コイルエンド部2ZAから第2コイルエンド部2ZBに向かって、液状冷媒が薄い円筒状の隙間7を一定方向に流れる。液状冷媒がステータコア2Xとロータコア4X等を冷却する。本実施形態のインホイールモータ50は、コイル2Zに大きな電流を流すことで高トルクを出力する。そのため、コイル2Zはジュール損によって発熱するので、コイル2Zとステータコア2Xは、ロータコア4Xに比べて温度が上昇しやすい。本実施形態では、ステータコア2Xとロータコア4Xとの間の隙間7に、液状冷媒を定常的に流し続ける。液状冷媒は、外部取入口13Aから取り入れられ、液状冷媒入口14Aから液状冷媒路15の内部に供給される。液状冷媒は外部に置かれたポンプで送液されるので、液状冷媒入口14Aの位置においては、液状冷媒出口14B側よりも、相対的に高い圧力を有している。 Further, in the present embodiment, the liquid refrigerant flows in a fixed direction from the first coil end portion 2ZA to the second coil end portion 2ZB through the thin cylindrical gap 7. The liquid refrigerant cools the stator core 2X, the rotor core 4X, and the like. The in-wheel motor 50 of the present embodiment outputs a high torque by passing a large current through the coil 2Z. Therefore, since the coil 2Z generates heat due to the Joule loss, the temperatures of the coil 2Z and the stator core 2X tend to rise as compared with the rotor core 4X. In the present embodiment, the liquid refrigerant is continuously flowed in the gap 7 between the stator core 2X and the rotor core 4X. The liquid refrigerant is taken in from the external intake 13A and supplied to the inside of the liquid refrigerant passage 15 from the liquid refrigerant inlet 14A. Since the liquid refrigerant is sent by a pump placed outside, the liquid refrigerant has a relatively higher pressure at the position of the liquid refrigerant inlet 14A than the liquid refrigerant outlet 14B side.
 そのため円筒状の隙間7には、軸方向に液状冷媒が連続的に流れることになる。このような構成をとることによって、上記のステータコア2Xやコイル2Z付近で発生する熱を液状冷媒が連続的に吸収し、外部に排熱することができる。本実施形態では、液状冷媒が第1コイルエンド部2ZAから第2コイルエンド部2ZBに向けて、円筒状の隙間7を流れる。この液状冷媒の流れによって、液状冷媒がステータコア2X等の発熱を吸収し、液状冷媒の温度が上昇し、第2軸受11B付近の液状冷媒の温度が上昇し、それによって第2軸受11Bの温度が第1軸受11Aの温度よりも高くなる。 Therefore, the liquid refrigerant continuously flows in the cylindrical gap 7 in the axial direction. By adopting such a configuration, the liquid refrigerant can continuously absorb the heat generated in the vicinity of the stator core 2X and the coil 2Z and exhaust the heat to the outside. In the present embodiment, the liquid refrigerant flows through the cylindrical gap 7 from the first coil end portion 2ZA to the second coil end portion 2ZB. Due to this flow of the liquid refrigerant, the liquid refrigerant absorbs the heat generated by the stator core 2X and the like, the temperature of the liquid refrigerant rises, and the temperature of the liquid refrigerant near the second bearing 11B rises, whereby the temperature of the second bearing 11B rises. It becomes higher than the temperature of the first bearing 11A.
 従来技術のように、第2軸受11Bの口径が第1軸受11Aの口径と同一である場合、第2軸受11Bの内部隙間が熱膨張によって、第1軸受11Aの内部隙間より相対的に小さくなる。 When the diameter of the second bearing 11B is the same as the diameter of the first bearing 11A as in the prior art, the internal gap of the second bearing 11B becomes relatively smaller than the internal gap of the first bearing 11A due to thermal expansion. ..
 そうすると、第2軸受11Bの内部隙間が熱膨張で狭くなることに起因して、第2軸受11Bの寿命が第1軸受11Aの寿命に比べて短くなってしまうおそれがある。本実施形態では、第2軸受11Bの口径は第1軸受11Aの口径よりも大きく設定されている。その結果、第2軸受11Bの寿命の向上を図っている。このように、本実施形態において隙間7は、液状冷媒が軸方向に流れる第1流路とされ、第1軸受11Aは、この第1流路の液状冷媒入口14A側に配置され、第2軸受11Bは、この第1流路の液状冷媒出口14B側に配置され、第2軸受11Bの内径は、第1軸受11Aの内径よりも大きく設定されている。 Then, the life of the second bearing 11B may be shorter than the life of the first bearing 11A due to the narrowing of the internal gap of the second bearing 11B due to thermal expansion. In the present embodiment, the diameter of the second bearing 11B is set to be larger than the diameter of the first bearing 11A. As a result, the life of the second bearing 11B is improved. As described above, in the present embodiment, the gap 7 is a first flow path through which the liquid refrigerant flows in the axial direction, and the first bearing 11A is arranged on the liquid refrigerant inlet 14A side of the first flow path and is the second bearing. 11B is arranged on the liquid refrigerant outlet 14B side of the first flow path, and the inner diameter of the second bearing 11B is set to be larger than the inner diameter of the first bearing 11A.
 -軸受-
 本実施形態において、ケース本体4Cと本体2Cとの間に配置される第1軸受11Aと第2軸受11Bには、ラジアル型の軸受を用いることが好ましい。また、第1軸受11Aと第2軸受11Bには大口径・薄型の軸受を用いることが好ましい。薄型軸受は、一般的な軸受に比べて、軸受の幅が小さく軽量になるなどのメリットがある。一般的に軸受は口径が大きくなるほど、転動体10の断面も大きくなる。
-bearing-
In the present embodiment, it is preferable to use radial type bearings for the first bearing 11A and the second bearing 11B arranged between the case main body 4C and the main body 2C. Further, it is preferable to use large diameter and thin bearings for the first bearing 11A and the second bearing 11B. Thin bearings have the advantages of smaller bearing width and lighter weight than general bearings. Generally, the larger the diameter of a bearing, the larger the cross section of the rolling element 10.
 しかし、薄型軸受は転動体の断面積が小さい状態を保持したまま、軸受の口径を大きくした設計となっている。そのため、薄型軸受は転動体の断面が、その口径に比べて小さいので、許容荷重及び許容周速も一般的な軸受に比べて小さくなる。しかし、薄型軸受は、軸受の全体が小さく軽量になるなどのメリットがある。本実施形態に適用し得る薄型軸受は、およそ軸受の内径が20cm以上で、転動体の直径が数mm程度のものである。 However, the thin bearing is designed to have a larger bearing diameter while maintaining a small cross-sectional area of the rolling element. Therefore, since the cross section of the rolling element of the thin bearing is smaller than the diameter of the rolling element, the allowable load and the allowable peripheral speed are also smaller than those of a general bearing. However, the thin bearing has an advantage that the entire bearing is small and lightweight. The thin bearing applicable to this embodiment has an inner diameter of about 20 cm or more and a rolling element having a diameter of about several mm.
 本実施形態において、車体の重量は別途ハブベアリングHUB(図2参照)が支持する。つまり、本実施形態に用いる第1軸受11Aと第2軸受11Bには車重が直接かかることがない。これらの二つの軸受11は、軸受11が接続されるロータケース4Wのケース本体4Cの自重を支持する。軸方向の荷重が第1軸受11Aと第2軸受11Bに掛からないことを前提として、本実施形態の軸受として深溝玉軸受を選定することが好ましい。深溝玉軸受は、スラスト荷重を受けることができないが、摩擦係数が小さく、回転トルクが低いので、低損失のインホイールモータを構成することができる。軸受11の構造と特性については後述する。 In this embodiment, the weight of the vehicle body is separately supported by the hub bearing HUB (see FIG. 2). That is, the vehicle weight is not directly applied to the first bearing 11A and the second bearing 11B used in the present embodiment. These two bearings 11 support the weight of the case body 4C of the rotor case 4W to which the bearings 11 are connected. It is preferable to select a deep groove ball bearing as the bearing of the present embodiment on the premise that the axial load is not applied to the first bearing 11A and the second bearing 11B. The deep groove ball bearing cannot receive the thrust load, but has a small coefficient of friction and a low rotational torque, so that a low-loss in-wheel motor can be configured. The structure and characteristics of the bearing 11 will be described later.
 また、軸受11にラジアル荷重やスラスト荷重が掛からなければ、又は、ラジアル荷重やスラスト荷重が掛ったとしても、その荷重が小さい範囲であれば、転動体10の断面積が小さい軸受11を選定し用いることができる。本実施形態のインホイールモータ50では、小型化と軽量化が重要な技術要素であるため、転動体10の最小断面積ができるだけ小さい軸受11を選定することが重要となる。 Further, if the bearing 11 is not subjected to a radial load or a thrust load, or even if a radial load or a thrust load is applied, if the load is within a small range, a bearing 11 having a small cross-sectional area of the rolling element 10 is selected. Can be used. In the in-wheel motor 50 of the present embodiment, miniaturization and weight reduction are important technical elements, so it is important to select a bearing 11 having the smallest possible cross-sectional area of the rolling element 10.
 ここで、軸受の隙間に関する定義を説明する。ラジアル軸受の内部隙間とは、内輪又は外輪の一方を固定し、他方を動かした場合の移動量を指す。半径方向に内輪又は外輪を動かした場合の移動量をラジアル内部隙間という。また、軸受の有効隙間とは、軸受を取り付ける前の隙間(真の隙間)から、軸受を嵌め合いしたことによる隙間の減少量、さらに、内輪と外輪の温度差による隙間の減少量を減算したものである。その有効隙間に対して、荷重が軸受にかかることによる隙間の増加量を加えたものが運転隙間である。 Here, the definition regarding the gap between bearings will be explained. The internal gap of a radial bearing refers to the amount of movement when one of the inner ring and the outer ring is fixed and the other is moved. The amount of movement when the inner ring or outer ring is moved in the radial direction is called the radial internal gap. The effective gap of the bearing is the amount of reduction of the gap due to the fitting of the bearing and the amount of reduction of the gap due to the temperature difference between the inner ring and the outer ring from the gap (true gap) before mounting the bearing. It is a thing. The operating gap is the effective gap plus the amount of increase in the gap due to the load applied to the bearing.
 本実施形態の第1軸受11Aは、第2軸受11Bよりも、液状冷媒入口14Aに近い位置に配置される。第1軸受11Aの転動体10Aのおおよそのサイズは、断面が1.27cm(1/2インチ)角、内径35.6cm(14インチ)である。そして、軸受11の転動体10などを含む軸受内部11AS、11BSは、液状冷媒によって冷却される(図8参照)。二つの軸受11の転動体10は液状冷媒路15の液状冷媒に接するように配置されている。軸受11の軸方向に対して液状冷媒を通過させる強制的な液状冷媒潤滑方式については後述する。 The first bearing 11A of the present embodiment is arranged at a position closer to the liquid refrigerant inlet 14A than the second bearing 11B. The approximate size of the rolling element 10A of the first bearing 11A is a cross section of 1.27 cm (1/2 inch) square and an inner diameter of 35.6 cm (14 inches). Then, the bearing internal 11AS and 11BS including the rolling element 10 of the bearing 11 are cooled by the liquid refrigerant (see FIG. 8). The rolling elements 10 of the two bearings 11 are arranged so as to be in contact with the liquid refrigerant in the liquid refrigerant passage 15. A forced liquid refrigerant lubrication method for passing the liquid refrigerant in the axial direction of the bearing 11 will be described later.
 本実施形態において、第1軸受11Aと第2軸受11Bは、冷却油シール部をそれぞれ別に設けているが、シールタイプの軸受でもよい。また、ステータ2とロータ4との間の隙間7の狭小化のために、第1軸受11Aと第2軸受11Bは、ステータコア2Xとロータコア4Xになるべく近い位置に配置することが好ましい。シールタイプの軸受を採用すると、軸受の他にシールを別途設置する必要がなくなるので部品点数を削減することができる。 In the present embodiment, the first bearing 11A and the second bearing 11B are provided with a cooling oil seal portion separately, but a seal type bearing may be used. Further, in order to narrow the gap 7 between the stator 2 and the rotor 4, it is preferable that the first bearing 11A and the second bearing 11B are arranged at positions as close as possible to the stator core 2X and the rotor core 4X. If a seal type bearing is adopted, it is not necessary to separately install a seal in addition to the bearing, so that the number of parts can be reduced.
 しかし、シールタイプの軸受は、軸受の軸長が長くなり、その耐圧力はシール別置型の軸受より低くなる。また、軸受11の転動体10の回転による発熱と、シール部の摩擦による発熱が同一箇所で発生するので、全体を比較した場合、シール別置型の軸受とシールを組み合わせて構成した方が好ましい。軸受11の冷却方法としてグリス潤滑もあるが、本実施形態において、グリス潤滑を積極的に用いることはない。 However, the seal type bearing has a longer shaft length, and its withstand pressure is lower than that of the seal-separated type bearing. Further, since heat generation due to the rotation of the rolling element 10 of the bearing 11 and heat generation due to friction of the seal portion are generated at the same location, it is preferable to combine the bearing with a separate seal and the seal when comparing the whole. Grease lubrication is also used as a cooling method for the bearing 11, but in the present embodiment, grease lubrication is not positively used.
 本実施形態で用いる軸受の材質は、軸受鋼SUJ2を使用することが好ましい。SUJ2の代わりにSUSでもよい。転動体10にはSUSなどの金属を用いる。セラミックの転動体であると、金属の場合よりも熱膨張係数が小さいので、温度上昇の影響を受けにくいが、適用できないわけではない。 As the material of the bearing used in this embodiment, it is preferable to use the bearing steel SUJ2. SUS may be used instead of SUJ2. A metal such as SUS is used for the rolling element 10. Since the coefficient of thermal expansion of a ceramic rolling element is smaller than that of a metal, it is not easily affected by a temperature rise, but it is not unapplicable.
 第1軸受11Aは、アウターロータ型インホイールモータのホイールの近くに配置されるので、第1軸受11Aの径はホイールのリム径に近いサイズとなる。軸受11の組立前のラジアル内部の真の隙間は、80~130μm程度の範囲から選定することができる。しかし、本体2Cの材質や、液状冷媒の温度設定によっては、内径のサイズが異なる別シリーズの軸受を選定することもできる。 Since the first bearing 11A is arranged near the wheel of the outer rotor type in-wheel motor, the diameter of the first bearing 11A is close to the rim diameter of the wheel. The true clearance inside the radial before assembling the bearing 11 can be selected from the range of about 80 to 130 μm. However, depending on the material of the main body 2C and the temperature setting of the liquid refrigerant, it is possible to select another series of bearings having different inner diameter sizes.
 インホイールモータ50を連続的に使用すると、転動体10に接している液状冷媒の温度上昇、及び転動体10自身による発熱により、転動体10が熱膨張を起こして内部隙間が小さくなる。本実施形態で採用する第2軸受11Bは、大口径であり軸受隙間(取付前の真の隙間)が予め大きく設定されている。そのため、第2軸受11Bで発生する局部的な熱発生に基づく第2軸受11Bの転動体10Bなどの熱膨張を吸収しやすい。 When the in-wheel motor 50 is continuously used, the rolling element 10 undergoes thermal expansion due to the temperature rise of the liquid refrigerant in contact with the rolling element 10 and the heat generated by the rolling element 10 itself, and the internal gap becomes smaller. The second bearing 11B used in the present embodiment has a large diameter and a large bearing gap (true gap before mounting) is set in advance. Therefore, it is easy to absorb the thermal expansion of the rolling element 10B of the second bearing 11B based on the local heat generation generated in the second bearing 11B.
 図9を参照して運転隙間の設定について説明する。一般的には、図9に示す疲れ寿命-運転隙間曲線のように、疲れ寿命曲線がピークとなる条件は運転隙間がマイナスの場合である。即ち、運転隙間を0よりやや狭くした条件に設定して用いられることが多い。図9の曲線(a)と曲線(b)は、同一の軸受に対する荷重条件が約6倍異なる場合のものであるが、寿命は運転隙間が-3~-8μm程度で最大値を示している。 The setting of the operating gap will be described with reference to FIG. Generally, as in the fatigue life-operating gap curve shown in FIG. 9, the condition at which the fatigue life curve peaks is when the operating gap is negative. That is, it is often used by setting the operating gap slightly narrower than 0. The curves (a) and (b) in FIG. 9 are for the case where the load conditions for the same bearing are different by about 6 times, but the life shows the maximum value when the operating gap is about -3 to -8 μm. ..
 しかし、軸受の長寿命化を狙って、運転隙間を0以下の領域であって疲れ寿命曲線の極大値に合わせて設定しようとすると、部品の寸法ばらつきや組立精度などによって、疲れ寿命曲線の極大値より、実際の運転隙間がマイナス側にシフトしてしまう場合がある。そうすると軸受の寿命は急激に悪化する。本実施形態においては、第2軸受11Bは、(c)の矢印の範囲のように、あらかじめ運転隙間が0以上となるように設定されている。 However, if the operating clearance is set to the maximum value of the fatigue life curve in the region of 0 or less with the aim of extending the life of the bearing, the fatigue life curve will be maximized due to the dimensional variation of parts and assembly accuracy. The actual operating gap may shift to the minus side from the value. Then, the life of the bearing deteriorates sharply. In the present embodiment, the second bearing 11B is set in advance so that the operating gap is 0 or more, as shown in the range of the arrow in (c).
 次に図10を参照して軸受の公差について説明する。図10に示すように、軸受の外径・内径のサイズが大きいものほど公差幅が大きくなる。本実施形態では、軸受の運転隙間の設定は、プラスマイナス公差ではなく、運転隙間の設定の下限を0に設定している。用いる軸受の公差を考慮し運転隙間を設定する。その結果、軸受の運転隙間の設定の狙い値は一般的な数値よりも大きくなっている。 Next, the bearing tolerance will be described with reference to FIG. As shown in FIG. 10, the larger the outer and inner diameters of the bearing, the larger the tolerance width. In the present embodiment, the setting of the operating clearance of the bearing is not a plus or minus tolerance, but the lower limit of the setting of the operating clearance is set to 0. Set the operating clearance in consideration of the tolerance of the bearing to be used. As a result, the target value for setting the operating clearance of the bearing is larger than the general value.
 また、本実施形態では、二つの軸受11の転動体10を含む軸受内部11AS、11BSは液状冷媒路15の中に配置され、液状冷媒に接している。液状冷媒は、インホイールモータ50の内部で温度上昇が顕著なステータコア2X付近の発熱を吸収し液状冷媒出口14Bを通り、外部取出口13Bから外部に出る。その際、ステータコア2X付近で発生した熱を吸収する液状冷媒は、隙間7を通過するにしたがって、入口側よりも出口側に進行するに従って相対的に高温になっていく。 Further, in the present embodiment, the bearing inner portions 11AS and 11BS including the rolling elements 10 of the two bearings 11 are arranged in the liquid refrigerant passage 15 and are in contact with the liquid refrigerant. The liquid refrigerant absorbs heat generated in the vicinity of the stator core 2X where the temperature rises remarkably inside the in-wheel motor 50, passes through the liquid refrigerant outlet 14B, and exits from the external outlet 13B. At that time, the liquid refrigerant that absorbs the heat generated in the vicinity of the stator core 2X becomes relatively hot as it passes through the gap 7 and progresses toward the outlet side rather than the inlet side.
 相対的に液状冷媒入口14A側よりも高温になった液状冷媒に接する第2軸受11Bは、第2軸受11B自身の回転動作による発熱以外に、第2軸受11Bが接する液状冷媒の温度に曝されることになる。つまり、本実施形態では、運転中に第1軸受11Aよりも第2軸受11Bの温度が高くなる傾向にある。 The second bearing 11B in contact with the liquid refrigerant having a relatively higher temperature than the liquid refrigerant inlet 14A side is exposed to the temperature of the liquid refrigerant in contact with the second bearing 11B in addition to the heat generated by the rotational operation of the second bearing 11B itself. Will be. That is, in the present embodiment, the temperature of the second bearing 11B tends to be higher than that of the first bearing 11A during operation.
 図8に示すように、第2軸受11Bは本体2Cに隙間嵌めされているので、第2軸受11Bの内輪10BIRは本体2Cに直接接している。つまり、第2軸受11Bの内輪10BIRは本体2Cからの熱伝導の影響を直接受けやすい。その結果、第2軸受11Bの内径は、インホイールモータ50の運転時に、第1軸受11Aの内径よりも、温度上昇によって相対的に大口径化する。 As shown in FIG. 8, since the second bearing 11B is gap-fitted to the main body 2C, the inner ring 10B IR of the second bearing 11B is in direct contact with the main body 2C. That is, the inner ring 10B IR of the second bearing 11B is directly affected by the heat conduction from the main body 2C. As a result, the inner diameter of the second bearing 11B becomes larger than the inner diameter of the first bearing 11A when the in-wheel motor 50 is operated due to the temperature rise.
 本実施形態では、ステータ2の本体2Cからの熱伝導の影響を遮断するために、第2エンドブラケット2Bの円周方向に、穴2Hを同心円状に数個から30個設けて、ステータコア2Xからの熱伝導を受けにくくしている。この穴2Hは、ステータコア2Xと第2軸受11Bとの径方向の間に位置している。穴2Hは、部品の強度、剛性に影響の出ない範囲で、第2エンドブラケット2Bの側面に軸方向に貫通する穴として設けられている。 In the present embodiment, in order to block the influence of heat conduction from the main body 2C of the stator 2, several to 30 holes 2H are concentrically provided in the circumferential direction of the second end bracket 2B from the stator core 2X. It makes it difficult to receive heat conduction. The hole 2H is located between the stator core 2X and the second bearing 11B in the radial direction. The hole 2H is provided as a hole penetrating in the axial direction on the side surface of the second end bracket 2B within a range that does not affect the strength and rigidity of the component.
 穴2Hにより、本体2Cの熱伝導面積が小さくなるので、コイル2Zの熱が第2軸受11Bに伝わりにくくなる。また、穴2Hが複数設けられることにより、内側内部通路15Bと隙間7側とが連通され、内部で液状冷媒の対流が起こる。この対流によって第2軸受11Bに液状冷媒がより接するので、第2軸受11Bが冷却されやすくなる。このように穴2Hの内部は液状冷媒路15の一部となる。穴2Hの形状は丸穴でもよいし、長穴でもよい。また、隙間7が見える位置に穴を設ければ、ステータ・ロータの組立時に隙間7に保護板を差し込む穴として利用することもできる。 Since the heat conduction area of the main body 2C is reduced by the hole 2H, the heat of the coil 2Z is less likely to be transferred to the second bearing 11B. Further, by providing a plurality of holes 2H, the inner internal passage 15B and the gap 7 side are communicated with each other, and convection of the liquid refrigerant occurs inside. Since the liquid refrigerant is more in contact with the second bearing 11B due to this convection, the second bearing 11B is easily cooled. In this way, the inside of the hole 2H becomes a part of the liquid refrigerant passage 15. The shape of the hole 2H may be a round hole or a long hole. Further, if a hole is provided at a position where the gap 7 can be seen, it can be used as a hole for inserting a protective plate into the gap 7 when assembling the stator / rotor.
 本実施形態において、第2軸受11Bに関し、運転状態における温度上昇を予測し、第2軸受11Bの軸受隙間は予め大きく設定されている。第2軸受11Bには、第1軸受11Aと同シリーズ(転動体の断面積が同一サイズ)の製品であって、口径が少なくとも一回り大きいものが用いられている。例えば、内径が35.6cm(14インチ)の第1軸受11Aに対して、内径が40.6cm(16インチ)の部品が第2軸受11Bとして用いられている。 In the present embodiment, the temperature rise of the second bearing 11B is predicted in the operating state, and the bearing gap of the second bearing 11B is set large in advance. The second bearing 11B is a product of the same series as the first bearing 11A (the cross-sectional area of the rolling element is the same size) and has a diameter at least one size larger. For example, a component having an inner diameter of 40.6 cm (16 inches) is used as the second bearing 11B with respect to the first bearing 11A having an inner diameter of 35.6 cm (14 inches).
 第2軸受11Bの組立前のラジアル軸受の内部隙間は90~140μm程度に設定されるので、この内部隙間の数値に見合う寸法を有する軸受が市販品の品番の中から選定され用いられる。本実施形態に用いる軸受は特注品ではなく、一般的な標準品として生産され、市場に供給されている部品から選定されることが好ましい。つまり、ラジアル軸受の内部隙間がカタログ値として推奨されている数値範囲から選定されることが好ましい。 Since the internal clearance of the radial bearing before assembly of the second bearing 11B is set to about 90 to 140 μm, a bearing having a dimension corresponding to the numerical value of this internal clearance is selected from the product numbers of commercially available products and used. The bearing used in this embodiment is not a custom-made product, but is preferably selected from parts produced as a general standard product and supplied to the market. That is, it is preferable that the internal clearance of the radial bearing is selected from the numerical range recommended as the catalog value.
 そうすると、一般市販品の軸受の同シリーズの中の口径違いの部品を、第1軸受11Aと第2軸受11Bとして組み合わせて選定されることが好ましい。一般的に市場で入手できる軸受の寸法値の事例を表1に示す。 Then, it is preferable to select parts having different diameters in the same series of bearings of general commercial products in combination as the first bearing 11A and the second bearing 11B. Table 1 shows examples of bearing dimensional values that are generally available on the market.
 このように、本実施形態のインホイールモータ(回転電機)50は、第1軸受11A及び第2軸受11Bの転動体10並びにコイル2Zのコイルエンド部、即ち、第1コイルエンド部2ZA及び第2コイルエンド部2ZBは、液状冷媒が収容される液状冷媒路内に配置される。隙間7は、液状冷媒が軸方向に流れる第1流路とされ、第1軸受11Aは、第1流路の液状冷媒入口14A側に配置され、第2軸受11Bは、第1流路の液状冷媒出口14B側に配置され、第2軸受11Bの内径は、第1軸受11Aの内径よりも大きい、という構成を備えたものである。 As described above, the in-wheel motor (rotary electric machine) 50 of the present embodiment has the rolling elements 10 of the first bearing 11A and the second bearing 11B and the coil end portions of the coil 2Z, that is, the first coil end portions 2ZA and the second. The coil end portion 2ZB is arranged in the liquid refrigerant passage in which the liquid refrigerant is housed. The gap 7 is a first flow path through which the liquid refrigerant flows in the axial direction, the first bearing 11A is arranged on the liquid refrigerant inlet 14A side of the first flow path, and the second bearing 11B is the liquid in the first flow path. It is arranged on the refrigerant outlet 14B side, and has a configuration in which the inner diameter of the second bearing 11B is larger than the inner diameter of the first bearing 11A.
 最小限の構成であっても、軸受11、転動体10、ステータコア2X等の構成部材を効率よく冷却することができる。軸受11に外来の異物が混入する可能性が低く、これらのことにより、軸受11を長寿命化させることができる。 Even with the minimum configuration, the components such as the bearing 11, rolling element 10, and stator core 2X can be efficiently cooled. It is unlikely that foreign matter will enter the bearing 11, and this will extend the life of the bearing 11.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 [第2実施形態]
 図4に本実施形態の部分断面斜視図を示す。
[Second Embodiment]
FIG. 4 shows a partial cross-sectional perspective view of the present embodiment.
 -環状流路-
 図4~7に本実施形態の構造を示す。まず、図4に示すように、液状冷媒流15R以外に、ステータコア2Xの内周側表面と本体2Cの外周側表面との間の円筒状空間によって取り囲まれた環状流路18が設けられている。ステータコア2Xの外周側の隙間7に液状冷媒流15Rが配置され、ステータコア2Xの下側に環状流路18が配置されている。
-Circular flow path-
FIGS. 4 to 7 show the structure of this embodiment. First, as shown in FIG. 4, in addition to the liquid refrigerant flow 15R, an annular flow path 18 surrounded by a cylindrical space between the inner peripheral side surface of the stator core 2X and the outer peripheral side surface of the main body 2C is provided. .. The liquid refrigerant flow 15R is arranged in the gap 7 on the outer peripheral side of the stator core 2X, and the annular flow path 18 is arranged below the stator core 2X.
 図5に示すように、環状流路18は、軸方向に3段配置された周方向通路17a、17b、17cと、各周方向通路を直列に接続する斜交通路17ab、17bcと、により構成される。環状流路18は、本体2Cの表面に、径方向に高さを有する複数の壁によって流路が区分けされることによって形成されている。環状流路18の1段目の周方向通路17aの上流側端は、環状流路入口16Aに接続され、下流側端は斜交通路17abに接続される。斜交通路17abは中段の周方向通路17b、2段目の斜交通路17bc、3段目の周方向通路17c、及び環状流路出口16Bへと連続的につながっている。 As shown in FIG. 5, the annular flow path 18 is composed of circumferential passages 17a, 17b, 17c arranged in three stages in the axial direction, and oblique traffic passages 17ab, 17bc connecting each circumferential passage in series. Will be done. The annular flow path 18 is formed by dividing the flow path by a plurality of walls having heights in the radial direction on the surface of the main body 2C. The upstream end of the first-stage circumferential passage 17a of the annular passage 18 is connected to the annular passage inlet 16A, and the downstream end is connected to the oblique traffic passage 17ab. The oblique traffic passage 17ab is continuously connected to the middle-stage circumferential passage 17b, the second-stage oblique traffic passage 17bc, the third-stage circumferential passage 17c, and the annular flow path exit 16B.
 本実施形態における環状流路18は、環状流路入口16Aから環状流路出口16Bに至る途中に一つ以上の斜交通路17ab、17bcを含んでいる。液状冷媒が周方向通路17a、17b、17cと斜交通路17ab、17bcを通過する際、通過損失を低減するために、それぞれの通路の進行方向の通過断面積はほぼ同一に設定されている。また、液状冷媒の通過抵抗を低減するために、斜交通路と周方向通路との交差角度は余り大きくならないことが好ましい。 The annular flow path 18 in the present embodiment includes one or more oblique traffic paths 17ab and 17bc on the way from the annular flow path inlet 16A to the annular flow path outlet 16B. When the liquid refrigerant passes through the circumferential passages 17a, 17b, 17c and the oblique traffic passages 17ab, 17bc, the passage cross-sectional area in the traveling direction of each passage is set to be substantially the same in order to reduce the passage loss. Further, in order to reduce the passage resistance of the liquid refrigerant, it is preferable that the intersection angle between the oblique traffic path and the circumferential passage is not so large.
 このような構造の環状流路18を液状冷媒が進行するので、液状冷媒はステータコア2Xの内表面に接しながら、周方向に複数回流れる。そのため液状冷媒は環状流路18を通過する際、ステータコア2Xとの接触時間が長くなり、ステータコア2X付近の熱を吸収しやすくなる。この環状流路18を通過する液状冷媒による熱の吸収効率が上がると、液状冷媒入口14A付近の液状冷媒の温度と、液状冷媒出口14B付近における液状冷媒の温度の差がより大きくなる。この環状流路18が、隙間7を通る第1の流路となる液状冷媒流15Rに対して、併存することができる第2の流路に相当する。 Since the liquid refrigerant travels through the annular flow path 18 having such a structure, the liquid refrigerant flows a plurality of times in the circumferential direction while being in contact with the inner surface of the stator core 2X. Therefore, when the liquid refrigerant passes through the annular flow path 18, the contact time with the stator core 2X becomes longer, and it becomes easier to absorb heat in the vicinity of the stator core 2X. When the heat absorption efficiency by the liquid refrigerant passing through the annular flow path 18 is increased, the difference between the temperature of the liquid refrigerant near the liquid refrigerant inlet 14A and the temperature of the liquid refrigerant near the liquid refrigerant outlet 14B becomes larger. The annular flow path 18 corresponds to a second flow path that can coexist with the liquid refrigerant flow 15R, which is the first flow path passing through the gap 7.
 本実施形態における液状冷媒の通過経路は以下の通りである。熱交換器(不図示)に接続された配管は本体2Cの内周側に位置する外部取入口13Aに取り付けられる。液状冷媒は外部取入口13Aからインホイールモータ50の内部に供給される。液状冷媒は、液状冷媒入口14Aから液状冷媒路15の第1コイルエンド部2ZAの直下付近の空間に入る。その際、液状冷媒はポンプによって送液されているので、液状冷媒入口14Aに供給された時点の液状冷媒は、液状冷媒路15の他の部分に比べて高い圧力を有している。 The passage path of the liquid refrigerant in this embodiment is as follows. The pipe connected to the heat exchanger (not shown) is attached to the external intake 13A located on the inner peripheral side of the main body 2C. The liquid refrigerant is supplied to the inside of the in-wheel motor 50 from the external intake 13A. The liquid refrigerant enters the space immediately below the first coil end portion 2ZA of the liquid refrigerant passage 15 from the liquid refrigerant inlet 14A. At that time, since the liquid refrigerant is sent by the pump, the liquid refrigerant at the time of being supplied to the liquid refrigerant inlet 14A has a higher pressure than the other parts of the liquid refrigerant passage 15.
 その後、本実施形態において、インホイールモータ51の内部に供給された液状冷媒は大きく分けて二つの流路に分流する。まず、第1の流路は、第1実施形態の場合と同様に液状冷媒流15Rである。液状冷媒は第1コイルエンド部2ZA付近の液状冷媒入口14Aから第1コイルエンド空間9Aに入る。第1コイルエンド空間9Aの最外周側は隙間7に直接つながっているので、液状冷媒は第1コイルエンド空間9Aを周方向に流れると共に、円筒状空間である隙間7を横断するように第2コイルエンド部2ZBに向かって流れる。 After that, in the present embodiment, the liquid refrigerant supplied to the inside of the in-wheel motor 51 is roughly divided into two flow paths. First, the first flow path is the liquid refrigerant flow 15R as in the case of the first embodiment. The liquid refrigerant enters the first coil end space 9A from the liquid refrigerant inlet 14A near the first coil end portion 2ZA. Since the outermost peripheral side of the first coil end space 9A is directly connected to the gap 7, the liquid refrigerant flows in the circumferential direction in the first coil end space 9A and is second so as to cross the gap 7 which is a cylindrical space. It flows toward the coil end portion 2ZB.
 次に、図6、7に第1コイルエンド空間9A付近の構造と液状冷媒の流れる様子を模式的に示す。液状冷媒は、第1コイルエンド部2ZAの付近から第1コイルエンド空間9Aに入り、さらに周方向に対して左右二つの方向に分流される。その一方は第1コイルエンド空間9Aを第1の方向に流れる第1回転流9F1である。他方は、第1コイルエンド空間9Aを反対方向に流れる第2回転流9F2である。液状冷媒入口14A付近で分流した第1回転流9F1と第2回転流9F2とが、それぞれ第1コイルエンド空間9Aを半周し、液状冷媒入口14Aと180度対向する位置で、合流する様子を示している。 Next, FIGS. 6 and 7 schematically show the structure near the first coil end space 9A and the flow of the liquid refrigerant. The liquid refrigerant enters the first coil end space 9A from the vicinity of the first coil end portion 2ZA, and is further divided into two directions on the left and right with respect to the circumferential direction. One of them is the first rotating flow 9F1 flowing in the first direction in the first coil end space 9A. The other is the second rotating flow 9F2 flowing in the opposite direction through the first coil end space 9A. It shows how the first rotary flow 9F1 and the second rotary flow 9F2, which are separated near the liquid refrigerant inlet 14A, each half-circle the first coil end space 9A and merge at a position 180 degrees facing the liquid refrigerant inlet 14A. ing.
 その合流地点の近くに、環状流路入口16Aが設けられている。この環状流路入口16Aはステータコア2Xの一部が凹状に加工されたものである。第1コイルエンド空間9Aから、ステータコア2Xの背面側の環状流路18に連通している。そのため、液状冷媒は環状流路入口16Aから環状流路18に進入することができる。 A ring road entrance 16A is provided near the confluence. The annular flow path inlet 16A is a portion of the stator core 2X processed into a concave shape. The first coil end space 9A communicates with the annular flow path 18 on the back surface side of the stator core 2X. Therefore, the liquid refrigerant can enter the annular flow path 18 from the annular flow path inlet 16A.
 第1回転流9F1と第2回転流9F2は、周方向をそれぞれ半周した後、合流して下方流9F3となる。この下方流9F3は、環状流路入口16Aの入口底部で、流れる方向が下向きから軸方向に方向転換され、環状流路18へ向かう導入流9F4となる。 The first rotating flow 9F1 and the second rotating flow 9F2 make a half turn in the circumferential direction and then merge to form a downward flow 9F3. The downward flow 9F3 is the inlet bottom of the annular flow path inlet 16A, and the flow direction is changed from the downward direction to the axial direction to become the introduction flow 9F4 toward the annular flow path 18.
 導入流9F4となった液状冷媒は環状流路18に入ると、1段目の周方向通路17aに進入する。図5に環状流路18における液状冷媒の通路の構成を示す。液状冷媒は1段目の周方向通路17aに進入した後、約一周した後に斜交通路17abに進入する。さらに液状冷媒は周方向通路17b、斜交通路17bc、周方向通路17cの順に通過して、環状流路出口16Bに到達する。 When the liquid refrigerant that has become the introduction flow 9F4 enters the annular flow path 18, it enters the first-stage circumferential passage 17a. FIG. 5 shows the configuration of the liquid refrigerant passage in the annular flow path 18. The liquid refrigerant enters the first-stage circumferential passage 17a, and after about one round, enters the oblique traffic passage 17ab. Further, the liquid refrigerant passes through the circumferential passage 17b, the oblique traffic passage 17bc, and the circumferential passage 17c in this order, and reaches the annular passage outlet 16B.
 液状冷媒は環状流路出口16Bの付近で、周方向の流れから軸方向に向かう導出流9F5となる。導出流9F5は環状流路出口16Bの内部で上方流9F6になる。最後に、液状冷媒は、第2コイルエンド部2ZB付近の第2コイルエンド空間9Bに入る。液状冷媒は、第2コイルエンド空間9Bで再び二つの方向に分流される。上述した第1コイルエンド空間9Aの場合における最初の分流と同様であり、第2コイルエンド空間9Bを流れる、第3回転流9F7と第4回転流9F8とに分流される。 The liquid refrigerant is a lead flow 9F5 from the circumferential flow to the axial direction near the annular flow path outlet 16B. The lead flow 9F5 becomes an upward flow 9F6 inside the annular flow path outlet 16B. Finally, the liquid refrigerant enters the second coil end space 9B near the second coil end portion 2ZB. The liquid refrigerant is again split in two directions in the second coil end space 9B. It is the same as the first diversion in the case of the first coil end space 9A described above, and is divided into the third rotary flow 9F7 and the fourth rotary flow 9F8 flowing through the second coil end space 9B.
 これらの第3回転流9F7と第4回転流9F8は、第2コイルエンド空間9Bの周方向をそれぞれ逆向きに約半周流れた後、180度対向する位置で再び合流する。液状冷媒は、その合流地点付近に置かれた液状冷媒出口14Bを通り、外部取出口13Bからインホイールモータ51の外部に出て液状冷媒槽に戻る。 These 3rd rotation flow 9F7 and 4th rotation flow 9F8 flow about half a circumference in opposite directions in the circumferential direction of the 2nd coil end space 9B, and then rejoin at positions facing each other by 180 degrees. The liquid refrigerant passes through the liquid refrigerant outlet 14B placed near the confluence, exits from the external outlet 13B to the outside of the in-wheel motor 51, and returns to the liquid refrigerant tank.
 本実施形態において、液状冷媒のごく一部は軸受11の転動体10を軸方向に横切るように通過する場合もある。さらに、軸受11の軸受内部11AS、11BS(図8参照)を横切った液状冷媒の一部は、第1エンドブラケット2Aとケース本体4Cとの隙間空間である外側内部通路15Aに到達することがある。又は、液状冷媒は、ステータケース2Wとエンドブラケット4Bとの隙間空間である内側内部通路15Bに到達する場合もある。このように本実施形態のインホイールモータ51は、ステータケース2Wとロータケース4Wとの隙間空間に液状冷媒が収容されている。 In the present embodiment, a small part of the liquid refrigerant may pass so as to cross the rolling element 10 of the bearing 11 in the axial direction. Further, a part of the liquid refrigerant that has crossed the bearing inner portions 11AS and 11BS (see FIG. 8) of the bearing 11 may reach the outer internal passage 15A which is a gap space between the first end bracket 2A and the case body 4C. .. Alternatively, the liquid refrigerant may reach the inner internal passage 15B, which is a gap space between the stator case 2W and the end bracket 4B. As described above, in the in-wheel motor 51 of the present embodiment, the liquid refrigerant is housed in the gap space between the stator case 2W and the rotor case 4W.
 本実施形態においては、ステータコア2Xに巻回されたコイル2Z、第1コイルエンド部2ZA、第2コイルエンド部2ZBの何れも液状冷媒で覆われることになる。本実施形態では、液状冷媒流15R以外に、液状冷媒が第1コイルエンド空間9Aを通る第1コイルエンド流、及び第2コイルエンド空間9Bを通る第2コイルエンド流が設けられている。さらに、ステータコア2Xの背面に、液状冷媒が周方向に流れ、かつ軸方向にも進む環状流路18が設けられている。そのためインホイールモータ51の冷却効率がさらに向上する。 In the present embodiment, all of the coil 2Z wound around the stator core 2X, the first coil end portion 2ZA, and the second coil end portion 2ZB are covered with the liquid refrigerant. In the present embodiment, in addition to the liquid refrigerant flow 15R, a first coil end flow through which the liquid refrigerant passes through the first coil end space 9A and a second coil end flow through which the liquid refrigerant passes through the second coil end space 9B are provided. Further, on the back surface of the stator core 2X, an annular flow path 18 through which the liquid refrigerant flows in the circumferential direction and also travels in the axial direction is provided. Therefore, the cooling efficiency of the in-wheel motor 51 is further improved.
 -内部圧力損失-
 本実施形態では、軸方向に液状冷媒が流れる液状冷媒流15Rと環状流路18の二つが存在する。インホイールモータ51の隙間7は、ステータコア2Xとロータコア4Xとの間の狭小な空間である。この狭小な空間を液状冷媒が通過する。そのため、環状流路18に対して相対的に圧損が小さいと、液状冷媒は、環状流路18に流れずに隙間7の方を流れてしまう。多くの液状冷媒が隙間7を流れると、インホイールモータ全体としての冷却効率が落ちる。隙間7を狭くすることは、インホイールモータとしてのトルクの向上にも繋がる。従って、隙間7を狭小化すると、液状冷媒路における圧損が十分に小さくなり、且つ必要なトルクを発生できる。例えば、隙間7の設計値の一例として0.5mmがあげられる。
-Internal pressure loss-
In the present embodiment, there are two types, a liquid refrigerant flow 15R in which the liquid refrigerant flows in the axial direction and an annular flow path 18. The gap 7 of the in-wheel motor 51 is a narrow space between the stator core 2X and the rotor core 4X. The liquid refrigerant passes through this narrow space. Therefore, if the pressure loss is relatively small with respect to the annular flow path 18, the liquid refrigerant does not flow into the annular flow path 18 but flows toward the gap 7. When a large amount of liquid refrigerant flows through the gap 7, the cooling efficiency of the in-wheel motor as a whole drops. Narrowing the gap 7 also leads to an improvement in torque as an in-wheel motor. Therefore, when the gap 7 is narrowed, the pressure loss in the liquid refrigerant path is sufficiently small, and the required torque can be generated. For example, 0.5 mm is an example of the design value of the gap 7.
 ここで本実施形態における第1軸受11Aと第2軸受11Bの構成について説明する。図8に、インホイールモータ51の軸受11の部分拡大図を示す。 Here, the configurations of the first bearing 11A and the second bearing 11B in the present embodiment will be described. FIG. 8 shows a partially enlarged view of the bearing 11 of the in-wheel motor 51.
 第1軸受11Aは、外輪10AORと内輪10AIRを有している。外輪10AORと内輪10AIRとの間の空間が軸受内部11ASである。外輪10AORと転動体10Aとの隙間が10AGPHである。内輪10AIRと転動体10Aとの隙間が10AGPLである。 The first bearing 11A has an outer ring 10A OR and an inner ring 10A IR . The space between the outer ring 10A OR and the inner ring 10A IR is the bearing inner 11AS. The gap between the outer ring 10A OR and the rolling element 10A is 10A GPH . The gap between the inner ring 10A IR and the rolling element 10A is 10A GPL .
 外輪10AORの外径がD1-1、内径がL1-2である。内輪10AIRの外径がL1-1、内径がdである。外輪10AORの幅がWである。 The outer diameter of the outer ring 10A OR is D 1-1 , and the inner diameter is L 1-2 . The inner diameter of the inner ring 10A IR is L 1-1 and the inner diameter is d 1 . The width of the outer ring 10A OR is W 1 .
 第2軸受11Bは、外輪10BORと内輪10BIRを有している。外輪10BORと内輪10BIRとの間の空間が軸受内部11BSである。外輪10BORと転動体10Bとの隙間が10BGPHである。内輪10BIRと転動体10Bとの隙間が10BGPLである。 The second bearing 11B has an outer ring 10B OR and an inner ring 10B IR . The space between the outer ring 10B OR and the inner ring 10B IR is the bearing inner 11BS. The gap between the outer ring 10B OR and the rolling element 10B is 10B GPH . The gap between the inner ring 10B IR and the rolling element 10B is 10B GPL .
 外輪10BORの外径がD2-1、内径がL2-2である。内輪10BIRの外径がL2-1、内径がdである。外輪10BORとの幅がWである
 上記の各部の寸法は軸受メーカによって規格化されており、所望のサイズの品番を選定できることが多い。インチ系とメートル系の部品が用意されていることもある。
The outer diameter of the outer ring 10B OR is D 2-1 and the inner diameter is L 2-2 . The inner diameter of the inner ring 10B IR is L 2-1 and the inner diameter is d 2 . The width of the outer ring 10B OR is W 2. The dimensions of each of the above parts are standardized by the bearing manufacturer, and it is often possible to select a product number of a desired size. Inch and metric parts may be available.
 第2軸受11Bは、第1軸受11Aよりも一回り大きな口径の薄型扁平軸受から選定される。上述した第1実施形態と同様に、本実施形態においても、第2軸受11Bに第1軸受11Aよりも大口径の軸受を用いることによって、第2軸受11Bの長寿命化を図っている。そのため、第2軸受11Bの設定では、その運転隙間が0以上となるように条件が設定されている。 The second bearing 11B is selected from thin flat bearings having a diameter one size larger than that of the first bearing 11A. Similar to the first embodiment described above, in this embodiment as well, the life of the second bearing 11B is extended by using a bearing having a larger diameter than the first bearing 11A for the second bearing 11B. Therefore, in the setting of the second bearing 11B, the condition is set so that the operating gap thereof is 0 or more.
 [第3実施形態]
 図11に第3実施形態の部分断面斜視図を示す。第1軸受11Aと第2軸受11Bは同系統の薄型扁平の軸受である。第2軸受11Bに、第1軸受11Aよりも口径が少なくとも一回り大きいものが用いられている。
[Third Embodiment]
FIG. 11 shows a partial cross-sectional perspective view of the third embodiment. The first bearing 11A and the second bearing 11B are thin and flat bearings of the same system. The second bearing 11B used has a diameter at least one size larger than that of the first bearing 11A.
 本実施形態では、液状冷媒路15に液状冷媒を供給する外部取入口13Aと、液状冷媒を排出するための外部取出口13Bは、インホイールモータ52の内周側の、ステータ2の第1エンドブラケット2Aと第2エンドブラケット2Bにそれぞれ取り付けられている。そして、液状冷媒入口14Aは外側内部通路15Aに接続されている。液状冷媒出口14Bは内側内部通路15Bに接続されている。 In the present embodiment, the external inlet 13A for supplying the liquid refrigerant to the liquid refrigerant passage 15 and the external outlet 13B for discharging the liquid refrigerant are the first ends of the stator 2 on the inner peripheral side of the in-wheel motor 52. It is attached to the bracket 2A and the second end bracket 2B, respectively. The liquid refrigerant inlet 14A is connected to the outer internal passage 15A. The liquid refrigerant outlet 14B is connected to the inner internal passage 15B.
 従って、第1軸受11Aは、液状冷媒入口14Aと第1コイルエンド部2ZAの間の液状冷媒路15内に配置されている。また、第2軸受11Bは、液状冷媒出口14Bと第2コイルエンド部2ZBの間の液状冷媒路15内に配置されている。 Therefore, the first bearing 11A is arranged in the liquid refrigerant passage 15 between the liquid refrigerant inlet 14A and the first coil end portion 2ZA. Further, the second bearing 11B is arranged in the liquid refrigerant passage 15 between the liquid refrigerant outlet 14B and the second coil end portion 2ZB.
 本実施形態では、外部から供給された液状冷媒は、液状冷媒入口14Aから外側内部通路15Aにはいり、さらに、第1軸受11Aの軸受内部11ASを通過し、第1コイルエンド空間9Aに入る。本実施形態においても、環状流路入口16Aが第1コイルエンド空間9Aの中に設けられている。また、環状流路出口16Bが第2コイルエンド空間9Bの中に設けられている。環状流路18の構成も第2実施形態と同様である。本実施形態では、外側内部通路15Aに液状冷媒が取り入れられ、第1軸受11A、隙間7又は環状流路18、第2コイルエンド空間9B、内側内部通路15B、液状冷媒出口14B、外部取出口13Bを通過し、外部の液状冷媒槽に戻る。 In the present embodiment, the liquid refrigerant supplied from the outside enters the outer internal passage 15A from the liquid refrigerant inlet 14A, further passes through the bearing inner 11AS of the first bearing 11A, and enters the first coil end space 9A. Also in this embodiment, the annular flow path inlet 16A is provided in the first coil end space 9A. Further, the annular flow path outlet 16B is provided in the second coil end space 9B. The configuration of the annular flow path 18 is the same as that of the second embodiment. In the present embodiment, the liquid refrigerant is taken into the outer inner passage 15A, and the first bearing 11A, the gap 7 or the annular flow path 18, the second coil end space 9B, the inner inner passage 15B, the liquid refrigerant outlet 14B, and the outer outlet 13B. And returns to the external liquid refrigerant tank.
 そのため、軸受11の軸受内部11AS、BSを定常的に液状冷媒が流れるので、転動体10と軸受内部11AS、11BSが液状冷媒によって効果的に冷却される。 Therefore, since the liquid refrigerant constantly flows through the bearing internal 11AS and BS of the bearing 11, the rolling element 10 and the bearing internal 11AS and 11BS are effectively cooled by the liquid refrigerant.
 [第4実施形態]
 図12を参照しながら本実施形態について説明する。本実施形態における液状冷媒は、第1軸受11A側の液状冷媒入口14Aから、液状冷媒路15に供給される。液状冷媒は液状冷媒路15にはいった時点でポンプによって圧力が高くなっている。また、インホイールモータ53の内部の液状冷媒流15R、環状流路18を液状冷媒が軸方向に進むことにより、内部損失によって圧力が徐々に低下していく。つまり、液状冷媒路15における圧損が発生する。液状冷媒が外部取出口13Bから外部に排出される際には最も圧力が低下している。入口側と出口側での内圧を比較すると、入口側が相対的に高くなる。液状冷媒路15の一部となっている外側内部通路15Aに収容されている液状冷媒はロータケース4Wの底部4CDに対して圧力を掛けている。また、内側内部通路15Bに収容されている液状冷媒はエンドブラケット4Bに対して圧力を掛けている。両者の圧力の大きさを比べると内部圧損の分だけ、入口側圧力19Aが出口側圧力19Bよりも高くなっている。この圧力差によって、内部がどのような影響を受けるかを図13に模式的に示している。また、次の表2に内部圧損に関する比較例と本実施形態とを対比説明する。
[Fourth Embodiment]
The present embodiment will be described with reference to FIG. The liquid refrigerant in the present embodiment is supplied to the liquid refrigerant passage 15 from the liquid refrigerant inlet 14A on the first bearing 11A side. The pressure of the liquid refrigerant is increased by the pump when it enters the liquid refrigerant passage 15. Further, as the liquid refrigerant advances in the axial direction in the liquid refrigerant flow 15R and the annular flow path 18 inside the in-wheel motor 53, the pressure gradually decreases due to the internal loss. That is, pressure loss occurs in the liquid refrigerant passage 15. When the liquid refrigerant is discharged to the outside from the external outlet 13B, the pressure is the lowest. Comparing the internal pressures on the inlet side and the outlet side, the inlet side is relatively higher. The liquid refrigerant contained in the outer internal passage 15A, which is a part of the liquid refrigerant passage 15, exerts pressure on the bottom 4CD of the rotor case 4W. Further, the liquid refrigerant contained in the inner internal passage 15B exerts pressure on the end bracket 4B. Comparing the magnitudes of both pressures, the inlet side pressure 19A is higher than the outlet side pressure 19B by the amount of the internal pressure loss. FIG. 13 schematically shows how the inside is affected by this pressure difference. Further, Table 2 below will explain a comparative example of internal pressure loss in comparison with the present embodiment.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 図13に示すように、インホイールモータの内部で、液状冷媒路15における内圧差によるスラスト力Fが二つの軸受11の軸方向に働く。第1軸受11A側の圧力が高くなり、第2軸受11B側の圧力が低くなる。この圧力差をキャンセルするため、図14に示すように、二つの軸受11を支持する支持構造体の投影面積を、入口側よりも出口側を大きく設定する。そのため、液状冷媒出口14B側の第2軸受11Bには、入口側の第1軸受11Aよりも大口径の軸受を使用する。 As shown in FIG. 13, inside the in-wheel motor, a thrust force F1 due to an internal pressure difference in the liquid refrigerant passage 15 acts in the axial direction of the two bearings 11. The pressure on the first bearing 11A side becomes high, and the pressure on the second bearing 11B side becomes low. In order to cancel this pressure difference, as shown in FIG. 14, the projected area of the support structure that supports the two bearings 11 is set larger on the outlet side than on the inlet side. Therefore, for the second bearing 11B on the liquid refrigerant outlet 14B side, a bearing having a larger diameter than the first bearing 11A on the inlet side is used.
 その結果、第1軸受11A又は第2軸受11Bのいずれか一方の内輪径は、ステータ2の径よりも大きく、他方の内輪径はステータ2の径よりも小さく構成する。隙間7が狭小であり、第1コイルエンド部2ZAから第2コイルエンド部2ZBまでの流路の圧損が大きい場合には、第1軸受11A側の冷媒圧力が第2軸受11B側の冷媒圧力よりも大きくなる。第1軸受11Aと第2軸受11Bが同径であると、受圧面積が同一となり、図13に示したように模式図の左右方向で圧力差が発生している。そのため軸方向のスラスト力が働いてしまう。 As a result, the inner ring diameter of either the first bearing 11A or the second bearing 11B is larger than the diameter of the stator 2, and the inner ring diameter of the other is smaller than the diameter of the stator 2. When the gap 7 is narrow and the pressure loss of the flow path from the first coil end portion 2ZA to the second coil end portion 2ZB is large, the refrigerant pressure on the first bearing 11A side is higher than the refrigerant pressure on the second bearing 11B side. Will also grow. When the first bearing 11A and the second bearing 11B have the same diameter, the pressure receiving areas are the same, and as shown in FIG. 13, a pressure difference occurs in the left-right direction of the schematic diagram. Therefore, a thrust force in the axial direction works.
 つまり、図13に示すように、第1軸受11Aと第2軸受11Bの口径サイズが等しい場合は、ロータケース4Wの底部4CDとエンドブラケット4Bに掛かる力は、入口側の圧力が相対的に高いので図13の紙面で右側に力が働く。すると、第1軸受11Aの内輪が右側に引っ張られるので軸受の軸が傾斜してしまう。同様に第2軸受11Bの軸も傾斜する。 That is, as shown in FIG. 13, when the diameter sizes of the first bearing 11A and the second bearing 11B are the same, the force applied to the bottom 4CD of the rotor case 4W and the end bracket 4B has a relatively high pressure on the inlet side. Therefore, a force acts on the right side of the paper in FIG. Then, since the inner ring of the first bearing 11A is pulled to the right side, the shaft of the bearing is tilted. Similarly, the shaft of the second bearing 11B is also tilted.
 そこで、図14に示すように、軸受の口径を大きくし、第2軸受11B側の受圧面積を大きくすると、スラスト力Fを相殺することができる。 Therefore, as shown in FIG. 14, if the diameter of the bearing is increased and the pressure receiving area on the second bearing 11B side is increased, the thrust force F2 can be offset.
 液状冷媒路15を導入したことにより、内部で発生する圧損により第1軸受11A側が高圧、第2軸受11B側が低圧になり、ロータ4に対してスラスト力が働くことになる。その力を受けて、軸受11の接触角が傾くことになる。その結果、軸受内部11AS、11BSと転動体10に異常摩耗が発生し、軸受の寿命が低下する。この不均衡な内部圧力の発生を軸受11の口径を異径化することで補償することができる。 By introducing the liquid refrigerant passage 15, the pressure loss generated inside causes the pressure on the first bearing 11A side to be high and the pressure on the second bearing 11B side to be low, and a thrust force acts on the rotor 4. The contact angle of the bearing 11 is tilted by the force. As a result, abnormal wear occurs in the bearing internal 11AS, 11BS and the rolling element 10, and the life of the bearing is shortened. The generation of this unbalanced internal pressure can be compensated by making the diameter of the bearing 11 different.
 本実施形態では、第1軸受11Aに印加される液状冷媒の圧力が、第2軸受11Bに印加される液状冷媒の圧力よりも大きい状態になる。これを補償するため、第2軸受11Bの口径が第1軸受11Aの口径よりも大きく設定されている。その場合、第2軸受11Bに対する圧力が相対的に小さい分を、口径サイズが大きいことにより、第1軸受11Aと第2軸受11Bとの内圧差を軸受の口径を変化させることで補償することができる。 In the present embodiment, the pressure of the liquid refrigerant applied to the first bearing 11A is higher than the pressure of the liquid refrigerant applied to the second bearing 11B. In order to compensate for this, the diameter of the second bearing 11B is set to be larger than the diameter of the first bearing 11A. In that case, the relatively small pressure on the second bearing 11B can be compensated for by changing the diameter of the bearing to compensate for the difference in internal pressure between the first bearing 11A and the second bearing 11B due to the large diameter size. can.
 図14にその状態を模式的に示している。入口側のブラケットの面積よりも、出口側の面積を相対的に大きく設定している。そのため、入口と出口の液状冷媒の内圧差が総合的に補償されて、入口側と出口側での内部圧力の総和が均衡されると考えられる。そのため、軸受11に軸の傾斜が起こりにくくなる。 FIG. 14 schematically shows the state. The area on the exit side is set relatively larger than the area on the bracket on the entrance side. Therefore, it is considered that the difference in internal pressure between the liquid refrigerant at the inlet and the outlet is comprehensively compensated, and the total internal pressure on the inlet side and the outlet side is balanced. Therefore, the shaft of the bearing 11 is less likely to be tilted.
 [第5実施形態]
 図15に第5実施形態のインホイールモータ54の構造を示す。本実施形態では、軸受11の何れかが、軸方向において近傍の第1コイルエンド部2ZA、第2コイルエンド部2ZBと同じ位置に配置されているか、又は、第1コイルエンド部2ZA、第2コイルエンド部2ZBよりも軸方向の内側に配置されている。図15は、第2軸受11Bの部品端位置11Xが、第2コイルエンド部2ZBの軸方向の位置の内側に配置されている。
[Fifth Embodiment]
FIG. 15 shows the structure of the in-wheel motor 54 of the fifth embodiment. In the present embodiment, any one of the bearings 11 is arranged at the same position as the first coil end portion 2ZA and the second coil end portion 2ZB in the vicinity in the axial direction, or the first coil end portion 2ZA and the second coil end portion 2ZA. It is arranged inside the coil end portion 2ZB in the axial direction. In FIG. 15, the component end position 11X of the second bearing 11B is arranged inside the axial position of the second coil end portion 2ZB.
 このように、第1コイルエンド部2ZA、第2コイルエンド部2ZBと軸受11とを径方向で重ねた位置に配置することで、全体が短軸長構成のインホイールモータ54を実現することができる。コイルエンド部と軸受を径方向に重ねることで、インホイールモータ54の軸長を短くすることができる。 In this way, by arranging the first coil end portion 2ZA, the second coil end portion 2ZB, and the bearing 11 at positions where they are overlapped in the radial direction, it is possible to realize an in-wheel motor 54 having a short axis length configuration as a whole. can. By overlapping the coil end portion and the bearing in the radial direction, the axial length of the in-wheel motor 54 can be shortened.
 以上、本発明の幾つかの実施形態や変形例を説明したが、本発明はこれらの例に限定されるものではなく、さらなる変形が考えられる。例えば、上記の環状流路の周回数を変形することができ、また、液状冷媒入口と液状冷媒出口の位置を、冷却効率の向上や部品寸法、内部容積の低減等との関係で自由に組み合わせて構成することができる。上記の実施形態や例示した部品を使用する以外に種々の態様が考えられる。 Although some embodiments and modifications of the present invention have been described above, the present invention is not limited to these examples, and further modifications can be considered. For example, the number of laps of the above-mentioned annular flow path can be deformed, and the positions of the liquid refrigerant inlet and the liquid refrigerant outlet can be freely combined in relation to improvement of cooling efficiency, component size, reduction of internal volume, and the like. Can be configured. Various embodiments can be considered other than using the above-described embodiment and the illustrated parts.
 2…ステータ、 2X…ステータコア、 2Z…コイル、 2ZA…第1コイルエンド部、 2ZB…第2コイルエンド部、 2W…ステータケース、 2A…第1エンドブラケット、 2B…第2エンドブラケット、 4…ロータ、 4X…ロータコア、 エンドブラケット4B、 4C…ケース本体、 4CD…底部、 4CH…円筒部、 4W…ロータケース、 7…隙間、 9A…第1コイルエンド空間、 9B…第2コイルエンド空間、 10…転動体、 11A…第1軸受、 11B…第2軸受、 13A…外部取入口、 13B…外部取出口、 14A…液状冷媒入口、 14B…液状冷媒出口、 15…液状冷媒路、 15…液状冷媒路、 15A…外側内部通路、 15B…内側内部通路、 15R…液状冷媒流、 16A…環状流路入口、 16B…環状流路出口、 18…環状流路、50…インホイールモータ(回転電機)、 100…ホイール、 200…電動ホイール、 1000…車両 2 ... stator, 2X ... stator core, 2Z ... coil, 2ZA ... 1st coil end, 2ZB ... 2nd coil end, 2W ... stator case, 2A ... 1st end bracket, 2B ... 2nd end bracket, 4 ... rotor , 4X ... rotor core, end bracket 4B, 4C ... case body, 4CD ... bottom, 4CH ... cylindrical part, 4W ... rotor case, 7 ... gap, 9A ... 1st coil end space, 9B ... 2nd coil end space, 10 ... Rolling element, 11A ... 1st bearing, 11B ... 2nd bearing, 13A ... External inlet, 13B ... External outlet, 14A ... Liquid refrigerant inlet, 14B ... Liquid refrigerant outlet, 15 ... Liquid refrigerant passage, 15 ... Liquid refrigerant passage , 15A ... outer inner passage, 15B ... inner inner passage, 15R ... liquid refrigerant flow, 16A ... annular flow path inlet, 16B ... annular flow path outlet, 18 ... annular flow path, 50 ... in-wheel motor (rotary electric machine), 100 ... wheels, 200 ... electric wheels, 1000 ... vehicles

Claims (10)

  1.  複数のコイルが巻回されたステータコアと、
     前記ステータコアを支持するステータケースと、
     前記ステータコアに対して隙間を介して回転可能に配置されるロータコアと、
     前記ロータコアを支持するロータケースと、
     前記ステータケースと前記ロータケースとを接続する第1軸受及び第2軸受と、を備え、
     前記第1軸受及び前記第2軸受の転動体並びに前記コイルのコイルエンド部は、液状冷媒が収容される液状冷媒路内に配置され、
     前記隙間は、前記液状冷媒が軸方向に流れる第1流路とされ、
     前記第1軸受は、前記第1流路の液状冷媒入口側に配置され、
     前記第2軸受は、前記第1流路の液状冷媒出口側に配置され、
     前記第2軸受の内径は、前記第1軸受の内径よりも大きい回転電機。
    A stator core with multiple coils wound around it,
    A stator case that supports the stator core and
    A rotor core that is rotatably arranged with respect to the stator core through a gap,
    A rotor case that supports the rotor core and
    A first bearing and a second bearing for connecting the stator case and the rotor case are provided.
    The rolling elements of the first bearing and the second bearing and the coil end portion of the coil are arranged in a liquid refrigerant path in which the liquid refrigerant is accommodated.
    The gap is a first flow path through which the liquid refrigerant flows in the axial direction.
    The first bearing is arranged on the liquid refrigerant inlet side of the first flow path, and is arranged.
    The second bearing is arranged on the liquid refrigerant outlet side of the first flow path, and is arranged.
    The inner diameter of the second bearing is larger than the inner diameter of the first bearing.
  2.  請求項1に記載の回転電機において、
     前記第1軸受と第1コイルエンド部との間の距離が、前記液状冷媒入口と前記第1コイルエンド部との間の距離よりも長く、
     前記第2軸受と第2コイルエンド部との間の距離が、前記液状冷媒出口と前記第2コイルエンド部との間の距離よりも長い回転電機。
    In the rotary electric machine according to claim 1,
    The distance between the first bearing and the first coil end portion is longer than the distance between the liquid refrigerant inlet and the first coil end portion.
    A rotary electric machine in which the distance between the second bearing and the second coil end portion is longer than the distance between the liquid refrigerant outlet and the second coil end portion.
  3.  請求項1に記載の回転電機において、
     前記第1軸受が、前記液状冷媒入口と前記コイルエンド部の間の前記液状冷媒路内に配置され、
     前記第2軸受が、前記液状冷媒出口と前記コイルエンド部の間の前記液状冷媒路内に配置された回転電機。
    In the rotary electric machine according to claim 1,
    The first bearing is arranged in the liquid refrigerant path between the liquid refrigerant inlet and the coil end portion.
    A rotary electric machine in which the second bearing is arranged in the liquid refrigerant path between the liquid refrigerant outlet and the coil end portion.
  4.  請求項1に記載の回転電機において、
     前記第1軸受に印加される前記液状冷媒の圧力が、前記第2軸受に印加される前記液状冷媒の圧力よりも大きい回転電機。
    In the rotary electric machine according to claim 1,
    A rotary electric machine in which the pressure of the liquid refrigerant applied to the first bearing is larger than the pressure of the liquid refrigerant applied to the second bearing.
  5.  請求項1に記載の回転電機において、
     前記ロータケースの前記第1軸受の支持部から前記第2軸受の支持部までが一体成型された回転電機。
    In the rotary electric machine according to claim 1,
    A rotary electric machine in which the support portion of the first bearing of the rotor case to the support portion of the second bearing are integrally molded.
  6.  請求項1に記載の回転電機において、
     前記第2軸受又は前記第1軸受は前記コイルエンド部と径方向で重なる位置に配置された回転電機。
    In the rotary electric machine according to claim 1,
    The second bearing or the first bearing is a rotary electric machine arranged at a position where it radially overlaps with the coil end portion.
  7.  請求項6に記載の回転電機において、
     前記第2軸受と前記コイルエンド部の間の前記ステータケースの側面に、軸方向に貫通する穴が周方向に複数設けられた回転電機。
    In the rotary electric machine according to claim 6,
    A rotary electric machine in which a plurality of holes penetrating in the axial direction are provided on the side surface of the stator case between the second bearing and the coil end portion in the circumferential direction.
  8.  請求項1に記載の回転電機において、
     前記第1軸受及び前記第2軸受が深溝玉軸受である回転電機。
    In the rotary electric machine according to claim 1,
    A rotary electric machine in which the first bearing and the second bearing are deep groove ball bearings.
  9.  請求項1に記載の回転電機において、
     前記ステータコアと前記ステータケースの間に環状の第2の流路が配置された回転電機。
    In the rotary electric machine according to claim 1,
    A rotary electric machine in which an annular second flow path is arranged between the stator core and the stator case.
  10.  請求項1に記載の回転電機を備えた車両であって、
     さらに、バッテリと、前記バッテリの直流電力を交流電力に変換して、前記交流電力を前記回転電機に供給する電力変換装置と、を備え、前記回転電機のトルクが車輪に直接伝達される車両。
    A vehicle provided with the rotary electric machine according to claim 1.
    Further, a vehicle comprising a battery and a power conversion device that converts the DC power of the battery into AC power and supplies the AC power to the rotary electric machine, and the torque of the rotary electric machine is directly transmitted to the wheels.
PCT/JP2021/041431 2020-12-22 2021-11-10 This semiconductor device comprises: a semiconductor layer having a main surface; a first conductive-type well region formed on a surface layer portion of the main surface of the semiconductor layer; a first conductive-type first impurity region formed on a surface layer portion of the well region and having an inner wall portion; and a second conductive-type annular second impurity region formed on the surface layer portion of the well region inside the inner wall part so as to form a pn junction with the well region. WO2022137862A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020211931A JP2022098520A (en) 2020-12-22 2020-12-22 Rotary electric machine and vehicle
JP2020-211931 2020-12-22

Publications (1)

Publication Number Publication Date
WO2022137862A1 true WO2022137862A1 (en) 2022-06-30

Family

ID=82157577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041431 WO2022137862A1 (en) 2020-12-22 2021-11-10 This semiconductor device comprises: a semiconductor layer having a main surface; a first conductive-type well region formed on a surface layer portion of the main surface of the semiconductor layer; a first conductive-type first impurity region formed on a surface layer portion of the well region and having an inner wall portion; and a second conductive-type annular second impurity region formed on the surface layer portion of the well region inside the inner wall part so as to form a pn junction with the well region.

Country Status (2)

Country Link
JP (1) JP2022098520A (en)
WO (1) WO2022137862A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02186119A (en) * 1989-01-12 1990-07-20 Nippon Seiko Kk X-ray tube rotating anode
JPH10274244A (en) * 1997-03-31 1998-10-13 Ntn Corp Rolling bearing for supporting high speed rotary shaft
JPH10322974A (en) * 1997-05-22 1998-12-04 Hitachi Ltd Induction motor
JP2005016681A (en) * 2003-06-27 2005-01-20 Nsk Ltd Roller bearing
JP2009148047A (en) * 2007-12-12 2009-07-02 Sugai Sogyo:Kk Motor cooling system
JP2011030307A (en) * 2009-07-22 2011-02-10 Toyota Motor Corp Rotary electric machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02186119A (en) * 1989-01-12 1990-07-20 Nippon Seiko Kk X-ray tube rotating anode
JPH10274244A (en) * 1997-03-31 1998-10-13 Ntn Corp Rolling bearing for supporting high speed rotary shaft
JPH10322974A (en) * 1997-05-22 1998-12-04 Hitachi Ltd Induction motor
JP2005016681A (en) * 2003-06-27 2005-01-20 Nsk Ltd Roller bearing
JP2009148047A (en) * 2007-12-12 2009-07-02 Sugai Sogyo:Kk Motor cooling system
JP2011030307A (en) * 2009-07-22 2011-02-10 Toyota Motor Corp Rotary electric machine

Also Published As

Publication number Publication date
JP2022098520A (en) 2022-07-04

Similar Documents

Publication Publication Date Title
CN108340768B (en) Electric wheel assembly of integrated hub motor
EP3778281B1 (en) Electric wheel assembly with integrated hub motor
US9729027B2 (en) Cooling structure of rotary electric machine
US20080067882A1 (en) Motor
US9450473B2 (en) Motor for vehicle and railway vehicle
JP5066925B2 (en) Wheel drive device
CN101163605A (en) Cooling structure for in-wheel motor
CN103072476A (en) Rear axle electrodynamic force drive device of electric vehicle
WO2011108479A1 (en) In-wheel motor drive device and design method therefor
JP2015116900A (en) Wheel drive device
WO2022153689A1 (en) Rotary electric machine and vehicle
JP2000014081A (en) Hybrid driving device
WO2022137862A1 (en) This semiconductor device comprises: a semiconductor layer having a main surface; a first conductive-type well region formed on a surface layer portion of the main surface of the semiconductor layer; a first conductive-type first impurity region formed on a surface layer portion of the well region and having an inner wall portion; and a second conductive-type annular second impurity region formed on the surface layer portion of the well region inside the inner wall part so as to form a pn junction with the well region.
WO2017119240A1 (en) In-wheel motor drive device
CN216699659U (en) In-wheel motor and electric motor car
WO2023203832A1 (en) Rotary electric machine and drive unit comprising same
CN112792363B (en) Electric spindle and machine tool
KR102642802B1 (en) In-Wheel Motor Assembly Having Rotor Bracket Having Cooling Aid Protrusion
CN112792364B (en) Rear bearing structure of electric spindle and electric spindle
US20220376587A1 (en) Rotor assembly and motor including the same
JP2018043682A (en) In-wheel motor drive device
WO2022270381A1 (en) Power device for vehicle and bearing for wheel with power generator
CN114221467A (en) Wheel hub motor and electric vehicle
CN218161959U (en) Rotating shaft and rotor assembly adopting same
JP7028671B2 (en) Vehicle drive

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910016

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21910016

Country of ref document: EP

Kind code of ref document: A1