WO2022270316A1 - Resin composition, cured product, resin sheet, circuit substrate, and semiconductor chip package - Google Patents

Resin composition, cured product, resin sheet, circuit substrate, and semiconductor chip package Download PDF

Info

Publication number
WO2022270316A1
WO2022270316A1 PCT/JP2022/023158 JP2022023158W WO2022270316A1 WO 2022270316 A1 WO2022270316 A1 WO 2022270316A1 JP 2022023158 W JP2022023158 W JP 2022023158W WO 2022270316 A1 WO2022270316 A1 WO 2022270316A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
resin
mass
semiconductor chip
epoxy resin
Prior art date
Application number
PCT/JP2022/023158
Other languages
French (fr)
Japanese (ja)
Inventor
啓之 阪内
成 佐々木
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Priority to KR1020237044186A priority Critical patent/KR20240023049A/en
Priority to CN202280043646.0A priority patent/CN117500886A/en
Priority to JP2023529821A priority patent/JPWO2022270316A1/ja
Publication of WO2022270316A1 publication Critical patent/WO2022270316A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general

Definitions

  • the present invention relates to resin compositions. Furthermore, it relates to a cured product, a resin sheet, a circuit board, and a semiconductor chip package obtained using the resin composition.
  • Patent Document 1 A resin composition is used to form such an insulating layer.
  • the resin composition is required to suppress warpage that occurs when forming the insulating layer.
  • an object of the present invention is preferably a resin composition that provides a cured product in which the occurrence of warpage is suppressed and at least has a stable viscosity life;
  • An object of the present invention is to provide a resin sheet, a circuit board, and a semiconductor chip package using the composition.
  • the present inventors have made extensive studies to solve the above problems. As a result, the present inventor found that a resin composition containing (A) a curable resin and (B) an inorganic filler, wherein the average particle diameter of the inorganic filler is within a specific range, the inorganic
  • the above problems can be solved by setting the crystalline silica content in the filler within a specific range, and have completed the present invention.
  • the adhesiveness to the substrate for example, the adhesiveness to the polyimide resin
  • the present invention includes the following.
  • the average particle diameter of the (B) inorganic filler is in the range of 0.5 ⁇ m to 12 ⁇ m, and the inorganic filler A resin composition having a crystalline silica content of 0% by mass or more and less than 2.1% by mass.
  • the described resin composition [5] The resin composition according to any one of [1] to [4], wherein the crystalline silica content is calculated based on an X-ray diffraction pattern obtained by X-ray diffraction measurement. [6] The resin composition according to [5], wherein the crystalline silica content is calculated by Rietveld analysis of an X-ray diffraction pattern. [7] The resin composition according to any one of [1] to [6], which is used for forming a resin composition layer having a thickness of 50 ⁇ m or more.
  • a semiconductor chip package comprising a semiconductor chip sealed with the resin composition according to any one of [1] to [8].
  • a method for manufacturing a semiconductor chip package comprising: A resin composition containing (A) a curable resin and (B) an inorganic filler, wherein the average particle diameter of the (B) inorganic filler is in the range of 0.5 ⁇ m to 12 ⁇ m, and the inorganic filler
  • a method for manufacturing a semiconductor chip package comprising curing a resin composition having a crystalline silica content in the range of 0% by mass or more and less than 2.1% by mass.
  • the present invention it is possible to provide a resin composition with a stable viscosity life; a resin sheet, a circuit board, and a semiconductor chip package using the resin composition.
  • FIG. 1 is a cross-sectional view schematically showing the configuration of a fan-out type WLP as an example of a semiconductor chip package according to one embodiment of the present invention.
  • the resin composition of the present invention is a resin composition containing (A) a curable resin and (B) an inorganic filler, wherein the average particle size of the (B) inorganic filler is in the range of 0.5 ⁇ m to 12 ⁇ m. and wherein the content of crystalline silica in the inorganic filler is in the range of 0% by mass or more and less than 2.1% by mass.
  • the present invention provides a resin composition with a stable viscosity life; a resin sheet, a circuit board, and a semiconductor chip package using the resin composition. At least it has the effect of being able to. Other effects produced by the present invention can be grasped by those skilled in the art by referring to the specification and drawings.
  • the resin composition of the present invention contains (A) a curable resin and (B) an inorganic filler.
  • the resin composition of the present invention contains, in addition to components (A) and (B), for example, (C) a curing agent, (D) other additives, and a solvent, as long as the above effects are not excessively inhibited. You can stay.
  • the resin composition of the present invention contains (A) a curable resin.
  • a curable resin one or more resins selected from thermosetting resins, photocurable resins, and radically polymerizable resins can be used.
  • a radically polymerizable resin is a resin in which radical polymerization proceeds by heat or light, optionally in the presence of a polymerization initiator, and may be classified as a thermosetting resin or a photocurable resin.
  • (A) component may be used individually by 1 type, and may be used in combination of 2 or more types by arbitrary ratios.
  • thermosetting resins examples include epoxy resins, epoxy acrylate resins, urethane acrylate resins, urethane resins, cyanate resins, polyimide resins, benzoxazine resins, unsaturated polyester resins, phenol resins, melamine resins, silicone resins, phenoxy resins, and the like. is mentioned.
  • the curable resin comprises an epoxy resin.
  • the resin composition contains a thermosetting resin, it preferably contains (C) a curing agent, and more preferably contains a curing accelerator described later.
  • Epoxy resin refers to a resin having an epoxy group.
  • epoxy resins include bixylenol type epoxy resin, bisphenol A type epoxy resin; bisphenol F type epoxy resin; bisphenol S type epoxy resin; bisphenol AF type epoxy resin; dicyclopentadiene type epoxy resin; Glycidylamine type epoxy resin; Glycidyl ester type epoxy resin; Cresol novolac type epoxy resin; Biphenyl type epoxy resin; Linear aliphatic epoxy resin; Epoxy resin having a butadiene structure; Alicyclic epoxy resin having a skeleton; heterocyclic epoxy resin; spiro ring-containing epoxy resin; cyclohexane type epoxy resin; cyclohexanedimethanol type epoxy resin; trimethylol type epoxy resin; Epoxy resins containing a condensed ring skeleton such as epoxy resins, tert-butyl-catechol type epoxy resins, naphthalene type epoxy resins, naphthol type epoxy resins, anthracene
  • the epoxy resin may contain an epoxy resin containing an aromatic structure.
  • Aromatic structures are chemical structures generally defined as aromatic and also include polycyclic aromatic and heteroaromatic rings.
  • Examples of epoxy resins containing an aromatic structure include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol AF type epoxy resin, dicyclopentadiene type epoxy resin, trisphenol type epoxy resin, Naphthol novolak type epoxy resin, phenol novolac type epoxy resin, tert-butyl-catechol type epoxy resin, naphthalene type epoxy resin, naphthol type epoxy resin, anthracene type epoxy resin, bixylenol type epoxy resin, glycidylamine type epoxy having an aromatic structure Resin, glycidyl ester type epoxy resin having aromatic structure, cresol novolac type epoxy resin, biphenyl type epoxy resin, linear aliphatic epoxy resin having aromatic structure, epoxy resin having butadiene structure having aromatic structure
  • epoxy resins containing an aromatic structure it is preferable to include an epoxy resin containing a condensed ring structure from the viewpoint of obtaining a cured product with excellent heat resistance.
  • the condensed ring in the epoxy resin containing a condensed ring structure include naphthalene ring, anthracene ring, phenanthrene ring and the like, and naphthalene ring is particularly preferred. Therefore, the epoxy resin preferably contains a naphthalene-type epoxy resin containing a naphthalene ring structure.
  • the amount of the naphthalene-type epoxy resin is preferably 10% by mass or more, more preferably 15% by mass or more, particularly preferably 20% by mass or more, and preferably 50% by mass or less based on the total amount of the epoxy resin of 100% by mass. , more preferably 40% by mass or less, and still more preferably 30% by mass or less.
  • the epoxy resin may contain a glycidylamine type epoxy resin from the viewpoint of improving the heat resistance and metal adhesion of the cured product.
  • the epoxy resin may contain an epoxy resin having a butadiene structure.
  • the resin composition preferably contains an epoxy resin having two or more epoxy groups in one molecule as the epoxy resin.
  • the ratio of the epoxy resin having two or more epoxy groups in one molecule is preferably 50% by mass or more, more preferably 60% by mass or more, and particularly preferably 70% by mass with respect to 100% by mass of the non-volatile component of the epoxy resin. % or more.
  • Epoxy resins include liquid epoxy resins at a temperature of 20° C. (hereinafter sometimes referred to as “liquid epoxy resins”) and solid epoxy resins at a temperature of 20° C. (hereinafter sometimes referred to as “solid epoxy resins”). ).
  • the resin composition of the present embodiment may contain only a liquid epoxy resin, may contain only a solid epoxy resin, or may contain a liquid epoxy resin and a solid epoxy resin in combination. Although it may be contained, it is preferable to contain at least a liquid epoxy resin.
  • the resin composition of the present invention contains only a liquid epoxy resin as the curable resin.
  • the resin composition of the present invention may contain a combination of a liquid epoxy resin and a solid epoxy resin as a curable resin, or may contain only a liquid epoxy resin.
  • a liquid epoxy resin having two or more epoxy groups in one molecule is preferable as the liquid epoxy resin.
  • liquid epoxy resins examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AF type epoxy resin, naphthalene type epoxy resin, glycidyl ester type epoxy resin, glycidyl amine type epoxy resin, phenol novolac type epoxy resin, ester skeleton.
  • bisphenol A type epoxy resin bisphenol F type epoxy resin, naphthalene type epoxy resin, glycidylamine type epoxy resin, alicyclic epoxy resin having ester skeleton, epoxy resin having butadiene structure, alkyleneoxy skeleton and butadiene skeleton containing epoxy
  • resins fluorene structure-containing epoxy resins, and dicyclopentadiene type epoxy resins.
  • liquid epoxy resins include "HP4032”, “HP4032D”, and “HP4032SS” (naphthalene type epoxy resins) manufactured by DIC; “828US”, “828EL”, “jER828EL”, and “825" manufactured by Mitsubishi Chemical Corporation; ”, “Epikote 828EL” (bisphenol A type epoxy resin); “jER807” and “1750” (bisphenol F type epoxy resin) manufactured by Mitsubishi Chemical Corporation; “jER152” manufactured by Mitsubishi Chemical Corporation (phenol novolac type epoxy resin); “630", “630LSD”, “604" (glycidylamine type epoxy resin) manufactured by Mitsubishi Chemical Corporation; “ED-523T” (glycirrol type epoxy resin) manufactured by ADEKA; “EP-3950L” manufactured by ADEKA; “EP-3980S” (glycidylamine type epoxy resin); “EP-4088S” (dicyclopentadiene type epoxy resin) manufactured by ADEKA; "ZX1059” manufactured by Nippon Steel Chemical & Materials (bis
  • the solid epoxy resin is preferably a solid epoxy resin having 3 or more epoxy groups per molecule, more preferably an aromatic solid epoxy resin having 3 or more epoxy groups per molecule.
  • Solid epoxy resins include bixylenol type epoxy resin, naphthalene type epoxy resin, naphthalene type tetrafunctional epoxy resin, cresol novolak type epoxy resin, dicyclopentadiene type epoxy resin, trisphenol type epoxy resin, naphthol type epoxy resin, biphenyl type epoxy resin, naphthylene ether type epoxy resin, anthracene type epoxy resin, bisphenol A type epoxy resin, bisphenol AF type epoxy resin, and tetraphenylethane type epoxy resin.
  • solid epoxy resins include “HP4032H” (naphthalene-type epoxy resin) manufactured by DIC; “HP-4700” and “HP-4710” (naphthalene-type tetrafunctional epoxy resin) manufactured by DIC; “N-690” (cresol novolac type epoxy resin) manufactured by DIC Corporation; “N-695" (cresol novolak type epoxy resin) manufactured by DIC Corporation; "HP-7200”, “HP-7200HH”, “HP -7200H” (dicyclopentadiene type epoxy resin); DIC's "EXA-7311", “EXA-7311-G3", “EXA-7311-G4", "EXA-7311-G4S”, "HP6000” ( Naphthylene ether type epoxy resin); Nippon Kayaku Co., Ltd.
  • the amount of the liquid epoxy resin is not particularly limited, it is preferably 50% by mass or more, more preferably 70% by mass or more, and still more preferably 80% by mass or more, based on the total amount of the epoxy resin of 100% by mass. More preferably 90% by mass or more, particularly preferably 100% by mass.
  • the epoxy equivalent of the epoxy resin is preferably 50 g/eq. ⁇ 5000g/eq. , more preferably 50 g/eq. ⁇ 3000g/eq. , more preferably 80 g/eq. ⁇ 2000g/eq. , even more preferably 110 g/eq. ⁇ 1000 g/eq. is.
  • Epoxy equivalent weight is the mass of resin containing one equivalent of epoxy groups. This epoxy equivalent can be measured according to JIS K7236.
  • the weight average molecular weight (Mw) of the epoxy resin is preferably 100-5000, more preferably 200-3000, and even more preferably 400-1500.
  • the weight average molecular weight of the resin can be measured as a polystyrene-equivalent value by a gel permeation chromatography (GPC) method.
  • the amount of the curable resin is not particularly limited, it is preferably 0.5% by mass or more, more preferably 1% by mass or more, and particularly preferably It is 1.5% by mass or more, preferably 45% by mass or less, more preferably 40% by mass or less, and particularly preferably 35% by mass or less.
  • the resin composition of the present invention contains (B) an inorganic filler.
  • a cured product of a resin composition containing (B) an inorganic filler usually tends to be prevented from warping.
  • the cured product of the resin composition containing (B) the inorganic filler can generally have a small coefficient of thermal expansion.
  • An inorganic compound is used as the inorganic filler.
  • inorganic fillers include silica, alumina, glass, cordierite, silicon oxide, barium sulfate, barium carbonate, talc, clay, mica powder, zinc oxide, hydrotalcite, boehmite, aluminum hydroxide, hydroxide
  • silica and alumina are preferred, and silica is particularly preferred.
  • examples of silica include amorphous silica, fused silica, crystalline silica, synthetic silica, and hollow silica.
  • silica spherical silica is preferable.
  • the inorganic filler may be used singly or in combination of two or more.
  • the inorganic filler may be treated with a surface treatment agent from the viewpoint of enhancing moisture resistance and dispersibility.
  • a surface treatment agent examples include fluorine-containing silane coupling agents, aminosilane coupling agents, epoxysilane coupling agents, mercaptosilane coupling agents, silane coupling agents, alkoxysilanes, organosilazane compounds, A titanate-based coupling agent and the like can be mentioned.
  • one type of surface treatment agent may be used alone, or two or more types may be used in combination.
  • Examples of commercially available surface treatment agents include “KBM403” (3-glycidoxypropyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd., “KBM803” (3-mercaptopropyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd., Shin-Etsu Chemical Industry Co., Ltd. "KBE903” (3-aminopropyltriethoxysilane), Shin-Etsu Chemical Co., Ltd. “KBE903” (3-aminopropyltriethoxysilane), Shin-Etsu Chemical Co., Ltd.
  • KBM573 N-phenyl-3- aminopropyltrimethoxysilane
  • Shin-Etsu Chemical Co., Ltd. "KBM103” (phenyltrimethoxysilane), Shin-Etsu Chemical Co., Ltd.
  • KBM-4803 long-chain epoxy type silane coupling agent
  • KBM-7103 (3,3,3-trifluoropropyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd., and the like.
  • the degree of surface treatment with a surface treatment agent is preferably within a specific range.
  • 100 parts by mass of the inorganic filler is preferably surface-treated with 0.2-5 parts by mass of a surface treatment agent, and is surface-treated with 0.2-3 parts by mass. preferably 0.3 parts by mass to 2 parts by mass of the surface treatment.
  • the degree of surface treatment by the surface treatment agent can be evaluated by the amount of carbon per unit surface area of the inorganic filler.
  • the amount of carbon per unit surface area of the inorganic filler is preferably 0.02 mg/m 2 or more, more preferably 0.1 mg/m 2 or more, and more preferably 0.2 mg/m 2 from the viewpoint of improving the dispersibility of the inorganic filler. The above is more preferable.
  • it is preferably 1 mg/m 2 or less, more preferably 0.8 mg/m 2 or less, and even more preferably 0.5 mg/m 2 or less.
  • the amount of carbon per unit surface area of the inorganic filler can be measured after the surface-treated inorganic filler is washed with a solvent (eg, methyl ethyl ketone (MEK)). Specifically, a sufficient amount of MEK as a solvent is added to the inorganic filler surface-treated with the surface treatment agent, and ultrasonic cleaning is performed at 25° C. for 5 minutes. After removing the supernatant liquid and drying the solid content, a carbon analyzer can be used to measure the amount of carbon per unit surface area of the inorganic filler. As a carbon analyzer, "EMIA-320V" manufactured by Horiba Ltd. can be used.
  • EMIA-320V manufactured by Horiba Ltd.
  • the (B) inorganic filler contained in the resin composition of the present invention has an average particle diameter in the range of 0.5 ⁇ m to 12 ⁇ m and a crystalline silica content of 0% by mass or more and 2.1% by mass. % (hereinafter also referred to as “highly amorphous small diameter inorganic filler”).
  • the resin composition of the present invention may contain two or more specific inorganic fillers, but at least one of them is preferably silica.
  • the resin composition of the present invention may contain an inorganic filler other than the highly amorphous small-diameter inorganic filler as long as the intended effect of the present invention is not impaired. It is preferable not to contain inorganic fillers other than.
  • the highly amorphous small-diameter inorganic filler has an average particle size within the range of 0.5 ⁇ m to 12 ⁇ m. Since the highly amorphous small-diameter inorganic filler has such a small average particle diameter, it is possible to increase the degree of filling in the resin composition.
  • the lower limit of the average particle size of the inorganic filler is more than 0.5 ⁇ m, 0.6 ⁇ m or more, 0.7 ⁇ m or more, 0.8 ⁇ m or more, 0.9 ⁇ m or more, or 1.5 ⁇ m or more, as long as the intended effect of the present invention is not impaired. It may be 0 ⁇ m or more.
  • the upper limit of the average particle size of the inorganic filler may be less than 12 ⁇ m, 10 ⁇ m or less, 8 ⁇ m or less, 6 ⁇ m or less, 5 ⁇ m or less, or 4.5 ⁇ m or less, as long as the desired effect of the present invention is not impaired, which will be described later.
  • the upper limit of the average particle size of the inorganic filler is preferably 10 ⁇ m or less, more preferably less than 10 ⁇ m, even more preferably 9 ⁇ m or less, and 8 ⁇ m or less. is particularly preferred.
  • the average particle size of component (B) can be measured by a laser diffraction/scattering method based on Mie scattering theory. Specifically, the particle size distribution of the inorganic filler is prepared on a volume basis using a laser diffraction/scattering type particle size distribution measuring apparatus, and the median diameter can be used as the average particle size for measurement.
  • a measurement sample can be obtained by weighing 100 mg of an inorganic filler and 10 g of methyl ethyl ketone in a vial bottle and dispersing them with ultrasonic waves for 10 minutes.
  • the measurement sample is measured using a laser diffraction particle size distribution measuring device, the wavelengths of the light source used are blue and red, and the volume-based particle size distribution of the inorganic filler (B) is measured by the flow cell method.
  • the average particle size can be calculated as the median size from the size distribution.
  • Examples of the laser diffraction particle size distribution analyzer include "LA-960" manufactured by Horiba, Ltd., and the like.
  • the specific surface area of the inorganic filler is preferably 1 m 2 /g or more, more preferably 1.5 m 2 /g or more, still more preferably 2 m 2 /g or more, and particularly preferably 2.5 m 2 /g or more. be. Although there is no particular upper limit, it is preferably 60 m 2 /g or less, 50 m 2 /g or less, or 40 m 2 /g or less.
  • the specific surface area is obtained by adsorbing nitrogen gas on the sample surface using a specific surface area measuring device (Macsorb HM-1210 manufactured by Mountech) according to the BET method and calculating the specific surface area using the BET multipoint method. .
  • the highly amorphous small-diameter inorganic filler has a crystalline silica content of 0% by mass or more and less than 2.1% by mass. Since the highly amorphous small-diameter inorganic filler has such a low crystalline silica content, it is possible to achieve the desired effect of the present invention. And, as is clear from the exemplification in the Examples section below, the lower the crystalline silica content, preferably the more the detection limit is exceeded and the closer to the detection limit, the more stable the viscosity life tends to be. The intended effects of the invention can be obtained more remarkably. In addition, the higher the filling degree of the inorganic filler, the more the stability of the viscosity life usually tends to decrease. Can be higher than normal.
  • the crystalline silica content is 2.0% by mass or less, 1.9% by mass or less, 1.8% by mass or less, 1.7% by mass or less, Or it is preferably 1.6% by mass or less, 1.5% by mass or less, 1.4% by mass or less, 1.3% by mass or less, 1.2% by mass or less, 1.1% by mass or less, or 1 0% by mass or less, 0.9% by mass or less, 0.8% by mass or less, 0.7% by mass or less, 0.6% by mass or less, 0.5% by mass or less, 0.4% by mass or less Even more preferably, it is 0.3 mass % or less, 0.2 mass % or less, or 0.1 mass % or less.
  • the content of crystalline silica is particularly preferably below the detection limit, and may be 0% by mass.
  • the crystalline silica content is preferably more than 0% by mass, more preferably 0.01. % by mass or more, more preferably 0.02% by mass or more, 0.03% by mass or more, 0.04% by mass or more, 0.05% by mass or more, 0.06% by mass or more, and 0.07% by mass % or more, or 0.08% by mass or more. Therefore, it is preferred in embodiments where the crystalline silica content is in the range of greater than 0 wt% and less than 2.1 wt%.
  • the crystalline silica content is calculated based on the X-ray diffraction pattern obtained by X-ray diffraction measurement.
  • the X-ray diffraction measurement may be carried out using a commercially available X-ray diffraction analysis device, for example, the Rigaku X-ray diffraction device “SmartLab (registered trademark)”.
  • the conditions for the X-ray diffraction measurement are not limited as long as crystalline silica can be detected, and the X-ray source, output, diffraction angle measurement range, scanning speed, etc. are appropriately set.
  • the crystalline silica content is calculated by Rietveld analysis of the X-ray diffraction pattern.
  • dedicated software attached to the X-ray diffraction analysis device for example, the qualitative analysis program PDXL attached to the X-ray diffraction device "SmartLab (registered trademark)" manufactured by Rigaku Corporation can be used.
  • Such dedicated software contains information about crystalline silica (usually ⁇ -quartz or cristobalite) and amorphous silica (amorphous silica). According to the Rietveld analysis, even if the content of crystalline silica is 0.01% by mass, the crystalline silica content can be calculated, which is preferable.
  • the crystalline silica content may be calculated by a method other than the method described above. However, if the numerical value of the crystalline silica content calculated by such a method is significantly different from the numerical value of the crystalline silica content calculated by the method described above (preferably Rietveld analysis), such a method is adopted. shouldn't.
  • the peak intensity of crystalline silica and the peak intensity (integrated value) of amorphous silica may be calculated, and the X-ray diffraction pattern of a highly amorphous small-diameter inorganic filler with a known crystalline silica content is used as a calibration curve, and the crystalline silica content in an inorganic filler with an unknown crystalline silica content is A rate may be calculated.
  • the inorganic fillers A, B, C, D, E, and F described in Production Examples 1 to 4 in the Examples section below, or modifications thereof (for example, surface treatment agents of which the type has been changed, or which has not undergone surface treatment) can be used.
  • the method for producing the highly amorphous small-diameter inorganic filler is not limited.
  • a crystalline inorganic filler such as crystalline silica (for example, crystalline silica disclosed in JP-A-2015-211086) can be used as a raw material for the highly amorphous small-diameter inorganic filler.
  • the heating temperature and heating time in the melting step in the melting method can be changed within the range of 500 ° C. to 1100 ° C. and 1 to 12 hours.
  • the density of the obtained fused silica is 2.4 g /
  • the heating temperature and heating time are adjusted so that the thickness is cm 3 or less (see Japanese Patent No. 6814906).
  • the highly amorphous small-diameter inorganic filler may be an amorphous inorganic filler containing no crystalline component, such as amorphous silica, as a raw material.
  • silica with a low crystalline silica content (hereinafter also referred to as "highly amorphous small-diameter silica") was found to tend to be obtained regardless of the type of silica. Then, whether or not the crystalline silica content in the obtained inorganic filler is within the above-described range can be easily confirmed by calculating the crystalline silica content by the above-described method. If the crystalline silica content is not within the above range, the initial crystalline silica content may be obtained by, for example, increasing the number of melting steps.
  • the amount of the highly amorphous small-diameter inorganic filler relative to 100% by mass of the non-volatile component in the resin composition is not particularly limited, but from the viewpoint of obtaining a cured product with suppressed warpage, it is 30% by mass. % or more, preferably 40% by mass or more, more preferably 50% by mass or more, more preferably more than 50% by mass, and 60% by mass or more, 65% by mass or more, 70% by mass or more, 75% by mass or more, or 80% by mass % or more.
  • the amount of the highly amorphous small-diameter inorganic filler is not particularly limited, but is 96% by mass or less, 95% by mass or less, or 94% by mass or less relative to 100% by mass of the nonvolatile components in the resin composition. It can be 93% by mass or less.
  • a cured product of a resin composition containing a highly amorphous small-diameter inorganic filler in such an amount is suppressed from warping.
  • the cured product of the resin composition containing the highly amorphous small-diameter inorganic filler in such a range can effectively reduce the coefficient of thermal expansion.
  • the amount of the highly amorphous small-diameter inorganic filler relative to 100% by volume of the non-volatile component in the resin composition is not particularly limited, but from the viewpoint of obtaining a cured product with suppressed warpage, it is 50% by volume. % or more, preferably 55 vol% or more, more preferably 60 vol% or more, still more preferably 65 vol% or more, and may be 66 vol% or more, 67 vol% or more, or 68 vol% or more.
  • the amount of the highly amorphous small-diameter inorganic filler is 95% by volume or less, 90% by volume or less, 85% by volume or less, relative to 100% by volume of the nonvolatile components in the resin composition. It can be vol % or less or 83 vol % or less.
  • a cured product of a resin composition containing a highly amorphous small-diameter inorganic filler in such a range can effectively reduce the coefficient of thermal expansion.
  • the resin composition of the present invention preferably contains (C) a curing agent.
  • (C) Curing agent usually has the function of reacting with (A) curable resin to cure the resin composition.
  • the curing agent (C) includes active ester curing agents, phenol curing agents, benzoxazine curing agents, acid anhydride curing agents, amine curing agents, and cyanate ester curing agents. Among these, in one embodiment, at least one selected from the group consisting of acid anhydride-based curing agents, amine-based curing agents, and phenol-based curing agents is used as (C) the curing agent.
  • an acid anhydride-based curing agent an amine-based curing agent, or a phenol-based curing agent
  • warpage of the cured product can generally be suppressed.
  • One type of curing agent may be used alone, or two or more types may be used in combination.
  • the curing agent (C) one or more selected from liquid curing agents and solid curing agents can be used, and liquid curing agents are preferably used.
  • the curing agent comprises a liquid curing agent.
  • the curing agent comprises a solid curing agent.
  • “Liquid curing agent” refers to a curing agent that is liquid at a temperature of 20°C
  • solid curing agent refers to a curing agent that is solid at a temperature of 20°C.
  • Acid anhydride-based curing agents include, for example, curing agents having one or more acid anhydride groups in one molecule, and curing agents having two or more acid anhydride groups in one molecule. preferable.
  • Specific examples of acid anhydride curing agents include phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, 4-methylhexahydrophthalic anhydride, methylhexahydrophthalic anhydride, and methylnazic.
  • Examples of commercially available acid anhydride curing agents include “HNA-100”, “MH-700”, “MTA-15”, “DDSA” and “OSA” manufactured by Shin Nippon Rika; “YH-306” and “YH-307” manufactured by Hitachi Chemical; “HN-2200” and “HN-5500” manufactured by Hitachi Chemical;
  • Amine curing agents include, for example, curing agents having one or more, preferably two or more amino groups in one molecule. Specific examples thereof include aliphatic amines, polyetheramines, alicyclic amines, aromatic amines, etc. Among them, aromatic amines are preferred. Amine-based curing agents are preferably primary amines or secondary amines, more preferably primary amines. Specific examples of amine-based curing agents include 4,4′-methylenebis(2,6-dimethylaniline), diphenyldiaminosulfone, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylsulfone, and 3,3′.
  • amine-based curing agents may be used, for example, "SEIKACURE-S” manufactured by Seika, “KAYABOND C-200S”, “KAYABOND C-100” and “Kayahard AA” manufactured by Nippon Kayaku. , “Kayahard AB”, “Kayahard AS”, Mitsubishi Chemical “Epicure W”, Sumitomo Seika “DTDA”, and the like.
  • Phenolic curing agents include curing agents having one or more, preferably two or more, hydroxyl groups bonded to aromatic rings such as benzene rings and naphthalene rings in one molecule. Among them, a compound having a hydroxyl group bonded to a benzene ring is preferred. From the viewpoint of heat resistance and water resistance, a phenol-based curing agent having a novolac structure is preferred. Furthermore, from the viewpoint of adhesion, a nitrogen-containing phenolic curing agent is preferable, and a triazine skeleton-containing phenolic curing agent is more preferable. In particular, a triazine skeleton-containing phenol novolak curing agent is preferable from the viewpoint of highly satisfying heat resistance, water resistance, and adhesion.
  • phenol-based curing agents include “MEH-7700”, “MEH-7810", “MEH-7851”, and “MEH-8000H” manufactured by Meiwa Kasei; CBN", “GPH”; DIC's "TD-2090”, “TD-2090-60M”, “LA-7052”, “LA-7054”, “LA-1356”, “LA-3018”, “ LA-3018-50P”, “EXB-9500”, “HPC-9500”, “KA-1160”, “KA-1163”, “KA-1165”; GDP-6115H", “ELPC75”; and "2,2-diallylbisphenol A” manufactured by Sigma-Aldrich.
  • the active group equivalent of the curing agent is preferably 50 g/eq. ⁇ 3000g/eq. , more preferably 100 g/eq. ⁇ 1000g/eq. , more preferably 100 g/eq. ⁇ 500 g/eq. , particularly preferably 100 g/eq. ⁇ 300 g/eq. is.
  • Active group equivalents represent the mass of curing agent per equivalent of active groups.
  • the amount of the (C) curing agent is preferably determined according to the number of active groups of the (A) curable resin.
  • the number of active groups of the (C) curing agent is preferably 0.1 or more, more preferably 0.3 or more, and still more preferably 0.5 or more when the number of reactive groups of the (A) curable resin is 1. Yes, preferably 5.0 or less, more preferably 4.0 or less, still more preferably 3.0 or less.
  • the number of reactive groups of the curable resin means the sum of all the values obtained by dividing the mass of the non-volatile component of the curable resin present in the resin composition by the reactive group equivalent.
  • the number of active groups of the (C) curing agent represents the sum of all the values obtained by dividing the mass of the non-volatile component of the (C) curing agent present in the resin composition by the active group equivalent.
  • the mass ratio of the component (C) to the component (A) is preferably in the range of 1:0.01 to 1:10. Such mass ratio is more preferably in the range of 1:0.05 to 1:9, more preferably in the range of 1:0.1 to 1:8.
  • the amount of the curing agent (C) is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, and particularly preferably 0.2% by mass, based on 100% by mass of the non-volatile components in the resin composition. or more, preferably 25% by mass or less, more preferably 20% by mass or less, and even more preferably 15% by mass or less.
  • the resin composition of the present invention may further contain (D) other additives.
  • a first example of other additives includes a curing accelerator, a silane coupling agent, a radical polymerizable compound, a radical polymerization initiator, a polyether skeleton-containing compound having a reactive functional group, and a high molecular weight component.
  • the resin composition of the present invention may further contain a curing accelerator as an optional component.
  • the curing accelerator can efficiently adjust the curing time of the resin composition.
  • curing accelerators examples include phosphorus-based curing accelerators, amine-based curing accelerators, imidazole-based curing accelerators, guanidine-based curing accelerators, metal-based curing accelerators, and the like. Among them, imidazole-based curing accelerators are preferred.
  • the curing accelerator may be used alone or in combination of two or more.
  • Phosphorus-based curing accelerators include, for example, rephenylphosphine, phosphonium borate compounds, tetraphenylphosphonium tetraphenylborate, n-butylphosphonium tetraphenylborate, tetrabutylphosphonium decanoate, (4-methylphenyl)triphenylphosphonium thiocyanate. , tetraphenylphosphonium thiocyanate, and butyltriphenylphosphonium thiocyanate, and triphenylphosphine and tetrabutylphosphonium decanoate are preferred.
  • amine curing accelerators examples include trialkylamines such as triethylamine and tributylamine, 4-dimethylaminopyridine (DMAP), benzyldimethylamine, 2,4,6-tris(dimethylaminomethyl)phenol, 1, 8-diazabicyclo(5,4,0)-undecene, 1,8-diazabicyclo[5,4,0]undecene-7,4-dimethylaminopyridine, 2,4,6-tris(dimethylaminomethyl)phenol and the like 4-dimethylaminopyridine and 1,8-diazabicyclo(5,4,0)-undecene are preferred.
  • DMAP 4-dimethylaminopyridine
  • benzyldimethylamine 2,4,6-tris(dimethylaminomethyl)phenol
  • 1, 8-diazabicyclo(5,4,0)-undecene 1,8-diazabicyclo[5,4,0]undecene-7
  • imidazole curing accelerators examples include 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl- 2-phenylimidazolium trimellitate, 2,4-d
  • imidazole-based curing accelerator a commercially available product may be used. —CN”, “Cl1Z-CNS”, “Cl1Z-A”, “2MZ-OK”, “2MA-OK”, “2MA-OK-PW”, “2PHZ” and the like.
  • Guanidine curing accelerators include, for example, dicyandiamide, 1-methylguanidine, 1-ethylguanidine, 1-cyclohexylguanidine, 1-phenylguanidine, 1-(o-tolyl)guanidine, dimethylguanidine, diphenylguanidine, trimethylguanidine, Tetramethylguanidine, Pentamethylguanidine, 1,5,7-triazabicyclo[4.4.0]dec-5-ene, 7-methyl-1,5,7-triazabicyclo[4.4.0] Dec-5-ene, 1-methylbiguanide, 1-ethylbiguanide, 1-n-butylbiguanide, 1-n-octadecylbiguanide, 1,1-dimethylbiguanide, 1,1-diethylbiguanide, 1-cyclohexylbiguanide, 1 -allylbiguanide, 1-phenylbiguanide, 1-(o-tolyl)biguanide and
  • metal-based curing accelerators include organometallic complexes or organometallic salts of metals such as cobalt, copper, zinc, iron, nickel, manganese, and tin.
  • organometallic complexes include organocobalt complexes such as cobalt (II) acetylacetonate and cobalt (III) acetylacetonate, organocopper complexes such as copper (II) acetylacetonate, and zinc (II) acetylacetonate.
  • organic zinc complexes such as iron (III) acetylacetonate; organic nickel complexes such as nickel (II) acetylacetonate; organic manganese complexes such as manganese (II) acetylacetonate;
  • organic metal salts include zinc octoate, tin octoate, zinc naphthenate, cobalt naphthenate, tin stearate, and zinc stearate.
  • the amount of the curing accelerator is 0% by mass or more, and is not particularly limited, but is preferably 0.01% by mass or more, more preferably 0. 05% by mass or more, particularly preferably 0.1% by mass or more, preferably 5% by mass or less, more preferably 4% by mass or less, and even more preferably 3% by mass or less.
  • the resin composition of the present invention may further contain a silane coupling agent as an optional component.
  • a silane coupling agent used as the surface treatment agent for the inorganic filler
  • the inorganic filler treated with the surface treatment agent is classified as the component (B) described above.
  • Silane coupling agents include, for example, aminosilane coupling agents, epoxysilane coupling agents, mercaptosilane coupling agents, alkoxysilane compounds, organosilazane compounds, and titanate coupling agents.
  • an epoxysilane-based coupling agent containing an epoxy group and a mercaptosilane-based coupling agent containing a mercapto group are preferable, and an epoxysilane-based coupling agent is particularly preferable.
  • a silane coupling agent may be used individually by 1 type, and may be used in combination of 2 or more types. In one embodiment, as an optional component, one type of silane coupling agent is included.
  • the resin composition of the present invention preferably contains a plurality of types of silane coupling agents, and the silane coupling agent used as the surface treatment agent of component (B) and the silane coupling agent used as the optional component It is preferable to include a plurality of types of silane coupling agents in combination with the above.
  • silane coupling agent for example, a commercially available product may be used.
  • examples of commercially available silane coupling agents include "KBM403" (3-glycidoxypropyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd., "KBM803” (3-mercaptopropyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd., Shin-Etsu Chemical Co., Ltd. "KBE903” (3-aminopropyltriethoxysilane), Shin-Etsu Chemical Co., Ltd.
  • KBM573 N-phenyl-3-aminopropyltrimethoxysilane
  • KBM103 phenyltrimethoxysilane
  • Shin-Etsu Chemical Co., Ltd. Long-chain epoxy type silane coupling agent
  • KBM manufactured by Shin-Etsu Chemical Co., Ltd.
  • the amount of the silane coupling agent is 0% by mass or more, preferably 0.01% by mass or more, 0.05% by mass or more, or 0.1% by mass with respect to 100% by mass of non-volatile components in the resin composition. or more, preferably 10% by mass or less, 5% by mass or less, or 3% by mass or less.
  • the amount of the silane coupling agent is 0% by mass or more, preferably 0.01% by mass or more, 0.1% by mass or more, or 0.2% by mass with respect to 100% by mass of the resin component in the resin composition. or more, preferably 15% by mass or less, 10% by mass or less, or 5% by mass or less.
  • the resin composition of the present invention may further contain a radically polymerizable compound as an optional component. Radically polymerizable compounds may be classified as component (A).
  • a compound having an ethylenically unsaturated bond can be used as the radically polymerizable compound.
  • radically polymerizable compounds include vinyl groups, allyl groups, 1-butenyl groups, 2-butenyl groups, acryloyl groups, methacryloyl groups, fumaroyl groups, maleoyl groups, vinylphenyl groups, styryl groups, cinnamoyl groups and Compounds having a radically polymerizable group such as a maleimide group (2,5-dihydro-2,5-dioxo-1H-pyrrol-1-yl group) can be mentioned.
  • the radically polymerizable compound may be used singly or in combination of two or more.
  • radically polymerizable compounds include (meth)acrylic radically polymerizable compounds having one or more acryloyl groups and/or methacryloyl groups; a styrene radically polymerizable compound having a vinyl group; an allyl radically polymerizable compound having one or two or more allyl groups; a maleimide radically polymerizable compound having one or two or more maleimide groups; mentioned.
  • (meth)acrylic radically polymerizable compounds are preferred.
  • the radically polymerizable compound preferably contains a polyalkylene oxide structure.
  • a radically polymerizable compound containing a polyalkylene oxide structure By using a radically polymerizable compound containing a polyalkylene oxide structure, the flexibility of the cured product of the resin composition can be enhanced.
  • a polyalkylene oxide structure can be represented by Formula (1): —(R f O) n —.
  • n usually represents an integer of 2 or more.
  • the integer n is preferably 4 or more, more preferably 9 or more, still more preferably 11 or more, and usually 101 or less, preferably 90 or less, more preferably 68 or less, and still more preferably 65 or less.
  • each R f independently represents an optionally substituted alkylene group.
  • the number of carbon atoms in the alkylene group is preferably 1 or more, more preferably 2 or more, preferably 6 or less, more preferably 5 or less, still more preferably 4 or less, still more preferably 3 or less, and particularly preferably is 2.
  • substituents that the alkylene group may have include a halogen atom, —OH, an alkoxy group, a primary or secondary amino group, an aryl group, —NH 2 , —CN, —COOH, —C(O ) H, —NO 2 , and the like. However, it is preferable that the alkyl group does not have a substituent.
  • Specific examples of polyalkylene oxide structures include polyethylene oxide structures, polypropylene oxide structures, poly n-butylene oxide structures, poly(ethylene oxide-co-propylene oxide) structures, poly(ethylene oxide-ran-propylene oxide) structures, poly(ethylene oxide -alt-propylene oxide) and poly(ethylene oxide-block-propylene oxide) structures.
  • the number of polyalkylene oxide structures contained in one molecule of the radically polymerizable compound may be one, or two or more.
  • the number of polyalkylene oxide structures contained in one molecule of the radically polymerizable compound is preferably 2 or more, more preferably 4 or more, still more preferably 9 or more, particularly preferably 11 or more, and preferably 101 or less, more preferably is 90 or less, more preferably 68 or less, and particularly preferably 65 or less.
  • those polyalkylene oxide structures may be the same or different.
  • Examples of commercially available radically polymerizable compounds containing a polyalkylene oxide structure include monofunctional acrylates “AM-90G”, “AM-130G” and “AMP-20GY” manufactured by Shin-Nakamura Chemical Co., Ltd.; bifunctional acrylates; "A-1000", “A-B1206PE”, “A-BPE-20”, “A-BPE-30”; monofunctional methacrylates “M-20G”, “M-40G”, “M-90G”, “ M-130G”, “M-230G”; and bifunctional methacrylates "23G", “BPE-900", "BPE-1300N", “1206PE".
  • the ethylenically unsaturated bond equivalent of the radically polymerizable compound is preferably 20 g/eq. ⁇ 3000g/eq. , more preferably 50 g/eq. ⁇ 2500 g/eq. , more preferably 70 g/eq. ⁇ 2000 g/eq. , particularly preferably 90 g/eq. ⁇ 1500 g/eq. is.
  • the ethylenically unsaturated bond equivalent represents the mass of the radically polymerizable compound per equivalent of ethylenically unsaturated bond.
  • the weight average molecular weight (Mw) of the radically polymerizable compound is preferably 150 or more, more preferably 250 or more, still more preferably 400 or more, preferably 40000 or less, more preferably 10000 or less, still more preferably 5000 or less, especially Preferably it is 3000 or less.
  • the amount of the radically polymerizable compound is 0% by mass or more, preferably 0.01% by mass or more, 0.05% by mass or more, or 0.1% by mass with respect to 100% by mass of the non-volatile components in the resin composition. or more, preferably 15% by mass or less, 10% by mass or less, or 8% by mass or less.
  • the amount of the radical polymerizable compound is 0% by mass or more, preferably 0.01% by mass or more, 0.1% by mass or more, or 0.2% by mass with respect to 100% by mass of the resin component in the resin composition. or more, preferably 25% by mass or less, 20% by mass or less, or 15% by mass or less.
  • the resin composition of the present invention may further contain a radical polymerization initiator as an optional component.
  • a radical polymerization initiator a thermal polymerization initiator that generates free radicals when heated is preferred.
  • the resin composition contains a radical polymerizable compound, the resin composition usually contains a radical polymerization initiator.
  • the radical polymerization initiator may be used alone or in combination of two or more.
  • radical polymerization initiators examples include peroxide-based radical polymerization initiators and azo-based radical polymerization initiators. Among them, a peroxide-based radical polymerization initiator is preferable.
  • peroxide-based radical polymerization initiators include hydroperoxide compounds such as 1,1,3,3-tetramethylbutyl hydroperoxide; tert-butyl cumyl peroxide, di-tert-butyl peroxide, di -tert-hexyl peroxide, dicumyl peroxide, 1,4-bis(1-tert-butylperoxy-1-methylethyl)benzene, 2,5-dimethyl-2,5-bis(tert-butylperoxy ) Dialkyl peroxide compounds such as hexane, 2,5-dimethyl-2,5-bis(tert-butylperoxy)-3-hexyne; dilauroyl peroxide, didecanoyl peroxide, dicyclohexylperoxydicarbonate, bis Diacyl peroxide compounds such as (4-tert-butylcyclohexyl) peroxydicarbonate; tert-butyl peroxy
  • azo radical polymerization initiators examples include 2,2′-azobis(4-methoxy-2,4-dimethylvaleronitrile), 2,2′-azobis(2,4-dimethylvaleronitrile), 2,2 '-Azobisisobutyronitrile, 2,2'-azobis(2-methylbutyronitrile), 1,1'-azobis(cyclohexane-1-carbonitrile), 1-[(1-cyano-1-methyl Azonitrile compounds such as ethyl)azo]formamide, 2-phenylazo-4-methoxy-2,4-dimethyl-valeronitrile; 2,2′-azobis[2-methyl-N-[1,1-bis(hydroxymethyl) -2-hydroxyethyl]propionamide], 2,2′-azobis[2-methyl-N-[1,1-bis(hydroxymethyl)ethyl]propionamide], 2,2′-azobis[2-methyl- N-[2-(1-hydroxybutyl)]-propionamide], 2,2′-azo
  • the radical polymerization initiator preferably has mesothermal activity. Specifically, the radical polymerization initiator preferably has a 10-hour half-life temperature T10 (°C) within a specific low temperature range.
  • the 10-hour half-life temperature T10 is preferably 50°C to 110°C, more preferably 50°C to 100°C, still more preferably 50°C to 80°C.
  • Commercial products of such radical polymerization initiators include, for example, “Luperox 531M80” manufactured by Arkema Fuji Co., Ltd., “Perhexyl (registered trademark) O” manufactured by NOF Corporation, and “MAIB” manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. mentioned.
  • the amount of the radical polymerization initiator is not particularly limited, it is preferably 0.01% by mass or more, more preferably 0.02% by mass or more, based on 100% by mass of the non-volatile components in the resin composition. It is particularly preferably 0.05% by mass or more, preferably 5% by mass or less, more preferably 2% by mass or less, and even more preferably 1% by mass or less.
  • the resin composition of the present invention may further contain a polyether skeleton-containing compound having a reactive functional group as an optional component.
  • a polyether skeleton-containing compound having a reactive functional group may be classified as component (A).
  • the resin composition of the present invention may further contain a polyether skeleton-containing compound having a reactive functional group as an optional component.
  • a polyether skeleton-containing compound having a reactive functional group can suppress warpage of a cured product of a resin composition.
  • the polyether skeleton-containing compound having a reactive functional group may be used alone or in combination of two or more.
  • a polyether skeleton-containing compound having a reactive functional group represents a polymer compound having a polyether skeleton.
  • the polyether skeleton contained in the polyether skeleton-containing compound having a reactive functional group is preferably a polyoxyalkylene skeleton composed of one or more monomer units selected from ethylene oxide units and propylene oxide units. Therefore, the polyether skeleton-containing compound having a reactive functional group preferably does not contain a polyether skeleton containing monomer units having 4 or more carbon atoms, such as butylene oxide units and phenylene oxide units. Moreover, the polyether skeleton-containing compound having a reactive functional group may contain a hydroxy group as a reactive functional group.
  • the polyether skeleton-containing compound having a reactive functional group may contain a silicone skeleton.
  • the silicone skeleton includes, for example, a polydialkylsiloxane skeleton such as a polydimethylsiloxane skeleton; a polydiarylsiloxane skeleton such as a polydiphenylsiloxane skeleton; a polyalkylarylsiloxane skeleton such as a polymethylphenylsiloxane skeleton; polydialkyl-diarylsiloxane skeleton; polydialkyl-alkylarylsiloxane skeleton such as polydimethyl-methylphenylsiloxane skeleton; polydiaryl-alkylarylsiloxane skeleton such as polydiphenyl-methylphenylsiloxane skeleton; A polydimethylsiloxane skeleton is preferred, and a polydimethylsiloxan
  • Polyether skeleton-containing compounds containing a silicone skeleton include, for example, polyoxyalkylene-modified silicones, alkyl-etherified polyoxyalkylene-modified silicones (polyoxyalkylene-modified silicones in which at least part of the polyether skeleton ends are alkoxy groups), and the like. sell.
  • the polyether skeleton-containing compound having a reactive functional group may contain a polyester skeleton.
  • This polyester skeleton is preferably an aliphatic polyester skeleton.
  • the hydrocarbon chain contained in the aliphatic polyester skeleton may be linear or branched, preferably branched.
  • the number of carbon atoms contained in the polyester backbone can be, for example, 4-16. Since the polyester skeleton can be formed from polycarboxylic acids, lactones, or anhydrides thereof, a polyether skeleton-containing compound having a reactive functional group containing a polyester skeleton has a carboxyl group at the end of the molecule. However, it is preferable to have a hydroxyl group as a reactive functional group at the end of the molecule.
  • Polyether skeleton-containing compounds having reactive functional groups include, for example, polyethylene glycol, polypropylene glycol, linear polyoxyalkylene glycol (linear polyalkylene glycol) such as polyoxyethylene polyoxypropylene glycol; polyoxyethylene Glyceryl ether, polyoxypropylene glyceryl ether, polyoxyethylene polyoxypropylene glyceryl ether, polyoxyethylene trimethylolpropane ether, polyoxypropylene trimethylolpropane ether, polyoxyethylene polyoxypropylene trimethylolpropane ether, polyoxyethylene diglyceryl ether, polyoxypropylene diglyceryl ether, polyoxyethylene polyoxypropylene diglyceryl ether, polyoxyethylene polyoxypropylene diglyceryl ether, polyoxyethylene polyoxypropylene diglyceryl ether, polyoxyethylene topentaerythritol ether, polyoxypropylene pentaerythritol ether, polyoxyethylene polyoxypropylene pent
  • the number average molecular weight of the polyether skeleton-containing compound having a reactive functional group is preferably 500-40,000, more preferably 500-20,000, and even more preferably 500-10,000.
  • the weight average molecular weight of the polyether skeleton-containing compound is preferably 500 to 40,000, more preferably 500 to 20,000, still more preferably 500 to 10,000.
  • the number average molecular weight and weight average molecular weight can be measured as polystyrene-equivalent values by gel permeation chromatography (GPC).
  • the polyether skeleton-containing compound having a reactive functional group is preferably liquid at 25°C.
  • the viscosity of the polyether skeleton-containing compound having a reactive functional group at 25° C. is preferably 100000 mPa ⁇ s or less, more preferably 50000 mPa ⁇ s or less, still more preferably 30000 mPa ⁇ s or less, 10000 mPa ⁇ s or less, or 5000 mPa ⁇ s or less. , 4000 mPa ⁇ s or less, 3000 mPa ⁇ s or less, 2000 mPa ⁇ s or less, or 1500 mPa ⁇ s or less.
  • the viscosity may be a viscosity (mPa ⁇ s) obtained by measuring with a Brookfield viscometer.
  • polyether skeleton-containing compounds having reactive functional groups include NOF Corporation's "Pronon #102", “Pronon #104", “Pronon #201", “Pronon #202B” and “Pronon #204”, “Pronon #208”, “Unilube 70DP-600B”, “Unilube 70DP-950B” (polyoxyethylene polyoxypropylene glycol); “Pluronic (registered trademark) L-23” manufactured by ADEKA, “Pluronic L-31", “Pluronic L-44”, “Pluronic L-61", “ADEKA Pluronic L-62", “Pluronic L-64", “Pluronic L-71”, “Pluronic L-72”, “Pluronic L-101”, “Pluronic L-121”, “Pluronic P-84”, “Pluronic P-85”, “Pluronic P-103”, “Pluronic F-68”, “Pluronic F-88”, “Pluronic
  • the amount of the polyether skeleton-containing compound having a reactive functional group is 0% by mass or more, preferably 0.01% by mass or more, and 0.05% by mass with respect to 100% by mass of non-volatile components in the resin composition. or 0.1% by mass or more, preferably 15% by mass or less, 10% by mass or less, or 8% by mass or less, and 15% by mass or less, 10% by mass or less, or 8% by mass or less.
  • the amount of the polyether skeleton-containing compound having a reactive functional group is 0% by mass or more, preferably 0.01% by mass or more, and 0.1% by mass with respect to 100% by mass of the resin component in the resin composition. or 0.2% by mass or more, preferably 25% by mass or less, 20% by mass or less, or 15% by mass or less.
  • the resin composition of the present invention may contain a high molecular weight component.
  • a high molecular weight component may function as a plasticizer.
  • Commercially available high molecular weight components include butadiene homopolymers “B-1000”, “B-2000” and “B-3000” manufactured by Nippon Soda Co., Ltd. The high molecular weight components may be used singly or in combination of two or more.
  • the number average molecular weight of the high molecular weight component is preferably 500 to 40,000, more preferably 500 to 20,000, still more preferably 500 to 10,000.
  • the weight average molecular weight of the high molecular weight component is preferably 500 to 40,000, more preferably 500 to 20,000, still more preferably 500 to 10,000.
  • the number average molecular weight and weight average molecular weight can be measured as polystyrene-equivalent values by gel permeation chromatography (GPC).
  • the high-molecular-weight component is liquid at 25°C, or the high-molecular-weight component has a viscosity at 45°C of preferably 100,000 mPa ⁇ s or less, more preferably 50,000 mPa ⁇ s or less, still more preferably 30,000 mPa ⁇ s or less, or 10,000 mPa. ⁇ s or less, 5000 mPa ⁇ s or less, 4000 mPa ⁇ s or less, 3000 mPa ⁇ s or less, 2000 mPa ⁇ s or less, 1500 mPa ⁇ s or less, or 500 mPa ⁇ s or less.
  • the viscosity of the polyether skeleton-containing compound having a reactive functional group is preferably 0.5 mPa ⁇ s or more, more preferably 1 mPa ⁇ s or more, still more preferably 2 mPa ⁇ s or more, 3 mPa ⁇ s or more, Or it is 4 mPa ⁇ s or more.
  • the viscosity may be a viscosity (mPa ⁇ s) obtained by measuring with a Brookfield viscometer.
  • the amount of the high molecular weight component is not limited to 100% by mass of the non-volatile components in the resin composition, but is 0% by mass or more, preferably 0.01% by mass or more, and 0.05% by mass. or 0.1% by mass or more, preferably 15% by mass or less, 10% by mass or less, or 8% by mass or less.
  • the amount of the high molecular weight component is not limited to 100% by mass of the resin component in the resin composition, but is 0% by mass or more, preferably 0.01% by mass or more, and 0.1% by mass. or 0.2% by mass or more, preferably 15% by mass or less, 10% by mass or less, or 8% by mass or less.
  • Second examples of other additives include, for example, organic fillers such as rubber particles, polyamide fine particles, and silicone particles; resin; carbodiimide compound; organic metal compounds such as organic copper compounds, organic zinc compounds, and organic cobalt compounds; coloring agents such as phthalocyanine blue, phthalocyanine green, iodine green, diazo yellow, crystal violet, titanium oxide, and carbon black; Polymerization inhibitors such as catechol, pyrogallol, and phenothiazine; leveling agents such as silicone leveling agents and acrylic polymer leveling agents; thickeners such as bentone and montmorillonite; Antifoaming agents such as foaming agents and vinyl resin antifoaming agents; UV absorbers such as benzotriazole UV absorbers; Adhesion improvers such as urea silane; Adhesion-imparting agents such as triazine-based adhesion-imparting agents; antioxidants such as hindered phenol-based antioxidants and hindered amine-based antioxidants; fluorescent brighten
  • phosphate ester compound phosphazene compound, phosphinic acid compound, red phosphorus
  • nitrogen flame retardant e.g. melamine sulfate
  • halogen flame retardant e.g. antimony trioxide
  • an additive may be used individually by 1 type, and may be used in combination of 2 or more types by arbitrary ratios.
  • the resin composition of the present invention may further contain any solvent as a volatile component.
  • solvents include organic solvents.
  • a solvent may be used individually by 1 type, and may be used in combination of 2 or more types by arbitrary ratios. In one embodiment, less solvent is preferred.
  • the content of the solvent is preferably 3% by mass or less, more preferably 1% by mass or less, and still more preferably 0.5% by mass or less as a volatile component when the nonvolatile component in the resin composition is 100% by mass. It is more preferably 0.1% by mass or less, still more preferably 0.01% by mass or less, and is particularly preferably not contained (0% by mass).
  • Other embodiments include a solvent. Thereby, the handleability as a resin varnish can be improved.
  • the resin composition of the present invention can be produced, for example, by mixing the components described above. Some or all of the components described above may be mixed at the same time, or may be mixed in order. During the course of mixing each component, the temperature may be set accordingly, and thus may be temporarily or permanently heated and/or cooled. Moreover, you may perform stirring or shaking in the process of mixing each component.
  • the resin composition of the present invention is a resin composition containing (A) a curable resin and (B) an inorganic filler, wherein the average particle size of the (B) inorganic filler is in the range of 0.5 ⁇ m to 12 ⁇ m. and wherein the content of crystalline silica in the inorganic filler is in the range of 0% by mass or more and less than 2.1% by mass. Accordingly, the present invention has the effect of being able to provide a resin composition with a stable viscosity life; a resin sheet, a circuit board, and a semiconductor chip package using the resin composition.
  • the viscosity life stability of the resin composition of the present invention can be evaluated, for example, by the method described in the Examples section below. Specifically, the initial melt viscosity MV0 and the melt viscosity MV12 after 12 hours are measured, and the thickening ratio after 12 hours is calculated as the ratio of the melt viscosity MV12 after 12 hours to the initial melt viscosity MV0 (that is, MV12/ MV0), the thickening ratio of the resin composition of the present invention is preferably less than 1.7, more preferably 1.6 or less, still more preferably 1.5 or less, and particularly preferably is less than or equal to 1.4, and usually greater than 1.0.
  • the initial melt viscosity MV0 of the solvent-free resin composition (resin paste) according to one embodiment of the present invention is preferably in the range of 20 poise to 800 poise, more preferably in the range of 20 poise to 700 poise. preferably within the range of 20 poise to 600 poise.
  • the 12-hour melt viscosity MV12 of the solvent-free resin composition (resin paste) according to one embodiment of the present invention is preferably in the range of more than 20 poise to less than 1360 poise, more preferably 21 poise to 1190 poise. poise, more preferably 21 poise to 1020 poise.
  • the inorganic filler can be highly filled, it tends to be possible to obtain a cured product in which the occurrence of warping is suppressed.
  • the amount of warp can be measured by the method described later, and for example, the amount of warp is less than 1500 ⁇ m, preferably less than 1300 ⁇ m, more preferably less than 1100 ⁇ m.
  • the initial melt viscosity MV0 of the resin composition layer formed using the resin composition (resin varnish) containing a solvent according to another embodiment of the present invention is preferably in the range of 20 poise to 20000 poise, and more It is preferably in the range of 1000 poise to 19000 poise, more preferably in the range of 2000 poise to 18000 poise.
  • the 12-hour melt viscosity MV12 of the resin composition layer formed using the resin composition (resin varnish) containing a solvent according to another embodiment of the present invention is preferably more than 20 poise and less than 34000 poise. within the range, more preferably within the range of 1100 poise to 30000 poise, more preferably within the range of 2200 poise to 25000 poise.
  • the inorganic filler can be highly filled, it tends to be possible to obtain a cured product in which the occurrence of warping is suppressed.
  • the amount of warp can be measured by the method described later, and for example, the amount of warp is less than 2000 ⁇ m, preferably less than 1800 ⁇ m, more preferably less than 1600 ⁇ m.
  • the resin composition of the present invention is pasty.
  • a pasty resin composition also referred to as "resin paste”
  • the resin composition of the present invention is a resin varnish capable of forming a resin composition layer on a sheet-like substrate (for example, a support to be described later). Thereby, handleability can be improved.
  • the thickening ratio is small as described above, so even if the thickness is increased Also, it is possible to provide a circuit board and a semiconductor chip package with good yields by suppressing the occurrence of flow marks due to non-uniform composition and the occurrence of poor embedding due to non-uniform viscosity. Therefore, the resin composition of the present invention is also suitable for forming a resin composition layer having a thickness of 50 ⁇ m or more. In addition, since the resin composition of the present invention can be highly filled with an inorganic filler, it tends to be possible to provide a circuit board and a semiconductor chip package in which the occurrence of warping is suppressed.
  • the resin composition of the present invention can be suitably used as a resin composition (sealing resin composition) for sealing electronic devices such as organic EL devices and semiconductors. (semiconductor encapsulation resin composition), preferably as a resin composition for encapsulating a semiconductor chip (semiconductor chip encapsulation resin composition). Moreover, the resin composition can be used as an insulating resin composition for an insulating layer in addition to the sealing use.
  • the resin composition is a resin composition for forming an insulating layer of a semiconductor chip package, for example, a rewiring layer (a resin composition for an insulating layer of a semiconductor chip package, a resin for a rewiring layer). composition) and a resin composition for forming an insulating layer of a circuit board (including a printed wiring board) (a resin composition for an insulating layer of a circuit board).
  • the resin composition of the present invention can be used as a material for forming the sealing layer or insulating layer of semiconductor chip packages.
  • semiconductor chip packages include FC-CSP, MIS-BGA package, ETS-BGA package, Fan-out type WLP (Wafer Level Package), Fan-in type WLP, Fan-out type PLP (Panel Level Package), Fan-in type PLPs can be mentioned.
  • the resin composition may also be used as an underfill material, for example, as a material for MUF (Molding Under Filling) used after connecting a semiconductor chip to a substrate.
  • MUF Molding Under Filling
  • the resin composition can be used in a wide range of applications where resin compositions are used, such as resin sheets, sheet-like laminated materials such as prepreg, solder resists, die-bonding materials, hole-filling resins, and part-embedding resins.
  • a resin sheet according to one embodiment of the present invention has at least a support and a resin composition layer provided on the support, and optionally a protective film.
  • the resin composition layer is a layer containing the resin composition of the present invention.
  • the thickness of the resin composition layer and the thickness of the cured product layer obtained by curing the resin composition layer are arbitrary.
  • the resin sheet can be produced, for example, according to a known method, and the material used as the support is also selected arbitrarily.
  • the use of the resin sheet is the same as the use of the resin composition of the present invention described above.
  • packages using applicable circuit boards include FC-CSP, MIS-BGA packages, and ETS-BGA packages.
  • Applicable semiconductor chip packages include, for example, Fan-out type WLP, Fan-in type WLP, Fan-out type PLP, Fan-in type PLP and the like.
  • the resin sheet may be used as a material for the MUF that is used after connecting the semiconductor chip to the substrate. Furthermore, resin sheets can be used in a wide range of other applications that require high insulation reliability.
  • a circuit board according to an embodiment of the present invention may contain a cured product of the resin composition of the present invention.
  • the circuit board can be manufactured, for example, according to a known method, and the material used as the base material and the conductor layer that may be formed on the base material is also selected arbitrarily.
  • a resin composition layer for example, a resin composition layer containing the resin composition of the present invention is formed on the base material, for example, according to a known method.
  • the resin composition layer can be formed by compression molding.
  • a base material and a resin composition are usually placed in a mold, and pressure and, if necessary, heat are applied to the resin composition in the mold to form a resin composition layer on the base material.
  • the specific operation of the compression molding method can be, for example, as follows.
  • An upper mold and a lower mold are prepared as molds for compression molding.
  • the resin composition is applied onto the substrate.
  • the substrate coated with the resin composition is attached to the lower mold. After that, the upper mold and the lower mold are clamped, and heat and pressure are applied to the resin composition for compression molding.
  • the specific operation of the compression molding method may be, for example, as follows.
  • An upper mold and a lower mold are prepared as molds for compression molding.
  • a resin composition is placed on the lower mold.
  • a release film is attached to the upper mold as required for the base material.
  • the upper mold and the lower mold are clamped so that the resin composition placed on the lower mold is in contact with the base material attached to the upper mold, and heat and pressure are applied to perform compression molding.
  • the molding conditions differ depending on the composition of the resin composition of the present invention, and suitable conditions can be adopted so as to achieve good sealing.
  • the temperature of the mold during molding is preferably 70° C. or higher, more preferably 80° C. or higher, particularly preferably 90° C. or higher, and preferably 200° C. or lower.
  • the pressure applied during molding is preferably 1 MPa or higher, more preferably 3 MPa or higher, particularly preferably 5 MPa or higher, and preferably 50 MPa or lower, more preferably 30 MPa or lower, and particularly preferably 20 MPa or lower.
  • Cure time is preferably 1 minute or more, more preferably 2 minutes or more, particularly preferably 3 minutes or more, preferably 100 minutes or less, more preferably 90 minutes or less, and in one embodiment, 60 minutes or less, 30 minutes or 20 minutes or less.
  • the mold is usually removed. The mold may be removed before or after heat curing of the resin composition layer.
  • the resin composition layer is thermally cured (post-cured) to form a cured product layer.
  • the thermosetting conditions for the resin composition layer may vary depending on the type of resin composition, but the curing temperature is usually in the range of 120° C. to 240° C. (preferably 150° C. to 220° C., more preferably 170° C. to 200° C.). ° C.), and the curing time is in the range of 5 minutes to 120 minutes (preferably in the range of 10 minutes to 100 minutes, more preferably in the range of 15 minutes to 90 minutes).
  • the resin composition layer Before thermally curing the resin composition layer, the resin composition layer may be subjected to a preliminary heating treatment of heating at a temperature lower than the curing temperature.
  • the resin composition layer prior to thermosetting the resin composition layer, the resin composition layer is usually heated at a temperature of 50 ° C. or higher and lower than 120 ° C. (preferably 60 ° C. or higher and 110 ° C. or lower, more preferably 70 ° C. or higher and 100 ° C. or lower). may be preheated for usually 5 minutes or more (preferably 5 minutes to 150 minutes, more preferably 15 minutes to 120 minutes).
  • circuit board manufacturing method may further include an arbitrary step.
  • a semiconductor chip package according to one embodiment of the present invention includes a cured product of the resin composition of the present invention.
  • Examples of this semiconductor chip package include the following.
  • a semiconductor chip package according to the first example includes the circuit board described above and a semiconductor chip mounted on the circuit board.
  • This semiconductor chip package can be manufactured by bonding a semiconductor chip to a circuit board.
  • any condition that allows conductor connection between the terminal electrodes of the semiconductor chip and the circuit wiring of the circuit board can be adopted as the bonding condition between the circuit board and the semiconductor chip.
  • the semiconductor chip and the circuit board may be bonded via an insulating adhesive.
  • the bonding method is the method of crimping the semiconductor chip to the circuit board.
  • the crimping temperature is usually in the range of 120° C. to 240° C. (preferably 130° C. to 200° C., more preferably 140° C. to 180° C.), and the crimping time is usually in the range of 1 second to 60 seconds. (preferably in the range of 5 seconds to 30 seconds).
  • the bonding method is a method of reflowing and bonding a semiconductor chip to a circuit board.
  • the reflow conditions may range from 120.degree. C. to 300.degree.
  • the semiconductor chip After bonding the semiconductor chip to the circuit board, the semiconductor chip may be filled with a mold underfill material.
  • a mold underfill material As this mold underfill material, the resin composition described above may be used. Therefore, a step of curing the resin composition of the present invention is included.
  • a semiconductor chip package according to the second example includes a semiconductor chip and a cured product of the resin composition of the present invention that seals the semiconductor chip.
  • the cured resin composition of the present invention usually functions as a sealing layer.
  • a semiconductor chip package according to the second example includes, for example, a fan-out type WLP.
  • FIG. 1 is a cross-sectional view schematically showing the configuration of a fan-out type WLP as an example of a semiconductor chip package according to this embodiment.
  • a semiconductor chip package 100 as a fan-out type WLP includes, for example, a semiconductor chip 110; a sealing layer 120 formed to cover the periphery of the semiconductor chip 110; and a sealing layer for the semiconductor chip 110, as shown in FIG.
  • a method for manufacturing such a semiconductor chip package includes: (A) a step of laminating a temporary fixing film on a substrate; (B) temporarily fixing the semiconductor chip on the temporary fixing film; (C) forming a sealing layer on the semiconductor chip; (D) a step of peeling the substrate and the temporary fixing film from the semiconductor chip; (E) forming a rewiring layer on the surface of the semiconductor chip from which the substrate and the temporary fixing film have been removed; (F) forming a rewiring layer as a conductor layer on the rewiring forming layer; (G) forming a solder resist layer on the rewiring layer; including. Further, the method for manufacturing the semiconductor chip package includes: (H) A step of dicing the plurality of semiconductor chip packages into individual semiconductor chip packages to individualize them.
  • Step (A) is a step of laminating a temporary fixing film on a substrate.
  • the conditions for laminating the base material and the temporary fixing film may be the same as the conditions for laminating the base material and the resin sheet in the method for manufacturing a circuit board.
  • substrates examples include silicon wafers; glass wafers; glass substrates; metal substrates such as copper, titanium, stainless steel and cold-rolled steel plate (SPCC); FR-4 substrates and the like; A heat-cured substrate; a substrate made of bismaleimide triazine resin such as BT resin; and the like.
  • Any material that can be peeled off from the semiconductor chip and that can temporarily fix the semiconductor chip can be used for the temporary fixing film.
  • Commercially available products include "Riva Alpha” manufactured by Nitto Denko Corporation.
  • Step (B) is a step of temporarily fixing the semiconductor chip on the temporary fixing film.
  • Temporary fixing of the semiconductor chip can be performed using a device such as a flip chip bonder, a die bonder, or the like.
  • the layout and the number of semiconductor chips to be arranged can be appropriately set according to the shape and size of the temporary fixing film, the target production number of semiconductor chip packages, and the like.
  • the semiconductor chips may be arranged in a matrix of multiple rows and multiple columns and temporarily fixed.
  • Step (C) is a step of forming a sealing layer on the semiconductor chip.
  • the sealing layer can be formed from a cured product of the resin composition of the present invention.
  • the encapsulation layer is usually formed by a method including the steps of forming a resin composition layer on the semiconductor chip and thermosetting the resin composition layer to form a cured product layer as the encapsulation layer. .
  • the resin composition layer is formed on the semiconductor chip by the same method as the method for forming the resin composition layer on the substrate described in [Circuit board] above, except that the semiconductor chip is used instead of the substrate. can do
  • thermosetting conditions for the resin composition layer may be the same as the thermosetting conditions for the resin composition layer in the circuit board manufacturing method.
  • the resin composition layer may be subjected to a preheating treatment of heating at a temperature lower than the curing temperature. The processing conditions for this preheating treatment may be the same as those for the preheating treatment in the circuit board manufacturing method.
  • Step (D) is a step of peeling off the substrate and the temporary fixing film from the semiconductor chip.
  • the peeling method it is desirable to employ an appropriate method according to the material of the temporary fixing film.
  • the peeling method include a method of heating, foaming, or expanding the temporary fixing film to peel it.
  • a peeling method for example, a method of irradiating the temporary fixing film with ultraviolet rays through the base material to reduce the adhesive strength of the temporary fixing film and peel it off can be used.
  • the heating conditions are usually 100° C. to 250° C. for 1 second to 90 seconds or 5 minutes to 15 minutes.
  • the irradiation dose of ultraviolet rays is usually 10 mJ/cm 2 to 1000 mJ/cm 2 .
  • the method of manufacturing the semiconductor chip package may include polishing the exposed surface of the encapsulation layer. Polishing can improve the smoothness of the surface of the sealing layer. As the polishing method, the same method as described in the manufacturing method of the circuit board can be used.
  • Step (E) is a step of forming a rewiring forming layer as an insulating layer on the surface of the semiconductor chip from which the substrate and the temporary fixing film have been removed. Usually, this rewiring formation layer is formed on the semiconductor chip and the encapsulation layer.
  • the rewiring forming layer formed on the sealing layer may be formed from the photosensitive resin composition.
  • the method for forming via holes generally includes exposing the surface of the rewiring layer through a mask.
  • active energy rays include ultraviolet rays, visible rays, electron beams, and X-rays, and ultraviolet rays are particularly preferred.
  • the exposure method include a contact exposure method in which exposure is performed while a mask is brought into close contact with the rewiring formation layer, and a non-contact exposure method in which exposure is performed using parallel rays without making a mask in close contact with the rewiring formation layer. be done.
  • the development may be either wet development or dry development.
  • the development method includes, for example, a dipping method, a paddle method, a spray method, a brushing method, a scraping method, and the like, and the paddle method is preferable from the viewpoint of resolution.
  • the shape of the via hole is not particularly limited, but is generally circular (substantially circular).
  • the top diameter of the via hole is, for example, 50 ⁇ m or less, 30 ⁇ m or less, 20 ⁇ m or less, or 10 ⁇ m or less.
  • the top diameter of the via hole means the diameter of the opening of the via hole on the surface of the rewiring layer.
  • Step (F) is a step of forming a rewiring layer as a conductor layer on the rewiring forming layer.
  • the method of forming the rewiring layer on the rewiring forming layer can be the same as the method of forming the conductor layer on the cured material layer in the method of manufacturing the circuit board.
  • the steps (E) and (F) may be repeated to alternately build up the rewiring layers and the rewiring formation layers (build-up).
  • Step (G) is a step of forming a solder resist layer on the rewiring layer.
  • Any insulating material can be used as the material of the solder resist layer.
  • photosensitive resins and thermosetting resins are preferable from the viewpoint of easiness in manufacturing semiconductor chip packages.
  • step (G) a bumping process for forming bumps may be performed as necessary. Bumping can be performed by a method such as solder balls or solder plating. Formation of via holes in the bumping process can be performed in the same manner as in step (E).
  • Step (H) The method for manufacturing a semiconductor chip package may include step (H) in addition to steps (A) to (G).
  • Step (H) is a step of dicing a plurality of semiconductor chip packages into individual semiconductor chip packages to separate them into pieces.
  • the method of dicing the semiconductor chip package into individual semiconductor chip packages is not particularly limited.
  • a semiconductor device includes a semiconductor chip package.
  • Semiconductor devices include, for example, electrical products (e.g., computers, mobile phones, smartphones, tablet devices, wearable devices, digital cameras, medical equipment, televisions, etc.) and vehicles (e.g., motorcycles, automobiles, trains, ships, etc.) and aircraft, etc.).
  • ⁇ Production Example 1 Production of inorganic filler A> Using crystalline silica as a raw material, the highly amorphous small-diameter silica B1 obtained by performing the melting process twice in the melting method is treated with a surface treatment agent "KBM573" (N-phenyl-3 -aminopropyltrimethoxysilane) to obtain an inorganic filler A.
  • the inorganic filler A had an average particle size of 3.1 ⁇ m and a specific surface area of 5.1 m 2 /g. The average particle size and specific surface area were measured according to the methods described above.
  • the crystalline silica content of inorganic filler A was calculated based on the X-ray diffraction pattern obtained by X-ray diffraction measurement.
  • an X-ray diffraction analyzer "SmartLab (registered trademark)" manufactured by Rigaku was used for the X-ray diffraction measurement.
  • SmartLab registered trademark
  • Rigaku the X-ray diffraction analyzer
  • the value 0.3% obtained as a result of Rietveld analysis of the X-ray diffraction pattern by the X-ray diffraction analyzer (and the attached qualitative analysis program PDXL) is adopted. did.
  • inorganic fillers B and C Production of inorganic fillers B and C> Using crystalline silica as a raw material, highly amorphous small-diameter silica B2 obtained by performing the melting process twice in the melting method, highly amorphous obtained by performing the melting process once in the melting method Inorganic fillers B and C were obtained by surface-treating small-diameter silica B3 in the same manner as in Production Example 1, respectively.
  • the inorganic filler B had an average particle diameter of 10 ⁇ m, a specific surface area of 3.4 m 2 /g, and a crystalline silica content of 0.3%.
  • the inorganic filler C had an average particle size of 9.8 ⁇ m, a specific surface area of 3.5 m 2 /g, and a crystalline silica content of 0.09%.
  • Inorganic filler D was obtained by using amorphous silica as a raw material and subjecting it to surface treatment in the same manner as in Production Example 1.
  • the inorganic filler D had an average particle size of 3.2 ⁇ m, a specific surface area of 3.8 m 2 /g, and a crystalline silica content below the detection limit (the detection limit was about 0.01 mass%).
  • inorganic fillers E and F Production of inorganic fillers E and F> Using crystalline silica as a raw material, highly amorphous small-diameter silica B4 obtained by performing the melting process once in the melting method, highly amorphous obtained by performing the melting process once in the melting method Inorganic fillers E and F were obtained by surface-treating small-diameter silica B5 in the same manner as in Production Example 1, respectively.
  • the inorganic filler E had an average particle diameter of 3.4 ⁇ m, a specific surface area of 5.0 m 2 /g, and a crystalline silica content of 2.1%.
  • the inorganic filler F had an average particle size of 9.5 ⁇ m, a specific surface area of 3.2 m 2 /g, and a crystalline silica content of 5%.
  • Curing agent as component (C) (acid anhydride-based curing agent "MH-700" manufactured by Shin Nippon Rika Co., Ltd., acid anhydride group equivalent: 164 g / eq.) 8 parts, epoxy resin as component (A) ( Liquid epoxy resin "ZX1059” manufactured by Nippon Steel Chemical & Materials Co., Ltd., 1:1 mixture of bisphenol A type epoxy resin and bisphenol F type epoxy resin (mass ratio), epoxy equivalent: 169 g / eq.) 2 parts, ( A) 2 parts of epoxy resin as component (alicyclic epoxy resin "Celoxide 2021P” manufactured by Daicel Corporation, epoxy equivalent: 136 g/eq.), epoxy resin as component (A) (naphthalene type epoxy resin manufactured by DIC Corporation "HP4032D", epoxy equivalent: 143 g / eq.) 2 parts, curing accelerator as component (D) (imidazole curing accelerator manufactured by Shikoku Kasei Kog
  • KBM403 (3-glycidoxypropyltrimethoxysilane)) as a component (D) using a mixer.
  • a uniformly dispersed and pasty resin composition (resin paste) was prepared.
  • the content of the inorganic filler A was 71.7% by volume when the entire resin paste was taken as 100% by volume.
  • Table 1 shows the content of the inorganic filler in the resin composition paste.
  • the prepared resin paste was immediately subjected to the measurement of the initial melt viscosity MV0, which will be described later.
  • Example 1-1 In Example 1-1, the following items were changed.
  • component (A) instead of blending 2 parts each of epoxy resins ("ZX1059”, “Celoxide 2021P”, “HP4032D, “EP-3950L” and “EP-4088S"), epoxy resin ("ZX1059” ) 2 parts, epoxy resin ("HP4032D") 2 parts, epoxy resin (polyether-containing epoxy resin "EX-992L” manufactured by Nagase ChemteX Corporation, epoxy equivalent: 680 g / eq.) 2 parts, epoxy resin ( Fluorene structure-containing epoxy resin "EG-280” manufactured by Osaka Gas Chemicals Co., Ltd., epoxy equivalent: 460 g / eq.
  • Example 1-1 In Example 1-1, the following items were changed.
  • component (A) the amount of epoxy resin ("ZX1059”, “Celoxide 2021P”, “HP4032D, "EP-3950L” and “EP-4088S”) was changed from 2 parts to 3 parts.
  • component (C) instead of blending 8 parts of a curing agent ("MH-700"), a curing agent (Nippon Kayaku Co., Ltd. amine-based curing agent "Kayahard AA"(4,4'-Diamino-3,3'-diethyldiphenylmethane)) was added in 3 parts.
  • Example 1-3 For component (D), instead of adding 0.4 parts of a curing accelerator (“2MA-OK-PW”), a curing accelerator (imidazole-based curing accelerator “2E4MZ” manufactured by Shikoku Kasei Co., Ltd.) is added to 0. .4 parts were added.
  • a resin paste according to Example 1-3 was prepared in the same manner as in Example 1-1 except for the above items.
  • Example 1-1 In Example 1-1, the following items were changed.
  • component (A) instead of blending 2 parts each of epoxy resins ("ZX1059”, “Celoxide 2021P”, “HP4032D, “EP-3950L” and “EP-4088S"), epoxy resin ("ZX1059” ), 2 parts of an epoxy resin (“HP4032D”), and 1 part of an epoxy resin (epoxidized polybutadiene resin “JP-100” manufactured by Nippon Soda Co., Ltd.).
  • component (B) 120 parts of inorganic filler B was added in place of 110 parts of inorganic filler A.
  • component (C) the amount of curing agent (“MH-700”) was changed from 8 parts to 9 parts.
  • Example 1-4 A resin paste according to Example 1-4 was prepared in the same manner as in Example 1-1 except for the above items.
  • Example 1-5 In Examples 1-4, the following items were changed. Instead of blending 3 parts of epoxy resin (“ZX1059”), 2 parts of epoxy resin (“HP4032D”), and 1 part of epoxy resin (“JP-100”) for component (A), epoxy Three parts of resin (“ZX1059”), one part of epoxy resin (“HP4032D”), and one part of epoxy resin (“EG-280”) were blended.
  • component (D) instead of blending 0.1 part of silane coupling agent (“KBM403”), 0.1 part of silane coupling agent (“KBM403”) and 0.1 part of silane coupling agent (Shin-Etsu 0.1 part of "KBM803" (3-mercaptopropyltrimethoxysilane) manufactured by Kagaku Kogyo Co., Ltd. was added. That is, in Examples 1-5, a plurality of types of silane coupling agents were blended.
  • Example 1-5 A resin paste according to Example 1-5 was prepared in the same manner as in Example 1-4 except for the above items.
  • Example 1-6 In Example 1-5, instead of blending 1 part of the silicone resin ("KF-6012") for the component (D), a polyoxyethylene polyoxypropylene glycol compound (manufactured by ADEKA) was added. 1 part of propylene glycol "L-64”) was added. A resin paste according to Example 1-6 was prepared in the same manner as in Example 1-5 except for the above items.
  • Example 1-7 In Example 1-5, 3 parts of epoxy resin ("ZX1059”), 1 part of epoxy resin (“HP4032D”), and 1 part of epoxy resin (“EG-280”) were added to component (A). Instead, 3 parts epoxy resin (“ZX1059”), 1 part epoxy resin (“HP4032D”), and 2 parts epoxy resin (“EP-3950L”) were blended. In addition, in Example 1-5, instead of blending 1 part of silicone resin ("KF-6012”) for component (D), 1 part of polyester polyol A synthesized as follows was blended.
  • polyester polyol A having an aliphatic skeleton and terminated with a hydroxyl group was obtained as "polyester polyol A”.
  • a resin paste according to Example 1-7 was prepared in the same manner as in Example 1-5 except for the above items.
  • Example 1-8> In Example 1-3, the following items were changed. Instead of blending 3 parts each of epoxy resins (“ZX1059”, “Celoxide 2021P”, “HP4032D, “EP-3950L” and “EP-4088S”) for component (A), epoxy resin (“ZX1059” ), 3 parts of epoxy resin (“Celoxide 2021P”), 3 parts of epoxy resin (“HP4032D”), 2 parts of epoxy resin (“EP-3950L”), and 2 parts of epoxy resin (“EP-4088S ”) was blended. For component (B), 120 parts of inorganic filler B was added in place of 110 parts of inorganic filler A.
  • Example 1D the amount of the silane coupling agent (“KBM403”) was changed from 0.2 parts to 0.3 parts. Also, instead of blending 3 parts of methacrylate (“M-130G”), 1 part of polyester polyol A was blended. Also, the blending amount of the radical polymerization initiator (“Perhexyl (registered trademark) O”) was changed from 0.1 part to 0 part. That is, in Example 1-8, no radical polymerization initiator was used. A resin paste according to Example 1-8 was prepared in the same manner as in Example 1-3 except for the above items.
  • Example 1-9 In Examples 1-8, the following items were changed.
  • component (A) 3 parts of epoxy resin (“ZX1059”), 3 parts of epoxy resin (“Celoxide 2021P”), 3 parts of epoxy resin (“HP4032D”), and 3 parts of epoxy resin (“EP-3950L”)
  • EP-4088S 3 parts of epoxy resin
  • ZX1059 3 parts of epoxy resin
  • HP4032D 3 parts of epoxy resin
  • EP-3950L 3 parts of epoxy resin
  • EX-992L 1 part of epoxy resin
  • component (C) instead of blending 3 parts of a curing agent ("Kayahard AA”), 3 parts of a curing agent (phenol-based curing agent "2,2-diallylbisphenol A” manufactured by Sigma-Aldrich) Partially mixed.
  • component (B) the amount of inorganic filler B was changed from 120 parts to 100 parts.
  • component (D) instead of blending 1 part of polyester polyol A, 2 parts of a silicone resin (“KF-6012”) was blended.
  • a resin paste according to Example 1-9 was prepared in the same manner as in Example 1-8 except for the above items.
  • Example 1-7 120 parts of the inorganic filler B as the component (B) was changed to 120 parts of the inorganic filler C.
  • a resin paste according to Example 1-10 was prepared in the same manner as in Example 1-7 except for the above items.
  • Example 1-11 In Example 1-2, 110 parts of the inorganic filler A as the component (B) was changed to 110 parts of the inorganic filler D. A resin paste according to Example 1-11 was prepared in the same manner as in Example 1-2 except for the above items.
  • Example 2-1 ⁇ Production of resin varnish>
  • component (D) 2 parts of polyimide resin A solution synthesized as follows, epoxy resin as component (A) (Nippon Steel Chemical & Material naphthalene type epoxy resin "ESN-475V", epoxy equivalent : about 332g/eq.) 2.4 parts, epoxy resin ("HP4032D") as component (A) 6 parts, curing agent as component (C) ("LA-3018-50P” manufactured by DIC Corporation, Hydroxy group equivalent: 151 g / eq., 2-methoxypropanol solution with a solid content of 50%) 7 parts, inorganic filler B 85 parts as component (B), methyl ethyl ketone (MEK) 10 parts, cyclohexanone 8 parts were mixed and rotated at high speed.
  • a resin varnish was prepared by uniformly dispersing the mixture with a mixer.
  • the second reaction solution was then filtered through a 100-mesh filter cloth.
  • a polyimide resin A solution (50% by mass of non-volatile components) containing polyimide resin A having a polycarbonate structure as a non-volatile component was obtained as a filtrate.
  • Polyimide resin A had a number average molecular weight of 6,100.
  • a portion of the prepared resin varnish was promptly used for production of a resin sheet St0 described below. Further, another part of the resin varnish was stored in an environment of 23° C. and 50% humidity for 12 hours, and used for the preparation of the resin sheet St12 described below.
  • a resin varnish that has just been prepared is evenly coated on the support with a die coater so that the thickness of the resin composition layer after drying is 200 ⁇ m, and dried at 100° C. for 6 minutes. to obtain a resin composition layer.
  • a rough surface of a polypropylene film (“Alphan MA411” manufactured by Oji F-Tex Co., Ltd., thickness 15 ⁇ m) as a protective film is attached to the resin composition layer. laminated to.
  • a resin sheet St0 consisting of the support, the resin composition layer, and the protective film in that order was obtained.
  • the content of the inorganic filler B was 76.7% by volume when the entire resin composition layer of the resin sheet St0 was taken as 100% by volume. Further, as a result of heating and drying, the content of the solvent was expected to be 5% by mass or less when the entire resin composition layer of the resin sheet St0 was taken as 100% by mass.
  • the resin composition layer of the produced resin sheet St0 was immediately subjected to the measurement of the initial melt viscosity MV0, which will be described later.
  • the resin varnish after storage for 12 hours was evenly coated on the support with a die coater so that the thickness of the resin composition layer after drying was 200 ⁇ m, and dried at 100° C. for 6 minutes. A resin composition layer was obtained.
  • a rough surface of a polypropylene film (“Alphan MA411” manufactured by Oji F-Tex Co., Ltd., thickness 15 ⁇ m) as a protective film is attached to the resin composition layer. laminated to.
  • a resin sheet St12 consisting of the support, the resin composition layer, and the protective film in that order was obtained.
  • the content of the inorganic filler B was 76.7% by volume.
  • the content of the solvent was expected to be 5% by mass or less when the entire resin composition layer of the resin sheet St12 was taken as 100% by mass.
  • the resin composition layer of the produced resin sheet St12 was immediately subjected to the measurement of the 12-hour melt viscosity MV12, which will be described later.
  • Example 2-2 2 parts of epoxy resin (alicyclic epoxy resin "Celoxide 2021P” manufactured by Daicel Corporation, epoxy equivalent: 136 g/eq.) as component (A), epoxy resin (naphthalene ether type manufactured by DIC Corporation) as component (A) Epoxy resin "HP6000L”, epoxy equivalent: 215 g / eq.) 4 parts, epoxy resin as component (A) (liquid 1,4-glycidylcyclohexane type epoxy resin "ZX1658GS” manufactured by Nippon Steel Chemical & Materials Co., Ltd.
  • V-03 solid content 50% by mass toluene solution
  • inorganic filler B85 parts as component (B)
  • component (D) 0.1 part of an amine-based curing accelerator (4-dimethylaminopyridine: DMAP), 9 parts of methyl ethyl ketone (MEK), and 6 parts of cyclohexanone were mixed and uniformly dispersed in a high-speed rotating mixer to prepare a resin varnish.
  • a resin varnish according to Example 2-2 was prepared and a resin sheet St0 and a resin sheet St12 were produced in the same manner as in Example 2-1 except for the above items.
  • Example 1-3 instead of blending 110 parts of inorganic filler A as component (B), 110 parts of inorganic filler E was blended as component (B').
  • a resin paste according to Comparative Example 1-1 was prepared in the same manner as in Example 1-3 except for the above items.
  • Example 1-7 instead of blending 120 parts of inorganic filler B as component (B), 120 parts of inorganic filler F was blended as component (B').
  • a resin paste according to Comparative Example 1-2 was prepared in the same manner as in Example 1-7 except for the above items.
  • ⁇ Evaluation of viscosity life stability Determination of thickening ratio> The viscosity life stability was evaluated by measuring the initial melt viscosity and the melt viscosity after 12 hours and determining the thickening ratio.
  • melt viscosity MV12 after 12 hours>>>
  • the resin pastes prepared in Examples 1-1 to 1-11 and Comparative Examples 1-1 to 1-2 were stored in an environment of 23° C. and 50% humidity for 12 hours.
  • the initial melt viscosity MV0 was measured and measured.
  • the dynamic viscoelastic modulus was measured to obtain the lowest melt viscosity (poise). The lowest melt viscosity obtained in this manner was defined as "12-hour melt viscosity MV12".
  • Table 1 shows the compositions and evaluation results of the resin compositions of Examples 1-1 to 1-11 and Comparative Examples 1-1 to 1-2.
  • Table 2 shows the compositions and evaluation results of the resin compositions of Examples 2-1 to 2-3.
  • the layer of the first specific composition was subjected to a full cure treatment of thermal curing at 250° C. for 2 hours to obtain a central test layer having a thickness of 8 ⁇ m.
  • the cured product of the layer of the first specific composition obtained as a result of full curing contains a polyimide resin.
  • a silicon wafer having a polyimide resin formed on its surface was prepared. Furthermore, this silicon wafer was cut into a size of 1 cm square (that is, 1 cm ⁇ 1 cm).
  • test piece A cylindrical silicon rubber frame with a diameter of 4 mm was placed on a silicon wafer cut into 1 cm squares with a polyimide resin formed on the surface. Each of the resin pastes prepared in Examples 1-1 to 1-11 was filled in the cylindrical cavity of the silicon rubber frame to a height of 5 mm on the polyimide resin formed on the silicon wafer. After heating at 180° C. for 90 minutes, the silicon rubber frame is removed to obtain a test piece consisting of a silicon wafer and a cured product of a solid cylindrical resin composition formed on a polyimide resin formed on the silicon wafer. was made.
  • the shear strength [kgf/mm 2 ] at the interface of the cured product of the polyimide resin and the resin composition was measured with a bond tester (Dage series 4000) under the conditions that the head position was 1 mm from the silicon wafer and the head speed was 700 ⁇ m/s. . The test was performed 5 times. Using the average value of five measurements, the adhesion between the polyimide resin as the substrate and the cured resin paste was evaluated according to the following criteria. "A”: Shear strength is 2.5 kgf/mm 2 or more. “ ⁇ ”: Shear strength of 2.0 kgf/mm 2 or more and less than 2.5 kgf/mm 2 . “ ⁇ ”: Shear strength is less than 2.0 kgf/mm 2 .
  • a solution was prepared by dissolving 206.3 g of dicyclohexylcarbodiimide (DCC) in 180 ml of ⁇ -butyrolactone. This solution was added to the above reaction mixture under ice cooling over 40 minutes while stirring the reaction mixture. Subsequently, a suspension of 93.0 g of 4,4'-diaminodiphenyl ether (DADPE) in 350 ml of ⁇ -butyrolactone was added to the above reaction mixture over 60 minutes while stirring the reaction mixture. Furthermore, after the reaction mixture was stirred at room temperature for 2 hours, 30 ml of ethyl alcohol was added to the reaction mixture, and the mixture was further stirred for 1 hour. 400 ml of ⁇ -butyrolactone was then added to the reaction mixture. A precipitate formed in the reaction mixture was removed by filtration to obtain a reaction liquid.
  • DCC dicyclohexylcarbodiimide
  • DADPE 4,4'-diaminodiphenyl
  • the resulting reaction solution was added to 3 liters of ethyl alcohol to produce a precipitate consisting of crude polymer.
  • the resulting crude polymer was collected by filtration and dissolved in 1.5 liters of tetrahydrofuran to obtain a crude polymer solution.
  • the resulting crude polymer solution was added dropwise to 28 liters of water to precipitate the polymer.
  • the obtained precipitate was collected by filtration and dried in a vacuum to obtain a powdery polymer A-1 as the first polymer.
  • Mw weight average molecular weight
  • the measurement was performed in accordance with JEITA EDX-7311-24 of the Japan Electronics and Information Technology Industries Association standard. Specifically, a virtual plane calculated by the method of least squares of all data of the substrate surface in the measurement area is used as a reference plane, and the difference between the minimum value and the maximum value in the vertical direction from the reference plane is obtained as the amount of warpage [ ⁇ m]. rice field.
  • the amount of warpage was evaluated according to the following criteria. “ ⁇ ”: Warp amount less than 1500 ⁇ m “ ⁇ ”: Warp amount 1500 ⁇ m or more
  • Table 3 shows the evaluation results of the cured products of the resin compositions according to Examples 1-1 to 1-11.
  • a pre-baking treatment was performed by heating on a hot plate at 120° C. for 5 minutes to form a layer of the first specific composition having a thickness of 10 ⁇ m in the center on the polished surface.
  • the layer of the first specific composition was subjected to a full cure treatment of thermal curing at 250° C. for 2 hours to obtain a central test layer having a thickness of 8 ⁇ m.
  • the cured product of the layer of the first specific composition obtained as a result of full curing contains a polyimide resin.
  • a silicon wafer having a polyimide resin formed on its surface was prepared.
  • the resin sheet St0 (thickness of 200 ⁇ m) prepared in Examples 2-1 to 2-3 was coated with a batch-type vacuum pressure laminator (2-stage build-up laminator “CVP700” manufactured by Nikko Materials Co., Ltd.) to obtain polyimide resin. It was laminated on a 4-inch silicon wafer formed on the surface. Each lamination was carried out by pressure bonding for 30 seconds at a temperature of 100° C. and a pressure of 0.74 MPa after reducing the pressure to 13 hPa or less for 30 seconds. Subsequently, peeling of the support and lamination of the resin composition layer (lamination under the same conditions) were repeated until the total thickness of the laminate of the resin composition layers was 5 mm.
  • a batch-type vacuum pressure laminator (2-stage build-up laminator “CVP700” manufactured by Nikko Materials Co., Ltd.) to obtain polyimide resin. It was laminated on a 4-inch silicon wafer formed on the surface. Each lamination was carried out by pressure bonding for 30 seconds
  • this silicon wafer was cut into a size of 1 cm square.
  • the laminate of the resin composition layers on the silicon wafer with a total thickness of 5 mm was processed into a solid columnar shape with a diameter of 4 mm.
  • a sample substrate including a silicon wafer and a cured product of a laminate of resin composition layers was obtained.
  • the shear strength [kgf/mm 2 ] was measured in the same manner as described above. The test was performed 5 times. Using the average value of five measurements, the adhesion between the polyimide resin as the substrate and the cured product of the laminate of the resin composition layer was evaluated according to the following criteria.
  • Shear strength of 2.0 kgf/mm 2 or more and less than 2.5 kgf/mm 2 .
  • Shear strength is less than 2.0 kgf/mm 2 .
  • a silicon wafer with a cured resin composition layer that is, an insulating layer.
  • a shadow moire measuring device (“Thermoire AXP” manufactured by Akorometrics)
  • the amount of warpage at 25° C. was measured for the sample substrate.
  • the measurement was performed in accordance with JEITA EDX-7311-24 of the Japan Electronics and Information Technology Industries Association standard. Specifically, a virtual plane calculated by the method of least squares of all data of the substrate surface in the measurement area is used as a reference plane, and the difference between the minimum value and the maximum value in the vertical direction from the reference plane is obtained as the amount of warpage [ ⁇ m]. rice field.
  • the amount of warpage was evaluated according to the following criteria. " ⁇ ": Warp amount less than 2000 ⁇ m
  • Warp amount 2000 ⁇ m or more
  • Table 4 shows the evaluation results of the cured products of the resin compositions according to Examples 2-1 to 2-3.
  • the resin composition according to the comparative example is inferior in viscosity life stability, and therefore tends to cause non-uniform composition during long-term storage.
  • the resin pastes according to the examples have good viscosity life stability.
  • the use of such a resin paste yields a cured product having excellent properties. This makes it possible to provide, for example, a cured product having excellent adhesion to a base material (eg, polyimide resin); a circuit board and a semiconductor chip package containing the cured product.
  • a base material eg, polyimide resin
  • the resin composition layers of the resin sheets according to the examples have good viscosity life stability.
  • REFERENCE SIGNS LIST 100 semiconductor chip package 110 semiconductor chip 120 sealing layer 130 rewiring forming layer 140 rewiring layer 150 solder resist layer 160 bump

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A resin composition with a stable viscosity life; a resin sheet that uses said resin composition; a circuit substrate; and a semiconductor chip package are provided. In this resin composition, which contains (A) a curable resin and (B) an inorganic filler, the average particle diameter of the (B) inorganic filler is in the range 0.5-12 μm and the crystalline silica content in the inorganic filler material is greater than or equal to 0 mass% and less than 2.1 mass%.

Description

樹脂組成物、硬化物、樹脂シート、回路基板、及び、半導体チップパッケージResin composition, cured product, resin sheet, circuit board, and semiconductor chip package
 本発明は、樹脂組成物に関する。さらには、当該樹脂組成物を用いて得られる、硬化物、樹脂シート、回路基板、及び、半導体チップパッケージに関する。 The present invention relates to resin compositions. Furthermore, it relates to a cured product, a resin sheet, a circuit board, and a semiconductor chip package obtained using the resin composition.
 近年、スマートフォン、タブレット型デバイスといった小型の高機能電子機器の需要が増大しており、それに伴い、これら小型の電子機器に用いられる半導体チップパッケージ用絶縁材料(絶縁層)も更なる高機能化が求められている。そのような絶縁層を形成するために、樹脂組成物が用いられる(特許文献1)。 In recent years, the demand for small, high-performance electronic devices such as smartphones and tablet devices has increased, and along with this, the insulating materials (insulating layers) for semiconductor chip packages used in these small electronic devices have become even more sophisticated. It has been demanded. A resin composition is used to form such an insulating layer (Patent Document 1).
特開2006-037083号公報JP 2006-037083 A
 ところで、樹脂組成物には、絶縁層を形成する際に発生する反りの抑制が求められる。ここで、反りの抑制のために、無機充填材を高充填とすることが考えられる。無機充填材を高充填とするために、無機充填材の粒径の範囲を絞ることが考えられる。また、反りの抑制以外にも、無機充填材の粒径の範囲を絞る場面は生じ得る。 By the way, the resin composition is required to suppress warpage that occurs when forming the insulating layer. Here, it is conceivable to highly fill the inorganic filler in order to suppress the warpage. In order to make the inorganic filler highly filled, it is conceivable to narrow the range of the particle size of the inorganic filler. In addition to the suppression of warpage, there may be cases where the range of particle size of the inorganic filler is narrowed down.
 しかし、発明者らの検討の結果、無機充填材の粒径の範囲を絞るだけでは、所望の性状、例えば安定的な粘度ライフを有する樹脂組成物が得られない場合があることが判明した。斯かる問題は、液状の樹脂組成物(「インク」又は「樹脂ペースト」とも称される)に限られて生じるものではなく、フィルムを形成可能な樹脂組成物(単に「フィルム品」又は「シート品」とも称される)においても同様に生じる。そして、安定的な粘度ライフを有する樹脂組成物又は樹脂シートを用いることにより、フローマークや埋め込み不良の発生が抑制されるなどして歩留まりの良好な回路基板、及び半導体チップパッケージを提供することができることが期待される。 However, as a result of the inventors' studies, it was found that there are cases where a resin composition having desired properties, such as a stable viscosity life, cannot be obtained simply by narrowing the range of the particle size of the inorganic filler. Such problems do not occur only with liquid resin compositions (also referred to as "ink" or "resin paste"), but with resin compositions capable of forming films (simply "film products" or "sheets"). (also referred to as “products”). Further, by using a resin composition or a resin sheet having a stable viscosity life, it is possible to provide a circuit board and a semiconductor chip package with a good yield by suppressing the occurrence of flow marks and embedding defects. It is expected to be possible.
 本発明は、上記問題に鑑みてなされたものであり、本発明の課題は、好ましくは、反りの発生が抑制された硬化物をもたらすと共に、少なくとも粘度ライフが安定的な樹脂組成物;該樹脂組成物を使用した、樹脂シート、回路基板、及び半導体チップパッケージを提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is preferably a resin composition that provides a cured product in which the occurrence of warpage is suppressed and at least has a stable viscosity life; An object of the present invention is to provide a resin sheet, a circuit board, and a semiconductor chip package using the composition.
 本発明者は、前記の課題を解決するべく鋭意検討した。その結果、本発明者は、(A)硬化性樹脂と、(B)無機充填材とを含有する樹脂組成物であって、無機充填材の平均粒径が特定の範囲内にある場合に無機充填材における結晶性シリカ含有率が特定の範囲内にあることによって、前記の課題を解決できることを見出し、本発明を完成させた。また、本発明の樹脂組成物の硬化物について検討したところ、基材との密着性(例えばポリイミド樹脂との密着性)が優れる傾向にあることが判明した。
 すなわち、本発明は、下記のものを含む。
The inventors have made extensive studies to solve the above problems. As a result, the present inventor found that a resin composition containing (A) a curable resin and (B) an inorganic filler, wherein the average particle diameter of the inorganic filler is within a specific range, the inorganic The inventors have found that the above problems can be solved by setting the crystalline silica content in the filler within a specific range, and have completed the present invention. Moreover, when the cured product of the resin composition of the present invention was examined, it was found that the adhesiveness to the substrate (for example, the adhesiveness to the polyimide resin) tends to be excellent.
That is, the present invention includes the following.
 [1] (A)硬化性樹脂と、(B)無機充填材とを含有する樹脂組成物において、(B)無機充填材の平均粒径が0.5μm~12μmの範囲内にあり、無機充填材における結晶性シリカ含有率が0質量%以上かつ2.1質量%未満の範囲内にある、樹脂組成物。
 [2] 前記結晶性シリカ含有率が、0質量%以上かつ0.4質量%以下の範囲内にある、[1]に記載の樹脂組成物。
 [3] 樹脂組成物全体を100体積%とした場合、(B)無機充填材の含有量が、50体積%以上である、[1]又は[2]に記載の樹脂組成物。
 [4] (C)硬化剤を含み、(C)成分の(A)成分に対する質量比が1:0.01~1:10の範囲内にある、[1]~[3]のいずれかに記載の樹脂組成物。
 [5] 前記結晶性シリカ含有率が、X線回折測定により得られたX線回折パターンに基づき算出される、[1]~[4]のいずれかに記載の樹脂組成物。
 [6] 前記結晶性シリカ含有率が、X線回折パターンをリートベルト解析して算出される、[5]に記載の樹脂組成物。
 [7] 厚み50μm以上の樹脂組成物層を形成するために用いられる、[1]~[6]のいずれかに記載の樹脂組成物。
 [8] 封止用である、[1]~[7]のいずれかに記載の樹脂組成物。
 [9] [1]~[8]のいずれかに記載の樹脂組成物の硬化物。
 [10] 支持体と、当該支持体上に設けられた[1]~[8]のいずれかに記載の樹脂組成物を含む樹脂組成物層とを有する樹脂シート。
 [11] 半導体チップパッケージの絶縁層用樹脂シートである、[10]に記載の樹脂シート。
 [12] [1]~[8]のいずれかに記載の樹脂組成物の硬化物により形成された絶縁層を含む、回路基板。
 [13] [12]に記載の回路基板と、該回路基板上に搭載された半導体チップとを含む、半導体チップパッケージ。
 [14] [1]~[8]のいずれかに記載の樹脂組成物により封止された半導体チップを含む半導体チップパッケージ。
 [15] [10]に記載の樹脂シートにより封止された半導体チップを含む半導体チップパッケージ。
 [16] 半導体チップパッケージの製造方法であって、
(A)硬化性樹脂と、(B)無機充填材とを含有する樹脂組成物であって、(B)無機充填材の平均粒径が0.5μm~12μmの範囲内にあり、無機充填材における結晶性シリカ含有率が、0質量%以上かつ2.1質量%未満の範囲内にある、樹脂組成物を硬化させる工程を含む、半導体チップパッケージの製造方法。
[1] In a resin composition containing (A) a curable resin and (B) an inorganic filler, the average particle diameter of the (B) inorganic filler is in the range of 0.5 μm to 12 μm, and the inorganic filler A resin composition having a crystalline silica content of 0% by mass or more and less than 2.1% by mass.
[2] The resin composition according to [1], wherein the crystalline silica content is in the range of 0% by mass or more and 0.4% by mass or less.
[3] The resin composition according to [1] or [2], wherein the content of (B) the inorganic filler is 50% by volume or more when the entire resin composition is 100% by volume.
[4] Any one of [1] to [3], which contains (C) a curing agent and has a weight ratio of component (C) to component (A) in the range of 1:0.01 to 1:10 The described resin composition.
[5] The resin composition according to any one of [1] to [4], wherein the crystalline silica content is calculated based on an X-ray diffraction pattern obtained by X-ray diffraction measurement.
[6] The resin composition according to [5], wherein the crystalline silica content is calculated by Rietveld analysis of an X-ray diffraction pattern.
[7] The resin composition according to any one of [1] to [6], which is used for forming a resin composition layer having a thickness of 50 μm or more.
[8] The resin composition according to any one of [1] to [7], which is used for encapsulation.
[9] A cured product of the resin composition according to any one of [1] to [8].
[10] A resin sheet comprising a support and a resin composition layer containing the resin composition according to any one of [1] to [8] provided on the support.
[11] The resin sheet according to [10], which is a resin sheet for an insulating layer of a semiconductor chip package.
[12] A circuit board comprising an insulating layer formed from a cured product of the resin composition according to any one of [1] to [8].
[13] A semiconductor chip package including the circuit board according to [12] and a semiconductor chip mounted on the circuit board.
[14] A semiconductor chip package comprising a semiconductor chip sealed with the resin composition according to any one of [1] to [8].
[15] A semiconductor chip package including a semiconductor chip sealed with the resin sheet according to [10].
[16] A method for manufacturing a semiconductor chip package, comprising:
A resin composition containing (A) a curable resin and (B) an inorganic filler, wherein the average particle diameter of the (B) inorganic filler is in the range of 0.5 μm to 12 μm, and the inorganic filler A method for manufacturing a semiconductor chip package, comprising curing a resin composition having a crystalline silica content in the range of 0% by mass or more and less than 2.1% by mass.
 本発明によれば、粘度ライフが安定的な樹脂組成物;該樹脂組成物を使用した、樹脂シート、回路基板、及び半導体チップパッケージを提供することができる。 According to the present invention, it is possible to provide a resin composition with a stable viscosity life; a resin sheet, a circuit board, and a semiconductor chip package using the resin composition.
図1は、本発明の一実施形態に係る半導体チップパッケージの一例としてのFan-out型WLPの構成を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing the configuration of a fan-out type WLP as an example of a semiconductor chip package according to one embodiment of the present invention.
 以下、本発明の実施形態及び例示物を示して詳細に説明する。ただし、本発明は、下記実施形態及び例示物に限定されるものではなく、特許請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。 Hereinafter, embodiments and examples of the present invention will be shown and explained in detail. However, the present invention is not limited to the following embodiments and examples, and can be arbitrarily modified without departing from the scope of the claims and their equivalents.
 [樹脂組成物]
 本発明の樹脂組成物は、(A)硬化性樹脂と、(B)無機充填材とを含有する樹脂組成物において、(B)無機充填材の平均粒径が0.5μm~12μmの範囲内にあり、無機充填材における結晶性シリカ含有率が0質量%以上かつ2.1質量%未満の範囲内にある、樹脂組成物であることを特徴とする。そして、本発明は、以下の説明からも明らかとなるように、粘度ライフが安定的な樹脂組成物;該樹脂組成物を使用した、樹脂シート、回路基板、及び半導体チップパッケージを提供することができるという効果を少なくとも奏する。本発明によって奏されるその他の効果は、本技術分野に属する者であれば、本明細書及び図面を参照することによって把握することができる。
[Resin composition]
The resin composition of the present invention is a resin composition containing (A) a curable resin and (B) an inorganic filler, wherein the average particle size of the (B) inorganic filler is in the range of 0.5 μm to 12 μm. and wherein the content of crystalline silica in the inorganic filler is in the range of 0% by mass or more and less than 2.1% by mass. And, as will become clear from the following description, the present invention provides a resin composition with a stable viscosity life; a resin sheet, a circuit board, and a semiconductor chip package using the resin composition. At least it has the effect of being able to. Other effects produced by the present invention can be grasped by those skilled in the art by referring to the specification and drawings.
 [樹脂組成物の組成]
 本発明の樹脂組成物は、(A)硬化性樹脂と、(B)無機充填材とを含有する。本発明の樹脂組成物は、上述の効果を過度に阻害しない限り、(A)成分及び(B)成分のほかに、例えば、(C)硬化剤、(D)その他の添加剤、溶剤を含んでいてもよい。
[Composition of resin composition]
The resin composition of the present invention contains (A) a curable resin and (B) an inorganic filler. The resin composition of the present invention contains, in addition to components (A) and (B), for example, (C) a curing agent, (D) other additives, and a solvent, as long as the above effects are not excessively inhibited. You can stay.
 [(A)硬化性樹脂]
 本発明の樹脂組成物は、(A)硬化性樹脂を含有する。(A)硬化性樹脂としては、熱硬化性樹脂、光硬化性樹脂、及び、ラジカル重合性樹脂から選択される1種以上の樹脂を用いることができる。ラジカル重合性樹脂は、場合により重合開始剤の存在のもとで、熱又は光によってラジカル重合が進行する樹脂であり、熱硬化性樹脂又は光硬化性樹脂に分類されてもよい。(A)成分は、1種類単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
[(A) curable resin]
The resin composition of the present invention contains (A) a curable resin. (A) As the curable resin, one or more resins selected from thermosetting resins, photocurable resins, and radically polymerizable resins can be used. A radically polymerizable resin is a resin in which radical polymerization proceeds by heat or light, optionally in the presence of a polymerization initiator, and may be classified as a thermosetting resin or a photocurable resin. (A) component may be used individually by 1 type, and may be used in combination of 2 or more types by arbitrary ratios.
 熱硬化性樹脂としては、例えば、エポキシ樹脂、エポキシアクリレート樹脂、ウレタンアクリレート樹脂、ウレタン樹脂、シアネート樹脂、ポリイミド樹脂、ベンゾオキサジン樹脂、不飽和ポリエステル樹脂、フェノール樹脂、メラミン樹脂、シリコーン樹脂、フェノキシ樹脂等が挙げられる。一実施形態において、(A)硬化性樹脂は、エポキシ樹脂を含む。樹脂組成物が熱硬化性樹脂を含有する場合、(C)硬化剤を含有することが好ましく、さらに、後述する硬化促進剤を含有することがより好ましい。 Examples of thermosetting resins include epoxy resins, epoxy acrylate resins, urethane acrylate resins, urethane resins, cyanate resins, polyimide resins, benzoxazine resins, unsaturated polyester resins, phenol resins, melamine resins, silicone resins, phenoxy resins, and the like. is mentioned. In one embodiment, (A) the curable resin comprises an epoxy resin. When the resin composition contains a thermosetting resin, it preferably contains (C) a curing agent, and more preferably contains a curing accelerator described later.
 エポキシ樹脂とは、エポキシ基を有する樹脂をいう。エポキシ樹脂としては、例えば、ビキシレノール型エポキシ樹脂、ビスフェノールA型エポキシ樹脂;ビスフェノールF型エポキシ樹脂;ビスフェノールS型エポキシ樹脂;ビスフェノールAF型エポキシ樹脂;ジシクロペンタジエン型エポキシ樹脂;トリスフェノール型エポキシ樹脂;フェノールノボラック型エポキシ樹脂;グリシジルアミン型エポキシ樹脂;グリシジルエステル型エポキシ樹脂;クレゾールノボラック型エポキシ樹脂;ビフェニル型エポキシ樹脂;線状脂肪族エポキシ樹脂;ブタジエン構造を有するエポキシ樹脂;脂環式エポキシ樹脂;エステル骨格を有する脂環式エポキシ樹脂;複素環式エポキシ樹脂;スピロ環含有エポキシ樹脂;シクロヘキサン型エポキシ樹脂;シクロヘキサンジメタノール型エポキシ樹脂;トリメチロール型エポキシ樹脂;テトラフェニルエタン型エポキシ樹脂;ナフチレンエーテル型エポキシ樹脂、tert-ブチル-カテコール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフトール型エポキシ樹脂、アントラセン型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、等の縮合環骨格を含有するエポキシ樹脂;イソシアヌラート型エポキシ樹脂;アルキレンオキシ骨格及びブタジエン骨格含有エポキシ樹脂;フルオレン構造含有エポキシ樹脂;等が挙げられる。エポキシ樹脂は、1種類単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 Epoxy resin refers to a resin having an epoxy group. Examples of epoxy resins include bixylenol type epoxy resin, bisphenol A type epoxy resin; bisphenol F type epoxy resin; bisphenol S type epoxy resin; bisphenol AF type epoxy resin; dicyclopentadiene type epoxy resin; Glycidylamine type epoxy resin; Glycidyl ester type epoxy resin; Cresol novolac type epoxy resin; Biphenyl type epoxy resin; Linear aliphatic epoxy resin; Epoxy resin having a butadiene structure; Alicyclic epoxy resin having a skeleton; heterocyclic epoxy resin; spiro ring-containing epoxy resin; cyclohexane type epoxy resin; cyclohexanedimethanol type epoxy resin; trimethylol type epoxy resin; Epoxy resins containing a condensed ring skeleton such as epoxy resins, tert-butyl-catechol type epoxy resins, naphthalene type epoxy resins, naphthol type epoxy resins, anthracene type epoxy resins, naphthol novolac type epoxy resins; isocyanurate type epoxy resins an epoxy resin containing an alkyleneoxy skeleton and a butadiene skeleton; an epoxy resin containing a fluorene structure; and the like. Epoxy resins may be used singly or in combination of two or more.
 エポキシ樹脂は、耐熱性に優れる硬化物を得る観点から、芳香族構造を含有するエポキシ樹脂を含んでいてもよい。芳香族構造とは、一般に芳香族と定義される化学構造であり、多環芳香族及び芳香族複素環をも含む。芳香族構造を含有するエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリスフェノール型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、tert-ブチル-カテコール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフトール型エポキシ樹脂、アントラセン型エポキシ樹脂、ビシキレノール型エポキシ樹脂、芳香族構造を有するグリシジルアミン型エポキシ樹脂、芳香族構造を有するグリシジルエステル型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、芳香族構造を有する線状脂肪族エポキシ樹脂、芳香族構造を有するブタジエン構造を有するエポキシ樹脂、芳香族構造を有する脂環式エポキシ樹脂、複素環式エポキシ樹脂、芳香族構造を有するスピロ環含有エポキシ樹脂、芳香族構造を有するシクロヘキサンジメタノール型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、芳香族構造を有するトリメチロール型エポキシ樹脂、芳香族構造を有するテトラフェニルエタン型エポキシ樹脂等が挙げられる。 From the viewpoint of obtaining a cured product with excellent heat resistance, the epoxy resin may contain an epoxy resin containing an aromatic structure. Aromatic structures are chemical structures generally defined as aromatic and also include polycyclic aromatic and heteroaromatic rings. Examples of epoxy resins containing an aromatic structure include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol AF type epoxy resin, dicyclopentadiene type epoxy resin, trisphenol type epoxy resin, Naphthol novolak type epoxy resin, phenol novolac type epoxy resin, tert-butyl-catechol type epoxy resin, naphthalene type epoxy resin, naphthol type epoxy resin, anthracene type epoxy resin, bixylenol type epoxy resin, glycidylamine type epoxy having an aromatic structure Resin, glycidyl ester type epoxy resin having aromatic structure, cresol novolac type epoxy resin, biphenyl type epoxy resin, linear aliphatic epoxy resin having aromatic structure, epoxy resin having butadiene structure having aromatic structure, aromatic Structured alicyclic epoxy resin, heterocyclic epoxy resin, spiro ring-containing epoxy resin having aromatic structure, cyclohexanedimethanol type epoxy resin having aromatic structure, naphthylene ether type epoxy resin, having aromatic structure A trimethylol type epoxy resin, a tetraphenylethane type epoxy resin having an aromatic structure, and the like are included.
 芳香族構造を含有するエポキシ樹脂の中でも、耐熱性に優れる硬化物を得る観点から、縮合環構造含有エポキシ樹脂を含むことが好ましい。縮合環構造含有エポキシ樹脂における縮合環としては、例えば、ナフタレン環、アントラセン環、フェナントレン環等が挙げられ、特に好ましくはナフタレン環である。したがって、エポキシ樹脂は、ナフタレン環構造を含むナフタレン型エポキシ樹脂を含むことが好ましい。エポキシ樹脂の全量100質量%に対して、ナフタレン型エポキシ樹脂の量は、好ましくは10質量%以上、より好ましくは15質量%以上、特に好ましくは20質量%以上であり、好ましくは50質量%以下、より好ましくは40質量%以下、更に好ましくは30質量%以下である。 Among epoxy resins containing an aromatic structure, it is preferable to include an epoxy resin containing a condensed ring structure from the viewpoint of obtaining a cured product with excellent heat resistance. Examples of the condensed ring in the epoxy resin containing a condensed ring structure include naphthalene ring, anthracene ring, phenanthrene ring and the like, and naphthalene ring is particularly preferred. Therefore, the epoxy resin preferably contains a naphthalene-type epoxy resin containing a naphthalene ring structure. The amount of the naphthalene-type epoxy resin is preferably 10% by mass or more, more preferably 15% by mass or more, particularly preferably 20% by mass or more, and preferably 50% by mass or less based on the total amount of the epoxy resin of 100% by mass. , more preferably 40% by mass or less, and still more preferably 30% by mass or less.
 エポキシ樹脂は、硬化物の耐熱性及び金属密着性を向上させる観点から、グリシジルアミン型エポキシ樹脂を含んでいてもよい。 The epoxy resin may contain a glycidylamine type epoxy resin from the viewpoint of improving the heat resistance and metal adhesion of the cured product.
 エポキシ樹脂は、ブタジエン構造を有するエポキシ樹脂を含んでいてもよい。 The epoxy resin may contain an epoxy resin having a butadiene structure.
 樹脂組成物は、エポキシ樹脂として、1分子中に2個以上のエポキシ基を有するエポキシ樹脂を含むことが好ましい。エポキシ樹脂の不揮発成分100質量%に対して、1分子中に2個以上のエポキシ基を有するエポキシ樹脂の割合は、好ましくは50質量%以上、より好ましくは60質量%以上、特に好ましくは70質量%以上である。 The resin composition preferably contains an epoxy resin having two or more epoxy groups in one molecule as the epoxy resin. The ratio of the epoxy resin having two or more epoxy groups in one molecule is preferably 50% by mass or more, more preferably 60% by mass or more, and particularly preferably 70% by mass with respect to 100% by mass of the non-volatile component of the epoxy resin. % or more.
 エポキシ樹脂には、温度20℃で液状のエポキシ樹脂(以下「液状エポキシ樹脂」ということがある。)と、温度20℃で固体状のエポキシ樹脂(以下「固体状エポキシ樹脂」ということがある。)とがある。本実施形態の樹脂組成物は、エポキシ樹脂として、液状エポキシ樹脂のみを含んでいてもよく、或いは固体状エポキシ樹脂のみを含んでいてもよく、或いは液状エポキシ樹脂と固体状エポキシ樹脂とを組み合わせて含んでいてもよいが、少なくとも液状エポキシ樹脂を含むことが好ましい。一実施形態において、本発明の樹脂組成物は、硬化性樹脂として、液状エポキシ樹脂のみを含む。他の実施形態において、本発明の樹脂組成物は、硬化性樹脂として、液状エポキシ樹脂と固体状エポキシ樹脂とを組み合わせて含んでいてもよいし、液状エポキシ樹脂のみを含んでいてもよい。 Epoxy resins include liquid epoxy resins at a temperature of 20° C. (hereinafter sometimes referred to as “liquid epoxy resins”) and solid epoxy resins at a temperature of 20° C. (hereinafter sometimes referred to as “solid epoxy resins”). ). As the epoxy resin, the resin composition of the present embodiment may contain only a liquid epoxy resin, may contain only a solid epoxy resin, or may contain a liquid epoxy resin and a solid epoxy resin in combination. Although it may be contained, it is preferable to contain at least a liquid epoxy resin. In one embodiment, the resin composition of the present invention contains only a liquid epoxy resin as the curable resin. In another embodiment, the resin composition of the present invention may contain a combination of a liquid epoxy resin and a solid epoxy resin as a curable resin, or may contain only a liquid epoxy resin.
 液状エポキシ樹脂としては、1分子中に2個以上のエポキシ基を有する液状エポキシ樹脂が好ましい。 A liquid epoxy resin having two or more epoxy groups in one molecule is preferable as the liquid epoxy resin.
 液状エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、ナフタレン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、エステル骨格を有する脂環式エポキシ樹脂、シクロヘキサン型エポキシ樹脂、シクロヘキサンジメタノール型エポキシ樹脂、ブタジエン構造を有するエポキシ樹脂、アルキレンオキシ骨格及びブタジエン骨格含有エポキシ樹脂、フルオレン構造含有エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂が好ましい。中でも、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ナフタレン型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、エステル骨格を有する脂環式エポキシ樹脂、ブタジエン構造を有するエポキシ樹脂、アルキレンオキシ骨格及びブタジエン骨格含有エポキシ樹脂、フルオレン構造含有エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂が特に好ましい。 Examples of liquid epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AF type epoxy resin, naphthalene type epoxy resin, glycidyl ester type epoxy resin, glycidyl amine type epoxy resin, phenol novolac type epoxy resin, ester skeleton. An alicyclic epoxy resin having . Among them, bisphenol A type epoxy resin, bisphenol F type epoxy resin, naphthalene type epoxy resin, glycidylamine type epoxy resin, alicyclic epoxy resin having ester skeleton, epoxy resin having butadiene structure, alkyleneoxy skeleton and butadiene skeleton containing epoxy Particularly preferred are resins, fluorene structure-containing epoxy resins, and dicyclopentadiene type epoxy resins.
 液状エポキシ樹脂の具体例としては、DIC社製の「HP4032」、「HP4032D」、「HP4032SS」(ナフタレン型エポキシ樹脂);三菱ケミカル社製の「828US」、「828EL」、「jER828EL」、「825」、「エピコート828EL」(ビスフェノールA型エポキシ樹脂);三菱ケミカル社製の「jER807」、「1750」(ビスフェノールF型エポキシ樹脂);三菱ケミカル社製の「jER152」(フェノールノボラック型エポキシ樹脂);三菱ケミカル社製の「630」、「630LSD」、「604」(グリシジルアミン型エポキシ樹脂);ADEKA社製の「ED-523T」(グリシロール型エポキシ樹脂);ADEKA社製の「EP-3950L」、「EP-3980S」(グリシジルアミン型エポキシ樹脂);ADEKA社製の「EP-4088S」(ジシクロペンタジエン型エポキシ樹脂);日鉄ケミカル&マテリアル社製の「ZX1059」(ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂の混合品);ナガセケムテックス社製の「EX-721」(グリシジルエステル型エポキシ樹脂);ナガセケムテックス社製の「EX-991L」(アルキレンオキシ骨格含有エポキシ樹脂)、「EX-992L」(ポリエーテル含有エポキシ樹脂);ダイセル社製の「セロキサイド2021P」(エステル骨格を有する脂環式エポキシ樹脂);ダイセル社製の「PB-3600」、日本曹達社製の「JP-100」、「JP-200」(ブタジエン構造を有するエポキシ樹脂);日鉄ケミカル&マテリアル社製の「ZX1658」、「ZX1658GS」(液状1,4-グリシジルシクロヘキサン型エポキシ樹脂);大阪ガスケミカル社製の「EG-280」(フルオレン構造含有エポキシ樹脂);等が挙げられる。 Specific examples of liquid epoxy resins include "HP4032", "HP4032D", and "HP4032SS" (naphthalene type epoxy resins) manufactured by DIC; "828US", "828EL", "jER828EL", and "825" manufactured by Mitsubishi Chemical Corporation; ”, “Epikote 828EL” (bisphenol A type epoxy resin); “jER807” and “1750” (bisphenol F type epoxy resin) manufactured by Mitsubishi Chemical Corporation; “jER152” manufactured by Mitsubishi Chemical Corporation (phenol novolac type epoxy resin); "630", "630LSD", "604" (glycidylamine type epoxy resin) manufactured by Mitsubishi Chemical Corporation; "ED-523T" (glycirrol type epoxy resin) manufactured by ADEKA; "EP-3950L" manufactured by ADEKA; "EP-3980S" (glycidylamine type epoxy resin); "EP-4088S" (dicyclopentadiene type epoxy resin) manufactured by ADEKA; "ZX1059" manufactured by Nippon Steel Chemical & Materials (bisphenol A type epoxy resin and bisphenol F-type epoxy resin mixture); "EX-721" (glycidyl ester type epoxy resin) manufactured by Nagase ChemteX Corporation; "EX-991L" (alkyleneoxy skeleton-containing epoxy resin) manufactured by Nagase ChemteX Corporation, "EX -992L" (polyether-containing epoxy resin); "Celoxide 2021P" manufactured by Daicel (alicyclic epoxy resin having an ester skeleton); "PB-3600" manufactured by Daicel, "JP-100" manufactured by Nippon Soda Co., Ltd. ", "JP-200" (epoxy resin having a butadiene structure); "ZX1658" and "ZX1658GS" (liquid 1,4-glycidylcyclohexane type epoxy resin) manufactured by Nippon Steel Chemical &Materials; Osaka Gas Chemical Co., Ltd. "EG-280" (fluorene structure-containing epoxy resin);
 固体状エポキシ樹脂としては、1分子中に3個以上のエポキシ基を有する固体状エポキシ樹脂が好ましく、1分子中に3個以上のエポキシ基を有する芳香族系の固体状エポキシ樹脂がより好ましい。 The solid epoxy resin is preferably a solid epoxy resin having 3 or more epoxy groups per molecule, more preferably an aromatic solid epoxy resin having 3 or more epoxy groups per molecule.
 固体状エポキシ樹脂としては、ビキシレノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフタレン型4官能エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリスフェノール型エポキシ樹脂、ナフトール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、アントラセン型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂が好ましい。 Solid epoxy resins include bixylenol type epoxy resin, naphthalene type epoxy resin, naphthalene type tetrafunctional epoxy resin, cresol novolak type epoxy resin, dicyclopentadiene type epoxy resin, trisphenol type epoxy resin, naphthol type epoxy resin, biphenyl type epoxy resin, naphthylene ether type epoxy resin, anthracene type epoxy resin, bisphenol A type epoxy resin, bisphenol AF type epoxy resin, and tetraphenylethane type epoxy resin.
 固体状エポキシ樹脂の具体例としては、DIC社製の「HP4032H」(ナフタレン型エポキシ樹脂);DIC社製の「HP-4700」、「HP-4710」(ナフタレン型4官能エポキシ樹脂);DIC社製の「N-690」(クレゾールノボラック型エポキシ樹脂);DIC社製の「N-695」(クレゾールノボラック型エポキシ樹脂);DIC社製の「HP-7200」、「HP-7200HH」、「HP-7200H」(ジシクロペンタジエン型エポキシ樹脂);DIC社製の「EXA-7311」、「EXA-7311-G3」、「EXA-7311-G4」、「EXA-7311-G4S」、「HP6000」(ナフチレンエーテル型エポキシ樹脂);日本化薬社製の「EPPN-502H」(トリスフェノール型エポキシ樹脂);日本化薬社製の「NC7000L」(ナフトールノボラック型エポキシ樹脂);日本化薬社製の「NC3000H」、「NC3000」、「NC3000L」、「NC3100」(ビフェニル型エポキシ樹脂);日鉄ケミカル&マテリアル社製の「ESN475V」(ナフトール型エポキシ樹脂);日鉄ケミカル&マテリアル社製の「ESN485」(ナフトールノボラック型エポキシ樹脂);三菱ケミカル社製の「YX4000H」、「YX4000」、「YL6121」(ビフェニル型エポキシ樹脂);三菱ケミカル社製の「YX4000HK」(ビキシレノール型エポキシ樹脂);三菱ケミカル社製の「YX8800」(アントラセン型エポキシ樹脂);三菱ケミカル社製の「YX7700」(キシレン構造含有ノボラック型エポキシ樹脂);大阪ガスケミカル社製の「PG-100」、「CG-500」;三菱ケミカル社製の「YL7760」(ビスフェノールAF型エポキシ樹脂);三菱ケミカル社製の「YL7800」(フルオレン型エポキシ樹脂);三菱ケミカル社製の「jER1010」(固体状ビスフェノールA型エポキシ樹脂);三菱ケミカル社製の「jER1031S」(テトラフェニルエタン型エポキシ樹脂)等が挙げられる。 Specific examples of solid epoxy resins include "HP4032H" (naphthalene-type epoxy resin) manufactured by DIC; "HP-4700" and "HP-4710" (naphthalene-type tetrafunctional epoxy resin) manufactured by DIC; "N-690" (cresol novolac type epoxy resin) manufactured by DIC Corporation; "N-695" (cresol novolak type epoxy resin) manufactured by DIC Corporation; "HP-7200", "HP-7200HH", "HP -7200H" (dicyclopentadiene type epoxy resin); DIC's "EXA-7311", "EXA-7311-G3", "EXA-7311-G4", "EXA-7311-G4S", "HP6000" ( Naphthylene ether type epoxy resin); Nippon Kayaku Co., Ltd. "EPPN-502H" (trisphenol type epoxy resin); Nippon Kayaku Co., Ltd. "NC7000L" (naphthol novolac type epoxy resin); "NC3000H", "NC3000", "NC3000L", "NC3100" (biphenyl type epoxy resin); "ESN475V" (naphthol type epoxy resin) manufactured by Nippon Steel Chemical &Materials; "ESN485" manufactured by Nippon Steel Chemical & Materials " (naphthol novolac type epoxy resin); Mitsubishi Chemical Corporation "YX4000H", "YX4000", "YL6121" (biphenyl type epoxy resin); Mitsubishi Chemical Corporation "YX4000HK" (bixylenol type epoxy resin); Mitsubishi Chemical "YX8800" (anthracene type epoxy resin) manufactured by Mitsubishi Chemical Corporation; "YX7700" (xylene structure-containing novolac type epoxy resin) manufactured by Mitsubishi Chemical Corporation; "PG-100" and "CG-500" manufactured by Osaka Gas Chemicals Co., Ltd.; Chemical Company "YL7760" (bisphenol AF type epoxy resin); Mitsubishi Chemical Corporation "YL7800" (fluorene type epoxy resin); Mitsubishi Chemical Corporation "jER1010" (solid bisphenol A type epoxy resin); Mitsubishi Chemical and "jER1031S" (tetraphenylethane type epoxy resin) manufactured by the company.
 エポキシ樹脂の全量100質量%に対して、液状エポキシ樹脂の量は、特に限定されるものではないが、好ましくは50質量%以上、より好ましくは70質量%以上、更に好ましくは80質量%以上、更に好ましくは90質量%以上、特に好ましくは100質量%である。 Although the amount of the liquid epoxy resin is not particularly limited, it is preferably 50% by mass or more, more preferably 70% by mass or more, and still more preferably 80% by mass or more, based on the total amount of the epoxy resin of 100% by mass. More preferably 90% by mass or more, particularly preferably 100% by mass.
 エポキシ樹脂のエポキシ当量は、好ましくは50g/eq.~5000g/eq.、より好ましくは50g/eq.~3000g/eq.、さらに好ましくは80g/eq.~2000g/eq.、さらにより好ましくは110g/eq.~1000g/eq.である。エポキシ当量は、1当量のエポキシ基を含む樹脂の質量である。このエポキシ当量は、JIS K7236に従って測定することができる。 The epoxy equivalent of the epoxy resin is preferably 50 g/eq. ~5000g/eq. , more preferably 50 g/eq. ~3000g/eq. , more preferably 80 g/eq. ~2000g/eq. , even more preferably 110 g/eq. ~1000 g/eq. is. Epoxy equivalent weight is the mass of resin containing one equivalent of epoxy groups. This epoxy equivalent can be measured according to JIS K7236.
 エポキシ樹脂の重量平均分子量(Mw)は、好ましくは100~5000、より好ましくは200~3000、さらに好ましくは400~1500である。樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により、ポリスチレン換算の値として測定できる。 The weight average molecular weight (Mw) of the epoxy resin is preferably 100-5000, more preferably 200-3000, and even more preferably 400-1500. The weight average molecular weight of the resin can be measured as a polystyrene-equivalent value by a gel permeation chromatography (GPC) method.
 樹脂組成物中の不揮発成分100質量%に対して、硬化性樹脂の量は、特に限定されるものではないが、好ましくは0.5質量%以上、より好ましくは1質量%以上、特に好ましくは1.5質量%以上であり、好ましくは45質量%以下、より好ましくは40質量%以下、特に好ましくは35質量%以下である。 Although the amount of the curable resin is not particularly limited, it is preferably 0.5% by mass or more, more preferably 1% by mass or more, and particularly preferably It is 1.5% by mass or more, preferably 45% by mass or less, more preferably 40% by mass or less, and particularly preferably 35% by mass or less.
 [(B)無機充填材]
 本発明の樹脂組成物は、(B)無機充填材を含有する。(B)無機充填材を含有する樹脂組成物の硬化物は、通常、反りの発生が抑制されている傾向にある。また、(B)無機充填材を含有する樹脂組成物の硬化物は、通常、熱膨張係数を小さくできる。
[(B) Inorganic filler]
The resin composition of the present invention contains (B) an inorganic filler. A cured product of a resin composition containing (B) an inorganic filler usually tends to be prevented from warping. Moreover, the cured product of the resin composition containing (B) the inorganic filler can generally have a small coefficient of thermal expansion.
 無機充填材としては、無機化合物を用いる。無機充填材の例としては、シリカ、アルミナ、ガラス、コーディエライト、シリコン酸化物、硫酸バリウム、炭酸バリウム、タルク、クレー、雲母粉、酸化亜鉛、ハイドロタルサイト、ベーマイト、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、酸化マグネシウム、窒化ホウ素、窒化アルミニウム、窒化マンガン、ホウ酸アルミニウム、炭酸ストロンチウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ビスマス、酸化チタン、酸化ジルコニウム、チタン酸バリウム、チタン酸ジルコン酸バリウム、ジルコン酸バリウム、ジルコン酸カルシウム、リン酸ジルコニウム、及びリン酸タングステン酸ジルコニウム等が挙げられる。これらの中でもシリカ、アルミナが好適であり、シリカが特に好適である。シリカとしては、例えば、無定形シリカ、溶融シリカ、結晶シリカ、合成シリカ、中空シリカ等が挙げられる。また、シリカとしては、球状シリカが好ましい。(B)無機充填材は、1種類単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 An inorganic compound is used as the inorganic filler. Examples of inorganic fillers include silica, alumina, glass, cordierite, silicon oxide, barium sulfate, barium carbonate, talc, clay, mica powder, zinc oxide, hydrotalcite, boehmite, aluminum hydroxide, hydroxide Magnesium, calcium carbonate, magnesium carbonate, magnesium oxide, boron nitride, aluminum nitride, manganese nitride, aluminum borate, strontium carbonate, strontium titanate, calcium titanate, magnesium titanate, bismuth titanate, titanium oxide, zirconium oxide, titanium barium oxide, barium titanate zirconate, barium zirconate, calcium zirconate, zirconium phosphate, and zirconium phosphate tungstate. Among these, silica and alumina are preferred, and silica is particularly preferred. Examples of silica include amorphous silica, fused silica, crystalline silica, synthetic silica, and hollow silica. Moreover, as silica, spherical silica is preferable. (B) The inorganic filler may be used singly or in combination of two or more.
 (B)無機充填材は、耐湿性及び分散性を高める観点から、表面処理剤で処理されていてもよい。表面処理剤としては、例えば、例えば、フッ素含有シランカップリング剤、アミノシラン系カップリング剤、エポキシシラン系カップリング剤、メルカプトシラン系カップリング剤、シラン系カップリング剤、アルコキシシラン、オルガノシラザン化合物、チタネート系カップリング剤等が挙げられる。また、表面処理剤は、1種類単独で用いてもよく、2種類以上を任意に組み合わせて用いてもよい。 (B) The inorganic filler may be treated with a surface treatment agent from the viewpoint of enhancing moisture resistance and dispersibility. Examples of surface treatment agents include fluorine-containing silane coupling agents, aminosilane coupling agents, epoxysilane coupling agents, mercaptosilane coupling agents, silane coupling agents, alkoxysilanes, organosilazane compounds, A titanate-based coupling agent and the like can be mentioned. Moreover, one type of surface treatment agent may be used alone, or two or more types may be used in combination.
 表面処理剤の市販品としては、例えば、信越化学工業社製「KBM403」(3-グリシドキシプロピルトリメトキシシラン)、信越化学工業社製「KBM803」(3-メルカプトプロピルトリメトキシシラン)、信越化学工業社製「KBE903」(3-アミノプロピルトリエトキシシラン)、信越化学工業社製「KBE903」(3-アミノプロピルトリエトキシシラン)、信越化学工業社製「KBM573」(N-フェニル-3-アミノプロピルトリメトキシシラン)、信越化学工業社製「SZ-31」(ヘキサメチルジシラザン)、信越化学工業社製「KBM103」(フェニルトリメトキシシラン)、信越化学工業社製「KBM-4803」(長鎖エポキシ型シランカップリング剤)、信越化学工業社製「KBM-7103」(3,3,3-トリフルオロプロピルトリメトキシシラン)等が挙げられる。 Examples of commercially available surface treatment agents include "KBM403" (3-glycidoxypropyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd., "KBM803" (3-mercaptopropyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd., Shin-Etsu Chemical Industry Co., Ltd. "KBE903" (3-aminopropyltriethoxysilane), Shin-Etsu Chemical Co., Ltd. "KBE903" (3-aminopropyltriethoxysilane), Shin-Etsu Chemical Co., Ltd. "KBM573" (N-phenyl-3- aminopropyltrimethoxysilane), Shin-Etsu Chemical Co., Ltd. "SZ-31" (hexamethyldisilazane), Shin-Etsu Chemical Co., Ltd. "KBM103" (phenyltrimethoxysilane), Shin-Etsu Chemical Co., Ltd. "KBM-4803" ( long-chain epoxy type silane coupling agent), "KBM-7103" (3,3,3-trifluoropropyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd., and the like.
 表面処理剤による表面処理の程度は、無機充填材の分散性向上の観点から、特定の範囲に収まることが好ましい。具体的には、無機充填材100質量部は、0.2質量部~5質量部の表面処理剤で表面処理されていることが好ましく、0.2質量部~3質量部で表面処理されていることが好ましく、0.3質量部~2質量部で表面処理されていることが好ましい。 From the viewpoint of improving the dispersibility of the inorganic filler, the degree of surface treatment with a surface treatment agent is preferably within a specific range. Specifically, 100 parts by mass of the inorganic filler is preferably surface-treated with 0.2-5 parts by mass of a surface treatment agent, and is surface-treated with 0.2-3 parts by mass. preferably 0.3 parts by mass to 2 parts by mass of the surface treatment.
 表面処理剤による表面処理の程度は、無機充填材の単位表面積当たりのカーボン量によって評価することができる。無機充填材の単位表面積当たりのカーボン量は、無機充填材の分散性向上の観点から、0.02mg/m以上が好ましく、0.1mg/m以上がより好ましく、0.2mg/m以上が更に好ましい。一方、樹脂組成物の溶融粘度の上昇を抑制する観点から、1mg/m以下が好ましく、0.8mg/m以下がより好ましく、0.5mg/m以下が更に好ましい。 The degree of surface treatment by the surface treatment agent can be evaluated by the amount of carbon per unit surface area of the inorganic filler. The amount of carbon per unit surface area of the inorganic filler is preferably 0.02 mg/m 2 or more, more preferably 0.1 mg/m 2 or more, and more preferably 0.2 mg/m 2 from the viewpoint of improving the dispersibility of the inorganic filler. The above is more preferable. On the other hand, from the viewpoint of suppressing an increase in melt viscosity of the resin composition, it is preferably 1 mg/m 2 or less, more preferably 0.8 mg/m 2 or less, and even more preferably 0.5 mg/m 2 or less.
 無機充填材の単位表面積当たりのカーボン量は、表面処理後の無機充填材を溶剤(例えば、メチルエチルケトン(MEK))により洗浄処理した後に測定することができる。具体的には、溶剤として十分な量のMEKを表面処理剤で表面処理された無機充填材に加えて、25℃で5分間超音波洗浄する。上澄液を除去し、固形分を乾燥させた後、カーボン分析計を用いて無機充填材の単位表面積当たりのカーボン量を測定することができる。カーボン分析計としては、堀場製作所社製「EMIA-320V」等を使用することができる。 The amount of carbon per unit surface area of the inorganic filler can be measured after the surface-treated inorganic filler is washed with a solvent (eg, methyl ethyl ketone (MEK)). Specifically, a sufficient amount of MEK as a solvent is added to the inorganic filler surface-treated with the surface treatment agent, and ultrasonic cleaning is performed at 25° C. for 5 minutes. After removing the supernatant liquid and drying the solid content, a carbon analyzer can be used to measure the amount of carbon per unit surface area of the inorganic filler. As a carbon analyzer, "EMIA-320V" manufactured by Horiba Ltd. can be used.
 本発明の樹脂組成物が含有する(B)無機充填材は、その平均粒径が0.5μm~12μmの範囲内にあり、かつ、結晶性シリカ含有率が0質量%以上かつ2.1質量%未満の範囲内にある特定の無機充填材(以下、「高非晶質小径無機充填材」ともいう)である。本発明の樹脂組成物は、特定無機充填材を2種以上含有していてもよいが、少なくとも1種はシリカであることが好ましい。本発明の樹脂組成物は、本発明の所期の効果が損なわれない限り、高非晶質小径無機充填材以外の無機充填材を含んでいてもよいが、高非晶質小径無機充填材以外の無機充填材を含んでいないことが好ましい。 The (B) inorganic filler contained in the resin composition of the present invention has an average particle diameter in the range of 0.5 μm to 12 μm and a crystalline silica content of 0% by mass or more and 2.1% by mass. % (hereinafter also referred to as “highly amorphous small diameter inorganic filler”). The resin composition of the present invention may contain two or more specific inorganic fillers, but at least one of them is preferably silica. The resin composition of the present invention may contain an inorganic filler other than the highly amorphous small-diameter inorganic filler as long as the intended effect of the present invention is not impaired. It is preferable not to contain inorganic fillers other than.
 高非晶質小径無機充填材は、先述のとおり、その平均粒径が0.5μm~12μmの範囲内にある。高非晶質小径無機充填材は、このように平均粒径が小さいので、樹脂組成物中における充填度を高めることが可能である。 As mentioned above, the highly amorphous small-diameter inorganic filler has an average particle size within the range of 0.5 μm to 12 μm. Since the highly amorphous small-diameter inorganic filler has such a small average particle diameter, it is possible to increase the degree of filling in the resin composition.
 無機充填材の平均粒径の下限は、本発明の所期の効果を阻害しない限り、0.5μm超、0.6μm以上、0.7μm以上、0.8μm以上、0.9μm以上又は1.0μm以上としてもよい。また、本発明の所期の効果を阻害しない限り、無機充填材の平均粒径の上限は、12μm未満、10μm以下、8μm以下、6μm以下、5μm以下又は4.5μm以下としてもよく、後述する結晶性シリカ含有率を低くする観点からは、無機充填材の平均粒径の上限が10μm以下であることが好ましく、10μm未満であることがより好ましく、9μm以下であることがさらに好ましく、8μm以下であることが特に好ましい。 The lower limit of the average particle size of the inorganic filler is more than 0.5 μm, 0.6 μm or more, 0.7 μm or more, 0.8 μm or more, 0.9 μm or more, or 1.5 μm or more, as long as the intended effect of the present invention is not impaired. It may be 0 μm or more. In addition, the upper limit of the average particle size of the inorganic filler may be less than 12 μm, 10 μm or less, 8 μm or less, 6 μm or less, 5 μm or less, or 4.5 μm or less, as long as the desired effect of the present invention is not impaired, which will be described later. From the viewpoint of lowering the crystalline silica content, the upper limit of the average particle size of the inorganic filler is preferably 10 μm or less, more preferably less than 10 μm, even more preferably 9 μm or less, and 8 μm or less. is particularly preferred.
 (B)成分の平均粒径は、ミー(Mie)散乱理論に基づくレーザー回折・散乱法により測定することができる。具体的には、レーザー回折散乱式粒径分布測定装置により、無機充填材の粒径分布を体積基準で作成し、そのメディアン径を平均粒径とすることで測定することができる。測定サンプルは、無機充填材100mg、メチルエチルケトン10gをバイアル瓶に秤取り、超音波にて10分間分散させたものを使用することができる。測定サンプルを、レーザー回折式粒径分布測定装置を使用して、使用光源波長を青色及び赤色とし、フローセル方式で(B)無機充填材の体積基準の粒径分布を測定し、得られた粒径分布からメディアン径として平均粒径を算出できる。レーザー回折式粒径分布測定装置としては、例えば堀場製作所社製「LA-960」等が挙げられる。 The average particle size of component (B) can be measured by a laser diffraction/scattering method based on Mie scattering theory. Specifically, the particle size distribution of the inorganic filler is prepared on a volume basis using a laser diffraction/scattering type particle size distribution measuring apparatus, and the median diameter can be used as the average particle size for measurement. A measurement sample can be obtained by weighing 100 mg of an inorganic filler and 10 g of methyl ethyl ketone in a vial bottle and dispersing them with ultrasonic waves for 10 minutes. The measurement sample is measured using a laser diffraction particle size distribution measuring device, the wavelengths of the light source used are blue and red, and the volume-based particle size distribution of the inorganic filler (B) is measured by the flow cell method. The average particle size can be calculated as the median size from the size distribution. Examples of the laser diffraction particle size distribution analyzer include "LA-960" manufactured by Horiba, Ltd., and the like.
 (B)無機充填材の比表面積は、好ましくは1m/g以上、より好ましくは1.5m/g以上、更に好ましくは2m/g以上、特に好ましくは2.5m/g以上である。上限に特段の制限は無いが、好ましくは60m/g以下、50m/g以下又は40m/g以下である。比表面積は、BET法に従って、比表面積測定装置(マウンテック社製Macsorb HM-1210)を使用して試料表面に窒素ガスを吸着させ、BET多点法を用いて比表面積を算出することで得られる。 (B) The specific surface area of the inorganic filler is preferably 1 m 2 /g or more, more preferably 1.5 m 2 /g or more, still more preferably 2 m 2 /g or more, and particularly preferably 2.5 m 2 /g or more. be. Although there is no particular upper limit, it is preferably 60 m 2 /g or less, 50 m 2 /g or less, or 40 m 2 /g or less. The specific surface area is obtained by adsorbing nitrogen gas on the sample surface using a specific surface area measuring device (Macsorb HM-1210 manufactured by Mountech) according to the BET method and calculating the specific surface area using the BET multipoint method. .
 高非晶質小径無機充填材は、先述のとおり、その結晶性シリカ含有率が0質量%以上かつ2.1質量%未満の範囲内にある。高非晶質小径無機充填材は、このように結晶性シリカ含有率が低いので、本発明の所期の効果を奏することができる。そして、後述の実施例の欄における例証からも明らかなとおり、結晶性シリカ含有率が低いほど、好ましくは検出限界超で検出限界に近いほど、粘度ライフの安定性に優れる傾向にあるので、本発明の所期の効果をより顕著に得ることができる。また、無機充填材の充填度が高いほど、通常は、粘度ライフの安定性が低下する傾向にあるが、本発明によれば、粘度ライフの安定性に優れるので、無機充填材の充填度を通常よりも高めることができる。 As described above, the highly amorphous small-diameter inorganic filler has a crystalline silica content of 0% by mass or more and less than 2.1% by mass. Since the highly amorphous small-diameter inorganic filler has such a low crystalline silica content, it is possible to achieve the desired effect of the present invention. And, as is clear from the exemplification in the Examples section below, the lower the crystalline silica content, preferably the more the detection limit is exceeded and the closer to the detection limit, the more stable the viscosity life tends to be. The intended effects of the invention can be obtained more remarkably. In addition, the higher the filling degree of the inorganic filler, the more the stability of the viscosity life usually tends to decrease. Can be higher than normal.
 粘度ライフの安定性をより優れたものとする観点から、結晶性シリカ含有率は、2.0質量%以下、1.9質量%以下、1.8質量%以下、1.7質量%以下、又は1.6質量%以下であることが好ましく、1.5質量%以下、1.4質量%以下、1.3質量%以下、1.2質量%以下、1.1質量%以下、又は1.0質量%以下であることがさらに好ましく、0.9量%以下、0.8質量%以下、0.7質量%以下、0.6質量%以下、0.5質量%以下、0.4質量%以下、0.3質量%以下、0.2質量%以下、又は0.1質量%以下であることがさらにより好ましい。結晶性シリカ含有率は、検出限界量以下であることが特に好ましく、0質量%であってもよい。他方で、結晶性シリカの存在によって奏される効果(例えば充填性向上、又は相溶性向上)を得る観点からは、結晶性シリカ含有率は、好ましくは0質量%超、より好ましくは0.01質量%以上、さらに好ましくは0.02質量%以上であり、0.03質量%以上、0.04質量%以上、0.05質量%以上であり、0.06質量%以上、0.07質量%以上、又は0.08質量%以上としてもよい。したがって、結晶性シリカ含有率が0質量%超かつ2.1質量%未満の範囲内にあることもある実施態様においては好ましい。 From the viewpoint of improving the viscosity life stability, the crystalline silica content is 2.0% by mass or less, 1.9% by mass or less, 1.8% by mass or less, 1.7% by mass or less, Or it is preferably 1.6% by mass or less, 1.5% by mass or less, 1.4% by mass or less, 1.3% by mass or less, 1.2% by mass or less, 1.1% by mass or less, or 1 0% by mass or less, 0.9% by mass or less, 0.8% by mass or less, 0.7% by mass or less, 0.6% by mass or less, 0.5% by mass or less, 0.4% by mass or less Even more preferably, it is 0.3 mass % or less, 0.2 mass % or less, or 0.1 mass % or less. The content of crystalline silica is particularly preferably below the detection limit, and may be 0% by mass. On the other hand, from the viewpoint of obtaining the effect (for example, improvement of filling property or improvement of compatibility) exhibited by the presence of crystalline silica, the crystalline silica content is preferably more than 0% by mass, more preferably 0.01. % by mass or more, more preferably 0.02% by mass or more, 0.03% by mass or more, 0.04% by mass or more, 0.05% by mass or more, 0.06% by mass or more, and 0.07% by mass % or more, or 0.08% by mass or more. Therefore, it is preferred in embodiments where the crystalline silica content is in the range of greater than 0 wt% and less than 2.1 wt%.
 結晶性シリカ含有率は、X線回折測定により得られたX線回折パターンに基づき算出される。X線回折測定は、市販のX線回折分析装置、例えば、リガク社製のX線回折装置「SmartLab(登録商標)」を用いて実施してよい。X線回折測定の条件は、結晶性シリカを検出可能である限り限定されず、X線源、出力、回折角の測定範囲、スキャン速度等は適宜設定される。好ましくは、結晶性シリカ含有率は、X線回折パターンをリートベルト解析して算出される。X線回折パターンのリートベルト解析には、X線回折分析装置に付属の専用ソフトウェア、例えば上記リガク社製のX線回折装置「SmartLab(登録商標)」に付属の定性解析プログラムPDXLを用いることが好ましい。斯かる専用ソフトウェアには、結晶性シリカ(通常は、α-石英又はクリストバライト)及び非晶質シリカ(アモルファスシリカ)に関する情報が格納されている。リートベルト解析によれば、結晶性シリカの含有量が0.01質量%であっても結晶性シリカ含有率を算出できる点で好ましい。 The crystalline silica content is calculated based on the X-ray diffraction pattern obtained by X-ray diffraction measurement. The X-ray diffraction measurement may be carried out using a commercially available X-ray diffraction analysis device, for example, the Rigaku X-ray diffraction device “SmartLab (registered trademark)”. The conditions for the X-ray diffraction measurement are not limited as long as crystalline silica can be detected, and the X-ray source, output, diffraction angle measurement range, scanning speed, etc. are appropriately set. Preferably, the crystalline silica content is calculated by Rietveld analysis of the X-ray diffraction pattern. For the Rietveld analysis of the X-ray diffraction pattern, dedicated software attached to the X-ray diffraction analysis device, for example, the qualitative analysis program PDXL attached to the X-ray diffraction device "SmartLab (registered trademark)" manufactured by Rigaku Corporation can be used. preferable. Such dedicated software contains information about crystalline silica (usually α-quartz or cristobalite) and amorphous silica (amorphous silica). According to the Rietveld analysis, even if the content of crystalline silica is 0.01% by mass, the crystalline silica content can be calculated, which is preferable.
 結晶性シリカ含有率は、上述した方法以外の方法によって算出されてもよい。ただし、斯かる方法によって算出される結晶性シリカ含有率の数値が、上述した方法(好ましくはリートベルト解析)で算出された結晶性シリカ含有率の数値と大きく異なる場合、斯かる方法は採用されるべきではない。上述した方法以外の方法の例を挙げると、X線回折測定により得られたX線回折パターンから、結晶性シリカのピーク強度と非晶質シリカのピーク強度(積分値)から結晶性シリカ含有率を算出してもよいし、結晶性シリカ含有率が既知の高非晶質小径無機充填材のX線回折パターンを検量線として、結晶性シリカ含有率が未知の無機充填材における結晶性シリカ含有率を算出してもよい。 The crystalline silica content may be calculated by a method other than the method described above. However, if the numerical value of the crystalline silica content calculated by such a method is significantly different from the numerical value of the crystalline silica content calculated by the method described above (preferably Rietveld analysis), such a method is adopted. shouldn't. To give an example of a method other than the above-mentioned method, from the X-ray diffraction pattern obtained by X-ray diffraction measurement, the peak intensity of crystalline silica and the peak intensity (integrated value) of amorphous silica may be calculated, and the X-ray diffraction pattern of a highly amorphous small-diameter inorganic filler with a known crystalline silica content is used as a calibration curve, and the crystalline silica content in an inorganic filler with an unknown crystalline silica content is A rate may be calculated.
 高非晶質小径無機充填材としては、後述する実施例の欄における製造例1~4に記載の無機充填材A、B、C、D、E、F又はそれらの改変物(例えば表面処理剤の種類を変更したもの、表面処理を行わなかったもの)を用いることができる。高非晶質小径無機充填材の製造方法は限定されない。高非晶質小径無機充填材は、その原料として、結晶質の無機充填材、例えば結晶性シリカ(例えば、特開2015-211086号公報に開示される結晶シリカ)を用いることができ、例えば、溶融法における溶融工程の加熱温度及び加熱時間を、500℃~1100℃、1~12時間の範囲内で変更することによって得ることができ、好ましくは、得られる溶融シリカの密度が2.4g/cm以下となるように加熱温度及び加熱時間が調整される(特許第6814906号参照)。結晶性シリカ含有率が低い無機充填材を得る観点から、溶融法における溶融処理を複数回(例えば2回)にわたって行うことが好ましい。また、高非晶質小径無機充填材は、非晶質シリカ等の、結晶成分を含まない非晶質の無機充填材を原料として用いてもよい。 As the highly amorphous small-diameter inorganic filler, the inorganic fillers A, B, C, D, E, and F described in Production Examples 1 to 4 in the Examples section below, or modifications thereof (for example, surface treatment agents of which the type has been changed, or which has not undergone surface treatment) can be used. The method for producing the highly amorphous small-diameter inorganic filler is not limited. A crystalline inorganic filler such as crystalline silica (for example, crystalline silica disclosed in JP-A-2015-211086) can be used as a raw material for the highly amorphous small-diameter inorganic filler. It can be obtained by changing the heating temperature and heating time in the melting step in the melting method within the range of 500 ° C. to 1100 ° C. and 1 to 12 hours. Preferably, the density of the obtained fused silica is 2.4 g / The heating temperature and heating time are adjusted so that the thickness is cm 3 or less (see Japanese Patent No. 6814906). From the viewpoint of obtaining an inorganic filler with a low crystalline silica content, it is preferable to perform the melting treatment in the melting method a plurality of times (for example, twice). In addition, the highly amorphous small-diameter inorganic filler may be an amorphous inorganic filler containing no crystalline component, such as amorphous silica, as a raw material.
 本発明者らの検討の結果、無機充填材がシリカである場合、溶融処理の実施を複数回行うと、結晶性シリカ含有率が低いシリカ(以下、「高非晶質小径シリカ」ともいう)が得られる傾向にあることがシリカの種類によらず判明した。そして、得られた無機充填材における結晶性シリカ含有率が上述した範囲内にあるかどうかは、斯かる結晶性シリカ含有率を上述した方法によって算出することにより容易に確認することができ、結晶性シリカ含有率が上述した範囲内にない場合には、溶融工程の回数を増やすなどして初期の結晶性シリカ含有率が得られるようにすればよい。 As a result of studies by the present inventors, when the inorganic filler is silica, if the melting treatment is performed multiple times, silica with a low crystalline silica content (hereinafter also referred to as "highly amorphous small-diameter silica") was found to tend to be obtained regardless of the type of silica. Then, whether or not the crystalline silica content in the obtained inorganic filler is within the above-described range can be easily confirmed by calculating the crystalline silica content by the above-described method. If the crystalline silica content is not within the above range, the initial crystalline silica content may be obtained by, for example, increasing the number of melting steps.
 樹脂組成物中の不揮発成分100質量%に対して、高非晶質小径無機充填材の量は、特に限定されるものではないが、反りが抑制された硬化物を得る観点からは、30質量%以上、好ましくは40質量%以上、より好ましくは50質量%以上、さらに好ましくは50質量%超であり、60質量%以上、65質量%以上、70質量%以上、75質量%以上又は80質量%以上としてもよい。高非晶質小径無機充填材の量は、特に限定されるものではないが、樹脂組成物中の不揮発成分100質量%に対して、96質量%以下、95質量%以下、94質量%以下又は93質量%以下とし得る。このような範囲の量の高非晶質小径無機充填材を含む樹脂組成物の硬化物は、反りの発生が抑制されている。また、このような範囲の量の高非晶質小径無機充填材を含む樹脂組成物の硬化物は、熱膨張係数を効果的に小さくできる。 The amount of the highly amorphous small-diameter inorganic filler relative to 100% by mass of the non-volatile component in the resin composition is not particularly limited, but from the viewpoint of obtaining a cured product with suppressed warpage, it is 30% by mass. % or more, preferably 40% by mass or more, more preferably 50% by mass or more, more preferably more than 50% by mass, and 60% by mass or more, 65% by mass or more, 70% by mass or more, 75% by mass or more, or 80% by mass % or more. The amount of the highly amorphous small-diameter inorganic filler is not particularly limited, but is 96% by mass or less, 95% by mass or less, or 94% by mass or less relative to 100% by mass of the nonvolatile components in the resin composition. It can be 93% by mass or less. A cured product of a resin composition containing a highly amorphous small-diameter inorganic filler in such an amount is suppressed from warping. In addition, the cured product of the resin composition containing the highly amorphous small-diameter inorganic filler in such a range can effectively reduce the coefficient of thermal expansion.
 樹脂組成物中の不揮発成分100体積%に対して、高非晶質小径無機充填材の量は、特に限定されるものではないが、反りが抑制された硬化物を得る観点からは、50体積%以上、好ましくは55体積%以上、より好ましくは60体積%以上、さらに好ましくは65体積%超であり、66体積%以上、67体積%以上又は68体積%以上としてもよい。本発明の所期の効果を高める観点からは、高非晶質小径無機充填材の量は、樹脂組成物中の不揮発成分100体積%に対して、95体積%以下、90体積%以下、85体積%以下又は83体積%以下とし得る。このような範囲の量の高非晶質小径無機充填材を含む樹脂組成物の硬化物は、熱膨張係数を効果的に小さくできる。 The amount of the highly amorphous small-diameter inorganic filler relative to 100% by volume of the non-volatile component in the resin composition is not particularly limited, but from the viewpoint of obtaining a cured product with suppressed warpage, it is 50% by volume. % or more, preferably 55 vol% or more, more preferably 60 vol% or more, still more preferably 65 vol% or more, and may be 66 vol% or more, 67 vol% or more, or 68 vol% or more. From the viewpoint of enhancing the intended effects of the present invention, the amount of the highly amorphous small-diameter inorganic filler is 95% by volume or less, 90% by volume or less, 85% by volume or less, relative to 100% by volume of the nonvolatile components in the resin composition. It can be vol % or less or 83 vol % or less. A cured product of a resin composition containing a highly amorphous small-diameter inorganic filler in such a range can effectively reduce the coefficient of thermal expansion.
 [(C)硬化剤]
 本発明の樹脂組成物は、好ましくは(C)硬化剤を含有する。(C)硬化剤は、通常、(A)硬化性樹脂と反応して樹脂組成物を硬化する機能を有する。この(C)硬化剤としては、活性エステル系硬化剤、フェノール系硬化剤、ベンゾオキサジン系硬化剤、酸無水物系硬化剤、アミン系硬化剤、シアネートエステル系硬化剤などが挙げられる。このうち、一実施形態では、酸無水物系硬化剤、アミン系硬化剤及びフェノール系硬化剤からなる群より選ばれる少なくとも1種が(C)硬化剤として用いられる。酸無水物系硬化剤、アミン系硬化剤又はフェノール系硬化剤を用いる場合、通常は、硬化物の反りを抑制できる。硬化剤は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
[(C) Curing agent]
The resin composition of the present invention preferably contains (C) a curing agent. (C) Curing agent usually has the function of reacting with (A) curable resin to cure the resin composition. The curing agent (C) includes active ester curing agents, phenol curing agents, benzoxazine curing agents, acid anhydride curing agents, amine curing agents, and cyanate ester curing agents. Among these, in one embodiment, at least one selected from the group consisting of acid anhydride-based curing agents, amine-based curing agents, and phenol-based curing agents is used as (C) the curing agent. When using an acid anhydride-based curing agent, an amine-based curing agent, or a phenol-based curing agent, warpage of the cured product can generally be suppressed. One type of curing agent may be used alone, or two or more types may be used in combination.
 (C)硬化剤としては、液状硬化剤及び固体状硬化剤から選択された1種以上を用いることができ、液状硬化剤を用いることが好ましい。一実施形態では、(C)硬化剤は、液状硬化剤からなる。他の実施形態では、(C)硬化剤は、固体状硬化剤からなる。
「液状硬化剤」とは、温度20℃で液状の硬化剤をいい、「固体状硬化剤」とは、温度20℃で固体状の硬化剤いう。
As the curing agent (C), one or more selected from liquid curing agents and solid curing agents can be used, and liquid curing agents are preferably used. In one embodiment, (C) the curing agent comprises a liquid curing agent. In another embodiment, (C) the curing agent comprises a solid curing agent.
"Liquid curing agent" refers to a curing agent that is liquid at a temperature of 20°C, and "solid curing agent" refers to a curing agent that is solid at a temperature of 20°C.
 酸無水物系硬化剤としては、例えば、1分子内中に1個以上の酸無水物基を有する硬化剤が挙げられ、1分子内中に2個以上の酸無水物基を有する硬化剤が好ましい。酸無水物系硬化剤の具体例としては、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、4-メチルヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチルナジック酸無水物、水素化メチルナジック酸無水物、トリアルキルテトラヒドロ無水フタル酸、ドデセニル無水コハク酸、5-(2,5-ジオキソテトラヒドロ-3-フラニル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、無水トリメリット酸、無水ピロメリット酸、ベンソフェノンテトラカルボン酸二無水物、ビフェニルテトラカルボン酸二無水物、ナフタレンテトラカルボン酸二無水物、オキシジフタル酸二無水物、3,3’-4,4’-ジフェニルスルホンテトラカルボン酸二無水物、1,3,3a,4,5,9b-ヘキサヒドロ-5-(テトラヒドロ-2,5-ジオキソ-3-フラニル)-ナフト[1,2-C]フラン-1,3-ジオン、エチレングリコールビス(アンヒドロトリメリテート)、スチレンとマレイン酸とが共重合したスチレン・マレイン酸樹脂などのポリマー型の酸無水物などが挙げられる。酸無水物系硬化剤の市販品としては、例えば、新日本理化社製の「HNA-100」、「MH-700」、「MTA-15」、「DDSA」、「OSA」;三菱ケミカル社製の「YH-306」、「YH-307」;日立化成社製の「HN-2200」、「HN-5500」;等が挙げられる。 Acid anhydride-based curing agents include, for example, curing agents having one or more acid anhydride groups in one molecule, and curing agents having two or more acid anhydride groups in one molecule. preferable. Specific examples of acid anhydride curing agents include phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, 4-methylhexahydrophthalic anhydride, methylhexahydrophthalic anhydride, and methylnazic. acid anhydride, hydrogenated methylnadic anhydride, trialkyltetrahydrophthalic anhydride, dodecenylsuccinic anhydride, 5-(2,5-dioxotetrahydro-3-furanyl)-3-methyl-3-cyclohexene-1, 2-dicarboxylic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenonetetracarboxylic dianhydride, biphenyltetracarboxylic dianhydride, naphthalenetetracarboxylic dianhydride, oxydiphthalic dianhydride, 3 ,3′-4,4′-diphenylsulfonetetracarboxylic dianhydride, 1,3,3a,4,5,9b-hexahydro-5-(tetrahydro-2,5-dioxo-3-furanyl)-naphtho [ Polymer-type acid anhydrides such as 1,2-C]furan-1,3-dione, ethylene glycol bis(anhydrotrimellitate), and styrene/maleic acid resin obtained by copolymerizing styrene and maleic acid. be done. Examples of commercially available acid anhydride curing agents include "HNA-100", "MH-700", "MTA-15", "DDSA" and "OSA" manufactured by Shin Nippon Rika; "YH-306" and "YH-307" manufactured by Hitachi Chemical; "HN-2200" and "HN-5500" manufactured by Hitachi Chemical;
 アミン系硬化剤としては、例えば、1分子内中に1個以上、好ましくは2個以上のアミノ基を有する硬化剤が挙げられる。その具体例としては、脂肪族アミン類、ポリエーテルアミン類、脂環式アミン類、芳香族アミン類等が挙げられ、中でも、芳香族アミン類が好ましい。アミン系硬化剤は、第1級アミン又は第2級アミンが好ましく、第1級アミンがより好ましい。アミン系硬化剤の具体例としては、4,4’-メチレンビス(2,6-ジメチルアニリン)、ジフェニルジアミノスルホン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、m-フェニレンジアミン、m-キシリレンジアミン、ジエチルトルエンジアミン、4,4’-ジアミノジフェニルエーテル、3,3’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシベンジジン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、3,3-ジメチル-5,5-ジエチル-4,4-ジフェニルメタンジアミン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス(4-(4-アミノフェノキシ)フェニル)スルホン、ビス(4-(3-アミノフェノキシ)フェニル)スルホン、等が挙げられる。アミン系硬化剤は市販品を用いてもよく、例えば、セイカ社製「SEIKACURE-S」、日本化薬社製の「KAYABOND C-200S」、「KAYABOND C-100」、「カヤハードA-A」、「カヤハードA-B」、「カヤハードA-S」、三菱ケミカル社製の「エピキュアW」、住友精化社製「DTDA」等が挙げられる。 Amine curing agents include, for example, curing agents having one or more, preferably two or more amino groups in one molecule. Specific examples thereof include aliphatic amines, polyetheramines, alicyclic amines, aromatic amines, etc. Among them, aromatic amines are preferred. Amine-based curing agents are preferably primary amines or secondary amines, more preferably primary amines. Specific examples of amine-based curing agents include 4,4′-methylenebis(2,6-dimethylaniline), diphenyldiaminosulfone, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylsulfone, and 3,3′. -diaminodiphenyl sulfone, m-phenylenediamine, m-xylylenediamine, diethyltoluenediamine, 4,4'-diaminodiphenyl ether, 3,3'-dimethyl-4,4'-diaminobiphenyl, 2,2'-dimethyl- 4,4'-diaminobiphenyl, 3,3'-dihydroxybenzidine, 2,2-bis(3-amino-4-hydroxyphenyl)propane, 3,3-dimethyl-5,5-diethyl-4,4-diphenylmethane Diamine, 2,2-bis(4-aminophenyl)propane, 2,2-bis(4-(4-aminophenoxy)phenyl)propane, 1,3-bis(3-aminophenoxy)benzene, 1,3- bis(4-aminophenoxy)benzene, 1,4-bis(4-aminophenoxy)benzene, 4,4′-bis(4-aminophenoxy)biphenyl, bis(4-(4-aminophenoxy)phenyl)sulfone, bis(4-(3-aminophenoxy)phenyl)sulfone, and the like. Commercially available amine-based curing agents may be used, for example, "SEIKACURE-S" manufactured by Seika, "KAYABOND C-200S", "KAYABOND C-100" and "Kayahard AA" manufactured by Nippon Kayaku. , “Kayahard AB”, “Kayahard AS”, Mitsubishi Chemical “Epicure W”, Sumitomo Seika “DTDA”, and the like.
 フェノール系硬化剤としては、ベンゼン環、ナフタレン環等の芳香環に結合した水酸基を1分子中に1個以上、好ましくは2個以上有する硬化剤が挙げられる。中でも、ベンゼン環に結合した水酸基を有する化合物が好ましい。また、耐熱性及び耐水性の観点からは、ノボラック構造を有するフェノール系硬化剤が好ましい。さらに、密着性の観点からは、含窒素フェノール系硬化剤が好ましく、トリアジン骨格含有フェノール系硬化剤がより好ましい。特に、耐熱性、耐水性、及び密着性を高度に満足させる観点からは、トリアジン骨格含有フェノールノボラック硬化剤が好ましい。 Phenolic curing agents include curing agents having one or more, preferably two or more, hydroxyl groups bonded to aromatic rings such as benzene rings and naphthalene rings in one molecule. Among them, a compound having a hydroxyl group bonded to a benzene ring is preferred. From the viewpoint of heat resistance and water resistance, a phenol-based curing agent having a novolac structure is preferred. Furthermore, from the viewpoint of adhesion, a nitrogen-containing phenolic curing agent is preferable, and a triazine skeleton-containing phenolic curing agent is more preferable. In particular, a triazine skeleton-containing phenol novolak curing agent is preferable from the viewpoint of highly satisfying heat resistance, water resistance, and adhesion.
 フェノール系硬化剤の具体例としては、明和化成社製の「MEH-7700」、「MEH-7810」、「MEH-7851」、「MEH-8000H」;日本化薬社製の「NHN」、「CBN」、「GPH」;DIC社製の「TD-2090」、「TD-2090-60M」、「LA-7052」、「LA-7054」、「LA-1356」、「LA-3018」、「LA-3018-50P」、「EXB-9500」、「HPC-9500」、「KA-1160」、「KA-1163」、「KA-1165」;群栄化学社製の「GDP-6115L」、「GDP-6115H」、「ELPC75」;シグマアルドリッチ社製の「2,2-ジアリルビスフェノールA」等が挙げられる。 Specific examples of phenol-based curing agents include "MEH-7700", "MEH-7810", "MEH-7851", and "MEH-8000H" manufactured by Meiwa Kasei; CBN", "GPH"; DIC's "TD-2090", "TD-2090-60M", "LA-7052", "LA-7054", "LA-1356", "LA-3018", " LA-3018-50P", "EXB-9500", "HPC-9500", "KA-1160", "KA-1163", "KA-1165"; GDP-6115H", "ELPC75"; and "2,2-diallylbisphenol A" manufactured by Sigma-Aldrich.
 (C)硬化剤の活性基当量は、好ましくは50g/eq.~3000g/eq.、より好ましくは100g/eq.~1000g/eq.、さらに好ましくは100g/eq.~500g/eq.、特に好ましくは100g/eq.~300g/eq.である。活性基当量は、活性基1当量あたりの硬化剤の質量を表す。 (C) The active group equivalent of the curing agent is preferably 50 g/eq. ~3000g/eq. , more preferably 100 g/eq. ~1000g/eq. , more preferably 100 g/eq. ~500 g/eq. , particularly preferably 100 g/eq. ~300 g/eq. is. Active group equivalents represent the mass of curing agent per equivalent of active groups.
 (C)硬化剤の量は、その活性基数が、(A)硬化性樹脂の反応基数に応じて定められることが好ましい。例えば、(C)硬化剤の活性基数は、(A)硬化性樹脂の反応基数を1とした場合、好ましくは0.1以上、より好ましくは0.3以上、更に好ましくは0.5以上であり、好ましくは5.0以下、より好ましくは4.0以下、更に好ましくは3.0以下である。ここで、「硬化性樹脂の反応基数」とは、樹脂組成物中に存在する硬化性樹脂の不揮発成分の質量を反応基当量で除した値を全て合計した値を表す。また、「(C)硬化剤の活性基数」とは、樹脂組成物中に存在する(C)硬化剤の不揮発成分の質量を活性基当量で除した値を全て合計した値を表す。 The amount of the (C) curing agent is preferably determined according to the number of active groups of the (A) curable resin. For example, the number of active groups of the (C) curing agent is preferably 0.1 or more, more preferably 0.3 or more, and still more preferably 0.5 or more when the number of reactive groups of the (A) curable resin is 1. Yes, preferably 5.0 or less, more preferably 4.0 or less, still more preferably 3.0 or less. Here, "the number of reactive groups of the curable resin" means the sum of all the values obtained by dividing the mass of the non-volatile component of the curable resin present in the resin composition by the reactive group equivalent. In addition, "the number of active groups of the (C) curing agent" represents the sum of all the values obtained by dividing the mass of the non-volatile component of the (C) curing agent present in the resin composition by the active group equivalent.
 上述した(C)硬化剤の活性基数の(A)硬化性樹脂の反応基数に対する比の値の範囲を満たすために、(C)成分の(A)成分に対する質量比((A):(C))が1:0.01~1:10の範囲内にあることが好ましい。斯かる質量比は、より好ましくは、1:0.05~1:9の範囲内であり、さらに好ましくは、1:0.1~1:8の範囲内である。 In order to satisfy the above-described ratio of the number of active groups of the curing agent (C) to the number of reactive groups of the curable resin (A), the mass ratio of the component (C) to the component (A) ((A):(C )) is preferably in the range of 1:0.01 to 1:10. Such mass ratio is more preferably in the range of 1:0.05 to 1:9, more preferably in the range of 1:0.1 to 1:8.
 樹脂組成物中の不揮発成分100質量%に対して、(C)硬化剤の量は、好ましくは0.05質量%以上、より好ましくは0.1質量%以上、特に好ましくは0.2質量%以上であり、好ましくは25質量%以下、より好ましくは20質量%以下、さらに好ましくは15質量%以下である。 The amount of the curing agent (C) is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, and particularly preferably 0.2% by mass, based on 100% by mass of the non-volatile components in the resin composition. or more, preferably 25% by mass or less, more preferably 20% by mass or less, and even more preferably 15% by mass or less.
 [(D)その他の添加剤]
 本発明の樹脂組成物は、さらに、(D)その他の添加剤を含有していてもよい。その他の添加剤の第1の例としては、硬化促進剤、シランカップリング剤、ラジカル重合性化合物、ラジカル重合開始剤、反応性官能基を有するポリエーテル骨格含有化合物、高分子量成分が挙げられる。
[(D) Other additives]
The resin composition of the present invention may further contain (D) other additives. A first example of other additives includes a curing accelerator, a silane coupling agent, a radical polymerizable compound, a radical polymerization initiator, a polyether skeleton-containing compound having a reactive functional group, and a high molecular weight component.
 (硬化促進剤)
 本発明の樹脂組成物は、更に任意の成分として硬化促進剤を含んでいてもよい。硬化促進剤によれば、樹脂組成物の硬化時間を効率的に調整することができる。
(Curing accelerator)
The resin composition of the present invention may further contain a curing accelerator as an optional component. The curing accelerator can efficiently adjust the curing time of the resin composition.
 硬化促進剤としては、例えば、リン系硬化促進剤、アミン系硬化促進剤、イミダゾール系硬化促進剤、グアニジン系硬化促進剤、金属系硬化促進剤等が挙げられる。中でも、イミダゾール系硬化促進剤が好ましい。硬化促進剤は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 Examples of curing accelerators include phosphorus-based curing accelerators, amine-based curing accelerators, imidazole-based curing accelerators, guanidine-based curing accelerators, metal-based curing accelerators, and the like. Among them, imidazole-based curing accelerators are preferred. The curing accelerator may be used alone or in combination of two or more.
 リン系硬化促進剤としては、例えば、リフェニルホスフィン、ホスホニウムボレート化合物、テトラフェニルホスホニウムテトラフェニルボレート、n-ブチルホスホニウムテトラフェニルボレート、テトラブチルホスホニウムデカン酸塩、(4-メチルフェニル)トリフェニルホスホニウムチオシアネート、テトラフェニルホスホニウムチオシアネート、ブチルトリフェニルホスホニウムチオシアネート等が挙げられ、トリフェニルホスフィン、テトラブチルホスホニウムデカン酸塩が好ましい。 Phosphorus-based curing accelerators include, for example, rephenylphosphine, phosphonium borate compounds, tetraphenylphosphonium tetraphenylborate, n-butylphosphonium tetraphenylborate, tetrabutylphosphonium decanoate, (4-methylphenyl)triphenylphosphonium thiocyanate. , tetraphenylphosphonium thiocyanate, and butyltriphenylphosphonium thiocyanate, and triphenylphosphine and tetrabutylphosphonium decanoate are preferred.
 アミン系硬化促進剤としては、例えば、トリエチルアミン、トリブチルアミン等のトリアルキルアミン、4-ジメチルアミノピリジン(DMAP)、ベンジルジメチルアミン、2,4,6,-トリス(ジメチルアミノメチル)フェノール、1,8-ジアザビシクロ(5,4,0)-ウンデセン、1,8-ジアザビシクロ[5,4,0]ウンデセン-7,4-ジメチルアミノピリジン、2,4,6-トリス(ジメチルアミノメチル)フェノール等が挙げられ、4-ジメチルアミノピリジン、1,8-ジアザビシクロ(5,4,0)-ウンデセンが好ましい。 Examples of amine curing accelerators include trialkylamines such as triethylamine and tributylamine, 4-dimethylaminopyridine (DMAP), benzyldimethylamine, 2,4,6-tris(dimethylaminomethyl)phenol, 1, 8-diazabicyclo(5,4,0)-undecene, 1,8-diazabicyclo[5,4,0]undecene-7,4-dimethylaminopyridine, 2,4,6-tris(dimethylaminomethyl)phenol and the like 4-dimethylaminopyridine and 1,8-diazabicyclo(5,4,0)-undecene are preferred.
 イミダゾール系硬化促進剤としては、例えば、2-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2,3-ジヒドロ-1H-ピロロ[1,2-a]ベンズイミダゾール、1-ドデシル-2-メチル-3-ベンジルイミダゾリウムクロライド、2-メチルイミダゾリン、2-フェニルイミダゾリン等のイミダゾール化合物及びイミダゾール化合物とエポキシ樹脂とのアダクト体が挙げられ、2-エチル-4-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾールが好ましい。 Examples of imidazole curing accelerators include 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl- 2-phenylimidazolium trimellitate, 2,4-diamino-6-[2'-methylimidazolyl-(1')]-ethyl-s-triazine, 2,4-diamino-6-[2'-undecyl imidazolyl-(1′)]-ethyl-s-triazine, 2,4-diamino-6-[2′-ethyl-4′-methylimidazolyl-(1′)]-ethyl-s-triazine, 2,4- Diamino-6-[2'-methylimidazolyl-(1')]-ethyl-s-triazine isocyanurate, 2-phenylimidazole isocyanurate, 2-phenyl-4,5-dihydroxymethylimidazole, 2- Phenyl-4-methyl-5-hydroxymethylimidazole, 2,3-dihydro-1H-pyrrolo[1,2-a]benzimidazole, 1-dodecyl-2-methyl-3-benzylimidazolium chloride, 2-methylimidazoline , 2-phenylimidazoline and the like, and adducts of imidazole compounds and epoxy resins, with 2-ethyl-4-methylimidazole and 1-benzyl-2-phenylimidazole being preferred.
 イミダゾール系硬化促進剤としては、市販品を用いてもよく、例えば、三菱ケミカル社製の「P200-H50」、四国化成工業社製の「キュアゾール2MZ」、「2E4MZ」、「Cl1Z」、「Cl1Z-CN」、「Cl1Z-CNS」、「Cl1Z-A」、「2MZ-OK」、「2MA-OK」、「2MA-OK-PW」、「2PHZ」等が挙げられる。 As the imidazole-based curing accelerator, a commercially available product may be used. —CN”, “Cl1Z-CNS”, “Cl1Z-A”, “2MZ-OK”, “2MA-OK”, “2MA-OK-PW”, “2PHZ” and the like.
 グアニジン系硬化促進剤としては、例えば、ジシアンジアミド、1-メチルグアニジン、1-エチルグアニジン、1-シクロヘキシルグアニジン、1-フェニルグアニジン、1-(o-トリル)グアニジン、ジメチルグアニジン、ジフェニルグアニジン、トリメチルグアニジン、テトラメチルグアニジン、ペンタメチルグアニジン、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、1-メチルビグアニド、1-エチルビグアニド、1-n-ブチルビグアニド、1-n-オクタデシルビグアニド、1,1-ジメチルビグアニド、1,1-ジエチルビグアニド、1-シクロヘキシルビグアニド、1-アリルビグアニド、1-フェニルビグアニド、1-(o-トリル)ビグアニド等が挙げられ、ジシアンジアミド、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エンが好ましい。 Guanidine curing accelerators include, for example, dicyandiamide, 1-methylguanidine, 1-ethylguanidine, 1-cyclohexylguanidine, 1-phenylguanidine, 1-(o-tolyl)guanidine, dimethylguanidine, diphenylguanidine, trimethylguanidine, Tetramethylguanidine, Pentamethylguanidine, 1,5,7-triazabicyclo[4.4.0]dec-5-ene, 7-methyl-1,5,7-triazabicyclo[4.4.0] Dec-5-ene, 1-methylbiguanide, 1-ethylbiguanide, 1-n-butylbiguanide, 1-n-octadecylbiguanide, 1,1-dimethylbiguanide, 1,1-diethylbiguanide, 1-cyclohexylbiguanide, 1 -allylbiguanide, 1-phenylbiguanide, 1-(o-tolyl)biguanide and the like, with dicyandiamide and 1,5,7-triazabicyclo[4.4.0]dec-5-ene being preferred.
 金属系硬化促進剤としては、例えば、コバルト、銅、亜鉛、鉄、ニッケル、マンガン、スズ等の金属の、有機金属錯体又は有機金属塩が挙げられる。有機金属錯体の具体例としては、コバルト(II)アセチルアセトナート、コバルト(III)アセチルアセトナート等の有機コバルト錯体、銅(II)アセチルアセトナート等の有機銅錯体、亜鉛(II)アセチルアセトナート等の有機亜鉛錯体、鉄(III)アセチルアセトナート等の有機鉄錯体、ニッケル(II)アセチルアセトナート等の有機ニッケル錯体、マンガン(II)アセチルアセトナート等の有機マンガン錯体等が挙げられる。有機金属塩としては、例えば、オクチル酸亜鉛、オクチル酸スズ、ナフテン酸亜鉛、ナフテン酸コバルト、ステアリン酸スズ、ステアリン酸亜鉛等が挙げられる。 Examples of metal-based curing accelerators include organometallic complexes or organometallic salts of metals such as cobalt, copper, zinc, iron, nickel, manganese, and tin. Specific examples of organometallic complexes include organocobalt complexes such as cobalt (II) acetylacetonate and cobalt (III) acetylacetonate, organocopper complexes such as copper (II) acetylacetonate, and zinc (II) acetylacetonate. organic zinc complexes such as iron (III) acetylacetonate; organic nickel complexes such as nickel (II) acetylacetonate; organic manganese complexes such as manganese (II) acetylacetonate; Examples of organic metal salts include zinc octoate, tin octoate, zinc naphthenate, cobalt naphthenate, tin stearate, and zinc stearate.
 樹脂組成物中の不揮発成分100質量%に対して、硬化促進剤の量は、0質量%以上であり、特に限定されるものではないが、好ましくは0.01質量%以上、より好ましくは0.05質量%以上、特に好ましくは0.1質量%以上であり、好ましくは5質量%以下、より好ましくは4質量%以下、さらに好ましくは3質量%以下である。 With respect to 100% by mass of non-volatile components in the resin composition, the amount of the curing accelerator is 0% by mass or more, and is not particularly limited, but is preferably 0.01% by mass or more, more preferably 0. 05% by mass or more, particularly preferably 0.1% by mass or more, preferably 5% by mass or less, more preferably 4% by mass or less, and even more preferably 3% by mass or less.
 (シランカップリング剤)
 本発明の樹脂組成物は、更に任意の成分としてシランカップリング剤を含んでいてもよい。ただし、シランカップリング剤が無機充填材の表面処理剤として用いられる場合、表面処理剤で処理された無機充填材は上述した(B)成分に分類される。任意の成分としてシランカップリング剤を含むことにより、樹脂成分と無機充填材との結合が期待できる。
(Silane coupling agent)
The resin composition of the present invention may further contain a silane coupling agent as an optional component. However, when the silane coupling agent is used as the surface treatment agent for the inorganic filler, the inorganic filler treated with the surface treatment agent is classified as the component (B) described above. By including a silane coupling agent as an optional component, bonding between the resin component and the inorganic filler can be expected.
 シランカップリング剤としては、例えば、アミノシラン系カップリング剤、エポキシシラン系カップリング剤、メルカプトシラン系カップリング剤、アルコキシシラン化合物、オルガノシラザン化合物、チタネート系カップリング剤などが挙げられる。中でも、エポキシ基を含有するエポキシシラン系カップリング剤、及び、メルカプト基を含有するメルカプトシラン系カップリング剤が好ましく、エポキシシラン系カップリング剤が特に好ましい。また、シランカップリング剤は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。一実施形態では、任意の成分として、単数種類のシランカップリング剤を含む。他の実施形態では、任意の成分として、複数種類、例えば2種類のシランカップリング剤を含む。本発明の樹脂組成物は、複数種類のシランカップリング剤を含むことが好ましく、(B)成分の表面処理剤として使用されるシランカップリング剤と該任意の成分として使用されるシランカップリング剤とをあわせて複数種類のシランカップリング剤を含むことが好ましい。 Silane coupling agents include, for example, aminosilane coupling agents, epoxysilane coupling agents, mercaptosilane coupling agents, alkoxysilane compounds, organosilazane compounds, and titanate coupling agents. Among them, an epoxysilane-based coupling agent containing an epoxy group and a mercaptosilane-based coupling agent containing a mercapto group are preferable, and an epoxysilane-based coupling agent is particularly preferable. Moreover, a silane coupling agent may be used individually by 1 type, and may be used in combination of 2 or more types. In one embodiment, as an optional component, one type of silane coupling agent is included. Other embodiments include multiple, eg, two, silane coupling agents as optional ingredients. The resin composition of the present invention preferably contains a plurality of types of silane coupling agents, and the silane coupling agent used as the surface treatment agent of component (B) and the silane coupling agent used as the optional component It is preferable to include a plurality of types of silane coupling agents in combination with the above.
 シランカップリング剤としては、例えば、市販品を用いてもよい。シランカップリング剤の市販品としては、例えば、信越化学工業社製「KBM403」(3-グリシドキシプロピルトリメトキシシラン)、信越化学工業社製「KBM803」(3-メルカプトプロピルトリメトキシシラン)、信越化学工業社製「KBE903」(3-アミノプロピルトリエトキシシラン)、信越化学工業社製「KBM573」(N-フェニル-3-アミノプロピルトリメトキシシラン)、信越化学工業社製「SZ-31」(ヘキサメチルジシラザン)、信越化学工業社製「KBM103」(フェニルトリメトキシシラン)、信越化学工業社製「KBM-4803」(長鎖エポキシ型シランカップリング剤)、信越化学工業社製「KBM-7103」(3,3,3-トリフルオロプロピルトリメトキシシラン)、信越化学工業社製「KBM503」(3-メタクリロキシプロピルトリメトキシシラン)、信越化学工業社製「KBM5783」等が挙げられる。 As the silane coupling agent, for example, a commercially available product may be used. Examples of commercially available silane coupling agents include "KBM403" (3-glycidoxypropyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd., "KBM803" (3-mercaptopropyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd., Shin-Etsu Chemical Co., Ltd. "KBE903" (3-aminopropyltriethoxysilane), Shin-Etsu Chemical Co., Ltd. "KBM573" (N-phenyl-3-aminopropyltrimethoxysilane), Shin-Etsu Chemical Co., Ltd. "SZ-31" (Hexamethyldisilazane), "KBM103" (phenyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd., "KBM-4803" manufactured by Shin-Etsu Chemical Co., Ltd. (long-chain epoxy type silane coupling agent), "KBM" manufactured by Shin-Etsu Chemical Co., Ltd. -7103” (3,3,3-trifluoropropyltrimethoxysilane), “KBM503” (3-methacryloxypropyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd., “KBM5783” manufactured by Shin-Etsu Chemical Co., Ltd., and the like.
 樹脂組成物中の不揮発成分100質量%に対して、シランカップリング剤の量は、0質量%以上であり、好ましくは0.01質量%以上、0.05質量%以上又は0.1質量%以上であり、好ましくは10質量%以下、5質量%以下又は3質量%以下である。 The amount of the silane coupling agent is 0% by mass or more, preferably 0.01% by mass or more, 0.05% by mass or more, or 0.1% by mass with respect to 100% by mass of non-volatile components in the resin composition. or more, preferably 10% by mass or less, 5% by mass or less, or 3% by mass or less.
 樹脂組成物中の樹脂成分100質量%に対して、シランカップリング剤の量は、0質量%以上であり、好ましくは0.01質量%以上、0.1質量%以上又は0.2質量%以上であり、好ましくは15質量%以下、10質量%以下又は5質量%以下である。 The amount of the silane coupling agent is 0% by mass or more, preferably 0.01% by mass or more, 0.1% by mass or more, or 0.2% by mass with respect to 100% by mass of the resin component in the resin composition. or more, preferably 15% by mass or less, 10% by mass or less, or 5% by mass or less.
 (ラジカル重合性化合物)
 本発明の樹脂組成物は、更に任意の成分としてラジカル重合性化合物を含んでいてもよい。ラジカル重合性化合物を(A)成分に分類してもよい。
(Radical polymerizable compound)
The resin composition of the present invention may further contain a radically polymerizable compound as an optional component. Radically polymerizable compounds may be classified as component (A).
 ラジカル重合性化合物としては、エチレン性不飽和結合を有する化合物を用いうる。このようなラジカル重合性化合物としては、例えば、ビニル基、アリル基、1-ブテニル基、2-ブテニル基、アクリロイル基、メタクリロイル基、フマロイル基、マレオイル基、ビニルフェニル基、スチリル基、シンナモイル基及びマレイミド基(2,5-ジヒドロ-2,5-ジオキソ-1H-ピロール-1-イル基)等のラジカル重合性基を有する化合物が挙げられる。ラジカル重合性化合物は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 A compound having an ethylenically unsaturated bond can be used as the radically polymerizable compound. Examples of such radically polymerizable compounds include vinyl groups, allyl groups, 1-butenyl groups, 2-butenyl groups, acryloyl groups, methacryloyl groups, fumaroyl groups, maleoyl groups, vinylphenyl groups, styryl groups, cinnamoyl groups and Compounds having a radically polymerizable group such as a maleimide group (2,5-dihydro-2,5-dioxo-1H-pyrrol-1-yl group) can be mentioned. The radically polymerizable compound may be used singly or in combination of two or more.
 ラジカル重合性化合物の具体例としては、1個又は2個以上のアクリロイル基及び/又はメタクリロイル基を有する(メタ)アクリル系ラジカル重合性化合物;芳香族炭素原子に直接結合した1個又は2個以上のビニル基を有するスチレン系ラジカル重合性化合物;1個又は2個以上のアリル基を有するアリル系ラジカル重合性化合物;1個又は2個以上のマレイミド基を有するマレイミド系ラジカル重合性化合物;などが挙げられる。中でも、(メタ)アクリル系ラジカル重合性化合物が好ましい。 Specific examples of radically polymerizable compounds include (meth)acrylic radically polymerizable compounds having one or more acryloyl groups and/or methacryloyl groups; a styrene radically polymerizable compound having a vinyl group; an allyl radically polymerizable compound having one or two or more allyl groups; a maleimide radically polymerizable compound having one or two or more maleimide groups; mentioned. Among them, (meth)acrylic radically polymerizable compounds are preferred.
 ラジカル重合性化合物は、ポリアルキレンオキシド構造を含むことが好ましい。ポリアルキレンオキシド構造を含むラジカル重合性化合物を用いることにより、樹脂組成物の硬化物の柔軟性を高めることができる。 The radically polymerizable compound preferably contains a polyalkylene oxide structure. By using a radically polymerizable compound containing a polyalkylene oxide structure, the flexibility of the cured product of the resin composition can be enhanced.
 ポリアルキレンオキシド構造は、式(1):-(RO)-で表されうる。式(1)において、nは、通常2以上の整数を表す。この整数nは、好ましくは4以上、より好ましくは9以上、さらに好ましくは11以上であり、通常101以下、好ましくは90以下、より好ましくは68以下、さらに好ましくは65以下である。式(1)において、Rは、それぞれ独立して、置換基を有していてもよいアルキレン基を表す。前記のアルキレン基の炭素原子数は、好ましくは1以上、より好ましくは2以上であり、好ましくは6以下、より好ましくは5以下、更に好ましくは4以下、更に好ましくは3以下であり、特に好ましくは2である。アルキレン基が有していてもよい置換基としては、例えば、ハロゲン原子、-OH、アルコキシ基、1級又は2級アミノ基、アリール基、-NH、-CN、-COOH、-C(O)H、-NO等が挙げられる。ただし、前記のアルキル基は、置換基を有さないことが好ましい。ポリアルキレンオキシド構造の具体例としては、ポリエチレンオキシド構造、ポリプロピレンオキシド構造、ポリn-ブチレンオキシド構造、ポリ(エチレンオキシド-co-プロピレンオキシド)構造、ポリ(エチレンオキシド-ran-プロピレンオキシド)構造、ポリ(エチレンオキシド-alt-プロピレンオキシド)構造及びポリ(エチレンオキシド-block-プロピレンオキシド)構造が挙げられる。 A polyalkylene oxide structure can be represented by Formula (1): —(R f O) n —. In formula (1), n usually represents an integer of 2 or more. The integer n is preferably 4 or more, more preferably 9 or more, still more preferably 11 or more, and usually 101 or less, preferably 90 or less, more preferably 68 or less, and still more preferably 65 or less. In Formula (1), each R f independently represents an optionally substituted alkylene group. The number of carbon atoms in the alkylene group is preferably 1 or more, more preferably 2 or more, preferably 6 or less, more preferably 5 or less, still more preferably 4 or less, still more preferably 3 or less, and particularly preferably is 2. Examples of substituents that the alkylene group may have include a halogen atom, —OH, an alkoxy group, a primary or secondary amino group, an aryl group, —NH 2 , —CN, —COOH, —C(O ) H, —NO 2 , and the like. However, it is preferable that the alkyl group does not have a substituent. Specific examples of polyalkylene oxide structures include polyethylene oxide structures, polypropylene oxide structures, poly n-butylene oxide structures, poly(ethylene oxide-co-propylene oxide) structures, poly(ethylene oxide-ran-propylene oxide) structures, poly(ethylene oxide -alt-propylene oxide) and poly(ethylene oxide-block-propylene oxide) structures.
 ラジカル重合性化合物が1分子中に含むポリアルキレンオキシド構造の数は、1でもよく、2以上でもよい。ラジカル重合性化合物が1分子中に含むポリアルキレンオキシド構造の数は、好ましくは2以上、より好ましくは4以上、更に好ましくは9以上、特に好ましくは11以上であり、好ましくは101以下、より好ましくは90以下、更に好ましくは68以下、特に好ましくは65以下である。ラジカル重合性化合物が1分子中に2以上のポリアルキレンオキシド構造を含む場合、それらのポリアルキレンオキシド構造は、互いに同一であってもよく、異なっていてもよい。 The number of polyalkylene oxide structures contained in one molecule of the radically polymerizable compound may be one, or two or more. The number of polyalkylene oxide structures contained in one molecule of the radically polymerizable compound is preferably 2 or more, more preferably 4 or more, still more preferably 9 or more, particularly preferably 11 or more, and preferably 101 or less, more preferably is 90 or less, more preferably 68 or less, and particularly preferably 65 or less. When the radically polymerizable compound contains two or more polyalkylene oxide structures in one molecule, those polyalkylene oxide structures may be the same or different.
 ポリアルキレンオキシド構造を含むラジカル重合性化合物の市販品の例を挙げると、新中村化学工業社製の単官能アクリレート「AM-90G」、「AM-130G」、「AMP-20GY」;2官能アクリレート「A-1000」、「A-B1206PE」、「A-BPE-20」、「A-BPE-30」;単官能メタクリレート「M-20G」、「M-40G」、「M-90G」、「M-130G」、「M-230G」;並びに、2官能メタクリレート「23G」、「BPE-900」、「BPE-1300N」、「1206PE」が挙げられる。また、別の例としては、共栄社化学社製の「ライトエステルBC」、「ライトエステル041MA」、「ライトアクリレートEC-A」、「ライトアクリレートEHDG-AT」;日立化成社製の「FA-023M」;日油社製の「ブレンマー(登録商標)PME-4000」、「ブレンマー(登録商標)50POEO-800B」、「ブレンマー(登録商標)PLE-200」、「ブレンマー(登録商標)PLE-1300」、「ブレンマー(登録商標)PSE-1300」、「ブレンマー(登録商標)43PAPE-600B」、「ブレンマー(登録商標)ANP-300」等が挙げられる。一実施形態では、ポリアルキレンオキシド構造を含むラジカル重合性化合物として、「M-130G」又は「BPE-1300N」が用いられる。 Examples of commercially available radically polymerizable compounds containing a polyalkylene oxide structure include monofunctional acrylates "AM-90G", "AM-130G" and "AMP-20GY" manufactured by Shin-Nakamura Chemical Co., Ltd.; bifunctional acrylates; "A-1000", "A-B1206PE", "A-BPE-20", "A-BPE-30"; monofunctional methacrylates "M-20G", "M-40G", "M-90G", " M-130G", "M-230G"; and bifunctional methacrylates "23G", "BPE-900", "BPE-1300N", "1206PE". Further, as another example, "Light Ester BC", "Light Ester 041MA", "Light Acrylate EC-A", "Light Acrylate EHDG-AT" manufactured by Kyoeisha Chemical Co., Ltd.; "FA-023M" manufactured by Hitachi Chemical Co., Ltd. "; "Blemmer (registered trademark) PME-4000", "Blemmer (registered trademark) 50POEO-800B", "Blemmer (registered trademark) PLE-200", "Blemmer (registered trademark) PLE-1300" manufactured by NOF Corporation , “Blemmer (registered trademark) PSE-1300”, “Blemmer (registered trademark) 43PAPE-600B”, “Blemmer (registered trademark) ANP-300” and the like. In one embodiment, “M-130G” or “BPE-1300N” is used as the radically polymerizable compound containing a polyalkylene oxide structure.
 ラジカル重合性化合物のエチレン性不飽和結合当量は、好ましくは20g/eq.~3000g/eq.、より好ましくは50g/eq.~2500g/eq.、さらに好ましくは70g/eq.~2000g/eq.、特に好ましくは90g/eq.~1500g/eq.である。エチレン性不飽和結合当量は、エチレン性不飽和結合1当量あたりのラジカル重合性化合物の質量を表す。 The ethylenically unsaturated bond equivalent of the radically polymerizable compound is preferably 20 g/eq. ~3000g/eq. , more preferably 50 g/eq. ~2500 g/eq. , more preferably 70 g/eq. ~2000 g/eq. , particularly preferably 90 g/eq. ~1500 g/eq. is. The ethylenically unsaturated bond equivalent represents the mass of the radically polymerizable compound per equivalent of ethylenically unsaturated bond.
 ラジカル重合性化合物の重量平均分子量(Mw)は、好ましくは150以上、より好ましくは250以上、更に好ましくは400以上であり、好ましくは40000以下、より好ましくは10000以下、さらに好ましくは5000以下、特に好ましくは3000以下である。 The weight average molecular weight (Mw) of the radically polymerizable compound is preferably 150 or more, more preferably 250 or more, still more preferably 400 or more, preferably 40000 or less, more preferably 10000 or less, still more preferably 5000 or less, especially Preferably it is 3000 or less.
 樹脂組成物中の不揮発成分100質量%に対して、ラジカル重合性化合物の量は、0質量%以上であり、好ましくは0.01質量%以上、0.05質量%以上又は0.1質量%以上であり、好ましくは15質量%以下、10質量%以下又は8質量%以下である。 The amount of the radically polymerizable compound is 0% by mass or more, preferably 0.01% by mass or more, 0.05% by mass or more, or 0.1% by mass with respect to 100% by mass of the non-volatile components in the resin composition. or more, preferably 15% by mass or less, 10% by mass or less, or 8% by mass or less.
 樹脂組成物中の樹脂成分100質量%に対して、ラジカル重合性化合物の量は、0質量%以上であり、好ましくは0.01質量%以上、0.1質量%以上又は0.2質量%以上であり、好ましくは25質量%以下、20質量%以下又は15質量%以下である。 The amount of the radical polymerizable compound is 0% by mass or more, preferably 0.01% by mass or more, 0.1% by mass or more, or 0.2% by mass with respect to 100% by mass of the resin component in the resin composition. or more, preferably 25% by mass or less, 20% by mass or less, or 15% by mass or less.
 (ラジカル重合開始剤)
 本発明の樹脂組成物は、更に任意の成分としてラジカル重合開始剤を含んでいてもよい。ラジカル重合開始剤としては、加熱時にフリーラジカルを発生させる熱重合開始剤が好ましい。樹脂組成物がラジカル重合性化合物を含む場合、通常、その樹脂組成物はラジカル重合開始剤を含む。ラジカル重合開始剤は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
(Radical polymerization initiator)
The resin composition of the present invention may further contain a radical polymerization initiator as an optional component. As the radical polymerization initiator, a thermal polymerization initiator that generates free radicals when heated is preferred. When the resin composition contains a radical polymerizable compound, the resin composition usually contains a radical polymerization initiator. The radical polymerization initiator may be used alone or in combination of two or more.
 ラジカル重合開始剤としては、例えば、過酸化物系ラジカル重合開始剤、アゾ系ラジカル重合開始剤等が挙げられる。中でも、過酸化物系ラジカル重合開始剤が好ましい。 Examples of radical polymerization initiators include peroxide-based radical polymerization initiators and azo-based radical polymerization initiators. Among them, a peroxide-based radical polymerization initiator is preferable.
 過酸化物系ラジカル重合開始剤としては、例えば、1,1,3,3-テトラメチルブチルハイドロパーオキサイド等のハイドロパーオキサイド化合物;tert-ブチルクミルパーオキサイド、ジ-tert-ブチルパーオキサイド、ジ-tert-ヘキシルパーオキサイド、ジクミルパーオキサイド、1,4-ビス(1-tert-ブチルパーオキシ-1-メチルエチル)ベンゼン、2,5-ジメチル-2,5-ビス(tert-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ビス(tert-ブチルパーオキシ)-3-ヘキシン等のジアルキルパーオキサイド化合物;ジラウロイルパーオキサイド、ジデカノイルパーオキサイド、ジシクロヘキシルパーオキシジカーボネート、ビス(4-tert-ブチルシクロヘキシル)パーオキシジカーボネート等のジアシルパーオキサイド化合物;tert-ブチルパーオキシアセテート、tert-ブチルパーオキシベンゾエート、tert-ブチルパーオキシイソプロピルモノカーボネート、tert-ブチルパーオキシ-2-エチルヘキサノエート、tert-ブチルパーオキシネオデカノエート、tert-ヘキシルパーオキシイソプロピルモノカーボネート、tert-ブチルパーオキシラウレート、(1,1-ジメチルプロピル)2-エチルパーヘキサノエート、tert-ブチル2-エチルパーヘキサノエート、tert-ブチル3,5,5-トリメチルパーヘキサノエート、tert-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、tert-ブチルパーオキシマレイン酸等のパーオキシエステル化合物;等が挙げられる。 Examples of peroxide-based radical polymerization initiators include hydroperoxide compounds such as 1,1,3,3-tetramethylbutyl hydroperoxide; tert-butyl cumyl peroxide, di-tert-butyl peroxide, di -tert-hexyl peroxide, dicumyl peroxide, 1,4-bis(1-tert-butylperoxy-1-methylethyl)benzene, 2,5-dimethyl-2,5-bis(tert-butylperoxy ) Dialkyl peroxide compounds such as hexane, 2,5-dimethyl-2,5-bis(tert-butylperoxy)-3-hexyne; dilauroyl peroxide, didecanoyl peroxide, dicyclohexylperoxydicarbonate, bis Diacyl peroxide compounds such as (4-tert-butylcyclohexyl) peroxydicarbonate; tert-butyl peroxyacetate, tert-butyl peroxybenzoate, tert-butyl peroxy isopropyl monocarbonate, tert-butyl peroxy-2- ethyl hexanoate, tert-butyl peroxyneodecanoate, tert-hexylperoxyisopropyl monocarbonate, tert-butyl peroxylaurate, (1,1-dimethylpropyl) 2-ethylperhexanoate, tert- Peroxy ester compounds such as butyl 2-ethyl perhexanoate, tert-butyl 3,5,5-trimethyl perhexanoate, tert-butyl peroxy-2-ethylhexyl monocarbonate, tert-butyl peroxymaleic acid; etc.
 アゾ系ラジカル重合開始剤としては、例えば、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、1-[(1-シアノ-1-メチルエチル)アゾ]ホルムアミド、2-フェニルアゾ-4-メトキシ-2,4-ジメチル-バレロニトリル等のアゾニトリル化合物;2,2’-アゾビス[2-メチル-N-[1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル]プロピオンアミド]、2,2’-アゾビス[2-メチル-N-[1,1-ビス(ヒドロキシメチル)エチル]プロピオンアミド]、2,2’-アゾビス[2-メチル-N-[2-(1-ヒドロキシブチル)]-プロピオンアミド]、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)-プロピオンアミド]、2,2’-アゾビス(2-メチルプロピオンアミド)ジハイドレート、2,2’-アゾビス[N-(2-プロペニル)-2-メチルプロピオンアミド]、2,2’-アゾビス(N-ブチル-2-メチルプロピオンアミド)、2,2’-アゾビス(N-シクロヘキシル-2-メチルプロピオンアミド)等のアゾアミド化合物;2,2’-アゾビス(2,4,4-トリメチルペンタン)、2,2’-アゾビス(2-メチルプロパン)等のアルキルアゾ化合物;等が挙げられる。 Examples of azo radical polymerization initiators include 2,2′-azobis(4-methoxy-2,4-dimethylvaleronitrile), 2,2′-azobis(2,4-dimethylvaleronitrile), 2,2 '-Azobisisobutyronitrile, 2,2'-azobis(2-methylbutyronitrile), 1,1'-azobis(cyclohexane-1-carbonitrile), 1-[(1-cyano-1-methyl Azonitrile compounds such as ethyl)azo]formamide, 2-phenylazo-4-methoxy-2,4-dimethyl-valeronitrile; 2,2′-azobis[2-methyl-N-[1,1-bis(hydroxymethyl) -2-hydroxyethyl]propionamide], 2,2′-azobis[2-methyl-N-[1,1-bis(hydroxymethyl)ethyl]propionamide], 2,2′-azobis[2-methyl- N-[2-(1-hydroxybutyl)]-propionamide], 2,2′-azobis[2-methyl-N-(2-hydroxyethyl)-propionamide], 2,2′-azobis(2- methylpropionamido) dihydrate, 2,2′-azobis[N-(2-propenyl)-2-methylpropionamide], 2,2′-azobis(N-butyl-2-methylpropionamide), 2,2′ - azoamide compounds such as azobis (N-cyclohexyl-2-methylpropionamide); 2,2'-azobis (2,4,4-trimethylpentane), alkyl azo such as 2,2'-azobis (2-methylpropane) compounds; and the like.
 ラジカル重合開始剤は、中温活性を有するものが好ましい。具体的には、ラジカル重合開始剤は、10時間半減期温度T10(℃)が、特定の低い温度範囲にあることが好ましい。前記の10時間半減期温度T10は、好ましくは50℃~110℃、より好ましくは50℃~100℃、更に好ましくは50℃~80℃である。このようなラジカル重合開始剤の市販品としては、例えば、アルケマ富士社製「ルペロックス531M80」、日油社製「パーヘキシル(登録商標)O」、及び、富士フイルム和光純薬社製「MAIB」が挙げられる。 The radical polymerization initiator preferably has mesothermal activity. Specifically, the radical polymerization initiator preferably has a 10-hour half-life temperature T10 (°C) within a specific low temperature range. The 10-hour half-life temperature T10 is preferably 50°C to 110°C, more preferably 50°C to 100°C, still more preferably 50°C to 80°C. Commercial products of such radical polymerization initiators include, for example, “Luperox 531M80” manufactured by Arkema Fuji Co., Ltd., “Perhexyl (registered trademark) O” manufactured by NOF Corporation, and “MAIB” manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. mentioned.
 樹脂組成物中の不揮発成分100質量%に対して、ラジカル重合開始剤の量は、特に限定されるものではないが、好ましくは0.01質量%以上、より好ましくは0.02質量%以上、特に好ましくは0.05質量%以上であり、好ましくは5質量%以下、より好ましくは2質量%以下、さらに好ましくは1質量%以下である。 Although the amount of the radical polymerization initiator is not particularly limited, it is preferably 0.01% by mass or more, more preferably 0.02% by mass or more, based on 100% by mass of the non-volatile components in the resin composition. It is particularly preferably 0.05% by mass or more, preferably 5% by mass or less, more preferably 2% by mass or less, and even more preferably 1% by mass or less.
 (反応性官能基を有するポリエーテル骨格含有化合物)
 本発明の樹脂組成物は、更に任意の成分として反応性官能基を有するポリエーテル骨格含有化合物を含んでいてもよい。反応性官能基を有するポリエーテル骨格含有化合物を(A)成分に分類してもよい。
(Polyether skeleton-containing compound having a reactive functional group)
The resin composition of the present invention may further contain a polyether skeleton-containing compound having a reactive functional group as an optional component. A polyether skeleton-containing compound having a reactive functional group may be classified as component (A).
 本発明の樹脂組成物は、更に任意の成分として反応性官能基を有するポリエーテル骨格含有化合物を含んでいてもよい。反応性官能基を有するポリエーテル骨格含有化合物によれば、樹脂組成物の硬化物の反りを抑制できる。反応性官能基を有するポリエーテル骨格含有化合物は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 The resin composition of the present invention may further contain a polyether skeleton-containing compound having a reactive functional group as an optional component. A polyether skeleton-containing compound having a reactive functional group can suppress warpage of a cured product of a resin composition. The polyether skeleton-containing compound having a reactive functional group may be used alone or in combination of two or more.
 反応性官能基を有するポリエーテル骨格含有化合物は、ポリエーテル骨格を有するポリマー化合物を表す。反応性官能基を有するポリエーテル骨格含有化合物に含まれるポリエーテル骨格は、エチレンオキシド単位及びプロピレンオキシド単位から選ばれる1種以上のモノマー単位で構成されたポリオキシアルキレン骨格であることが好ましい。よって、反応性官能基を有するポリエーテル骨格含有化合物は、ブチレンオキシド単位、フェニレンオキシド単位等の、炭素数4以上のモノマー単位を含むポリエーテル骨格を含まないことが好ましい。また、反応性官能基を有するポリエーテル骨格含有化合物は、反応性官能基としてヒドロキシ基を含有していてもよい。 A polyether skeleton-containing compound having a reactive functional group represents a polymer compound having a polyether skeleton. The polyether skeleton contained in the polyether skeleton-containing compound having a reactive functional group is preferably a polyoxyalkylene skeleton composed of one or more monomer units selected from ethylene oxide units and propylene oxide units. Therefore, the polyether skeleton-containing compound having a reactive functional group preferably does not contain a polyether skeleton containing monomer units having 4 or more carbon atoms, such as butylene oxide units and phenylene oxide units. Moreover, the polyether skeleton-containing compound having a reactive functional group may contain a hydroxy group as a reactive functional group.
 反応性官能基を有するポリエーテル骨格含有化合物は、シリコーン骨格を含有していてもよい。シリコーン骨格としては、例えば、ポリジメチルシロキサン骨格等のポリジアルキルシロキサン骨格;ポリジフェニルシロキサン骨格等のポリジアリールシロキサン骨格;ポリメチルフェニルシロキサン骨格等のポリアルキルアリールシロキサン骨格;ポリジメチル-ジフェニルシロキサン骨格等のポリジアルキル-ジアリールシロキサン骨格;ポリジメチル-メチルフェニルシロキサン骨格等のポリジアルキル-アルキルアリールシロキサン骨格;ポリジフェニル-メチルフェニルシロキサン骨格等のポリジアリール-アルキルアリールシロキサン骨格等が挙げられ、ポリジアルキルシロキサン骨格が好ましく、ポリジメチルシロキサン骨格が特に好ましい。シリコーン骨格を含有するポリエーテル骨格含有化合物は、例えば、ポリオキシアルキレン変性シリコーン、アルキルエーテル化ポリオキシアルキレン変性シリコーン(ポリエーテル骨格末端の少なくとも一部がアルコキシ基のポリオキシアルキレン変性シリコーン)等でありうる。 The polyether skeleton-containing compound having a reactive functional group may contain a silicone skeleton. The silicone skeleton includes, for example, a polydialkylsiloxane skeleton such as a polydimethylsiloxane skeleton; a polydiarylsiloxane skeleton such as a polydiphenylsiloxane skeleton; a polyalkylarylsiloxane skeleton such as a polymethylphenylsiloxane skeleton; polydialkyl-diarylsiloxane skeleton; polydialkyl-alkylarylsiloxane skeleton such as polydimethyl-methylphenylsiloxane skeleton; polydiaryl-alkylarylsiloxane skeleton such as polydiphenyl-methylphenylsiloxane skeleton; A polydimethylsiloxane skeleton is preferred, and a polydimethylsiloxane skeleton is particularly preferred. Polyether skeleton-containing compounds containing a silicone skeleton include, for example, polyoxyalkylene-modified silicones, alkyl-etherified polyoxyalkylene-modified silicones (polyoxyalkylene-modified silicones in which at least part of the polyether skeleton ends are alkoxy groups), and the like. sell.
 反応性官能基を有するポリエーテル骨格含有化合物は、ポリエステル骨格を含有していてもよい。このポリエステル骨格は、脂肪族ポリエステル骨格が好ましい。脂肪族ポリエステル骨格が含む炭化水素鎖は、直鎖状でもよく、分岐鎖状でもよいが、分岐鎖状が好ましい。ポリエステル骨格に含まれる炭素原子数は、例えば、4~16でありうる。ポリエステル骨格は、ポリカルボン酸、ラクトン、又はそれらの無水物に由来して形成されうるので、ポリエステル骨格を含有する反応性官能基を有するポリエーテル骨格含有化合物は、分子の末端にカルボキシル基を有していてもよいが、分子の末端に反応性官能基としてヒドロキシ基を有することが好ましい。 The polyether skeleton-containing compound having a reactive functional group may contain a polyester skeleton. This polyester skeleton is preferably an aliphatic polyester skeleton. The hydrocarbon chain contained in the aliphatic polyester skeleton may be linear or branched, preferably branched. The number of carbon atoms contained in the polyester backbone can be, for example, 4-16. Since the polyester skeleton can be formed from polycarboxylic acids, lactones, or anhydrides thereof, a polyether skeleton-containing compound having a reactive functional group containing a polyester skeleton has a carboxyl group at the end of the molecule. However, it is preferable to have a hydroxyl group as a reactive functional group at the end of the molecule.
 反応性官能基を有するポリエーテル骨格含有化合物としては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリオキシエチレンポリオキシプロピレングリコール等の直鎖型ポリオキシアルキレングリコール(直鎖型ポリアルキレングリコール);ポリオキシエチレングリセリルエーテル、ポリオキシプロピレングリセリルエーテル、ポリオキシエチレンポリオキシプロピレングリセリルエーテル、ポリオキシエチレントリメチロールプロパンエーテル、ポリオキシプロピレントリメチロールプロパンエーテル、ポリオキシエチレンポリオキシプロピレントリメチロールプロパンエーテル、ポリオキシエチレンジグリセリルエーテル、ポリオキシプロピレンジグリセリルエーテル、ポリオキシエチレンポリオキシプロピレンジグリセリルエーテル、ポリオキシエチレントペンタエリスリトールエーテル、ポリオキシプロピレンペンタエリスリトールエーテル、ポリオキシエチレンポリオキシプロピレンペンタエリスリトールエーテル、ポリオキシエチレンソルビット、ポリオキシプロピレンソルビット、ポリオキシエチレンポリオキシプロピレンソルビット等の多鎖型ポリオキシアルキレングリコール(多鎖型ポリアルキレングリコール)等のポリオキシアルキレングリコール(ポリアルキレングリコール);ポリオキシエチレンモノアルキルエーテル、ポリオキシエチレンジアルキルエーテル、ポリオキシプロピレンモノアルキルエーテル、ポリオキシプロピレンジアルキルエーテル、ポリオキシエチレンポリオキシプロピレンモノアルキルエーテル、ポリオキシエチレンポリオキシプロピレンジアルキルエーテル等のポリオキシアルキレンアルキルエーテル;ポリオキシエチレンモノエステル、ポリオキシエチレンジエステル、ポリプロピレングリコールモノエステル、ポリプロピレングリコールジエステル、ポリオキシエチレンポリオキシプロピレンモノエステル、ポリオキシエチレンポリオキシプロピレンジエステル等のポリオキシアルキレンエステル(酢酸エステル、プロピオン酸エステル、酪酸エステル、(メタ)アクリル酸エステル等を含む);ポリオキシエチレンモノエステル、ポリオキシエチレンジエステル、ポリオキシプロピレンモノエステル、ポリオキシプロピレンジエステル、ポリオキシエチレンポリオキシプロピレンモノエステル、ポリオキシエチレンポリオキシプロピレンジエステル、ポリオキシエチレンアルキルエーテルエステル、ポリオキシプロピレンアルキルエーテルエステル、ポリオキシエチレンポリオキシプロピレンアルキルエーテルエステル等のポリオキシアルキレンアルキルエーテルエステル(酢酸エステル、プロピオン酸エステル、酪酸エステル、(メタ)アクリル酸エステル等を含む);ポリオキシエチレンアルキルアミン、ポリオキシプロピレンアルキルアミン、ポリオキシエチレンポリオキシプロピレンアルキルアミン等のポリオキシアルキレンアルキルアミン;ポリオキシエチレンアルキルアミド、ポリオキシプロピレンアルキルアミド、ポリオキシエチレンポリオキシプロピレンアルキルアミド等のポリオキシアルキレンアルキルアミド;ポリオキシエチレンジメチコン、ポリオキシプロピレンジメチコン、ポリオキシエチレンポリオキシプロピレンジメチコン、ポリオキシエチレンポリジメチルシロキシアルキルジメチコン、ポリオキシプロピレンポリジメチルシロキシアルキルジメチコン、ポリオキシエチレンポリオキシプロピレンポリジメチルシロキシアルキルジメチコン等のポリオキシアルキレン変性シリコーン;ポリオキシエチレンアルキルエーテルジメチコン、ポリオキシプロピレンアルキルエーテルジメチコン、ポリオキシエチレンポリオキシプロピレンアルキルエーテルジメチコン、ポリオキシエチレンアルキルエーテルポリジメチルシロキシアルキルジメチコン、ポリオキシプロピレンアルキルエーテルポリジメチルシロキシアルキルジメチコン、ポリオキシエチレンポリオキシプロピレンアルキルエーテルポリジメチルシロキシアルキルジメチコン等のアルキルエーテル化ポリオキシアルキレン変性シリコーン(ポリエーテル骨格末端が少なくとも一部がアルコキシ基のポリオキシアルキレン変性シリコーン)等が挙げられる。 Polyether skeleton-containing compounds having reactive functional groups include, for example, polyethylene glycol, polypropylene glycol, linear polyoxyalkylene glycol (linear polyalkylene glycol) such as polyoxyethylene polyoxypropylene glycol; polyoxyethylene Glyceryl ether, polyoxypropylene glyceryl ether, polyoxyethylene polyoxypropylene glyceryl ether, polyoxyethylene trimethylolpropane ether, polyoxypropylene trimethylolpropane ether, polyoxyethylene polyoxypropylene trimethylolpropane ether, polyoxyethylene diglyceryl ether, polyoxypropylene diglyceryl ether, polyoxyethylene polyoxypropylene diglyceryl ether, polyoxyethylene topentaerythritol ether, polyoxypropylene pentaerythritol ether, polyoxyethylene polyoxypropylene pentaerythritol ether, polyoxyethylene sorbitol, poly Polyoxyalkylene glycols (polyalkylene glycols) such as oxypropylene sorbitol, polyoxyethylene polyoxypropylene sorbitol and other polyoxyalkylene glycols (multi-chain polyalkylene glycols); polyoxyethylene monoalkyl ethers, polyoxyethylene Polyoxyalkylene alkyl ether such as dialkyl ether, polyoxypropylene monoalkyl ether, polyoxypropylene dialkyl ether, polyoxyethylene polyoxypropylene monoalkyl ether, polyoxyethylene polyoxypropylene dialkyl ether; polyoxyethylene monoester, polyoxy Polyoxyalkylene esters such as ethylene diester, polypropylene glycol monoester, polypropylene glycol diester, polyoxyethylene polyoxypropylene monoester, polyoxyethylene polyoxypropylene diester (acetic acid ester, propionic acid ester, butyric acid ester, (meth)acrylic acid ester, etc.); polyoxyethylene monoester, polyoxyethylene diester, polyoxypropylene monoester, polyoxypropylene diester, polyoxyethylene polyoxypropylene monoester, polyoxyethylene polyoxypropylene Polyoxyalkylene alkyl ether esters such as diesters, polyoxyethylene alkyl ether esters, polyoxypropylene alkyl ether esters, polyoxyethylene polyoxypropylene alkyl ether esters (acetic esters, propionic acid esters, butyric acid esters, (meth)acrylic acid esters) etc.); polyoxyethylene alkylamine, polyoxypropylene alkylamine, polyoxyalkylene alkylamine such as polyoxyethylene polyoxypropylene alkylamine; polyoxyethylene alkylamide, polyoxypropylene alkylamide, polyoxyethylene polyoxy Polyoxyalkylene alkylamides such as propylene alkylamide; polyoxyethylene dimethicone, polyoxypropylene dimethicone, polyoxyethylene polyoxypropylene dimethicone, polyoxyethylene polydimethylsiloxyalkyl dimethicone, polyoxypropylene polydimethylsiloxyalkyl dimethicone, polyoxyethylene Polyoxyalkylene-modified silicones such as polyoxypropylene polydimethylsiloxyalkyl dimethicone; polyoxyethylene alkyl ether dimethicone, polyoxypropylene alkyl ether dimethicone, polyoxyethylene polyoxypropylene alkyl ether dimethicone, polyoxyethylene alkyl ether polydimethylsiloxyalkyl dimethicone , polyoxypropylene alkyl ether polydimethylsiloxyalkyl dimethicone, polyoxyethylene polyoxypropylene alkyl ether polydimethylsiloxyalkyl dimethicone, etc. alkylene-modified silicone) and the like.
 反応性官能基を有するポリエーテル骨格含有化合物の数平均分子量は、好ましくは500~40000、より好ましくは500~20000、さらに好ましくは500~10000である。ポリエーテル骨格含有化合物の重量平均分子量は、好ましくは500~40000、より好ましくは500~20000、さらに好ましくは500~10000である。数平均分子量及び重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により、ポリスチレン換算の値として測定できる。 The number average molecular weight of the polyether skeleton-containing compound having a reactive functional group is preferably 500-40,000, more preferably 500-20,000, and even more preferably 500-10,000. The weight average molecular weight of the polyether skeleton-containing compound is preferably 500 to 40,000, more preferably 500 to 20,000, still more preferably 500 to 10,000. The number average molecular weight and weight average molecular weight can be measured as polystyrene-equivalent values by gel permeation chromatography (GPC).
 反応性官能基を有するポリエーテル骨格含有化合物は、25℃において液状であることが好ましい。反応性官能基を有するポリエーテル骨格含有化合物の25℃における粘度は、好ましくは100000mPa・s以下、より好ましくは50000mPa・s以下、更に好ましくは30000mPa・s以下、10000mPa・s以下、5000mPa・s以下、4000mPa・s以下、3000mPa・s以下、2000mPa・s以下、又は1500mPa・s以下である。反応性官能基を有するポリエーテル骨格含有化合物の25℃における粘度の下限は、好ましくは10mPa・s以上、より好ましくは20mPa・s以上、更に好ましくは30mPa・s以上、40mPa・s以上又は50mPa・s以上である。粘度は、B型粘度計により測定して得られる粘度(mPa・s)でありうる。 The polyether skeleton-containing compound having a reactive functional group is preferably liquid at 25°C. The viscosity of the polyether skeleton-containing compound having a reactive functional group at 25° C. is preferably 100000 mPa·s or less, more preferably 50000 mPa·s or less, still more preferably 30000 mPa·s or less, 10000 mPa·s or less, or 5000 mPa·s or less. , 4000 mPa·s or less, 3000 mPa·s or less, 2000 mPa·s or less, or 1500 mPa·s or less. The lower limit of the viscosity at 25° C. of the polyether skeleton-containing compound having a reactive functional group is preferably 10 mPa·s or more, more preferably 20 mPa·s or more, and still more preferably 30 mPa·s or more, 40 mPa·s or more, or 50 mPa·s or more. s or more. The viscosity may be a viscosity (mPa·s) obtained by measuring with a Brookfield viscometer.
 反応性官能基を有するポリエーテル骨格含有化合物の市販品としては、例えば、日油社製の「プロノン#102」、「プロノン#104」、「プロノン#201」、「プロノン#202B」、「プロノン#204」、「プロノン#208」、「ユニルーブ70DP-600B」、「ユニルーブ70DP-950B」(ポリオキシエチレンポリオキシプロピレングリコール);ADEKA社製の「プルロニック(登録商標)L-23」、「プルロニックL-31」、「プルロニックL-44」、「プルロニックL-61」、「アデカプルロニックL-62」、「プルロニックL-64」、「プルロニックL-71」、「プルロニックL-72」、「プルロニックL-101」、「プルロニックL-121」、「プルロニックP-84」、「プルロニックP-85」、「プルロニックP-103」、「プルロニックF-68」、「プルロニックF-88」、「プルロニックF-108」、「プルロニック25R-1」、「プルロニック25R-2」、「プルロニック17R-2」、「プルロニック17R-3」、「プルロニック17R-4」(ポリオキシエチレンポリオキシプロピレングリコール);信越シリコーン社製の「KF-6011」、「KF-6011P」、「KF-6012」、「KF-6013」、「KF-6015」、「KF-6016」、「KF-6017」、「KF-6017P」、「KF-6043」、「KF-6004」、「KF351A」、「KF352A」、「KF353」、「KF354L」、「KF355A」、「KF615A」、「KF945」、「KF-640」、「KF-642」、「KF-643」、「KF-644」、「KF-6020」、「KF-6204」、「X22-4515」、「KF-6028」、「KF-6028P」、「KF-6038」、「KF-6048」、「KF-6025」(ポリオキシアルキレン変性シリコーン)等が挙げられる。反応性官能基を有するポリエーテル骨格含有化合物として、後述する「ポリエステルポリオールA」の合成によって合成されたポリエステルポリオール又はその改変物を用いてもよい。 Examples of commercially available polyether skeleton-containing compounds having reactive functional groups include NOF Corporation's "Pronon #102", "Pronon #104", "Pronon #201", "Pronon #202B" and "Pronon #204”, “Pronon #208”, “Unilube 70DP-600B”, “Unilube 70DP-950B” (polyoxyethylene polyoxypropylene glycol); “Pluronic (registered trademark) L-23” manufactured by ADEKA, “Pluronic L-31", "Pluronic L-44", "Pluronic L-61", "ADEKA Pluronic L-62", "Pluronic L-64", "Pluronic L-71", "Pluronic L-72", "Pluronic L-101”, “Pluronic L-121”, “Pluronic P-84”, “Pluronic P-85”, “Pluronic P-103”, “Pluronic F-68”, “Pluronic F-88”, “Pluronic F -108", "Pluronic 25R-1", "Pluronic 25R-2", "Pluronic 17R-2", "Pluronic 17R-3", "Pluronic 17R-4" (polyoxyethylene polyoxypropylene glycol); Shin-Etsu Silicone "KF-6011", "KF-6011P", "KF-6012", "KF-6013", "KF-6015", "KF-6016", "KF-6017", "KF-6017P" manufactured by , "KF-6043", "KF-6004", "KF351A", "KF352A", "KF353", "KF354L", "KF355A", "KF615A", "KF945", "KF-640", "KF- 642", "KF-643", "KF-644", "KF-6020", "KF-6204", "X22-4515", "KF-6028", "KF-6028P", "KF-6038" , “KF-6048”, “KF-6025” (polyoxyalkylene-modified silicone) and the like. As the polyether skeleton-containing compound having a reactive functional group, a polyester polyol synthesized by synthesizing "polyester polyol A" described below or a modified product thereof may be used.
 樹脂組成物中の不揮発成分100質量%に対して、反応性官能基を有するポリエーテル骨格含有化合物の量は、0質量%以上であり、好ましくは0.01質量%以上、0.05質量%以上又は0.1質量%以上であり、好ましくは15質量%以下、10質量%以下又は8質量%以下であり、15質量%以下、10質量%以下又は8質量%以下である。 The amount of the polyether skeleton-containing compound having a reactive functional group is 0% by mass or more, preferably 0.01% by mass or more, and 0.05% by mass with respect to 100% by mass of non-volatile components in the resin composition. or 0.1% by mass or more, preferably 15% by mass or less, 10% by mass or less, or 8% by mass or less, and 15% by mass or less, 10% by mass or less, or 8% by mass or less.
 樹脂組成物中の樹脂成分100質量%に対して、反応性官能基を有するポリエーテル骨格含有化合物の量は、0質量%以上であり、好ましくは0.01質量%以上、0.1質量%以上又は0.2質量%以上であり、好ましくは25質量%以下、20質量%以下又は15質量%以下である。 The amount of the polyether skeleton-containing compound having a reactive functional group is 0% by mass or more, preferably 0.01% by mass or more, and 0.1% by mass with respect to 100% by mass of the resin component in the resin composition. or 0.2% by mass or more, preferably 25% by mass or less, 20% by mass or less, or 15% by mass or less.
 (高分子量成分)
 本発明の樹脂組成物は、高分子量成分を含んでいてもよい。高分子量成分は可塑剤として機能し得る。高分子量成分の市販品としては、日本曹達社製のブタジエンホモポリマー「B-1000」、「B-2000」、「B-3000」等が挙げられる。高分子量成分は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
(High molecular weight component)
The resin composition of the present invention may contain a high molecular weight component. A high molecular weight component may function as a plasticizer. Commercially available high molecular weight components include butadiene homopolymers “B-1000”, “B-2000” and “B-3000” manufactured by Nippon Soda Co., Ltd. The high molecular weight components may be used singly or in combination of two or more.
 高分子量成分の数平均分子量は、好ましくは500~40000、より好ましくは500~20000、さらに好ましくは500~10000である。高分子量成分の重量平均分子量は、好ましくは500~40000、より好ましくは500~20000、さらに好ましくは500~10000である。数平均分子量及び重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により、ポリスチレン換算の値として測定できる。 The number average molecular weight of the high molecular weight component is preferably 500 to 40,000, more preferably 500 to 20,000, still more preferably 500 to 10,000. The weight average molecular weight of the high molecular weight component is preferably 500 to 40,000, more preferably 500 to 20,000, still more preferably 500 to 10,000. The number average molecular weight and weight average molecular weight can be measured as polystyrene-equivalent values by gel permeation chromatography (GPC).
 高分子量成分は、25℃において液状であるか、又は、高分子量成分は、45℃における粘度が、好ましくは100000mPa・s以下、より好ましくは50000mPa・s以下、更に好ましくは30000mPa・s以下、10000mPa・s以下、5000mPa・s以下、4000mPa・s以下、3000mPa・s以下、2000mPa・s以下、1500mPa・s以下又は500mPa以下である。反応性官能基を有するポリエーテル骨格含有化合物の25℃における粘度の下限は、好ましくは0.5mPa・s以上、より好ましくは1mPa・s以上、更に好ましくは2mPa・s以上、3mPa・s以上、又は4mPa・s以上である。粘度は、B型粘度計により測定して得られる粘度(mPa・s)でありうる。 The high-molecular-weight component is liquid at 25°C, or the high-molecular-weight component has a viscosity at 45°C of preferably 100,000 mPa·s or less, more preferably 50,000 mPa·s or less, still more preferably 30,000 mPa·s or less, or 10,000 mPa. ·s or less, 5000 mPa·s or less, 4000 mPa·s or less, 3000 mPa·s or less, 2000 mPa·s or less, 1500 mPa·s or less, or 500 mPa·s or less. The lower limit of the viscosity at 25° C. of the polyether skeleton-containing compound having a reactive functional group is preferably 0.5 mPa·s or more, more preferably 1 mPa·s or more, still more preferably 2 mPa·s or more, 3 mPa·s or more, Or it is 4 mPa·s or more. The viscosity may be a viscosity (mPa·s) obtained by measuring with a Brookfield viscometer.
 樹脂組成物中の不揮発成分100質量%に対して、高分子量成分の量は、限定されるものではないが、0質量%以上であり、好ましくは0.01質量%以上、0.05質量%以上又は0.1質量%以上であり、好ましくは15質量%以下、10質量%以下又は8質量%以下である。 The amount of the high molecular weight component is not limited to 100% by mass of the non-volatile components in the resin composition, but is 0% by mass or more, preferably 0.01% by mass or more, and 0.05% by mass. or 0.1% by mass or more, preferably 15% by mass or less, 10% by mass or less, or 8% by mass or less.
 樹脂組成物中の樹脂成分100質量%に対して、高分子量成分の量は、限定されるものではないが、0質量%以上であり、好ましくは0.01質量%以上、0.1質量%以上又は0.2質量%以上であり、好ましくは15質量%以下、10質量%以下又は8質量%以下である。 The amount of the high molecular weight component is not limited to 100% by mass of the resin component in the resin composition, but is 0% by mass or more, preferably 0.01% by mass or more, and 0.1% by mass. or 0.2% by mass or more, preferably 15% by mass or less, 10% by mass or less, or 8% by mass or less.
 その他の添加剤の第2の例としては、例えば、ゴム粒子、ポリアミド微粒子、シリコーン粒子等の有機充填材;ポリカーボネート樹脂、フェノキシ樹脂、ポリビニルアセタール樹脂、ポリオレフィン樹脂、ポリスルホン樹脂、ポリエステル樹脂等の熱可塑性樹脂;カルボジイミド化合物;有機銅化合物、有機亜鉛化合物、有機コバルト化合物等の有機金属化合物;フタロシアニンブルー、フタロシアニングリーン、アイオディングリーン、ジアゾイエロー、クリスタルバイオレット、酸化チタン、カーボンブラック等の着色剤;ハイドロキノン、カテコール、ピロガロール、フェノチアジン等の重合禁止剤;シリコーン系レベリング剤、アクリルポリマー系レベリング剤等のレベリング剤;ベントン、モンモリロナイト等の増粘剤;シリコーン系消泡剤、アクリル系消泡剤、フッ素系消泡剤、ビニル樹脂系消泡剤等の消泡剤;ベンゾトリアゾール系紫外線吸収剤等の紫外線吸収剤;尿素シラン等の接着性向上剤;トリアゾール系密着性付与剤、テトラゾール系密着性付与剤、トリアジン系密着性付与剤等の密着性付与剤;ヒンダードフェノール系酸化防止剤、ヒンダードアミン系酸化防止剤等の酸化防止剤;スチルベン誘導体等の蛍光増白剤;フッ素系界面活性剤等の界面活性剤;リン系難燃剤(例えばリン酸エステル化合物、ホスファゼン化合物、ホスフィン酸化合物、赤リン)、窒素系難燃剤(例えば硫酸メラミン)、ハロゲン系難燃剤、無機系難燃剤(例えば三酸化アンチモン)等の難燃剤等が挙げられる。添加剤は、1種を単独で用いてもよく、2種以上を任意の比率で組み合わせて用いてもよい。 Second examples of other additives include, for example, organic fillers such as rubber particles, polyamide fine particles, and silicone particles; resin; carbodiimide compound; organic metal compounds such as organic copper compounds, organic zinc compounds, and organic cobalt compounds; coloring agents such as phthalocyanine blue, phthalocyanine green, iodine green, diazo yellow, crystal violet, titanium oxide, and carbon black; Polymerization inhibitors such as catechol, pyrogallol, and phenothiazine; leveling agents such as silicone leveling agents and acrylic polymer leveling agents; thickeners such as bentone and montmorillonite; Antifoaming agents such as foaming agents and vinyl resin antifoaming agents; UV absorbers such as benzotriazole UV absorbers; Adhesion improvers such as urea silane; Adhesion-imparting agents such as triazine-based adhesion-imparting agents; antioxidants such as hindered phenol-based antioxidants and hindered amine-based antioxidants; fluorescent brighteners such as stilbene derivatives; surfactants such as fluorine-based surfactants agent; phosphorus flame retardant (e.g. phosphate ester compound, phosphazene compound, phosphinic acid compound, red phosphorus), nitrogen flame retardant (e.g. melamine sulfate), halogen flame retardant, inorganic flame retardant (e.g. antimony trioxide), etc. flame retardants and the like. An additive may be used individually by 1 type, and may be used in combination of 2 or more types by arbitrary ratios.
 [溶剤]
 本発明の樹脂組成物は、揮発性成分として、さらに任意の溶剤を含有していてもよい。溶剤としては、例えば、有機溶剤が挙げられる。また、溶剤は、1種を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。一実施形態においては、溶剤は、量が少ないほど好ましい。溶剤の含有量は、樹脂組成物中の不揮発成分100質量%とした場合、揮発性成分として、好ましくは3質量%以下、より好ましくは1質量%以下、更に好ましくは0.5質量%以下、更に好ましくは0.1質量%以下、更に好ましくは0.01質量%以下であり、含まないこと(0質量%)が特に好ましい。他の実施形態においては、溶剤を含む。これにより、樹脂ワニスとしての取り扱い性を向上させることができる。
[solvent]
The resin composition of the present invention may further contain any solvent as a volatile component. Examples of solvents include organic solvents. Moreover, a solvent may be used individually by 1 type, and may be used in combination of 2 or more types by arbitrary ratios. In one embodiment, less solvent is preferred. The content of the solvent is preferably 3% by mass or less, more preferably 1% by mass or less, and still more preferably 0.5% by mass or less as a volatile component when the nonvolatile component in the resin composition is 100% by mass. It is more preferably 0.1% by mass or less, still more preferably 0.01% by mass or less, and is particularly preferably not contained (0% by mass). Other embodiments include a solvent. Thereby, the handleability as a resin varnish can be improved.
 [樹脂組成物の製造方法]
 本発明の樹脂組成物は、例えば、上述した成分を混合することによって、製造することができる。上述した成分は、一部又は全部を同時に混合してもよく、順に混合してもよい。各成分を混合する過程で、温度を適宜設定してもよく、よって、一時的に又は終始にわたって、加熱及び/又は冷却してもよい。また、各成分を混合する過程において、撹拌又は振盪を行ってもよい。
[Method for producing resin composition]
The resin composition of the present invention can be produced, for example, by mixing the components described above. Some or all of the components described above may be mixed at the same time, or may be mixed in order. During the course of mixing each component, the temperature may be set accordingly, and thus may be temporarily or permanently heated and/or cooled. Moreover, you may perform stirring or shaking in the process of mixing each component.
 [樹脂組成物の特性]
 本発明の樹脂組成物は、(A)硬化性樹脂と、(B)無機充填材とを含有する樹脂組成物において、(B)無機充填材の平均粒径が0.5μm~12μmの範囲内にあり、無機充填材における結晶性シリカ含有率が0質量%以上かつ2.1質量%未満の範囲内にある、樹脂組成物である。これにより、本発明は、粘度ライフが安定的な樹脂組成物;該樹脂組成物を使用した、樹脂シート、回路基板、及び半導体チップパッケージを提供することができるという効果を奏する。本願発明は、後述する実施例の欄において例証されたように、無機充填材の平均粒径を小さい範囲に絞った場合において、結晶性シリカの存在が粘度ライフの安定性を損なうことが判明したことから、その上限を制限すべきという知見に基づいてなされたものである。
[Characteristics of resin composition]
The resin composition of the present invention is a resin composition containing (A) a curable resin and (B) an inorganic filler, wherein the average particle size of the (B) inorganic filler is in the range of 0.5 μm to 12 μm. and wherein the content of crystalline silica in the inorganic filler is in the range of 0% by mass or more and less than 2.1% by mass. Accordingly, the present invention has the effect of being able to provide a resin composition with a stable viscosity life; a resin sheet, a circuit board, and a semiconductor chip package using the resin composition. In the present invention, as exemplified in the section of Examples described later, it was found that the presence of crystalline silica impairs the stability of the viscosity life when the average particle size of the inorganic filler is narrowed down to a small range. Therefore, it was made based on the knowledge that the upper limit should be restricted.
 本発明の樹脂組成物の粘度ライフの安定性は、例えば、後述する実施例の欄に記載の方法によって評価することが可能である。具体的には、初期溶融粘度MV0及び12時間後溶融粘度MV12を測定し、12時間経過にともなう増粘比を、12時間後溶融粘度MV12の初期溶融粘度MV0に対する比の値(すなわち、MV12/MV0)として求めた場合、本発明の樹脂組成物の増粘比は、好ましくは1.7未満であり、より好ましくは1.6以下であり、さらに好ましくは1.5以下であり、特に好ましくは1.4以下であり、通常は、1.0超である。 The viscosity life stability of the resin composition of the present invention can be evaluated, for example, by the method described in the Examples section below. Specifically, the initial melt viscosity MV0 and the melt viscosity MV12 after 12 hours are measured, and the thickening ratio after 12 hours is calculated as the ratio of the melt viscosity MV12 after 12 hours to the initial melt viscosity MV0 (that is, MV12/ MV0), the thickening ratio of the resin composition of the present invention is preferably less than 1.7, more preferably 1.6 or less, still more preferably 1.5 or less, and particularly preferably is less than or equal to 1.4, and usually greater than 1.0.
 このとき、本発明の一実施形態に係る溶媒を含まない樹脂組成物(樹脂ペースト)の初期溶融粘度MV0は、好ましくは20ポイズ~800ポイズの範囲内、より好ましくは20ポイズ~700ポイズの範囲内にあり、さらに好ましくは20ポイズ~600ポイズの範囲内にある。また、本発明の一実施形態に係る溶媒を含まない樹脂組成物(樹脂ペースト)の12時間後溶融粘度MV12は、好ましくは20ポイズ超~1360ポイズ未満の範囲内、より好ましくは21ポイズ~1190ポイズの範囲内にあり、さらに好ましくは21ポイズ~1020ポイズの範囲内にある。さらに、本発明の一実施形態に係る樹脂ペーストによれば、無機充填材を高充填にできるので、反りの発生が抑制された硬化物を得ることができる傾向にある。反り量は後述する方法によって測定でき、例えば反り量は1500μm未満、好ましくは1300μm未満であり、より好ましくは1100μm未満である。 At this time, the initial melt viscosity MV0 of the solvent-free resin composition (resin paste) according to one embodiment of the present invention is preferably in the range of 20 poise to 800 poise, more preferably in the range of 20 poise to 700 poise. preferably within the range of 20 poise to 600 poise. In addition, the 12-hour melt viscosity MV12 of the solvent-free resin composition (resin paste) according to one embodiment of the present invention is preferably in the range of more than 20 poise to less than 1360 poise, more preferably 21 poise to 1190 poise. poise, more preferably 21 poise to 1020 poise. Furthermore, according to the resin paste according to one embodiment of the present invention, since the inorganic filler can be highly filled, it tends to be possible to obtain a cured product in which the occurrence of warping is suppressed. The amount of warp can be measured by the method described later, and for example, the amount of warp is less than 1500 μm, preferably less than 1300 μm, more preferably less than 1100 μm.
 また、本発明の他の実施形態に係る溶媒を含む樹脂組成物(樹脂ワニス)を用いて形成された樹脂組成物層の初期溶融粘度MV0は、好ましくは20ポイズ~20000ポイズの範囲内、より好ましくは1000ポイズ~19000ポイズの範囲内にあり、さらに好ましくは2000ポイズ~18000ポイズの範囲内にある。また、本発明の他の実施形態に係る溶媒を含む樹脂組成物(樹脂ワニス)を用いて形成された樹脂組成物層の12時間後溶融粘度MV12は、好ましくは20ポイズ超~34000ポイズ未満の範囲内、より好ましくは1100ポイズ~30000ポイズの範囲内にあり、さらに好ましくは2200ポイズ~25000ポイズの範囲内にある。さらに、本発明の一実施形態に樹脂ワニスによれば、無機充填材を高充填にできるので、反りの発生が抑制された硬化物を得ることができる傾向にある。反り量は後述する方法によって測定でき、例えば反り量は2000μm未満、好ましくは1800μm未満であり、より好ましくは1600μm未満である。 In addition, the initial melt viscosity MV0 of the resin composition layer formed using the resin composition (resin varnish) containing a solvent according to another embodiment of the present invention is preferably in the range of 20 poise to 20000 poise, and more It is preferably in the range of 1000 poise to 19000 poise, more preferably in the range of 2000 poise to 18000 poise. In addition, the 12-hour melt viscosity MV12 of the resin composition layer formed using the resin composition (resin varnish) containing a solvent according to another embodiment of the present invention is preferably more than 20 poise and less than 34000 poise. within the range, more preferably within the range of 1100 poise to 30000 poise, more preferably within the range of 2200 poise to 25000 poise. Furthermore, according to the resin varnish of one embodiment of the present invention, since the inorganic filler can be highly filled, it tends to be possible to obtain a cured product in which the occurrence of warping is suppressed. The amount of warp can be measured by the method described later, and for example, the amount of warp is less than 2000 μm, preferably less than 1800 μm, more preferably less than 1600 μm.
 一実施形態において、本発明の樹脂組成物は、ペースト状である。このようにペースト状の樹脂組成物(「樹脂ペースト」ともいう)は、コンプレッションモールドによる成型を容易に行うことができる。他の実施形態において、本発明の樹脂組成物は、シート状の基材(例えば後述する支持体)上に、樹脂組成物層を形成可能な樹脂ワニスである。これにより取り扱い性を向上させることができる。一実施形態に係るペースト状の樹脂組成物であっても、他の実施形態に係る樹脂組成物(樹脂ワニス)であっても、上述したとおり増粘比が小さいので、厚みを大きくしても、組成の不均一によるフローマークの発生や粘度の不均一による埋め込み不良の発生が抑制されるなどして歩留まりの良好な回路基板、及び半導体チップパッケージを提供することができる。したがって、本発明の樹脂組成物は、厚み50μm以上の樹脂組成物層を形成するために用いることにも適している。また、本発明の樹脂組成物は、無機充填材を高充填にできるので、反りの発生が抑制された回路基板、及び半導体チップパッケージを提供することができる傾向にある。 In one embodiment, the resin composition of the present invention is pasty. Such a pasty resin composition (also referred to as "resin paste") can be easily molded by compression molding. In another embodiment, the resin composition of the present invention is a resin varnish capable of forming a resin composition layer on a sheet-like substrate (for example, a support to be described later). Thereby, handleability can be improved. Even if it is a paste-like resin composition according to one embodiment or a resin composition (resin varnish) according to another embodiment, the thickening ratio is small as described above, so even if the thickness is increased Also, it is possible to provide a circuit board and a semiconductor chip package with good yields by suppressing the occurrence of flow marks due to non-uniform composition and the occurrence of poor embedding due to non-uniform viscosity. Therefore, the resin composition of the present invention is also suitable for forming a resin composition layer having a thickness of 50 μm or more. In addition, since the resin composition of the present invention can be highly filled with an inorganic filler, it tends to be possible to provide a circuit board and a semiconductor chip package in which the occurrence of warping is suppressed.
 [樹脂組成物の用途]
 本発明の樹脂組成物は、有機EL装置及び半導体等の電子機器を封止するための樹脂組成物(封止用の樹脂組成物)として好適に使用することができ、特に、半導体を封止するための樹脂組成物(半導体封止用の樹脂組成物)、好ましくは半導体チップを封止するための樹脂組成物(半導体チップ封止用の樹脂組成物)として好適に使用することができる。また、樹脂組成物は、封止用途以外に絶縁層用の絶縁用途の樹脂組成物として用いることができる。例えば、前記の樹脂組成物は、半導体チップパッケージの絶縁層、例えば再配線形成層を形成するための樹脂組成物(半導体チップパッケージの絶縁層用の樹脂組成物、再配線形成層用である樹脂組成物)、及び、回路基板(プリント配線板を含む。)の絶縁層を形成するための樹脂組成物(回路基板の絶縁層用の樹脂組成物)として、好適に使用することができる。
[Use of resin composition]
INDUSTRIAL APPLICABILITY The resin composition of the present invention can be suitably used as a resin composition (sealing resin composition) for sealing electronic devices such as organic EL devices and semiconductors. (semiconductor encapsulation resin composition), preferably as a resin composition for encapsulating a semiconductor chip (semiconductor chip encapsulation resin composition). Moreover, the resin composition can be used as an insulating resin composition for an insulating layer in addition to the sealing use. For example, the resin composition is a resin composition for forming an insulating layer of a semiconductor chip package, for example, a rewiring layer (a resin composition for an insulating layer of a semiconductor chip package, a resin for a rewiring layer). composition) and a resin composition for forming an insulating layer of a circuit board (including a printed wiring board) (a resin composition for an insulating layer of a circuit board).
 本発明の樹脂組成物は、先述のとおり、半導体チップパッケージの封止層又は絶縁層を形成するための材料として用いることが可能である。半導体チップパッケージとしては、例えば、FC-CSP、MIS-BGAパッケージ、ETS-BGAパッケージ、Fan-out型WLP(Wafer Level Package)、Fan-in型WLP、Fan-out型PLP(Panel Level Package)、Fan-in型PLPが挙げられる。 As mentioned above, the resin composition of the present invention can be used as a material for forming the sealing layer or insulating layer of semiconductor chip packages. Examples of semiconductor chip packages include FC-CSP, MIS-BGA package, ETS-BGA package, Fan-out type WLP (Wafer Level Package), Fan-in type WLP, Fan-out type PLP (Panel Level Package), Fan-in type PLPs can be mentioned.
 また、前記の樹脂組成物は、アンダーフィル材として用いてもよく、例えば、半導体チップを基板に接続した後に用いるMUF(Molding Under Filling)の材料として用いてもよい。 The resin composition may also be used as an underfill material, for example, as a material for MUF (Molding Under Filling) used after connecting a semiconductor chip to a substrate.
 さらに、前記の樹脂組成物は、樹脂シート、プリプレグ等のシート状積層材料、ソルダーレジスト、ダイボンディング材、穴埋め樹脂、部品埋め込み樹脂等、樹脂組成物が用いられる広範な用途に使用できる。 Furthermore, the resin composition can be used in a wide range of applications where resin compositions are used, such as resin sheets, sheet-like laminated materials such as prepreg, solder resists, die-bonding materials, hole-filling resins, and part-embedding resins.
 [樹脂シート]
 本発明の一実施形態に係る樹脂シートは、支持体と、該支持体上に設けられた樹脂組成物層とを少なくとも有し、必要に応じて保護フィルムを有する。樹脂組成物層は、本発明の樹脂組成物を含む層である。樹脂組成物層の厚み及び当該樹脂組成物層を硬化させて得られる硬化物層の厚みは任意である。樹脂シートは、例えば公知の方法にしたがって製造でき、支持体として用いる材料も任意に選定される。
[Resin sheet]
A resin sheet according to one embodiment of the present invention has at least a support and a resin composition layer provided on the support, and optionally a protective film. The resin composition layer is a layer containing the resin composition of the present invention. The thickness of the resin composition layer and the thickness of the cured product layer obtained by curing the resin composition layer are arbitrary. The resin sheet can be produced, for example, according to a known method, and the material used as the support is also selected arbitrarily.
 樹脂シートの用途は、先述した本発明の樹脂組成物の用途と同様である。適用可能な回路基板を使ったパッケージの例としては、FC-CSP、MIS-BGAパッケージ、ETS-BGAパッケージが挙げられる。適用可能な半導体チップパッケージとしては、例えば、Fan-out型WLP、Fan-in型WLP、Fan-out型PLP、Fan-in型PLP等が挙げられる。また、樹脂シートを、半導体チップを基板に接続した後に用いるMUFの材料に用いてもよい。さらに、樹脂シートは高い絶縁信頼性が要求される他の広範な用途に使用できる。 The use of the resin sheet is the same as the use of the resin composition of the present invention described above. Examples of packages using applicable circuit boards include FC-CSP, MIS-BGA packages, and ETS-BGA packages. Applicable semiconductor chip packages include, for example, Fan-out type WLP, Fan-in type WLP, Fan-out type PLP, Fan-in type PLP and the like. Also, the resin sheet may be used as a material for the MUF that is used after connecting the semiconductor chip to the substrate. Furthermore, resin sheets can be used in a wide range of other applications that require high insulation reliability.
 [回路基板]
 本発明の一実施形態に係る回路基板は、本発明の樹脂組成物の硬化物を含んでいてもよい。回路基板は、例えば公知の方法にしたがって製造でき、基材及び基材に形成されていてもよい導体層として用いる材料も任意に選定される。
[Circuit board]
A circuit board according to an embodiment of the present invention may contain a cured product of the resin composition of the present invention. The circuit board can be manufactured, for example, according to a known method, and the material used as the base material and the conductor layer that may be formed on the base material is also selected arbitrarily.
 回路基板を製造するにあたり、基材を用意した後で、基材上に、樹脂組成物層、例えば本発明の樹脂組成物を含む樹脂組成物層を例えば公知の方法にしたがって形成する。例えば、樹脂組成物層の形成は、圧縮成型法によって行うことができる。圧縮成型法では、通常、基材及び樹脂組成物を型に配置し、その型内で樹脂組成物に圧力及び必要に応じて熱を加えて、基材上に樹脂組成物層を形成する。 In manufacturing a circuit board, after preparing a base material, a resin composition layer, for example, a resin composition layer containing the resin composition of the present invention is formed on the base material, for example, according to a known method. For example, the resin composition layer can be formed by compression molding. In the compression molding method, a base material and a resin composition are usually placed in a mold, and pressure and, if necessary, heat are applied to the resin composition in the mold to form a resin composition layer on the base material.
 圧縮成型法の具体的な操作は、例えば、下記のようにしうる。圧縮成型用の型として、上型及び下型を用意する。また、基材上に樹脂組成物を塗布する。樹脂組成物を塗布された基材を、下型に取り付ける。その後、上型と下型とを型締めして、樹脂組成物に熱及び圧力を加えて、圧縮成型を行う。 The specific operation of the compression molding method can be, for example, as follows. An upper mold and a lower mold are prepared as molds for compression molding. Also, the resin composition is applied onto the substrate. The substrate coated with the resin composition is attached to the lower mold. After that, the upper mold and the lower mold are clamped, and heat and pressure are applied to the resin composition for compression molding.
 また、圧縮成型法の具体的な操作は、例えば、下記のようにしてもよい。圧縮成型用の型として、上型及び下型を用意する。下型に、樹脂組成物を載せる。また、上型に、基材必要に応じてリリースフィルムを取り付ける。その後、下型に載った樹脂組成物が上型に取り付けられた基材に接するように上型と下型とを型締めし、熱及び圧力を加えて、圧縮成型を行う。 Also, the specific operation of the compression molding method may be, for example, as follows. An upper mold and a lower mold are prepared as molds for compression molding. A resin composition is placed on the lower mold. In addition, a release film is attached to the upper mold as required for the base material. Thereafter, the upper mold and the lower mold are clamped so that the resin composition placed on the lower mold is in contact with the base material attached to the upper mold, and heat and pressure are applied to perform compression molding.
 成型条件は、本発明の樹脂組成物の組成により異なり、良好な封止が達成されるように適切な条件を採用できる。例えば、成型時の型の温度は、好ましくは70℃以上、より好ましくは80℃以上、特に好ましくは90℃以上であり、好ましくは200℃以下である。また、成型時に加える圧力は、好ましくは1MPa以上、より好ましくは3MPa以上、特に好ましくは5MPa以上であり、好ましくは50MPa以下、より好ましくは30MPa以下、特に好ましくは20MPa以下である。キュアタイムは、好ましくは1分以上、より好ましくは2分以上、特に好ましくは3分以上であり、好ましくは100分以下、より好ましくは90分以下、一実施形態では、60分以下、30分以下又は20分以下とし得る。通常、樹脂組成物層の形成後、型は取り外される。型の取り外しは、樹脂組成物層の熱硬化前に行ってもよく、熱硬化後に行ってもよい。 The molding conditions differ depending on the composition of the resin composition of the present invention, and suitable conditions can be adopted so as to achieve good sealing. For example, the temperature of the mold during molding is preferably 70° C. or higher, more preferably 80° C. or higher, particularly preferably 90° C. or higher, and preferably 200° C. or lower. The pressure applied during molding is preferably 1 MPa or higher, more preferably 3 MPa or higher, particularly preferably 5 MPa or higher, and preferably 50 MPa or lower, more preferably 30 MPa or lower, and particularly preferably 20 MPa or lower. Cure time is preferably 1 minute or more, more preferably 2 minutes or more, particularly preferably 3 minutes or more, preferably 100 minutes or less, more preferably 90 minutes or less, and in one embodiment, 60 minutes or less, 30 minutes or 20 minutes or less. After formation of the resin composition layer, the mold is usually removed. The mold may be removed before or after heat curing of the resin composition layer.
 基材上に樹脂組成物層を形成した後、樹脂組成物層を熱硬化(ポストキュア)して、硬化物層を形成する。樹脂組成物層の熱硬化条件は、樹脂組成物の種類によっても異なりうるが、硬化温度は通常120℃~240℃の範囲(好ましくは150℃~220℃の範囲、より好ましくは170℃~200℃の範囲)、硬化時間は5分間~120分間の範囲(好ましくは10分間~100分間の範囲、より好ましくは15分間~90分間の範囲)である。 After forming the resin composition layer on the substrate, the resin composition layer is thermally cured (post-cured) to form a cured product layer. The thermosetting conditions for the resin composition layer may vary depending on the type of resin composition, but the curing temperature is usually in the range of 120° C. to 240° C. (preferably 150° C. to 220° C., more preferably 170° C. to 200° C.). ° C.), and the curing time is in the range of 5 minutes to 120 minutes (preferably in the range of 10 minutes to 100 minutes, more preferably in the range of 15 minutes to 90 minutes).
 樹脂組成物層を熱硬化させる前に、樹脂組成物層に対して、硬化温度よりも低い温度で加熱する予備加熱処理を施してもよい。例えば、樹脂組成物層を熱硬化させるのに先立ち、通常50℃以上120℃未満(好ましくは60℃以上110℃以下、より好ましくは70℃以上100℃以下)の温度にて、樹脂組成物層を、通常5分間以上(好ましくは5分間~150分間、より好ましくは15分間~120分間)、予備加熱してもよい。 Before thermally curing the resin composition layer, the resin composition layer may be subjected to a preliminary heating treatment of heating at a temperature lower than the curing temperature. For example, prior to thermosetting the resin composition layer, the resin composition layer is usually heated at a temperature of 50 ° C. or higher and lower than 120 ° C. (preferably 60 ° C. or higher and 110 ° C. or lower, more preferably 70 ° C. or higher and 100 ° C. or lower). may be preheated for usually 5 minutes or more (preferably 5 minutes to 150 minutes, more preferably 15 minutes to 120 minutes).
 以上のようにして、本発明の樹脂組成物の硬化物で形成された硬化物層を有する回路基板を製造できる。また、回路基板の製造方法は、更に、任意の工程を含んでいてもよい。 As described above, a circuit board having a cured product layer formed from the cured product of the resin composition of the present invention can be produced. Moreover, the circuit board manufacturing method may further include an arbitrary step.
 [半導体チップパッケージ]
 本発明の一実施形態に係る半導体チップパッケージは、本発明の樹脂組成物の硬化物を含む。この半導体チップパッケージとしては、例えば、下記のものが挙げられる。
[Semiconductor chip package]
A semiconductor chip package according to one embodiment of the present invention includes a cured product of the resin composition of the present invention. Examples of this semiconductor chip package include the following.
 第一の例に係る半導体チップパッケージは、上述した回路基板と、この回路基板に搭載された半導体チップとを含む。この半導体チップパッケージは、回路基板に半導体チップを接合することにより、製造することができる。 A semiconductor chip package according to the first example includes the circuit board described above and a semiconductor chip mounted on the circuit board. This semiconductor chip package can be manufactured by bonding a semiconductor chip to a circuit board.
 回路基板と半導体チップとの接合条件は、半導体チップの端子電極と回路基板の回路配線とが導体接続できる任意の条件を採用できる。例えば、半導体チップのフリップチップ実装において使用される条件を採用できる。また、例えば、半導体チップと回路基板との間に、絶縁性の接着剤を介して接合してもよい。 Any condition that allows conductor connection between the terminal electrodes of the semiconductor chip and the circuit wiring of the circuit board can be adopted as the bonding condition between the circuit board and the semiconductor chip. For example, conditions used in flip-chip mounting of semiconductor chips can be employed. Alternatively, for example, the semiconductor chip and the circuit board may be bonded via an insulating adhesive.
 接合方法の例としては、半導体チップを回路基板に圧着する方法が挙げられる。圧着条件としては、圧着温度は通常120℃~240℃の範囲(好ましくは130℃~200℃の範囲、より好ましくは140℃~180℃の範囲)、圧着時間は通常1秒間~60秒間の範囲(好ましくは5秒間~30秒間の範囲)である。 An example of the bonding method is the method of crimping the semiconductor chip to the circuit board. As for the crimping conditions, the crimping temperature is usually in the range of 120° C. to 240° C. (preferably 130° C. to 200° C., more preferably 140° C. to 180° C.), and the crimping time is usually in the range of 1 second to 60 seconds. (preferably in the range of 5 seconds to 30 seconds).
 また、接合方法の他の例としては、半導体チップを回路基板にリフローして接合する方法が挙げられる。リフロー条件は、120℃~300℃の範囲としてもよい。 Another example of the bonding method is a method of reflowing and bonding a semiconductor chip to a circuit board. The reflow conditions may range from 120.degree. C. to 300.degree.
 半導体チップを回路基板に接合した後、半導体チップをモールドアンダーフィル材で充填してもよい。このモールドアンダーフィル材として、上述した樹脂組成物を用いてもよい。したがって、本発明の樹脂組成物を硬化させる工程が含まれる。 After bonding the semiconductor chip to the circuit board, the semiconductor chip may be filled with a mold underfill material. As this mold underfill material, the resin composition described above may be used. Therefore, a step of curing the resin composition of the present invention is included.
 第二の例に係る半導体チップパッケージは、半導体チップと、この半導体チップを封止する本発明の樹脂組成物の硬化物とを含む。このような半導体チップパッケージでは、通常、本発明の樹脂組成物の硬化物は封止層として機能する。第二の例に係る半導体チップパッケージとしては、例えば、Fan-out型WLPが挙げられる。 A semiconductor chip package according to the second example includes a semiconductor chip and a cured product of the resin composition of the present invention that seals the semiconductor chip. In such a semiconductor chip package, the cured resin composition of the present invention usually functions as a sealing layer. A semiconductor chip package according to the second example includes, for example, a fan-out type WLP.
 図1は、本実施形態に係る半導体チップパッケージの一例としてのFan-out型WLPの構成を模式的に示す断面図である。Fan-out型WLPとしての半導体チップパッケージ100は、例えば、図1に示すように、半導体チップ110;半導体チップ110の周囲を覆うように形成された封止層120;半導体チップ110の封止層120とは反対側の面に設けられた、絶縁層としての再配線形成層130;導体層としての再配線層140;ソルダーレジスト層150;及び、バンプ160を備える。 FIG. 1 is a cross-sectional view schematically showing the configuration of a fan-out type WLP as an example of a semiconductor chip package according to this embodiment. A semiconductor chip package 100 as a fan-out type WLP includes, for example, a semiconductor chip 110; a sealing layer 120 formed to cover the periphery of the semiconductor chip 110; and a sealing layer for the semiconductor chip 110, as shown in FIG. A rewiring formation layer 130 as an insulating layer; a rewiring layer 140 as a conductor layer; a solder resist layer 150;
 このような半導体チップパッケージの製造方法は、
 (A)基材に仮固定フィルムを積層する工程、
 (B)半導体チップを、仮固定フィルム上に仮固定する工程、
 (C)半導体チップ上に封止層を形成する工程、
 (D)基材及び仮固定フィルムを半導体チップから剥離する工程、
 (E)半導体チップの基材及び仮固定フィルムを剥離した面に再配線形成層を形成する工程、
 (F)再配線形成層上に、導体層としての再配線層を形成する工程、並びに、
 (G)再配線層上にソルダーレジスト層を形成する工程、
 を含む。また、前記の半導体チップパッケージの製造方法は、
 (H)複数の半導体チップパッケージを、個々の半導体チップパッケージにダイシングし、個片化する工程
 を含んでいてもよい。
A method for manufacturing such a semiconductor chip package includes:
(A) a step of laminating a temporary fixing film on a substrate;
(B) temporarily fixing the semiconductor chip on the temporary fixing film;
(C) forming a sealing layer on the semiconductor chip;
(D) a step of peeling the substrate and the temporary fixing film from the semiconductor chip;
(E) forming a rewiring layer on the surface of the semiconductor chip from which the substrate and the temporary fixing film have been removed;
(F) forming a rewiring layer as a conductor layer on the rewiring forming layer;
(G) forming a solder resist layer on the rewiring layer;
including. Further, the method for manufacturing the semiconductor chip package includes:
(H) A step of dicing the plurality of semiconductor chip packages into individual semiconductor chip packages to individualize them.
 (工程(A))
 工程(A)は、基材に仮固定フィルムを積層する工程である。基材と仮固定フィルムとの積層条件は、回路基板の製造方法における基材と樹脂シートとの積層条件と同様でありうる。
(Step (A))
Step (A) is a step of laminating a temporary fixing film on a substrate. The conditions for laminating the base material and the temporary fixing film may be the same as the conditions for laminating the base material and the resin sheet in the method for manufacturing a circuit board.
 基材としては、例えば、シリコンウエハ;ガラスウエハ;ガラス基板;銅、チタン、ステンレス、冷間圧延鋼板(SPCC)等の金属基板;FR-4基板等の、ガラス繊維にエポキシ樹脂等をしみこませ熱硬化処理した基板;BT樹脂等のビスマレイミドトリアジン樹脂からなる基板;などが挙げられる。 Examples of substrates include silicon wafers; glass wafers; glass substrates; metal substrates such as copper, titanium, stainless steel and cold-rolled steel plate (SPCC); FR-4 substrates and the like; A heat-cured substrate; a substrate made of bismaleimide triazine resin such as BT resin; and the like.
 仮固定フィルムは、半導体チップから剥離でき、且つ、半導体チップを仮固定することができる任意の材料を用いうる。市販品としては、日東電工社製「リヴァアルファ」等が挙げられる。 Any material that can be peeled off from the semiconductor chip and that can temporarily fix the semiconductor chip can be used for the temporary fixing film. Commercially available products include "Riva Alpha" manufactured by Nitto Denko Corporation.
 (工程(B))
 工程(B)は、半導体チップを、仮固定フィルム上に仮固定する工程である。半導体チップの仮固定は、例えば、フリップチップボンダー、ダイボンダー等の装置を用いて行うことができる。半導体チップの配置のレイアウト及び配置数は、仮固定フィルムの形状、大きさ、目的とする半導体チップパッケージの生産数等に応じて適切に設定できる。例えば、複数行で、かつ複数列のマトリックス状に半導体チップを整列させて、仮固定してもよい。
(Step (B))
Step (B) is a step of temporarily fixing the semiconductor chip on the temporary fixing film. Temporary fixing of the semiconductor chip can be performed using a device such as a flip chip bonder, a die bonder, or the like. The layout and the number of semiconductor chips to be arranged can be appropriately set according to the shape and size of the temporary fixing film, the target production number of semiconductor chip packages, and the like. For example, the semiconductor chips may be arranged in a matrix of multiple rows and multiple columns and temporarily fixed.
 (工程(C))
 工程(C)は、半導体チップ上に封止層を形成する工程である。封止層は、本発明の樹脂組成物の硬化物によって形成しうる。封止層は、通常、半導体チップ上に樹脂組成物層を形成する工程と、この樹脂組成物層を熱硬化させて封止層としての硬化物層を形成する工程とを含む方法で形成する。半導体チップ上への樹脂組成物層の形成は、例えば、基板の代わりに半導体チップを用いること以外は、前記[回路基板]で説明した基板上への樹脂組成物層の形成方法と同じ方法で行いうる。
(Step (C))
Step (C) is a step of forming a sealing layer on the semiconductor chip. The sealing layer can be formed from a cured product of the resin composition of the present invention. The encapsulation layer is usually formed by a method including the steps of forming a resin composition layer on the semiconductor chip and thermosetting the resin composition layer to form a cured product layer as the encapsulation layer. . The resin composition layer is formed on the semiconductor chip by the same method as the method for forming the resin composition layer on the substrate described in [Circuit board] above, except that the semiconductor chip is used instead of the substrate. can do
 半導体チップ上に樹脂組成物層を形成した後で、この樹脂組成物層を熱硬化させて、半導体チップを覆う封止層を得る。したがって、本発明の樹脂組成物を硬化させる工程が含まれる。これにより、本発明の樹脂組成物の硬化物による半導体チップの封止が行われる。樹脂組成物層の熱硬化条件は、回路基板の製造方法における樹脂組成物層の熱硬化条件と同じ条件を採用してもよい。さらに、樹脂組成物層を熱硬化させる前に、樹脂組成物層に対して、硬化温度よりも低い温度で加熱する予備加熱処理を施してもよい。この予備加熱処理の処理条件は、回路基板の製造方法における予備加熱処理と同じ条件を採用してもよい。 After forming a resin composition layer on the semiconductor chip, the resin composition layer is thermally cured to obtain a sealing layer covering the semiconductor chip. Therefore, a step of curing the resin composition of the present invention is included. As a result, the semiconductor chip is sealed with the cured product of the resin composition of the present invention. The thermosetting conditions for the resin composition layer may be the same as the thermosetting conditions for the resin composition layer in the circuit board manufacturing method. Furthermore, before thermally curing the resin composition layer, the resin composition layer may be subjected to a preheating treatment of heating at a temperature lower than the curing temperature. The processing conditions for this preheating treatment may be the same as those for the preheating treatment in the circuit board manufacturing method.
 (工程(D))
 工程(D)は、基材及び仮固定フィルムを半導体チップから剥離する工程である。剥離方法は、仮固定フィルムの材質に応じた適切な方法を採用することが望ましい。剥離方法としては、例えば、仮固定フィルムを加熱、発泡又は膨張させて剥離する方法が挙げられる。また、剥離方法としては、例えば、基材を通して仮固定フィルムに紫外線を照射して、仮固定フィルムの粘着力を低下させて剥離する方法が挙げられる。
(Step (D))
Step (D) is a step of peeling off the substrate and the temporary fixing film from the semiconductor chip. As for the peeling method, it is desirable to employ an appropriate method according to the material of the temporary fixing film. Examples of the peeling method include a method of heating, foaming, or expanding the temporary fixing film to peel it. Moreover, as a peeling method, for example, a method of irradiating the temporary fixing film with ultraviolet rays through the base material to reduce the adhesive strength of the temporary fixing film and peel it off can be used.
 仮固定フィルムを加熱、発泡又は膨張させて剥離する方法において、加熱条件は、通常、100℃~250℃で1秒間~90秒間又は5分間~15分間である。また、紫外線を照射して仮固定フィルムの粘着力を低下させて剥離する方法において、紫外線の照射量は、通常、10mJ/cm2~1000mJ/cm2である。 In the method of peeling by heating, foaming or expanding the temporary fixing film, the heating conditions are usually 100° C. to 250° C. for 1 second to 90 seconds or 5 minutes to 15 minutes. In the method of peeling off the temporary fixing film by irradiating it with ultraviolet rays to reduce its adhesive strength, the irradiation dose of ultraviolet rays is usually 10 mJ/cm 2 to 1000 mJ/cm 2 .
 前記のように基材及び仮固定フィルムを半導体チップから剥離すると、封止層の面が露出する。半導体チップパッケージの製造方法は、この露出した封止層の面を研磨することを含んでいてもよい。研磨により、封止層の表面の平滑性を向上させることができる。研磨方法としては、回路基板の製造方法で説明したのと同じ方法を用いうる。 When the base material and temporary fixing film are peeled off from the semiconductor chip as described above, the surface of the sealing layer is exposed. The method of manufacturing the semiconductor chip package may include polishing the exposed surface of the encapsulation layer. Polishing can improve the smoothness of the surface of the sealing layer. As the polishing method, the same method as described in the manufacturing method of the circuit board can be used.
 (工程(E))
 工程(E)は、半導体チップの基材及び仮固定フィルムを剥離した面に、絶縁層としての再配線形成層を形成する工程である。通常、この再配線形成層は、半導体チップ及び封止層上に形成される。
(Step (E))
Step (E) is a step of forming a rewiring forming layer as an insulating layer on the surface of the semiconductor chip from which the substrate and the temporary fixing film have been removed. Usually, this rewiring formation layer is formed on the semiconductor chip and the encapsulation layer.
 再配線形成層の材料は、絶縁性を有する任意の材料を用いることができる。本発明の樹脂組成物の硬化物によって封止層を形成した場合、この封止層上に形成される再配線形成層は、感光性樹脂組成物によって形成してもよい。 Any insulating material can be used as the material of the rewiring formation layer. When the sealing layer is formed from the cured product of the resin composition of the present invention, the rewiring forming layer formed on the sealing layer may be formed from the photosensitive resin composition.
 再配線形成層を形成した後、半導体チップと再配線層とを層間接続するために、通常、再配線形成層にビアホールを形成する。再配線形成層が感光性樹脂組成物で形成されている場合、ビアホールの形成方法は、通常、再配線形成層の表面を、マスクを通して露光することを含む。活性エネルギー線としては、例えば、紫外線、可視光線、電子線、X線等が挙げられ、特に紫外線が好ましい。露光方法としては、例えば、マスクを再配線形成層に密着させて露光する接触露光法、マスクを再配線形成層に密着させずに平行光線を使用して露光する非接触露光法、などが挙げられる。 After forming the rewiring layer, via holes are usually formed in the rewiring layer in order to connect the semiconductor chip and the rewiring layer between layers. When the rewiring layer is formed of a photosensitive resin composition, the method for forming via holes generally includes exposing the surface of the rewiring layer through a mask. Examples of active energy rays include ultraviolet rays, visible rays, electron beams, and X-rays, and ultraviolet rays are particularly preferred. Examples of the exposure method include a contact exposure method in which exposure is performed while a mask is brought into close contact with the rewiring formation layer, and a non-contact exposure method in which exposure is performed using parallel rays without making a mask in close contact with the rewiring formation layer. be done.
 前記の露光により、再配線形成層には潜像が形成されうるので、その後、現像を行うことにより、再配線形成層の一部を除去して、再配線形成層を貫通する開口部分としてビアホールを形成できる。現像は、ウェット現像、ドライ現像のいずれを行ってもよい。現像の方式としては、例えば、ディップ方式、パドル方式、スプレー方式、ブラッシング方式、スクラッピング方式等が挙げられ、解像性の観点から、パドル方式が好適である。 Since a latent image can be formed in the rewiring layer by the above exposure, a part of the rewiring layer is removed by developing, and a via hole is formed as an opening penetrating the rewiring layer. can be formed. The development may be either wet development or dry development. The development method includes, for example, a dipping method, a paddle method, a spray method, a brushing method, a scraping method, and the like, and the paddle method is preferable from the viewpoint of resolution.
 ビアホールの形状は、特に限定されないが、一般的には円形(略円形)とされる。ビアホールのトップ径は、例えば、50μm以下、30μm以下、20μm以下、10μm以下である。ここで、ビアホールのトップ径とは、再配線形成層の表面でのビアホールの開口の直径をいう。 The shape of the via hole is not particularly limited, but is generally circular (substantially circular). The top diameter of the via hole is, for example, 50 μm or less, 30 μm or less, 20 μm or less, or 10 μm or less. Here, the top diameter of the via hole means the diameter of the opening of the via hole on the surface of the rewiring layer.
 (工程(F))
 工程(F)は、再配線形成層上に、導体層としての再配線層を形成する工程である。再配線形成層上に再配線層を形成する方法は、回路基板の製造方法における硬化物層上への導体層の形成方法と同様でありうる。また、工程(E)及び工程(F)を繰り返し行い、再配線層及び再配線形成層を交互に積み上げて(ビルドアップ)もよい。
(Step (F))
Step (F) is a step of forming a rewiring layer as a conductor layer on the rewiring forming layer. The method of forming the rewiring layer on the rewiring forming layer can be the same as the method of forming the conductor layer on the cured material layer in the method of manufacturing the circuit board. Alternatively, the steps (E) and (F) may be repeated to alternately build up the rewiring layers and the rewiring formation layers (build-up).
 (工程(G))
 工程(G)は、再配線層上にソルダーレジスト層を形成する工程である。ソルダーレジスト層の材料は、絶縁性を有する任意の材料を用いることができる。中でも、半導体チップパッケージの製造のしやすさの観点から、感光性樹脂及び熱硬化性樹脂が好ましい。また、熱硬化性樹脂として、本発明の樹脂組成物を用いてもよい。したがって、本発明の樹脂組成物を硬化させる工程が含まれうる。
(Step (G))
Step (G) is a step of forming a solder resist layer on the rewiring layer. Any insulating material can be used as the material of the solder resist layer. Among them, photosensitive resins and thermosetting resins are preferable from the viewpoint of easiness in manufacturing semiconductor chip packages. Moreover, you may use the resin composition of this invention as a thermosetting resin. Therefore, a step of curing the resin composition of the present invention may be included.
 また、工程(G)では、必要に応じて、バンプを形成するバンピング加工を行ってもよい。バンピング加工は、半田ボール、半田めっきなどの方法で行うことができる。また、バンピング加工におけるビアホールの形成は、工程(E)と同様に行うことができる。 Also, in step (G), a bumping process for forming bumps may be performed as necessary. Bumping can be performed by a method such as solder balls or solder plating. Formation of via holes in the bumping process can be performed in the same manner as in step (E).
 (工程(H))
 半導体チップパッケージの製造方法は、工程(A)~(G)以外に、工程(H)を含んでいてもよい。工程(H)は、複数の半導体チップパッケージを個々の半導体チップパッケージにダイシングし、個片化する工程である。半導体チップパッケージを個々の半導体チップパッケージにダイシングする方法は特に限定されない。
(Step (H))
The method for manufacturing a semiconductor chip package may include step (H) in addition to steps (A) to (G). Step (H) is a step of dicing a plurality of semiconductor chip packages into individual semiconductor chip packages to separate them into pieces. The method of dicing the semiconductor chip package into individual semiconductor chip packages is not particularly limited.
 第三の例に係る半導体チップパッケージとしては、図1に一例を示すような半導体チップパッケージ100において、再配線形成層130又はソルダーレジスト層150を、本発明の樹脂組成物の硬化物で形成した半導体チップパッケージが挙げられる。 As a semiconductor chip package according to the third example, in the semiconductor chip package 100 as shown in FIG. A semiconductor chip package is mentioned.
 [半導体装置]
 半導体装置は、半導体チップパッケージを備える。半導体装置としては、例えば、電気製品(例えば、コンピューター、携帯電話、スマートフォン、タブレット型デバイス、ウェラブルデバイス、デジタルカメラ、医療機器、及びテレビ等)及び乗物(例えば、自動二輪車、自動車、電車、船舶及び航空機等)等に供される各種半導体装置が挙げられる。
[Semiconductor device]
A semiconductor device includes a semiconductor chip package. Semiconductor devices include, for example, electrical products (e.g., computers, mobile phones, smartphones, tablet devices, wearable devices, digital cameras, medical equipment, televisions, etc.) and vehicles (e.g., motorcycles, automobiles, trains, ships, etc.) and aircraft, etc.).
 以下、本発明を実施例により具体的に説明する。本発明はこれらの実施例に限定されるものではない。なお、以下において、量を表す「部」及び「%」は、別途明示のない限り、それぞれ「質量部」及び「質量%」を意味する。特に温度の指定が無い場合の温度条件及び圧力条件は、室温(25℃)及び大気圧(1atm)である。 The present invention will be specifically described below with reference to examples. The invention is not limited to these examples. In the following, "parts" and "%" representing amounts mean "parts by mass" and "% by mass", respectively, unless otherwise specified. Unless otherwise specified, temperature conditions and pressure conditions are room temperature (25° C.) and atmospheric pressure (1 atm).
 まず、樹脂組成物について説明する。 First, the resin composition will be explained.
 <製造例1:無機充填材Aの製造>
 結晶性シリカを原料として用い、溶融法における溶融工程を2回実施することにより得られた高非晶質小径シリカB1を、信越化学工業社製の表面処理剤「KBM573」(N-フェニル-3-アミノプロピルトリメトキシシラン)で表面処理することにより、無機充填材Aを得た。
 無機充填材Aの平均粒径は、3.1μmであり、比表面積は、5.1m/gであった。平均粒径及び比表面積は先述の方法にしたがって測定した。
 無機充填材Aの結晶性シリカ含有率を、X線回折測定により得られたX線回折パターンに基づき算出した。X線回折測定のために、リガク社製のX線回折分析装置「SmartLab(登録商標)」を用いた。具体的には、結晶性シリカ含有率として、X線回折分析装置(及び付属の定性解析プログラムPDXL)がX線回折パターンをリートベルト解析して算出した結果得られた数値0.3%を採用した。
<Production Example 1: Production of inorganic filler A>
Using crystalline silica as a raw material, the highly amorphous small-diameter silica B1 obtained by performing the melting process twice in the melting method is treated with a surface treatment agent "KBM573" (N-phenyl-3 -aminopropyltrimethoxysilane) to obtain an inorganic filler A.
The inorganic filler A had an average particle size of 3.1 μm and a specific surface area of 5.1 m 2 /g. The average particle size and specific surface area were measured according to the methods described above.
The crystalline silica content of inorganic filler A was calculated based on the X-ray diffraction pattern obtained by X-ray diffraction measurement. For the X-ray diffraction measurement, an X-ray diffraction analyzer "SmartLab (registered trademark)" manufactured by Rigaku was used. Specifically, as the crystalline silica content, the value 0.3% obtained as a result of Rietveld analysis of the X-ray diffraction pattern by the X-ray diffraction analyzer (and the attached qualitative analysis program PDXL) is adopted. did.
 <製造例2、3:無機充填材B、Cの製造>
 結晶性シリカを原料として用い、溶融法における溶融工程を2回実施することにより得られた高非晶質小径シリカB2、溶融法における溶融工程を1回実施することにより得られた高非晶質小径シリカB3を、それぞれ、製造例1と同様に表面処理することにより、無機充填材B、Cを得た。
 無機充填材Bの平均粒径は、10μmであり、比表面積は、3.4m/gであり、結晶性シリカ含有率は、0.3%であった。
 無機充填材Cの平均粒径は、9.8μmであり、比表面積は、3.5m/gであり、結晶性シリカ含有率は、0.09%であった。
<Production Examples 2 and 3: Production of inorganic fillers B and C>
Using crystalline silica as a raw material, highly amorphous small-diameter silica B2 obtained by performing the melting process twice in the melting method, highly amorphous obtained by performing the melting process once in the melting method Inorganic fillers B and C were obtained by surface-treating small-diameter silica B3 in the same manner as in Production Example 1, respectively.
The inorganic filler B had an average particle diameter of 10 μm, a specific surface area of 3.4 m 2 /g, and a crystalline silica content of 0.3%.
The inorganic filler C had an average particle size of 9.8 μm, a specific surface area of 3.5 m 2 /g, and a crystalline silica content of 0.09%.
 <製造例4:無機充填材Dの製造>
 非晶質シリカを原料として用い、製造例1と同様に表面処理することにより、無機充填材Dを得た。
 無機充填材Dの平均粒径は、3.2μmであり、比表面積は、3.8m/gであり、結晶性シリカ含有率は、検出限界以下であった(検出限界は約0.01質量%)。
<Production Example 4: Production of inorganic filler D>
Inorganic filler D was obtained by using amorphous silica as a raw material and subjecting it to surface treatment in the same manner as in Production Example 1.
The inorganic filler D had an average particle size of 3.2 μm, a specific surface area of 3.8 m 2 /g, and a crystalline silica content below the detection limit (the detection limit was about 0.01 mass%).
 <製造例5、6:無機充填材E、Fの製造>
 結晶性シリカを原料として用い、溶融法における溶融工程を1回実施することにより得られた高非晶質小径シリカB4、溶融法における溶融工程を1回実施することにより得られた高非晶質小径シリカB5を、それぞれ、製造例1と同様に表面処理することにより、無機充填材E、Fを得た。
 無機充填材Eの平均粒径は、3.4μmであり、比表面積は、5.0m/gであり、結晶性シリカ含有率は、2.1%であった。
 無機充填材Fの平均粒径は、9.5μmであり、比表面積は、3.2m/gであり、結晶性シリカ含有率は、5%であった。
<Production Examples 5 and 6: Production of inorganic fillers E and F>
Using crystalline silica as a raw material, highly amorphous small-diameter silica B4 obtained by performing the melting process once in the melting method, highly amorphous obtained by performing the melting process once in the melting method Inorganic fillers E and F were obtained by surface-treating small-diameter silica B5 in the same manner as in Production Example 1, respectively.
The inorganic filler E had an average particle diameter of 3.4 μm, a specific surface area of 5.0 m 2 /g, and a crystalline silica content of 2.1%.
The inorganic filler F had an average particle size of 9.5 μm, a specific surface area of 3.2 m 2 /g, and a crystalline silica content of 5%.
 <実施例1-1>
 (C)成分としての硬化剤(新日本理化社製の酸無水物系硬化剤「MH-700」、酸無水物基当量:164g/eq.)8部、(A)成分としてのエポキシ樹脂(日鉄ケミカル&マテリアル社製の液状エポキシ樹脂「ZX1059」、ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂との1:1混合品(質量比)、エポキシ当量:169g/eq.)2部、(A)成分としてのエポキシ樹脂(ダイセル社製の脂環型エポキシ樹脂「セロキサイド2021P」、エポキシ当量:136g/eq.)2部、(A)成分としてのエポキシ樹脂(DIC社製のナフタレン型エポキシ樹脂「HP4032D」、エポキシ当量:143g/eq.)2部、(D)成分としての硬化促進剤(四国化成工業社製のイミダゾール系硬化促進剤「2MA-OK-PW」)0.4部、(A)成分としてのエポキシ樹脂(ADEKA社製のグリシジルアミン型エポキシ樹脂「EP-3950L」、エポキシ当量:95g/eq.)2部、(A)成分としてのエポキシ樹脂(ADEKA社製のジシクロペンタジエンジメタノール型エポキシ樹脂「EP-4088S」、エポキシ当量:170g/eq.)2部、(D)成分としてのメタクリレート(新中村化学工業社製のメタクリロイル基とポリエチレンオキシド構造とを有する化合物「M-130G」)3部、(D)成分としてのラジカル重合開始剤(日油社製「パーヘキシル(登録商標)O」、10時間半減期温度T10:69.9℃)0.1部、(B)成分としての無機充填材A110部、(D)成分としてのシランカップリング剤(信越化学工業社製「KBM403」(3-グリシドキシプロピルトリメトキシシラン))0.2部を、ミキサーを用いて均一に分散し、ペースト状の樹脂組成物(樹脂ペースト)を調製した。樹脂ペースト全体を100体積%とした場合、無機充填材Aの含有量は、71.7体積%であった。樹脂組成物ペースト中の無機充填材の含有量を表1に示す。
 調製した樹脂ペーストは、速やかに、後述する初期溶融粘度MV0の測定に供した。
<Example 1-1>
Curing agent as component (C) (acid anhydride-based curing agent "MH-700" manufactured by Shin Nippon Rika Co., Ltd., acid anhydride group equivalent: 164 g / eq.) 8 parts, epoxy resin as component (A) ( Liquid epoxy resin "ZX1059" manufactured by Nippon Steel Chemical & Materials Co., Ltd., 1:1 mixture of bisphenol A type epoxy resin and bisphenol F type epoxy resin (mass ratio), epoxy equivalent: 169 g / eq.) 2 parts, ( A) 2 parts of epoxy resin as component (alicyclic epoxy resin "Celoxide 2021P" manufactured by Daicel Corporation, epoxy equivalent: 136 g/eq.), epoxy resin as component (A) (naphthalene type epoxy resin manufactured by DIC Corporation "HP4032D", epoxy equivalent: 143 g / eq.) 2 parts, curing accelerator as component (D) (imidazole curing accelerator manufactured by Shikoku Kasei Kogyo Co., Ltd. "2MA-OK-PW") 0.4 parts, ( A) 2 parts of epoxy resin (ADEKA's glycidylamine type epoxy resin "EP-3950L", epoxy equivalent: 95 g/eq.) as component, epoxy resin (ADEKA's dicyclopentadiene Dimethanol type epoxy resin "EP-4088S", epoxy equivalent: 170 g / eq.) 2 parts, methacrylate as component (D) (manufactured by Shin-Nakamura Chemical Co., Ltd., a compound having a methacryloyl group and a polyethylene oxide structure "M- 130G") 3 parts, radical polymerization initiator as component (D) ("Perhexyl (registered trademark) O" manufactured by NOF Corporation, 10-hour half-life temperature T10: 69.9 ° C.) 0.1 part, (B) 110 parts of the inorganic filler A as a component, and 0.2 parts of a silane coupling agent (Shin-Etsu Chemical Co., Ltd. "KBM403" (3-glycidoxypropyltrimethoxysilane)) as a component (D) using a mixer. A uniformly dispersed and pasty resin composition (resin paste) was prepared. The content of the inorganic filler A was 71.7% by volume when the entire resin paste was taken as 100% by volume. Table 1 shows the content of the inorganic filler in the resin composition paste.
The prepared resin paste was immediately subjected to the measurement of the initial melt viscosity MV0, which will be described later.
 <実施例1-2>
 実施例1-1において、以下の事項を変更した。
 (A)成分につき、エポキシ樹脂(「ZX1059」、「セロキサイド2021P」、「HP4032D、「EP-3950L」及び「EP-4088S」)をそれぞれ2部配合することに代えて、エポキシ樹脂(「ZX1059」)2部、エポキシ樹脂(「HP4032D」)を2部、エポキシ樹脂(ナガセケムテックス社製のポリエーテル含有エポキシ樹脂「EX-992L」、エポキシ当量:680g/eq.)を2部、エポキシ樹脂(大阪ガスケミカル社製のフルオレン構造含有エポキシ樹脂「EG-280」、エポキシ当量:460g/eq.)を2部、及び、エポキシ樹脂(ADEKA社製のグリシジルアミン型エポキシ樹脂「EP-3980S」、エポキシ当量:115g/eq.)を2部、配合した。
 (D)成分につき、メタクリレート(「M-130G」)を3部配合することに代えて、メタクリレート(新中村化学工業社製の2官能メタクリレート「M-230G」)4部を配合した。さらに、硬化促進剤(「2MA-OK-PW」)の配合量を0.4部から0.5部へ変更した。
 上記の事項以外は、実施例1-1と同様にして、実施例1-2に係る樹脂ペーストを調製した。
<Example 1-2>
In Example 1-1, the following items were changed.
For component (A), instead of blending 2 parts each of epoxy resins ("ZX1059", "Celoxide 2021P", "HP4032D, "EP-3950L" and "EP-4088S"), epoxy resin ("ZX1059" ) 2 parts, epoxy resin ("HP4032D") 2 parts, epoxy resin (polyether-containing epoxy resin "EX-992L" manufactured by Nagase ChemteX Corporation, epoxy equivalent: 680 g / eq.) 2 parts, epoxy resin ( Fluorene structure-containing epoxy resin "EG-280" manufactured by Osaka Gas Chemicals Co., Ltd., epoxy equivalent: 460 g / eq. Equivalent weight: 115 g/eq.) was blended.
For component (D), instead of adding 3 parts of methacrylate (“M-130G”), 4 parts of methacrylate (bifunctional methacrylate “M-230G” manufactured by Shin-Nakamura Chemical Co., Ltd.) was added. Furthermore, the blending amount of the curing accelerator (“2MA-OK-PW”) was changed from 0.4 parts to 0.5 parts.
A resin paste according to Example 1-2 was prepared in the same manner as in Example 1-1 except for the above items.
 <実施例1-3>
 実施例1-1において、以下の事項を変更した。
 (A)成分につき、エポキシ樹脂(「ZX1059」、「セロキサイド2021P」、「HP4032D、「EP-3950L」及び「EP-4088S」)の配合量をそれぞれ2部から、それぞれ3部に変更した。
 (C)成分につき、硬化剤(「MH-700」)を8部配合することに代えて、硬化剤(日本化薬社製のアミン系硬化剤「カヤハードA-A」(4,4’-ジアミノ-3,3’-ジエチルジフェニルメタン))を3部配合した。
 (D)成分につき、硬化促進剤(「2MA-OK-PW」)を0.4部配合することに代えて、硬化促進剤(四国化成社製のイミダゾール系硬化促進剤「2E4MZ」)を0.4部配合した。
 上記の事項以外は、実施例1-1と同様にして、実施例1-3に係る樹脂ペーストを調製した。
<Example 1-3>
In Example 1-1, the following items were changed.
For component (A), the amount of epoxy resin ("ZX1059", "Celoxide 2021P", "HP4032D, "EP-3950L" and "EP-4088S") was changed from 2 parts to 3 parts.
For component (C), instead of blending 8 parts of a curing agent ("MH-700"), a curing agent (Nippon Kayaku Co., Ltd. amine-based curing agent "Kayahard AA"(4,4'-Diamino-3,3'-diethyldiphenylmethane)) was added in 3 parts.
For component (D), instead of adding 0.4 parts of a curing accelerator (“2MA-OK-PW”), a curing accelerator (imidazole-based curing accelerator “2E4MZ” manufactured by Shikoku Kasei Co., Ltd.) is added to 0. .4 parts were added.
A resin paste according to Example 1-3 was prepared in the same manner as in Example 1-1 except for the above items.
 <実施例1-4>
 実施例1-1において、以下の事項を変更した。
 (A)成分につき、エポキシ樹脂(「ZX1059」、「セロキサイド2021P」、「HP4032D、「EP-3950L」及び「EP-4088S」)をそれぞれ2部配合することに代えて、エポキシ樹脂(「ZX1059」)を3部、エポキシ樹脂(「HP4032D」)を2部、かつ、エポキシ樹脂(日本曹達社製のエポキシ化ポリブタジエン樹脂「JP-100」)を1部、配合した。
 (B)成分につき、無機充填材Aを110部配合することに代えて、無機充填材Bを120部配合した。
 (C)成分につき、硬化剤(「MH-700」)の配合量を8部から9部へ変更した。
 (D)成分につき、シランカップリング剤(「KBM403」)の配合量を0.2部から0.1部に変更した。また、硬化促進剤(「2MA-OK-PW」)の配合量を0.4部から0.5部へ変更し、ラジカル重合開始剤(「パーヘキシル(登録商標)O」)を使用しなかった。
 上記の事項以外は、実施例1-1と同様にして、実施例1-4に係る樹脂ペーストを調製した。
<Example 1-4>
In Example 1-1, the following items were changed.
For component (A), instead of blending 2 parts each of epoxy resins ("ZX1059", "Celoxide 2021P", "HP4032D, "EP-3950L" and "EP-4088S"), epoxy resin ("ZX1059" ), 2 parts of an epoxy resin (“HP4032D”), and 1 part of an epoxy resin (epoxidized polybutadiene resin “JP-100” manufactured by Nippon Soda Co., Ltd.).
For component (B), 120 parts of inorganic filler B was added in place of 110 parts of inorganic filler A.
For component (C), the amount of curing agent (“MH-700”) was changed from 8 parts to 9 parts.
For component (D), the amount of the silane coupling agent (“KBM403”) was changed from 0.2 parts to 0.1 parts. In addition, the amount of the curing accelerator (“2MA-OK-PW”) was changed from 0.4 parts to 0.5 parts, and the radical polymerization initiator (“Perhexyl (registered trademark) O”) was not used. .
A resin paste according to Example 1-4 was prepared in the same manner as in Example 1-1 except for the above items.
 <実施例1-5>
 実施例1-4において、以下の事項を変更した。
 (A)成分につき、エポキシ樹脂(「ZX1059」)を3部、エポキシ樹脂(「HP4032D」)を2部、かつ、エポキシ樹脂(「JP-100」)を1部配合することに代えて、エポキシ樹脂(「ZX1059」)を3部、エポキシ樹脂(「HP4032D」)を1部、かつ、エポキシ樹脂(「EG-280」)を1部配合した。
 (D)成分につき、シランカップリング剤(「KBM403」)を0.1部配合することに代えて、シランカップリング剤(「KBM403」)を0.1部、かつ、シランカップリング剤(信越化学工業社製「KBM803」(3-メルカプトプロピルトリメトキシシラン)))を0.1部配合した。すなわち、実施例1-5では、シランカップリング剤を複数種類配合した。
 さらに、(D)成分としてのシリコーン樹脂(信越シリコーン社製のポリオキシアルキレン変性シリコーン樹脂「KF-6012」、粘度(25℃):1500mm/s)を1部配合した。
 上記の事項以外は、実施例1-4と同様にして、実施例1-5に係る樹脂ペーストを調製した。
<Example 1-5>
In Examples 1-4, the following items were changed.
Instead of blending 3 parts of epoxy resin (“ZX1059”), 2 parts of epoxy resin (“HP4032D”), and 1 part of epoxy resin (“JP-100”) for component (A), epoxy Three parts of resin (“ZX1059”), one part of epoxy resin (“HP4032D”), and one part of epoxy resin (“EG-280”) were blended.
For component (D), instead of blending 0.1 part of silane coupling agent (“KBM403”), 0.1 part of silane coupling agent (“KBM403”) and 0.1 part of silane coupling agent (Shin-Etsu 0.1 part of "KBM803" (3-mercaptopropyltrimethoxysilane) manufactured by Kagaku Kogyo Co., Ltd. was added. That is, in Examples 1-5, a plurality of types of silane coupling agents were blended.
Further, 1 part of a silicone resin (polyoxyalkylene-modified silicone resin “KF-6012” manufactured by Shin-Etsu Silicone Co., Ltd., viscosity (25° C.): 1500 mm 2 /s) was blended as component (D).
A resin paste according to Example 1-5 was prepared in the same manner as in Example 1-4 except for the above items.
 <実施例1-6>
 実施例1-5において、(D)成分につき、シリコーン樹脂(「KF-6012」)を1部配合することに代えて、ポリオキシエチレンポリオキシプロピレングリコール化合物(ADEKA社製のポリオキシエチレンポリオキシプロピレングリコール「L-64」)を1部配合した。
 上記の事項以外は、実施例1-5と同様にして、実施例1-6に係る樹脂ペーストを調製した。
<Example 1-6>
In Example 1-5, instead of blending 1 part of the silicone resin ("KF-6012") for the component (D), a polyoxyethylene polyoxypropylene glycol compound (manufactured by ADEKA) was added. 1 part of propylene glycol "L-64") was added.
A resin paste according to Example 1-6 was prepared in the same manner as in Example 1-5 except for the above items.
 <実施例1-7>
 実施例1-5において、(A)成分につき、エポキシ樹脂(「ZX1059」)を3部、エポキシ樹脂(「HP4032D」)を1部、かつ、エポキシ樹脂(「EG-280」)を1部配合することに代えて、エポキシ樹脂(「ZX1059」)を3部、エポキシ樹脂(「HP4032D」)を1部、かつ、エポキシ樹脂(「EP-3950L」)を2部配合した。
 また、実施例1-5において、(D)成分につき、シリコーン樹脂(「KF-6012」)を1部配合することに代えて、下記のようにして合成したポリエステルポリオールAを1部配合した。
<Example 1-7>
In Example 1-5, 3 parts of epoxy resin ("ZX1059"), 1 part of epoxy resin ("HP4032D"), and 1 part of epoxy resin ("EG-280") were added to component (A). Instead, 3 parts epoxy resin (“ZX1059”), 1 part epoxy resin (“HP4032D”), and 2 parts epoxy resin (“EP-3950L”) were blended.
In addition, in Example 1-5, instead of blending 1 part of silicone resin ("KF-6012") for component (D), 1 part of polyester polyol A synthesized as follows was blended.
 -「ポリエステルポリオールA」の合成-
 反応容器に、ε-カプロラクトンモノマー(ダイセル社製「プラクセルM」)22.6g、ポリプロピレングリコール(富士フィルム和光純薬社製「ポリプロピレングリコール,ジオール型,3,000」)10g、2-エチルヘキサン酸スズ(II)(富士フィルム和光純薬製)1.62gを仕込み、窒素雰囲気下130℃に昇温し、約16時間攪拌させ反応させた。反応後の生成物をクロロホルムに溶かし、その生成物をメタノールで再沈殿させたのち乾燥させた。これにより、「ポリエステルポリオールA」として、脂肪族骨格を有し、ヒドロキシル基末端であるポリエステルポリオールを得た。GPC分析からMn=9000であった。
 上記の事項以外は、実施例1-5と同様にして、実施例1-7に係る樹脂ペーストを調製した。
-Synthesis of "polyester polyol A"-
Into a reaction vessel, 22.6 g of ε-caprolactone monomer (“PLAXEL M” manufactured by Daicel), 10 g of polypropylene glycol (“Polypropylene glycol, diol type, 3,000” manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), 2-ethylhexanoic acid 1.62 g of tin (II) (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) was charged, heated to 130° C. under a nitrogen atmosphere, and stirred for about 16 hours to react. The product after the reaction was dissolved in chloroform, and the product was reprecipitated with methanol and then dried. As a result, a polyester polyol having an aliphatic skeleton and terminated with a hydroxyl group was obtained as "polyester polyol A". GPC analysis gave Mn=9000.
A resin paste according to Example 1-7 was prepared in the same manner as in Example 1-5 except for the above items.
 <実施例1-8>
 実施例1-3において、以下の事項を変更した。
 (A)成分につき、エポキシ樹脂(「ZX1059」、「セロキサイド2021P」、「HP4032D、「EP-3950L」及び「EP-4088S」)をそれぞれ3部配合することに代えて、エポキシ樹脂(「ZX1059」)を3部、エポキシ樹脂(「セロキサイド2021P」)を3部、エポキシ樹脂(「HP4032D」)を3部、エポキシ樹脂(「EP-3950L」)を2部、かつ、エポキシ樹脂(「EP-4088S」)を1部配合した。
 (B)成分につき、無機充填材Aを110部配合することに代えて、無機充填材Bを120部配合した。
 (D)成分につき、シランカップリング剤(「KBM403」)の配合量を0.2部から0.3部に変更した。また、メタクリレート(「M-130G」)を3部配合することに代えて、ポリエステルポリオールAを1部配合した。また、ラジカル重合開始剤(「パーヘキシル(登録商標)O」)の配合量を0.1部から0部に変更した。すなわち、実施例1-8では、ラジカル重合開始剤を用いなかった。
 上記の事項以外は、実施例1-3と同様にして、実施例1-8に係る樹脂ペーストを調製した。
<Example 1-8>
In Example 1-3, the following items were changed.
Instead of blending 3 parts each of epoxy resins (“ZX1059”, “Celoxide 2021P”, “HP4032D, “EP-3950L” and “EP-4088S”) for component (A), epoxy resin (“ZX1059” ), 3 parts of epoxy resin (“Celoxide 2021P”), 3 parts of epoxy resin (“HP4032D”), 2 parts of epoxy resin (“EP-3950L”), and 2 parts of epoxy resin (“EP-4088S ”) was blended.
For component (B), 120 parts of inorganic filler B was added in place of 110 parts of inorganic filler A.
For component (D), the amount of the silane coupling agent (“KBM403”) was changed from 0.2 parts to 0.3 parts. Also, instead of blending 3 parts of methacrylate (“M-130G”), 1 part of polyester polyol A was blended. Also, the blending amount of the radical polymerization initiator (“Perhexyl (registered trademark) O”) was changed from 0.1 part to 0 part. That is, in Example 1-8, no radical polymerization initiator was used.
A resin paste according to Example 1-8 was prepared in the same manner as in Example 1-3 except for the above items.
 <実施例1-9>
 実施例1-8において、以下の事項を変更した。
 (A)成分につき、エポキシ樹脂(「ZX1059」)を3部、エポキシ樹脂(「セロキサイド2021P」)を3部、エポキシ樹脂(「HP4032D」)を3部、エポキシ樹脂(「EP-3950L」)を2部、及び、エポキシ樹脂(「EP-4088S」)を1部配合することに代えて、エポキシ樹脂(「ZX1059」)を3部、エポキシ樹脂(「セロキサイド2021P」)を3部、エポキシ樹脂(「HP4032D」)を3部、エポキシ樹脂(「EP-3950L」)を2部、かつ、エポキシ樹脂(「EX-992L」)を1部配合した。
 (C)成分につき、硬化剤(「カヤハードA-A」)を3部配合することに代えて、硬化剤(シグマアルドリッチ社製のフェノール系硬化剤「2,2-ジアリルビスフェノールA」)を3部配合した。
 (B)成分につき、無機充填材Bの配合量を120部から100部に変更した。
 (D)成分につき、ポリエステルポリオールAを1部配合することに代えて、シリコーン樹脂(「KF-6012」)を2部配合した。
 上記の事項以外は、実施例1-8と同様にして、実施例1-9に係る樹脂ペーストを調製した。
<Example 1-9>
In Examples 1-8, the following items were changed.
For component (A), 3 parts of epoxy resin (“ZX1059”), 3 parts of epoxy resin (“Celoxide 2021P”), 3 parts of epoxy resin (“HP4032D”), and 3 parts of epoxy resin (“EP-3950L”) Instead of blending 2 parts and 1 part of epoxy resin ("EP-4088S"), 3 parts of epoxy resin ("ZX1059"), 3 parts of epoxy resin ("Celoxide 2021P"), epoxy resin ( 3 parts of "HP4032D"), 2 parts of epoxy resin ("EP-3950L"), and 1 part of epoxy resin ("EX-992L") were blended.
For component (C), instead of blending 3 parts of a curing agent ("Kayahard AA"), 3 parts of a curing agent (phenol-based curing agent "2,2-diallylbisphenol A" manufactured by Sigma-Aldrich) Partially mixed.
For component (B), the amount of inorganic filler B was changed from 120 parts to 100 parts.
For component (D), instead of blending 1 part of polyester polyol A, 2 parts of a silicone resin ("KF-6012") was blended.
A resin paste according to Example 1-9 was prepared in the same manner as in Example 1-8 except for the above items.
 <実施例1-10>
 実施例1-7において、(B)成分としての無機充填材B120部を、無機充填材C120部に変更した。
 上記の事項以外は、実施例1-7と同様にして、実施例1-10に係る樹脂ペーストを調製した。
<Example 1-10>
In Example 1-7, 120 parts of the inorganic filler B as the component (B) was changed to 120 parts of the inorganic filler C.
A resin paste according to Example 1-10 was prepared in the same manner as in Example 1-7 except for the above items.
 <実施例1-11>
 実施例1-2において、(B)成分としての無機充填材A110部を、無機充填材D110部に変更した。
 上記の事項以外は、実施例1-2と同様にして、実施例1-11に係る樹脂ペーストを調製した。
<Example 1-11>
In Example 1-2, 110 parts of the inorganic filler A as the component (B) was changed to 110 parts of the inorganic filler D.
A resin paste according to Example 1-11 was prepared in the same manner as in Example 1-2 except for the above items.
 <実施例2-1>
 <樹脂ワニスの作製>
 (D)成分としての、下記のようにして合成したポリイミド樹脂A溶液2部、(A)成分としてのエポキシ樹脂(日鉄ケミカル&マテリアル社製のナフタレン型エポキシ樹脂「ESN-475V」、エポキシ当量:約332g/eq.)2.4部、(A)成分としてのエポキシ樹脂(「HP4032D」)6部、(C)成分としての硬化剤(DIC(株)製「LA-3018-50P」、水酸基当量:151g/eq.、固形分50%の2-メトキシプロパノール溶液)7部、(B)成分としての無機充填材B85部、メチルエチルケトン(MEK)10部、シクロヘキサノン8部を混合し、高速回転ミキサーで均一に分散し、樹脂ワニスを調製した。
<Example 2-1>
<Production of resin varnish>
As component (D), 2 parts of polyimide resin A solution synthesized as follows, epoxy resin as component (A) (Nippon Steel Chemical & Material naphthalene type epoxy resin "ESN-475V", epoxy equivalent : about 332g/eq.) 2.4 parts, epoxy resin ("HP4032D") as component (A) 6 parts, curing agent as component (C) ("LA-3018-50P" manufactured by DIC Corporation, Hydroxy group equivalent: 151 g / eq., 2-methoxypropanol solution with a solid content of 50%) 7 parts, inorganic filler B 85 parts as component (B), methyl ethyl ketone (MEK) 10 parts, cyclohexanone 8 parts were mixed and rotated at high speed. A resin varnish was prepared by uniformly dispersing the mixture with a mixer.
 -ポリイミド樹脂A溶液の調製-
 撹拌装置、温度計及びコンデンサーを取り付けられたフラスコに、溶剤として、エチルジグリコールアセテート368.41g及びエクソンモービル社製の芳香族系溶剤「ソルベッソ150(登録商標)」(芳香族系溶剤)368.41gを仕込んだ。さらに、前記のフラスコに、ジフェニルメタンジイソシアネート100.1g(0.4モル)と、ポリカーボネートジオール(クラレ社製「C-2015N」、数平均分子量:約2000、水酸基当量:1000g/eq.、不揮発成分:100質量%)400g(0.2モル)とを仕込んで、70℃で4時間反応を行った。これにより、第1の反応溶液を得た。
- Preparation of polyimide resin A solution -
A flask equipped with a stirrer, a thermometer and a condenser was charged with 368.41 g of ethyl diglycol acetate and ExxonMobil's aromatic solvent "Solvesso 150 (registered trademark)" (aromatic solvent) 368.41 g as solvents. 41 g was charged. Furthermore, in the flask, 100.1 g (0.4 mol) of diphenylmethane diisocyanate, polycarbonate diol (“C-2015N” manufactured by Kuraray Co., Ltd., number average molecular weight: about 2000, hydroxyl group equivalent: 1000 g/eq., non-volatile components: 100% by mass) 400 g (0.2 mol) were charged and reacted at 70° C. for 4 hours. Thus, a first reaction solution was obtained.
 ついで、前記のフラスコに、更にノニルフェノールノボラック樹脂(水酸基当量:229.4g/eq、平均4.27官能、平均計算分子量:979.5g/モル)195.9g(0.2モル)と、エチレングリコールビスアンヒドロトリメリテート41.0g(0.1モル)とを仕込んで、2時間かけて150℃に昇温し、12時間反応させた。これにより、第2の反応溶液を得た。FT-IRによって2250cm-1のNCOピークの消失の確認を行った。NCOピークの消失の確認をもって反応の終点とみなし、第2の反応溶液を室温まで降温した。そして、第2の反応溶液を、100メッシュの濾布で濾過した。これにより、濾液として、ポリカーボネート構造を有するポリイミド樹脂Aを不揮発成分として含むポリイミド樹脂A溶液(不揮発成分50質量%)を得た。ポリイミド樹脂Aの数平均分子量は6100であった。 Next, 195.9 g (0.2 mol) of a nonylphenol novolak resin (hydroxyl equivalent: 229.4 g/eq, average functionality of 4.27, average calculated molecular weight: 979.5 g/mol) and ethylene glycol were added to the flask. 41.0 g (0.1 mol) of bis-anhydrotrimellitate was charged, the temperature was raised to 150° C. over 2 hours, and the reaction was allowed to proceed for 12 hours. A second reaction solution was thus obtained. The disappearance of the NCO peak at 2250 cm −1 was confirmed by FT-IR. Confirmation of the disappearance of the NCO peak was regarded as the end of the reaction, and the temperature of the second reaction solution was lowered to room temperature. The second reaction solution was then filtered through a 100-mesh filter cloth. As a result, a polyimide resin A solution (50% by mass of non-volatile components) containing polyimide resin A having a polycarbonate structure as a non-volatile component was obtained as a filtrate. Polyimide resin A had a number average molecular weight of 6,100.
 調製した樹脂ワニスの一部は、速やかに、以下に説明する樹脂シートSt0の作製に供した。
 また、樹脂ワニスの別の一部を、23℃、湿度50%の環境で12時間保管し、以下に説明する樹脂シートSt12の作製に供した。
A portion of the prepared resin varnish was promptly used for production of a resin sheet St0 described below.
Further, another part of the resin varnish was stored in an environment of 23° C. and 50% humidity for 12 hours, and used for the preparation of the resin sheet St12 described below.
 <樹脂シートSt0の作製>
 支持体としてアルキド樹脂系離型剤(リンテック社製「AL-5」)で表面に離型処理を施されたPETフィルム(厚み38μm、軟化点130℃)を用意した。
<Production of resin sheet St0>
As a support, a PET film (thickness: 38 μm, softening point: 130° C.) whose surface was subjected to release treatment with an alkyd resin release agent (“AL-5” manufactured by Lintec) was prepared.
 調製してまもない樹脂ワニスを、乾燥後の樹脂組成物層の厚みが200μmとなるよう、支持体上にダイコータにて均一に塗布し、100℃で6分間乾燥することにより、支持体上に樹脂組成物層を得た。次いで、樹脂組成物層の支持体と接合していない面に、保護フィルムとしてポリプロピレンフィルム(王子エフテックス社製「アルファンMA411」、厚み15μm)の粗面を、樹脂組成物層と接合するように積層した。これにより、支持体、樹脂組成物層、及び保護フィルムの順からなる樹脂シートSt0を得た。
 樹脂シートSt0の樹脂組成物層全体を100体積%とした場合、無機充填材Bの含有量は、76.7体積%であった。また、加熱及び乾燥の結果、溶剤の含有量は、樹脂シートSt0の樹脂組成物層全体を100質量%とした場合、5質量%以下であると見込まれた。
 作製した樹脂シートSt0の樹脂組成物層を、速やかに、後述する初期溶融粘度MV0の測定に供した。
A resin varnish that has just been prepared is evenly coated on the support with a die coater so that the thickness of the resin composition layer after drying is 200 μm, and dried at 100° C. for 6 minutes. to obtain a resin composition layer. Next, on the surface of the resin composition layer that is not bonded to the support, a rough surface of a polypropylene film (“Alphan MA411” manufactured by Oji F-Tex Co., Ltd., thickness 15 μm) as a protective film is attached to the resin composition layer. laminated to. As a result, a resin sheet St0 consisting of the support, the resin composition layer, and the protective film in that order was obtained.
The content of the inorganic filler B was 76.7% by volume when the entire resin composition layer of the resin sheet St0 was taken as 100% by volume. Further, as a result of heating and drying, the content of the solvent was expected to be 5% by mass or less when the entire resin composition layer of the resin sheet St0 was taken as 100% by mass.
The resin composition layer of the produced resin sheet St0 was immediately subjected to the measurement of the initial melt viscosity MV0, which will be described later.
 <樹脂シートSt12の作製>
 支持体としてアルキド樹脂系離型剤(リンテック社製「AL-5」)で表面に離型処理を施されたPETフィルム(厚み38μm、軟化点130℃)を用意した。
<Production of resin sheet St12>
As a support, a PET film (thickness: 38 μm, softening point: 130° C.) whose surface was subjected to release treatment with an alkyd resin release agent (“AL-5” manufactured by Lintec) was prepared.
 12時間保管後の樹脂ワニスを、乾燥後の樹脂組成物層の厚みが200μmとなるよう、支持体上にダイコータにて均一に塗布し、100℃で6分間乾燥することにより、支持体上に樹脂組成物層を得た。次いで、樹脂組成物層の支持体と接合していない面に、保護フィルムとしてポリプロピレンフィルム(王子エフテックス社製「アルファンMA411」、厚み15μm)の粗面を、樹脂組成物層と接合するように積層した。これにより、支持体、樹脂組成物層、及び保護フィルムの順からなる樹脂シートSt12を得た。
 樹脂シートSt12の樹脂組成物層全体を100体積%とした場合、無機充填材Bの含有量は、76.7体積%であった。また、加熱及び乾燥の結果、溶剤の含有量は、樹脂シートSt12の樹脂組成物層全体を100質量%とした場合、5質量%以下であると見込まれた。
 作製した樹脂シートSt12の樹脂組成物層を、速やかに、後述する12時間後溶融粘度MV12の測定の測定に供した。
The resin varnish after storage for 12 hours was evenly coated on the support with a die coater so that the thickness of the resin composition layer after drying was 200 μm, and dried at 100° C. for 6 minutes. A resin composition layer was obtained. Next, on the surface of the resin composition layer that is not bonded to the support, a rough surface of a polypropylene film (“Alphan MA411” manufactured by Oji F-Tex Co., Ltd., thickness 15 μm) as a protective film is attached to the resin composition layer. laminated to. As a result, a resin sheet St12 consisting of the support, the resin composition layer, and the protective film in that order was obtained.
When the entire resin composition layer of the resin sheet St12 is taken as 100% by volume, the content of the inorganic filler B was 76.7% by volume. Moreover, as a result of heating and drying, the content of the solvent was expected to be 5% by mass or less when the entire resin composition layer of the resin sheet St12 was taken as 100% by mass.
The resin composition layer of the produced resin sheet St12 was immediately subjected to the measurement of the 12-hour melt viscosity MV12, which will be described later.
 <実施例2-2>
 (A)成分としてのエポキシ樹脂(ダイセル社製の脂環型エポキシ樹脂「セロキサイド2021P」、エポキシ当量:136g/eq.)2部、(A)成分としてのエポキシ樹脂(DIC社製のナフタレンエーテル型エポキシ樹脂「HP6000L」、エポキシ当量:215g/eq.)4部、(A)成分としてのエポキシ樹脂(日鉄ケミカル&マテリアル社製の液状1,4-グリシジルシクロヘキサン型エポキシ樹脂「ZX1658GS」(エポキシ当量:135g/eq.)2部、(C)成分としての硬化剤(DIC社製の活性エステル樹脂「EXB-8150-60T」、活性基当量:230g/eq.、不揮発分60%のトルエン溶液)10部、(D)成分としてのカルボジイミド化合物(日清紡ケミカル社製「V-03」、固形分50質量%のトルエン溶液)2部、(B)成分としての無機充填材B85部、(D)成分としてのアミン系硬化促進剤(4-ジメチルアミノピリジン:DMAP)0.1部、メチルエチルケトン(MEK)9部、シクロヘキサノン6部を混合し、高速回転ミキサーで均一に分散し、樹脂ワニスを調製した。
 上記の事項以外は、実施例2-1と同様にして、実施例2-2に係る樹脂ワニスを調製し、かつ、樹脂シートSt0及び樹脂シートSt12を作製した。
<Example 2-2>
2 parts of epoxy resin (alicyclic epoxy resin "Celoxide 2021P" manufactured by Daicel Corporation, epoxy equivalent: 136 g/eq.) as component (A), epoxy resin (naphthalene ether type manufactured by DIC Corporation) as component (A) Epoxy resin "HP6000L", epoxy equivalent: 215 g / eq.) 4 parts, epoxy resin as component (A) (liquid 1,4-glycidylcyclohexane type epoxy resin "ZX1658GS" manufactured by Nippon Steel Chemical & Materials Co., Ltd. (epoxy equivalent : 135 g / eq.) 2 parts, curing agent as component (C) (DIC's active ester resin "EXB-8150-60T", active group equivalent: 230 g / eq., non-volatile content 60% toluene solution) 10 parts, carbodiimide compound (Nisshinbo Chemical Co., Ltd. "V-03", solid content 50% by mass toluene solution) as component (D) 2 parts, inorganic filler B85 parts as component (B), component (D) 0.1 part of an amine-based curing accelerator (4-dimethylaminopyridine: DMAP), 9 parts of methyl ethyl ketone (MEK), and 6 parts of cyclohexanone were mixed and uniformly dispersed in a high-speed rotating mixer to prepare a resin varnish.
A resin varnish according to Example 2-2 was prepared and a resin sheet St0 and a resin sheet St12 were produced in the same manner as in Example 2-1 except for the above items.
 <実施例2-3>
 (A)成分としてのエポキシ樹脂(ADEKA社製のグリシジルアミン型エポキシ樹脂「EP-3950L」、エポキシ当量:95g/eq.)2部、(A)成分としてのエポキシ樹脂(日鉄ケミカル&マテリアル社製のナフタレン型エポキシ樹脂「ESN-475V」、エポキシ当量:約332g/eq.)4部、(A)成分としてのエポキシ樹脂(「HP4032D」)4部、(A)成分としてのエポキシ樹脂(日鉄ケミカル&マテリアル社製の液状1,4-グリシジルシクロヘキサン型エポキシ樹脂「ZX1658GS」(エポキシ当量:135g/eq.)2部、(C)成分としての硬化剤(DIC社製「LA-3018-50P」、水酸基当量:151g/eq.、固形分50%の2-メトキシプロパノール溶液)7部、(B)成分としての無機充填材B85部、メチルエチルケトン(MEK)10部、シクロヘキサノン8部を混合し、高速回転ミキサーで均一に分散し、樹脂ワニスを調製した。
 上記の事項以外は、実施例2-1と同様にして、実施例2-3に係る樹脂ワニスを調製し、かつ、樹脂シートSt0及び樹脂シートSt12を作製した。
<Example 2-3>
(A) Epoxy resin as component (ADEKA glycidylamine type epoxy resin "EP-3950L", epoxy equivalent: 95 g / eq.) 2 parts, (A) Epoxy resin as component (Nippon Steel Chemical & Material Co., Ltd. Naphthalene type epoxy resin "ESN-475V", epoxy equivalent: about 332 g / eq.) 4 parts, epoxy resin ("HP4032D") as component (A) 4 parts, epoxy resin as component (A) 2 parts of liquid 1,4-glycidylcyclohexane type epoxy resin "ZX1658GS" (epoxy equivalent: 135 g/eq.) manufactured by Tetsu Chemical & Materials Co., Ltd., and a curing agent (DIC "LA-3018-50P ", hydroxyl equivalent: 151 g / eq., 2-methoxypropanol solution with a solid content of 50%) 7 parts, inorganic filler B 85 parts as component (B), methyl ethyl ketone (MEK) 10 parts, cyclohexanone 8 parts, A resin varnish was prepared by uniformly dispersing with a high-speed rotating mixer.
A resin varnish according to Example 2-3 was prepared in the same manner as in Example 2-1 except for the above items, and a resin sheet St0 and a resin sheet St12 were produced.
 <比較例1-1>
 実施例1-3において、(B)成分としての無機充填材Aを110部配合することに代えて、(B’)成分としての無機充填材Eを110部配合した。
 上記の事項以外は、実施例1-3と同様にして、比較例1-1に係る樹脂ペーストを調製した。
<Comparative Example 1-1>
In Example 1-3, instead of blending 110 parts of inorganic filler A as component (B), 110 parts of inorganic filler E was blended as component (B').
A resin paste according to Comparative Example 1-1 was prepared in the same manner as in Example 1-3 except for the above items.
 <比較例1-2>
 実施例1-7において、(B)成分としての無機充填材Bを120部配合することに代えて、(B’)成分としての無機充填材Fを120部配合した。
 上記の事項以外は、実施例1-7と同様にして、比較例1-2に係る樹脂ペーストを調製した。
<Comparative Example 1-2>
In Example 1-7, instead of blending 120 parts of inorganic filler B as component (B), 120 parts of inorganic filler F was blended as component (B').
A resin paste according to Comparative Example 1-2 was prepared in the same manner as in Example 1-7 except for the above items.
 続いて、樹脂組成物の測定方法・評価方法について説明する。 Next, we will explain the measurement and evaluation methods of the resin composition.
 <粘度ライフの安定性の評価:増粘比の判定>
 粘度ライフの安定性を、初期溶融粘度及び12時間後溶融粘度を測定し、増粘比を求めることにより評価した。
 <<初期溶融粘度MV0の測定>>
 実施例1-1~1-11及び比較例1-1~1-2で調製した樹脂ペースト(調製後30分以内のもの)並びに実施例2-1~2-3で作製した樹脂シートSt0(作製後30分以内のもの)の樹脂組成物層の各々につき、動的粘弾性測定装置(ユー・ビー・エム社製「Rheosol-G3000」)を使用して動的粘弾性率を測定した。測定条件として、樹脂ペースト又は樹脂組成物層1gについて、直径18mmのパラレルプレートを使用して、開始温度60℃から200℃まで昇温速度5℃/分にて昇温し、測定温度間隔2.5℃、振動数1Hz、ひずみ1degを採用した。測定の結果得られた動的粘弾性率から、最低溶融粘度(ポイズ)を求めた。このようにして求めた最低溶融粘度を「初期溶融粘度MV0」とした。
 <<12時間後溶融粘度MV12の測定>>
 実施例1-1~1-11及び比較例1-1~1-2で調製した樹脂ペーストを、23℃、湿度50%の環境で12時間保管した。12時間経過後の樹脂ペースト並びに実施例2-1~2-3で作製した樹脂シートSt12(作製後30分以内のもの)の樹脂組成物層の各々につき、上記の初期溶融粘度MV0の測定と同様にして、動的粘弾性率を測定し、最低溶融粘度(ポイズ)を求めた。このようにして求めた最低溶融粘度を「12時間後溶融粘度MV12」とした。
 <<増粘比>>
 12時間経過にともなう増粘比を、12時間後溶融粘度MV12の初期溶融粘度MV0に対する比の値(すなわち、MV12/MV0)とした。増粘比を下記基準で評価した。
 「〇」:増粘比が1.7未満
 「×」:増粘比が1.7以上
<Evaluation of viscosity life stability: Determination of thickening ratio>
The viscosity life stability was evaluated by measuring the initial melt viscosity and the melt viscosity after 12 hours and determining the thickening ratio.
<<Measurement of initial melt viscosity MV0>>
Resin pastes prepared in Examples 1-1 to 1-11 and Comparative Examples 1-1 to 1-2 (within 30 minutes after preparation) and resin sheets St0 prepared in Examples 2-1 to 2-3 ( The dynamic viscoelastic modulus was measured using a dynamic viscoelasticity measurement device ("Rheosol-G3000" manufactured by UBM Co., Ltd.) for each of the resin composition layers within 30 minutes after preparation. As the measurement conditions, 1 g of the resin paste or resin composition layer was heated using a parallel plate with a diameter of 18 mm from a starting temperature of 60° C. to 200° C. at a temperature elevation rate of 5° C./min. A temperature of 5° C., a frequency of 1 Hz, and a strain of 1 deg were adopted. The minimum melt viscosity (poise) was obtained from the dynamic viscoelastic modulus obtained as a result of the measurement. The lowest melt viscosity obtained in this way was defined as "initial melt viscosity MV0".
<<Measurement of melt viscosity MV12 after 12 hours>>
The resin pastes prepared in Examples 1-1 to 1-11 and Comparative Examples 1-1 to 1-2 were stored in an environment of 23° C. and 50% humidity for 12 hours. For each of the resin paste after 12 hours and the resin composition layer of the resin sheet St12 (within 30 minutes after preparation) prepared in Examples 2-1 to 2-3, the initial melt viscosity MV0 was measured and measured. Similarly, the dynamic viscoelastic modulus was measured to obtain the lowest melt viscosity (poise). The lowest melt viscosity obtained in this manner was defined as "12-hour melt viscosity MV12".
<<Thickening ratio>>
The thickening ratio after 12 hours was defined as the ratio of the 12-hour melt viscosity MV12 to the initial melt viscosity MV0 (that is, MV12/MV0). The thickening ratio was evaluated according to the following criteria.
"○": Thickening ratio is less than 1.7 "×": Thickening ratio is 1.7 or more
 実施例1-1~1-11及び比較例1-1~1-2の樹脂組成物の組成及び評価結果を表1に示す。実施例2-1~2-3の樹脂組成物の組成及び評価結果を表2に示す。 Table 1 shows the compositions and evaluation results of the resin compositions of Examples 1-1 to 1-11 and Comparative Examples 1-1 to 1-2. Table 2 shows the compositions and evaluation results of the resin compositions of Examples 2-1 to 2-3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 続いて、実施例に係る樹脂組成物の硬化物についてその評価結果を説明する。 Next, the evaluation results of the cured products of the resin compositions according to the examples will be described.
 [実施例1-1~1-11に係る樹脂組成物の硬化物]
 <歩留まり性の評価:フローマークの有無の判定>
 12インチシリコンウエハ上に、実施例1-1~1-11で作製した樹脂組成物を、コンプレッションモールド装置(金型温度:130℃、圧力:6MPa、キュアタイム:10分)を用いて圧縮成型して、厚さ300μmの樹脂組成物層を形成した。その後、150℃で60分間加熱させた後、樹脂組成物層(硬化物)の表面を目視にてフローマークを確認し、以下の基準で評価した。
 「〇」:フローマークがない。
 「×」:フローマークがある。
[Cured products of resin compositions according to Examples 1-1 to 1-11]
<Evaluation of Yield: Determination of Presence or Absence of Flow Marks>
The resin compositions prepared in Examples 1-1 to 1-11 are compression-molded on a 12-inch silicon wafer using a compression molding apparatus (mold temperature: 130°C, pressure: 6 MPa, cure time: 10 minutes). Then, a resin composition layer having a thickness of 300 μm was formed. Then, after heating at 150° C. for 60 minutes, flow marks were visually observed on the surface of the resin composition layer (cured product) and evaluated according to the following criteria.
"O": There is no flow mark.
"X": There is a flow mark.
 <密着性の評価:ポリイミド樹脂との界面におけるシェア強度の測定>
 (ポリイミド樹脂が表面に形成されたシリコンウエハの用意)
 4インチシリコンウエハ上に、後記の製造例3で得た第一特定組成物を塗布した(後記製造例1、2は、製造例3の第一特定組成物の材料の製造例)。塗布のために、スピンコーター(ミカサ社製「MS-A150」)を用いて、スピンコートした。このスピンコートの回転数は、最大回転数が1000rpm~3000rpmの回転数範囲に収まる範囲で、熱硬化後に所望の厚みの試験層が得られるように設定した。その後、ホットプレート上で120℃5分間の条件で加熱するプレベーク処理を行って、研磨面上に、中央の厚み10μmの第一特定組成物の層を形成した。その後、第一特定組成物の層に、250℃2時間の条件で熱硬化させるフルキュア処理を行って、中央の厚み8μmの試験層を得た。ここで、フルキュアの結果得られる第一特定組成物の層の硬化物にはポリイミド樹脂が含まれる。このようにして、ポリイミド樹脂が表面に形成されたシリコンウエハを用意した。さらに、このシリコンウエハを、1cm角(すなわち1cm×1cm)のサイズにカットした。
<Evaluation of adhesion: measurement of shear strength at the interface with polyimide resin>
(Preparation of silicon wafer with polyimide resin formed on the surface)
A first specific composition obtained in Production Example 3 described later was applied onto a 4-inch silicon wafer (Production Examples 1 and 2 described later are examples of manufacturing materials for the first specific composition of Production Example 3). For coating, a spin coater (“MS-A150” manufactured by Mikasa Co., Ltd.) was used for spin coating. The rotation speed of this spin coating was set so that the maximum rotation speed fell within the range of 1000 rpm to 3000 rpm, and the desired thickness of the test layer was obtained after heat curing. Thereafter, a pre-baking treatment was performed by heating on a hot plate at 120° C. for 5 minutes to form a layer of the first specific composition having a thickness of 10 μm in the center on the polished surface. After that, the layer of the first specific composition was subjected to a full cure treatment of thermal curing at 250° C. for 2 hours to obtain a central test layer having a thickness of 8 μm. Here, the cured product of the layer of the first specific composition obtained as a result of full curing contains a polyimide resin. Thus, a silicon wafer having a polyimide resin formed on its surface was prepared. Furthermore, this silicon wafer was cut into a size of 1 cm square (that is, 1 cm×1 cm).
 (試験片の作製)
 ポリイミド樹脂が表面に形成され1cm角にカットされたシリコンウエハ上に、直径4mmの円柱状にくり抜いたシリコンラバー枠を設置した。シリコンラバー枠の円柱状空洞に、実施例1-1~1-11で作製した各樹脂ペーストを、シリコンウエハに形成されたポリイミド樹脂上に、高さ5mmまで充填した。180℃90分加熱した後、シリコンラバー枠を外すことで、シリコンウエハと、当該シリコンウエハに形成されたポリイミド樹脂上に形成された中実円柱状の樹脂組成物の硬化物とからなる試験片を作製した。
(Preparation of test piece)
A cylindrical silicon rubber frame with a diameter of 4 mm was placed on a silicon wafer cut into 1 cm squares with a polyimide resin formed on the surface. Each of the resin pastes prepared in Examples 1-1 to 1-11 was filled in the cylindrical cavity of the silicon rubber frame to a height of 5 mm on the polyimide resin formed on the silicon wafer. After heating at 180° C. for 90 minutes, the silicon rubber frame is removed to obtain a test piece consisting of a silicon wafer and a cured product of a solid cylindrical resin composition formed on a polyimide resin formed on the silicon wafer. was made.
 (測定)
 ボンドテスター(Dage社製 シリーズ4000)にてヘッド位置がシリコンウエハから1mm、ヘッドスピード700μm/sの条件でポリイミド樹脂と樹脂組成物の硬化物の界面のシェア強度[kgf/mm]を測定した。試験を5回実施した。5回の測定値の平均値を用い、基材としてのポリイミド樹脂と樹脂ペーストの硬化物との密着性を、以下の基準で評価した。
 「◎」:シェア強度が2.5kgf/mm以上。
 「〇」:シェア強度が2.0kgf/mm以上、2.5kgf/mm未満。
 「×」:シェア強度が2.0kgf/mm未満。
(measurement)
The shear strength [kgf/mm 2 ] at the interface of the cured product of the polyimide resin and the resin composition was measured with a bond tester (Dage series 4000) under the conditions that the head position was 1 mm from the silicon wafer and the head speed was 700 μm/s. . The test was performed 5 times. Using the average value of five measurements, the adhesion between the polyimide resin as the substrate and the cured resin paste was evaluated according to the following criteria.
"A": Shear strength is 2.5 kgf/mm 2 or more.
“◯”: Shear strength of 2.0 kgf/mm 2 or more and less than 2.5 kgf/mm 2 .
“×”: Shear strength is less than 2.0 kgf/mm 2 .
 [製造例1.第一ポリマーとしての感光性ポリイミド前駆体(ポリマーA-1)の製造]
 4,4’-オキシジフタル酸二無水物(ODPA)155.1gを2リットル容量のセパラブルフラスコに入れ、2-ヒドロキシエチルメタクリレート(HEMA)134.0g及びγ-ブチロラクトン400mlを加えた。室温下で攪拌しながら、ピリジン79.1gを加えることにより、反応混合物を得た。反応による発熱の終了後、室温まで放冷し、更に16時間静置した。
[Production Example 1. Production of photosensitive polyimide precursor (polymer A-1) as first polymer]
155.1 g of 4,4′-oxydiphthalic dianhydride (ODPA) was placed in a 2-liter separable flask, and 134.0 g of 2-hydroxyethyl methacrylate (HEMA) and 400 ml of γ-butyrolactone were added. A reaction mixture was obtained by adding 79.1 g of pyridine while stirring at room temperature. After the end of heat generation due to the reaction, the mixture was allowed to cool to room temperature and allowed to stand still for 16 hours.
 ジシクロヘキシルカルボジイミド(DCC)206.3gをγ-ブチロラクトン180mlに溶解した溶液を用意した。この溶液を、氷冷下において、前記の反応混合物に、反応混合物を攪拌しながら、40分かけて加えた。
 続いて、4,4’-ジアミノジフェニルエーテル(DADPE)93.0gをγ-ブチロラクトン350mlに懸濁した懸濁液を、前記の反応混合物に、反応混合物を攪拌しながら60分かけて加えた。
 さらに、反応混合物を室温で2時間攪拌した後、その反応混合物にエチルアルコール30mlを加えて、更に1時間攪拌した。
 その後、反応混合物に、γ-ブチロラクトン400mlを加えた。反応混合物に生じた沈殿物を、ろ過により取り除き、反応液を得た。
A solution was prepared by dissolving 206.3 g of dicyclohexylcarbodiimide (DCC) in 180 ml of γ-butyrolactone. This solution was added to the above reaction mixture under ice cooling over 40 minutes while stirring the reaction mixture.
Subsequently, a suspension of 93.0 g of 4,4'-diaminodiphenyl ether (DADPE) in 350 ml of γ-butyrolactone was added to the above reaction mixture over 60 minutes while stirring the reaction mixture.
Furthermore, after the reaction mixture was stirred at room temperature for 2 hours, 30 ml of ethyl alcohol was added to the reaction mixture, and the mixture was further stirred for 1 hour.
400 ml of γ-butyrolactone was then added to the reaction mixture. A precipitate formed in the reaction mixture was removed by filtration to obtain a reaction liquid.
 得られた反応液を3リットルのエチルアルコールに加えて、粗ポリマーからなる沈殿物を生成した。生成した粗ポリマーを濾取し、テトラヒドロフラン1.5リットルに溶解して、粗ポリマー溶液を得た。得られた粗ポリマー溶液を28リットルの水に滴下して、ポリマーを沈殿させた。得られた沈殿物を濾取した後に真空乾燥することにより、第一ポリマーとしての粉末状のポリマーA-1を得た。
 このポリマーA-1の重量平均分子量(Mw)を測定したところ、20,000であった。
The resulting reaction solution was added to 3 liters of ethyl alcohol to produce a precipitate consisting of crude polymer. The resulting crude polymer was collected by filtration and dissolved in 1.5 liters of tetrahydrofuran to obtain a crude polymer solution. The resulting crude polymer solution was added dropwise to 28 liters of water to precipitate the polymer. The obtained precipitate was collected by filtration and dried in a vacuum to obtain a powdery polymer A-1 as the first polymer.
When the weight average molecular weight (Mw) of this polymer A-1 was measured, it was 20,000.
 [製造例2.第二ポリマーとしての感光性ポリイミド前駆体(ポリマーA-2)の製造]
 4,4’-オキシジフタル酸二無水物155.1gに代えて、3,3’4,4’-ビフェニルテトラカルボン酸二無水物147.1gを用いた以外は、製造例1と同じ方法により、第二ポリマーとしてのポリマーA-2を製造した。
 このポリマーA-2の重量平均分子量(Mw)を測定したところ、22,000であった。
[Production Example 2. Production of photosensitive polyimide precursor (polymer A-2) as second polymer]
By the same method as in Production Example 1, except that 147.1 g of 3,3'4,4'-biphenyltetracarboxylic dianhydride was used instead of 155.1 g of 4,4'-oxydiphthalic dianhydride. Polymer A-2 was produced as the second polymer.
When the weight average molecular weight (Mw) of this polymer A-2 was measured, it was 22,000.
 [製造例3.第一特定組成物としてのネガ型感光性樹脂組成物の製造]
 ポリマーA-1を50gと、ポリマーA-2を50gと、式(1)で表される化合物を2gと、テトラエチレングリコールジメタクリレート8gと、2-ニトロソ-1-ナフトール0.05gと、N-フェニルジエタノールアミン4gと、N-(3-(トリエトキシシリル)プロピル)フタルアミド酸0.5gと、ベンゾフェノン-3,3’-ビス(N-(3-トリエトキシシリル)プロピルアミド)-4,4’-ジカルボン酸0.5gとを、N-メチルピロリドン及び乳酸エチルからなる混合溶媒(重量比はN-メチルピロリドン:乳酸エチル=8:2)に溶解して、第一特定組成物としてのネガ型感光性樹脂組成物を得た。混合溶媒の量は、得られるネガ型感光性樹脂組成物の粘度が35ポイズになるように調整した。
[Production Example 3. Production of a negative photosensitive resin composition as the first specific composition]
50 g of polymer A-1, 50 g of polymer A-2, 2 g of the compound represented by formula (1), 8 g of tetraethylene glycol dimethacrylate, 0.05 g of 2-nitroso-1-naphthol, N -4 g of phenyldiethanolamine, 0.5 g of N-(3-(triethoxysilyl)propyl)phthalamic acid, and benzophenone-3,3'-bis(N-(3-triethoxysilyl)propylamide)-4,4 0.5 g of '-dicarboxylic acid was dissolved in a mixed solvent consisting of N-methylpyrrolidone and ethyl lactate (weight ratio of N-methylpyrrolidone:ethyl lactate = 8:2) to obtain a negative as the first specific composition. A mold photosensitive resin composition was obtained. The amount of the mixed solvent was adjusted so that the resulting negative photosensitive resin composition had a viscosity of 35 poise.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 <低反り性の評価:反り量の測定>
 12インチシリコンウエハ上に、実施例1-1~1-11で調製した各樹脂ペースト(調製後30分以内のもの)を、コンプレッションモールド装置(金型温度:120℃、圧力:6MPa、キュアタイム:12分)を用いて圧縮成型して、厚さ250μmの樹脂組成物層を形成した。その後、180℃で90分加熱して、樹脂組成物層を熱硬化させた。これにより、シリコンウエハと樹脂組成物の硬化物層とを含む試料基板を得た。シャドウモアレ測定装置(Akorometrix社製「ThermoireAXP」)を用いて、前記の試料基板につき、25℃での反り量を測定した。測定は、電子情報技術産業協会規格のJEITA EDX-7311-24に準拠して行った。具体的には、測定領域の基板面の全データの最小二乗法によって算出した仮想平面を基準面として、その基準面から垂直方向の最小値と最大値との差を反り量[μm]として求めた。反り量を、以下の基準で評価した。
 「〇」:反り量が1500μm未満
 「×」:反り量が1500μm以上
<Evaluation of low warpage: Measurement of amount of warpage>
On a 12-inch silicon wafer, each resin paste prepared in Examples 1-1 to 1-11 (within 30 minutes after preparation) was applied to a compression mold apparatus (mold temperature: 120 ° C., pressure: 6 MPa, cure time : 12 minutes) to form a resin composition layer having a thickness of 250 μm. After that, the resin composition layer was thermally cured by heating at 180° C. for 90 minutes. As a result, a sample substrate including a silicon wafer and a cured product layer of the resin composition was obtained. Using a shadow moire measuring device (“Thermoire AXP” manufactured by Akorometrics), the amount of warpage at 25° C. was measured for the sample substrate. The measurement was performed in accordance with JEITA EDX-7311-24 of the Japan Electronics and Information Technology Industries Association standard. Specifically, a virtual plane calculated by the method of least squares of all data of the substrate surface in the measurement area is used as a reference plane, and the difference between the minimum value and the maximum value in the vertical direction from the reference plane is obtained as the amount of warpage [μm]. rice field. The amount of warpage was evaluated according to the following criteria.
“○”: Warp amount less than 1500 μm “×”: Warp amount 1500 μm or more
 実施例1-1~1-11に係る樹脂組成物の硬化物の評価結果を表3に示す。 Table 3 shows the evaluation results of the cured products of the resin compositions according to Examples 1-1 to 1-11.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 [実施例2-1~2-3に係る樹脂組成物の硬化物]
 実施例2-1~2-3に係る樹脂組成物の硬化物について、その評価結果を説明する。
 <密着性の評価:ポリイミド樹脂との界面におけるシェア強度の測定>
 (ポリイミド樹脂が表面に形成されたシリコンウエハの用意)
 4インチシリコンウエハ上に、上記の製造例3で得た第一特定組成物を塗布した。塗布のために、スピンコーター(ミカサ社製「MS-A150」)を用いて、スピンコートした。このスピンコートの回転数は、最大回転数が1000rpm~3000rpmの回転数範囲に収まる範囲で、熱硬化後に所望の厚みの試験層が得られるように設定した。その後、ホットプレート上で120℃5分間の条件で加熱するプレベーク処理を行って、研磨面上に、中央の厚み10μmの第一特定組成物の層を形成した。その後、第一特定組成物の層に、250℃2時間の条件で熱硬化させるフルキュア処理を行って、中央の厚み8μmの試験層を得た。ここで、フルキュアの結果得られる第一特定組成物の層の硬化物にはポリイミド樹脂が含まれる。このようにして、ポリイミド樹脂が表面に形成されたシリコンウエハを用意した。
[Cured products of resin compositions according to Examples 2-1 to 2-3]
The evaluation results of the cured products of the resin compositions according to Examples 2-1 to 2-3 will be described.
<Evaluation of adhesion: measurement of shear strength at the interface with polyimide resin>
(Preparation of silicon wafer with polyimide resin formed on the surface)
A 4-inch silicon wafer was coated with the first specific composition obtained in Production Example 3 above. For coating, a spin coater (“MS-A150” manufactured by Mikasa Co., Ltd.) was used for spin coating. The rotation speed of this spin coating was set so that the maximum rotation speed fell within the range of 1000 rpm to 3000 rpm, and the desired thickness of the test layer was obtained after heat curing. Thereafter, a pre-baking treatment was performed by heating on a hot plate at 120° C. for 5 minutes to form a layer of the first specific composition having a thickness of 10 μm in the center on the polished surface. After that, the layer of the first specific composition was subjected to a full cure treatment of thermal curing at 250° C. for 2 hours to obtain a central test layer having a thickness of 8 μm. Here, the cured product of the layer of the first specific composition obtained as a result of full curing contains a polyimide resin. Thus, a silicon wafer having a polyimide resin formed on its surface was prepared.
 (試料基板の作製)
 実施例2-1~2-3で作製した樹脂シートSt0(200μm厚み)につき、バッチ式真空加圧ラミネーター(ニッコー・マテリアルズ社製2ステージビルドアップラミネーター「CVP700」)を用いて、ポリイミド樹脂が表面に形成された4インチシリコンウエハ上に積層した。各ラミネートは、30秒間減圧して気圧を13hPa以下とした後、温度100℃、圧力0.74MPaにて30秒間圧着することにより、実施した。引き続き、支持体の剥離及び樹脂組成物層の積層(同条件でのラミネート)を繰り返し、樹脂組成物層の積層体の総厚みが5mmとなるようにした。さらに、このシリコンウエハを、1cm角のサイズにカットした。
 その後、シリコンウエハ上の総厚みが5mmの樹脂組成物層の積層体を、直径4mmの中実円柱状に加工した。これにより、シリコンウエハと樹脂組成物層の積層体の硬化物とを含む試料基板を得た。そして、上述と同様にシェア強度[kgf/mm]を測定した。試験を5回実施した。5回の測定値の平均値を用い、基材としてのポリイミド樹脂と樹脂組成物層の積層体の硬化物との密着性を、以下の基準で評価した。
 「◎」:シェア強度が2.5kgf/mm以上。
 「〇」:シェア強度が2.0kgf/mm以上、2.5kgf/mm未満。
 「×」:シェア強度が2.0kgf/mm未満。
(Preparation of sample substrate)
The resin sheet St0 (thickness of 200 μm) prepared in Examples 2-1 to 2-3 was coated with a batch-type vacuum pressure laminator (2-stage build-up laminator “CVP700” manufactured by Nikko Materials Co., Ltd.) to obtain polyimide resin. It was laminated on a 4-inch silicon wafer formed on the surface. Each lamination was carried out by pressure bonding for 30 seconds at a temperature of 100° C. and a pressure of 0.74 MPa after reducing the pressure to 13 hPa or less for 30 seconds. Subsequently, peeling of the support and lamination of the resin composition layer (lamination under the same conditions) were repeated until the total thickness of the laminate of the resin composition layers was 5 mm. Furthermore, this silicon wafer was cut into a size of 1 cm square.
After that, the laminate of the resin composition layers on the silicon wafer with a total thickness of 5 mm was processed into a solid columnar shape with a diameter of 4 mm. As a result, a sample substrate including a silicon wafer and a cured product of a laminate of resin composition layers was obtained. Then, the shear strength [kgf/mm 2 ] was measured in the same manner as described above. The test was performed 5 times. Using the average value of five measurements, the adhesion between the polyimide resin as the substrate and the cured product of the laminate of the resin composition layer was evaluated according to the following criteria.
"A": Shear strength is 2.5 kgf/mm 2 or more.
“◯”: Shear strength of 2.0 kgf/mm 2 or more and less than 2.5 kgf/mm 2 .
“×”: Shear strength is less than 2.0 kgf/mm 2 .
 <低反り性の評価:反り量の測定>
 12インチシリコンウエハ(厚さ775μm)の片面全体に、上述した実施例2-1~2-3で得た各樹脂シートSt0を、バッチ式真空加圧ラミネーター(ニッコー・マテリアルズ社製2ステージビルドアップラミネーター「CVP700」)を用いてラミネートし、支持体を剥離した。12インチシリコンウエハにラミネートした樹脂組成物層上に、さらに樹脂シートSt0をラミネートすることで樹脂組成物層を2層積層し、厚さ400μmの樹脂組成物層を形成した。得られた樹脂組成物層付きシリコンウエハをオーブン中180℃および90分の条件で熱処理して、硬化した樹脂組成物層(即ち、絶縁層)付きシリコンウエハを形成した。シャドウモアレ測定装置(Akorometrix社製「ThermoireAXP」)を用いて、前記の試料基板につき、25℃での反り量を測定した。測定は、電子情報技術産業協会規格のJEITA EDX-7311-24に準拠して行った。具体的には、測定領域の基板面の全データの最小二乗法によって算出した仮想平面を基準面として、その基準面から垂直方向の最小値と最大値との差を反り量[μm]として求めた。反り量を、以下の基準で評価した。
 「〇」:反り量が2000μm未満
 「×」:反り量が2000μm以上
<Evaluation of low warpage: Measurement of amount of warpage>
Each resin sheet St0 obtained in Examples 2-1 to 2-3 described above was applied to the entire surface of a 12-inch silicon wafer (thickness 775 μm) with a batch type vacuum pressure laminator (manufactured by Nikko Materials Co., Ltd. 2-stage build Lamination was performed using an up laminator ("CVP700"), and the support was peeled off. A resin sheet St0 was further laminated on the resin composition layer laminated on the 12-inch silicon wafer to laminate two resin composition layers to form a resin composition layer having a thickness of 400 μm. The obtained silicon wafer with a resin composition layer was heat-treated in an oven at 180° C. for 90 minutes to form a silicon wafer with a cured resin composition layer (that is, an insulating layer). Using a shadow moire measuring device (“Thermoire AXP” manufactured by Akorometrics), the amount of warpage at 25° C. was measured for the sample substrate. The measurement was performed in accordance with JEITA EDX-7311-24 of the Japan Electronics and Information Technology Industries Association standard. Specifically, a virtual plane calculated by the method of least squares of all data of the substrate surface in the measurement area is used as a reference plane, and the difference between the minimum value and the maximum value in the vertical direction from the reference plane is obtained as the amount of warpage [μm]. rice field. The amount of warpage was evaluated according to the following criteria.
"○": Warp amount less than 2000 μm "×": Warp amount 2000 μm or more
 実施例2-1~2-3に係る樹脂組成物の硬化物の評価結果を表4に示す。 Table 4 shows the evaluation results of the cured products of the resin compositions according to Examples 2-1 to 2-3.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 <考察>
 比較例に係る樹脂組成物は、表1によれば、粘度ライフの安定性に劣るので、長期保存により組成の不均一が生じる傾向にある。他方、実施例に係る樹脂ペーストは、表1によれば、粘度ライフの安定性が良好である。また、斯かる樹脂ペーストを用いることにより、表3から分かるように、優れた特性を有する硬化物をもたらすことが確認された。これにより、例えば、基材(例えばポリイミド樹脂)との密着性に優れる硬化物;当該硬化物を含む回路基板、及び半導体チップパッケージを提供することができる。また、実施例に係る樹脂シートの樹脂組成物層は、表2に示されるように粘度ライフの安定性が良好である。また、斯かる樹脂ワニス又は樹脂組成物層から形成することにより、表4から分かるように、優れた特性を有する硬化物をもたらすことが確認された。これにより、例えば、基材(例えばポリイミド樹脂)との密着性に優れる硬化物;当該硬化物を含む回路基板及び半導体チップパッケージを提供することができることが分かった。
[符号の説明]
<Discussion>
According to Table 1, the resin composition according to the comparative example is inferior in viscosity life stability, and therefore tends to cause non-uniform composition during long-term storage. On the other hand, according to Table 1, the resin pastes according to the examples have good viscosity life stability. Moreover, as can be seen from Table 3, it was confirmed that the use of such a resin paste yields a cured product having excellent properties. This makes it possible to provide, for example, a cured product having excellent adhesion to a base material (eg, polyimide resin); a circuit board and a semiconductor chip package containing the cured product. In addition, as shown in Table 2, the resin composition layers of the resin sheets according to the examples have good viscosity life stability. Moreover, as can be seen from Table 4, it was confirmed that forming from such a resin varnish or resin composition layer provides a cured product having excellent properties. As a result, it was found that it is possible to provide, for example, a cured product having excellent adhesion to a base material (eg, polyimide resin); a circuit board and a semiconductor chip package containing the cured product.
[Description of symbols]
 100 半導体チップパッケージ
 110 半導体チップ
 120 封止層
 130 再配線形成層
 140 再配線層
 150 ソルダーレジスト層
 160 バンプ
REFERENCE SIGNS LIST 100 semiconductor chip package 110 semiconductor chip 120 sealing layer 130 rewiring forming layer 140 rewiring layer 150 solder resist layer 160 bump

Claims (16)

  1.  (A)硬化性樹脂と、
     (B)無機充填材と
    を含有する樹脂組成物において、
     (B)無機充填材の平均粒径が0.5μm~12μmの範囲内にあり、
     無機充填材における結晶性シリカ含有率が0質量%以上かつ2.1質量%未満の範囲内にある、
    樹脂組成物。
    (A) a curable resin;
    (B) In the resin composition containing an inorganic filler,
    (B) the average particle diameter of the inorganic filler is in the range of 0.5 μm to 12 μm,
    The crystalline silica content in the inorganic filler is in the range of 0% by mass or more and less than 2.1% by mass,
    Resin composition.
  2.  前記結晶性シリカ含有率が、0質量%以上かつ0.4質量%以下の範囲内にある、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the crystalline silica content is in the range of 0% by mass or more and 0.4% by mass or less.
  3.  樹脂組成物全体を100体積%とした場合、(B)無機充填材の含有量が、50体積%以上である、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the content of (B) the inorganic filler is 50% by volume or more when the entire resin composition is 100% by volume.
  4.  (C)硬化剤を含み、
     (C)成分の(A)成分に対する質量比が1:0.01~1:10の範囲内にある、
    請求項1に記載の樹脂組成物。
    (C) a curing agent,
    the mass ratio of component (C) to component (A) is in the range of 1:0.01 to 1:10;
    The resin composition according to claim 1.
  5.  前記結晶性シリカ含有率が、X線回折測定により得られたX線回折パターンに基づき算出される、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the crystalline silica content is calculated based on an X-ray diffraction pattern obtained by X-ray diffraction measurement.
  6.  前記結晶性シリカ含有率が、X線回折パターンをリートベルト解析して算出される、請求項5に記載の樹脂組成物。 The resin composition according to claim 5, wherein the crystalline silica content is calculated by Rietveld analysis of an X-ray diffraction pattern.
  7.  厚み50μm以上の樹脂組成物層を形成するために用いられる、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, which is used to form a resin composition layer having a thickness of 50 µm or more.
  8.  封止用である、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, which is for sealing.
  9.  請求項1~8のいずれか1項に記載の樹脂組成物の硬化物。 A cured product of the resin composition according to any one of claims 1 to 8.
  10.  支持体と、当該支持体上に設けられた請求項1~8のいずれか1項に記載の樹脂組成物を含む樹脂組成物層とを有する樹脂シート。 A resin sheet comprising a support and a resin composition layer containing the resin composition according to any one of claims 1 to 8 provided on the support.
  11.  半導体チップパッケージの絶縁層用樹脂シートである、請求項10に記載の樹脂シート。 The resin sheet according to claim 10, which is a resin sheet for an insulating layer of a semiconductor chip package.
  12.  請求項1~8のいずれか1項に記載の樹脂組成物の硬化物により形成された絶縁層を含む、回路基板。 A circuit board comprising an insulating layer formed from a cured product of the resin composition according to any one of claims 1 to 8.
  13.  請求項12に記載の回路基板と、該回路基板上に搭載された半導体チップとを含む、半導体チップパッケージ。 A semiconductor chip package comprising the circuit board according to claim 12 and a semiconductor chip mounted on the circuit board.
  14.  請求項1~8のいずれか1項に記載の樹脂組成物により封止された半導体チップを含む半導体チップパッケージ。 A semiconductor chip package containing a semiconductor chip sealed with the resin composition according to any one of claims 1 to 8.
  15.  請求項10に記載の樹脂シートにより封止された半導体チップを含む半導体チップパッケージ。 A semiconductor chip package including a semiconductor chip sealed with the resin sheet according to claim 10.
  16.  半導体チップパッケージの製造方法であって、
    (A)硬化性樹脂と、(B)無機充填材とを含有する樹脂組成物であって、(B)無機充填材の平均粒径が0.5μm~12μmの範囲内にあり、無機充填材における結晶性シリカ含有率が、0質量%以上かつ2.1質量%未満の範囲内にある、樹脂組成物を硬化させる工程を含む、半導体チップパッケージの製造方法。
    A method for manufacturing a semiconductor chip package, comprising:
    A resin composition containing (A) a curable resin and (B) an inorganic filler, wherein the average particle diameter of the (B) inorganic filler is in the range of 0.5 μm to 12 μm, and the inorganic filler A method for manufacturing a semiconductor chip package, comprising curing a resin composition having a crystalline silica content in the range of 0% by mass or more and less than 2.1% by mass.
PCT/JP2022/023158 2021-06-22 2022-06-08 Resin composition, cured product, resin sheet, circuit substrate, and semiconductor chip package WO2022270316A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237044186A KR20240023049A (en) 2021-06-22 2022-06-08 Resin compositions, cured products, resin sheets, circuit boards and semiconductor chip packages
CN202280043646.0A CN117500886A (en) 2021-06-22 2022-06-08 Resin composition, cured product, resin sheet, circuit board, and semiconductor chip package
JP2023529821A JPWO2022270316A1 (en) 2021-06-22 2022-06-08

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021103504 2021-06-22
JP2021-103504 2021-06-22

Publications (1)

Publication Number Publication Date
WO2022270316A1 true WO2022270316A1 (en) 2022-12-29

Family

ID=84544306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023158 WO2022270316A1 (en) 2021-06-22 2022-06-08 Resin composition, cured product, resin sheet, circuit substrate, and semiconductor chip package

Country Status (5)

Country Link
JP (1) JPWO2022270316A1 (en)
KR (1) KR20240023049A (en)
CN (1) CN117500886A (en)
TW (1) TW202308980A (en)
WO (1) WO2022270316A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011046782A (en) * 2009-08-25 2011-03-10 Panasonic Electric Works Co Ltd Epoxy resin composition for printed wiring board, resin film, prepreg, metal foil with resin, and flexible printed wiring board
JP2011246516A (en) * 2010-05-24 2011-12-08 Panasonic Electric Works Co Ltd Resin composition, resin varnish, prepreg, metal-clad laminate, and printed wiring board
JP2018044044A (en) * 2016-09-13 2018-03-22 味の素株式会社 Resin composition
JP2021024994A (en) * 2019-08-08 2021-02-22 株式会社スリーボンド Moisture-curable resin composition and cured matter

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4929623B2 (en) 2004-06-21 2012-05-09 味の素株式会社 Thermosetting resin composition containing modified polyimide resin

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011046782A (en) * 2009-08-25 2011-03-10 Panasonic Electric Works Co Ltd Epoxy resin composition for printed wiring board, resin film, prepreg, metal foil with resin, and flexible printed wiring board
JP2011246516A (en) * 2010-05-24 2011-12-08 Panasonic Electric Works Co Ltd Resin composition, resin varnish, prepreg, metal-clad laminate, and printed wiring board
JP2018044044A (en) * 2016-09-13 2018-03-22 味の素株式会社 Resin composition
JP2021024994A (en) * 2019-08-08 2021-02-22 株式会社スリーボンド Moisture-curable resin composition and cured matter

Also Published As

Publication number Publication date
CN117500886A (en) 2024-02-02
KR20240023049A (en) 2024-02-20
JPWO2022270316A1 (en) 2022-12-29
TW202308980A (en) 2023-03-01

Similar Documents

Publication Publication Date Title
JP7444154B2 (en) resin composition
JP7302496B2 (en) resin composition
JP7367664B2 (en) Resin compositions, cured products, resin sheets, circuit boards, semiconductor chip packages, semiconductor devices, and structures
JP6555042B2 (en) Granular resin composition
JP2022113053A (en) Resin composition, resin paste, cured product, semiconductor chip package and semiconductor device
WO2022270316A1 (en) Resin composition, cured product, resin sheet, circuit substrate, and semiconductor chip package
JP7287348B2 (en) resin composition
JP7151550B2 (en) resin composition
TW202222881A (en) Resin composition for sealing capable of obtaining a cured product with a low dielectric loss factor and suppressed occurrence of delamination and cracks
JP7540347B2 (en) Resin composition and syringe filled with resin composition
JP7298466B2 (en) resin composition
JP7524839B2 (en) Resin sheet for semiconductor chip adhesion
WO2023042669A1 (en) Resin sheet, printed circuit board, semiconductor chip package, and semiconductor device
JP2022070657A (en) Resin composition
JP2024087722A (en) Photosensitive film
WO2022196696A1 (en) Resin sheet
JP2024149388A (en) Resin composition
JP2024007477A (en) resin composition
WO2024195764A1 (en) Thermosetting maleimide resin composition, sheet-like or film-like composition using same, adhesive agent composition, primer composition, composition for substrates, coating material composition, and semiconductor device
JP2023055130A (en) resin composition
KR20240150716A (en) Resin composition
TW202210539A (en) Resin composition capable of obtaining a cured product with little warpage, high elasticity, and excellent adhesion to inorganic materials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22828233

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023529821

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280043646.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22828233

Country of ref document: EP

Kind code of ref document: A1