WO2023042669A1 - Resin sheet, printed circuit board, semiconductor chip package, and semiconductor device - Google Patents

Resin sheet, printed circuit board, semiconductor chip package, and semiconductor device Download PDF

Info

Publication number
WO2023042669A1
WO2023042669A1 PCT/JP2022/032918 JP2022032918W WO2023042669A1 WO 2023042669 A1 WO2023042669 A1 WO 2023042669A1 JP 2022032918 W JP2022032918 W JP 2022032918W WO 2023042669 A1 WO2023042669 A1 WO 2023042669A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
resin composition
mass
manufactured
less
Prior art date
Application number
PCT/JP2022/032918
Other languages
French (fr)
Japanese (ja)
Inventor
啓之 阪内
秀 池平
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Priority to JP2023548401A priority Critical patent/JPWO2023042669A1/ja
Priority to CN202280061692.3A priority patent/CN117981477A/en
Publication of WO2023042669A1 publication Critical patent/WO2023042669A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings

Definitions

  • the present invention relates to a resin sheet for forming a solder resist layer, and a printed wiring board, semiconductor chip package and semiconductor device using the resin sheet.
  • solder resist layer is sometimes provided as a protective film on the outermost layer of printed wiring boards and semiconductor chip packages.
  • solder resist layers have generally been formed by providing a layer of a photocurable resin composition, exposing and curing the layer.
  • it has also been proposed to form the solder resist layer with a thermosetting resin composition Patent Document 1.
  • solder resist layer In recent years, with the increasing size of semiconductor chip packages, it is sometimes required to increase the thickness of the solder resist layer. However, it was difficult to form a thick solder resist layer with a photosensitive resin composition. Therefore, the present inventors have investigated forming a solder resist layer using a thermosetting resin composition.
  • solder resist layers manufactured with conventional thermosetting resin compositions tended to have low light transmittance. If the light transmittance of the solder-resist layer is low in this way, it may become difficult to adjust the positions when forming openings in the solder-resist layer or mounting electronic components on the solder-resist layer.
  • solder-resist layer is formed on a substrate, and openings communicating with terminal portions provided on the substrate are formed in the solder-resist layer.
  • light transmitted through the solder resist layer may be used to detect the positions of the terminals with a sensor capable of detecting the light, and the positions where the openings should be formed may be adjusted.
  • the intensity of the light to be detected by the sensor becomes weak, which may make it difficult to accurately detect the positions of the terminals. Therefore, when a conventional thermosetting resin composition with low light transmittance is used, position adjustment may become difficult.
  • the present invention has been invented in view of the above problems, and includes a resin sheet capable of forming a thick solder-resist layer with high light transmittance; and a solder-resist layer formed using the resin sheet.
  • An object of the present invention is to provide a printed wiring board, a semiconductor chip package, and a semiconductor device.
  • the present inventors have made extensive studies to solve the above problems. As a result, the present inventors have found that a resin sheet having a resin composition layer containing a resin composition containing a combination of (A) a thermosetting resin and (B) an inorganic filler having a specific surface area within a specific range found that it is possible to form a solder resist layer having a high light transmittance even if it is thick, and completed the present invention. That is, the present invention includes the following.
  • a resin sheet for forming a solder resist layer comprising a resin composition layer containing a resin composition,
  • the resin composition contains (A) a thermosetting resin and (B) an inorganic filler, (B) the inorganic filler has a specific surface area of 3.0 m 2 /g or more;
  • thermosetting resin contains (A-2) a phenolic resin.
  • thermosetting resin contains (A-3) an active ester resin.
  • thermosetting resin contains (A-4) a maleimide resin.
  • resin composition further contains (C) an elastomer.
  • resin composition further contains (D) an organic colorant.
  • a printed wiring board comprising a solder resist layer formed from a cured product of the resin composition layer of the resin sheet according to any one of [1] to [12].
  • a semiconductor chip package comprising a solder resist layer formed from a cured product of the resin composition layer of the resin sheet according to any one of [1] to [12].
  • a semiconductor device comprising the printed wiring board of [13] or the semiconductor chip package of [14].
  • a resin sheet capable of forming a thick solder resist layer with high light transmittance; and a printed wiring board, a semiconductor chip package, and a semiconductor device provided with a solder resist layer formed using the resin sheet. can provide.
  • FIG. 1 is a cross-sectional view schematically showing a semiconductor chip package according to one embodiment of the present invention.
  • a resin sheet according to one embodiment of the present invention is a resin sheet for forming a solder resist layer, and includes a resin composition layer.
  • the resin composition layer contains the resin composition, and preferably contains only the resin composition.
  • the resin composition layer has a thickness within a specific range.
  • the resin composition includes (A) a thermosetting resin in combination with (B) an inorganic filler having a specific specific surface area.
  • the thickness of the resin composition layer included in the resin sheet is usually 20 ⁇ m or more, preferably 30 ⁇ m or more, more preferably 35 ⁇ m or more, and preferably 100 ⁇ m or less, more preferably 90 ⁇ m or less, and particularly preferably 80 ⁇ m or less. Since the resin composition layer of the resin sheet according to the present embodiment is thick as described above, a thick solder resist layer can be formed from the cured product of the resin composition layer. And the formed thick solder resist layer can have a high light transmittance.
  • a thick solder resist layer tends to warp printed wiring boards and semiconductor chip packages including the solder resist layer.
  • the resin sheet according to the present embodiment it is possible to preferably form a solder-resist layer that can suppress warpage even if it is thick.
  • Photocurable resin compositions that have been widely used in the past have greater curing shrinkage than thermosetting resin compositions, so conventional solder resist layers made of the photocurable resin composition tend to be prone to large warping. was there.
  • the solder-resist layer manufactured using the resin sheet according to the present embodiment can suppress warping while being thick, as compared with the conventional solder-resist layer that tends to cause large warping as described above. There are advantages.
  • the resin composition contains (A) a thermosetting resin as the (A) component.
  • a thermosetting resin a resin that can be cured when heat is applied can be used.
  • the thermosetting resin may be used alone or in combination of two or more.
  • Thermosetting resin preferably contains (A-1) epoxy resin as component (A-1).
  • (A-1) Epoxy resin is a curable resin having an epoxy group.
  • epoxy resins include bixylenol type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol AF type epoxy resin, dicyclopentadiene type epoxy resin, tris Phenol type epoxy resin, naphthol novolak type epoxy resin, phenol novolak type epoxy resin, tert-butyl-catechol type epoxy resin, naphthalene type epoxy resin, naphthol type epoxy resin, anthracene type epoxy resin, glycidylamine type epoxy resin, glycidyl ester type Epoxy resins, cresol novolak type epoxy resins, phenol aralkyl type epoxy resins, biphenyl type epoxy resins, linear aliphatic epoxy resins, epoxy resins having
  • Epoxy resin preferably contains an epoxy resin containing an aromatic structure from the viewpoint of obtaining a cured product with excellent heat resistance.
  • Aromatic structures are chemical structures generally defined as aromatic and also include polycyclic aromatic and heteroaromatic rings.
  • Examples of epoxy resins containing an aromatic structure include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol AF type epoxy resin, dicyclopentadiene type epoxy resin, trisphenol type epoxy resin, Naphthol novolak type epoxy resin, phenol novolak type epoxy resin, tert-butyl-catechol type epoxy resin, naphthalene type epoxy resin, naphthol type epoxy resin, anthracene type epoxy resin, bixylenol type epoxy resin, glycidylamine type epoxy having an aromatic structure Resin, glycidyl ester type epoxy resin having aromatic structure, cresol novolak type epoxy resin, biphenyl type epoxy resin, linear aliphatic epoxy resin having aromatic structure, epoxy resin having butad
  • epoxy resins containing an aromatic ring structure epoxy resins containing a naphthalene ring are preferred. By using an epoxy resin containing a naphthalene ring, compatibility with other resins is good, and warpage can be reduced.
  • Epoxy resin preferably contains an epoxy resin containing a nitrogen atom from the viewpoint of obtaining a cured product with excellent heat resistance and adhesion.
  • epoxy resins containing nitrogen atoms include glycidylamine type epoxy resins.
  • the epoxy resin preferably contains an epoxy resin having two or more epoxy groups in one molecule.
  • the ratio of the epoxy resin having two or more epoxy groups in one molecule to 100% by mass of the non-volatile components of the epoxy resin is preferably 50% by mass or more, more preferably 60% by mass or more, Particularly preferably, it is 70% by mass or more.
  • Epoxy resins include liquid epoxy resins at a temperature of 20° C. (hereinafter sometimes referred to as “liquid epoxy resins”) and solid epoxy resins at a temperature of 20° C. (hereinafter sometimes referred to as “solid epoxy resins”). ).
  • the (A-1) epoxy resin contained in the resin composition may be a liquid epoxy resin alone, a solid epoxy resin alone, or a combination of a liquid epoxy resin and a solid epoxy resin.
  • a liquid epoxy resin having two or more epoxy groups in one molecule is preferable as the liquid epoxy resin.
  • liquid epoxy resins examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AF type epoxy resin, naphthalene type epoxy resin, glycidyl ester type epoxy resin, glycidyl amine type epoxy resin, phenol novolak type epoxy resin, ester skeleton.
  • An alicyclic epoxy resin, a cyclohexane type epoxy resin, a cyclohexanedimethanol type epoxy resin, and an epoxy resin having a butadiene structure are preferred.
  • liquid epoxy resins include “HP4032”, “HP4032D”, and “HP4032SS” (naphthalene type epoxy resins) manufactured by DIC; “828US”, “828EL”, “jER828EL”, and “825" manufactured by Mitsubishi Chemical Corporation; “, “Epikote 828EL” (bisphenol A type epoxy resin); “jER807” and “1750” (bisphenol F type epoxy resin) manufactured by Mitsubishi Chemical Corporation; “jER152” (phenol novolac type epoxy resin) manufactured by Mitsubishi Chemical Corporation; “630", “630LSD”, “604" (glycidylamine type epoxy resin) manufactured by Mitsubishi Chemical Corporation; “ED-523T” (glycirrol type epoxy resin) manufactured by ADEKA; “EP-3950L” manufactured by ADEKA; “EP-3980S” (glycidylamine type epoxy resin); “EP-4088S” (dicyclopentadiene type epoxy resin) manufactured by ADEKA; “ZX-1059” manufactured by Nippon Steel Chemical & Material Chemical
  • the solid epoxy resin is preferably a solid epoxy resin having 3 or more epoxy groups per molecule, more preferably an aromatic solid epoxy resin having 3 or more epoxy groups per molecule.
  • Solid epoxy resins include bixylenol type epoxy resin, naphthalene type epoxy resin, naphthalene type tetrafunctional epoxy resin, naphthol novolak type epoxy resin, cresol novolak type epoxy resin, dicyclopentadiene type epoxy resin, trisphenol type epoxy resin, Naphthol type epoxy resin, biphenyl type epoxy resin, naphthylene ether type epoxy resin, anthracene type epoxy resin, bisphenol A type epoxy resin, bisphenol AF type epoxy resin, phenol aralkyl type epoxy resin, tetraphenylethane type epoxy resin, phenol phthalate A mijin-type epoxy resin is preferred.
  • solid epoxy resins include “HP4032H” (naphthalene-type epoxy resin) manufactured by DIC; “HP-4700” and “HP-4710” (naphthalene-type tetrafunctional epoxy resin) manufactured by DIC; “N-690” (cresol novolac type epoxy resin) manufactured by DIC Corporation; “N-695" (cresol novolak type epoxy resin) manufactured by DIC Corporation; "HP-7200”, “HP-7200HH”, “HP -7200H”, “HP-7200L” (dicyclopentadiene type epoxy resin); DIC's "EXA-7311", “EXA-7311-G3", “EXA-7311-G4", “EXA-7311-G4S” ”, “HP6000”, “HP6000L” (naphthylene ether type epoxy resin); Nippon Kayaku Co., Ltd.
  • EPPN-502H trisphenol type epoxy resin
  • Nippon Kayaku Co., Ltd. “NC7000L” (naphthol novolac type epoxy resin); "NC3000H”, “NC3000”, “NC3000L”, “NC3000FH”, “NC3100” (biphenyl type epoxy resin) manufactured by Nippon Kayaku; "ESN475V” and “ESN4100V” manufactured by Nippon Steel Chemical & Materials Co., Ltd.
  • the mass ratio is preferably 20:1 to 1:10, more preferably 10:1. 1 to 1:5, particularly preferably 5:1 to 1:2.
  • the epoxy equivalent of the epoxy resin is preferably 50 g/eq. ⁇ 5,000g/eq. , more preferably 60 g/eq. ⁇ 3,000 g/eq. , more preferably 80 g/eq. ⁇ 2,000 g/eq. , particularly preferably 110 g/eq. ⁇ 1,000 g/eq. is.
  • Epoxy equivalent weight represents the mass of resin per equivalent of epoxy groups. This epoxy equivalent can be measured according to JIS K7236.
  • the weight average molecular weight (Mw) of the epoxy resin is preferably 100 to 5,000, more preferably 250 to 3,000, still more preferably 400 to 1,500.
  • the weight average molecular weight of the resin can be measured as a polystyrene-equivalent value by a gel permeation chromatography (GPC) method.
  • the amount of (A-1) epoxy resin in the resin composition is preferably 1% by mass or more, more preferably 2% by mass or more, and particularly preferably 4% by mass, based on 100% by mass of non-volatile components in the resin composition. % or more, preferably 30% by mass or less, more preferably 20% by mass or less, and particularly preferably 10% by mass or less. (A-1) When the amount of the epoxy resin is within the above range, the light transmittance of the cured product of the resin composition layer can be effectively increased. Further, preferably, it is possible to suppress the tackiness of the resin composition layer, reduce the melt viscosity, and suppress the elastic modulus and improve the adhesiveness of the cured product of the resin composition layer.
  • the amount of (A-1) epoxy resin in the resin composition is preferably 5% by mass or more, more preferably 10% by mass or more, and particularly preferably 15% by mass, based on 100% by mass of the resin component of the resin composition. or more, preferably 70% by mass or less, more preferably 60% by mass or less, and particularly preferably 50% by mass or less.
  • the resin component of the resin composition represents the non-volatile components of the resin composition excluding (B) the inorganic filler.
  • the mass W (A-1) of the (A-1) epoxy resin in the resin composition is the product W (B) of the mass W (B) of the (B) inorganic filler and the specific surface area S (B) in the resin composition
  • W (B) the mass W (B) of the mass W (B) of the (B) inorganic filler and the specific surface area S (B) in the resin composition
  • This ratio “W(A-1)/ ⁇ W(B) ⁇ S(B) ⁇ ” can correspond to the amount of (A-1) epoxy resin per unit surface area of (B) inorganic filler.
  • This ratio "W (A-1) / ⁇ W (B) ⁇ S (B) ⁇ ” is preferably 0.1 ⁇ 10 -3 g/m 2 from the viewpoint of significantly obtaining the desired effects of the present invention.
  • 1.0 ⁇ 10 ⁇ 3 g/m 2 or more particularly preferably 2.0 ⁇ 10 ⁇ 3 g/m 2 or more, preferably 22 ⁇ 10 ⁇ 3 g/m 2 or less, more It is preferably 18 ⁇ 10 ⁇ 3 g/m 2 or less, particularly preferably 16 ⁇ 10 ⁇ 3 g/m 2 or less.
  • Thermosetting resin preferably contains (A-2) phenolic resin as component (A-2).
  • the phenolic resin a compound having one or more, preferably two or more, phenolic hydroxyl groups in one molecule can be used.
  • a phenolic hydroxyl group refers to a hydroxyl group bonded to an aromatic ring such as a benzene ring or a naphthalene ring.
  • (A-2) phenol resin is preferably used in combination with (A-1) epoxy resin.
  • (A-2) phenol resin reacts with (A-1) epoxy resin to cure the resin composition. can function as an agent.
  • the (A-2) phenol resin is preferably a phenol resin having a novolak structure.
  • a nitrogen-containing phenolic resin is preferable, and a triazine skeleton-containing phenolic resin is more preferable.
  • a triazine skeleton-containing phenol novolak resin is preferable from the viewpoint of highly satisfying heat resistance, water resistance, and adhesion.
  • phenol resin examples include, for example, "MEH-7700”, “MEH-7810", “MEH-7851” and “MEH-8000” manufactured by Meiwa Kasei Co., Ltd.; “NHN”, “CBN”, “GPH”, Nippon Steel Chemical & Materials “SN-170”, “SN-180", “SN-190”, “SN-475”, “SN-485”, “SN-495”, “SN-375”, “SN-395”, DIC's "TD-2090”, “LA-7052”, “LA-7054”, “LA-1356”, “LA-3018” ”, “LA-3018-50P”, “LA-1356”, “TD2090”, “TD-2090-60M”, “EXB-9500”, “HPC-9500”, “KA-1160”, “KA-1163 ”, “KA-1165”, “GDP-6115L” and “GDP-6115H” manufactured by Gunei Chemical Co., Ltd., and the like.
  • Phenolic resins may be used singly or in combination of two or more.
  • the hydroxyl equivalent of the phenolic resin is preferably 50 g/eq. ⁇ 3000g/eq. , more preferably 100 g/eq. ⁇ 1000 g/eq. , more preferably 100 g/eq. ⁇ 500 g/eq. , particularly preferably 100 g/eq. ⁇ 300 g/eq. is.
  • the hydroxyl equivalent represents the mass of resin per equivalent of hydroxyl.
  • the number of epoxy groups of (A-1) epoxy resin is 1, the number of hydroxyl groups of (A-2) phenol resin is preferably 0.01 or more, more preferably 0.10 or more, and still more preferably 0.15 or more. is preferably 5.0 or less, more preferably 2.0 or less, and particularly preferably 1.0 or less.
  • “(A-1) number of epoxy groups in epoxy resin” represents the sum of all the values obtained by dividing the mass of the non-volatile component of the epoxy resin present in the resin composition by the epoxy equivalent.
  • (A-2) the number of hydroxyl groups in the phenolic resin represents the sum of all the values obtained by dividing the mass of the non-volatile components of the phenolic resin present in the resin composition by the hydroxyl equivalent.
  • the amount of (A-2) phenol resin in the resin composition is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, with respect to 100% by mass of non-volatile components in the resin composition. It is preferably 0.5% by mass or more, preferably 20% by mass or less, more preferably 15% by mass or less, and particularly preferably 10% by mass or less. (A-2) When the amount of the phenol resin is within the above range, the light transmittance of the cured product of the resin composition layer can be effectively increased. Further, preferably, it is possible to suppress the tackiness of the resin composition layer, reduce the melt viscosity, and suppress the elastic modulus and improve the adhesiveness of the cured product of the resin composition layer.
  • the amount of (A-2) phenol resin in the resin composition is preferably 1% by mass or more, more preferably 2% by mass or more, and particularly preferably 3% by mass, relative to 100% by mass of the resin component of the resin composition. or more, preferably 50% by mass or less, more preferably 40% by mass or less, and particularly preferably 35% by mass or less.
  • (A-2) When the amount of the phenol resin is within the above range, the light transmittance of the cured product of the resin composition layer can be effectively increased. Further, preferably, it is possible to suppress the tackiness of the resin composition layer, reduce the melt viscosity, and suppress the elastic modulus and improve the adhesiveness of the cured product of the resin composition layer.
  • the ratio W (A-2)/W of the mass W (A-2) of the (A-2) phenolic resin in the resin composition and the mass W (B) of the (B) inorganic filler in the resin composition (B) is preferably within a specific range from the viewpoint of significantly obtaining the desired effects of the present invention.
  • the ratio W(A-2)/W(B) is preferably 0.1 ⁇ 10 ⁇ 2 or more, more preferably 0.5 ⁇ 10 ⁇ 2 or more, and particularly preferably 1.0 ⁇ 10 ⁇ 2 or more, preferably 20.0 ⁇ 10 ⁇ 2 or less, more preferably 15.0 ⁇ 10 ⁇ 2 or less, and particularly preferably 10.0 ⁇ 10 ⁇ 2 or less.
  • the mass W (A-2) of the (A-2) phenolic resin in the resin composition, the mass W (B) of the (B) inorganic filler in the resin composition and the product W (B) of the specific surface area S (B) Consider the ratio “W(A ⁇ 2)/ ⁇ W(B) ⁇ S(B) ⁇ ” obtained by dividing by B) ⁇ S(B).
  • This ratio “W(A-2)/ ⁇ W(B) ⁇ S(B) ⁇ ” can correspond to the amount of (A-2) phenolic resin per unit surface area of (B) inorganic filler.
  • This ratio "W(A-2)/ ⁇ W(B) ⁇ S(B) ⁇ ” is preferably 0.5 ⁇ 10 ⁇ 3 g/m 2 from the viewpoint of significantly obtaining the desired effects of the present invention.
  • 1.0 ⁇ 10 ⁇ 3 g/m 2 or more particularly preferably 2.0 ⁇ 10 ⁇ 3 g/m 2 or more, preferably 10 ⁇ 10 ⁇ 3 g/m 2 or less, more It is preferably 8.0 ⁇ 10 ⁇ 3 g/m 2 or less, particularly preferably 6.0 ⁇ 10 ⁇ 3 g/m 2 or less.
  • Thermosetting resin preferably contains (A-3) active ester resin as component (A-3).
  • the active ester resin generally contains two highly reactive ester groups per molecule, such as phenol esters, thiophenol esters, N-hydroxyamine esters, and esters of heterocyclic hydroxy compounds. A compound having one or more is preferably used.
  • (A-3) active ester resin is preferably used in combination with (A-1) epoxy resin. When (A-1) epoxy resin and (A-3) active ester resin are used in combination, (A-3) active ester resin reacts with (A-1) epoxy resin to cure the resin composition. It can function as a curing agent to
  • the active ester resin is preferably obtained by a condensation reaction between a carboxylic acid compound and/or a thiocarboxylic acid compound and a hydroxy compound and/or a thiol compound.
  • an active ester resin obtained from a carboxylic acid compound and a hydroxy compound is preferred, and an active ester resin obtained from a carboxylic acid compound and a phenol compound and/or a naphthol compound is more preferred.
  • Examples of carboxylic acid compounds include benzoic acid, acetic acid, succinic acid, maleic acid, itaconic acid, phthalic acid, isophthalic acid, terephthalic acid, and pyromellitic acid.
  • phenol compounds or naphthol compounds include hydroquinone, resorcinol, bisphenol A, bisphenol F, bisphenol S, phenolphthalin, methylated bisphenol A, methylated bisphenol F, methylated bisphenol S, phenol, o-cresol, m- cresol, p-cresol, catechol, ⁇ -naphthol, ⁇ -naphthol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenone, trihydroxybenzophenone, tetrahydroxybenzophenone, phloroglucine, Benzenetriol, dicyclopentadiene-type diphenol compound, phenol novolak, and the like.
  • dicyclopentadiene-type diphenol compound refers to a diphenol compound obtained by condensing one molecule of dicyclopentadiene with two molecules of phenol.
  • the active ester resin (A-3) includes a dicyclopentadiene-type active ester resin, a naphthalene-type active ester resin containing a naphthalene structure, an active ester resin containing an acetylated product of phenol novolac, and a benzoylated product of phenol novolak. is preferred, and more preferably at least one selected from dicyclopentadiene-type active ester resins and naphthalene-type active ester resins.
  • the dicyclopentadiene-type active ester resin an active ester resin containing a dicyclopentadiene-type diphenol structure is preferable.
  • active ester resins include, for example, "EXB9451”, “EXB9460”, “EXB9460S”, “EXB-8000L” and “EXB” as active ester resins containing a dicyclopentadiene type diphenol structure.
  • the active ester resin may be used singly or in combination of two or more.
  • the active ester group equivalent of the active ester resin is preferably 50 g/eq. ⁇ 3000g/eq. , more preferably 100 g/eq. ⁇ 1000 g/eq. , more preferably 100 g/eq. ⁇ 500 g/eq. , particularly preferably 100 g/eq. ⁇ 300 g/eq. is.
  • Active ester group equivalents represent the mass of resin per equivalent of active ester groups.
  • the number of active ester groups of (A-3) active ester resin is preferably 0.01 or more, more preferably 0.05 or more, and still more preferably 0.05 or more. It is 10 or more, preferably 5.0 or less, more preferably 2.0 or less, and particularly preferably 1.0 or less.
  • (A-3) Number of active ester groups in active ester resin represents the sum of all the values obtained by dividing the mass of the non-volatile components of the active ester resin present in the resin composition by the active ester group equivalent.
  • the amount of (A-3) active ester resin in the resin composition is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, based on 100% by mass of non-volatile components in the resin composition, It is particularly preferably 0.5% by mass or more, preferably 10% by mass or less, more preferably 5% by mass or less, and particularly preferably 2% by mass or less. (A-3) When the amount of the active ester resin is within the above range, the desired effects of the present invention can be obtained remarkably.
  • the amount of (A-3) active ester resin in the resin composition is preferably 1% by mass or more, more preferably 2% by mass or more, and particularly preferably 3% by mass with respect to 100% by mass of the resin component of the resin composition. % or more, preferably 20% by mass or less, more preferably 10% by mass or less, and particularly preferably 5% by mass or less. (A-3) When the amount of the active ester resin is within the above range, the desired effects of the present invention can be obtained remarkably.
  • Thermosetting resin preferably contains (A-4) maleimide resin as component (A-4).
  • the maleimide resin compounds containing at least one, preferably two or more maleimide groups (2,5-dihydro-2,5-dioxo-1H-pyrrol-1-yl groups) in one molecule can be used.
  • the ethylenic double bond contained in the maleimide group can undergo radical polymerization.
  • (A-4) maleimide resin can react with (A-1) epoxy resin in the presence of a suitable catalyst such as an imidazole compound. Therefore, the maleimide resin (A-4) can thermoset the resin composition by these reactions.
  • maleimide resin (A-4) an aliphatic maleimide resin containing an aliphatic amine skeleton may be used, an aromatic maleimide resin containing an aromatic amine skeleton may be used, or a combination thereof may be used.
  • the (A-4) maleimide resin may be used alone or in combination of two or more.
  • Maleimide resins include, for example, “SLK-2600” manufactured by Shin-Etsu Chemical Co., Ltd., “BMI-1500”, “BMI-1700”, “BMI-689” manufactured by Designer Molecules, “ BMI-2500” (a maleimide compound containing a dimer diamine structure), “BMI-6100” (aromatic maleimide compound) manufactured by Designer Molecules, "MIR-5000-60T” manufactured by Nippon Kayaku, "MIR-3000” -70MT” (biphenylaralkyl-type maleimide compound), "BMI-70” and “BMI-80” manufactured by K.I.
  • maleimide resins also include maleimide resins (maleimide compounds containing an indane ring skeleton) disclosed in Technical Bulletin No. 2020-500211 of the Japan Institute of Invention and Innovation.
  • the amount of maleimide resin (A-4) in the resin composition is preferably 0.1% by mass or more, more preferably 1.0% by mass or more, and particularly It is preferably 2.0% by mass or more, preferably 20% by mass or less, more preferably 15% by mass or less, and particularly preferably 10% by mass or less. (A-4) When the amount of the maleimide resin is within the above range, the desired effects of the present invention can be obtained remarkably.
  • the amount of (A-4) maleimide resin in the resin composition is preferably 1% by mass or more, more preferably 4% by mass or more, and particularly preferably 6% by mass, based on 100% by mass of the resin component of the resin composition. or more, preferably 60% by mass or less, more preferably 50% by mass or less, and particularly preferably 30% by mass or less. (A-4) When the amount of the maleimide resin is within the above range, the desired effects of the present invention can be obtained remarkably.
  • the ratio W(A-4)/W of the mass W(A-4) of the (A-4) maleimide resin in the resin composition to the mass W(B) of the (B) inorganic filler in the resin composition (B) is preferably within a specific range from the viewpoint of significantly obtaining the desired effects of the present invention.
  • the ratio W(A-4)/W(B) is preferably 0.1 ⁇ 10 ⁇ 2 or more, more preferably 1.0 ⁇ 10 ⁇ 2 or more, and still more preferably 2.0 ⁇ 10 ⁇ 2 or more, particularly preferably 3.1 ⁇ 10 ⁇ 2 or more, preferably 30 ⁇ 10 ⁇ 2 or less, more preferably 20 ⁇ 10 ⁇ 2 or less, particularly preferably 15 ⁇ 10 ⁇ 2 or less .
  • the mass W (A-4) of the (A-4) maleimide resin in the resin composition is the product W (B) of the mass W (B) of the (B) inorganic filler and the specific surface area S (B) in the resin composition
  • W (A ⁇ 4)/ ⁇ W(B) ⁇ S(B) ⁇ obtained by dividing by B) ⁇ S(B).
  • This ratio “W(A-4)/ ⁇ W(B) ⁇ S(B) ⁇ ” can correspond to the amount of (A-4) maleimide resin per unit surface area of (B) inorganic filler.
  • This ratio “W(A-4)/ ⁇ W(B) ⁇ S(B) ⁇ ” is preferably 0.5 ⁇ 10 ⁇ 3 g/m 2 from the viewpoint of significantly obtaining the desired effects of the present invention.
  • 1.0 ⁇ 10 ⁇ 3 g/m 2 or more particularly preferably 1.5 ⁇ 10 ⁇ 3 g/m 2 or more, preferably 20 ⁇ 10 ⁇ 3 g/m 2 or less, more It is preferably 15 ⁇ 10 ⁇ 3 g/m 2 or less, particularly preferably 11 ⁇ 10 ⁇ 3 g/m 2 or less.
  • thermosetting resins include cyanate ester resins, carbodiimide resins, acid anhydride resins, amine resins, benzoxazine resins, and thiol resins. These resins, when used in combination with (A-1) epoxy resin, can function as a curing agent that reacts with (A-1) epoxy resin to cure the resin composition. Still another example of the (A) thermosetting resin includes (A-4) a radically polymerizable resin other than the maleimide resin. This radically polymerizable resin generally has an ethylenically unsaturated bond and can be cured by radical polymerization.
  • radically polymerizable resins examples include styrene radically polymerizable resins having one or more vinyl groups directly bonded to aromatic carbon atoms, allyl radically polymerizable resins having one or more allyl groups, and the like. be done. One type of these resins may be used alone, or two or more types may be used in combination.
  • the number average molecular weight (Mn) of the thermosetting resin (A), including the components (A-1) to (A-4) described above, is preferably less than 3,000, more preferably less than 2,000, and further It is preferably 1,500 or less, preferably 100 or more, more preferably 250 or more, still more preferably 400 or more.
  • the number average molecular weight of the resin can be measured as a polystyrene-equivalent value by gel permeation chromatography (GPC).
  • thermosetting resin The amount of (A) thermosetting resin in the resin composition is preferably 1% by mass or more, more preferably 2% by mass or more, and particularly preferably 5% by mass with respect to 100% by mass of non-volatile components in the resin composition. % or more, preferably 40% by mass or less, more preferably 30% by mass or less, and particularly preferably 25% by mass or less.
  • the amount of the thermosetting resin is within the above range, the light transmittance of the cured product of the resin composition layer can be effectively increased. Further, preferably, it is possible to suppress the tackiness of the resin composition layer, reduce the melt viscosity, and suppress the elastic modulus and improve the adhesiveness of the cured product of the resin composition layer.
  • the amount of (A) thermosetting resin in the resin composition is preferably 5% by mass or more, more preferably 10% by mass or more, and particularly preferably 20% by mass with respect to 100% by mass of the resin component of the resin composition. or more, preferably 90% by mass or less, more preferably 85% by mass or less, and particularly preferably 80% by mass or less.
  • (A) When the amount of the thermosetting resin is within the above range, the light transmittance of the cured product of the resin composition layer can be effectively increased. Furthermore, it is usually possible to suppress the tackiness of the resin composition layer, reduce the melt viscosity, and suppress the elastic modulus and improve the adhesion of the cured product of the resin composition layer.
  • the resin composition contains (B) an inorganic filler as the (B) component.
  • the inorganic filler is usually contained in the resin composition in the form of particles.
  • this (B) inorganic filler has a specific surface area within a specific range.
  • the range of the specific surface area of the inorganic filler is usually 3.0 m 2 /g or more, preferably 3.5 m 2 /g or more, more preferably 4.0 m 2 /g or more, and 5.0 m 2 / g or more. g or more, 10.0 m 2 /g or more, or 20.0 m 2 /g or more.
  • the (B) inorganic filler contained in the resin composition has a specific surface area within the above range, the light transmittance of the cured product of the resin composition layer can be increased.
  • the upper limit of the specific surface area of the inorganic filler is preferably 100 m 2 /g or less, more preferably 70 m 2 /g or less, still more preferably 50 m 2 /g, from the viewpoint of significantly obtaining the desired effects of the present invention. Below, it is particularly preferably 40 m 2 /g or less.
  • the specific surface area of the inorganic filler is determined by adsorbing nitrogen gas on the sample surface using a specific surface area measuring device (Macsorb HM-1210 manufactured by Mountech) according to the BET method, and using the BET multipoint method to determine the specific surface area. can be measured by calculating
  • inorganic compound is used as the material for the inorganic filler.
  • inorganic filler materials include silica, alumina, glass, cordierite, silicon oxide, barium sulfate, barium carbonate, talc, clay, mica powder, zinc oxide, hydrotalcite, boehmite, and water.
  • the inorganic filler may be used singly or in combination of two or more.
  • the average particle size of the inorganic filler is preferably 1.5 ⁇ m or less, more preferably 1.0 ⁇ m or less, more preferably 0.6 ⁇ m or less, particularly preferably 0.4 ⁇ m or less, and preferably 0.01 ⁇ m. 0.05 ⁇ m or more, more preferably 0.05 ⁇ m or more.
  • the average particle diameter of the inorganic filler is within the above range, the light transmittance of the cured product of the resin composition layer can be effectively increased. Furthermore, it is usually possible to suppress the tackiness of the resin composition layer, reduce the melt viscosity, and suppress the elastic modulus and improve the adhesion of the cured product of the resin composition layer.
  • the average particle size of the inorganic filler can be measured by a laser diffraction/scattering method based on Mie scattering theory. Specifically, the particle size distribution of the inorganic filler is prepared on a volume basis using a laser diffraction/scattering type particle size distribution measuring device, and the median diameter can be used as the average particle size for measurement.
  • a measurement sample can be obtained by weighing 100 mg of an inorganic filler and 10 g of methyl ethyl ketone in a vial and dispersing them with ultrasonic waves for 10 minutes.
  • a measurement sample is measured using a laser diffraction particle size distribution measuring device, the wavelengths of the light source used are blue and red, the volume-based particle size distribution of the inorganic filler is measured by the flow cell method, and from the obtained particle size distribution
  • the average particle size can be calculated as the median size.
  • the laser diffraction particle size distribution analyzer include "LA-960" manufactured by Horiba, Ltd., and the like.
  • the inorganic filler is preferably treated with a surface treatment agent from the viewpoint of enhancing moisture resistance and dispersibility.
  • surface treatment agents include fluorine-containing silane coupling agents, aminosilane coupling agents, epoxysilane coupling agents, mercaptosilane coupling agents, silane coupling agents, alkoxysilanes, organosilazane compounds, and titanate compounds.
  • a coupling agent etc. are mentioned.
  • One type of surface treatment agent may be used alone, or two or more types may be used in combination.
  • Examples of commercially available surface treatment agents include “KBM403” (3-glycidoxypropyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd., “KBM803” (3-mercaptopropyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd., Shin-Etsu Chemical Industry Co., Ltd. "KBE903” (3-aminopropyltriethoxysilane), Shin-Etsu Chemical Co., Ltd. "KBM573” (N-phenyl-3-aminopropyltrimethoxysilane), Shin-Etsu Chemical Co., Ltd.
  • the degree of surface treatment with the surface treatment agent is preferably within a specific range. Specifically, 100% by mass of the inorganic filler is preferably surface-treated with a surface treatment agent of 0.2% to 5% by mass, and a surface treatment agent of 0.2% to 3% by mass. It is more preferably surface-treated, and more preferably surface-treated with 0.3% by mass to 2% by mass of a surface treating agent.
  • the degree of surface treatment by the surface treatment agent can be evaluated by the amount of carbon per unit surface area of the inorganic filler.
  • the amount of carbon per unit surface area of the inorganic filler is preferably 0.02 mg/m 2 or more, more preferably 0.1 mg/m 2 or more, and more preferably 0.2 mg/m 2 from the viewpoint of improving the dispersibility of the inorganic filler. The above is more preferable.
  • it is preferably 1.0 mg/m 2 or less, more preferably 0.8 mg/m 2 or less, and even more preferably 0.5 mg/m 2 or less.
  • the amount of carbon per unit surface area of the inorganic filler can be measured after the surface-treated inorganic filler is washed with a solvent (eg, methyl ethyl ketone (MEK)). Specifically, a sufficient amount of MEK as a solvent is added to the inorganic filler surface-treated with the surface treatment agent, and ultrasonic cleaning is performed at 25° C. for 5 minutes. After removing the supernatant liquid and drying the solid content, a carbon analyzer can be used to measure the amount of carbon per unit surface area of the inorganic filler. As a carbon analyzer, "EMIA-320V" manufactured by Horiba Ltd. can be used.
  • EMIA-320V manufactured by Horiba Ltd.
  • the amount of the inorganic filler (B) in the resin composition is preferably 40% by mass or more, more preferably 50% by mass or more, and particularly preferably 60% by mass with respect to 100% by mass of non-volatile components in the resin composition. or more, preferably 95% by mass or less, more preferably 90% by mass or less, and particularly preferably 85% by mass or less.
  • the amount of the inorganic filler is within the above range, the coefficient of linear thermal expansion of the cured product of the resin composition can be reduced, so expansion and contraction due to temperature changes are suppressed, and the dimensional stability of the solder resist layer is improved. can be increased and the formation of cracks can be suppressed.
  • the thicker the solder resist layer the greater the tendency of expansion and contraction. Therefore, being able to reduce the coefficient of linear thermal expansion of the cured product as described above is useful in that it can solve problems that tend to occur in thick solder resist layers.
  • the resin composition may further contain (C) an elastomer as an optional component in combination with the components (A) to (B) described above.
  • the (C) elastomer as the (C) component does not include those corresponding to the above-described components (A) to (B).
  • (C) When a resin composition containing an elastomer is used, the elastic modulus of the cured product can be effectively suppressed, so warping of the printed wiring board and the semiconductor chip package provided with the solder resist layer can be effectively suppressed. Being able to suppress warping in this way is particularly useful when the solder resist layer is thick or the resin composition contains a large amount of the inorganic filler (B), which generally tends to cause warping.
  • the elastomer is a flexible resin, preferably a resin having rubber elasticity or a resin that exhibits rubber elasticity by polymerizing with other components.
  • Resins having rubber elasticity include, for example, resins exhibiting an elastic modulus of 1 GPa or less when subjected to a tensile test at a temperature of 25° C. and a humidity of 40% RH in accordance with Japanese Industrial Standards (JIS K7161). be done.
  • This (C) elastomer may be used alone or in combination of two or more at any ratio.
  • the elastomer preferably has a high molecular weight.
  • the number average molecular weight (Mn) of the elastomer is preferably 1,000 or more, more preferably 1,500 or more, still more preferably 2,000 or more, still more preferably 3,000 or more, and particularly preferably 5,000. That's it.
  • the upper limit is preferably 1,000,000 or less, more preferably 900,000 or less.
  • the number average molecular weight (Mn) is a polystyrene equivalent number average molecular weight measured using GPC (gel permeation chromatography).
  • the elastomer is preferably one or more selected from resins having a glass transition temperature (Tg) of 25°C or less and resins that are liquid at 25°C or less.
  • the glass transition temperature of the resin having a glass transition temperature (Tg) of 25° C. or lower is preferably 20° C. or lower, more preferably 15° C. or lower. Although the lower limit of the glass transition temperature is not particularly limited, it can usually be -15°C or higher.
  • the resin that is liquid at 25°C is preferably a resin that is liquid at 20°C or lower, more preferably a resin that is liquid at 15°C or lower.
  • the glass transition temperature can be measured by DSC (differential scanning calorimetry) at a heating rate of 5°C/min.
  • the elastomer has a structure selected from a polybutadiene structure, a polysiloxane structure, a poly(meth)acrylate structure, a polyalkylene structure, a polyalkyleneoxy structure, a polyisoprene structure, a polyisobutylene structure, a polycarbonate structure and a polystyrene structure in the molecule.
  • resins having one or more structures selected from a polybutadiene structure, a poly(meth)acrylate structure, a polyalkyleneoxy structure, a polyisoprene structure, a polyisobutylene structure, a polycarbonate structure and a polystyrene structure are more preferable. Furthermore, a resin having one or more structures selected from a polybutadiene structure and a polyalkyleneoxy structure is more preferred, and a resin having a polybutadiene structure is particularly preferred.
  • “(Meth)acrylate” is a term encompassing methacrylates and acrylates and combinations thereof. These structures may be contained in the main chain or may be contained in the side chain.
  • the elastomer may have a functional group capable of reacting with (A) the thermosetting resin.
  • the functional group capable of reacting with the thermosetting resin includes a functional group that appears upon heating.
  • the functional group capable of reacting with the thermosetting resin is selected from the group consisting of, for example, a hydroxyl group, a carboxyl group, an acid anhydride group, a phenolic hydroxyl group, an epoxy group, an isocyanate group, a urethane group and a maleimide group.
  • One or more functional groups are selected from the group consisting of, for example, a hydroxyl group, a carboxyl group, an acid anhydride group, a phenolic hydroxyl group, an epoxy group, an isocyanate group, a urethane group and a maleimide group.
  • the functional group is preferably a hydroxy group, an acid anhydride group, a phenolic hydroxyl group, an epoxy group, an isocyanate group, a urethane group and a maleimide group, and a hydroxy group, an acid anhydride group, a phenolic hydroxyl group, an epoxy group and a maleimide group.
  • groups are more preferred, and phenolic hydroxyl groups and maleimide groups are particularly preferred.
  • the number average molecular weight (Mn) of the (C) elastomer containing functional groups is preferably 3,000 or more.
  • Examples of elastomers include resins containing a polybutadiene structure.
  • the polybutadiene structure may be contained in the main chain or may be contained in the side chain. A part or all of the polybutadiene structure may be hydrogenated.
  • a resin containing a polybutadiene structure is sometimes called a "polybutadiene resin".
  • polybutadiene resins include "Ricon 130MA8", “Ricon 130MA13", “Ricon 130MA20”, “Ricon 131MA5", “Ricon 131MA10”, “Ricon 131MA17”, “Ricon 131MA20” and “Ricon 184MA6” (acid anhydride group-containing polybutadiene), Nippon Soda's “GQ-1000” (hydroxyl group- and carboxyl group-introduced polybutadiene), “G-1000", “G-2000”, “G-3000” (both ends hydroxyl group polybutadiene), “GI-1000", “GI-2000”, “GI-3000” (hydrogenated polybutadiene with both hydroxyl groups), “FCA-061L” manufactured by Nagase ChemteX Corporation (hydrogenated polybutadiene skeleton epoxy resin), etc.
  • polybutadiene resins include linear polyimides made from hydroxyl group-terminated polybutadiene, diisocyanate compounds and tetrabasic acid anhydride (the polyimides described in JP-A-2006-37083 and WO 2008/153208). ), phenolic hydroxyl group-containing butadiene, and the like.
  • the butadiene structure content of the polyimide resin is preferably 60% to 95% by mass, more preferably 75% to 85% by mass. Details of the polyimide resin can be referred to in JP-A-2006-37083 and WO 2008/153208, the contents of which are incorporated herein.
  • (C) Another example of the elastomer includes a resin containing a poly(meth)acrylate structure.
  • a resin containing a poly(meth)acrylate structure is sometimes called a "poly(meth)acrylic resin".
  • Examples of poly(meth)acrylic resins include Teisan Resin manufactured by Nagase ChemteX Corporation, and "ME-2000", “W-116.3”, “W-197C” and "KG-25” manufactured by Negami Kogyo Co., Ltd. , "KG-3000", "ARUFON UH-2000” manufactured by Toagosei Co., Ltd., and the like.
  • Still another example of the elastomer includes a resin containing a polycarbonate structure.
  • a resin containing a polycarbonate structure is sometimes called a "polycarbonate resin".
  • polycarbonate resins include “FPC0220” and “FPC2136” manufactured by Mitsubishi Gas Chemical Co., Ltd., “T6002” and “T6001” (polycarbonate diol) manufactured by Asahi Kasei Chemicals, "C-1090” and “C -2090” and “C-3090” (polycarbonate diol).
  • Linear polyimides made from hydroxyl-terminated polycarbonates, diisocyanate compounds and tetrabasic acid anhydrides may also be used.
  • the carbonate structure content of the polyimide resin is preferably 60% to 95% by mass, more preferably 75% to 85% by mass. Details of the polyimide resin can be referred to in International Publication No. 2016/129541, the content of which is incorporated herein.
  • Still another example of the elastomer includes a resin containing a polysiloxane structure.
  • a resin containing a polysiloxane structure is sometimes called a "siloxane resin".
  • siloxane resins include "SMP-2006”, “SMP-2003PGMEA” and “SMP-5005PGMEA” manufactured by Shin-Etsu Silicone Co., Ltd., linear polyimides made from amine-terminated polysiloxane and tetrabasic acid anhydride (International Publication No. 2010/053185, JP-A-2002-12667 and JP-A-2000-319386) and the like.
  • Still another example of the elastomer includes a resin containing a polyalkylene structure or a polyalkyleneoxy structure.
  • a resin containing a polyalkylene structure is sometimes called an "alkylene resin”
  • a resin containing a polyalkyleneoxy structure is sometimes called an "alkyleneoxy resin”.
  • the number of carbon atoms in the polyalkylene structure and polyalkyleneoxy structure is preferably 2-15, more preferably 3-10, and even more preferably 5-8.
  • Specific examples of alkylene resins and alkyleneoxy resins include "PTXG-1000" and "PTXG-1800" manufactured by Asahi Kasei Fibers, and "BMI-3000" manufactured by Designer Molecules.
  • elastomer includes a resin containing a polyisoprene structure.
  • a resin containing a polyisoprene structure is sometimes called an "isoprene resin".
  • Specific examples of the isoprene resin include “KL-610” and “KL613” manufactured by Kuraray Co., Ltd.
  • Still another example of the elastomer includes a resin containing a polyisobutylene structure.
  • a resin containing a polyisobutylene structure is sometimes called an "isobutylene resin".
  • Specific examples of the isobutylene resin include "SIBSTAR-073T” (styrene-isobutylene-styrene triblock copolymer) and "SIBSTAR-042D” (styrene-isobutylene diblock copolymer) manufactured by Kaneka Corporation.
  • elastomer includes a resin containing a polystyrene structure.
  • a resin containing a polystyrene structure is sometimes called a "styrene resin".
  • the styrene resin may be a copolymer containing any repeating unit different from the styrene unit in combination with the styrene unit, or may be a hydrogenated polystyrene resin.
  • Styrene resins include, for example, styrene-butadiene-styrene block copolymer (SBS), styrene-isoprene-styrene block copolymer (SIS), styrene-ethylene-butylene-styrene block copolymer (SEBS), styrene- Ethylene-propylene-styrene block copolymer (SEPS), styrene-ethylene-ethylene-propylene-styrene block copolymer (SEEPS), styrene-butadiene-butylene-styrene block copolymer (SBBS), styrene-butadiene diblock copolymers, hydrogenated styrene-butadiene block copolymers, hydrogenated styrene-isoprene block copolymers, hydrogenated styrene-butadiene random copoly
  • styrene resins include hydrogenated styrene thermoplastic elastomers "H1041”, “Tuftec H1043", “Tuftec P2000” and “Tuftec MP10” (manufactured by Asahi Kasei Corporation); epoxidized styrene-butadiene thermoplastic elastomer “Epofriend AT501", “CT310” (manufactured by Daicel); modified styrene elastomer having hydroxyl group "Septon HG252" (manufactured by Kuraray); modified styrenic elastomer having carboxyl group "Tuftec N503M”, modified styrene having amino group Elastomer "Tuftec N501", modified styrene elastomer “Tuftec M1913” (manufactured by Asahi Kasei Chemicals Corporation) having an acid anhydride group; unmod
  • the (C) elastomer may be compatible with resin components other than the (C) elastomer and may be contained in the resin composition and its cured product. All of the examples described above are generally compatible with (A) a resin component such as a thermosetting resin. On the other hand, the (C) elastomer may be contained in the resin composition and its cured product as particles without being compatible with the resin components other than the (C) elastomer. Such particulate (C) elastomers can generally function as organic fillers. The particulate (C) elastomer can usually exhibit the same function as that which is compatible with resin components other than the (C) elastomer. Examples of the particulate elastomer (C) include "EXL2655" manufactured by Dow Chemical Japan, "AC3401N” and “AC3816N” manufactured by Aica Kogyo Co., Ltd., and the like.
  • (C) Elastomers may be used singly or in combination of two or more.
  • the amount of elastomer is preferably 1% by mass or more, more preferably 2% by mass or more, particularly preferably 4% by mass or more, and preferably 30% by mass, based on 100% by mass of non-volatile components in the resin composition. % by mass or less, more preferably 25% by mass or less, and even more preferably 20% by mass or less. (C) When the amount of the elastomer is within the above range, it is possible to lower the minimum melt viscosity of the resin composition and to effectively suppress the warpage of printed wiring boards and semiconductor chip packages provided with a solder resist layer.
  • the amount of elastomer is preferably 5% by mass or more, more preferably 10% by mass or more, particularly preferably 20% by mass or more, and preferably 80% by mass, based on 100% by mass of the resin component in the resin composition. % by mass or less, more preferably 70% by mass or less, and even more preferably 65% by mass or less. (C) When the amount of the elastomer is within the above range, it is possible to lower the minimum melt viscosity of the resin composition and to effectively suppress the warpage of printed wiring boards and semiconductor chip packages provided with a solder resist layer.
  • the resin composition may further contain (D) an organic colorant as an optional component in combination with the components (A) to (C) described above.
  • the (D) organic coloring agent as the (D) component does not include those corresponding to the above-described components (A) to (C).
  • the solder resist layer can be colored in a desired color.
  • a pigment may be used, a dye may be used, or a combination thereof may be used, but a pigment is preferred. Since the pigment has a high coloring ability, it can effectively color the solder resist layer.
  • pigments examples include blue pigments such as phthalocyanine-based pigments, anthraquinone-based pigments, and dioxazine-based pigments.
  • yellow pigments include monoazo pigments, disazo pigments, condensed azo pigments, benzimidazolone pigments, isoindolinone pigments, and anthraquinone pigments.
  • red pigments include monoazo pigments, disazo pigments, azo lake pigments, benzimidazolone pigments, perylene pigments, diketopyrrolopyrrole pigments, condensed azo pigments, anthraquinone pigments, and quinacridone pigments. mentioned.
  • green pigments include phthalocyanine pigments.
  • the organic colorants may be used singly or in combination of two or more.
  • the amount of the organic coloring agent is preferably 0.0001% by mass or more, more preferably 0.001% by mass or more, and particularly preferably 0.01% by mass, based on 100% by mass of non-volatile components in the resin composition. % or more, preferably 10% by mass or less, more preferably 5% by mass or less, even more preferably 1% by mass or less, and particularly preferably 0.3% by mass or less.
  • the amount of the organic coloring agent is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, and particularly preferably 0.1% by mass with respect to 100% by mass of the resin component in the resin composition. % or more, preferably 10% by mass or less, more preferably 5% by mass or less, and even more preferably 1% by mass or less.
  • the resin composition may further contain (E) a thermoplastic resin as an optional component in combination with the above components (A) to (D).
  • the (E) thermoplastic resin as the (E) component does not include those corresponding to the above-described components (A) to (D).
  • Thermoplastic resins include, for example, phenoxy resins, polyvinyl acetal resins, polyolefin resins, polyimide resins, polyamideimide resins, polyetherimide resins, polysulfone resins, polyethersulfone resins, polyphenylene ether resins, and polyetheretherketone resins. , polyester resins, etc., and phenoxy resins are preferred.
  • the thermoplastic resin may be used alone or in combination of two or more.
  • phenoxy resins include bisphenol A skeleton, bisphenol F skeleton, bisphenol S skeleton, bisphenolacetophenone skeleton, novolac skeleton, biphenyl skeleton, fluorene skeleton, dicyclopentadiene skeleton, norbornene skeleton, naphthalene skeleton, anthracene skeleton, adamantane skeleton, and terpene. and a phenoxy resin having one or more skeletons selected from the group consisting of a trimethylcyclohexane skeleton.
  • the terminal of the phenoxy resin may be any functional group such as a phenolic hydroxyl group or an epoxy group.
  • a phenoxy resin may be used individually by 1 type, and may be used in combination of 2 or more types.
  • Specific examples of phenoxy resins include Mitsubishi Chemical's "1256" and “4250” (both phenoxy resins containing bisphenol A skeleton), "YX8100” (phenoxy resin containing bisphenol S skeleton), and "YX6954” (bisphenolacetophenone).
  • polyvinyl acetal resins examples include polyvinyl formal resins and polyvinyl butyral resins, with polyvinyl butyral resins being preferred.
  • Specific examples of polyvinyl acetal resins include Denka Butyral 4000-2, Denka Butyral 5000-A, Denka Butyral 6000-C, Denka Butyral 6000-EP, and Sekisui.
  • S-lec BH series, BX series (for example, BX-5Z), KS series (for example, KS-1), BL series, BM series manufactured by Kagaku Kogyo Co., Ltd. may be mentioned.
  • polyimide resins include “Ricacoat SN20” and “Ricacoat PN20” manufactured by Shin Nippon Rika.
  • polyamide-imide resins include “Vylomax HR11NN” and “Vylomax HR16NN” manufactured by Toyobo.
  • polyamideimide resins include modified polyamideimides such as “KS9100” and “KS9300” (polysiloxane skeleton-containing polyamideimides) manufactured by Hitachi Chemical Co., Ltd.
  • polyethersulfone resin examples include "PES5003P” manufactured by Sumitomo Chemical Co., Ltd.
  • polyphenylene ether resin include oligophenylene ether/styrene resin "OPE-2St 1200” manufactured by Mitsubishi Gas Chemical Company.
  • polyetheretherketone resin examples include "Sumiproy K” manufactured by Sumitomo Chemical Co., Ltd., and the like.
  • polyetherimide resin include "Ultem” manufactured by GE.
  • polysulfone resins include polysulfone "P1700” and “P3500” manufactured by Solvay Advanced Polymers.
  • polyolefin resins examples include ethylene-based copolymers such as low-density polyethylene, ultra-low-density polyethylene, high-density polyethylene, ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, and ethylene-methyl acrylate copolymer. Resin etc. are mentioned.
  • polyester resins include polyethylene terephthalate resin, polyethylene naphthalate resin, polybutylene terephthalate resin, polybutylene naphthalate resin, polytrimethylene terephthalate resin, polytrimethylene naphthalate resin, polycyclohexanedimethyl terephthalate resin, and the like.
  • the weight average molecular weight (Mw) of the thermoplastic resin is preferably greater than 5,000, more preferably 8,000 or more, still more preferably 10,000 or more, particularly preferably 20,000 or more, and preferably is 100,000 or less, more preferably 70,000 or less, still more preferably 60,000 or less, and particularly preferably 50,000 or less.
  • the amount of the thermoplastic resin is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and particularly preferably 1.0% by mass, based on 100% by mass of the non-volatile components in the resin composition. % or more, preferably 10% by mass or less, more preferably 8% by mass or less, and particularly preferably 5% by mass or less.
  • the amount of the thermoplastic resin is preferably 1% by mass or more, more preferably 5% by mass or more, and particularly preferably 10% by mass or more, based on 100% by mass of the resin component in the resin composition. is 50% by mass or less, more preferably 40% by mass or less, and particularly preferably 30% by mass or less.
  • the resin composition may further contain (F) a curing accelerator as an optional component in combination with the components (A) to (E) described above.
  • the (F) curing accelerator as the (F) component does not include those corresponding to the above-described components (A) to (E).
  • the curing accelerator functions as a curing catalyst that accelerates the curing of the (A-1) epoxy resin.
  • curing accelerators examples include phosphorus curing accelerators, urea curing accelerators, guanidine curing accelerators, imidazole curing accelerators, metal curing accelerators, and amine curing accelerators. . Among them, imidazole-based curing accelerators are preferred.
  • the curing accelerator may be used alone or in combination of two or more.
  • Phosphorus curing accelerators include, for example, tetrabutylphosphonium bromide, tetrabutylphosphonium chloride, tetrabutylphosphonium acetate, tetrabutylphosphonium decanoate, tetrabutylphosphonium laurate, bis(tetrabutylphosphonium) pyromellitate, tetrabutylphosphonium hydro Aliphatic phosphonium salts such as genhexahydrophthalate, tetrabutylphosphonium 2,6-bis[(2-hydroxy-5-methylphenyl)methyl]-4-methylphenolate, di-tert-butyldimethylphosphonium tetraphenylborate; methyltriphenylphosphonium bromide, ethyltriphenylphosphonium bromide, propyltriphenylphosphonium bromide, butyltriphenylphosphonium bromide, benzyltripheny
  • Urea-based curing accelerators include, for example, 1,1-dimethylurea; 1,1,3-trimethylurea, 3-ethyl-1,1-dimethylurea, 3-cyclohexyl-1,1-dimethylurea, 3- Aliphatic dimethylurea such as cyclooctyl-1,1-dimethylurea; 3-phenyl-1,1-dimethylurea, 3-(4-chlorophenyl)-1,1-dimethylurea, 3-(3,4-dichlorophenyl )-1,1-dimethylurea, 3-(3-chloro-4-methylphenyl)-1,1-dimethylurea, 3-(2-methylphenyl)-1,1-dimethylurea, 3-(4- methylphenyl)-1,1-dimethylurea, 3-(3,4-dimethylphenyl)-1,1-dimethylurea, 3-(4-isopropylphenyl)-1,1-dimethyl
  • Guanidine curing accelerators include, for example, dicyandiamide, 1-methylguanidine, 1-ethylguanidine, 1-cyclohexylguanidine, 1-phenylguanidine, 1-(o-tolyl)guanidine, dimethylguanidine, diphenylguanidine, trimethylguanidine, Tetramethylguanidine, Pentamethylguanidine, 1,5,7-triazabicyclo[4.4.0]dec-5-ene, 7-methyl-1,5,7-triazabicyclo[4.4.0] Dec-5-ene, 1-methylbiguanide, 1-ethylbiguanide, 1-n-butylbiguanide, 1-n-octadecylbiguanide, 1,1-dimethylbiguanide, 1,1-diethylbiguanide, 1-cyclohexylbiguanide, 1 -allylbiguanide, 1-phenylbiguanide, 1-(o-tolyl)biguanide and
  • imidazole curing accelerators examples include 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl- 2-phenylimidazolium trimellitate, 2,4-d
  • imidazole curing accelerators include, for example, Shikoku Kasei Co., Ltd. "1B2PZ”, “2E4MZ”, “2MZA-PW”, “2MZ-OK”, “2MA-OK”, “2MA-OK- PW”, “2PHZ”, “2PHZ-PW”, "Cl1Z”, “Cl1Z-CN”, “Cl1Z-CNS”, “C11Z-A”; and "P200-H50” manufactured by Mitsubishi Chemical Corporation.
  • metal-based curing accelerators include organometallic complexes or organometallic salts of metals such as cobalt, copper, zinc, iron, nickel, manganese, and tin.
  • organometallic complexes include organocobalt complexes such as cobalt (II) acetylacetonate and cobalt (III) acetylacetonate, organocopper complexes such as copper (II) acetylacetonate, and zinc (II) acetylacetonate.
  • organic zinc complexes such as iron (III) acetylacetonate; organic nickel complexes such as nickel (II) acetylacetonate; organic manganese complexes such as manganese (II) acetylacetonate;
  • organic metal salts include zinc octoate, tin octoate, zinc naphthenate, cobalt naphthenate, tin stearate, and zinc stearate.
  • amine curing accelerators examples include trialkylamines such as triethylamine and tributylamine, 4-dimethylaminopyridine, benzyldimethylamine, 2,4,6-tris(dimethylaminomethyl)phenol, 1,8-diazabicyclo (5,4,0)-undecene and the like.
  • amine-based curing accelerator a commercially available product may be used, such as "MY-25" manufactured by Ajinomoto Fine-Techno Co., Ltd., and the like.
  • the amount of (F) curing accelerator in the resin composition is preferably 0.01% by mass or more, more preferably 0.02% by mass or more, and particularly preferably 100% by mass of non-volatile components in the resin composition. is 0.03% by mass or more, preferably 1.0% by mass or less, more preferably 0.5% by mass or less, and particularly preferably 0.1% by mass or less.
  • the amount of (F) curing accelerator in the resin composition is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and particularly preferably 100% by mass of the resin component in the resin composition. is 0.10% by mass or more, preferably 2.0% by mass or less, more preferably 1.0% by mass or less, and particularly preferably 0.5% by mass or less.
  • the resin composition may further contain (G) an optional additive as an optional non-volatile component in combination with the components (A) to (F) described above.
  • optional additives include radical polymerization initiators such as peroxide-based radical polymerization initiators and azo-based radical polymerization initiators; organic metal compounds such as organic copper compounds, organic zinc compounds, and organic cobalt compounds; polymerization inhibitors such as hydroquinone, catechol, pyrogallol, and phenothiazine; leveling agents such as silicone leveling agents and acrylic polymer leveling agents; thickeners such as bentone and montmorillonite; Defoamers such as fluorine-based defoaming agents and vinyl resin-based defoaming agents; UV absorbers such as benzotriazole-based UV absorbers; Adhesion improvers such as urea silane; adhesion-imparting agents such as adhesion-imparting agents and triazine-based adhesion
  • phosphorous flame retardant e.g. phosphate ester compound, phosphazene compound, phosphinic acid compound, red phosphorus
  • nitrogen flame retardant e.g. melamine sulfate
  • halogen flame retardant inorganic flame retardant (e.g.
  • trioxide flame retardants such as antimony
  • dispersants such as phosphate ester dispersants, polyoxyalkylene dispersants, acetylene dispersants, silicone dispersants, anionic dispersants, and cationic dispersants
  • borate stabilizers Stabilizers such as titanate-based stabilizers, aluminate-based stabilizers, zirconate-based stabilizers, isocyanate-based stabilizers, carboxylic acid-based stabilizers, and carboxylic acid anhydride-based stabilizers.
  • Stabilizers such as titanate-based stabilizers, aluminate-based stabilizers, zirconate-based stabilizers, isocyanate-based stabilizers, carboxylic acid-based stabilizers, and carboxylic acid anhydride-based stabilizers.
  • Any additive may be used alone or in combination of two or more.
  • the resin components such as the (A) component and the (C) to (G) components described above include a resin component containing nitrogen atoms.
  • a resin component containing nitrogen atoms is used as part or all of (A) a thermosetting resin, (C) an elastomer, (E) a thermoplastic resin, and (F) a curing accelerator, effective adhesion is achieved. can improve.
  • the amount of the resin component containing nitrogen atoms is preferably 0.1% by mass or more, more preferably 1.0% by mass or more, and particularly preferably 2.0% by mass with respect to 100% by mass of non-volatile components in the resin composition. % or more, preferably 40% by mass or less, more preferably 35% by mass or less, and particularly preferably 30% by mass or less.
  • the amount of the resin component containing nitrogen atoms is preferably 5% by mass or more, more preferably 10% by mass or more, and particularly preferably 20% by mass or more with respect to 100% by mass of the resin component in the resin composition. , 50% by mass or more.
  • the upper limit is preferably 90% by mass or less, more preferably 80% by mass or less, and particularly preferably 75% by mass or less.
  • the resin composition may contain (H) a solvent as an optional volatile component in combination with the non-volatile components such as components (A) to (G) described above.
  • a solvent an organic solvent is usually used.
  • organic solvents include ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; ester solvents; ether solvents such as tetrahydropyran, tetrahydrofuran, 1,4-dioxane, diethyl ether, diisopropyl ether, dibutyl ether, diphenyl ether, anisole; alcohol solvents such as methanol, ethanol, propanol, butanol, ethylene glycol; acetic acid Ether ester solvents such as 2-ethoxyethyl, propylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate
  • ester alcohol solvents 2-methoxypropanol, 2-methoxyethanol, 2-ethoxyethanol, propylene glycol monomethyl ether, diethylene glycol monobutyl ether (butyl carbitol) and other ether alcohol solvents; N,N-dimethylformamide, N, Amide solvents such as N-dimethylacetamide and N-methyl-2-pyrrolidone; sulfoxide solvents such as dimethylsulfoxide; nitrile solvents such as acetonitrile and propionitrile; aliphatics such as hexane, cyclopentane, cyclohexane, and methylcyclohexane Hydrocarbon-based solvents: aromatic hydrocarbon-based solvents such as benzene, toluene, xylene, ethylbenzene, trimethylbenzene, and the like can be mentioned. (H) Solvents may be used singly or in combination of two or more.
  • the amount of the solvent is not particularly limited, but when all components in the resin composition are 100% by mass, for example, 60% by mass or less, 40% by mass or less, 30% by mass or less, 20% by mass or less It may be 0% by mass or less, 15% by mass or less, 10% by mass or less, or the like.
  • a resin composition can be produced, for example, by mixing the components described above. Some or all of the components described above may be mixed at the same time, or may be mixed in order. During the course of mixing each component, the temperature may be set accordingly, and thus may be temporarily or permanently heated and/or cooled. Moreover, you may perform stirring or shaking in the process of mixing each component.
  • the cured product of the resin composition has a thickness of 50 ⁇ m and a light transmittance T900 at a measurement wavelength of 900 nm is preferably 70% or more, more preferably 73% or more, particularly preferably 75% or more, and usually 100% or less. be.
  • a cured product obtained by curing the resin composition described above may have low light transmittance in the visible wavelength range.
  • the light transmittance difference T 900 ⁇ T 550 is preferably 15% or more, more preferably 20% or more, particularly preferably 25% or more, preferably 70% or less, more preferably 60% or less, particularly preferably 50% or less.
  • the cured product obtained by curing the resin composition described above can usually reduce the difference in light transmittance due to the difference in thickness. Therefore, the cured product of the resin composition can usually have a high light transmittance even when the thickness is changed. Due to the recent increase in the size of semiconductor chip packages, the solder resist layer tends to become thicker, and depending on the surface shape of the substrate on which the solder resist layer is formed, the solder resist layer has thick and thin portions. can be When the cured product of the resin composition described above is applied to the solder resist layer, high light transmittance can be obtained in both thick and thin portions.
  • the thickness range of the solder resist layer can be widened, and the range of applicable substrates can be widened.
  • the thickness of the cured product of the resin composition is 40 ⁇ m
  • the light transmittance T (40 ⁇ m / 900 nm) at a measurement wavelength of 900 nm and the light transmittance T (100 ⁇ m / 900 nm) at a measurement wavelength of 900 nm
  • the thickness of the cured product of the resin composition is 100 ⁇ m. is preferably 0% to 30%, more preferably 0% to 25%, and particularly preferably 0% to 20%.
  • the thickness of the cured product of the resin composition is 40 ⁇ m, the light transmittance T (40 ⁇ m/550 nm) at a measurement wavelength of 550 nm, and the light transmittance T (100 ⁇ m/550 nm) at a measurement wavelength of 550 nm, with a thickness of 100 ⁇ m. is preferably 0% to 50%, more preferably 0% to 45%, and particularly preferably 0% to 40%.
  • the cured product obtained by curing the resin composition described above preferably has a large change in light transmittance at a wavelength around 780 nm, which is the end of the visible wavelength range on the long wavelength side.
  • the ratio T 700 /T 800 of the light transmittance T 700 at a measurement wavelength of 700 nm at a thickness of 50 ⁇ m of the cured resin composition and the light transmittance T 800 at a measurement wavelength of 800 nm at a thickness of 50 ⁇ m of the cured resin composition is preferably in the small range of less than 1.0.
  • the light transmittance ratio T 700 /T 800 is preferably 0.3 to 0.8, more preferably 0.3 to 0.6, particularly preferably 0.3 to 0.4. is.
  • a cured product obtained by curing the resin composition described above may have a small change in light transmittance in a wavelength range longer than the visible wavelength range.
  • the difference between the light transmittance T 900 at a measurement wavelength of 900 nm and the thickness of the cured product of the resin composition of 50 ⁇ m and the light transmittance T 1500 at a measurement wavelength of 1500 nm is small.
  • is preferably 0% to 30%, more preferably 0% to 25%, and particularly preferably 0% to 20%. be.
  • the light transmittance of the cured product of the resin composition can be measured with an ultraviolet and near-infrared spectrophotometer (for example, "UV3100PC” manufactured by Shimadzu Corporation). As the specific measurement conditions, those described in Examples described later can be adopted.
  • an ultraviolet and near-infrared spectrophotometer for example, "UV3100PC” manufactured by Shimadzu Corporation.
  • UV3100PC ultraviolet and near-infrared spectrophotometer
  • the resin composition described above is preferably capable of suppressing tackiness. Therefore, the resin composition layer can also have a low tackiness, so that the resin sheet can be easily handled.
  • This tackiness can be represented by the peeling force required to peel off the probe brought into contact with the resin composition layer.
  • the peel force can be preferably less than 0.6N, more preferably less than 0.4N in one embodiment.
  • the peel force can be measured by the following method.
  • a cylindrical SUS probe having a bottom surface with a diameter of 5 mm is brought into contact with the resin composition layer at a contact speed of 0.5 cm/sec and held under a load of 1000 gf/cm 2 for 1 second.
  • the probe is then pulled away at 0.5 cm/sec and the peel force required for peeling can be measured as an index of tackiness.
  • the method described in Examples can be adopted.
  • the resin composition described above can preferably have a low melt viscosity. Therefore, when a circuit board or a semiconductor chip is sealed using a resin sheet to form a solder resist layer, the resin composition layer can obtain good embedding properties.
  • the minimum melt viscosity of the resin composition in the temperature range from 60°C to 200°C is preferably 20000 poise or less.
  • the minimum melt viscosity of the resin composition is measured under conditions of a measurement temperature interval of 2.5° C. and a vibration of 1 Hz/deg while increasing the temperature of the resin composition from the starting temperature of 60° C. to 200° C. at a temperature increase rate of 5° C./min. can be measured using a dynamic viscoelasticity measuring device.
  • a specific measuring method the method described in Examples can be adopted.
  • the cured product of the resin composition described above can preferably have a small elastic modulus. Therefore, it is possible to effectively suppress warpage of the printed wiring board and the semiconductor chip package provided with the solder resist layer formed by the cured product of the resin composition layer.
  • the tensile modulus of the cured product obtained by curing the resin composition is preferably 15 GPa or less, more preferably 10 GPa or less, even more preferably 8 GPa or less, and particularly preferably 5 GPa or less.
  • the lower limit is not particularly limited, and may be, for example, 1 GPa or more.
  • the tensile modulus of the cured product of the resin composition can be measured at 25°C in accordance with JIS K7127 using a cured product obtained by curing the resin composition under curing conditions of 190°C for 90 minutes.
  • JIS K7127 a cured product obtained by curing the resin composition under curing conditions of 190°C for 90 minutes.
  • the method described in Examples can be adopted.
  • the cured product of the resin composition described above can preferably have high adhesion to substrates made of various types of resins. Therefore, the solder-resist layer formed from the cured product of the resin composition layer can adhere with high adhesion to the substrate on which the solder-resist layer is provided.
  • the cured product obtained by curing the resin composition preferably has a peel strength to a polyimide film of greater than 2 kgf/cm.
  • the peel strength of the cured product of the resin composition can be measured by the following method.
  • a resin composition layer and a polyimide film are laminated, and the resin composition layer is cured under curing conditions of 180° C. for 90 minutes to form a solder resist layer.
  • the polyimide film is peeled off at a speed of 50 mm/min in the direction perpendicular to the solder resist layer, and the peel strength can be measured.
  • the method described in Examples can be adopted.
  • the solder-resist layer formed from the cured product of the resin composition layer described above can preferably suppress warpage of the printed wiring board and the semiconductor chip package provided with the solder-resist layer.
  • the warpage of a sample substrate corresponding to a semiconductor chip package obtained by forming a solder resist layer on a silicon wafer is preferably 1 mm or less, more preferably 0.8 mm or less, and particularly preferably 0.6 mm or less. is.
  • the warp is measured by forming a solder resist layer as a cured product layer with a cured product of a photosensitive resin composition on a 12-inch silicon wafer, and using a shadow moire measuring device (for example, "Thermoire AXP" manufactured by Akorometrix). At 25° C., it can be measured according to JEITA EDX-7311-24 of the Japan Electronics and Information Technology Industries Association standard. As a specific measuring method, the method described in Examples can be adopted.
  • the present inventor believes that the mechanism by which the excellent characteristics described above are obtained is as follows.
  • the layer of the cured product of the resin composition is thick, the light transmittance of the layer tends to be low.
  • the (B) inorganic filler contained in the resin composition according to the embodiment described above has a small particle size, as can be seen from having a large specific surface area. Particles of the inorganic filler (B) having such a small particle size can be smaller than the wavelength of light, so that reflection of light on the particle surface can be suppressed.
  • the composition of the resin component when the composition of the resin component is appropriately adjusted, aggregation of particles can be suppressed and the refractive index difference at the interface between the particles and the resin component can be reduced, so reflection can be effectively suppressed. . Therefore, the cured product of the resin composition can have high light transmittance. Therefore, a thick solder resist layer having a high light transmittance can be realized by the cured product of the resin composition layer.
  • the layer of the cured product of the resin composition when the layer of the cured product of the resin composition is thick, the effect of expansion and contraction due to temperature changes in the layer of the cured product increases, and the dimensional stability of the layer decreases and cracks are likely to occur. tend to In order to suppress the expansion and contraction, it is conceivable to increase the amount of the inorganic filler. tended to occur more easily.
  • the resin composition layer according to the above-described embodiment employs (B) an inorganic filler having a specific surface area within a specific range, so even if the amount of the (B) inorganic filler is large, the light transmittance can obtain a cured product with a high
  • the resin composition layer according to the above-described embodiment has a flexible molecular skeleton as part or all of resin components such as (A) thermosetting resin and (C) elastomer combined with (B) inorganic filler. You can adopt what you have. Therefore, even if the inorganic filler (B) is large, the elastic modulus of the cured product can be lowered, so that the printed wiring board and the semiconductor chip package provided with the solder resist layer formed of the cured product can be prevented from warping.
  • the inorganic filler (B) includes, as a resin component, the tackiness and minimum melt viscosity of the resin composition, or a solder resist layer formed of a cured product of the resin composition layer. It is possible to combine components that can improve the adhesion of the coating. Therefore, it is possible to achieve a solder resist layer that is thick and has a high light transmittance while also achieving reductions in the tackiness and minimum melt viscosity of the resin composition and an improvement in adhesion of the solder resist layer.
  • the technical scope of the present invention is not limited to the mechanism described here.
  • the resin sheet according to one embodiment of the present invention may further include any member in combination with the resin composition layer.
  • the resin sheet may have a support as an arbitrary member. Usually, the resin composition layer is provided on the support.
  • the support examples include a film made of a plastic material, a metal foil, and a release paper, and a film made of a plastic material and a metal foil are preferable.
  • plastic material examples include polyethylene terephthalate (hereinafter sometimes abbreviated as "PET”) and polyethylene naphthalate (hereinafter sometimes abbreviated as “PEN”).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • acrylic such as polymethyl methacrylate (PMMA)
  • PMMA polymethyl methacrylate
  • TAC triacetyl cellulose
  • PES polyether sulfide
  • polyether ketones polyimides, and the like.
  • polyethylene terephthalate and polyethylene naphthalate are preferable, and inexpensive polyethylene terephthalate is particularly preferable.
  • examples of the metal foil include copper foil and aluminum foil, with copper foil being preferred.
  • a foil made of a single metal of copper may be used, and a foil made of an alloy of copper and other metals (for example, tin, chromium, silver, magnesium, nickel, zirconium, silicon, titanium, etc.) may be used. may be used.
  • the support may be subjected to matte treatment, corona treatment, or antistatic treatment on the surface to be bonded to the resin composition layer.
  • a support with a release layer having a release layer on the surface to be bonded to the resin composition layer may be used.
  • the release agent used in the release layer of the release layer-attached support includes, for example, one or more release agents selected from the group consisting of alkyd resins, polyolefin resins, urethane resins, and silicone resins. .
  • a commercially available product may be used, for example, "SK-1” manufactured by Lintec Co., Ltd., “SK-1", “ AL-5”, “AL-7”, Toray's "Lumirror T60", Teijin's "Purex”, and Unitika's "Unipeel”.
  • the thickness of the support is not particularly limited, it is preferably in the range of 5 ⁇ m to 75 ⁇ m, more preferably in the range of 10 ⁇ m to 60 ⁇ m.
  • the thickness of the release layer-attached support as a whole is preferably within the above range.
  • the resin sheet according to one embodiment of the present invention may be combined with the resin composition layer and further provided with a protective film as an optional member.
  • a protective film is provided on the surface of the resin composition layer that is not bonded to the support (that is, the surface opposite to the support).
  • the protective film the same film as that which can be used as the support may be used.
  • the thickness of the protective film is not particularly limited, it is, for example, 1 ⁇ m to 40 ⁇ m.
  • a resin sheet provided with a protective film can suppress adhesion of dust and scratches on the surface of the resin composition layer.
  • a method for manufacturing the resin sheet is not particularly limited.
  • the resin sheet may be produced, for example, by applying a liquid resin composition onto a support.
  • the resin sheet is manufactured by a method including, for example, dissolving and/or dispersing a resin composition in a solvent to obtain a varnish as a liquid resin composition, and coating the varnish on a support.
  • You may Coating may be performed using a coating device such as a die coater.
  • drying may be performed as necessary.
  • Examples of the solvent include those similar to the solvents described as components of the resin composition.
  • a solvent may be used individually by 1 type, and may be used in combination of 2 or more types.
  • Drying may be carried out by a drying method such as heating or blowing hot air.
  • the drying conditions are not particularly limited, drying is performed so that the solvent content in the resin composition layer is usually 10% by mass or less, preferably 5% by mass or less.
  • the solvent content in the resin composition layer is usually 10% by mass or less, preferably 5% by mass or less.
  • the resin composition is dried at 50 ° C. to 150 ° C. for 3 minutes to 10 minutes. layer can be formed.
  • the resin sheet can be rolled up and stored.
  • the resin sheet has a protective film, it can be used by peeling off the protective film.
  • a printed wiring board according to one embodiment of the present invention includes a solder resist layer formed of a cured product of the resin composition layer of the resin sheet described above.
  • the solder resist layer usually has a thickness in the same range as the thickness of the resin composition layer. And, even if the solder resist layer is thick as described above, it can have a high light transmittance. Moreover, since the solder resist layer preferably has a low elastic modulus, it is possible to suppress warping of the printed wiring board and the semiconductor chip package provided with the solder resist layer. Furthermore, the solder resist layer can preferably be bonded to the circuit board with high adhesion.
  • a printed wiring board usually comprises a circuit board and the solder resist layer provided on the circuit board.
  • This printed wiring board for example, (I) a step of laminating a resin sheet on a circuit board so that the circuit board and the resin composition layer are bonded; (II) curing the resin composition layer to form a solder resist layer; It can be manufactured by a manufacturing method including
  • the "circuit board” used in step (I) refers to a board on which a solder resist layer is further formed when manufacturing a printed wiring board, and includes, for example, a board having circuit wiring.
  • the layer structure such as the number of layers of the circuit wiring is not particularly limited, and can be appropriately selected according to the desired properties of the printed wiring board.
  • the circuit board may include a semiconductor chip. Examples of the circuit board include a glass epoxy board, a metal board, a polyester board, a polyimide board, a BT resin board, a thermosetting polyphenylene ether board, etc. Circuit wiring is formed on one side or both sides of these boards. good too.
  • the thickness of the circuit board is not particularly limited, but is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, preferably 800 ⁇ m or less, and may be 600 ⁇ m or less, 400 ⁇ m or less.
  • the thickness of the circuit board represents the thickness of the entire circuit board including the thickness of the surface circuit.
  • the thickness of the circuit wiring is not particularly limited, but from the viewpoint of thinning the printed wiring board, it is preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less, and further preferably 30 ⁇ m or less. is 25 ⁇ m or less, even more preferably 20 ⁇ m or less, 18 ⁇ m or less, 16 ⁇ m or less, 14 ⁇ m or less, 12 ⁇ m or less or 10 ⁇ m or less.
  • the lower limit of the thickness of the surface circuit is not particularly limited, and may be, for example, 1 ⁇ m or more, 3 ⁇ m or more, or 5 ⁇ m or more.
  • the thermal expansion coefficient of the circuit board is preferably 16 ppm/°C or less, more preferably 14 ppm/°C or less, and even more preferably 12 ppm/°C or less, from the viewpoint of suppressing circuit distortion and cracking.
  • the lower limit of the coefficient of thermal expansion of the circuit board depends on the composition of the resin composition used to form the solder resist layer, but is preferably -2 ppm/°C or higher, more preferably 0 ppm/°C or higher, and still more preferably 4 ppm. /°C or more.
  • the coefficient of thermal expansion of the circuit board represents the coefficient of linear thermal expansion in the temperature range of 25° C. to 150° C. in the planar direction obtained by thermomechanical analysis (TMA) using a tensile loading method. Examples of thermomechanical analyzers that can be used to measure the linear thermal expansion coefficient of circuit boards include "Thermo Plus TMA8310" manufactured by Rigaku Corporation and "TMA-SS6100” manufactured by Seiko Instruments.
  • thermocompression bonding member examples include heated metal plates (such as SUS end plates) and metal rolls (SUS rolls). .
  • SUS end plates heated metal plates
  • SUS rolls metal rolls
  • thermocompression bonding member instead of directly pressing the thermocompression member onto the resin sheet, it is preferable to press the member through an elastic material such as heat-resistant rubber so that the resin composition layer can sufficiently follow the unevenness caused by the surface circuit of the circuit board. preferable.
  • Lamination of the circuit board and the resin sheet may be performed by a vacuum lamination method.
  • the thermocompression temperature is preferably in the range of 60° C. to 160° C., more preferably 80° C. to 140° C.
  • the thermocompression pressure is preferably 0.098 MPa to 1.77 MPa, more preferably 0. .29 MPa to 1.47 MPa
  • the heat pressing time is preferably 20 seconds to 400 seconds, more preferably 30 seconds to 300 seconds.
  • Lamination is preferably carried out under reduced pressure conditions with a pressure of 26.7 hPa or less.
  • Lamination can be done with a commercially available vacuum laminator.
  • Commercially available vacuum laminators include, for example, a vacuum pressurized laminator manufactured by Meiki Seisakusho, a vacuum applicator manufactured by Nikko Materials, a batch vacuum pressurized laminator, and the like.
  • the laminated resin sheets may be smoothed under normal pressure (atmospheric pressure), for example, by pressing a thermocompression member from the support side.
  • the pressing conditions for the smoothing treatment may be the same as the thermocompression bonding conditions for the lamination described above.
  • Smoothing treatment can be performed with a commercially available laminator. Lamination and smoothing may be performed continuously using the above-mentioned commercially available vacuum laminator.
  • the support may be removed between step (I) and step (II), or may be removed after step (II).
  • step (II) the resin composition layer is cured to form a solder resist layer made of a cured product of the resin composition layer. Curing of the resin composition layer is usually performed by heat curing.
  • thermosetting conditions for the resin composition layer vary depending on the type of resin component contained in the resin composition. More preferably, it is 170°C to 210°C. Curing time may preferably be from 5 minutes to 120 minutes, more preferably from 10 minutes to 100 minutes, even more preferably from 15 minutes to 100 minutes.
  • Thermal curing may be performed under atmospheric pressure (normal pressure). Moreover, you may implement thermosetting in multiple times. For example, step (II) may be performed multiple times before step (III) described below, step (II) may be performed one or more times before step (III) described below, and step (III) and (IV) may be followed by heat curing one or more times.
  • the method for manufacturing a printed wiring board may further include optional steps in combination with step (I) and step (II).
  • the method for manufacturing a printed wiring board may include (III) forming openings in the solder resist layer and (IV) desmearing the solder resist layer.
  • the support When the support is peeled off after step (II), the support may be peeled off between step (II) and step (III), and between step (III) and step (IV). may be carried out, or may be carried out after step (IV).
  • an opening is formed in the solder resist layer.
  • methods for forming the opening include drilling, laser, plasma, and the like.
  • the laser light source includes, for example, a carbon dioxide gas laser, a YAG laser, an excimer laser, and the like. Among them, a carbon dioxide laser is preferable from the viewpoint of processing speed and cost.
  • the size and shape of the opening may be appropriately determined according to the design of the printed wiring board.
  • step (IV) desmear treatment is applied to the solder resist layer. Inside the openings formed in step (III), smears as resin residues may adhere. This smear can cause poor electrical connections. Therefore, in step (IV), desmear treatment may be performed to remove smear.
  • Desmearing may be performed by dry desmearing, wet desmearing, or a combination thereof.
  • dry desmear treatment examples include desmear treatment using plasma. Desmearing using plasma can be performed using a commercially available plasma desmearing device. Among commercially available plasma desmear treatment apparatuses, suitable examples for use in manufacturing printed wiring boards include a microwave plasma apparatus manufactured by Nissin Co., Ltd., and an atmospheric pressure plasma etching apparatus manufactured by Sekisui Chemical Co., Ltd., and the like.
  • Wet desmear treatment includes, for example, desmear treatment using an oxidizing agent solution.
  • desmear treatment is performed using the oxidant solution, it is preferable to perform the swelling treatment with the swelling liquid, the oxidation treatment with the oxidant solution, and the neutralization treatment with the neutralization solution in this order.
  • swelling liquids examples include alkaline solutions and surfactant solutions, preferably alkaline solutions.
  • alkaline solution a sodium hydroxide solution and a potassium hydroxide solution are more preferred.
  • commercially available swelling liquids include "Swelling Dip Securigans P" and "Swelling Dip Securigans SBU” manufactured by Atotech Japan.
  • the swelling treatment with a swelling liquid may be performed by, for example, immersion in a swelling liquid at 30° C. to 90° C. for 1 minute to 20 minutes.
  • an alkaline permanganate aqueous solution is preferable.
  • a solution obtained by dissolving potassium permanganate or sodium permanganate in an aqueous solution of sodium hydroxide can be mentioned.
  • the roughening treatment with the oxidizing agent solution is preferably carried out by immersing the solder resist layer in the oxidizing agent solution heated to 60° C. to 100° C. for 10 to 30 minutes.
  • the permanganate concentration in the alkaline permanganate solution is preferably 5% by mass to 10% by mass.
  • Examples of commercially available oxidizing agents include alkaline permanganate solutions such as "Concentrate Compact CP" and "Dosing Solution Security P" manufactured by Atotech Japan.
  • an acidic aqueous solution is preferable, and commercially available products include, for example, "Reduction Solution Securigant P" manufactured by Atotech Japan.
  • the neutralization treatment with the neutralizing solution may be performed by immersing the treated surface roughened with the oxidizing agent in the neutralizing solution at 30° C. to 80° C. for 5 minutes to 30 minutes.
  • dry desmear treatment may be performed first, or wet desmear treatment may be performed first.
  • a semiconductor chip package according to one embodiment of the present invention includes a solder resist layer formed of a cured product of the resin composition layer of the resin sheet described above.
  • the solder resist layer usually has a thickness in the same range as the thickness of the resin composition layer. And, even if the solder resist layer is thick as described above, it can have a high light transmittance. Moreover, since the solder resist layer preferably has a low elastic modulus, it is possible to suppress warping of the printed wiring board and the semiconductor chip package provided with the solder resist layer. Further, the solder resist layer can preferably be bonded to components other than the solder resist layer of the semiconductor chip package with high adhesion.
  • a semiconductor chip package usually comprises a semiconductor chip and a solder resist layer.
  • semiconductor chip packages include FC-CSP, MIS-BGA package, ETS-BGA package, Fan-out type WLP (Wafer Level Package), Fan-in type WLP, Fan-out type PLP (Panel Level Package), Fan-in type PLPs can be mentioned.
  • the solder resist layer of a semiconductor chip package other than those exemplified here may be formed from a cured product of the resin composition layer of the resin sheet described above.
  • FIG. 1 is a cross-sectional view schematically showing a semiconductor chip package 100 according to one embodiment of the invention.
  • a semiconductor chip package 100 as an example includes: a semiconductor chip 110; a sealing layer 120 formed to cover the periphery of the semiconductor chip 110; A rewiring formation layer 130 as an insulating layer; a rewiring layer 140 as a conductor layer; a solder resist layer 150; and bumps 160 provided on the surface.
  • This semiconductor chip package manufacturing method includes, for example, (i) a step of laminating a temporary fixing film on a substrate; (ii) temporarily fixing the semiconductor chip on a temporary fixing film; (iii) forming an encapsulation layer on the semiconductor chip; (iv) peeling the substrate and the temporary fixing film from the semiconductor chip; (v) forming a rewiring layer on the surface of the semiconductor chip from which the substrate and the temporary fixing film have been removed; (vi) forming a rewiring layer as a conductor layer on the rewiring forming layer; (vii) forming a solder resist layer on the rewiring layer; including.
  • the method for manufacturing the semiconductor chip package includes: (viii) a step of bumping, and (ix) The step of dicing the plurality of semiconductor chip packages into individual semiconductor chip packages to individualize them may be included.
  • step (i) a temporary fixing film is laminated on the base material.
  • the lamination of the substrate and the temporary fixing film can be performed in the same manner as the lamination of the circuit substrate and the resin sheet in the printed wiring board manufacturing method.
  • substrates examples include silicon wafers; glass wafers; glass substrates; metal substrates such as copper, titanium, stainless steel, and cold-rolled steel plates (SPCC); and a substrate made of a bismaleimide triazine resin such as BT resin; and the like.
  • a film that can be peeled off from the semiconductor chip and that can temporarily fix the semiconductor chip can be used as the temporary fixing film.
  • Commercially available products include “Riva Alpha” manufactured by Nitto Denko Corporation.
  • step (ii) the semiconductor chip is temporarily fixed on the temporary fixing film.
  • Temporary fixing of the semiconductor chip can be performed using a device such as a flip chip bonder, a die bonder, or the like.
  • the layout and the number of semiconductor chips to be arranged can be appropriately set according to conditions such as the shape and size of the temporary fixing film and the production volume of the target semiconductor chip package.
  • the semiconductor chips may be arranged in a matrix of multiple rows and multiple columns and temporarily fixed.
  • a sealing layer is formed on the semiconductor chip.
  • the encapsulation layer is usually formed by a method including forming a resin composition layer for the encapsulation layer on the semiconductor chip and curing the resin composition layer to form the encapsulation layer.
  • the resin composition layer for the sealing layer may be formed from a thermosetting resin composition or from a photocurable resin composition.
  • the same resin composition layer as the resin composition layer for forming the solder resist layer described above may be employed.
  • This sealing layer may be formed, for example, by the same method of laminating and curing a resin sheet on a circuit board as described in the printed wiring board section.
  • the base material and temporary fixing film are peeled off from the semiconductor chip.
  • the peeling method it is desirable to employ an appropriate method according to the material of the temporary fixing film.
  • the peeling method include a method of heating, foaming, or expanding the temporary fixing film to peel it.
  • a peeling method for example, a method of irradiating the temporary fixing film with ultraviolet rays through the base material to reduce the adhesive strength of the temporary fixing film and peel it off can be used.
  • the heating conditions are usually 100° C. to 250° C. for 1 second to 90 seconds or 5 minutes to 15 minutes.
  • the irradiation dose of ultraviolet rays is usually 10 mJ/cm 2 to 1000 mJ/cm 2 .
  • the method of manufacturing the semiconductor chip package may include polishing the exposed surface of the encapsulation layer. Polishing can improve the smoothness of the surface of the sealing layer.
  • a rewiring formation layer is formed as an insulating layer on the surface of the semiconductor chip from which the base material and temporary fixing film have been removed. Usually, this rewiring formation layer is formed on the semiconductor chip and the encapsulation layer. Any insulating material can be used as the material of the rewiring formation layer.
  • the rewiring layer may be formed from a cured resin composition for the rewiring layer.
  • the rewiring layer may be formed, for example, by a method including forming a resin composition layer and curing the resin composition layer.
  • the resin composition layer for the rewiring forming layer may be formed from a thermosetting resin composition or from a photocurable resin composition.
  • the same resin composition layer as the resin composition layer for forming the solder resist layer described above may be employed.
  • This rewiring formation layer may be formed, for example, by the same method as lamination and curing of a resin sheet on a circuit board described in the printed wiring board section.
  • a via hole may be formed in the rewiring formation layer for interlayer connection between the semiconductor chip and the rewiring layer.
  • the shape of the via hole is not particularly limited, it is generally circular (substantially circular).
  • the top diameter of the via hole is, for example, 50 ⁇ m or less, 30 ⁇ m or less, 20 ⁇ m or less, or 10 ⁇ m or less.
  • the top diameter of the via hole means the diameter of the opening of the via hole on the surface of the rewiring layer.
  • a rewiring layer is formed as a conductor layer on the rewiring forming layer.
  • the rewiring layer can be formed from a conductive material such as metal.
  • the rewiring layer may be a single metal layer or an alloy layer.
  • the thickness of the rewiring layer is usually 3 ⁇ m to 35 ⁇ m, preferably 5 ⁇ m to 30 ⁇ m, depending on the desired semiconductor chip package design.
  • Examples of the method for forming the rewiring layer include plating.
  • a rewiring layer having a desired wiring pattern may be formed by plating using a semi-additive method, a full-additive method, or the like. A semi-additive method is preferable from the viewpoint of manufacturing simplicity.
  • the steps (v) and (vi) may be repeated to alternately build up the rewiring layers and the rewiring formation layers (build-up).
  • a solder resist layer is formed on the rewiring layer.
  • the solder resist layer is formed using the resin sheet described above.
  • a solder resist layer is formed by a method including laminating a resin sheet on the rewiring layer so that the rewiring layer and the resin composition layer are bonded together, and curing the resin composition layer.
  • Lamination of the resin sheet on the rewiring layer can be performed by the same method as lamination of the resin sheet on the circuit board described in the section on the printed wiring board.
  • the resin composition layer can be cured by the same method as the resin composition layer described in the printed wiring board section.
  • step (vii) may optionally include forming openings in the solder resist layer and desmearing the solder resist layer. Forming the openings and desmearing can be performed in the same manner as described in the printed wiring board section.
  • the method of manufacturing a semiconductor chip package may include a step (viii) of performing a bumping process for forming bumps, if necessary.
  • Bumping can be performed by a method such as solder balls or solder plating.
  • the method of manufacturing a semiconductor chip package may include a step (ix) of dicing a plurality of semiconductor chip packages into individual semiconductor chip packages and singulating them, if necessary.
  • a semiconductor device includes the printed wiring board or semiconductor chip package described above.
  • a semiconductor device can be manufactured using a printed wiring board or a semiconductor chip package.
  • Semiconductor devices include, for example, various semiconductor devices used in electrical appliances (e.g., computers, mobile phones, digital cameras, televisions, etc.) and vehicles (e.g., motorcycles, automobiles, trains, ships, aircraft, etc.). be done.
  • electrical appliances e.g., computers, mobile phones, digital cameras, televisions, etc.
  • vehicles e.g., motorcycles, automobiles, trains, ships, aircraft, etc.
  • reaction product was filtered through a 100-mesh filter cloth to obtain a polymer resin having a butadiene structure and phenolic hydroxyl groups (phenolic hydroxyl group-containing butadiene resin: 50% by mass of non-volatile components).
  • Polymer resin A had a number average molecular weight of 5,900 and a glass transition temperature of -7°C.
  • Epoxy resin mixture (mixture of bisphenol A type epoxy resin and bisphenol F type epoxy resin, "ZX-1059” manufactured by Nippon Steel Chemical & Materials Co., Ltd., epoxy equivalent 170 g / eq.) 3 parts, naphthalene type epoxy resin (manufactured by DIC “HP4032D”, epoxy equivalent weight 140 g/eq.) 3 parts, phenol-based curing agent (manufactured by DIC Corporation "LA-3018-50P", active group equivalent weight about 151 g/eq., non-volatile component 50% 2-methoxypropanol solution) 4 part, maleimide resin ("BMI-689” manufactured by Digigna Molecules) 3 parts, inorganic filler 2 (average particle size 0.3 ⁇ m, specific surface area 10.5 m 2 /g, silane coupling manufactured by Shin-Etsu Chemical Co., Ltd.) Silica particles surface-treated with agent "KBM-573”) 65 parts, polymer resin A (50%
  • a protective film having a rough surface (polypropylene film, "Alphan MA-430" manufactured by Oji F-Tex Co., Ltd., thickness 20 ⁇ m) is prepared, and the rough surface of the protective film is laminated to the resin composition layer to form a support / A resin sheet having a layer structure of resin composition layer/protective film was obtained.
  • Example 2 Instead of 3 parts of the epoxy resin mixture (“ZX-1059” manufactured by Nippon Steel Chemical & Materials Co., Ltd.), 3 parts of a naphthylene ether type epoxy resin (“HP6000L” manufactured by DIC Corporation, epoxy equivalent: 213 g/eq.) was used.
  • the resin varnish was added with an active ester resin ("HPC-8000L-65TM” manufactured by DIC Corporation, an active ester resin containing a dicyclopentadiene type diphenol structure, a 1:1 solution of toluene:MEK with a nonvolatile content of 65% by mass, a functional base equivalent of 281 g/eq.) 1.5 parts were added.
  • HPC-8000L-65TM an active ester resin containing a dicyclopentadiene type diphenol structure, a 1:1 solution of toluene:MEK with a nonvolatile content of 65% by mass, a functional base equivalent of 281 g/eq.
  • the amount of phenol-based curing agent (“LA-3018-50P” manufactured by DIC, non-volatile component 50%) was changed from 4 parts to 2 parts. Further, instead of 65 parts of inorganic filler 2, inorganic filler 3 (average particle size 1.0 ⁇ m, specific surface area 4.3 m 2 /g, Shin-Etsu Chemical Co., Ltd. silane coupling agent “KBM-573”) 90 parts of surface-treated silica particles) were used. Furthermore, the amount of polymer resin A (50% non-volatile content) was changed from 20 parts to 40 parts. A resin varnish and a resin sheet were produced in the same manner as in Example 1 except for the above matters.
  • Example 3 Instead of 3 parts of the epoxy resin mixture ("ZX-1059” manufactured by Nippon Steel Chemical & Materials Co., Ltd.), 3 parts of glycidylamine type epoxy resin (“JER630LSD” manufactured by Mitsubishi Chemical Corporation, epoxy equivalent 95 g/eq.) was used. Also, the amount of phenol-based curing agent (“LA-3018-50P” manufactured by DIC, non-volatile component 50%) was changed from 4 parts to 2 parts. Furthermore, 3 parts of a cresol novolac resin (manufactured by DIC, "KA-1163", phenolic hydroxyl group equivalent: 118 g/eq.) was added to the resin varnish.
  • a cresol novolac resin manufactured by DIC, "KA-1163", phenolic hydroxyl group equivalent: 118 g/eq.
  • the amount of maleimide resin (“BMI-689” manufactured by Designer Molecules) was changed from 3 parts to 6 parts. Furthermore, instead of 65 parts of inorganic filler 2, 50 parts of inorganic filler 1 (average particle size 0.1 ⁇ m, specific surface area 30.1 m 2 /g, silica particles surface-treated with hexamethyldisilazane (HMDS)) was used. A resin varnish and a resin sheet were produced in the same manner as in Example 1 except for the above matters.
  • BMI-689 manufactured by Designer Molecules
  • Example 4 Instead of 3 parts of epoxy resin mixture (“ZX-1059” manufactured by Nippon Steel Chemical & Materials Co., Ltd.) and 3 parts of naphthalene type epoxy resin (“HP4032D” manufactured by DIC Corporation), glycidylamine type epoxy resin (manufactured by Mitsubishi Chemical Corporation “JER630LSD , epoxy equivalent of 95 g/eq.) and 3 parts of a dicyclopentadiene type epoxy resin (“HP7200” manufactured by DIC, epoxy equivalent of 258 g/eq.) were used.
  • Example 5 Instead of 3 parts of the epoxy resin mixture ("ZX-1059” manufactured by Nippon Steel Chemical & Materials Co., Ltd.), 3 parts of glycidylamine type epoxy resin (“JER630LSD” manufactured by Mitsubishi Chemical Corporation, epoxy equivalent 95 g/eq.) was used. Also, the amount of phenol-based curing agent (“LA-3018-50P” manufactured by DIC, non-volatile component 50%) was changed from 4 parts to 2 parts. Furthermore, 3 parts of a cresol novolac resin (manufactured by DIC, "KA-1163", phenolic hydroxyl group equivalent: 118 g/eq.) was added to the resin varnish.
  • a cresol novolac resin manufactured by DIC, "KA-1163", phenolic hydroxyl group equivalent: 118 g/eq.
  • the amount of maleimide resin (“BMI-689” manufactured by Designer Molecules) was changed from 3 parts to 6 parts. Furthermore, instead of 65 parts of inorganic filler 2, 50 parts of inorganic filler 1 (average particle size 0.1 ⁇ m, specific surface area 30.1 m 2 /g, silica particles surface-treated with hexamethyldisilazane (HMDS)) was used. Further, instead of 20 parts of polymer resin A (50% non-volatile component), 10 parts of hydroxyl group-containing acrylic polymer (“ARUFON UH-2000" manufactured by Toagosei Co., Ltd., weight average molecular weight of 11,000) was used as an elastomer. Additionally, 5 parts of cyclohexanone were added to the resin varnish. A resin varnish and a resin sheet were produced in the same manner as in Example 1 except for the above matters.
  • HMDS hexamethyldisilazane
  • Example 6 Instead of 20 parts of polymer resin A (50% non-volatile component), 4 parts of core-shell type polymer particles (“EXL2655” manufactured by Dow Chemical Co.) were used as a particulate elastomer, and cyclohexanone was used as a resin varnish. A resin varnish and a resin sheet were produced in the same manner as in Example 1, except that 5 parts were added.
  • Example 7 In the same manner as in Example 1, except that 20 parts of polymer resin D (50% by mass of nonvolatile content) produced in Production Example 2 was used instead of 20 parts of polymer resin A (50% nonvolatile content). A resin varnish and a resin sheet were produced.
  • Example 8 Instead of 3 parts of the epoxy resin mixture ("ZX-1059” manufactured by Nippon Steel Chemical & Materials Co., Ltd.), 3 parts of glycidylamine type epoxy resin (“JER630LSD” manufactured by Mitsubishi Chemical Corporation, epoxy equivalent 95 g/eq.) was used. Also, the amount of phenol-based curing agent (“LA-3018-50P” manufactured by DIC, non-volatile component 50%) was changed from 4 parts to 2 parts. Furthermore, 3 parts of a cresol novolac resin (manufactured by DIC, "KA-1163", phenolic hydroxyl group equivalent: 118 g/eq.) was added to the resin varnish.
  • a cresol novolac resin manufactured by DIC, "KA-1163", phenolic hydroxyl group equivalent: 118 g/eq.
  • inorganic filler 2 instead of 65 parts of inorganic filler 2, 50 parts of inorganic filler 1 (average particle size 0.1 ⁇ m, specific surface area 30.1 m 2 /g, silica particles surface-treated with hexamethyldisilazane (HMDS)) was used. Further, 5 parts of a bismaleimide resin (Designer Molecules Co., "BMI-3000", molecular weight 3000) was used as an elastomer instead of 20 parts of polymer resin A (50% non-volatile component). Furthermore, 5 parts of cyclohexanone were added to the resin varnish. A resin varnish and a resin sheet were produced in the same manner as in Example 1 except for the above matters.
  • HMDS hexamethyldisilazane
  • the amount of phenol-based curing agent (“LA-3018-50P” manufactured by DIC, non-volatile component 50%) was changed from 4 parts to 2 parts. Further, instead of 65 parts of inorganic filler 2, inorganic filler 4 (average particle size 2.0 ⁇ m, specific surface area 2.5 m 2 /g, Shin-Etsu Chemical Co., Ltd. silane coupling agent “KBM-573” 100 parts of surface-treated silica particles) were used. A resin varnish and a resin sheet were produced in the same manner as in Example 1 except for the above matters.
  • the amount of phenol-based curing agent (“LA-3018-50P” manufactured by DIC, non-volatile component 50%) was changed from 4 parts to 2 parts. Further, instead of 65 parts of inorganic filler 2, inorganic filler 4 (average particle size 2.0 ⁇ m, specific surface area 2.5 m 2 /g, Shin-Etsu Chemical Co., Ltd. silane coupling agent “KBM-573” 100 parts of surface-treated silica particles) were used. Furthermore, the amount of polymer resin A (50% non-volatile content) was changed from 20 parts to 60 parts. A resin varnish and a resin sheet were produced in the same manner as in Example 1 except for the above matters.
  • the tack force of the resin composition layer was measured using a probe tack tester with a constant temperature bath (“TE-6002” manufactured by Tester Sangyo Co., Ltd.). Specifically, the protective film of the resin sheet placed in a constant temperature bath at 25° C. was peeled off, and a SUS 5 mm ⁇ cylindrical probe was brought into contact with the resin composition layer at a contact speed of 0.5 cm / sec, and 1000 gf / A load of cm 2 was held for 1 second. After that, the peel force when the probe was pulled apart at 0.5 cm/sec was measured and defined as probe tack (tack force). Each sample was measured three times, and an average value was obtained for each measurement.
  • TE-6002 manufactured by Tester Sangyo Co., Ltd.
  • melt viscosity of the resin composition contained in the resin composition layer of the resin sheet was measured using a dynamic viscoelasticity measuring device ("Rheosol-G3000" manufactured by UBM). This measurement was performed on a 1 g sample taken from the resin composition layer using a parallel plate with a diameter of 18 mm.
  • the measurement conditions were a starting temperature of 60° C. to 200° C., a temperature increase rate of 5° C./min, a measurement temperature interval of 2.5° C., and a vibration of 1 Hz/deg.
  • the lowest melt viscosity was obtained from the measured values of the obtained melt viscosities.
  • a minimum melt viscosity of 20,000 poise or less was evaluated as " ⁇ "
  • a minimum melt viscosity of more than 20,000 poise was evaluated as "x”.
  • a release PET film (“501010” manufactured by Lintec Co., Ltd., thickness 38 ⁇ m, 240 mm square ) was prepared. This release PET film is placed on a glass cloth-based epoxy resin double-sided copper-clad laminate (manufactured by Matsushita Electric Works, "R5715ES", thickness 0.7 mm, 255 mm square), and the untreated surface of the release PET film is a glass cloth. It was installed so as to be in contact with the base epoxy resin double-sided copper-clad laminate. The four sides of the release PET film were fixed to a double-sided copper-clad glass cloth-based epoxy resin laminate with a polyimide adhesive tape (width 10 mm).
  • the protective film was peeled off from each resin sheet (167 mm ⁇ 107 mm square) produced in Examples and Comparative Examples, and a batch-type vacuum pressure laminator (2-stage build-up laminator "CVP700" manufactured by Nikko Materials Co., Ltd.) was used. , was laminated in the center so that the resin composition layer was in contact with the release surface of the release PET film. Lamination was carried out by pressure bonding for 30 seconds at 100° C. and pressure of 0.74 MPa after reducing the pressure to 13 hPa or less for 30 seconds. Then, the support was peeled off, and the resin composition layer was thermally cured under curing conditions of 190° C. for 90 minutes.
  • the sheet-like cured product is hereinafter referred to as "evaluation cured product”.
  • the cured product for evaluation was cut into dumbbell-shaped No. 1 specimens to obtain test pieces.
  • the test piece was subjected to tensile strength measurement using a tensile tester (“RTC-1250A” manufactured by Orientec Co., Ltd.) to obtain the elastic modulus at 25°C. Measurement was performed in accordance with JIS K7127. This operation was performed three times, and the average value is shown in the table.
  • evaluation cured products with a thickness of 40 ⁇ m and 100 ⁇ m were produced and the spectral transmittance was measured by the same method as in each example except that the coating thickness of the resin varnish was changed. Values at measurement wavelengths of 550 nm and 900 nm were extracted from the spectral transmittance of the cured product for evaluation (40 ⁇ m thick) and the cured product for evaluation (100 ⁇ m thick).
  • the protective film was peeled off from the resin sheets obtained in the above-described Examples and Comparative Examples, and a batch-type vacuum pressure laminator (2-stage build-up laminator "CVP700” manufactured by Nikko Materials Co., Ltd.) was used to remove the resin composition layer. It was arranged and laminated so as to be in contact with a glass cloth-based epoxy resin double-sided copper-clad laminate ("R5715ES” manufactured by Matsushita Electric Works, thickness 0.7 mm, 255 mm square). This lamination was carried out by pressure bonding for 30 seconds at a temperature of 100° C. and a pressure of 0.74 MPa after reducing the pressure to 13 hPa or less for 30 seconds. Then, the laminated resin sheet was hot-pressed for 60 seconds at 100° C. under atmospheric pressure and a pressure of 0.5 MPa for smoothing. After that, the support was peeled off.
  • a batch-type vacuum pressure laminator (2-stage build-up laminator "CVP700” manufactured by Nikk
  • a polyimide film (thickness 12.5 ⁇ m, "Kapton 100EN” manufactured by DuPont Toray) was prepared. After drying this polyimide film at 130° C. for 30 minutes, it was laminated on the resin composition layer. This lamination was performed under the same conditions as the lamination described above. As a result, an "intermediate multilayer body II" including the polyimide film, the resin composition layer, and the glass cloth-based epoxy resin double-sided copper-clad laminate in this order was obtained.
  • the intermediate multilayer body II was placed in an oven at 180°C and additionally heated for 90 minutes. As a result, the resin composition layer is thermally cured, and the polyimide film, the solder resist layer as a cured product of the resin composition layer, and the glass cloth-based epoxy resin double-sided copper-clad laminate are included in this order. An evaluation substrate A” was obtained.
  • the adhesion (peel strength) between the polyimide film and the solder resist layer was measured.
  • the peel strength was measured according to JIS C6481. Specifically, the peel strength was measured by the following operation.
  • the polyimide film of the evaluation substrate A was cut to surround a rectangular portion having a width of 10 mm and a length of 100 mm. One end of this rectangular portion was peeled off and gripped with a gripper (Autocom type testing machine "AC-50C-SL" manufactured by TSE Co., Ltd.). A range of 35 mm in length of the rectangular portion was peeled off in the vertical direction, and the load (kgf/cm) at the time of this peeling was measured as the peel strength.
  • the peeling was performed at room temperature (25° C.) at a speed of 50 mm/min.
  • the protective film was peeled off from the resin sheets prepared in Examples and Comparative Examples, and then the resin composition layer was coated with a batch-type vacuum pressure laminator (2-stage build-up laminator "CVP700" manufactured by Nikko Materials Co., Ltd.). , and laminated on a 12-inch silicon wafer (thickness: 775 ⁇ m) to form a resin composition layer with a thickness of 50 ⁇ m. After that, the resin composition layer was thermally cured by heating at 170° C. for 240 minutes. Further, the support was peeled off to obtain a sample substrate including a silicon wafer and a cured product layer of the resin composition.
  • a batch-type vacuum pressure laminator (2-stage build-up laminator "CVP700” manufactured by Nikko Materials Co., Ltd.
  • the amount of warpage of the sample substrate at 25° C. was measured.
  • the measurement was performed in accordance with JEITA EDX-7311-24 of the Japan Electronics and Information Technology Industries Association standard. Specifically, a virtual plane calculated by the method of least squares of all data of the substrate surface in the measurement area was used as a reference plane, and the difference between the minimum value and the maximum value in the direction perpendicular to the reference plane was obtained as the amount of warpage.
  • T 900 light transmittance at a thickness of 50 ⁇ m and a measurement wavelength of 900 nm for a cured resin composition.
  • T 550 Light transmittance at a thickness of 50 ⁇ m and a measurement wavelength of 550 nm of a cured product of the resin composition.
  • T 700 Light transmittance at a thickness of 50 ⁇ m and a measurement wavelength of 700 nm for a cured product of the resin composition.
  • T 800 Light transmittance at a thickness of 50 ⁇ m and a measurement wavelength of 800 nm of a cured product of the resin composition.
  • T (40 ⁇ m/900 nm) Light transmittance at a thickness of 40 ⁇ m and a measurement wavelength of 900 nm for a cured product of the resin composition.
  • T (100 ⁇ m/900 nm) light transmittance at a measurement wavelength of 900 nm at a thickness of 100 ⁇ m of a cured resin composition.
  • T (40 ⁇ m/550 nm) Light transmittance at a thickness of 40 ⁇ m and a measurement wavelength of 550 nm for a cured resin composition.
  • T (100 ⁇ m/550 nm) Light transmittance at a measurement wavelength of 550 nm at a thickness of 100 ⁇ m of a cured resin composition.
  • REFERENCE SIGNS LIST 100 semiconductor chip package 110 semiconductor chip 120 sealing layer 130 rewiring forming layer 140 rewiring layer 150 solder resist layer 160 bump

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Epoxy Resins (AREA)

Abstract

This resin sheet for forming a solder resist layer comprises a resin composition layer including a resin composition, wherein the resin composition includes (A) a thermosetting resin and (B) an inorganic filler, the specific surface area of the (B) inorganic filler is 3.0 m2/g or more, and the thickness of the resin composition layer is 20-100 μm.

Description

樹脂シート、プリント配線板、半導体チップパッケージ及び半導体装置Resin sheets, printed wiring boards, semiconductor chip packages and semiconductor devices
 本発明は、ソルダーレジスト層形成用の樹脂シート、並びに、その樹脂シートを用いたプリント配線板、半導体チップパッケージ及び半導体装置に関する。 The present invention relates to a resin sheet for forming a solder resist layer, and a printed wiring board, semiconductor chip package and semiconductor device using the resin sheet.
 プリント配線板及び半導体チップパッケージの最外層には、保護膜としてソルダーレジスト層が設けられることがある。従来、ソルダーレジスト層は、光硬化性樹脂組成物の層を設け、その層を露光して硬化することによって形成されることが一般的であった。また、近年では、ソルダーレジスト層を、熱硬化性樹脂組成物によって形成することも提案されている(特許文献1)。 A solder resist layer is sometimes provided as a protective film on the outermost layer of printed wiring boards and semiconductor chip packages. Conventionally, solder resist layers have generally been formed by providing a layer of a photocurable resin composition, exposing and curing the layer. In recent years, it has also been proposed to form the solder resist layer with a thermosetting resin composition (Patent Document 1).
特開2016-65226号公報JP 2016-65226 A
 近年、半導体チップパッケージの大型化に伴い、ソルダーレジスト層の厚みを大きくすることが求められることがある。しかし、厚いソルダーレジスト層は、感光性樹脂組成物では形成が困難であった。そこで、本発明者は、熱硬化性樹脂組成物を用いてソルダーレジスト層を形成することを検討した。 In recent years, with the increasing size of semiconductor chip packages, it is sometimes required to increase the thickness of the solder resist layer. However, it was difficult to form a thick solder resist layer with a photosensitive resin composition. Therefore, the present inventors have investigated forming a solder resist layer using a thermosetting resin composition.
 しかし、従来の熱硬化性樹脂組成物で製造された厚いソルダーレジスト層は、光透過性が低い傾向があった。このようにソルダーレジスト層の光透過性が低いと、ソルダーレジスト層に開口部を形成したり、ソルダーレジスト層上に電子部品を実装したりする場合に、位置調整が難しくなることがありうる。 However, thick solder resist layers manufactured with conventional thermosetting resin compositions tended to have low light transmittance. If the light transmittance of the solder-resist layer is low in this way, it may become difficult to adjust the positions when forming openings in the solder-resist layer or mounting electronic components on the solder-resist layer.
 例えば、基板上にソルダーレジスト層を形成し、そのソルダーレジスト層に、前記基板に設けられた端子部分に連通する開口部を形成する場合を考える。この場合、ソルダーレジスト層を透過する光を利用して、その光を検知できるセンサによって端子の位置を検出し、開口部を形成すべき位置を調整することがありうる。しかし、ソルダーレジスト層の光透過性が低いと、センサが検知すべき光の強度が弱くなり、端子の位置を正確に検出することが難しくなりうる。そのため、光透過性が低い従来の熱硬化性樹脂組成物を用いると、位置調整が難しくなることがあった。 For example, consider a case where a solder-resist layer is formed on a substrate, and openings communicating with terminal portions provided on the substrate are formed in the solder-resist layer. In this case, light transmitted through the solder resist layer may be used to detect the positions of the terminals with a sensor capable of detecting the light, and the positions where the openings should be formed may be adjusted. However, when the light transmittance of the solder resist layer is low, the intensity of the light to be detected by the sensor becomes weak, which may make it difficult to accurately detect the positions of the terminals. Therefore, when a conventional thermosetting resin composition with low light transmittance is used, position adjustment may become difficult.
 本発明は、前記の課題に鑑みて創案されたものであって、厚く且つ光線透過率の高いソルダーレジスト層を形成できる樹脂シート;並びに、その樹脂シートを用いて形成されるソルダーレジスト層を備えるプリント配線板、半導体チップパッケージ及び半導体装置;を提供することを目的とする。 The present invention has been invented in view of the above problems, and includes a resin sheet capable of forming a thick solder-resist layer with high light transmittance; and a solder-resist layer formed using the resin sheet. An object of the present invention is to provide a printed wiring board, a semiconductor chip package, and a semiconductor device.
 本発明者は、前記の課題を解決するべく鋭意検討した。その結果、本発明者は、(A)熱硬化性樹脂と、特定の範囲の比表面積を有する(B)無機充填材とを組み合わせて含む樹脂組成物を含む樹脂組成物層を備えた樹脂シートによれば、厚くても高い光線透過率を有するソルダーレジスト層を形成できることを見い出し、本発明を完成させた。
 すなわち、本発明は、下記のものを含む。
The inventors have made extensive studies to solve the above problems. As a result, the present inventors have found that a resin sheet having a resin composition layer containing a resin composition containing a combination of (A) a thermosetting resin and (B) an inorganic filler having a specific surface area within a specific range found that it is possible to form a solder resist layer having a high light transmittance even if it is thick, and completed the present invention.
That is, the present invention includes the following.
 〔1〕 樹脂組成物を含む樹脂組成物層を備える、ソルダーレジスト層形成用の樹脂シートであって、
 樹脂組成物が、(A)熱硬化性樹脂と、(B)無機充填材と、を含み、
 (B)無機充填材の比表面積が、3.0m/g以上であり、
 樹脂組成物層の厚みが、20μm以上、100μm以下である、樹脂シート。
 〔2〕 (B)無機充填材の平均粒径が、1.5μm以下である、〔1〕に記載の樹脂シート。
 〔3〕 樹脂組成物の不揮発成分100質量%に対して、(B)無機充填材の量が、40質量%以上95質量%以下である、〔1〕又は〔2〕に記載の樹脂シート。
 〔4〕 樹脂組成物層の厚みが、35μm以上、80μm以下である、〔1〕~〔3〕のいずれか一項に記載の樹脂シート。
 〔5〕 (A)熱硬化性樹脂が、(A-1)エポキシ樹脂を含む、〔1〕~〔4〕のいずれか一項に記載の樹脂シート。
 〔6〕 (A-1)エポキシ樹脂が、ナフタレン環を含有するエポキシ樹脂を含む、〔5〕に記載の樹脂シート。
 〔7〕 (A)熱硬化性樹脂が、(A-2)フェノール樹脂を含む、〔1〕~〔6〕のいずれか一項に記載の樹脂シート。
 〔8〕 (A)熱硬化性樹脂が、(A-3)活性エステル樹脂を含む、〔1〕~〔7〕のいずれか一項に記載の樹脂シート。
 〔9〕 (A)熱硬化性樹脂が、(A-4)マレイミド樹脂を含む、〔1〕~〔8〕のいずれか一項に記載の樹脂シート。
 〔10〕 樹脂組成物が、更に(C)エラストマーを含む、〔1〕~〔9〕のいずれか一項に記載の樹脂シート。
 〔11〕 樹脂組成物が、更に(D)有機着色剤を含む、〔1〕~〔10〕のいずれか一項に記載の樹脂シート。
 〔12〕 前記樹脂組成物の硬化物の、厚み50μm、測定波長900nmにおける光線透過率が、70%以上である、〔1〕~〔11〕のいずれか一項に記載の樹脂シート。
 〔13〕 〔1〕~〔12〕のいずれか1項に記載の樹脂シートの樹脂組成物層の硬化物により形成されたソルダーレジスト層を備える、プリント配線板。
 〔14〕 〔1〕~〔12〕のいずれか1項に記載の樹脂シートの樹脂組成物層の硬化物により形成されたソルダーレジスト層を備える、半導体チップパッケージ。
 〔15〕 〔13〕に記載のプリント配線板又は〔14〕に記載の半導体チップパッケージを備える、半導体装置。
[1] A resin sheet for forming a solder resist layer, comprising a resin composition layer containing a resin composition,
The resin composition contains (A) a thermosetting resin and (B) an inorganic filler,
(B) the inorganic filler has a specific surface area of 3.0 m 2 /g or more;
A resin sheet, wherein the resin composition layer has a thickness of 20 μm or more and 100 μm or less.
[2] The resin sheet of [1], wherein (B) the inorganic filler has an average particle size of 1.5 μm or less.
[3] The resin sheet according to [1] or [2], wherein the amount of the inorganic filler (B) is 40% by mass or more and 95% by mass or less with respect to 100% by mass of the non-volatile components of the resin composition.
[4] The resin sheet according to any one of [1] to [3], wherein the resin composition layer has a thickness of 35 μm or more and 80 μm or less.
[5] The resin sheet according to any one of [1] to [4], wherein (A) the thermosetting resin contains (A-1) an epoxy resin.
[6] (A-1) The resin sheet of [5], wherein the epoxy resin contains a naphthalene ring-containing epoxy resin.
[7] The resin sheet according to any one of [1] to [6], wherein (A) the thermosetting resin contains (A-2) a phenolic resin.
[8] The resin sheet according to any one of [1] to [7], wherein (A) the thermosetting resin contains (A-3) an active ester resin.
[9] The resin sheet according to any one of [1] to [8], wherein (A) the thermosetting resin contains (A-4) a maleimide resin.
[10] The resin sheet according to any one of [1] to [9], wherein the resin composition further contains (C) an elastomer.
[11] The resin sheet according to any one of [1] to [10], wherein the resin composition further contains (D) an organic colorant.
[12] The resin sheet according to any one of [1] to [11], wherein the cured product of the resin composition has a thickness of 50 μm and a light transmittance of 70% or more at a measurement wavelength of 900 nm.
[13] A printed wiring board comprising a solder resist layer formed from a cured product of the resin composition layer of the resin sheet according to any one of [1] to [12].
[14] A semiconductor chip package comprising a solder resist layer formed from a cured product of the resin composition layer of the resin sheet according to any one of [1] to [12].
[15] A semiconductor device comprising the printed wiring board of [13] or the semiconductor chip package of [14].
 本発明によれば、厚く且つ光線透過率の高いソルダーレジスト層を形成できる樹脂シート;並びに、その樹脂シートを用いて形成されるソルダーレジスト層を備えるプリント配線板、半導体チップパッケージ及び半導体装置;を提供できる。 According to the present invention, a resin sheet capable of forming a thick solder resist layer with high light transmittance; and a printed wiring board, a semiconductor chip package, and a semiconductor device provided with a solder resist layer formed using the resin sheet. can provide.
図1は、本発明の一実施形態に係る半導体チップパッケージを模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing a semiconductor chip package according to one embodiment of the present invention.
 以下、本発明について実施形態及び例示物を示して説明する。ただし、本発明は、下記に示す実施形態及び例示物に限定されるものではなく、請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施されうる。 Hereinafter, the present invention will be described with reference to embodiments and examples. However, the present invention is not limited to the embodiments and examples shown below, and can be arbitrarily modified without departing from the scope of the claims and their equivalents.
[1.樹脂シートの概要]
 本発明の一実施形態に係る樹脂シートは、ソルダーレジスト層形成用の樹脂シートであって、樹脂組成物層を備える。樹脂組成物層は、樹脂組成物を含み、好ましくは樹脂組成物のみを含む。また、樹脂組成物層は、特定の範囲の厚みを有する。さらに、樹脂組成物は、(A)熱硬化性樹脂と、特定の比表面積を有する(B)無機充填材と、を組み合わせて含む。この樹脂シートによれば、厚く且つ光線透過率の高いソルダーレジスト層を形成できる。
[1. Overview of resin sheet]
A resin sheet according to one embodiment of the present invention is a resin sheet for forming a solder resist layer, and includes a resin composition layer. The resin composition layer contains the resin composition, and preferably contains only the resin composition. Moreover, the resin composition layer has a thickness within a specific range. Furthermore, the resin composition includes (A) a thermosetting resin in combination with (B) an inorganic filler having a specific specific surface area. With this resin sheet, a thick solder resist layer with high light transmittance can be formed.
[2.樹脂組成物層の厚み]
 樹脂シートが備える樹脂組成物層の厚みは、通常20μm以上、好ましくは30μm以上、より好ましくは35μm以上であり、好ましくは100μm以下、より好ましくは90μm以下、特に好ましくは80μm以下である。本実施形態に係る樹脂シートの樹脂組成物層は、前記のように厚いので、その樹脂組成物層の硬化物によって厚いソルダーレジスト層を形成できる。そして、形成される厚いソルダーレジスト層は、高い光線透過率を有することができる。
[2. Thickness of resin composition layer]
The thickness of the resin composition layer included in the resin sheet is usually 20 µm or more, preferably 30 µm or more, more preferably 35 µm or more, and preferably 100 µm or less, more preferably 90 µm or less, and particularly preferably 80 µm or less. Since the resin composition layer of the resin sheet according to the present embodiment is thick as described above, a thick solder resist layer can be formed from the cured product of the resin composition layer. And the formed thick solder resist layer can have a high light transmittance.
 また、一般に、厚いソルダーレジスト層は、当該ソルダーレジスト層を備えるプリント配線板及び半導体チップパッケージに反りを生じさせ易い。本実施形態に係る樹脂シートによれば、好ましくは、厚くても反りを抑制できるソルダーレジスト層を形成することができる。従来広く使用されていた光硬化性樹脂組成物は、熱硬化性樹脂組成物よりも硬化収縮が大きく、よって当該光硬化性樹脂組成物からなる従来のソルダーレジスト層は、大きな反りを生じ易い傾向があった。本実施形態に係る樹脂シートを用いて製造されるソルダーレジスト層は、前記のように大きな反りを生じ易かった従来のソルダーレジスト層と対比して、厚くしながらも反りを抑制できる点で、大きな利点がある。 In general, a thick solder resist layer tends to warp printed wiring boards and semiconductor chip packages including the solder resist layer. According to the resin sheet according to the present embodiment, it is possible to preferably form a solder-resist layer that can suppress warpage even if it is thick. Photocurable resin compositions that have been widely used in the past have greater curing shrinkage than thermosetting resin compositions, so conventional solder resist layers made of the photocurable resin composition tend to be prone to large warping. was there. The solder-resist layer manufactured using the resin sheet according to the present embodiment can suppress warping while being thick, as compared with the conventional solder-resist layer that tends to cause large warping as described above. There are advantages.
[3.(A)熱硬化性樹脂]
 樹脂組成物は、(A)成分としての(A)熱硬化性樹脂を含む。(A)熱硬化性樹脂としては、熱を加えられた場合に硬化可能な樹脂を用いることができる。(A)熱硬化性樹脂は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
[3. (A) Thermosetting resin]
The resin composition contains (A) a thermosetting resin as the (A) component. (A) As the thermosetting resin, a resin that can be cured when heat is applied can be used. (A) The thermosetting resin may be used alone or in combination of two or more.
 [3.1.(A-1)エポキシ樹脂]
 (A)熱硬化性樹脂は、(A-1)成分としての(A-1)エポキシ樹脂を含むことが好ましい。(A-1)エポキシ樹脂は、エポキシ基を有する硬化性樹脂である。(A-1)エポキシ樹脂の例としては、ビキシレノール型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリスフェノール型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、tert-ブチル-カテコール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフトール型エポキシ樹脂、アントラセン型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ビフェニル型エポキシ樹脂、線状脂肪族エポキシ樹脂、ブタジエン構造を有するエポキシ樹脂、脂環式エポキシ樹脂、複素環式エポキシ樹脂、スピロ環含有エポキシ樹脂、シクロヘキサン型エポキシ樹脂、シクロヘキサンジメタノール型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、トリメチロール型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、イソシアヌラート型エポキシ樹脂、フェノールフタルイミジン型エポキシ樹脂等が挙げられる。(A-1)エポキシ樹脂は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
[3.1. (A-1) Epoxy resin]
(A) Thermosetting resin preferably contains (A-1) epoxy resin as component (A-1). (A-1) Epoxy resin is a curable resin having an epoxy group. (A-1) Examples of epoxy resins include bixylenol type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol AF type epoxy resin, dicyclopentadiene type epoxy resin, tris Phenol type epoxy resin, naphthol novolak type epoxy resin, phenol novolak type epoxy resin, tert-butyl-catechol type epoxy resin, naphthalene type epoxy resin, naphthol type epoxy resin, anthracene type epoxy resin, glycidylamine type epoxy resin, glycidyl ester type Epoxy resins, cresol novolak type epoxy resins, phenol aralkyl type epoxy resins, biphenyl type epoxy resins, linear aliphatic epoxy resins, epoxy resins having a butadiene structure, alicyclic epoxy resins, heterocyclic epoxy resins, spirocyclic epoxy resins resin, cyclohexane-type epoxy resin, cyclohexanedimethanol-type epoxy resin, naphthylene ether-type epoxy resin, trimethylol-type epoxy resin, tetraphenylethane-type epoxy resin, isocyanurate-type epoxy resin, phenolphthalimidine-type epoxy resin, etc. mentioned. (A-1) Epoxy resins may be used singly or in combination of two or more.
 (A-1)エポキシ樹脂は、耐熱性に優れる硬化物を得る観点から、芳香族構造を含有するエポキシ樹脂を含むことが好ましい。芳香族構造とは、一般に芳香族と定義される化学構造であり、多環芳香族及び芳香族複素環をも含む。芳香族構造を含有するエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリスフェノール型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、tert-ブチル-カテコール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフトール型エポキシ樹脂、アントラセン型エポキシ樹脂、ビシキレノール型エポキシ樹脂、芳香族構造を有するグリシジルアミン型エポキシ樹脂、芳香族構造を有するグリシジルエステル型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、芳香族構造を有する線状脂肪族エポキシ樹脂、芳香族構造を有するブタジエン構造を有するエポキシ樹脂、芳香族構造を有する脂環式エポキシ樹脂、複素環式エポキシ樹脂、芳香族構造を有するスピロ環含有エポキシ樹脂、芳香族構造を有するシクロヘキサンジメタノール型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、芳香族構造を有するトリメチロール型エポキシ樹脂、芳香族構造を有するテトラフェニルエタン型エポキシ樹脂等が挙げられる。 (A-1) Epoxy resin preferably contains an epoxy resin containing an aromatic structure from the viewpoint of obtaining a cured product with excellent heat resistance. Aromatic structures are chemical structures generally defined as aromatic and also include polycyclic aromatic and heteroaromatic rings. Examples of epoxy resins containing an aromatic structure include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol AF type epoxy resin, dicyclopentadiene type epoxy resin, trisphenol type epoxy resin, Naphthol novolak type epoxy resin, phenol novolak type epoxy resin, tert-butyl-catechol type epoxy resin, naphthalene type epoxy resin, naphthol type epoxy resin, anthracene type epoxy resin, bixylenol type epoxy resin, glycidylamine type epoxy having an aromatic structure Resin, glycidyl ester type epoxy resin having aromatic structure, cresol novolak type epoxy resin, biphenyl type epoxy resin, linear aliphatic epoxy resin having aromatic structure, epoxy resin having butadiene structure having aromatic structure, aromatic Structured alicyclic epoxy resin, heterocyclic epoxy resin, spiro ring-containing epoxy resin having aromatic structure, cyclohexane dimethanol type epoxy resin having aromatic structure, naphthylene ether type epoxy resin, having aromatic structure A trimethylol type epoxy resin, a tetraphenylethane type epoxy resin having an aromatic structure, and the like are included.
 芳香環構造を含有するエポキシ樹脂の中でも、ナフタレン環を含有するエポキシ樹脂が好ましい。ナフタレン環を含有するエポキシ樹脂を用いることにより、他の樹脂との相溶性が良く、さらに低反りとなることができる。 Among epoxy resins containing an aromatic ring structure, epoxy resins containing a naphthalene ring are preferred. By using an epoxy resin containing a naphthalene ring, compatibility with other resins is good, and warpage can be reduced.
 (A-1)エポキシ樹脂は、耐熱性及び密着性に優れる硬化物を得る観点から、窒素原子を含むエポキシ樹脂を含むことが好ましい。窒素原子を含むエポキシ樹脂としては、例えば、グリシジルアミン型エポキシ樹脂などが挙げられる。 (A-1) Epoxy resin preferably contains an epoxy resin containing a nitrogen atom from the viewpoint of obtaining a cured product with excellent heat resistance and adhesion. Examples of epoxy resins containing nitrogen atoms include glycidylamine type epoxy resins.
 (A-1)エポキシ樹脂は、1分子中に2個以上のエポキシ基を有するエポキシ樹脂を含むことが好ましい。(A-1)エポキシ樹脂の不揮発成分100質量%に対して、1分子中に2個以上のエポキシ基を有するエポキシ樹脂の割合は、好ましくは50質量%以上、より好ましくは60質量%以上、特に好ましくは70質量%以上である。 (A-1) The epoxy resin preferably contains an epoxy resin having two or more epoxy groups in one molecule. (A-1) The ratio of the epoxy resin having two or more epoxy groups in one molecule to 100% by mass of the non-volatile components of the epoxy resin is preferably 50% by mass or more, more preferably 60% by mass or more, Particularly preferably, it is 70% by mass or more.
 エポキシ樹脂には、温度20℃で液状のエポキシ樹脂(以下「液状エポキシ樹脂」ということがある。)と、温度20℃で固体状のエポキシ樹脂(以下「固体状エポキシ樹脂」ということがある。)とがある。樹脂組成物に含まれる(A-1)エポキシ樹脂は、液状エポキシ樹脂のみでもよく、固体状エポキシ樹脂のみでもよく、液状エポキシ樹脂と固体状エポキシ樹脂との組み合わせでもよい。 Epoxy resins include liquid epoxy resins at a temperature of 20° C. (hereinafter sometimes referred to as “liquid epoxy resins”) and solid epoxy resins at a temperature of 20° C. (hereinafter sometimes referred to as “solid epoxy resins”). ). The (A-1) epoxy resin contained in the resin composition may be a liquid epoxy resin alone, a solid epoxy resin alone, or a combination of a liquid epoxy resin and a solid epoxy resin.
 液状エポキシ樹脂としては、1分子中に2個以上のエポキシ基を有する液状エポキシ樹脂が好ましい。 A liquid epoxy resin having two or more epoxy groups in one molecule is preferable as the liquid epoxy resin.
 液状エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、ナフタレン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、エステル骨格を有する脂環式エポキシ樹脂、シクロヘキサン型エポキシ樹脂、シクロヘキサンジメタノール型エポキシ樹脂、及びブタジエン構造を有するエポキシ樹脂が好ましい。 Examples of liquid epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AF type epoxy resin, naphthalene type epoxy resin, glycidyl ester type epoxy resin, glycidyl amine type epoxy resin, phenol novolak type epoxy resin, ester skeleton. An alicyclic epoxy resin, a cyclohexane type epoxy resin, a cyclohexanedimethanol type epoxy resin, and an epoxy resin having a butadiene structure are preferred.
 液状エポキシ樹脂の具体例としては、DIC社製の「HP4032」、「HP4032D」、「HP4032SS」(ナフタレン型エポキシ樹脂);三菱ケミカル社製の「828US」、「828EL」、「jER828EL」、「825」、「エピコート828EL」(ビスフェノールA型エポキシ樹脂);三菱ケミカル社製の「jER807」、「1750」(ビスフェノールF型エポキシ樹脂);三菱ケミカル社製の「jER152」(フェノールノボラック型エポキシ樹脂);三菱ケミカル社製の「630」、「630LSD」、「604」(グリシジルアミン型エポキシ樹脂);ADEKA社製の「ED-523T」(グリシロール型エポキシ樹脂);ADEKA社製の「EP-3950L」、「EP-3980S」(グリシジルアミン型エポキシ樹脂);ADEKA社製の「EP-4088S」(ジシクロペンタジエン型エポキシ樹脂);日鉄ケミカル&マテリアル化学社製の「ZX-1059」(ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂の混合品);ナガセケムテックス社製の「EX-721」(グリシジルエステル型エポキシ樹脂);ダイセル社製の「セロキサイド2021P」(エステル骨格を有する脂環式エポキシ樹脂);ダイセル社製の「PB-3600」、日本曹達社製の「JP-100」、「JP-200」(ブタジエン構造を有するエポキシ樹脂);日鉄ケミカル&マテリアル製の「ZX1658」、「ZX1658GS」(液状1,4-グリシジルシクロヘキサン型エポキシ樹脂)等が挙げられる。これらは、1種類単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 Specific examples of liquid epoxy resins include "HP4032", "HP4032D", and "HP4032SS" (naphthalene type epoxy resins) manufactured by DIC; "828US", "828EL", "jER828EL", and "825" manufactured by Mitsubishi Chemical Corporation; ", "Epikote 828EL" (bisphenol A type epoxy resin); "jER807" and "1750" (bisphenol F type epoxy resin) manufactured by Mitsubishi Chemical Corporation; "jER152" (phenol novolac type epoxy resin) manufactured by Mitsubishi Chemical Corporation; "630", "630LSD", "604" (glycidylamine type epoxy resin) manufactured by Mitsubishi Chemical Corporation; "ED-523T" (glycirrol type epoxy resin) manufactured by ADEKA; "EP-3950L" manufactured by ADEKA; "EP-3980S" (glycidylamine type epoxy resin); "EP-4088S" (dicyclopentadiene type epoxy resin) manufactured by ADEKA; "ZX-1059" manufactured by Nippon Steel Chemical & Material Chemicals (bisphenol A type epoxy resin and bisphenol F type epoxy resin); "EX-721" (glycidyl ester type epoxy resin) manufactured by Nagase ChemteX; "Celoxide 2021P" manufactured by Daicel (alicyclic epoxy resin having an ester skeleton) "PB-3600" manufactured by Daicel Corporation, "JP-100" and "JP-200" manufactured by Nippon Soda Co., Ltd. (epoxy resin having a butadiene structure); "ZX1658" and "ZX1658GS" manufactured by Nippon Steel Chemical & Materials (liquid 1,4-glycidylcyclohexane type epoxy resin). These may be used individually by 1 type, and may be used in combination of 2 or more types.
 固体状エポキシ樹脂としては、1分子中に3個以上のエポキシ基を有する固体状エポキシ樹脂が好ましく、1分子中に3個以上のエポキシ基を有する芳香族系の固体状エポキシ樹脂がより好ましい。 The solid epoxy resin is preferably a solid epoxy resin having 3 or more epoxy groups per molecule, more preferably an aromatic solid epoxy resin having 3 or more epoxy groups per molecule.
 固体状エポキシ樹脂としては、ビキシレノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフタレン型4官能エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリスフェノール型エポキシ樹脂、ナフトール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、アントラセン型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、フェノールフタルイミジン型エポキシ樹脂が好ましい。 Solid epoxy resins include bixylenol type epoxy resin, naphthalene type epoxy resin, naphthalene type tetrafunctional epoxy resin, naphthol novolak type epoxy resin, cresol novolak type epoxy resin, dicyclopentadiene type epoxy resin, trisphenol type epoxy resin, Naphthol type epoxy resin, biphenyl type epoxy resin, naphthylene ether type epoxy resin, anthracene type epoxy resin, bisphenol A type epoxy resin, bisphenol AF type epoxy resin, phenol aralkyl type epoxy resin, tetraphenylethane type epoxy resin, phenol phthalate A mijin-type epoxy resin is preferred.
 固体状エポキシ樹脂の具体例としては、DIC社製の「HP4032H」(ナフタレン型エポキシ樹脂);DIC社製の「HP-4700」、「HP-4710」(ナフタレン型4官能エポキシ樹脂);DIC社製の「N-690」(クレゾールノボラック型エポキシ樹脂);DIC社製の「N-695」(クレゾールノボラック型エポキシ樹脂);DIC社製の「HP-7200」、「HP-7200HH」、「HP-7200H」、「HP-7200L」(ジシクロペンタジエン型エポキシ樹脂);DIC社製の「EXA-7311」、「EXA-7311-G3」、「EXA-7311-G4」、「EXA-7311-G4S」、「HP6000」、「HP6000L」(ナフチレンエーテル型エポキシ樹脂);日本化薬社製の「EPPN-502H」(トリスフェノール型エポキシ樹脂);日本化薬社製の「NC7000L」(ナフトールノボラック型エポキシ樹脂);日本化薬社製の「NC3000H」、「NC3000」、「NC3000L」、「NC3000FH」、「NC3100」(ビフェニル型エポキシ樹脂);日鉄ケミカル&マテリアル社製の「ESN475V」、「ESN4100V」(ナフタレン型エポキシ樹脂);日鉄ケミカル&マテリアル社製の「ESN485」(ナフトール型エポキシ樹脂);日鉄ケミカル&マテリアル社製の「ESN375」(ジヒドロキシナフタレン型エポキシ樹脂);三菱ケミカル社製の「YX4000H」、「YX4000」、「YX4000HK」、「YL7890」(ビキシレノール型エポキシ樹脂);三菱ケミカル社製の「YL6121」(ビフェニル型エポキシ樹脂);三菱ケミカル社製の「YX8800」(アントラセン型エポキシ樹脂);三菱ケミカル社製の「YX7700」(フェノールアラルキル型エポキシ樹脂);大阪ガスケミカル社製の「PG-100」、「CG-500」;三菱ケミカル社製の「YL7760」(ビスフェノールAF型エポキシ樹脂);三菱ケミカル社製の「YL7800」(フルオレン型エポキシ樹脂);三菱ケミカル社製の「jER1010」(ビスフェノールA型エポキシ樹脂);三菱ケミカル社製の「jER1031S」(テトラフェニルエタン型エポキシ樹脂);日本化薬社製の「WHR991S」(フェノールフタルイミジン型エポキシ樹脂)等が挙げられる。これらは、1種類単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 Specific examples of solid epoxy resins include "HP4032H" (naphthalene-type epoxy resin) manufactured by DIC; "HP-4700" and "HP-4710" (naphthalene-type tetrafunctional epoxy resin) manufactured by DIC; "N-690" (cresol novolac type epoxy resin) manufactured by DIC Corporation; "N-695" (cresol novolak type epoxy resin) manufactured by DIC Corporation; "HP-7200", "HP-7200HH", "HP -7200H", "HP-7200L" (dicyclopentadiene type epoxy resin); DIC's "EXA-7311", "EXA-7311-G3", "EXA-7311-G4", "EXA-7311-G4S" ”, “HP6000”, “HP6000L” (naphthylene ether type epoxy resin); Nippon Kayaku Co., Ltd. “EPPN-502H” (trisphenol type epoxy resin); Nippon Kayaku Co., Ltd. “NC7000L” (naphthol novolac type epoxy resin); "NC3000H", "NC3000", "NC3000L", "NC3000FH", "NC3100" (biphenyl type epoxy resin) manufactured by Nippon Kayaku; "ESN475V" and "ESN4100V" manufactured by Nippon Steel Chemical & Materials Co., Ltd. " (naphthalene type epoxy resin); "ESN485" (naphthol type epoxy resin) manufactured by Nippon Steel Chemical &Materials; "ESN375" (dihydroxynaphthalene type epoxy resin) manufactured by Nippon Steel Chemical &Materials; "YX4000H", "YX4000", "YX4000HK", "YL7890" (bixylenol type epoxy resin); "YL6121" manufactured by Mitsubishi Chemical Corporation (biphenyl type epoxy resin); "YX8800" manufactured by Mitsubishi Chemical Corporation (anthracene type epoxy resin); "YX7700" (phenol aralkyl type epoxy resin) manufactured by Mitsubishi Chemical; "PG-100" and "CG-500" manufactured by Osaka Gas Chemicals; "YL7760" manufactured by Mitsubishi Chemical (bisphenol AF type epoxy Resin); "YL7800" manufactured by Mitsubishi Chemical Corporation (fluorene type epoxy resin); "jER1010" manufactured by Mitsubishi Chemical Corporation (bisphenol A type epoxy resin); "jER1031S" manufactured by Mitsubishi Chemical Corporation (tetraphenylethane type epoxy resin) "WHR991S" (phenolphthalimidine type epoxy resin) manufactured by Nippon Kayaku Co., Ltd.; These may be used individually by 1 type, and may be used in combination of 2 or more types.
 エポキシ樹脂として、液状エポキシ樹脂と固体状エポキシ樹脂とを組み合わせて用いる場合、それらの質量比(液状エポキシ樹脂:固体状エポキシ樹脂)は、好ましくは20:1~1:10、より好ましくは10:1~1:5、特に好ましくは5:1~1:2である。 When a liquid epoxy resin and a solid epoxy resin are used in combination as the epoxy resin, the mass ratio (liquid epoxy resin: solid epoxy resin) is preferably 20:1 to 1:10, more preferably 10:1. 1 to 1:5, particularly preferably 5:1 to 1:2.
 (A-1)エポキシ樹脂のエポキシ当量は、好ましくは50g/eq.~5,000g/eq.、より好ましくは60g/eq.~3,000g/eq.、さらに好ましくは80g/eq.~2,000g/eq.、特に好ましくは110g/eq.~1,000g/eq.である。エポキシ当量は、エポキシ基1当量あたりの樹脂の質量を表す。このエポキシ当量は、JIS K7236に従って測定することができる。 (A-1) The epoxy equivalent of the epoxy resin is preferably 50 g/eq. ~5,000g/eq. , more preferably 60 g/eq. ~3,000 g/eq. , more preferably 80 g/eq. ~2,000 g/eq. , particularly preferably 110 g/eq. ~1,000 g/eq. is. Epoxy equivalent weight represents the mass of resin per equivalent of epoxy groups. This epoxy equivalent can be measured according to JIS K7236.
 (A-1)エポキシ樹脂の重量平均分子量(Mw)は、好ましくは100~5,000、より好ましくは250~3,000、さらに好ましくは400~1,500である。樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により、ポリスチレン換算の値として測定できる。 (A-1) The weight average molecular weight (Mw) of the epoxy resin is preferably 100 to 5,000, more preferably 250 to 3,000, still more preferably 400 to 1,500. The weight average molecular weight of the resin can be measured as a polystyrene-equivalent value by a gel permeation chromatography (GPC) method.
 樹脂組成物中の(A-1)エポキシ樹脂の量は、樹脂組成物中の不揮発成分100質量%に対して、好ましくは1質量%以上、より好ましくは2質量%以上、特に好ましくは4質量%以上であり、好ましくは30質量%以下、より好ましくは20質量%以下、特に好ましくは10質量%以下である。(A-1)エポキシ樹脂の量が前記範囲にある場合、樹脂組成物層の硬化物の光線透過率を効果的に高くできる。さらに、好ましくは、樹脂組成物層のタック性の抑制及び溶融粘度の低減、並びに、樹脂組成物層の硬化物の弾性率の抑制及び密着性の向上が可能である。 The amount of (A-1) epoxy resin in the resin composition is preferably 1% by mass or more, more preferably 2% by mass or more, and particularly preferably 4% by mass, based on 100% by mass of non-volatile components in the resin composition. % or more, preferably 30% by mass or less, more preferably 20% by mass or less, and particularly preferably 10% by mass or less. (A-1) When the amount of the epoxy resin is within the above range, the light transmittance of the cured product of the resin composition layer can be effectively increased. Further, preferably, it is possible to suppress the tackiness of the resin composition layer, reduce the melt viscosity, and suppress the elastic modulus and improve the adhesiveness of the cured product of the resin composition layer.
 樹脂組成物中の(A-1)エポキシ樹脂の量は、樹脂組成物の樹脂成分100質量%に対して、好ましくは5質量%以上、より好ましくは10質量%以上、特に好ましくは15質量%以上であり、好ましくは70質量%以下、より好ましくは60質量%以下、特に好ましくは50質量%以下である。樹脂組成物の樹脂成分とは、別に断らない限り、樹脂組成物の不揮発成分のうち、(B)無機充填材を除いた成分を表す。(A-1)エポキシ樹脂の量が前記範囲にある場合、樹脂組成物層の硬化物の光線透過率を効果的に高くできる。さらに、好ましくは、樹脂組成物層のタック性の抑制及び溶融粘度の低減、並びに、樹脂組成物層の硬化物の弾性率の抑制及び密着性の向上が可能である。 The amount of (A-1) epoxy resin in the resin composition is preferably 5% by mass or more, more preferably 10% by mass or more, and particularly preferably 15% by mass, based on 100% by mass of the resin component of the resin composition. or more, preferably 70% by mass or less, more preferably 60% by mass or less, and particularly preferably 50% by mass or less. Unless otherwise specified, the resin component of the resin composition represents the non-volatile components of the resin composition excluding (B) the inorganic filler. (A-1) When the amount of the epoxy resin is within the above range, the light transmittance of the cured product of the resin composition layer can be effectively increased. Further, preferably, it is possible to suppress the tackiness of the resin composition layer, reduce the melt viscosity, and suppress the elastic modulus and improve the adhesiveness of the cured product of the resin composition layer.
 樹脂組成物中の(A-1)エポキシ樹脂の質量W(A-1)を、樹脂組成物中の(B)無機充填材の質量W(B)及び比表面積S(B)の積W(B)×S(B)で割り算して求められる比「W(A-1)/{W(B)×S(B)}」を考える。この比「W(A-1)/{W(B)×S(B)}」は、(B)無機充填材の単位表面積当たりの(A-1)エポキシ樹脂の量に相当しうる。この比「W(A-1)/{W(B)×S(B)}」は、本発明の所望の効果を顕著に得る観点から、好ましくは0.1×10-3g/m以上、より好ましくは1.0×10-3g/m以上、特に好ましくは2.0×10-3g/m以上であり、好ましくは22×10-3g/m以下、より好ましくは18×10-3g/m以下、特に好ましくは16×10-3g/m以下である。 The mass W (A-1) of the (A-1) epoxy resin in the resin composition is the product W (B) of the mass W (B) of the (B) inorganic filler and the specific surface area S (B) in the resin composition Consider the ratio “W(A−1)/{W(B)×S(B)}” obtained by dividing by B)×S(B). This ratio “W(A-1)/{W(B)×S(B)}” can correspond to the amount of (A-1) epoxy resin per unit surface area of (B) inorganic filler. This ratio "W (A-1) / {W (B) × S (B)}" is preferably 0.1 × 10 -3 g/m 2 from the viewpoint of significantly obtaining the desired effects of the present invention. above, more preferably 1.0×10 −3 g/m 2 or more, particularly preferably 2.0×10 −3 g/m 2 or more, preferably 22×10 −3 g/m 2 or less, more It is preferably 18×10 −3 g/m 2 or less, particularly preferably 16×10 −3 g/m 2 or less.
 [3.2.(A-2)フェノール樹脂]
 (A)熱硬化性樹脂は、(A-2)成分としての(A-2)フェノール樹脂を含むことが好ましい。フェノール樹脂としては、フェノール性水酸基を1分子中に1個以上、好ましくは2個以上有する化合物を用いうる。フェノール性水酸基とは、ベンゼン環、ナフタレン環等の芳香環に結合した水酸基をいう。特に、(A-2)フェノール樹脂は、(A-1)エポキシ樹脂と組み合わせて用いることが好ましい。(A-1)エポキシ樹脂と(A-2)フェノール樹脂とを組み合わせて用いた場合、(A-2)フェノール樹脂は、(A-1)エポキシ樹脂と反応して樹脂組成物を硬化させる硬化剤として機能しうる。
[3.2. (A-2) Phenolic resin]
(A) Thermosetting resin preferably contains (A-2) phenolic resin as component (A-2). As the phenolic resin, a compound having one or more, preferably two or more, phenolic hydroxyl groups in one molecule can be used. A phenolic hydroxyl group refers to a hydroxyl group bonded to an aromatic ring such as a benzene ring or a naphthalene ring. In particular, (A-2) phenol resin is preferably used in combination with (A-1) epoxy resin. When (A-1) epoxy resin and (A-2) phenol resin are used in combination, (A-2) phenol resin reacts with (A-1) epoxy resin to cure the resin composition. can function as an agent.
 耐熱性及び耐水性の観点から、(A-2)フェノール樹脂としては、ノボラック構造を有するフェノール樹脂が好ましい。また、密着性の観点からは、含窒素フェノール樹脂が好ましく、トリアジン骨格含有フェノール樹脂がより好ましい。中でも、耐熱性、耐水性、及び密着性を高度に満足させる観点から、トリアジン骨格含有フェノールノボラック樹脂が好ましい。 From the viewpoint of heat resistance and water resistance, the (A-2) phenol resin is preferably a phenol resin having a novolak structure. Moreover, from the viewpoint of adhesion, a nitrogen-containing phenolic resin is preferable, and a triazine skeleton-containing phenolic resin is more preferable. Among them, a triazine skeleton-containing phenol novolak resin is preferable from the viewpoint of highly satisfying heat resistance, water resistance, and adhesion.
 (A-2)フェノール樹脂の具体例としては、例えば、明和化成社製の「MEH-7700」、「MEH-7810」、「MEH-7851」、「MEH-8000」、日本化薬社製の「NHN」、「CBN」、「GPH」、日鉄ケミカル&マテリアル社製の「SN-170」、「SN-180」、「SN-190」、「SN-475」、「SN-485」、「SN-495」、「SN-375」、「SN-395」、DIC社製の「TD-2090」、「LA-7052」、「LA-7054」、「LA-1356」、「LA-3018」、「LA-3018-50P」、「LA-1356」、「TD2090」、「TD-2090-60M」、「EXB-9500」、「HPC-9500」、「KA-1160」、「KA-1163」、「KA-1165」、群栄化学社製の「GDP-6115L」、「GDP-6115H」等が挙げられる。 (A-2) Specific examples of the phenol resin include, for example, "MEH-7700", "MEH-7810", "MEH-7851" and "MEH-8000" manufactured by Meiwa Kasei Co., Ltd.; "NHN", "CBN", "GPH", Nippon Steel Chemical & Materials "SN-170", "SN-180", "SN-190", "SN-475", "SN-485", "SN-495", "SN-375", "SN-395", DIC's "TD-2090", "LA-7052", "LA-7054", "LA-1356", "LA-3018" ”, “LA-3018-50P”, “LA-1356”, “TD2090”, “TD-2090-60M”, “EXB-9500”, “HPC-9500”, “KA-1160”, “KA-1163 ”, “KA-1165”, “GDP-6115L” and “GDP-6115H” manufactured by Gunei Chemical Co., Ltd., and the like.
 (A-2)フェノール樹脂は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 (A-2) Phenolic resins may be used singly or in combination of two or more.
 (A-2)フェノール樹脂の水酸基当量は、好ましくは50g/eq.~3000g/eq.、より好ましくは100g/eq.~1000g/eq.、さらに好ましくは100g/eq.~500g/eq.、特に好ましくは100g/eq.~300g/eq.である。水酸基当量は、水酸基1当量あたりの樹脂の質量を表す。 (A-2) The hydroxyl equivalent of the phenolic resin is preferably 50 g/eq. ~3000g/eq. , more preferably 100 g/eq. ~1000 g/eq. , more preferably 100 g/eq. ~500 g/eq. , particularly preferably 100 g/eq. ~300 g/eq. is. The hydroxyl equivalent represents the mass of resin per equivalent of hydroxyl.
 (A-1)エポキシ樹脂のエポキシ基数を1とした場合、(A-2)フェノール樹脂の水酸基数は、好ましくは0.01以上、より好ましくは0.10以上、更に好ましくは0.15以上であり、好ましくは5.0以下、より好ましくは2.0以下、特に好ましくは1.0以下である。「(A-1)エポキシ樹脂のエポキシ基数」とは、樹脂組成物中に存在するエポキシ樹脂の不揮発成分の質量をエポキシ当量で割り算した値を全て合計した値を表す。また、「(A-2)フェノール樹脂の水酸基数」とは、樹脂組成物中に存在するフェノール樹脂の不揮発成分の質量を水酸基当量で割り算した値を全て合計した値を表す。 When the number of epoxy groups of (A-1) epoxy resin is 1, the number of hydroxyl groups of (A-2) phenol resin is preferably 0.01 or more, more preferably 0.10 or more, and still more preferably 0.15 or more. is preferably 5.0 or less, more preferably 2.0 or less, and particularly preferably 1.0 or less. "(A-1) number of epoxy groups in epoxy resin" represents the sum of all the values obtained by dividing the mass of the non-volatile component of the epoxy resin present in the resin composition by the epoxy equivalent. Further, "(A-2) the number of hydroxyl groups in the phenolic resin" represents the sum of all the values obtained by dividing the mass of the non-volatile components of the phenolic resin present in the resin composition by the hydroxyl equivalent.
 樹脂組成物中の(A-2)フェノール樹脂の量は、樹脂組成物中の不揮発成分100質量%に対して、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、特に好ましくは0.5質量%以上であり、好ましくは20質量%以下、より好ましくは15質量%以下、特に好ましくは10質量%以下である。(A-2)フェノール樹脂の量が前記範囲にある場合、樹脂組成物層の硬化物の光線透過率を効果的に高くできる。さらに、好ましくは、樹脂組成物層のタック性の抑制及び溶融粘度の低減、並びに、樹脂組成物層の硬化物の弾性率の抑制及び密着性の向上が可能である。 The amount of (A-2) phenol resin in the resin composition is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, with respect to 100% by mass of non-volatile components in the resin composition. It is preferably 0.5% by mass or more, preferably 20% by mass or less, more preferably 15% by mass or less, and particularly preferably 10% by mass or less. (A-2) When the amount of the phenol resin is within the above range, the light transmittance of the cured product of the resin composition layer can be effectively increased. Further, preferably, it is possible to suppress the tackiness of the resin composition layer, reduce the melt viscosity, and suppress the elastic modulus and improve the adhesiveness of the cured product of the resin composition layer.
 樹脂組成物中の(A-2)フェノール樹脂の量は、樹脂組成物の樹脂成分100質量%に対して、好ましくは1質量%以上、より好ましくは2質量%以上、特に好ましくは3質量%以上であり、好ましくは50質量%以下、より好ましくは40質量%以下、特に好ましくは35質量%以下である。(A-2)フェノール樹脂の量が前記範囲にある場合、樹脂組成物層の硬化物の光線透過率を効果的に高くできる。さらに、好ましくは、樹脂組成物層のタック性の抑制及び溶融粘度の低減、並びに、樹脂組成物層の硬化物の弾性率の抑制及び密着性の向上が可能である。 The amount of (A-2) phenol resin in the resin composition is preferably 1% by mass or more, more preferably 2% by mass or more, and particularly preferably 3% by mass, relative to 100% by mass of the resin component of the resin composition. or more, preferably 50% by mass or less, more preferably 40% by mass or less, and particularly preferably 35% by mass or less. (A-2) When the amount of the phenol resin is within the above range, the light transmittance of the cured product of the resin composition layer can be effectively increased. Further, preferably, it is possible to suppress the tackiness of the resin composition layer, reduce the melt viscosity, and suppress the elastic modulus and improve the adhesiveness of the cured product of the resin composition layer.
 樹脂組成物中の(A-2)フェノール樹脂の質量W(A-2)と、樹脂組成物中の(B)無機充填材の質量W(B)との比W(A-2)/W(B)は、本発明の所望の効果を顕著に得る観点から、特定の範囲にあることが好ましい。具体的には、前記の比W(A-2)/W(B)は、好ましくは0.1×10-2以上、より好ましくは0.5×10-2以上、特に好ましくは1.0×10-2以上であり、好ましくは20.0×10-2以下、より好ましくは15.0×10-2以下、特に好ましくは10.0×10-2以下である。 The ratio W (A-2)/W of the mass W (A-2) of the (A-2) phenolic resin in the resin composition and the mass W (B) of the (B) inorganic filler in the resin composition (B) is preferably within a specific range from the viewpoint of significantly obtaining the desired effects of the present invention. Specifically, the ratio W(A-2)/W(B) is preferably 0.1×10 −2 or more, more preferably 0.5×10 −2 or more, and particularly preferably 1.0 ×10 −2 or more, preferably 20.0×10 −2 or less, more preferably 15.0×10 −2 or less, and particularly preferably 10.0×10 −2 or less.
 樹脂組成物中の(A-2)フェノール樹脂の質量W(A-2)を、樹脂組成物中の(B)無機充填材の質量W(B)及び比表面積S(B)の積W(B)×S(B)で割り算して求められる比「W(A-2)/{W(B)×S(B)}」を考える。この比「W(A-2)/{W(B)×S(B)}」は、(B)無機充填材の単位表面積当たりの(A-2)フェノール樹脂の量に相当しうる。この比「W(A-2)/{W(B)×S(B)}」は、本発明の所望の効果を顕著に得る観点から、好ましくは0.5×10-3g/m以上、より好ましくは1.0×10-3g/m以上、特に好ましくは2.0×10-3g/m以上であり、好ましくは10×10-3g/m以下、より好ましくは8.0×10-3g/m以下、特に好ましくは6.0×10-3g/m以下である。 The mass W (A-2) of the (A-2) phenolic resin in the resin composition, the mass W (B) of the (B) inorganic filler in the resin composition and the product W (B) of the specific surface area S (B) Consider the ratio “W(A−2)/{W(B)×S(B)}” obtained by dividing by B)×S(B). This ratio “W(A-2)/{W(B)×S(B)}” can correspond to the amount of (A-2) phenolic resin per unit surface area of (B) inorganic filler. This ratio "W(A-2)/{W(B)×S(B)}" is preferably 0.5×10 −3 g/m 2 from the viewpoint of significantly obtaining the desired effects of the present invention. above, more preferably 1.0×10 −3 g/m 2 or more, particularly preferably 2.0×10 −3 g/m 2 or more, preferably 10×10 −3 g/m 2 or less, more It is preferably 8.0×10 −3 g/m 2 or less, particularly preferably 6.0×10 −3 g/m 2 or less.
 [3.3.(A-3)活性エステル樹脂]
 (A)熱硬化性樹脂は、(A-3)成分としての(A-3)活性エステル樹脂を含むことが好ましい。(A-3)活性エステル樹脂としては、一般にフェノールエステル類、チオフェノールエステル類、N-ヒドロキシアミンエステル類、複素環ヒドロキシ化合物のエステル類等の、反応活性の高いエステル基を1分子中に2個以上有する化合物が好ましく用いられる。特に、(A-3)活性エステル樹脂は、(A-1)エポキシ樹脂と組み合わせて用いることが好ましい。(A-1)エポキシ樹脂と(A-3)活性エステル樹脂とを組み合わせて用いた場合、(A-3)活性エステル樹脂は、(A-1)エポキシ樹脂と反応して樹脂組成物を硬化させる硬化剤として機能しうる。
[3.3. (A-3) Active ester resin]
(A) Thermosetting resin preferably contains (A-3) active ester resin as component (A-3). (A-3) The active ester resin generally contains two highly reactive ester groups per molecule, such as phenol esters, thiophenol esters, N-hydroxyamine esters, and esters of heterocyclic hydroxy compounds. A compound having one or more is preferably used. In particular, (A-3) active ester resin is preferably used in combination with (A-1) epoxy resin. When (A-1) epoxy resin and (A-3) active ester resin are used in combination, (A-3) active ester resin reacts with (A-1) epoxy resin to cure the resin composition. It can function as a curing agent to
 (A-3)活性エステル樹脂は、カルボン酸化合物及び/又はチオカルボン酸化合物とヒドロキシ化合物及び/又はチオール化合物との縮合反応によって得られるものが好ましい。特に耐熱性向上の観点から、カルボン酸化合物とヒドロキシ化合物とから得られる活性エステル樹脂が好ましく、カルボン酸化合物とフェノール化合物及び/又はナフトール化合物とから得られる活性エステル樹脂がより好ましい。カルボン酸化合物としては、例えば安息香酸、酢酸、コハク酸、マレイン酸、イタコン酸、フタル酸、イソフタル酸、テレフタル酸、ピロメリット酸等が挙げられる。フェノール化合物又はナフトール化合物としては、例えば、ハイドロキノン、レゾルシン、ビスフェノールA、ビスフェノールF、ビスフェノールS、フェノールフタリン、メチル化ビスフェノールA、メチル化ビスフェノールF、メチル化ビスフェノールS、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、カテコール、α-ナフトール、β-ナフトール、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、ジヒドロキシベンゾフェノン、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、フロログルシン、ベンゼントリオール、ジシクロペンタジエン型ジフェノール化合物、フェノールノボラック等が挙げられる。ここで、「ジシクロペンタジエン型ジフェノール化合物」とは、ジシクロペンタジエン1分子にフェノール2分子が縮合して得られるジフェノール化合物をいう。 (A-3) The active ester resin is preferably obtained by a condensation reaction between a carboxylic acid compound and/or a thiocarboxylic acid compound and a hydroxy compound and/or a thiol compound. In particular, from the viewpoint of improving heat resistance, an active ester resin obtained from a carboxylic acid compound and a hydroxy compound is preferred, and an active ester resin obtained from a carboxylic acid compound and a phenol compound and/or a naphthol compound is more preferred. Examples of carboxylic acid compounds include benzoic acid, acetic acid, succinic acid, maleic acid, itaconic acid, phthalic acid, isophthalic acid, terephthalic acid, and pyromellitic acid. Examples of phenol compounds or naphthol compounds include hydroquinone, resorcinol, bisphenol A, bisphenol F, bisphenol S, phenolphthalin, methylated bisphenol A, methylated bisphenol F, methylated bisphenol S, phenol, o-cresol, m- cresol, p-cresol, catechol, α-naphthol, β-naphthol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenone, trihydroxybenzophenone, tetrahydroxybenzophenone, phloroglucine, Benzenetriol, dicyclopentadiene-type diphenol compound, phenol novolak, and the like. Here, the term "dicyclopentadiene-type diphenol compound" refers to a diphenol compound obtained by condensing one molecule of dicyclopentadiene with two molecules of phenol.
 具体的には、(A-3)活性エステル樹脂としては、ジシクロペンタジエン型活性エステル樹脂、ナフタレン構造を含むナフタレン型活性エステル樹脂、フェノールノボラックのアセチル化物を含む活性エステル樹脂、フェノールノボラックのベンゾイル化物を含む活性エステル樹脂が好ましく、中でもジシクロペンタジエン型活性エステル樹脂、及びナフタレン型活性エステル樹脂から選ばれる少なくとも1種であることがより好ましい。ジシクロペンタジエン型活性エステル樹脂としては、ジシクロペンタジエン型ジフェノール構造を含む活性エステル樹脂が好ましい。 Specifically, the active ester resin (A-3) includes a dicyclopentadiene-type active ester resin, a naphthalene-type active ester resin containing a naphthalene structure, an active ester resin containing an acetylated product of phenol novolac, and a benzoylated product of phenol novolak. is preferred, and more preferably at least one selected from dicyclopentadiene-type active ester resins and naphthalene-type active ester resins. As the dicyclopentadiene-type active ester resin, an active ester resin containing a dicyclopentadiene-type diphenol structure is preferable.
 (A-3)活性エステル樹脂の市販品としては、例えば、ジシクロペンタジエン型ジフェノール構造を含む活性エステル樹脂として、「EXB9451」、「EXB9460」、「EXB9460S」、「EXB-8000L」、「EXB-8000L-65M」、「EXB-8000L-65TM」、「HPC-8000L-65TM」、「HPC-8000」、「HPC-8000-65T」、「HPC-8000H」、「HPC-8000H-65TM」(DIC社製);ナフタレン構造を含む活性エステル樹脂として「HP-B-8151-62T」、「EXB-8100L-65T」、「EXB-8150-60T」、「EXB-8150-62T」、「EXB-9416-70BK」、「HPC-8150-60T」、「HPC-8150-62T」、「EXB-8」(DIC社製);りん含有活性エステル樹脂として、「EXB9401」(DIC社製);フェノールノボラックのアセチル化物である活性エステル樹脂として「DC808」(三菱ケミカル社製);フェノールノボラックのベンゾイル化物である活性エステル樹脂として「YLH1026」、「YLH1030」、「YLH1048」(三菱ケミカル社製);スチリル基及びナフタレン構造を含む活性エステル樹脂として「PC1300-02-65MA」(エア・ウォーター社製)等が挙げられる。 (A-3) Commercially available active ester resins include, for example, "EXB9451", "EXB9460", "EXB9460S", "EXB-8000L" and "EXB" as active ester resins containing a dicyclopentadiene type diphenol structure. -8000L-65M", "EXB-8000L-65TM", "HPC-8000L-65TM", "HPC-8000", "HPC-8000-65T", "HPC-8000H", "HPC-8000H-65TM" ( DIC Corporation); as active ester resins containing a naphthalene structure, "HP-B-8151-62T", "EXB-8100L-65T", "EXB-8150-60T", "EXB-8150-62T", "EXB- 9416-70BK", "HPC-8150-60T", "HPC-8150-62T", "EXB-8" (manufactured by DIC Corporation); "EXB9401" (manufactured by DIC Corporation) as a phosphorus-containing active ester resin; phenol novolak "DC808" (manufactured by Mitsubishi Chemical Co., Ltd.) as an active ester resin that is an acetylated product of phenol novolac; and active ester resins containing a naphthalene structure include "PC1300-02-65MA" (manufactured by Air Water).
 (A-3)活性エステル樹脂は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 (A-3) The active ester resin may be used singly or in combination of two or more.
 (A-3)活性エステル樹脂の活性エステル基当量は、好ましくは50g/eq.~3000g/eq.、より好ましくは100g/eq.~1000g/eq.、さらに好ましくは100g/eq.~500g/eq.、特に好ましくは100g/eq.~300g/eq.である。活性エステル基当量は、活性エステル基1当量あたりの樹脂の質量を表す。 (A-3) The active ester group equivalent of the active ester resin is preferably 50 g/eq. ~3000g/eq. , more preferably 100 g/eq. ~1000 g/eq. , more preferably 100 g/eq. ~500 g/eq. , particularly preferably 100 g/eq. ~300 g/eq. is. Active ester group equivalents represent the mass of resin per equivalent of active ester groups.
 (A-1)エポキシ樹脂のエポキシ基数を1とした場合、(A-3)活性エステル樹脂の活性エステル基数は、好ましくは0.01以上、より好ましくは0.05以上、更に好ましくは0.10以上であり、好ましくは5.0以下、より好ましくは2.0以下、特に好ましくは1.0以下である。「(A-3)活性エステル樹脂の活性エステル基数」とは、樹脂組成物中に存在する活性エステル樹脂の不揮発成分の質量を活性エステル基当量で割り算した値を全て合計した値を表す。 When the number of epoxy groups of (A-1) epoxy resin is 1, the number of active ester groups of (A-3) active ester resin is preferably 0.01 or more, more preferably 0.05 or more, and still more preferably 0.05 or more. It is 10 or more, preferably 5.0 or less, more preferably 2.0 or less, and particularly preferably 1.0 or less. "(A-3) Number of active ester groups in active ester resin" represents the sum of all the values obtained by dividing the mass of the non-volatile components of the active ester resin present in the resin composition by the active ester group equivalent.
 樹脂組成物中の(A-3)活性エステル樹脂の量は、樹脂組成物中の不揮発成分100質量%に対して、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、特に好ましくは0.5質量%以上であり、好ましくは10質量%以下、より好ましくは5質量%以下、特に好ましくは2質量%以下である。(A-3)活性エステル樹脂の量が前記範囲にある場合、本発明の所望の効果を顕著に得ることができる。 The amount of (A-3) active ester resin in the resin composition is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, based on 100% by mass of non-volatile components in the resin composition, It is particularly preferably 0.5% by mass or more, preferably 10% by mass or less, more preferably 5% by mass or less, and particularly preferably 2% by mass or less. (A-3) When the amount of the active ester resin is within the above range, the desired effects of the present invention can be obtained remarkably.
 樹脂組成物中の(A-3)活性エステル樹脂の量は、樹脂組成物の樹脂成分100質量%に対して、好ましくは1質量%以上、より好ましくは2質量%以上、特に好ましくは3質量%以上であり、好ましくは20質量%以下、より好ましくは10質量%以下、特に好ましくは5質量%以下である。(A-3)活性エステル樹脂の量が前記範囲にある場合、本発明の所望の効果を顕著に得ることができる。 The amount of (A-3) active ester resin in the resin composition is preferably 1% by mass or more, more preferably 2% by mass or more, and particularly preferably 3% by mass with respect to 100% by mass of the resin component of the resin composition. % or more, preferably 20% by mass or less, more preferably 10% by mass or less, and particularly preferably 5% by mass or less. (A-3) When the amount of the active ester resin is within the above range, the desired effects of the present invention can be obtained remarkably.
 [3.4.(A-4)マレイミド樹脂]
 (A)熱硬化性樹脂は、(A-4)成分としての(A-4)マレイミド樹脂を含むことが好ましい。マレイミド樹脂としては、1分子中に少なくとも1個、好ましくは2個以上のマレイミド基(2,5-ジヒドロ-2,5-ジオキソ-1H-ピロール-1-イル基)を含有する化合物を用いうる。(A-4)マレイミド樹脂は、マレイミド基が含有するエチレン性二重結合がラジカル重合を生じうる。また、(A-4)マレイミド樹脂は、イミダゾール化合物等の適切な触媒の存在下において(A-1)エポキシ樹脂と反応しうる。よって、(A-4)マレイミド樹脂は、これらの反応によって樹脂組成物を熱硬化させることができる。
[3.4. (A-4) Maleimide resin]
(A) Thermosetting resin preferably contains (A-4) maleimide resin as component (A-4). As the maleimide resin, compounds containing at least one, preferably two or more maleimide groups (2,5-dihydro-2,5-dioxo-1H-pyrrol-1-yl groups) in one molecule can be used. . (A-4) In the maleimide resin, the ethylenic double bond contained in the maleimide group can undergo radical polymerization. Also, (A-4) maleimide resin can react with (A-1) epoxy resin in the presence of a suitable catalyst such as an imidazole compound. Therefore, the maleimide resin (A-4) can thermoset the resin composition by these reactions.
 (A-4)マレイミド樹脂としては、脂肪族アミン骨格を含む脂肪族マレイミド樹脂を用いてもよく、芳香族アミン骨格を含む芳香族マレイミド樹脂を用いてもよく、これらの組み合わせを用いてもよい。また、(A-4)マレイミド樹脂は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 As the maleimide resin (A-4), an aliphatic maleimide resin containing an aliphatic amine skeleton may be used, an aromatic maleimide resin containing an aromatic amine skeleton may be used, or a combination thereof may be used. . The (A-4) maleimide resin may be used alone or in combination of two or more.
 (A-4)マレイミド樹脂としては、例えば、信越化学工業社製の「SLK-2600」、デザイナーモレキュールズ社製の「BMI-1500」、「BMI-1700」、「BMI-689」、「BMI-2500」(ダイマージアミン構造含有マレイミド化合物)、デザイナーモレキュールズ社製の「BMI-6100」(芳香族マレイミド化合物)、日本化薬社製の「MIR-5000-60T」、「MIR-3000-70MT」(ビフェニルアラルキル型マレイミド化合物)、ケイ・アイ化成社製の「BMI-70」、「BMI-80」、大和化成工業社製「BMI-2300」、「BMI-TMH」等が挙げられる。また、(A-4)マレイミド樹脂としては、例えば、発明協会公開技報公技番号2020-500211号に開示されているマレイミド樹脂(インダン環骨格含有マレイミド化合物)も挙げられる。 (A-4) Maleimide resins include, for example, “SLK-2600” manufactured by Shin-Etsu Chemical Co., Ltd., “BMI-1500”, “BMI-1700”, “BMI-689” manufactured by Designer Molecules, “ BMI-2500" (a maleimide compound containing a dimer diamine structure), "BMI-6100" (aromatic maleimide compound) manufactured by Designer Molecules, "MIR-5000-60T" manufactured by Nippon Kayaku, "MIR-3000" -70MT" (biphenylaralkyl-type maleimide compound), "BMI-70" and "BMI-80" manufactured by K.I. Kasei Co., Ltd., and "BMI-2300" and "BMI-TMH" manufactured by Daiwa Chemical Industry Co. . Examples of (A-4) maleimide resins also include maleimide resins (maleimide compounds containing an indane ring skeleton) disclosed in Technical Bulletin No. 2020-500211 of the Japan Institute of Invention and Innovation.
 樹脂組成物中の(A-4)マレイミド樹脂の量は、樹脂組成物中の不揮発成分100質量%に対して、好ましくは0.1質量%以上、より好ましくは1.0質量%以上、特に好ましくは2.0質量%以上であり、好ましくは20質量%以下、より好ましくは15質量%以下、特に好ましくは10質量%以下である。(A-4)マレイミド樹脂の量が前記範囲にある場合、本発明の所望の効果を顕著に得ることができる。 The amount of maleimide resin (A-4) in the resin composition is preferably 0.1% by mass or more, more preferably 1.0% by mass or more, and particularly It is preferably 2.0% by mass or more, preferably 20% by mass or less, more preferably 15% by mass or less, and particularly preferably 10% by mass or less. (A-4) When the amount of the maleimide resin is within the above range, the desired effects of the present invention can be obtained remarkably.
 樹脂組成物中の(A-4)マレイミド樹脂の量は、樹脂組成物の樹脂成分100質量%に対して、好ましくは1質量%以上、より好ましくは4質量%以上、特に好ましくは6質量%以上であり、好ましくは60質量%以下、より好ましくは50質量%以下、特に好ましくは30質量%以下である。(A-4)マレイミド樹脂の量が前記範囲にある場合、本発明の所望の効果を顕著に得ることができる。 The amount of (A-4) maleimide resin in the resin composition is preferably 1% by mass or more, more preferably 4% by mass or more, and particularly preferably 6% by mass, based on 100% by mass of the resin component of the resin composition. or more, preferably 60% by mass or less, more preferably 50% by mass or less, and particularly preferably 30% by mass or less. (A-4) When the amount of the maleimide resin is within the above range, the desired effects of the present invention can be obtained remarkably.
 樹脂組成物中の(A-4)マレイミド樹脂の質量W(A-4)と、樹脂組成物中の(B)無機充填材の質量W(B)との比W(A-4)/W(B)は、本発明の所望の効果を顕著に得る観点から、特定の範囲にあることが好ましい。具体的には、前記の比W(A-4)/W(B)は、好ましくは0.1×10-2以上、より好ましくは1.0×10-2以上、更に好ましくは2.0×10-2以上、特に好ましくは3.1×10-2以上であり、好ましくは30×10-2以下、より好ましくは20×10-2以下、特に好ましくは15×10-2以下である。 The ratio W(A-4)/W of the mass W(A-4) of the (A-4) maleimide resin in the resin composition to the mass W(B) of the (B) inorganic filler in the resin composition (B) is preferably within a specific range from the viewpoint of significantly obtaining the desired effects of the present invention. Specifically, the ratio W(A-4)/W(B) is preferably 0.1×10 −2 or more, more preferably 1.0×10 −2 or more, and still more preferably 2.0 ×10 −2 or more, particularly preferably 3.1×10 −2 or more, preferably 30×10 −2 or less, more preferably 20×10 −2 or less, particularly preferably 15×10 −2 or less .
 樹脂組成物中の(A-4)マレイミド樹脂の質量W(A-4)を、樹脂組成物中の(B)無機充填材の質量W(B)及び比表面積S(B)の積W(B)×S(B)で割り算して求められる比「W(A-4)/{W(B)×S(B)}」を考える。この比「W(A-4)/{W(B)×S(B)}」は、(B)無機充填材の単位表面積当たりの(A-4)マレイミド樹脂の量に相当しうる。この比「W(A-4)/{W(B)×S(B)}」は、本発明の所望の効果を顕著に得る観点から、好ましくは0.5×10-3g/m以上、より好ましくは1.0×10-3g/m以上、特に好ましくは1.5×10-3g/m以上であり、好ましくは20×10-3g/m以下、より好ましくは15×10-3g/m以下、特に好ましくは11×10-3g/m以下である。 The mass W (A-4) of the (A-4) maleimide resin in the resin composition is the product W (B) of the mass W (B) of the (B) inorganic filler and the specific surface area S (B) in the resin composition Consider the ratio “W(A−4)/{W(B)×S(B)}” obtained by dividing by B)×S(B). This ratio “W(A-4)/{W(B)×S(B)}” can correspond to the amount of (A-4) maleimide resin per unit surface area of (B) inorganic filler. This ratio “W(A-4)/{W(B)×S(B)}” is preferably 0.5×10 −3 g/m 2 from the viewpoint of significantly obtaining the desired effects of the present invention. above, more preferably 1.0×10 −3 g/m 2 or more, particularly preferably 1.5×10 −3 g/m 2 or more, preferably 20×10 −3 g/m 2 or less, more It is preferably 15×10 −3 g/m 2 or less, particularly preferably 11×10 −3 g/m 2 or less.
 [3.5.その他の熱硬化性樹脂]
 (A)熱硬化性樹脂の別の例としては、シアネートエステル樹脂、カルボジイミド樹脂、酸無水物樹脂、アミン樹脂、ベンゾオキサジン樹脂、及び、チオール樹脂が挙げられる。これらの樹脂は、(A-1)エポキシ樹脂と組み合わせて用いた場合、(A-1)エポキシ樹脂と反応して樹脂組成物を硬化させる硬化剤として機能しうる。また、(A)熱硬化性樹脂の更に別の例としては、(A-4)マレイミド樹脂以外のラジカル重合性樹脂などが挙げられる。このラジカル重合性樹脂は、一般にエチレン性不飽和結合を有し、ラジカル重合によって硬化しうる。ラジカル重合性樹脂としては、例えば、芳香族炭素原子に直接結合した1個以上のビニル基を有するスチレン系ラジカル重合性樹脂、1個以上のアリル基を有するアリル系ラジカル重合性樹脂、などが挙げられる。これらの樹脂は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
[3.5. Other thermosetting resins]
(A) Other examples of thermosetting resins include cyanate ester resins, carbodiimide resins, acid anhydride resins, amine resins, benzoxazine resins, and thiol resins. These resins, when used in combination with (A-1) epoxy resin, can function as a curing agent that reacts with (A-1) epoxy resin to cure the resin composition. Still another example of the (A) thermosetting resin includes (A-4) a radically polymerizable resin other than the maleimide resin. This radically polymerizable resin generally has an ethylenically unsaturated bond and can be cured by radical polymerization. Examples of radically polymerizable resins include styrene radically polymerizable resins having one or more vinyl groups directly bonded to aromatic carbon atoms, allyl radically polymerizable resins having one or more allyl groups, and the like. be done. One type of these resins may be used alone, or two or more types may be used in combination.
 上述した(A-1)成分~(A-4)成分を含め、(A)熱硬化性樹脂の数平均分子量(Mn)は、好ましくは3,000未満、より好ましくは2,000未満、さらに好ましくは1,500以下であり、好ましくは100以上、より好ましくは250以上、さらに好ましくは400以上である。樹脂の数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により、ポリスチレン換算の値として測定できる。 The number average molecular weight (Mn) of the thermosetting resin (A), including the components (A-1) to (A-4) described above, is preferably less than 3,000, more preferably less than 2,000, and further It is preferably 1,500 or less, preferably 100 or more, more preferably 250 or more, still more preferably 400 or more. The number average molecular weight of the resin can be measured as a polystyrene-equivalent value by gel permeation chromatography (GPC).
 [3.6.(A)熱硬化性樹脂の量]
 樹脂組成物中の(A)熱硬化性樹脂の量は、樹脂組成物中の不揮発成分100質量%に対して、好ましくは1質量%以上、より好ましくは2質量%以上、特に好ましくは5質量%以上であり、好ましくは40質量%以下、より好ましくは30質量%以下、特に好ましくは25質量%以下である。(A)熱硬化性樹脂の量が前記範囲にある場合、樹脂組成物層の硬化物の光線透過率を効果的に高くできる。さらに、好ましくは、樹脂組成物層のタック性の抑制及び溶融粘度の低減、並びに、樹脂組成物層の硬化物の弾性率の抑制及び密着性の向上が可能である。
[3.6. (A) Amount of thermosetting resin]
The amount of (A) thermosetting resin in the resin composition is preferably 1% by mass or more, more preferably 2% by mass or more, and particularly preferably 5% by mass with respect to 100% by mass of non-volatile components in the resin composition. % or more, preferably 40% by mass or less, more preferably 30% by mass or less, and particularly preferably 25% by mass or less. (A) When the amount of the thermosetting resin is within the above range, the light transmittance of the cured product of the resin composition layer can be effectively increased. Further, preferably, it is possible to suppress the tackiness of the resin composition layer, reduce the melt viscosity, and suppress the elastic modulus and improve the adhesiveness of the cured product of the resin composition layer.
 樹脂組成物中の(A)熱硬化性樹脂の量は、樹脂組成物の樹脂成分100質量%に対して、好ましくは5質量%以上、より好ましくは10質量%以上、特に好ましくは20質量%以上であり、好ましくは90質量%以下、より好ましくは85質量%以下、特に好ましくは80質量%以下である。(A)熱硬化性樹脂の量が前記範囲にある場合、樹脂組成物層の硬化物の光線透過率を効果的に高くできる。さらに、通常は、樹脂組成物層のタック性の抑制及び溶融粘度の低減、並びに、樹脂組成物層の硬化物の弾性率の抑制及び密着性の向上が可能である。 The amount of (A) thermosetting resin in the resin composition is preferably 5% by mass or more, more preferably 10% by mass or more, and particularly preferably 20% by mass with respect to 100% by mass of the resin component of the resin composition. or more, preferably 90% by mass or less, more preferably 85% by mass or less, and particularly preferably 80% by mass or less. (A) When the amount of the thermosetting resin is within the above range, the light transmittance of the cured product of the resin composition layer can be effectively increased. Furthermore, it is usually possible to suppress the tackiness of the resin composition layer, reduce the melt viscosity, and suppress the elastic modulus and improve the adhesion of the cured product of the resin composition layer.
[4.(B)無機充填材]
 樹脂組成物は、(B)成分としての(B)無機充填材を含む。(B)無機充填材は、通常、粒子の状態で樹脂組成物に含まれる。また、この(B)無機充填材は、特定の範囲の比表面積を有する。
[4. (B) Inorganic filler]
The resin composition contains (B) an inorganic filler as the (B) component. (B) The inorganic filler is usually contained in the resin composition in the form of particles. In addition, this (B) inorganic filler has a specific surface area within a specific range.
 (B)無機充填材の比表面積の範囲は、通常3.0m/g以上、好ましくは3.5m/g以上、より好ましくは4.0m/g以上であり、5.0m/g以上、10.0m/g以上又は20.0m/g以上であってもよい。樹脂組成物に含まれる(B)無機充填材が前記範囲の比表面積を有する場合に、樹脂組成物層の硬化物の光線透過率を高くできる。さらに、好ましくは、樹脂組成物層のタック性の抑制及び溶融粘度の低減、並びに、樹脂組成物層の硬化物の弾性率の抑制及び密着性の向上が可能である。(B)無機充填材の比表面積の上限は、本発明の所望の効果を顕著に得る観点から、好ましくは100m/g以下、より好ましくは70m/g以下、さらに好ましくは50m/g以下、特に好ましくは40m/g以下である。 (B) The range of the specific surface area of the inorganic filler is usually 3.0 m 2 /g or more, preferably 3.5 m 2 /g or more, more preferably 4.0 m 2 /g or more, and 5.0 m 2 / g or more. g or more, 10.0 m 2 /g or more, or 20.0 m 2 /g or more. When the (B) inorganic filler contained in the resin composition has a specific surface area within the above range, the light transmittance of the cured product of the resin composition layer can be increased. Further, preferably, it is possible to suppress the tackiness of the resin composition layer, reduce the melt viscosity, and suppress the elastic modulus and improve the adhesiveness of the cured product of the resin composition layer. (B) The upper limit of the specific surface area of the inorganic filler is preferably 100 m 2 /g or less, more preferably 70 m 2 /g or less, still more preferably 50 m 2 /g, from the viewpoint of significantly obtaining the desired effects of the present invention. Below, it is particularly preferably 40 m 2 /g or less.
 (B)無機充填材の比表面積は、BET法に従って、比表面積測定装置(マウンテック社製Macsorb HM-1210)を使用して試料表面に窒素ガスを吸着させ、BET多点法を用いて比表面積を算出することで測定できる。 (B) The specific surface area of the inorganic filler is determined by adsorbing nitrogen gas on the sample surface using a specific surface area measuring device (Macsorb HM-1210 manufactured by Mountech) according to the BET method, and using the BET multipoint method to determine the specific surface area. can be measured by calculating
 (B)無機充填材の材料としては、無機化合物を用いる。(B)無機充填材の材料としては、例えば、シリカ、アルミナ、ガラス、コーディエライト、シリコン酸化物、硫酸バリウム、炭酸バリウム、タルク、クレー、雲母粉、酸化亜鉛、ハイドロタルサイト、ベーマイト、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、酸化マグネシウム、窒化ホウ素、窒化アルミニウム、窒化マンガン、ホウ酸アルミニウム、炭酸ストロンチウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ビスマス、酸化チタン、酸化ジルコニウム、チタン酸バリウム、チタン酸ジルコン酸バリウム、ジルコン酸バリウム、ジルコン酸カルシウム、リン酸ジルコニウム、及びリン酸タングステン酸ジルコニウム等が挙げられる。これらの中でもシリカ、アルミナが好適であり、シリカが特に好適である。シリカとしては、例えば、無定形シリカ、溶融シリカ、結晶シリカ、合成シリカ、中空シリカ等が挙げられる。また、シリカとしては球形シリカが好ましい。(B)無機充填材は、1種類単独で用いてもよく、2種以上を組み合わせて用いてもよい。 (B) An inorganic compound is used as the material for the inorganic filler. (B) Examples of inorganic filler materials include silica, alumina, glass, cordierite, silicon oxide, barium sulfate, barium carbonate, talc, clay, mica powder, zinc oxide, hydrotalcite, boehmite, and water. Aluminum oxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, magnesium oxide, boron nitride, aluminum nitride, manganese nitride, aluminum borate, strontium carbonate, strontium titanate, calcium titanate, magnesium titanate, bismuth titanate, titanium oxide , zirconium oxide, barium titanate, barium zirconate titanate, barium zirconate, calcium zirconate, zirconium phosphate, and zirconium tungstate phosphate. Among these, silica and alumina are preferred, and silica is particularly preferred. Examples of silica include amorphous silica, fused silica, crystalline silica, synthetic silica, and hollow silica. As silica, spherical silica is preferable. (B) The inorganic filler may be used singly or in combination of two or more.
 (B)無機充填材の平均粒径は、好ましくは1.5μm以下、より好ましくは1.0μm以下、より好ましくは0.6μm以下、特に好ましくは0.4μm以下であり、好ましくは0.01μm以上、より好ましくは0.05μm以上である。(B)無機充填材の平均粒径が前記範囲にある場合、樹脂組成物層の硬化物の光線透過率を効果的に高くできる。さらに、通常は、樹脂組成物層のタック性の抑制及び溶融粘度の低減、並びに、樹脂組成物層の硬化物の弾性率の抑制及び密着性の向上が可能である。 (B) The average particle size of the inorganic filler is preferably 1.5 µm or less, more preferably 1.0 µm or less, more preferably 0.6 µm or less, particularly preferably 0.4 µm or less, and preferably 0.01 µm. 0.05 μm or more, more preferably 0.05 μm or more. (B) When the average particle diameter of the inorganic filler is within the above range, the light transmittance of the cured product of the resin composition layer can be effectively increased. Furthermore, it is usually possible to suppress the tackiness of the resin composition layer, reduce the melt viscosity, and suppress the elastic modulus and improve the adhesion of the cured product of the resin composition layer.
 (B)無機充填材の平均粒径は、ミー(Mie)散乱理論に基づくレーザー回折・散乱法により測定することができる。具体的には、レーザー回折散乱式粒径分布測定装置により、無機充填材の粒径分布を体積基準で作成し、そのメディアン径を平均粒径とすることで測定することができる。測定サンプルは、無機充填材100mg、メチルエチルケトン10gをバイアル瓶に秤取り、超音波にて10分間分散させたものを使用することができる。測定サンプルを、レーザー回折式粒径分布測定装置を使用して、使用光源波長を青色及び赤色とし、フローセル方式で無機充填材の体積基準の粒径分布を測定し、得られた粒径分布からメディアン径として平均粒径を算出しうる。レーザー回折式粒径分布測定装置としては、例えば堀場製作所社製「LA-960」等が挙げられる。 (B) The average particle size of the inorganic filler can be measured by a laser diffraction/scattering method based on Mie scattering theory. Specifically, the particle size distribution of the inorganic filler is prepared on a volume basis using a laser diffraction/scattering type particle size distribution measuring device, and the median diameter can be used as the average particle size for measurement. A measurement sample can be obtained by weighing 100 mg of an inorganic filler and 10 g of methyl ethyl ketone in a vial and dispersing them with ultrasonic waves for 10 minutes. A measurement sample is measured using a laser diffraction particle size distribution measuring device, the wavelengths of the light source used are blue and red, the volume-based particle size distribution of the inorganic filler is measured by the flow cell method, and from the obtained particle size distribution The average particle size can be calculated as the median size. Examples of the laser diffraction particle size distribution analyzer include "LA-960" manufactured by Horiba, Ltd., and the like.
 (B)無機充填材は、耐湿性及び分散性を高める観点から、表面処理剤で処理されていることが好ましい。表面処理剤としては、例えば、フッ素含有シランカップリング剤、アミノシラン系カップリング剤、エポキシシラン系カップリング剤、メルカプトシラン系カップリング剤、シラン系カップリング剤、アルコキシシラン、オルガノシラザン化合物、チタネート系カップリング剤等が挙げられる。表面処理剤は、1種類単独で用いてもよく、2種類以上を任意に組み合わせて用いてもよい。 (B) The inorganic filler is preferably treated with a surface treatment agent from the viewpoint of enhancing moisture resistance and dispersibility. Examples of surface treatment agents include fluorine-containing silane coupling agents, aminosilane coupling agents, epoxysilane coupling agents, mercaptosilane coupling agents, silane coupling agents, alkoxysilanes, organosilazane compounds, and titanate compounds. A coupling agent etc. are mentioned. One type of surface treatment agent may be used alone, or two or more types may be used in combination.
 表面処理剤の市販品としては、例えば、信越化学工業社製「KBM403」(3-グリシドキシプロピルトリメトキシシラン)、信越化学工業社製「KBM803」(3-メルカプトプロピルトリメトキシシラン)、信越化学工業社製「KBE903」(3-アミノプロピルトリエトキシシラン)、信越化学工業社製「KBM573」(N-フェニル-3-アミノプロピルトリメトキシシラン)、信越化学工業社製「SZ-31」(ヘキサメチルジシラザン)、信越化学工業社製「KBM103」(フェニルトリメトキシシラン)、信越化学工業社製「KBM-4803」(長鎖エポキシ型シランカップリング剤)、信越化学工業社製「KBM-7103」(3,3,3-トリフルオロプロピルトリメトキシシラン)等が挙げられる。 Examples of commercially available surface treatment agents include "KBM403" (3-glycidoxypropyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd., "KBM803" (3-mercaptopropyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd., Shin-Etsu Chemical Industry Co., Ltd. "KBE903" (3-aminopropyltriethoxysilane), Shin-Etsu Chemical Co., Ltd. "KBM573" (N-phenyl-3-aminopropyltrimethoxysilane), Shin-Etsu Chemical Co., Ltd. "SZ-31" ( Hexamethyldisilazane), Shin-Etsu Chemical Co., Ltd. "KBM103" (phenyltrimethoxysilane), Shin-Etsu Chemical Co., Ltd. "KBM-4803" (long-chain epoxy type silane coupling agent), Shin-Etsu Chemical Co., Ltd. "KBM- 7103” (3,3,3-trifluoropropyltrimethoxysilane).
 表面処理剤による表面処理の程度は、(B)無機充填材の分散性向上の観点から、特定の範囲に収まることが好ましい。具体的には、無機充填材100質量%は、0.2質量%~5質量%の表面処理剤で表面処理されていることが好ましく、0.2質量%~3質量%の表面処理剤で表面処理されていることがより好ましく、0.3質量%~2質量%の表面処理剤で表面処理されていることがさらに好ましい。 From the viewpoint of improving the dispersibility of (B) the inorganic filler, the degree of surface treatment with the surface treatment agent is preferably within a specific range. Specifically, 100% by mass of the inorganic filler is preferably surface-treated with a surface treatment agent of 0.2% to 5% by mass, and a surface treatment agent of 0.2% to 3% by mass. It is more preferably surface-treated, and more preferably surface-treated with 0.3% by mass to 2% by mass of a surface treating agent.
 表面処理剤による表面処理の程度は、無機充填材の単位表面積当たりのカーボン量によって評価することができる。無機充填材の単位表面積当たりのカーボン量は、無機充填材の分散性向上の観点から、0.02mg/m以上が好ましく、0.1mg/m以上がより好ましく、0.2mg/m以上がさらに好ましい。一方、樹脂組成物の溶融粘度の上昇を抑制する観点から、1.0mg/m以下が好ましく、0.8mg/m以下がより好ましく、0.5mg/m以下がさらに好ましい。 The degree of surface treatment by the surface treatment agent can be evaluated by the amount of carbon per unit surface area of the inorganic filler. The amount of carbon per unit surface area of the inorganic filler is preferably 0.02 mg/m 2 or more, more preferably 0.1 mg/m 2 or more, and more preferably 0.2 mg/m 2 from the viewpoint of improving the dispersibility of the inorganic filler. The above is more preferable. On the other hand, from the viewpoint of suppressing an increase in melt viscosity of the resin composition, it is preferably 1.0 mg/m 2 or less, more preferably 0.8 mg/m 2 or less, and even more preferably 0.5 mg/m 2 or less.
 (B)無機充填材の単位表面積当たりのカーボン量は、表面処理後の無機充填材を溶剤(例えば、メチルエチルケトン(MEK))により洗浄処理した後に測定することができる。具体的には、溶剤として十分な量のMEKを表面処理剤で表面処理された無機充填材に加えて、25℃で5分間超音波洗浄する。上澄液を除去し、固形分を乾燥させた後、カーボン分析計を用いて無機充填材の単位表面積当たりのカーボン量を測定することができる。カーボン分析計としては、堀場製作所社製「EMIA-320V」等を使用することができる。 (B) The amount of carbon per unit surface area of the inorganic filler can be measured after the surface-treated inorganic filler is washed with a solvent (eg, methyl ethyl ketone (MEK)). Specifically, a sufficient amount of MEK as a solvent is added to the inorganic filler surface-treated with the surface treatment agent, and ultrasonic cleaning is performed at 25° C. for 5 minutes. After removing the supernatant liquid and drying the solid content, a carbon analyzer can be used to measure the amount of carbon per unit surface area of the inorganic filler. As a carbon analyzer, "EMIA-320V" manufactured by Horiba Ltd. can be used.
 樹脂組成物中の(B)無機充填材の量は、樹脂組成物中の不揮発成分100質量%に対して、好ましくは40質量%以上、より好ましくは50質量%以上、特に好ましくは60質量%以上であり、好ましくは95質量%以下、より好ましくは90質量%以下、特に好ましくは85質量%以下である。(B)無機充填材の量が前記範囲にある場合、樹脂組成物の硬化物の線熱膨張係数を小さくできるので、温度変化による膨張及び収縮を抑制して、ソルダーレジスト層の寸法安定性を高めたりクラックの形成を抑制したりできる。一般に、ソルダーレジスト層は厚いほど、膨張及び収縮の程度が大きい傾向がある。よって、前記のように硬化物の線熱膨張係数を小さくできることは、厚いソルダーレジスト層に生じ易い課題を解決できる点で、有用である。 The amount of the inorganic filler (B) in the resin composition is preferably 40% by mass or more, more preferably 50% by mass or more, and particularly preferably 60% by mass with respect to 100% by mass of non-volatile components in the resin composition. or more, preferably 95% by mass or less, more preferably 90% by mass or less, and particularly preferably 85% by mass or less. (B) When the amount of the inorganic filler is within the above range, the coefficient of linear thermal expansion of the cured product of the resin composition can be reduced, so expansion and contraction due to temperature changes are suppressed, and the dimensional stability of the solder resist layer is improved. can be increased and the formation of cracks can be suppressed. In general, the thicker the solder resist layer, the greater the tendency of expansion and contraction. Therefore, being able to reduce the coefficient of linear thermal expansion of the cured product as described above is useful in that it can solve problems that tend to occur in thick solder resist layers.
[5.(C)エラストマー]
 樹脂組成物は、上述した(A)~(B)成分に組み合わせて、任意の成分として、更に(C)エラストマーを含んでいてもよい。この(C)成分としての(C)エラストマーには、上述した(A)~(B)成分に該当するものは含めない。(C)エラストマーを含む樹脂組成物を用いる場合、硬化物の弾性率を効果的に抑制できるので、ソルダーレジスト層を備えるプリント配線板及び半導体チップパッケージの反りを効果的に抑制できる。このように反りを抑制できることは、ソルダーレジスト層が厚かったり、樹脂組成物中の(B)無機充填材が多かったりすることで、一般に反りが生じ易い場合に、特に有用である。
[5. (C) Elastomer]
The resin composition may further contain (C) an elastomer as an optional component in combination with the components (A) to (B) described above. The (C) elastomer as the (C) component does not include those corresponding to the above-described components (A) to (B). (C) When a resin composition containing an elastomer is used, the elastic modulus of the cured product can be effectively suppressed, so warping of the printed wiring board and the semiconductor chip package provided with the solder resist layer can be effectively suppressed. Being able to suppress warping in this way is particularly useful when the solder resist layer is thick or the resin composition contains a large amount of the inorganic filler (B), which generally tends to cause warping.
 (C)エラストマーは、柔軟性を有する樹脂であり、好ましくはゴム弾性を有する樹脂または他の成分と重合してゴム弾性を示す樹脂でありうる。ゴム弾性を有する樹脂としては、例えば、日本工業規格(JIS K7161)に準拠し、温度25℃、湿度40%RHにて、引っ張り試験を行った場合に、1GPa以下の弾性率を示す樹脂が挙げられる。この(C)エラストマーは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 (C) The elastomer is a flexible resin, preferably a resin having rubber elasticity or a resin that exhibits rubber elasticity by polymerizing with other components. Resins having rubber elasticity include, for example, resins exhibiting an elastic modulus of 1 GPa or less when subjected to a tensile test at a temperature of 25° C. and a humidity of 40% RH in accordance with Japanese Industrial Standards (JIS K7161). be done. This (C) elastomer may be used alone or in combination of two or more at any ratio.
 (C)エラストマーは、高分子量であることが好ましい。(C)エラストマーの数平均分子量(Mn)は、好ましくは1,000以上、より好ましくは1,500以上、更に好ましくは2,000以上、更に好ましくは3,000以上、特に好ましくは5,000以上である。上限は、好ましくは1,000,000以下、より好ましくは900,000以下である。数平均分子量(Mn)は、GPC(ゲル浸透クロマトグラフィー)を使用して測定されるポリスチレン換算の数平均分子量である。 (C) The elastomer preferably has a high molecular weight. (C) The number average molecular weight (Mn) of the elastomer is preferably 1,000 or more, more preferably 1,500 or more, still more preferably 2,000 or more, still more preferably 3,000 or more, and particularly preferably 5,000. That's it. The upper limit is preferably 1,000,000 or less, more preferably 900,000 or less. The number average molecular weight (Mn) is a polystyrene equivalent number average molecular weight measured using GPC (gel permeation chromatography).
 (C)エラストマーは、ガラス転移温度(Tg)が25℃以下の樹脂及び25℃以下で液状である樹脂から選択される1種以上であることが好ましい。ガラス転移温度(Tg)が25℃以下である樹脂のガラス転移温度は、好ましくは20℃以下、より好ましくは15℃以下である。ガラス転移温度の下限は特に限定されないが、通常-15℃以上でありうる。また、25℃で液状である樹脂は、好ましくは20℃以下で液状である樹脂、より好ましくは15℃以下で液状である樹脂である。ガラス転移温度は、DSC(示差走査熱量測定)により5℃/分の昇温速度で測定しうる。 (C) The elastomer is preferably one or more selected from resins having a glass transition temperature (Tg) of 25°C or less and resins that are liquid at 25°C or less. The glass transition temperature of the resin having a glass transition temperature (Tg) of 25° C. or lower is preferably 20° C. or lower, more preferably 15° C. or lower. Although the lower limit of the glass transition temperature is not particularly limited, it can usually be -15°C or higher. The resin that is liquid at 25°C is preferably a resin that is liquid at 20°C or lower, more preferably a resin that is liquid at 15°C or lower. The glass transition temperature can be measured by DSC (differential scanning calorimetry) at a heating rate of 5°C/min.
 (C)エラストマーとしては、分子内に、ポリブタジエン構造、ポリシロキサン構造、ポリ(メタ)アクリレート構造、ポリアルキレン構造、ポリアルキレンオキシ構造、ポリイソプレン構造、ポリイソブチレン構造、ポリカーボネート構造及びポリスチレン構造から選択される1種以上の構造を有する樹脂が好ましい。中でも、ポリブタジエン構造、ポリ(メタ)アクリレート構造、ポリアルキレンオキシ構造、ポリイソプレン構造、ポリイソブチレン構造、ポリカーボネート構造及びポリスチレン構造から選択される1種または2種以上の構造を有する樹脂がより好ましい。更には、ポリブタジエン構造、及びポリアルキレンオキシ構造から選択される1以上の構造を有する樹脂が更に好ましく、ポリブタジエン構造を有する樹脂が特に好ましい。「(メタ)アクリレート」とは、メタクリレート及びアクリレート並びにそれらの組み合わせを包含する用語である。これらの構造は、主鎖に含まれていてもよく、側鎖に含まれていてもよい。 (C) The elastomer has a structure selected from a polybutadiene structure, a polysiloxane structure, a poly(meth)acrylate structure, a polyalkylene structure, a polyalkyleneoxy structure, a polyisoprene structure, a polyisobutylene structure, a polycarbonate structure and a polystyrene structure in the molecule. Preferred are resins having one or more structures. Among them, resins having one or more structures selected from a polybutadiene structure, a poly(meth)acrylate structure, a polyalkyleneoxy structure, a polyisoprene structure, a polyisobutylene structure, a polycarbonate structure and a polystyrene structure are more preferable. Furthermore, a resin having one or more structures selected from a polybutadiene structure and a polyalkyleneoxy structure is more preferred, and a resin having a polybutadiene structure is particularly preferred. "(Meth)acrylate" is a term encompassing methacrylates and acrylates and combinations thereof. These structures may be contained in the main chain or may be contained in the side chain.
 (C)エラストマーは、(A)熱硬化性樹脂と反応できる官能基を有していてもよい。(C)エラストマーが(A)熱硬化性樹脂と反応する場合、樹脂組成物の硬化物の機械的強度を高めることができる。(A)熱硬化性樹脂と反応できる官能基には、加熱によって現れる官能基が包含される。(A)熱硬化性樹脂と反応できる官能基としては、例えば、ヒドロキシ基、カルボキシ基、酸無水物基、フェノール性水酸基、エポキシ基、イソシアネート基、ウレタン基及びマレイミド基からなる群から選択される1種以上の官能基である。中でも、当該官能基としては、ヒドロキシ基、酸無水物基、フェノール性水酸基、エポキシ基、イソシアネート基、ウレタン基及びマレイミド基が好ましく、ヒドロキシ基、酸無水物基、フェノール性水酸基、エポキシ基及びマレイミド基がより好ましく、フェノール性水酸基及びマレイミド基が特に好ましい。ただし、官能基を含む(C)エラストマーの数平均分子量(Mn)は、3,000以上であることが好ましい。 (C) The elastomer may have a functional group capable of reacting with (A) the thermosetting resin. When (C) the elastomer reacts with (A) the thermosetting resin, the mechanical strength of the cured product of the resin composition can be increased. (A) The functional group capable of reacting with the thermosetting resin includes a functional group that appears upon heating. (A) The functional group capable of reacting with the thermosetting resin is selected from the group consisting of, for example, a hydroxyl group, a carboxyl group, an acid anhydride group, a phenolic hydroxyl group, an epoxy group, an isocyanate group, a urethane group and a maleimide group. One or more functional groups. Among them, the functional group is preferably a hydroxy group, an acid anhydride group, a phenolic hydroxyl group, an epoxy group, an isocyanate group, a urethane group and a maleimide group, and a hydroxy group, an acid anhydride group, a phenolic hydroxyl group, an epoxy group and a maleimide group. groups are more preferred, and phenolic hydroxyl groups and maleimide groups are particularly preferred. However, the number average molecular weight (Mn) of the (C) elastomer containing functional groups is preferably 3,000 or more.
 (C)エラストマーの例としては、ポリブタジエン構造を含有する樹脂が挙げられる。ポリブタジエン構造は、主鎖に含まれていてもよく、側鎖に含まれていてもよい。ポリブタジエン構造は、一部又は全てが水素添加されていてもよい。ポリブタジエン構造を含有する樹脂を「ポリブタジエン樹脂」ということがある。ポリブタジエン樹脂の具体例としては、クレイバレー社製の「Ricon 130MA8」、「Ricon 130MA13」、「Ricon 130MA20」、「Ricon 131MA5」、「Ricon 131MA10」、「Ricon 131MA17」、「Ricon 131MA20」、「Ricon 184MA6」(酸無水物基含有ポリブタジエン)、日本曹達社製の「GQ-1000」(水酸基、カルボキシル基導入ポリブタジエン)、「G-1000」、「G-2000」、「G-3000」(両末端水酸基ポリブタジエン)、「GI-1000」、「GI-2000」、「GI-3000」(両末端水酸基水素化ポリブタジエン)、ナガセケムテックス社製の「FCA-061L」(水素化ポリブタジエン骨格エポキシ樹脂)等が挙げられる。また、ポリブタジエン樹脂の具体例としては、ヒドロキシル基末端ポリブタジエン、ジイソシアネート化合物及び四塩基酸無水物を原料とする線状ポリイミド(特開2006-37083号公報、国際公開第2008/153208号に記載のポリイミド)、フェノール性水酸基含有ブタジエン等が挙げられる。該ポリイミド樹脂のブタジエン構造の含有率は、好ましくは60質量%~95質量%、より好ましくは75質量%~85質量%である。該ポリイミド樹脂の詳細は、特開2006-37083号公報、国際公開第2008/153208号の記載を参酌することができ、この内容は本明細書に組み込まれる。 (C) Examples of elastomers include resins containing a polybutadiene structure. The polybutadiene structure may be contained in the main chain or may be contained in the side chain. A part or all of the polybutadiene structure may be hydrogenated. A resin containing a polybutadiene structure is sometimes called a "polybutadiene resin". Specific examples of polybutadiene resins include "Ricon 130MA8", "Ricon 130MA13", "Ricon 130MA20", "Ricon 131MA5", "Ricon 131MA10", "Ricon 131MA17", "Ricon 131MA20" and "Ricon 184MA6" (acid anhydride group-containing polybutadiene), Nippon Soda's "GQ-1000" (hydroxyl group- and carboxyl group-introduced polybutadiene), "G-1000", "G-2000", "G-3000" (both ends hydroxyl group polybutadiene), "GI-1000", "GI-2000", "GI-3000" (hydrogenated polybutadiene with both hydroxyl groups), "FCA-061L" manufactured by Nagase ChemteX Corporation (hydrogenated polybutadiene skeleton epoxy resin), etc. is mentioned. Further, specific examples of polybutadiene resins include linear polyimides made from hydroxyl group-terminated polybutadiene, diisocyanate compounds and tetrabasic acid anhydride (the polyimides described in JP-A-2006-37083 and WO 2008/153208). ), phenolic hydroxyl group-containing butadiene, and the like. The butadiene structure content of the polyimide resin is preferably 60% to 95% by mass, more preferably 75% to 85% by mass. Details of the polyimide resin can be referred to in JP-A-2006-37083 and WO 2008/153208, the contents of which are incorporated herein.
 (C)エラストマーの別の例としては、ポリ(メタ)アクリレート構造を含有する樹脂が挙げられる。ポリ(メタ)アクリレート構造を含有する樹脂を「ポリ(メタ)アクリル樹脂」ということがある。ポリ(メタ)アクリル樹脂としては、例えば、ナガセケムテックス社製のテイサンレジン、根上工業社製の「ME-2000」、「W-116.3」、「W-197C」、「KG-25」、「KG-3000」、東亞合成社製の「ARUFON UH-2000」等が挙げられる。 (C) Another example of the elastomer includes a resin containing a poly(meth)acrylate structure. A resin containing a poly(meth)acrylate structure is sometimes called a "poly(meth)acrylic resin". Examples of poly(meth)acrylic resins include Teisan Resin manufactured by Nagase ChemteX Corporation, and "ME-2000", "W-116.3", "W-197C" and "KG-25" manufactured by Negami Kogyo Co., Ltd. , "KG-3000", "ARUFON UH-2000" manufactured by Toagosei Co., Ltd., and the like.
 (C)エラストマーの更に別の例としては、ポリカーボネート構造を含有する樹脂が挙げられる。ポリカーボネート構造を含有する樹脂を「ポリカーボネート樹脂」ということがある。ポリカーボネート樹脂としては、例えば、三菱瓦斯化学社製の「FPC0220」、「FPC2136」、旭化成ケミカルズ社製の「T6002」、「T6001」(ポリカーボネートジオール)、クラレ社製の「C-1090」、「C-2090」、「C-3090」(ポリカーボネートジオール)等が挙げられる。また、ヒドロキシル基末端ポリカーボネート、ジイソシアネート化合物及び四塩基酸無水物を原料とする線状ポリイミドを使用してもよい。該ポリイミド樹脂のカーボネート構造の含有率は、好ましくは60質量%~95質量%、より好ましくは75質量%~85質量%である。該ポリイミド樹脂の詳細は、国際公開第2016/129541号の記載を参酌することができ、この内容は本明細書に組み込まれる。 (C) Still another example of the elastomer includes a resin containing a polycarbonate structure. A resin containing a polycarbonate structure is sometimes called a "polycarbonate resin". Examples of polycarbonate resins include "FPC0220" and "FPC2136" manufactured by Mitsubishi Gas Chemical Co., Ltd., "T6002" and "T6001" (polycarbonate diol) manufactured by Asahi Kasei Chemicals, "C-1090" and "C -2090” and “C-3090” (polycarbonate diol). Linear polyimides made from hydroxyl-terminated polycarbonates, diisocyanate compounds and tetrabasic acid anhydrides may also be used. The carbonate structure content of the polyimide resin is preferably 60% to 95% by mass, more preferably 75% to 85% by mass. Details of the polyimide resin can be referred to in International Publication No. 2016/129541, the content of which is incorporated herein.
 (C)エラストマーの更に別の例としては、ポリシロキサン構造を含有する樹脂が挙げられる。ポリシロキサン構造を含有する樹脂を「シロキサン樹脂」ということがある。シロキサン樹脂としては、例えば、信越シリコーン社製の「SMP-2006」、「SMP-2003PGMEA」、「SMP-5005PGMEA」、アミン基末端ポリシロキサンおよび四塩基酸無水物を原料とする線状ポリイミド(国際公開第2010/053185号、特開2002-12667号公報及び特開2000-319386号公報等)等が挙げられる。 (C) Still another example of the elastomer includes a resin containing a polysiloxane structure. A resin containing a polysiloxane structure is sometimes called a "siloxane resin". Examples of siloxane resins include "SMP-2006", "SMP-2003PGMEA" and "SMP-5005PGMEA" manufactured by Shin-Etsu Silicone Co., Ltd., linear polyimides made from amine-terminated polysiloxane and tetrabasic acid anhydride (International Publication No. 2010/053185, JP-A-2002-12667 and JP-A-2000-319386) and the like.
 (C)エラストマーの更に別の例としては、ポリアルキレン構造又はポリアルキレンオキシ構造を含有する樹脂が挙げられる。ポリアルキレン構造を含有する樹脂を「アルキレン樹脂」ということがあり、ポリアルキレンオキシ構造を含有する樹脂を「アルキレンオキシ樹脂」ということがある。ポリアルキレン構造及びポリアルキレンオキシ構造の炭素原子数は、2~15が好ましく、3~10がより好ましく、5~8が更に好ましい。アルキレン樹脂及びアルキレンオキシ樹脂の具体例としては、旭化成せんい社製の「PTXG-1000」、「PTXG-1800」、Designer Molecules社製の「BMI-3000」等が挙げられる。 (C) Still another example of the elastomer includes a resin containing a polyalkylene structure or a polyalkyleneoxy structure. A resin containing a polyalkylene structure is sometimes called an "alkylene resin", and a resin containing a polyalkyleneoxy structure is sometimes called an "alkyleneoxy resin". The number of carbon atoms in the polyalkylene structure and polyalkyleneoxy structure is preferably 2-15, more preferably 3-10, and even more preferably 5-8. Specific examples of alkylene resins and alkyleneoxy resins include "PTXG-1000" and "PTXG-1800" manufactured by Asahi Kasei Fibers, and "BMI-3000" manufactured by Designer Molecules.
 (C)エラストマーの更に別の例としては、ポリイソプレン構造を含有する樹脂が挙げられる。ポリイソプレン構造を含有する樹脂を「イソプレン樹脂」ということがある。イソプレン樹脂の具体例としては、クラレ社製の「KL-610」、「KL613」等が挙げられる。 (C) Another example of the elastomer includes a resin containing a polyisoprene structure. A resin containing a polyisoprene structure is sometimes called an "isoprene resin". Specific examples of the isoprene resin include “KL-610” and “KL613” manufactured by Kuraray Co., Ltd.
 (C)エラストマーの更に別の例としては、ポリイソブチレン構造を含有する樹脂が挙げられる。ポリイソブチレン構造を含有する樹脂を「イソブチレン樹脂」ということがある。イソブチレン樹脂の具体例としては、カネカ社製の「SIBSTAR-073T」(スチレン-イソブチレン-スチレントリブロック共重合体)、「SIBSTAR-042D」(スチレン-イソブチレンジブロック共重合体)等が挙げられる。 (C) Still another example of the elastomer includes a resin containing a polyisobutylene structure. A resin containing a polyisobutylene structure is sometimes called an "isobutylene resin". Specific examples of the isobutylene resin include "SIBSTAR-073T" (styrene-isobutylene-styrene triblock copolymer) and "SIBSTAR-042D" (styrene-isobutylene diblock copolymer) manufactured by Kaneka Corporation.
 (C)エラストマーの更に別の例としては、ポリスチレン構造を含有する樹脂が挙げられる。ポリスチレン構造を含有する樹脂を「スチレン樹脂」ということがある。スチレン樹脂は、スチレン単位に組み合わせて、前記のスチレン単位とは異なる任意の繰り返し単位を含む共重合体であってもよく、水添ポリスチレン樹脂であってもよい。スチレン樹脂としては、例えば、スチレン-ブタジエン-スチレンブロック共重合体(SBS)、スチレン-イソプレン-スチレンブロック共重合体(SIS)、スチレン-エチレン-ブチレン-スチレンブロック共重合体(SEBS)、スチレン-エチレン-プロピレン-スチレンブロック共重合体(SEPS)、スチレン-エチレン-エチレン-プロピレン-スチレンブロック共重合体(SEEPS)、スチレン-ブタジエン-ブチレン-スチレンブロック共重合体(SBBS)、スチレン-ブタジエンジブロック共重合体、水素化スチレン-ブタジエンブロック共重合体、水素化スチレン-イソプレンブロック共重合体、水素化スチレン-ブタジエンランダム共重合体、スチレン-無水マレイン酸共重合体等が挙げられる。スチレン樹脂の具体例としては、水添スチレン系熱可塑性エラストマー「H1041」、「タフテックH1043」、「タフテックP2000」、「タフテックMP10」(旭化成社製);エポキシ化スチレン-ブタジエン熱可塑性エラストマー「エポフレンドAT501」、「CT310」(ダイセル社製);ヒドロキシル基を有する変成スチレン系エラストマー「セプトンHG252」(クラレ社製);カルボキシル基を有する変性スチレン系エラストマー「タフテックN503M」、アミノ基を有する変性スチレン系エラストマー「タフテックN501」、酸無水物基を有する変性スチレン系エラストマー「タフテックM1913」(旭化成ケミカルズ社製);未変性スチレン系エラストマー「セプトンS8104」(クラレ社製);スチレン-エチレン/ブチレン-スチレンブロック共重合体「FG1924」(Kraton社製)、「EF-40」(CRAY VALLEY社製)が挙げられる。 (C) Another example of the elastomer includes a resin containing a polystyrene structure. A resin containing a polystyrene structure is sometimes called a "styrene resin". The styrene resin may be a copolymer containing any repeating unit different from the styrene unit in combination with the styrene unit, or may be a hydrogenated polystyrene resin. Styrene resins include, for example, styrene-butadiene-styrene block copolymer (SBS), styrene-isoprene-styrene block copolymer (SIS), styrene-ethylene-butylene-styrene block copolymer (SEBS), styrene- Ethylene-propylene-styrene block copolymer (SEPS), styrene-ethylene-ethylene-propylene-styrene block copolymer (SEEPS), styrene-butadiene-butylene-styrene block copolymer (SBBS), styrene-butadiene diblock copolymers, hydrogenated styrene-butadiene block copolymers, hydrogenated styrene-isoprene block copolymers, hydrogenated styrene-butadiene random copolymers, styrene-maleic anhydride copolymers, and the like. Specific examples of styrene resins include hydrogenated styrene thermoplastic elastomers "H1041", "Tuftec H1043", "Tuftec P2000" and "Tuftec MP10" (manufactured by Asahi Kasei Corporation); epoxidized styrene-butadiene thermoplastic elastomer "Epofriend AT501", "CT310" (manufactured by Daicel); modified styrene elastomer having hydroxyl group "Septon HG252" (manufactured by Kuraray); modified styrenic elastomer having carboxyl group "Tuftec N503M", modified styrene having amino group Elastomer "Tuftec N501", modified styrene elastomer "Tuftec M1913" (manufactured by Asahi Kasei Chemicals Corporation) having an acid anhydride group; unmodified styrene elastomer "Septon S8104" (manufactured by Kuraray Co., Ltd.); styrene-ethylene/butylene-styrene block Examples include copolymers "FG1924" (manufactured by Kraton) and "EF-40" (manufactured by Cray Valley).
 (C)エラストマーは、当該(C)エラストマー以外の樹脂成分と相溶して樹脂組成物及びその硬化物に含まれていてもよい。通常、上述した例示物はいずれも、(A)熱硬化性樹脂等の樹脂成分に相溶できる。他方、(C)エラストマーは、当該(C)エラストマー以外の樹脂成分と相溶せず粒子として樹脂組成物及びその硬化物に含まれていてもよい。そのような粒子状の(C)エラストマーは、一般に、有機充填材として機能しうる。粒子状の(C)エラストマーは、通常、(C)エラストマー以外の樹脂成分と相溶できるものと同じ作用を発揮できる。粒子状の(C)エラストマーとしては、例えば、ダウ・ケミカル日本社製の「EXL2655」、アイカ工業社製の「AC3401N」、「AC3816N」等が挙げられる。 The (C) elastomer may be compatible with resin components other than the (C) elastomer and may be contained in the resin composition and its cured product. All of the examples described above are generally compatible with (A) a resin component such as a thermosetting resin. On the other hand, the (C) elastomer may be contained in the resin composition and its cured product as particles without being compatible with the resin components other than the (C) elastomer. Such particulate (C) elastomers can generally function as organic fillers. The particulate (C) elastomer can usually exhibit the same function as that which is compatible with resin components other than the (C) elastomer. Examples of the particulate elastomer (C) include "EXL2655" manufactured by Dow Chemical Japan, "AC3401N" and "AC3816N" manufactured by Aica Kogyo Co., Ltd., and the like.
 (C)エラストマーは、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 (C) Elastomers may be used singly or in combination of two or more.
 (C)エラストマーの量は、樹脂組成物中の不揮発成分100質量%に対して、好ましくは1質量%以上、より好ましくは2質量%以上、特に好ましくは4質量%以上であり、好ましくは30質量%以下、より好ましくは25質量%以下、さらに好ましくは20質量%以下である。(C)エラストマーの量が前記範囲にある場合、樹脂組成物の最低溶融粘度を低くしたり、ソルダーレジスト層を備えるプリント配線板及び半導体チップパッケージの反りを効果的に抑制したりできる。 (C) The amount of elastomer is preferably 1% by mass or more, more preferably 2% by mass or more, particularly preferably 4% by mass or more, and preferably 30% by mass, based on 100% by mass of non-volatile components in the resin composition. % by mass or less, more preferably 25% by mass or less, and even more preferably 20% by mass or less. (C) When the amount of the elastomer is within the above range, it is possible to lower the minimum melt viscosity of the resin composition and to effectively suppress the warpage of printed wiring boards and semiconductor chip packages provided with a solder resist layer.
 (C)エラストマーの量は、樹脂組成物中の樹脂成分100質量%に対して、好ましくは5質量%以上、より好ましくは10質量%以上、特に好ましくは20質量%以上であり、好ましくは80質量%以下、より好ましくは70質量%以下、さらに好ましくは65質量%以下である。(C)エラストマーの量が前記範囲にある場合、樹脂組成物の最低溶融粘度を低くしたり、ソルダーレジスト層を備えるプリント配線板及び半導体チップパッケージの反りを効果的に抑制したりできる。 (C) The amount of elastomer is preferably 5% by mass or more, more preferably 10% by mass or more, particularly preferably 20% by mass or more, and preferably 80% by mass, based on 100% by mass of the resin component in the resin composition. % by mass or less, more preferably 70% by mass or less, and even more preferably 65% by mass or less. (C) When the amount of the elastomer is within the above range, it is possible to lower the minimum melt viscosity of the resin composition and to effectively suppress the warpage of printed wiring boards and semiconductor chip packages provided with a solder resist layer.
[6.(D)有機着色剤]
 樹脂組成物は、上述した(A)~(C)成分に組み合わせて、任意の成分として、更に(D)有機着色剤を含んでいてもよい。この(D)成分としての(D)有機着色剤には、上述した(A)~(C)成分に該当するものは含めない。(D)有機着色剤を含む樹脂組成物を用いる場合、ソルダーレジスト層を所望の色に呈色させることができる。
[6. (D) Organic Colorant]
The resin composition may further contain (D) an organic colorant as an optional component in combination with the components (A) to (C) described above. The (D) organic coloring agent as the (D) component does not include those corresponding to the above-described components (A) to (C). (D) When a resin composition containing an organic coloring agent is used, the solder resist layer can be colored in a desired color.
 (D)有機着色剤としては、顔料を用いてもよく、染料を用いてもよく、これらを組み合わせて用いてもよいが、顔料が好ましい。顔料は着色能力が高いので、ソルダーレジスト層を効果的に呈色させることができる。 (D) As the organic colorant, a pigment may be used, a dye may be used, or a combination thereof may be used, but a pigment is preferred. Since the pigment has a high coloring ability, it can effectively color the solder resist layer.
 顔料の例を挙げると、青色顔料としては、例えば、フタロシアニン系顔料、アントラキノン系顔料、ジオキサジン系顔料などが挙げられる。黄色顔料としては、例えば、モノアゾ系顔料、ジスアゾ系顔料、縮合アゾ系顔料、ベンズイミダゾロン系顔料、イソインドリノン系顔料、アントラキノン系顔料などが挙げられる。赤色顔料としては、例えば、モノアゾ系顔料、ジスアゾ系顔料、アゾレーキ系顔料、ベンズイミダゾロン系顔料、ペリレン系顔料、ジケトピロロピロール系顔料、縮合アゾ系顔料、アントラキノン系顔料、キナクリドン系顔料などが挙げられる。緑色顔料としては、例えば、フタロシアニン系顔料などが挙げられる。 Examples of pigments include blue pigments such as phthalocyanine-based pigments, anthraquinone-based pigments, and dioxazine-based pigments. Examples of yellow pigments include monoazo pigments, disazo pigments, condensed azo pigments, benzimidazolone pigments, isoindolinone pigments, and anthraquinone pigments. Examples of red pigments include monoazo pigments, disazo pigments, azo lake pigments, benzimidazolone pigments, perylene pigments, diketopyrrolopyrrole pigments, condensed azo pigments, anthraquinone pigments, and quinacridone pigments. mentioned. Examples of green pigments include phthalocyanine pigments.
 (D)有機着色剤は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 (D) The organic colorants may be used singly or in combination of two or more.
 (D)有機着色剤の量は、樹脂組成物中の不揮発成分100質量%に対して、好ましくは0.0001質量%以上、より好ましくは0.001質量%以上、特に好ましくは0.01質量%以上であり、好ましくは10質量%以下、より好ましくは5質量%以下、更に好ましくは1質量%以下、特に好ましくは0.3質量%以下である。 (D) The amount of the organic coloring agent is preferably 0.0001% by mass or more, more preferably 0.001% by mass or more, and particularly preferably 0.01% by mass, based on 100% by mass of non-volatile components in the resin composition. % or more, preferably 10% by mass or less, more preferably 5% by mass or less, even more preferably 1% by mass or less, and particularly preferably 0.3% by mass or less.
 (D)有機着色剤の量は、樹脂組成物中の樹脂成分100質量%に対して、好ましくは0.001質量%以上、より好ましくは0.01質量%以上、特に好ましくは0.1質量%以上であり、好ましくは10質量%以下、より好ましくは5質量%以下、更に好ましくは1質量%以下である。 (D) The amount of the organic coloring agent is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, and particularly preferably 0.1% by mass with respect to 100% by mass of the resin component in the resin composition. % or more, preferably 10% by mass or less, more preferably 5% by mass or less, and even more preferably 1% by mass or less.
[7.(E)熱可塑性樹脂]
 樹脂組成物は、上述した(A)~(D)成分に組み合わせて、任意の成分として、更に(E)熱可塑性樹脂を含んでいてもよい。この(E)成分としての(E)熱可塑性樹脂には、上述した(A)~(D)成分に該当するものは含めない。
[7. (E) thermoplastic resin]
The resin composition may further contain (E) a thermoplastic resin as an optional component in combination with the above components (A) to (D). The (E) thermoplastic resin as the (E) component does not include those corresponding to the above-described components (A) to (D).
 (E)熱可塑性樹脂としては、例えば、フェノキシ樹脂、ポリビニルアセタール樹脂、ポリオレフィン樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリフェニレンエーテル樹脂、ポリエーテルエーテルケトン樹脂、ポリエステル樹脂等が挙げられ、フェノキシ樹脂が好ましい。(E)熱可塑性樹脂は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 (E) Thermoplastic resins include, for example, phenoxy resins, polyvinyl acetal resins, polyolefin resins, polyimide resins, polyamideimide resins, polyetherimide resins, polysulfone resins, polyethersulfone resins, polyphenylene ether resins, and polyetheretherketone resins. , polyester resins, etc., and phenoxy resins are preferred. (E) The thermoplastic resin may be used alone or in combination of two or more.
 フェノキシ樹脂としては、例えば、ビスフェノールA骨格、ビスフェノールF骨格、ビスフェノールS骨格、ビスフェノールアセトフェノン骨格、ノボラック骨格、ビフェニル骨格、フルオレン骨格、ジシクロペンタジエン骨格、ノルボルネン骨格、ナフタレン骨格、アントラセン骨格、アダマンタン骨格、テルペン骨格、及びトリメチルシクロヘキサン骨格からなる群から選択される1種以上の骨格を有するフェノキシ樹脂が挙げられる。フェノキシ樹脂の末端は、フェノール性水酸基、エポキシ基等のいずれの官能基でもよい。フェノキシ樹脂は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。フェノキシ樹脂の具体例としては、三菱ケミカル社製の「1256」及び「4250」(いずれもビスフェノールA骨格含有フェノキシ樹脂)、「YX8100」(ビスフェノールS骨格含有フェノキシ樹脂)、及び「YX6954」(ビスフェノールアセトフェノン骨格含有フェノキシ樹脂)が挙げられ、その他にも、日鉄ケミカル&マテリアル社製の「FX280」及び「FX293」、三菱ケミカル社製の「YL7500BH30」、「YX6954BH30」、「YX7553」、「YX7553BH30」、「YL7769BH30」、「YL6794」、「YL7213」、「YL7290」及び「YL7482」等が挙げられる。 Examples of phenoxy resins include bisphenol A skeleton, bisphenol F skeleton, bisphenol S skeleton, bisphenolacetophenone skeleton, novolac skeleton, biphenyl skeleton, fluorene skeleton, dicyclopentadiene skeleton, norbornene skeleton, naphthalene skeleton, anthracene skeleton, adamantane skeleton, and terpene. and a phenoxy resin having one or more skeletons selected from the group consisting of a trimethylcyclohexane skeleton. The terminal of the phenoxy resin may be any functional group such as a phenolic hydroxyl group or an epoxy group. A phenoxy resin may be used individually by 1 type, and may be used in combination of 2 or more types. Specific examples of phenoxy resins include Mitsubishi Chemical's "1256" and "4250" (both phenoxy resins containing bisphenol A skeleton), "YX8100" (phenoxy resin containing bisphenol S skeleton), and "YX6954" (bisphenolacetophenone). Skeleton-containing phenoxy resin), and in addition, "FX280" and "FX293" manufactured by Nippon Steel Chemical & Materials Co., Ltd., "YL7500BH30", "YX6954BH30", "YX7553", "YX7553BH30" manufactured by Mitsubishi Chemical Corporation, Examples include "YL7769BH30", "YL6794", "YL7213", "YL7290" and "YL7482".
 ポリビニルアセタール樹脂としては、例えば、ポリビニルホルマール樹脂、ポリビニルブチラール樹脂が挙げられ、ポリビニルブチラール樹脂が好ましい。ポリビニルアセタール樹脂の具体例としては、例えば、電気化学工業社製の「電化ブチラール4000-2」、「電化ブチラール5000-A」、「電化ブチラール6000-C」、「電化ブチラール6000-EP」、積水化学工業社製のエスレックBHシリーズ、BXシリーズ(例えばBX-5Z)、KSシリーズ(例えばKS-1)、BLシリーズ、BMシリーズ等が挙げられる。 Examples of polyvinyl acetal resins include polyvinyl formal resins and polyvinyl butyral resins, with polyvinyl butyral resins being preferred. Specific examples of polyvinyl acetal resins include Denka Butyral 4000-2, Denka Butyral 5000-A, Denka Butyral 6000-C, Denka Butyral 6000-EP, and Sekisui. S-lec BH series, BX series (for example, BX-5Z), KS series (for example, KS-1), BL series, BM series manufactured by Kagaku Kogyo Co., Ltd. may be mentioned.
 ポリイミド樹脂の具体例としては、新日本理化社製の「リカコートSN20」及び「リカコートPN20」が挙げられる。 Specific examples of polyimide resins include "Ricacoat SN20" and "Ricacoat PN20" manufactured by Shin Nippon Rika.
 ポリアミドイミド樹脂の具体例としては、東洋紡社製の「バイロマックスHR11NN」及び「バイロマックスHR16NN」が挙げられる。ポリアミドイミド樹脂の具体例としてはまた、日立化成工業社製の「KS9100」、「KS9300」(ポリシロキサン骨格含有ポリアミドイミド)等の変性ポリアミドイミドが挙げられる。 Specific examples of polyamide-imide resins include "Vylomax HR11NN" and "Vylomax HR16NN" manufactured by Toyobo. Specific examples of polyamideimide resins include modified polyamideimides such as "KS9100" and "KS9300" (polysiloxane skeleton-containing polyamideimides) manufactured by Hitachi Chemical Co., Ltd.
 ポリエーテルスルホン樹脂の具体例としては、住友化学社製の「PES5003P」等が挙げられる。ポリフェニレンエーテル樹脂の具体例としては、三菱ガス化学社製のオリゴフェニレンエーテル・スチレン樹脂「OPE-2St 1200」等が挙げられる。ポリエーテルエーテルケトン樹脂の具体例としては、住友化学社製の「スミプロイK」等が挙げられる。ポリエーテルイミド樹脂の具体例としては、GE社製の「ウルテム」等が挙げられる。 Specific examples of polyethersulfone resin include "PES5003P" manufactured by Sumitomo Chemical Co., Ltd. Specific examples of the polyphenylene ether resin include oligophenylene ether/styrene resin "OPE-2St 1200" manufactured by Mitsubishi Gas Chemical Company. Specific examples of the polyetheretherketone resin include "Sumiproy K" manufactured by Sumitomo Chemical Co., Ltd., and the like. Specific examples of the polyetherimide resin include "Ultem" manufactured by GE.
 ポリスルホン樹脂の具体例としては、ソルベイアドバンストポリマーズ社製のポリスルホン「P1700」、「P3500」等が挙げられる。 Specific examples of polysulfone resins include polysulfone "P1700" and "P3500" manufactured by Solvay Advanced Polymers.
 ポリオレフィン樹脂としては、例えば低密度ポリエチレン、超低密度ポリエチレン、高密度ポリエチレン、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸エチル共重合体、エチレン-アクリル酸メチル共重合体等のエチレン系共重合樹脂等が挙げられる。 Examples of polyolefin resins include ethylene-based copolymers such as low-density polyethylene, ultra-low-density polyethylene, high-density polyethylene, ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, and ethylene-methyl acrylate copolymer. Resin etc. are mentioned.
 ポリエステル樹脂としては、例えばポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリブチレンナフタレート樹脂、ポリトリメチレンテレフタレート樹脂、ポリトリメチレンナフタレート樹脂、ポリシクロヘキサンジメチルテレフタレート樹脂等が挙げられる。 Examples of polyester resins include polyethylene terephthalate resin, polyethylene naphthalate resin, polybutylene terephthalate resin, polybutylene naphthalate resin, polytrimethylene terephthalate resin, polytrimethylene naphthalate resin, polycyclohexanedimethyl terephthalate resin, and the like.
 (E)熱可塑性樹脂の重量平均分子量(Mw)は、好ましくは5,000より大きく、より好ましくは8,000以上、さらに好ましくは10,000以上、特に好ましくは20,000以上であり、好ましくは100,000以下、より好ましくは70,000以下、さらに好ましくは60,000以下、特に好ましくは50,000以下である。 (E) The weight average molecular weight (Mw) of the thermoplastic resin is preferably greater than 5,000, more preferably 8,000 or more, still more preferably 10,000 or more, particularly preferably 20,000 or more, and preferably is 100,000 or less, more preferably 70,000 or less, still more preferably 60,000 or less, and particularly preferably 50,000 or less.
 (E)熱可塑性樹脂の量は、樹脂組成物中の不揮発成分100質量%に対して、好ましくは0.1質量%以上、より好ましくは0.5質量%以上、特に好ましくは1.0質量%以上であり、好ましくは10質量%以下、より好ましくは8質量%以下、特に好ましくは5質量%以下である。 (E) The amount of the thermoplastic resin is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and particularly preferably 1.0% by mass, based on 100% by mass of the non-volatile components in the resin composition. % or more, preferably 10% by mass or less, more preferably 8% by mass or less, and particularly preferably 5% by mass or less.
 (E)熱可塑性樹脂の量は、樹脂組成物中の樹脂成分100質量%に対して、好ましくは1質量%以上、より好ましくは5質量%以上、特に好ましくは10質量%以上であり、好ましくは50質量%以下、より好ましくは40質量%以下、特に好ましくは30質量%以下である。 (E) The amount of the thermoplastic resin is preferably 1% by mass or more, more preferably 5% by mass or more, and particularly preferably 10% by mass or more, based on 100% by mass of the resin component in the resin composition. is 50% by mass or less, more preferably 40% by mass or less, and particularly preferably 30% by mass or less.
[8.(F)硬化促進剤]
 樹脂組成物は、上述した(A)~(E)成分に組み合わせて、任意の成分として、更に(F)硬化促進剤を含んでいてもよい。この(F)成分としての(F)硬化促進剤には、上述した(A)~(E)成分に該当するものは含めない。(F)硬化促進剤は、(A-1)エポキシ樹脂の硬化を促進させる硬化触媒としての機能を有する。
[8. (F) Curing accelerator]
The resin composition may further contain (F) a curing accelerator as an optional component in combination with the components (A) to (E) described above. The (F) curing accelerator as the (F) component does not include those corresponding to the above-described components (A) to (E). (F) The curing accelerator functions as a curing catalyst that accelerates the curing of the (A-1) epoxy resin.
 (F)硬化促進剤としては、例えば、リン系硬化促進剤、ウレア系硬化促進剤、グアニジン系硬化促進剤、イミダゾール系硬化促進剤、金属系硬化促進剤、アミン系硬化促進剤等が挙げられる。中でも、イミダゾール系硬化促進剤が好ましい。(F)硬化促進剤は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 Examples of (F) curing accelerators include phosphorus curing accelerators, urea curing accelerators, guanidine curing accelerators, imidazole curing accelerators, metal curing accelerators, and amine curing accelerators. . Among them, imidazole-based curing accelerators are preferred. (F) The curing accelerator may be used alone or in combination of two or more.
 リン系硬化促進剤としては、例えば、テトラブチルホスホニウムブロマイド、テトラブチルホスホニウムクロライド、テトラブチルホスホニウムアセテート、テトラブチルホスホニウムデカノエート、テトラブチルホスホニウムラウレート、ビス(テトラブチルホスホニウム)ピロメリテート、テトラブチルホスホニウムハイドロジェンヘキサヒドロフタレート、テトラブチルホスホニウム2,6-ビス[(2-ヒドロキシ-5-メチルフェニル)メチル]-4-メチルフェノラート、ジ-tert-ブチルジメチルホスホニウムテトラフェニルボレート等の脂肪族ホスホニウム塩;メチルトリフェニルホスホニウムブロマイド、エチルトリフェニルホスホニウムブロマイド、プロピルトリフェニルホスホニウムブロマイド、ブチルトリフェニルホスホニウムブロマイド、ベンジルトリフェニルホスホニウムクロライド、テトラフェニルホスホニウムブロマイド、p-トリルトリフェニルホスホニウムテトラ-p-トリルボレート、テトラフェニルホスホニウムテトラフェニルボレート、テトラフェニルホスホニウムテトラp-トリルボレート、トリフェニルエチルホスホニウムテトラフェニルボレート、トリス(3-メチルフェニル)エチルホスホニウムテトラフェニルボレート、トリス(2-メトキシフェニル)エチルホスホニウムテトラフェニルボレート、(4-メチルフェニル)トリフェニルホスホニウムチオシアネート、テトラフェニルホスホニウムチオシアネート、ブチルトリフェニルホスホニウムチオシアネート等の芳香族ホスホニウム塩;トリフェニルホスフィン・トリフェニルボラン等の芳香族ホスフィン・ボラン複合体;トリフェニルホスフィン・p-ベンゾキノン付加反応物等の芳香族ホスフィン・キノン付加反応物;トリブチルホスフィン、トリ-tert-ブチルホスフィン、トリオクチルホスフィン、ジ-tert-ブチル(2-ブテニル)ホスフィン、ジ-tert-ブチル(3-メチル-2-ブテニル)ホスフィン、トリシクロヘキシルホスフィン等の脂肪族ホスフィン;ジブチルフェニルホスフィン、ジ-tert-ブチルフェニルホスフィン、メチルジフェニルホスフィン、エチルジフェニルホスフィン、ブチルジフェニルホスフィン、ジフェニルシクロヘキシルホスフィン、トリフェニルホスフィン、トリ-o-トリルホスフィン、トリ-m-トリルホスフィン、トリ-p-トリルホスフィン、トリス(4-エチルフェニル)ホスフィン、トリス(4-プロピルフェニル)ホスフィン、トリス(4-イソプロピルフェニル)ホスフィン、トリス(4-ブチルフェニル)ホスフィン、トリス(4-tert-ブチルフェニル)ホスフィン、トリス(2,4-ジメチルフェニル)ホスフィン、トリス(2,5-ジメチルフェニル)ホスフィン、トリス(2,6-ジメチルフェニル)ホスフィン、トリス(3,5-ジメチルフェニル)ホスフィン、トリス(2,4,6-トリメチルフェニル)ホスフィン、トリス(2,6-ジメチル-4-エトキシフェニル)ホスフィン、トリス(2-メトキシフェニル)ホスフィン、トリス(4-メトキシフェニル)ホスフィン、トリス(4-エトキシフェニル)ホスフィン、トリス(4-tert-ブトキシフェニル)ホスフィン、ジフェニル-2-ピリジルホスフィン、1,2-ビス(ジフェニルホスフィノ)エタン、1,3-ビス(ジフェニルホスフィノ)プロパン、1,4-ビス(ジフェニルホスフィノ)ブタン、1,2-ビス(ジフェニルホスフィノ)アセチレン、2,2’-ビス(ジフェニルホスフィノ)ジフェニルエーテル等の芳香族ホスフィン等が挙げられる。 Phosphorus curing accelerators include, for example, tetrabutylphosphonium bromide, tetrabutylphosphonium chloride, tetrabutylphosphonium acetate, tetrabutylphosphonium decanoate, tetrabutylphosphonium laurate, bis(tetrabutylphosphonium) pyromellitate, tetrabutylphosphonium hydro Aliphatic phosphonium salts such as genhexahydrophthalate, tetrabutylphosphonium 2,6-bis[(2-hydroxy-5-methylphenyl)methyl]-4-methylphenolate, di-tert-butyldimethylphosphonium tetraphenylborate; methyltriphenylphosphonium bromide, ethyltriphenylphosphonium bromide, propyltriphenylphosphonium bromide, butyltriphenylphosphonium bromide, benzyltriphenylphosphonium chloride, tetraphenylphosphonium bromide, p-tolyltriphenylphosphonium tetra-p-tolylborate, tetraphenyl phosphonium tetraphenylborate, tetraphenylphosphonium tetra-p-tolylborate, triphenylethylphosphonium tetraphenylborate, tris(3-methylphenyl)ethylphosphonium tetraphenylborate, tris(2-methoxyphenyl)ethylphosphonium tetraphenylborate, (4 -methylphenyl)triphenylphosphonium thiocyanate, tetraphenylphosphonium thiocyanate, aromatic phosphonium salts such as butyltriphenylphosphonium thiocyanate; aromatic phosphine/borane complexes such as triphenylphosphine/triphenylborane; triphenylphosphine/p-benzoquinone Aromatic phosphine/quinone addition reaction products such as addition reaction products; 2-butenyl)phosphine, aliphatic phosphines such as tricyclohexylphosphine; -tolylphosphine, tri-m-tolylphosphine, tri-p-tri phosphine, tris(4-ethylphenyl)phosphine, tris(4-propylphenyl)phosphine, tris(4-isopropylphenyl)phosphine, tris(4-butylphenyl)phosphine, tris(4-tert-butylphenyl)phosphine, tris(2,4-dimethylphenyl)phosphine, tris(2,5-dimethylphenyl)phosphine, tris(2,6-dimethylphenyl)phosphine, tris(3,5-dimethylphenyl)phosphine, tris(2,4, 6-trimethylphenyl)phosphine, tris(2,6-dimethyl-4-ethoxyphenyl)phosphine, tris(2-methoxyphenyl)phosphine, tris(4-methoxyphenyl)phosphine, tris(4-ethoxyphenyl)phosphine, tris (4-tert-butoxyphenyl)phosphine, diphenyl-2-pyridylphosphine, 1,2-bis(diphenylphosphino)ethane, 1,3-bis(diphenylphosphino)propane, 1,4-bis(diphenylphosphino) ) aromatic phosphines such as butane, 1,2-bis(diphenylphosphino)acetylene, and 2,2'-bis(diphenylphosphino)diphenyl ether.
 ウレア系硬化促進剤としては、例えば、1,1-ジメチル尿素;1,1,3-トリメチル尿素、3-エチル-1,1-ジメチル尿素、3-シクロヘキシル-1,1-ジメチル尿素、3-シクロオクチル-1,1-ジメチル尿素等の脂肪族ジメチルウレア;3-フェニル-1,1-ジメチル尿素、3-(4-クロロフェニル)-1,1-ジメチル尿素、3-(3,4-ジクロロフェニル)-1,1-ジメチル尿素、3-(3-クロロ-4-メチルフェニル)-1,1-ジメチル尿素、3-(2-メチルフェニル)-1,1-ジメチル尿素、3-(4-メチルフェニル)-1,1-ジメチル尿素、3-(3,4-ジメチルフェニル)-1,1-ジメチル尿素、3-(4-イソプロピルフェニル)-1,1-ジメチル尿素、3-(4-メトキシフェニル)-1,1-ジメチル尿素、3-(4-ニトロフェニル)-1,1-ジメチル尿素、3-[4-(4-メトキシフェノキシ)フェニル]-1,1-ジメチル尿素、3-[4-(4-クロロフェノキシ)フェニル]-1,1-ジメチル尿素、3-[3-(トリフルオロメチル)フェニル]-1,1-ジメチル尿素、N,N-(1,4-フェニレン)ビス(N’,N’-ジメチル尿素)、N,N-(4-メチル-1,3-フェニレン)ビス(N’,N’-ジメチル尿素)〔トルエンビスジメチルウレア〕等の芳香族ジメチルウレア等が挙げられる。 Urea-based curing accelerators include, for example, 1,1-dimethylurea; 1,1,3-trimethylurea, 3-ethyl-1,1-dimethylurea, 3-cyclohexyl-1,1-dimethylurea, 3- Aliphatic dimethylurea such as cyclooctyl-1,1-dimethylurea; 3-phenyl-1,1-dimethylurea, 3-(4-chlorophenyl)-1,1-dimethylurea, 3-(3,4-dichlorophenyl )-1,1-dimethylurea, 3-(3-chloro-4-methylphenyl)-1,1-dimethylurea, 3-(2-methylphenyl)-1,1-dimethylurea, 3-(4- methylphenyl)-1,1-dimethylurea, 3-(3,4-dimethylphenyl)-1,1-dimethylurea, 3-(4-isopropylphenyl)-1,1-dimethylurea, 3-(4- methoxyphenyl)-1,1-dimethylurea, 3-(4-nitrophenyl)-1,1-dimethylurea, 3-[4-(4-methoxyphenoxy)phenyl]-1,1-dimethylurea, 3- [4-(4-chlorophenoxy)phenyl]-1,1-dimethylurea, 3-[3-(trifluoromethyl)phenyl]-1,1-dimethylurea, N,N-(1,4-phenylene) Aromatic dimethylurea such as bis(N',N'-dimethylurea), N,N-(4-methyl-1,3-phenylene)bis(N',N'-dimethylurea) [toluenebisdimethylurea] etc.
 グアニジン系硬化促進剤としては、例えば、ジシアンジアミド、1-メチルグアニジン、1-エチルグアニジン、1-シクロヘキシルグアニジン、1-フェニルグアニジン、1-(o-トリル)グアニジン、ジメチルグアニジン、ジフェニルグアニジン、トリメチルグアニジン、テトラメチルグアニジン、ペンタメチルグアニジン、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、1-メチルビグアニド、1-エチルビグアニド、1-n-ブチルビグアニド、1-n-オクタデシルビグアニド、1,1-ジメチルビグアニド、1,1-ジエチルビグアニド、1-シクロヘキシルビグアニド、1-アリルビグアニド、1-フェニルビグアニド、1-(o-トリル)ビグアニド等が挙げられる。 Guanidine curing accelerators include, for example, dicyandiamide, 1-methylguanidine, 1-ethylguanidine, 1-cyclohexylguanidine, 1-phenylguanidine, 1-(o-tolyl)guanidine, dimethylguanidine, diphenylguanidine, trimethylguanidine, Tetramethylguanidine, Pentamethylguanidine, 1,5,7-triazabicyclo[4.4.0]dec-5-ene, 7-methyl-1,5,7-triazabicyclo[4.4.0] Dec-5-ene, 1-methylbiguanide, 1-ethylbiguanide, 1-n-butylbiguanide, 1-n-octadecylbiguanide, 1,1-dimethylbiguanide, 1,1-diethylbiguanide, 1-cyclohexylbiguanide, 1 -allylbiguanide, 1-phenylbiguanide, 1-(o-tolyl)biguanide and the like.
 イミダゾール系硬化促進剤としては、例えば、2-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2,3-ジヒドロ-1H-ピロロ[1,2-a]ベンズイミダゾール、1-ドデシル-2-メチル-3-ベンジルイミダゾリウムクロライド、2-メチルイミダゾリン、2-フェニルイミダゾリン等のイミダゾール化合物及びイミダゾール化合物とエポキシ樹脂とのアダクト体が挙げられる。イミダゾール系硬化促進剤の市販品としては、例えば、四国化成工業社製の「1B2PZ」、「2E4MZ」、「2MZA-PW」、「2MZ-OK」、「2MA-OK」、「2MA-OK-PW」、「2PHZ」、「2PHZ-PW」、「Cl1Z」、「Cl1Z-CN」、「Cl1Z-CNS」、「C11Z-A」;三菱ケミカル社製の「P200-H50」等が挙げられる。 Examples of imidazole curing accelerators include 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl- 2-phenylimidazolium trimellitate, 2,4-diamino-6-[2'-methylimidazolyl-(1')]-ethyl-s-triazine, 2,4-diamino-6-[2'-undecyl imidazolyl-(1′)]-ethyl-s-triazine, 2,4-diamino-6-[2′-ethyl-4′-methylimidazolyl-(1′)]-ethyl-s-triazine, 2,4- Diamino-6-[2'-methylimidazolyl-(1')]-ethyl-s-triazine isocyanurate, 2-phenylimidazole isocyanurate, 2-phenyl-4,5-dihydroxymethylimidazole, 2- Phenyl-4-methyl-5-hydroxymethylimidazole, 2,3-dihydro-1H-pyrrolo[1,2-a]benzimidazole, 1-dodecyl-2-methyl-3-benzylimidazolium chloride, 2-methylimidazoline , 2-phenylimidazoline and other imidazole compounds, and adducts of imidazole compounds and epoxy resins. Examples of commercially available imidazole curing accelerators include, for example, Shikoku Kasei Co., Ltd. "1B2PZ", "2E4MZ", "2MZA-PW", "2MZ-OK", "2MA-OK", "2MA-OK- PW", "2PHZ", "2PHZ-PW", "Cl1Z", "Cl1Z-CN", "Cl1Z-CNS", "C11Z-A"; and "P200-H50" manufactured by Mitsubishi Chemical Corporation.
 金属系硬化促進剤としては、例えば、コバルト、銅、亜鉛、鉄、ニッケル、マンガン、スズ等の金属の、有機金属錯体又は有機金属塩が挙げられる。有機金属錯体の具体例としては、コバルト(II)アセチルアセトナート、コバルト(III)アセチルアセトナート等の有機コバルト錯体、銅(II)アセチルアセトナート等の有機銅錯体、亜鉛(II)アセチルアセトナート等の有機亜鉛錯体、鉄(III)アセチルアセトナート等の有機鉄錯体、ニッケル(II)アセチルアセトナート等の有機ニッケル錯体、マンガン(II)アセチルアセトナート等の有機マンガン錯体等が挙げられる。有機金属塩としては、例えば、オクチル酸亜鉛、オクチル酸錫、ナフテン酸亜鉛、ナフテン酸コバルト、ステアリン酸スズ、ステアリン酸亜鉛等が挙げられる。 Examples of metal-based curing accelerators include organometallic complexes or organometallic salts of metals such as cobalt, copper, zinc, iron, nickel, manganese, and tin. Specific examples of organometallic complexes include organocobalt complexes such as cobalt (II) acetylacetonate and cobalt (III) acetylacetonate, organocopper complexes such as copper (II) acetylacetonate, and zinc (II) acetylacetonate. organic zinc complexes such as iron (III) acetylacetonate; organic nickel complexes such as nickel (II) acetylacetonate; organic manganese complexes such as manganese (II) acetylacetonate; Examples of organic metal salts include zinc octoate, tin octoate, zinc naphthenate, cobalt naphthenate, tin stearate, and zinc stearate.
 アミン系硬化促進剤としては、例えば、トリエチルアミン、トリブチルアミン等のトリアルキルアミン、4-ジメチルアミノピリジン、ベンジルジメチルアミン、2,4,6,-トリス(ジメチルアミノメチル)フェノール、1,8-ジアザビシクロ(5,4,0)-ウンデセン等が挙げられる。アミン系硬化促進剤としては、市販品を用いてもよく、例えば、味の素ファインテクノ社製の「MY-25」等が挙げられる。 Examples of amine curing accelerators include trialkylamines such as triethylamine and tributylamine, 4-dimethylaminopyridine, benzyldimethylamine, 2,4,6-tris(dimethylaminomethyl)phenol, 1,8-diazabicyclo (5,4,0)-undecene and the like. As the amine-based curing accelerator, a commercially available product may be used, such as "MY-25" manufactured by Ajinomoto Fine-Techno Co., Ltd., and the like.
 樹脂組成物中の(F)硬化促進剤の量は、樹脂組成物中の不揮発成分100質量%に対して、好ましくは0.01質量%以上、より好ましくは0.02質量%以上、特に好ましくは0.03質量%以上であり、好ましくは1.0質量%以下、より好ましくは0.5質量%以下、特に好ましくは0.1質量%以下である。 The amount of (F) curing accelerator in the resin composition is preferably 0.01% by mass or more, more preferably 0.02% by mass or more, and particularly preferably 100% by mass of non-volatile components in the resin composition. is 0.03% by mass or more, preferably 1.0% by mass or less, more preferably 0.5% by mass or less, and particularly preferably 0.1% by mass or less.
 樹脂組成物中の(F)硬化促進剤の量は、樹脂組成物中の樹脂成分100質量%に対して、好ましくは0.01質量%以上、より好ましくは0.05質量%以上、特に好ましくは0.10質量%以上であり、好ましくは2.0質量%以下、より好ましくは1.0質量%以下、特に好ましくは0.5質量%以下である。 The amount of (F) curing accelerator in the resin composition is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and particularly preferably 100% by mass of the resin component in the resin composition. is 0.10% by mass or more, preferably 2.0% by mass or less, more preferably 1.0% by mass or less, and particularly preferably 0.5% by mass or less.
[9.(G)任意の添加剤]
 樹脂組成物は、上述した(A)~(F)成分に組み合わせて、更に任意の不揮発成分として、(G)任意の添加剤を含んでいてもよい。(G)任意の添加剤としては、例えば、過酸化物系ラジカル重合開始剤、アゾ系ラジカル重合開始剤等のラジカル重合開始剤;有機銅化合物、有機亜鉛化合物、有機コバルト化合物等の有機金属化合物;ハイドロキノン、カテコール、ピロガロール、フェノチアジン等の重合禁止剤;シリコーン系レベリング剤、アクリルポリマー系レベリング剤等のレベリング剤;ベントン、モンモリロナイト等の増粘剤;シリコーン系消泡剤、アクリル系消泡剤、フッ素系消泡剤、ビニル樹脂系消泡剤等の消泡剤;ベンゾトリアゾール系紫外線吸収剤等の紫外線吸収剤;尿素シラン等の接着性向上剤;トリアゾール系密着性付与剤、テトラゾール系密着性付与剤、トリアジン系密着性付与剤等の密着性付与剤;ヒンダードフェノール系酸化防止剤等の酸化防止剤;スチルベン誘導体等の蛍光増白剤;フッ素系界面活性剤、シリコーン系界面活性剤等の界面活性剤;リン系難燃剤(例えばリン酸エステル化合物、ホスファゼン化合物、ホスフィン酸化合物、赤リン)、窒素系難燃剤(例えば硫酸メラミン)、ハロゲン系難燃剤、無機系難燃剤(例えば三酸化アンチモン)等の難燃剤;リン酸エステル系分散剤、ポリオキシアルキレン系分散剤、アセチレン系分散剤、シリコーン系分散剤、アニオン性分散剤、カチオン性分散剤等の分散剤;ボレート系安定剤、チタネート系安定剤、アルミネート系安定剤、ジルコネート系安定剤、イソシアネート系安定剤、カルボン酸系安定剤、カルボン酸無水物系安定剤等の安定剤、が挙げられる。(G)任意の添加剤は、1種類を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
[9. (G) optional additives]
The resin composition may further contain (G) an optional additive as an optional non-volatile component in combination with the components (A) to (F) described above. (G) Examples of optional additives include radical polymerization initiators such as peroxide-based radical polymerization initiators and azo-based radical polymerization initiators; organic metal compounds such as organic copper compounds, organic zinc compounds, and organic cobalt compounds; polymerization inhibitors such as hydroquinone, catechol, pyrogallol, and phenothiazine; leveling agents such as silicone leveling agents and acrylic polymer leveling agents; thickeners such as bentone and montmorillonite; Defoamers such as fluorine-based defoaming agents and vinyl resin-based defoaming agents; UV absorbers such as benzotriazole-based UV absorbers; Adhesion improvers such as urea silane; adhesion-imparting agents such as adhesion-imparting agents and triazine-based adhesion-imparting agents; antioxidants such as hindered phenol-based antioxidants; fluorescent brighteners such as stilbene derivatives; fluorine-based surfactants, silicone-based surfactants, etc. surfactant; phosphorous flame retardant (e.g. phosphate ester compound, phosphazene compound, phosphinic acid compound, red phosphorus), nitrogen flame retardant (e.g. melamine sulfate), halogen flame retardant, inorganic flame retardant (e.g. trioxide flame retardants such as antimony); dispersants such as phosphate ester dispersants, polyoxyalkylene dispersants, acetylene dispersants, silicone dispersants, anionic dispersants, and cationic dispersants; borate stabilizers, Stabilizers such as titanate-based stabilizers, aluminate-based stabilizers, zirconate-based stabilizers, isocyanate-based stabilizers, carboxylic acid-based stabilizers, and carboxylic acid anhydride-based stabilizers. (G) Any additive may be used alone or in combination of two or more.
[10.樹脂組成物中の窒素原子を含有する樹脂の量]
 上述した(A)成分及び(C)~(G)成分といった樹脂成分は、ソルダーレジスト層の密着性を高める観点から、窒素原子を含む樹脂成分を含むことが好ましい。特に、(A)熱硬化性樹脂、(C)エラストマー、(E)熱可塑性樹脂及び(F)硬化促進剤の一部又は全部として窒素原子を含む樹脂成分を用いると、密着性の効果的な向上ができる。
[10. Amount of resin containing nitrogen atoms in resin composition]
From the viewpoint of enhancing the adhesiveness of the solder resist layer, it is preferable that the resin components such as the (A) component and the (C) to (G) components described above include a resin component containing nitrogen atoms. In particular, when a resin component containing nitrogen atoms is used as part or all of (A) a thermosetting resin, (C) an elastomer, (E) a thermoplastic resin, and (F) a curing accelerator, effective adhesion is achieved. can improve.
 窒素原子を含む樹脂成分の量は、樹脂組成物中の不揮発成分100質量%に対して、好ましくは0.1質量%以上、より好ましくは1.0質量%以上、特に好ましくは2.0質量%以上であり、好ましくは40質量%以下、より好ましくは35質量%以下、特に好ましくは30質量%以下である。 The amount of the resin component containing nitrogen atoms is preferably 0.1% by mass or more, more preferably 1.0% by mass or more, and particularly preferably 2.0% by mass with respect to 100% by mass of non-volatile components in the resin composition. % or more, preferably 40% by mass or less, more preferably 35% by mass or less, and particularly preferably 30% by mass or less.
 また、窒素原子を含む樹脂成分の量は、樹脂組成物中の樹脂成分100質量%に対して、好ましくは5質量%以上、より好ましくは10質量%以上、特に好ましくは20質量%以上であり、50質量%以上であってもよい。上限は、好ましくは90質量%以下、より好ましくは80質量%以下、特に好ましくは75質量%以下である。 In addition, the amount of the resin component containing nitrogen atoms is preferably 5% by mass or more, more preferably 10% by mass or more, and particularly preferably 20% by mass or more with respect to 100% by mass of the resin component in the resin composition. , 50% by mass or more. The upper limit is preferably 90% by mass or less, more preferably 80% by mass or less, and particularly preferably 75% by mass or less.
[11.(H)溶剤]
 樹脂組成物は、上述した(A)~(G)成分といった不揮発成分に組み合わせて、更に任意の揮発性成分として、(H)溶剤を含んでいてもよい。(H)溶剤としては、通常、有機溶剤を用いる。有機溶剤としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤;酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソブチル、酢酸イソアミル、プロピオン酸メチル、プロピオン酸エチル、γ-ブチロラクトン等のエステル系溶剤;テトラヒドロピラン、テトラヒドロフラン、1,4-ジオキサン、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジフェニルエーテル、アニソール等のエーテル系溶剤;メタノール、エタノール、プロパノール、ブタノール、エチレングリコール等のアルコール系溶剤;酢酸2-エトキシエチル、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、エチルジグリコールアセテート、γ-ブチロラクトン、メトキシプロピオン酸メチル等のエーテルエステル系溶剤;乳酸メチル、乳酸エチル、2-ヒドロキシイソ酪酸メチル等のエステルアルコール系溶剤;2-メトキシプロパノール、2-メトキシエタノール、2-エトキシエタノール、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル(ブチルカルビトール)等のエーテルアルコール系溶剤;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等のアミド系溶剤;ジメチルスルホキシド等のスルホキシド系溶剤;アセトニトリル、プロピオニトリル等のニトリル系溶剤;ヘキサン、シクロペンタン、シクロヘキサン、メチルシクロヘキサン等の脂肪族炭化水素系溶剤;ベンゼン、トルエン、キシレン、エチルベンゼン、トリメチルベンゼン等の芳香族炭化水素系溶剤等を挙げることができる。(H)溶剤は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
[11. (H) Solvent]
The resin composition may contain (H) a solvent as an optional volatile component in combination with the non-volatile components such as components (A) to (G) described above. (H) As the solvent, an organic solvent is usually used. Examples of organic solvents include ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; ester solvents; ether solvents such as tetrahydropyran, tetrahydrofuran, 1,4-dioxane, diethyl ether, diisopropyl ether, dibutyl ether, diphenyl ether, anisole; alcohol solvents such as methanol, ethanol, propanol, butanol, ethylene glycol; acetic acid Ether ester solvents such as 2-ethoxyethyl, propylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, ethyl diglycol acetate, γ-butyrolactone, methyl methoxypropionate; methyl lactate, ethyl lactate, methyl 2-hydroxyisobutyrate, etc. ester alcohol solvents; 2-methoxypropanol, 2-methoxyethanol, 2-ethoxyethanol, propylene glycol monomethyl ether, diethylene glycol monobutyl ether (butyl carbitol) and other ether alcohol solvents; N,N-dimethylformamide, N, Amide solvents such as N-dimethylacetamide and N-methyl-2-pyrrolidone; sulfoxide solvents such as dimethylsulfoxide; nitrile solvents such as acetonitrile and propionitrile; aliphatics such as hexane, cyclopentane, cyclohexane, and methylcyclohexane Hydrocarbon-based solvents: aromatic hydrocarbon-based solvents such as benzene, toluene, xylene, ethylbenzene, trimethylbenzene, and the like can be mentioned. (H) Solvents may be used singly or in combination of two or more.
 (H)溶剤の量は、特に限定されるものではないが、樹脂組成物中の全成分を100質量%とした場合、例えば、60質量%以下、40質量%以下、30質量%以下、20質量%以下、15質量%以下、10質量%以下等でありえ、0質量%であってもよい。 (H) The amount of the solvent is not particularly limited, but when all components in the resin composition are 100% by mass, for example, 60% by mass or less, 40% by mass or less, 30% by mass or less, 20% by mass or less It may be 0% by mass or less, 15% by mass or less, 10% by mass or less, or the like.
[12.樹脂組成物の製造方法]
 樹脂組成物は、例えば、上述した成分を混合することによって、製造することができる。上述した成分は、一部又は全部を同時に混合してもよく、順に混合してもよい。各成分を混合する過程で、温度を適宜設定してもよく、よって、一時的に又は終始にわたって、加熱及び/又は冷却してもよい。また、各成分を混合する過程において、撹拌又は振盪を行ってもよい。
[12. Method for producing a resin composition]
A resin composition can be produced, for example, by mixing the components described above. Some or all of the components described above may be mixed at the same time, or may be mixed in order. During the course of mixing each component, the temperature may be set accordingly, and thus may be temporarily or permanently heated and/or cooled. Moreover, you may perform stirring or shaking in the process of mixing each component.
[13.樹脂組成物、樹脂組成物層及びその硬化物の特性]
 上述した樹脂組成物を硬化して得られる硬化物は、高い光線透過率を有する。よって、この樹脂組成物を含む樹脂組成物層を備えた樹脂シートによれば、光線透過率の高いソルダーレジスト層を形成できる。例えば、樹脂組成物の硬化物の厚み50μm、測定波長900nmにおける光線透過率T900は、好ましくは70%以上、より好ましくは73%以上、特に好ましくは75%以上であり、通常100%以下である。
[13. Characteristics of resin composition, resin composition layer, and cured product thereof]
A cured product obtained by curing the resin composition described above has a high light transmittance. Therefore, according to the resin sheet provided with the resin composition layer containing this resin composition, a solder resist layer with high light transmittance can be formed. For example, the cured product of the resin composition has a thickness of 50 μm and a light transmittance T900 at a measurement wavelength of 900 nm is preferably 70% or more, more preferably 73% or more, particularly preferably 75% or more, and usually 100% or less. be.
 上述した樹脂組成物を硬化して得られる硬化物は、可視波長域においては光線透過率が低くてもよい。例えば、樹脂組成物の硬化物の厚み50μm、測定波長900nmにおける光線透過率T900と、樹脂組成物の硬化物の厚み50μm、測定波長550nmにおける光線透過率T550との間には、大きな差があってもよい。一実施形態において、前記の光線透過率の差T900-T550は、好ましくは15%以上、より好ましくは20%以上、特に好ましくは25%以上であり、好ましくは70%以下、より好ましくは60%以下、特に好ましくは50%以下である。 A cured product obtained by curing the resin composition described above may have low light transmittance in the visible wavelength range. For example, there is a large difference between the light transmittance T 900 at a measurement wavelength of 900 nm and the thickness of the cured resin composition of 50 μm and the light transmittance T 550 at a measurement wavelength of 550 nm. There may be In one embodiment, the light transmittance difference T 900 −T 550 is preferably 15% or more, more preferably 20% or more, particularly preferably 25% or more, preferably 70% or less, more preferably 60% or less, particularly preferably 50% or less.
 上述した樹脂組成物を硬化して得られる硬化物は、通常、厚みの違いによる光線透過率の差を小さくできる。よって、樹脂組成物の硬化物は、通常は、厚みが変わった場合であっても、高い光線透過率を有することができる。近年の半導体チップパッケージの大型化によって、ソルダーレジスト層は厚くなる傾向があり、当該ソルダーレジスト層が形成される基板の表面形状に応じて、そのソルダーレジスト層には厚い箇所と薄い箇所とが形成されうる。上述した樹脂組成物の硬化物をソルダーレジスト層に適用した場合、厚い箇所と薄い箇所とのいずれにおいても高い光線透過率を得ることができる。特に、厚みの違いによる光線透過率の差を小さくできるので、厚い箇所と薄い箇所との厚みの差が大きくても、いずれの箇所でも高い光線透過率を得ることができる。したがって、ソルダーレジスト層の厚みの範囲を広げたり、適用する基板の範囲を広げたりすることができる。 The cured product obtained by curing the resin composition described above can usually reduce the difference in light transmittance due to the difference in thickness. Therefore, the cured product of the resin composition can usually have a high light transmittance even when the thickness is changed. Due to the recent increase in the size of semiconductor chip packages, the solder resist layer tends to become thicker, and depending on the surface shape of the substrate on which the solder resist layer is formed, the solder resist layer has thick and thin portions. can be When the cured product of the resin composition described above is applied to the solder resist layer, high light transmittance can be obtained in both thick and thin portions. In particular, since the difference in light transmittance due to the difference in thickness can be reduced, high light transmittance can be obtained at any point even if the difference in thickness between thick and thin points is large. Therefore, the thickness range of the solder resist layer can be widened, and the range of applicable substrates can be widened.
 例えば、樹脂組成物の硬化物の厚み40μm、測定波長900nmにおける光線透過率T(40μm/900nm)と、樹脂組成物の硬化物の厚み100μm、測定波長900nmにおける光線透過率T(100μm/900nm)との差ΔT(900nm)は、好ましくは0%~30%、より好ましくは0%~25%、特に好ましくは0%~20%である。また、樹脂組成物の硬化物の厚み40μm、測定波長550nmにおける光線透過率T(40μm/550nm)と、樹脂組成物の硬化物の厚み100μm、測定波長550nmにおける光線透過率T(100μm/550nm)との差ΔT(550nm)は、好ましくは0%~50%、より好ましくは0%~45%、特に好ましくは0%~40%である。 For example, the thickness of the cured product of the resin composition is 40 μm, the light transmittance T (40 μm / 900 nm) at a measurement wavelength of 900 nm, and the light transmittance T (100 μm / 900 nm) at a measurement wavelength of 900 nm, the thickness of the cured product of the resin composition is 100 μm. is preferably 0% to 30%, more preferably 0% to 25%, and particularly preferably 0% to 20%. In addition, the thickness of the cured product of the resin composition is 40 μm, the light transmittance T (40 μm/550 nm) at a measurement wavelength of 550 nm, and the light transmittance T (100 μm/550 nm) at a measurement wavelength of 550 nm, with a thickness of 100 μm. is preferably 0% to 50%, more preferably 0% to 45%, and particularly preferably 0% to 40%.
 上述した樹脂組成物を硬化して得られる硬化物は、可視波長域の長波長側の端である波長780nm近辺の波長において、光線透過率が大きく変化することが好ましい。例えば、樹脂組成物の硬化物の厚み50μm、測定波長700nmにおける光線透過率T700と、樹脂組成物の硬化物の厚み50μm、測定波長800nmにおける光線透過率T800との比T700/T800が、1.0未満の小さい範囲にあることが好ましい。一実施形態において、前記の光線透過率の比T700/T800は、好ましくは0.3~0.8、より好ましくは0.3~0.6、特に好ましくは0.3~0.4である。 The cured product obtained by curing the resin composition described above preferably has a large change in light transmittance at a wavelength around 780 nm, which is the end of the visible wavelength range on the long wavelength side. For example, the ratio T 700 /T 800 of the light transmittance T 700 at a measurement wavelength of 700 nm at a thickness of 50 μm of the cured resin composition and the light transmittance T 800 at a measurement wavelength of 800 nm at a thickness of 50 μm of the cured resin composition. is preferably in the small range of less than 1.0. In one embodiment, the light transmittance ratio T 700 /T 800 is preferably 0.3 to 0.8, more preferably 0.3 to 0.6, particularly preferably 0.3 to 0.4. is.
 上述した樹脂組成物を硬化して得られる硬化物は、可視波長域よりも長波長の波長域においては、光線透過率の変動が小さくてもよい。例えば、樹脂組成物の硬化物の厚み50μm、測定波長900nmにおける光線透過率T900と、樹脂組成物の硬化物の厚み50μm、測定波長1500nmにおける光線透過率T1500との間では、差が小さくてもよい。一実施形態において、前記の光線透過率の差の絶対値|T900-T1500|は、好ましくは0%~30%、より好ましくは0%~25%、特に好ましくは0%~20%である。 A cured product obtained by curing the resin composition described above may have a small change in light transmittance in a wavelength range longer than the visible wavelength range. For example, the difference between the light transmittance T 900 at a measurement wavelength of 900 nm and the thickness of the cured product of the resin composition of 50 μm and the light transmittance T 1500 at a measurement wavelength of 1500 nm is small. may In one embodiment, the absolute value of the difference in light transmittance |T 900 −T 1500 | is preferably 0% to 30%, more preferably 0% to 25%, and particularly preferably 0% to 20%. be.
 樹脂組成物の硬化物の光線透過率は、紫外近赤外分光光度計(例えば、島津製作所社製「UV3100PC」)によって測定できる。具体的な測定条件は、後述する実施例に記載のものを採用できる。 The light transmittance of the cured product of the resin composition can be measured with an ultraviolet and near-infrared spectrophotometer (for example, "UV3100PC" manufactured by Shimadzu Corporation). As the specific measurement conditions, those described in Examples described later can be adopted.
 上述した樹脂組成物は、好ましくは、タック性の抑制が可能である。よって、樹脂組成物層も、小さいタック性を有することができるので、樹脂シートのハンドリング性を良好にできる。このタック性は、樹脂組成物層に接触させたプローブを引き剥がすために要する剥離力によって表すことができる。剥離力は、一実施形態において、好ましくは0.6N未満、より好ましくは0.4N未満でありうる。 The resin composition described above is preferably capable of suppressing tackiness. Therefore, the resin composition layer can also have a low tackiness, so that the resin sheet can be easily handled. This tackiness can be represented by the peeling force required to peel off the probe brought into contact with the resin composition layer. The peel force can be preferably less than 0.6N, more preferably less than 0.4N in one embodiment.
 前記の剥離力は、下記の方法によって測定できる。直径5mmの底面を有する円柱状のSUS製プローブを、樹脂組成物層にコンタクト速度0.5cm/秒で接触させ、1000gf/cmの荷重下で1秒間保持する。その後、プローブを0.5cm/秒で引き離して、引き剥がすために要する剥離力を、タック性の指標として測定できる。具体的な測定方法は、実施例に記載の方法を採用できる。 The peel force can be measured by the following method. A cylindrical SUS probe having a bottom surface with a diameter of 5 mm is brought into contact with the resin composition layer at a contact speed of 0.5 cm/sec and held under a load of 1000 gf/cm 2 for 1 second. The probe is then pulled away at 0.5 cm/sec and the peel force required for peeling can be measured as an index of tackiness. As a specific measuring method, the method described in Examples can be adopted.
 上述した樹脂組成物は、好ましくは、低い溶融粘度を有することができる。よって、樹脂シートを用いて回路基板又は半導体チップを封止してソルダーレジスト層を形成する場合に、樹脂組成物層は、良好な埋め込み性を得ることができる。一実施形態において、60℃から200℃までの温度範囲における樹脂組成物の最低溶融粘度は、好ましくは20000poise以下である。 The resin composition described above can preferably have a low melt viscosity. Therefore, when a circuit board or a semiconductor chip is sealed using a resin sheet to form a solder resist layer, the resin composition layer can obtain good embedding properties. In one embodiment, the minimum melt viscosity of the resin composition in the temperature range from 60°C to 200°C is preferably 20000 poise or less.
 樹脂組成物の前記の最低溶融粘度は、開始温度60℃から200℃まで昇温速度5℃/分で樹脂組成物を昇温させながら、測定温度間隔2.5℃、振動1Hz/degの条件で動的粘弾性測定装置を用いて測定できる。具体的な測定方法は、実施例に記載の方法を採用できる。 The minimum melt viscosity of the resin composition is measured under conditions of a measurement temperature interval of 2.5° C. and a vibration of 1 Hz/deg while increasing the temperature of the resin composition from the starting temperature of 60° C. to 200° C. at a temperature increase rate of 5° C./min. can be measured using a dynamic viscoelasticity measuring device. As a specific measuring method, the method described in Examples can be adopted.
 上述した樹脂組成物の硬化物は、好ましくは、小さい弾性率を有することができる。よって、樹脂組成物層の硬化物によって形成されるソルダーレジスト層を備えるプリント配線板及び半導体チップパッケージの反りを効果的に抑制できる。一実施形態において、樹脂組成物を硬化させて得られる硬化物の引張弾性率は、好ましくは15GPa以下、より好ましくは10GPa以下、更に好ましくは8GPa以下、特に好ましくは5GPa以下である。下限は、特に制限は無く、例えば1GPa以上であってもよい。 The cured product of the resin composition described above can preferably have a small elastic modulus. Therefore, it is possible to effectively suppress warpage of the printed wiring board and the semiconductor chip package provided with the solder resist layer formed by the cured product of the resin composition layer. In one embodiment, the tensile modulus of the cured product obtained by curing the resin composition is preferably 15 GPa or less, more preferably 10 GPa or less, even more preferably 8 GPa or less, and particularly preferably 5 GPa or less. The lower limit is not particularly limited, and may be, for example, 1 GPa or more.
 樹脂組成物の硬化物の前記の引っ張り弾性率は、190℃で90分間の硬化条件で樹脂組成物を硬化させた硬化物を用いて、JIS K7127に準拠して、25℃において測定できる。具体的な測定方法は、実施例に記載の方法を採用できる。 The tensile modulus of the cured product of the resin composition can be measured at 25°C in accordance with JIS K7127 using a cured product obtained by curing the resin composition under curing conditions of 190°C for 90 minutes. As a specific measuring method, the method described in Examples can be adopted.
 上述した樹脂組成物の硬化物は、好ましくは、様々な種類の樹脂で形成された基板に対して高い密着性を有することができる。よって、樹脂組成物層の硬化物によって形成されるソルダーレジスト層は、そのソルダーレジスト層が設けられる基板に対して高い密着力で密着できる。一実施形態において、樹脂組成物を硬化させて得られる硬化物のポリイミドフィルムに対するピール強度は、好ましくは2kgf/cmより大きい。 The cured product of the resin composition described above can preferably have high adhesion to substrates made of various types of resins. Therefore, the solder-resist layer formed from the cured product of the resin composition layer can adhere with high adhesion to the substrate on which the solder-resist layer is provided. In one embodiment, the cured product obtained by curing the resin composition preferably has a peel strength to a polyimide film of greater than 2 kgf/cm.
 樹脂組成物の硬化物の前記のピール強度は、下記の方法で測定できる。樹脂組成物層とポリイミドフィルムとをラミネートし、180℃で90分間の硬化条件で樹脂組成物層を硬化させて、ソルダーレジスト層を形成する。その後、ポリイミドフィルムを、ソルダーレジスト層の垂直方向に50mm/分の速度で引き剥がし、ピール強度を測定できる。具体的な測定方法は、実施例に記載の方法を採用できる。 The peel strength of the cured product of the resin composition can be measured by the following method. A resin composition layer and a polyimide film are laminated, and the resin composition layer is cured under curing conditions of 180° C. for 90 minutes to form a solder resist layer. After that, the polyimide film is peeled off at a speed of 50 mm/min in the direction perpendicular to the solder resist layer, and the peel strength can be measured. As a specific measuring method, the method described in Examples can be adopted.
 上述した樹脂組成物層の硬化物によって形成されるソルダーレジスト層は、好ましくは、当該ソルダーレジスト層を備えるプリント配線板及び半導体チップパッケージの反りを抑制することができる。一実施形態において、シリコンウエハ上にソルダーレジスト層を形成して得られる半導体チップパッケージに相当する試料基板の反りは、好ましくは1mm以下、より好ましくは0.8mm以下、特に好ましくは0.6mm以下である。
 前記の反りは、12インチシリコンウエハ上に感光性樹脂組成物の硬化物によって硬化物層としてのソルダーレジスト層を形成し、シャドウモアレ測定装置(例えば、Akorometrix社製「ThermoireAXP」)を用いて、25℃において、電子情報技術産業協会規格のJEITA EDX-7311-24に準拠して測定できる。具体的な測定方法は、実施例に記載の方法を採用できる。
The solder-resist layer formed from the cured product of the resin composition layer described above can preferably suppress warpage of the printed wiring board and the semiconductor chip package provided with the solder-resist layer. In one embodiment, the warpage of a sample substrate corresponding to a semiconductor chip package obtained by forming a solder resist layer on a silicon wafer is preferably 1 mm or less, more preferably 0.8 mm or less, and particularly preferably 0.6 mm or less. is.
The warp is measured by forming a solder resist layer as a cured product layer with a cured product of a photosensitive resin composition on a 12-inch silicon wafer, and using a shadow moire measuring device (for example, "Thermoire AXP" manufactured by Akorometrix). At 25° C., it can be measured according to JEITA EDX-7311-24 of the Japan Electronics and Information Technology Industries Association standard. As a specific measuring method, the method described in Examples can be adopted.
 上述した優れた特性が得られる仕組みを、本発明者は、下記の通りと考える。
 一般に、樹脂組成物の硬化物の層が厚い場合、その層の光線透過率は低くなる傾向がある。これに対し、上述した実施形態に係る樹脂組成物に含まれる(B)無機充填材は、大きい比表面積を有することから分かるように、小さい粒径を有する。このように小さい粒径を有する(B)無機充填材の粒子は、光の波長より小さいことができ、よって、粒子表面での光の反射を抑制できる。特に、樹脂成分の組成を適切に調整した場合、粒子の凝集を抑制したり、粒子と樹脂成分との界面での屈折率差を小さくしたりできるので、反射の効果的な抑制が可能である。したがって、その樹脂組成物の硬化物が高い光線透過率を有することができる。よって、樹脂組成物層の硬化物により、厚く且つ光線透過率の高いソルダーレジスト層を実現できる。
The present inventor believes that the mechanism by which the excellent characteristics described above are obtained is as follows.
In general, when the layer of the cured product of the resin composition is thick, the light transmittance of the layer tends to be low. On the other hand, the (B) inorganic filler contained in the resin composition according to the embodiment described above has a small particle size, as can be seen from having a large specific surface area. Particles of the inorganic filler (B) having such a small particle size can be smaller than the wavelength of light, so that reflection of light on the particle surface can be suppressed. In particular, when the composition of the resin component is appropriately adjusted, aggregation of particles can be suppressed and the refractive index difference at the interface between the particles and the resin component can be reduced, so reflection can be effectively suppressed. . Therefore, the cured product of the resin composition can have high light transmittance. Therefore, a thick solder resist layer having a high light transmittance can be realized by the cured product of the resin composition layer.
 また、一般に、樹脂組成物の硬化物の層が厚い場合、その硬化物の層の温度変化による膨張及び収縮の影響が大きくなり、その層の寸法安定性が低くなったりクラックが生じ易くなったりする傾向がある。膨張及び収縮を抑制するためには、無機充填材の量を多くすることが考えられるが、無機充填材が多いと、従来は、光線透過率が低くなったり、弾性率が高くなって反りが生じ易くなったりする傾向があった。これに対し、上述した実施形態に係る樹脂組成物層は、特定の範囲の比表面積を有する(B)無機充填材を採用しているので、(B)無機充填材が多くても光線透過率の高い硬化物を得ることができる。また、上述した実施形態に係る樹脂組成物層は、(B)無機充填材と組み合わせる(A)熱硬化性樹脂及び(C)エラストマー等の樹脂成分の一部又は全部として、柔軟な分子骨格を有するものを採用できる。したがって、(B)無機充填材が多くても硬化物の弾性率を低くでき、よって硬化物で形成されたソルダーレジスト層を備えるプリント配線板及び半導体チップパッケージの反りの抑制が可能である。 In addition, in general, when the layer of the cured product of the resin composition is thick, the effect of expansion and contraction due to temperature changes in the layer of the cured product increases, and the dimensional stability of the layer decreases and cracks are likely to occur. tend to In order to suppress the expansion and contraction, it is conceivable to increase the amount of the inorganic filler. tended to occur more easily. On the other hand, the resin composition layer according to the above-described embodiment employs (B) an inorganic filler having a specific surface area within a specific range, so even if the amount of the (B) inorganic filler is large, the light transmittance can obtain a cured product with a high In addition, the resin composition layer according to the above-described embodiment has a flexible molecular skeleton as part or all of resin components such as (A) thermosetting resin and (C) elastomer combined with (B) inorganic filler. You can adopt what you have. Therefore, even if the inorganic filler (B) is large, the elastic modulus of the cured product can be lowered, so that the printed wiring board and the semiconductor chip package provided with the solder resist layer formed of the cured product can be prevented from warping.
 さらに、上述した実施形態に係る(B)無機充填材には、樹脂成分として、樹脂組成物のタック性及び最低溶融粘度を低くしたり、樹脂組成物層の硬化物で形成されるソルダーレジスト層の密着性を向上させたりできる成分を組み合わせることができる。よって、厚く且つ光線透過率の高いソルダーレジスト層を実現しながら、更に、樹脂組成物のタック性及び最低溶融粘度の低減並びにソルダーレジスト層の密着性の向上を達成することができる。
 ただし、本発明の技術的範囲は、ここで説明する仕組みに限定されない。
Furthermore, the inorganic filler (B) according to the above-described embodiment includes, as a resin component, the tackiness and minimum melt viscosity of the resin composition, or a solder resist layer formed of a cured product of the resin composition layer. It is possible to combine components that can improve the adhesion of the coating. Therefore, it is possible to achieve a solder resist layer that is thick and has a high light transmittance while also achieving reductions in the tackiness and minimum melt viscosity of the resin composition and an improvement in adhesion of the solder resist layer.
However, the technical scope of the present invention is not limited to the mechanism described here.
[14.樹脂シートが備えうる任意の部材]
 本発明の一実施形態に係る樹脂シートは、樹脂組成物層に組み合わせて、更に任意の部材を備えていてもよい。例えば、樹脂シートは、任意の部材として、支持体を備えていてもよい。通常は、支持体上に、前記の樹脂組成物層が設けられる。
[14. Any member that the resin sheet can have]
The resin sheet according to one embodiment of the present invention may further include any member in combination with the resin composition layer. For example, the resin sheet may have a support as an arbitrary member. Usually, the resin composition layer is provided on the support.
 支持体としては、例えば、プラスチック材料からなるフィルム、金属箔、離型紙が挙げられ、プラスチック材料からなるフィルム、金属箔が好ましい。 Examples of the support include a film made of a plastic material, a metal foil, and a release paper, and a film made of a plastic material and a metal foil are preferable.
 支持体としてプラスチック材料からなるフィルムを使用する場合、プラスチック材料としては、例えば、ポリエチレンテレフタレート(以下「PET」と略称することがある。)、ポリエチレンナフタレート(以下「PEN」と略称することがある。)等のポリエステル、ポリカーボネート(以下「PC」と略称することがある。)、ポリメチルメタクリレート(PMMA)等のアクリル、環状ポリオレフィン、トリアセチルセルロース(TAC)、ポリエーテルサルファイド(PES)、ポリエーテルケトン、ポリイミド等が挙げられる。中でも、ポリエチレンテレフタレート、ポリエチレンナフタレートが好ましく、安価なポリエチレンテレフタレートが特に好ましい。 When a film made of a plastic material is used as the support, examples of the plastic material include polyethylene terephthalate (hereinafter sometimes abbreviated as "PET") and polyethylene naphthalate (hereinafter sometimes abbreviated as "PEN"). ), polycarbonate (hereinafter sometimes abbreviated as "PC"), acrylic such as polymethyl methacrylate (PMMA), cyclic polyolefin, triacetyl cellulose (TAC), polyether sulfide (PES), polyether ketones, polyimides, and the like. Among them, polyethylene terephthalate and polyethylene naphthalate are preferable, and inexpensive polyethylene terephthalate is particularly preferable.
 支持体として金属箔を使用する場合、金属箔としては、例えば、銅箔、アルミニウム箔等が挙げられ、銅箔が好ましい。銅箔としては、銅の単金属からなる箔を用いてもよく、銅と他の金属(例えば、スズ、クロム、銀、マグネシウム、ニッケル、ジルコニウム、ケイ素、チタン等)との合金からなる箔を用いてもよい。 When a metal foil is used as the support, examples of the metal foil include copper foil and aluminum foil, with copper foil being preferred. As the copper foil, a foil made of a single metal of copper may be used, and a foil made of an alloy of copper and other metals (for example, tin, chromium, silver, magnesium, nickel, zirconium, silicon, titanium, etc.) may be used. may be used.
 支持体は、樹脂組成物層と接合する面にマット処理、コロナ処理、帯電防止処理を施してあってもよい。 The support may be subjected to matte treatment, corona treatment, or antistatic treatment on the surface to be bonded to the resin composition layer.
 支持体として、樹脂組成物層と接合する面に離型層を有する離型層付き支持体を使用してもよい。離型層付き支持体の離型層に使用する離型剤としては、例えば、アルキド樹脂、ポリオレフィン樹脂、ウレタン樹脂、及びシリコーン樹脂からなる群から選択される1種以上の離型剤が挙げられる。離型層付き支持体は、市販品を用いてもよく、例えば、アルキド樹脂系離型剤を主成分とする離型層を有するPETフィルムである、リンテック社製の「SK-1」、「AL-5」、「AL-7」、東レ社製の「ルミラーT60」、帝人社製の「ピューレックス」、ユニチカ社製の「ユニピール」等が挙げられる。 As the support, a support with a release layer having a release layer on the surface to be bonded to the resin composition layer may be used. The release agent used in the release layer of the release layer-attached support includes, for example, one or more release agents selected from the group consisting of alkyd resins, polyolefin resins, urethane resins, and silicone resins. . As the support with a release layer, a commercially available product may be used, for example, "SK-1" manufactured by Lintec Co., Ltd., "SK-1", " AL-5", "AL-7", Toray's "Lumirror T60", Teijin's "Purex", and Unitika's "Unipeel".
 支持体の厚さは、特に限定されないが、5μm~75μmの範囲が好ましく、10μm~60μmの範囲がより好ましい。なお、離型層付き支持体を使用する場合、離型層付き支持体全体の厚さが上記範囲であることが好ましい。 Although the thickness of the support is not particularly limited, it is preferably in the range of 5 μm to 75 μm, more preferably in the range of 10 μm to 60 μm. When a release layer-attached support is used, the thickness of the release layer-attached support as a whole is preferably within the above range.
 本発明の一実施形態に係る樹脂シートは、樹脂組成物層に組み合わせて、更に任意の部材として、保護フィルムを備えていてもよい。通常は、樹脂組成物層の支持体と接合していない面(即ち、支持体とは反対側の面)に、保護フィルムが設けられる。保護フィルムとしては、支持体として用いうるフィルムと同じものを用いてもよい。保護フィルムの厚さは、特に限定されるものではないが、例えば、1μm~40μmである。保護フィルムを備える樹脂シートは、樹脂組成物層の表面へのゴミの付着やキズを抑制することができる。 The resin sheet according to one embodiment of the present invention may be combined with the resin composition layer and further provided with a protective film as an optional member. Usually, a protective film is provided on the surface of the resin composition layer that is not bonded to the support (that is, the surface opposite to the support). As the protective film, the same film as that which can be used as the support may be used. Although the thickness of the protective film is not particularly limited, it is, for example, 1 μm to 40 μm. A resin sheet provided with a protective film can suppress adhesion of dust and scratches on the surface of the resin composition layer.
[15.樹脂シートの製造方法]
 樹脂シートの製造方法は、特に制限されない。樹脂シートは、例えば、液状の樹脂組成物を支持体上に塗布して製造してもよい。また、樹脂シートは、例えば、樹脂組成物を溶剤に溶解及び/又は分散して液状の樹脂組成物としてワニスを得ることと、このワニスを支持体上に塗布することと、を含む方法によって製造してもよい。塗布は、ダイコーター等の塗布装置を用いてもよい。さらに、塗布後には、必要に応じて乾燥を行ってもよい。
[15. Method for manufacturing resin sheet]
A method for manufacturing the resin sheet is not particularly limited. The resin sheet may be produced, for example, by applying a liquid resin composition onto a support. In addition, the resin sheet is manufactured by a method including, for example, dissolving and/or dispersing a resin composition in a solvent to obtain a varnish as a liquid resin composition, and coating the varnish on a support. You may Coating may be performed using a coating device such as a die coater. Furthermore, after application, drying may be performed as necessary.
 溶剤としては、例えば、樹脂組成物の成分として説明した溶剤と同様のものが挙げられる。溶剤は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 Examples of the solvent include those similar to the solvents described as components of the resin composition. A solvent may be used individually by 1 type, and may be used in combination of 2 or more types.
 乾燥は、加熱、熱風吹きつけ等の乾燥方法により実施してよい。乾燥条件は、特に限定されないが、樹脂組成物層中の溶剤の含有量が通常10質量%以下、好ましくは5質量%以下となるように乾燥させる。樹脂組成物中の溶剤の沸点によっても異なるが、例えば30質量%~60質量%の溶剤を含む樹脂組成物を用いる場合、50℃~150℃で3分間~10分間乾燥させることにより、樹脂組成物層を形成することができる。 Drying may be carried out by a drying method such as heating or blowing hot air. Although the drying conditions are not particularly limited, drying is performed so that the solvent content in the resin composition layer is usually 10% by mass or less, preferably 5% by mass or less. Although it varies depending on the boiling point of the solvent in the resin composition, for example, when using a resin composition containing 30% by mass to 60% by mass of solvent, the resin composition is dried at 50 ° C. to 150 ° C. for 3 minutes to 10 minutes. layer can be formed.
 樹脂シートは、ロール状に巻きとって保存することが可能である。樹脂シートが保護フィルムを有する場合、通常は、保護フィルムを剥がすことによって使用可能となる。 The resin sheet can be rolled up and stored. When the resin sheet has a protective film, it can be used by peeling off the protective film.
[16.プリント配線板]
 本発明の一実施形態に係るプリント配線板は、上述した樹脂シートの樹脂組成物層の硬化物により形成されたソルダーレジスト層を備える。ソルダーレジスト層は、通常、樹脂組成物層の厚みと同じ範囲の厚みを有する。そして、ソルダーレジスト層は、前記のように厚くても、高い光線透過率を有することができる。また、ソルダーレジスト層は、好ましくは、低い弾性率を有するので、当該ソルダーレジスト層を備えるプリント配線板及び半導体チップパッケージの反りの抑制が可能である。さらに、ソルダーレジスト層は、好ましくは、回路基材に高い密着力で接合されることができる。
[16. Printed wiring board]
A printed wiring board according to one embodiment of the present invention includes a solder resist layer formed of a cured product of the resin composition layer of the resin sheet described above. The solder resist layer usually has a thickness in the same range as the thickness of the resin composition layer. And, even if the solder resist layer is thick as described above, it can have a high light transmittance. Moreover, since the solder resist layer preferably has a low elastic modulus, it is possible to suppress warping of the printed wiring board and the semiconductor chip package provided with the solder resist layer. Furthermore, the solder resist layer can preferably be bonded to the circuit board with high adhesion.
 通常、プリント配線板は、回路基材と、この回路基材上に設けられた前記のソルダーレジスト層とを備える。このプリント配線板は、例えば、
 (I)回路基板に樹脂シートを、回路基板と樹脂組成物層とが接合するように積層する工程と、
 (II)樹脂組成物層を硬化させてソルダーレジスト層を形成する工程と、
 を含む製造方法によって、製造できる。
A printed wiring board usually comprises a circuit board and the solder resist layer provided on the circuit board. This printed wiring board, for example,
(I) a step of laminating a resin sheet on a circuit board so that the circuit board and the resin composition layer are bonded;
(II) curing the resin composition layer to form a solder resist layer;
It can be manufactured by a manufacturing method including
 工程(I)で用いる「回路基板」とは、プリント配線板を製造するに際してさらにソルダーレジスト層が形成されるべき基板をいい、例えば、回路配線を有する基板が挙げられる。回路配線の層数などの層構成は、特に限定されず、所望のプリント配線板の特性に応じて適切に選択しうる。また、この回路基板は、半導体チップを備えていてもよい。回路基板としては、例えば、ガラスエポキシ基板、金属基板、ポリエステル基板、ポリイミド基板、BTレジン基板、熱硬化型ポリフェニレンエーテル基板等が挙げられ、これらの基板の片面又は両面に回路配線が形成されていてもよい。 The "circuit board" used in step (I) refers to a board on which a solder resist layer is further formed when manufacturing a printed wiring board, and includes, for example, a board having circuit wiring. The layer structure such as the number of layers of the circuit wiring is not particularly limited, and can be appropriately selected according to the desired properties of the printed wiring board. Also, the circuit board may include a semiconductor chip. Examples of the circuit board include a glass epoxy board, a metal board, a polyester board, a polyimide board, a BT resin board, a thermosetting polyphenylene ether board, etc. Circuit wiring is formed on one side or both sides of these boards. good too.
 回路基板の厚さは、特に制限は無いが、好ましくは10μm以上、より好ましくは20μm以上であり、好ましくは800μm以下であり、600μm以下、400μm以下などであってもよい。回路基板の厚さとは、表面回路の厚さも含む回路基板全体の厚さを表す。 The thickness of the circuit board is not particularly limited, but is preferably 10 μm or more, more preferably 20 μm or more, preferably 800 μm or less, and may be 600 μm or less, 400 μm or less. The thickness of the circuit board represents the thickness of the entire circuit board including the thickness of the surface circuit.
 回路基板の表面に回路配線が形成されている場合、その回路配線の厚さは、特に限定されないが、プリント配線板の薄型化の観点から、好ましくは40μm以下、より好ましくは30μm以下、さらに好ましくは25μm以下、さらにより好ましくは20μm以下、18μm以下、16μm以下、14μm以下、12μm以下又は10μm以下である。表面回路の厚さの下限は、特に限定されず、例えば、1μm以上、3μm以上、5μm以上などでありうる。 When circuit wiring is formed on the surface of the circuit board, the thickness of the circuit wiring is not particularly limited, but from the viewpoint of thinning the printed wiring board, it is preferably 40 μm or less, more preferably 30 μm or less, and further preferably 30 μm or less. is 25 μm or less, even more preferably 20 μm or less, 18 μm or less, 16 μm or less, 14 μm or less, 12 μm or less or 10 μm or less. The lower limit of the thickness of the surface circuit is not particularly limited, and may be, for example, 1 μm or more, 3 μm or more, or 5 μm or more.
 回路基板の熱膨張係数は、回路歪みやクラックの発生を抑制する観点から、好ましくは16ppm/℃以下、より好ましくは14ppm/℃以下、さらに好ましくは12ppm/℃以下である。回路基板の熱膨張係数の下限は、ソルダーレジスト層の形成に使用する樹脂組成物の組成にもよるが、好ましくは-2ppm/℃以上、より好ましくは0ppm/℃以上であり、さらに好ましくは4ppm/℃以上である。回路基板の前記の熱膨張係数は、引張加重法で熱機械分析(TMA)することにより得られた、平面方向の25℃~150℃の温度範囲における線熱膨張係数を表す。回路基板の線熱膨張係数の測定に使用し得る熱機械分析装置としては、例えば、リガク社製「Thermo Plus TMA8310」、セイコーインスツルメンツ社製「TMA-SS6100」が挙げられる。 The thermal expansion coefficient of the circuit board is preferably 16 ppm/°C or less, more preferably 14 ppm/°C or less, and even more preferably 12 ppm/°C or less, from the viewpoint of suppressing circuit distortion and cracking. The lower limit of the coefficient of thermal expansion of the circuit board depends on the composition of the resin composition used to form the solder resist layer, but is preferably -2 ppm/°C or higher, more preferably 0 ppm/°C or higher, and still more preferably 4 ppm. /°C or more. The coefficient of thermal expansion of the circuit board represents the coefficient of linear thermal expansion in the temperature range of 25° C. to 150° C. in the planar direction obtained by thermomechanical analysis (TMA) using a tensile loading method. Examples of thermomechanical analyzers that can be used to measure the linear thermal expansion coefficient of circuit boards include "Thermo Plus TMA8310" manufactured by Rigaku Corporation and "TMA-SS6100" manufactured by Seiko Instruments.
 回路基板と樹脂シートとの積層は、例えば、支持体側から樹脂シートを回路基板に加熱圧着することにより行うことができる。樹脂シートを回路基板に加熱圧着する部材(以下、「加熱圧着部材」ということがある。)としては、例えば、加熱された金属板(SUS鏡板等)又は金属ロール(SUSロール)等が挙げられる。なお、加熱圧着部材を樹脂シートに直接プレスするのではなく、回路基板の表面回路に起因する凹凸に樹脂組成物層が十分に追随するよう、耐熱ゴム等の弾性材を介してプレスするのが好ましい。 The lamination of the circuit board and the resin sheet can be performed, for example, by thermocompression bonding the resin sheet to the circuit board from the support side. Examples of the member for thermocompression bonding of the resin sheet to the circuit board (hereinafter sometimes referred to as "thermocompression bonding member") include heated metal plates (such as SUS end plates) and metal rolls (SUS rolls). . Instead of directly pressing the thermocompression member onto the resin sheet, it is preferable to press the member through an elastic material such as heat-resistant rubber so that the resin composition layer can sufficiently follow the unevenness caused by the surface circuit of the circuit board. preferable.
 回路基板と樹脂シートとの積層は、真空ラミネート法により実施してよい。真空ラミネート法において、加熱圧着温度は、好ましくは60℃~160℃、より好ましくは80℃~140℃の範囲であり、加熱圧着圧力は、好ましくは0.098MPa~1.77MPa、より好ましくは0.29MPa~1.47MPaの範囲であり、加熱圧着時間は、好ましくは20秒間~400秒間、より好ましくは30秒間~300秒間の範囲である。積層は、好ましくは圧力26.7hPa以下の減圧条件下で実施される。 Lamination of the circuit board and the resin sheet may be performed by a vacuum lamination method. In the vacuum lamination method, the thermocompression temperature is preferably in the range of 60° C. to 160° C., more preferably 80° C. to 140° C., and the thermocompression pressure is preferably 0.098 MPa to 1.77 MPa, more preferably 0. .29 MPa to 1.47 MPa, and the heat pressing time is preferably 20 seconds to 400 seconds, more preferably 30 seconds to 300 seconds. Lamination is preferably carried out under reduced pressure conditions with a pressure of 26.7 hPa or less.
 積層は、市販の真空ラミネーターによって行うことができる。市販の真空ラミネーターとしては、例えば、名機製作所社製の真空加圧式ラミネーター、ニッコー・マテリアルズ社製のバキュームアップリケーター、バッチ式真空加圧ラミネーター等が挙げられる。 Lamination can be done with a commercially available vacuum laminator. Commercially available vacuum laminators include, for example, a vacuum pressurized laminator manufactured by Meiki Seisakusho, a vacuum applicator manufactured by Nikko Materials, a batch vacuum pressurized laminator, and the like.
 積層の後に、常圧下(大気圧下)、例えば、加熱圧着部材を支持体側からプレスすることにより、積層された樹脂シートの平滑化処理を行ってもよい。平滑化処理のプレス条件は、上記積層の加熱圧着条件と同様の条件とすることができる。平滑化処理は、市販のラミネーターによって行うことができる。なお、積層と平滑化処理は、上記の市販の真空ラミネーターを用いて連続的に行ってもよい。 After lamination, the laminated resin sheets may be smoothed under normal pressure (atmospheric pressure), for example, by pressing a thermocompression member from the support side. The pressing conditions for the smoothing treatment may be the same as the thermocompression bonding conditions for the lamination described above. Smoothing treatment can be performed with a commercially available laminator. Lamination and smoothing may be performed continuously using the above-mentioned commercially available vacuum laminator.
 樹脂シートが支持体を備える場合、その支持体は、工程(I)と工程(II)の間に除去してもよく、工程(II)の後に除去してもよい。 When the resin sheet has a support, the support may be removed between step (I) and step (II), or may be removed after step (II).
 工程(II)において、樹脂組成物層を硬化させて、樹脂組成物層の硬化物からなるソルダーレジスト層を形成する。樹脂組成物層の硬化は、通常、熱硬化によって行う。 In step (II), the resin composition layer is cured to form a solder resist layer made of a cured product of the resin composition layer. Curing of the resin composition layer is usually performed by heat curing.
 樹脂組成物層の熱硬化条件は、樹脂組成物が含む樹脂成分の種類によっても異なるが、一実施形態において、硬化温度は、好ましくは120℃~240℃、より好ましくは150℃~220℃、さらに好ましくは170℃~210℃である。硬化時間は、好ましくは5分間~120分間、より好ましくは10分間~100分間、さらに好ましくは15分間~100分間でありうる。 The thermosetting conditions for the resin composition layer vary depending on the type of resin component contained in the resin composition. More preferably, it is 170°C to 210°C. Curing time may preferably be from 5 minutes to 120 minutes, more preferably from 10 minutes to 100 minutes, even more preferably from 15 minutes to 100 minutes.
 熱硬化は、大気圧下(常圧下)にて行ってもよい。また、熱硬化は複数回実施してもよい。例えば、後述する工程(III)の前に工程(II)を複数回実施してもよく、後述する工程(III)の前に工程(II)を1回以上実施し、さらに工程(III)及び(IV)の後に熱硬化を1回以上実施してもよい。 Thermal curing may be performed under atmospheric pressure (normal pressure). Moreover, you may implement thermosetting in multiple times. For example, step (II) may be performed multiple times before step (III) described below, step (II) may be performed one or more times before step (III) described below, and step (III) and (IV) may be followed by heat curing one or more times.
 プリント配線板の製造方法は、工程(I)及び工程(II)に組み合わせて、更に任意の工程を含んでいてもよい。例えば、プリント配線板の製造方法は、例えば、(III)ソルダーレジスト層に開口部を形成する工程、(IV)ソルダーレジスト層にデスミア処理する工程を含んでもよい。支持体を工程(II)の後に剥離する場合、支持体の剥離は、工程(II)と工程(III)との間に行ってもよく、工程(III)と工程(IV)との間に行ってもよく、工程(IV)の後に行ってもよい。 The method for manufacturing a printed wiring board may further include optional steps in combination with step (I) and step (II). For example, the method for manufacturing a printed wiring board may include (III) forming openings in the solder resist layer and (IV) desmearing the solder resist layer. When the support is peeled off after step (II), the support may be peeled off between step (II) and step (III), and between step (III) and step (IV). may be carried out, or may be carried out after step (IV).
 工程(III)では、ソルダーレジスト層に開口部を形成する。開口部の形成方法としては、例えば、ドリル、レーザー、プラズマ等が挙げられる。レーザーにより開口部を形成する場合、レーザー光源としては、例えば、炭酸ガスレーザー、YAGレーザー、エキシマレーザー等が挙げられる。中でも、加工速度、コストの観点から、炭酸ガスレーザーが好ましい。開口部の寸法及び形状は、プリント配線板のデザインに応じて適宜決定してよい。 In step (III), an opening is formed in the solder resist layer. Examples of methods for forming the opening include drilling, laser, plasma, and the like. When the opening is formed by a laser, the laser light source includes, for example, a carbon dioxide gas laser, a YAG laser, an excimer laser, and the like. Among them, a carbon dioxide laser is preferable from the viewpoint of processing speed and cost. The size and shape of the opening may be appropriately determined according to the design of the printed wiring board.
 工程(IV)では、ソルダーレジスト層にデスミア処理を施す。工程(III)において形成された開口部の内部には、樹脂残渣としてのスミアが付着していることがありうる。このスミアは、電気接続不良の原因となりうる。そこで、工程(IV)において、スミアを除去するためにデスミア処理を実施してもよい。 In step (IV), desmear treatment is applied to the solder resist layer. Inside the openings formed in step (III), smears as resin residues may adhere. This smear can cause poor electrical connections. Therefore, in step (IV), desmear treatment may be performed to remove smear.
 デスミア処理は、乾式デスミア処理、湿式デスミア処理又はこれらの組み合わせによって実施してよい。 Desmearing may be performed by dry desmearing, wet desmearing, or a combination thereof.
 乾式デスミア処理としては、例えば、プラズマを用いたデスミア処理等が挙げられる。プラズマを用いたデスミア処理は、市販のプラズマデスミア処理装置を使用して実施することができる。市販のプラズマデスミア処理装置の中でも、プリント配線板の製造用途に好適な例として、ニッシン社製のマイクロ波プラズマ装置、積水化学工業社製の常圧プラズマエッチング装置等が挙げられる。 Examples of dry desmear treatment include desmear treatment using plasma. Desmearing using plasma can be performed using a commercially available plasma desmearing device. Among commercially available plasma desmear treatment apparatuses, suitable examples for use in manufacturing printed wiring boards include a microwave plasma apparatus manufactured by Nissin Co., Ltd., and an atmospheric pressure plasma etching apparatus manufactured by Sekisui Chemical Co., Ltd., and the like.
 湿式デスミア処理としては、例えば、酸化剤溶液を用いたデスミア処理等が挙げられる。酸化剤溶液を用いてデスミア処理する場合、膨潤液による膨潤処理、酸化剤溶液による酸化処理、中和液による中和処理をこの順に行うことが好ましい。 Wet desmear treatment includes, for example, desmear treatment using an oxidizing agent solution. When the desmear treatment is performed using the oxidant solution, it is preferable to perform the swelling treatment with the swelling liquid, the oxidation treatment with the oxidant solution, and the neutralization treatment with the neutralization solution in this order.
 膨潤液としては、例えば、アルカリ溶液、界面活性剤溶液等が挙げられ、好ましくはアルカリ溶液である。該アルカリ溶液としては、水酸化ナトリウム溶液、水酸化カリウム溶液がより好ましい。市販されている膨潤液としては、例えば、アトテックジャパン社製の「スウェリング・ディップ・セキュリガンスP」、「スウェリング・ディップ・セキュリガンスSBU」等が挙げられる。膨潤液による膨潤処理は、例えば、30℃~90℃の膨潤液に1分間~20分間浸漬することにより行ってもよい。 Examples of swelling liquids include alkaline solutions and surfactant solutions, preferably alkaline solutions. As the alkaline solution, a sodium hydroxide solution and a potassium hydroxide solution are more preferred. Examples of commercially available swelling liquids include "Swelling Dip Securigans P" and "Swelling Dip Securigans SBU" manufactured by Atotech Japan. The swelling treatment with a swelling liquid may be performed by, for example, immersion in a swelling liquid at 30° C. to 90° C. for 1 minute to 20 minutes.
 酸化剤溶液としては、アルカリ性過マンガン酸水溶液が好ましく、例えば、水酸化ナトリウムの水溶液に過マンガン酸カリウム又は過マンガン酸ナトリウムを溶解した溶液を挙げることができる。酸化剤溶液による粗化処理は、60℃~100℃に加熱した酸化剤溶液にソルダーレジスト層を10分間~30分間浸漬させて行うことが好ましい。また、アルカリ性過マンガン酸溶液における過マンガン酸塩の濃度は、5質量%~10質量%が好ましい。市販されている酸化剤としては、例えば、アトテックジャパン社製の「コンセントレート・コンパクトCP」、「ドージングソリューション・セキュリガンスP」等のアルカリ性過マンガン酸溶液が挙げられる。 As the oxidizing agent solution, an alkaline permanganate aqueous solution is preferable. For example, a solution obtained by dissolving potassium permanganate or sodium permanganate in an aqueous solution of sodium hydroxide can be mentioned. The roughening treatment with the oxidizing agent solution is preferably carried out by immersing the solder resist layer in the oxidizing agent solution heated to 60° C. to 100° C. for 10 to 30 minutes. The permanganate concentration in the alkaline permanganate solution is preferably 5% by mass to 10% by mass. Examples of commercially available oxidizing agents include alkaline permanganate solutions such as "Concentrate Compact CP" and "Dosing Solution Security P" manufactured by Atotech Japan.
 中和液としては、酸性の水溶液が好ましく、市販品としては、例えば、アトテックジャパン社製の「リダクションソリューション・セキュリガントP」が挙げられる。中和液による中和処理は、酸化剤による粗化処理がなされた処理面を30℃~80℃の中和液に5分間~30分間浸漬させることにより行ってもよい。 As the neutralizing solution, an acidic aqueous solution is preferable, and commercially available products include, for example, "Reduction Solution Securigant P" manufactured by Atotech Japan. The neutralization treatment with the neutralizing solution may be performed by immersing the treated surface roughened with the oxidizing agent in the neutralizing solution at 30° C. to 80° C. for 5 minutes to 30 minutes.
 乾式デスミア処理と湿式デスミア処理を組み合わせて実施する場合、乾式デスミア処理を先に実施してもよく、湿式デスミア処理を先に実施してもよい。 When performing dry desmear treatment and wet desmear treatment in combination, dry desmear treatment may be performed first, or wet desmear treatment may be performed first.
[17.半導体チップパッケージ]
 本発明の一実施形態に係る半導体チップパッケージは、上述した樹脂シートの樹脂組成物層の硬化物により形成されたソルダーレジスト層を備える。ソルダーレジスト層は、通常、樹脂組成物層の厚みと同じ範囲の厚みを有する。そして、ソルダーレジスト層は、前記のように厚くても、高い光線透過率を有することができる。また、ソルダーレジスト層は、好ましくは、低い弾性率を有するので、当該ソルダーレジスト層を備えるプリント配線板及び半導体チップパッケージの反りの抑制が可能である。さらに、ソルダーレジスト層は、好ましくは、半導体チップパッケージのソルダーレジスト層以外の構成要素に高い密着力で接合されることができる。
[17. Semiconductor chip package]
A semiconductor chip package according to one embodiment of the present invention includes a solder resist layer formed of a cured product of the resin composition layer of the resin sheet described above. The solder resist layer usually has a thickness in the same range as the thickness of the resin composition layer. And, even if the solder resist layer is thick as described above, it can have a high light transmittance. Moreover, since the solder resist layer preferably has a low elastic modulus, it is possible to suppress warping of the printed wiring board and the semiconductor chip package provided with the solder resist layer. Further, the solder resist layer can preferably be bonded to components other than the solder resist layer of the semiconductor chip package with high adhesion.
 半導体チップパッケージは、通常、半導体チップ及びソルダーレジスト層を備える。半導体チップパッケージとしては、例えば、FC-CSP、MIS-BGAパッケージ、ETS-BGAパッケージ、Fan-out型WLP(Wafer Level Package)、Fan-in型WLP、Fan-out型PLP(Panel Level Package)、Fan-in型PLPが挙げられる。また、ここで例示した以外の半導体チップパッケージのソルダーレジスト層を、上述した樹脂シートの樹脂組成物層の硬化物により形成してもよい。 A semiconductor chip package usually comprises a semiconductor chip and a solder resist layer. Examples of semiconductor chip packages include FC-CSP, MIS-BGA package, ETS-BGA package, Fan-out type WLP (Wafer Level Package), Fan-in type WLP, Fan-out type PLP (Panel Level Package), Fan-in type PLPs can be mentioned. Moreover, the solder resist layer of a semiconductor chip package other than those exemplified here may be formed from a cured product of the resin composition layer of the resin sheet described above.
 以下、Fan-out型WLPを例に挙げて、具体的に説明する。図1は、本発明の一実施形態に係る半導体チップパッケージ100を模式的に示す断面図である。図1に示すように、一例としての半導体チップパッケージ100は、半導体チップ110;半導体チップ110の周囲を覆うように形成された封止層120;半導体チップ110の封止層120とは反対側の面に設けられた、絶縁層としての再配線形成層130;導体層としての再配線層140;ソルダーレジスト層150;及び、バンプ160;を備える。 A specific explanation will be given below, taking a fan-out type WLP as an example. FIG. 1 is a cross-sectional view schematically showing a semiconductor chip package 100 according to one embodiment of the invention. As shown in FIG. 1, a semiconductor chip package 100 as an example includes: a semiconductor chip 110; a sealing layer 120 formed to cover the periphery of the semiconductor chip 110; A rewiring formation layer 130 as an insulating layer; a rewiring layer 140 as a conductor layer; a solder resist layer 150; and bumps 160 provided on the surface.
 この半導体チップパッケージの製造方法は、例えば、
 (i)基材に仮固定フィルムを積層する工程、
 (ii)半導体チップを、仮固定フィルム上に仮固定する工程、
 (iii)半導体チップ上に封止層を形成する工程、
 (iv)基材及び仮固定フィルムを半導体チップから剥離する工程、
 (v)半導体チップの基材及び仮固定フィルムを剥離した面に再配線形成層を形成する工程、
 (vi)再配線形成層上に、導体層としての再配線層を形成する工程、並びに、
 (vii)再配線層上にソルダーレジスト層を形成する工程、
 を含む。また、前記の半導体チップパッケージの製造方法は、
 (viii)バンピング加工を行う工程、及び、
 (ix)複数の半導体チップパッケージを、個々の半導体チップパッケージにダイシングし、個片化する工程
 を含んでいてもよい。
This semiconductor chip package manufacturing method includes, for example,
(i) a step of laminating a temporary fixing film on a substrate;
(ii) temporarily fixing the semiconductor chip on a temporary fixing film;
(iii) forming an encapsulation layer on the semiconductor chip;
(iv) peeling the substrate and the temporary fixing film from the semiconductor chip;
(v) forming a rewiring layer on the surface of the semiconductor chip from which the substrate and the temporary fixing film have been removed;
(vi) forming a rewiring layer as a conductor layer on the rewiring forming layer;
(vii) forming a solder resist layer on the rewiring layer;
including. Further, the method for manufacturing the semiconductor chip package includes:
(viii) a step of bumping, and
(ix) The step of dicing the plurality of semiconductor chip packages into individual semiconductor chip packages to individualize them may be included.
 工程(i)では、基材に仮固定フィルムを積層する。基材と仮固定フィルムとの積層は、プリント配線板の製造方法における回路基材と樹脂シートとの積層と同様に行いうる。 In step (i), a temporary fixing film is laminated on the base material. The lamination of the substrate and the temporary fixing film can be performed in the same manner as the lamination of the circuit substrate and the resin sheet in the printed wiring board manufacturing method.
 基材としては、例えば、シリコンウエハ;ガラスウエハ;ガラス基板;銅、チタン、ステンレス、冷間圧延鋼板(SPCC)等の金属基板;FR-4基板等の、ガラス繊維にエポキシ樹脂等の熱硬化性樹脂をしみこませ熱硬化処理した基板;BT樹脂等のビスマレイミドトリアジン樹脂からなる基板;などが挙げられる。 Examples of substrates include silicon wafers; glass wafers; glass substrates; metal substrates such as copper, titanium, stainless steel, and cold-rolled steel plates (SPCC); and a substrate made of a bismaleimide triazine resin such as BT resin; and the like.
 仮固定フィルムは、半導体チップから剥離でき、且つ、半導体チップを仮固定することができるフィルムを用いうる。市販品としては、日東電工社製「リヴァアルファ」等が挙げられる。 A film that can be peeled off from the semiconductor chip and that can temporarily fix the semiconductor chip can be used as the temporary fixing film. Commercially available products include "Riva Alpha" manufactured by Nitto Denko Corporation.
 工程(ii)では、半導体チップを、仮固定フィルム上に仮固定する。半導体チップの仮固定は、例えば、フリップチップボンダー、ダイボンダー等の装置を用いて行うことができる。半導体チップの配置のレイアウト及び配置数は、仮固定フィルムの形状、大きさ、目的とする半導体チップパッケージの生産数等の条件に応じて適切に設定できる。例えば、複数行で、かつ複数列のマトリックス状に半導体チップを整列させて、仮固定してもよい。 In step (ii), the semiconductor chip is temporarily fixed on the temporary fixing film. Temporary fixing of the semiconductor chip can be performed using a device such as a flip chip bonder, a die bonder, or the like. The layout and the number of semiconductor chips to be arranged can be appropriately set according to conditions such as the shape and size of the temporary fixing film and the production volume of the target semiconductor chip package. For example, the semiconductor chips may be arranged in a matrix of multiple rows and multiple columns and temporarily fixed.
 工程(iii)では、半導体チップ上に封止層を形成する。封止層は、通常、半導体チップ上に封止層用の樹脂組成物層を形成することと、この樹脂組成物層を硬化させて封止層を形成することとを含む方法で形成される。封止層用の樹脂組成物層は、熱硬化性樹脂組成物で形成してもよく、光硬化性樹脂組成物で形成してもよい。また、封止層用の樹脂組成物層として、上述したソルダーレジスト層形成用の樹脂組成物層と同じものを採用してもよい。この封止層は、例えば、プリント配線板の項で説明した回路基板上への樹脂シートの積層及び硬化と同じ方法によって形成してもよい。 In step (iii), a sealing layer is formed on the semiconductor chip. The encapsulation layer is usually formed by a method including forming a resin composition layer for the encapsulation layer on the semiconductor chip and curing the resin composition layer to form the encapsulation layer. . The resin composition layer for the sealing layer may be formed from a thermosetting resin composition or from a photocurable resin composition. Moreover, as the resin composition layer for the sealing layer, the same resin composition layer as the resin composition layer for forming the solder resist layer described above may be employed. This sealing layer may be formed, for example, by the same method of laminating and curing a resin sheet on a circuit board as described in the printed wiring board section.
 工程(iv)では、基材及び仮固定フィルムを半導体チップから剥離する。剥離方法は、仮固定フィルムの材質に応じた適切な方法を採用することが望ましい。剥離方法としては、例えば、仮固定フィルムを加熱、発泡又は膨張させて剥離する方法が挙げられる。また、剥離方法としては、例えば、基材を通して仮固定フィルムに紫外線を照射して、仮固定フィルムの粘着力を低下させて剥離する方法が挙げられる。仮固定フィルムを加熱、発泡又は膨張させて剥離する方法において、加熱条件は、通常、100℃~250℃で1秒間~90秒間又は5分間~15分間である。また、紫外線を照射して仮固定フィルムの粘着力を低下させて剥離する方法において、紫外線の照射量は、通常、10mJ/cm2~1000mJ/cm2である。 In step (iv), the base material and temporary fixing film are peeled off from the semiconductor chip. As for the peeling method, it is desirable to employ an appropriate method according to the material of the temporary fixing film. Examples of the peeling method include a method of heating, foaming, or expanding the temporary fixing film to peel it. Moreover, as a peeling method, for example, a method of irradiating the temporary fixing film with ultraviolet rays through the base material to reduce the adhesive strength of the temporary fixing film and peel it off can be used. In the method of peeling by heating, foaming or expanding the temporary fixing film, the heating conditions are usually 100° C. to 250° C. for 1 second to 90 seconds or 5 minutes to 15 minutes. In the method of peeling off the temporary fixing film by irradiating it with ultraviolet rays to reduce its adhesive strength, the irradiation dose of ultraviolet rays is usually 10 mJ/cm 2 to 1000 mJ/cm 2 .
 前記のように基材及び仮固定フィルムを半導体チップから剥離すると、封止層の面が露出する。半導体チップパッケージの製造方法は、この露出した封止層の面を研磨することを含んでいてもよい。研磨により、封止層の表面の平滑性を向上させることができる。 When the base material and temporary fixing film are peeled off from the semiconductor chip as described above, the surface of the sealing layer is exposed. The method of manufacturing the semiconductor chip package may include polishing the exposed surface of the encapsulation layer. Polishing can improve the smoothness of the surface of the sealing layer.
 工程(v)では、半導体チップの基材及び仮固定フィルムを剥離した面に、絶縁層としての再配線形成層を形成する。通常、この再配線形成層は、半導体チップ及び封止層上に形成される。再配線形成層の材料は、絶縁性を有する任意の材料を用いることができる。再配線形成層は、再配線形成層用の樹脂組成物の硬化物によって形成してもよい。その再配線形成層は、例えば、樹脂組成物層を形成することと、この樹脂組成物層を硬化させることとを含む方法で形成してもよい。再配線形成層用の樹脂組成物層は、熱硬化性樹脂組成物で形成してもよく、光硬化性樹脂組成物で形成してもよい。また、再配線形成層用の樹脂組成物層として、上述したソルダーレジスト層形成用の樹脂組成物層と同じものを採用してもよい。この再配線形成層は、例えば、プリント配線板の項で説明した回路基板上への樹脂シートの積層及び硬化と同じ方法によって形成してもよい。 In step (v), a rewiring formation layer is formed as an insulating layer on the surface of the semiconductor chip from which the base material and temporary fixing film have been removed. Usually, this rewiring formation layer is formed on the semiconductor chip and the encapsulation layer. Any insulating material can be used as the material of the rewiring formation layer. The rewiring layer may be formed from a cured resin composition for the rewiring layer. The rewiring layer may be formed, for example, by a method including forming a resin composition layer and curing the resin composition layer. The resin composition layer for the rewiring forming layer may be formed from a thermosetting resin composition or from a photocurable resin composition. As the resin composition layer for forming the rewiring layer, the same resin composition layer as the resin composition layer for forming the solder resist layer described above may be employed. This rewiring formation layer may be formed, for example, by the same method as lamination and curing of a resin sheet on a circuit board described in the printed wiring board section.
 再配線形成層には、半導体チップと再配線層とを層間接続するために、ビアホールを形成してもよい。ビアホールの形状は、特に限定されないが、一般的には円形(略円形)とされる。ビアホールのトップ径は、例えば、50μm以下、30μm以下、20μm以下、10μm以下である。ここで、ビアホールのトップ径とは、再配線形成層の表面でのビアホールの開口の直径をいう。 A via hole may be formed in the rewiring formation layer for interlayer connection between the semiconductor chip and the rewiring layer. Although the shape of the via hole is not particularly limited, it is generally circular (substantially circular). The top diameter of the via hole is, for example, 50 μm or less, 30 μm or less, 20 μm or less, or 10 μm or less. Here, the top diameter of the via hole means the diameter of the opening of the via hole on the surface of the rewiring layer.
 工程(vi)では、再配線形成層上に、導体層としての再配線層を形成する。再配線層は、金属等の導体材料によって形成できる。また、再配線層は、単金属層であってもよく、合金層であってもよい。再配線層の厚さは、所望の半導体チップパッケージのデザインによるが、通常3μm~35μm、好ましくは5μm~30μmである。再配線層の形成方法としては、例えば、メッキ法が挙げられる。例えば、セミアディティブ法、フルアディティブ法等の方法によりメッキして、所望の配線パターンを有する再配線層を形成してもよい。製造の簡便性の観点から、セミアディティブ法が好ましい。また、工程(v)及び工程(vi)を繰り返し行い、再配線層及び再配線形成層を交互に積み上げて(ビルドアップ)もよい。 In step (vi), a rewiring layer is formed as a conductor layer on the rewiring forming layer. The rewiring layer can be formed from a conductive material such as metal. Also, the rewiring layer may be a single metal layer or an alloy layer. The thickness of the rewiring layer is usually 3 μm to 35 μm, preferably 5 μm to 30 μm, depending on the desired semiconductor chip package design. Examples of the method for forming the rewiring layer include plating. For example, a rewiring layer having a desired wiring pattern may be formed by plating using a semi-additive method, a full-additive method, or the like. A semi-additive method is preferable from the viewpoint of manufacturing simplicity. Alternatively, the steps (v) and (vi) may be repeated to alternately build up the rewiring layers and the rewiring formation layers (build-up).
 工程(vii)では、再配線層上にソルダーレジスト層を形成する。ソルダーレジスト層は、上述した樹脂シートを用いて形成される。通常は、再配線層上に樹脂シートを、再配線層と樹脂組成物層とが接合するように積層することと、樹脂組成物層を硬化させることと、を含む方法によって、ソルダーレジスト層を形成する。再配線層上への樹脂シートの積層は、プリント配線板の項で説明した回路基板上への樹脂シートの積層と同じ方法によって行いうる。また、樹脂組成物層の硬化は、プリント配線板の項で説明した樹脂組成物層の硬化と同じ方法によって行いうる。さらに、工程(vii)は、必要に応じて、ソルダーレジスト層に開口部を形成すること、及び、ソルダーレジスト層にデスミア処理することを含んでいてもよい。開口部の形成及びデスミア処理は、プリント配線板の項で説明したものと同じ方法で行いうる。 In step (vii), a solder resist layer is formed on the rewiring layer. The solder resist layer is formed using the resin sheet described above. Usually, a solder resist layer is formed by a method including laminating a resin sheet on the rewiring layer so that the rewiring layer and the resin composition layer are bonded together, and curing the resin composition layer. Form. Lamination of the resin sheet on the rewiring layer can be performed by the same method as lamination of the resin sheet on the circuit board described in the section on the printed wiring board. The resin composition layer can be cured by the same method as the resin composition layer described in the printed wiring board section. Further, step (vii) may optionally include forming openings in the solder resist layer and desmearing the solder resist layer. Forming the openings and desmearing can be performed in the same manner as described in the printed wiring board section.
 半導体チップパッケージの製造方法は、必要に応じて、バンプを形成するバンピング加工を行う工程(viii)を含んでいてもよい。バンピング加工は、半田ボール、半田めっきなどの方法で行うことができる。 The method of manufacturing a semiconductor chip package may include a step (viii) of performing a bumping process for forming bumps, if necessary. Bumping can be performed by a method such as solder balls or solder plating.
 半導体チップパッケージの製造方法は、必要に応じて、複数の半導体チップパッケージを個々の半導体チップパッケージにダイシングし、個片化する工程(ix)を含んでいてもよい。 The method of manufacturing a semiconductor chip package may include a step (ix) of dicing a plurality of semiconductor chip packages into individual semiconductor chip packages and singulating them, if necessary.
[18.半導体装置]
 本発明の一実施形態に係る半導体装置は、前記のプリント配線板又は半導体チップパッケージを備える。半導体装置は、プリント配線板又は半導体チップパッケージを用いて製造することができる。
[18. semiconductor device]
A semiconductor device according to an embodiment of the present invention includes the printed wiring board or semiconductor chip package described above. A semiconductor device can be manufactured using a printed wiring board or a semiconductor chip package.
 半導体装置としては、例えば、電気製品(例えば、コンピューター、携帯電話、デジタルカメラ及びテレビ等)及び乗物(例えば、自動二輪車、自動車、電車、船舶及び航空機等)等に供される各種半導体装置が挙げられる。 Semiconductor devices include, for example, various semiconductor devices used in electrical appliances (e.g., computers, mobile phones, digital cameras, televisions, etc.) and vehicles (e.g., motorcycles, automobiles, trains, ships, aircraft, etc.). be done.
 以下、実施例を示して本発明について具体的に説明する。ただし、本発明は、これらの実施例に限定されるものではない。以下の説明において、量を表す「部」及び「%」は、別途明示のない限り、それぞれ「質量部」及び「質量%」を意味する。また、特に温度の指定が無い場合の温度条件及び圧力条件は、室温(25℃)及び大気圧(1atm)であった。 The present invention will be specifically described below with reference to examples. However, the present invention is not limited to these examples. In the following description, "parts" and "%" representing amounts mean "mass parts" and "mass%", respectively, unless otherwise specified. Further, the temperature and pressure conditions were room temperature (25° C.) and atmospheric pressure (1 atm) unless otherwise specified.
[製造例1.高分子樹脂Aの合成]
 反応容器に、2官能性ヒドロキシ基末端ポリブタジエン(日本曹達社製「G-3000」、数平均分子量=3000、ヒドロキシ基当量=1800g/eq.)69gと、芳香族炭化水素系混合溶剤(出光石油化学社製「イプゾール150」)40gと、ジブチル錫ラウレート0.005gとを入れ、混合して均一に溶解させた。均一になったところで60℃に昇温し、更に撹拌しながらイソホロンジイソシアネート(エボニックデグサジャパン社製「IPDI」、イソシアネート基当量=113g/eq.)8gを添加し、約3時間反応を行った。
[Production Example 1. Synthesis of polymer resin A]
In a reaction vessel, 69 g of bifunctional hydroxy group-terminated polybutadiene ("G-3000" manufactured by Nippon Soda Co., Ltd., number average molecular weight = 3000, hydroxy group equivalent = 1800 g / eq.), and an aromatic hydrocarbon-based mixed solvent (Idemitsu Oil 40 g of "Ipsol 150" manufactured by Kagaku Co., Ltd.) and 0.005 g of dibutyltin laurate were added and mixed to dissolve uniformly. When the mixture became uniform, the temperature was raised to 60° C., and 8 g of isophorone diisocyanate (“IPDI” manufactured by Evonik Degussa Japan, isocyanate group equivalent=113 g/eq.) was added while stirring, and the reaction was carried out for about 3 hours.
 次いで反応物に、クレゾールノボラック樹脂(DIC社製「KA-1160」、水酸基当量=117g/eq.)23gと、エチルジグリコールアセテート(ダイセル社製)60gとを添加し、攪拌しながら150℃まで昇温し、約10時間反応を行った。FT-IRによって2250cm-1のNCOピークの消失の確認を行った。NCOピークの消失の確認をもって反応の終点とみなし、反応物を室温まで降温した。そして、反応物を100メッシュの濾布で濾過して、ブタジエン構造及びフェノール性水酸基を有する高分子樹脂(フェノール性水酸基含有ブタジエン樹脂:不揮発成分50質量%)を得た。高分子樹脂Aの数平均分子量は5900、ガラス転移温度は-7℃であった。 Next, 23 g of a cresol novolac resin ("KA-1160" manufactured by DIC, hydroxyl equivalent=117 g/eq.) and 60 g of ethyl diglycol acetate (manufactured by Daicel) were added to the reactant and heated to 150° C. while stirring. The temperature was raised and the reaction was carried out for about 10 hours. The disappearance of the NCO peak at 2250 cm −1 was confirmed by FT-IR. Confirmation of the disappearance of the NCO peak was regarded as the end of the reaction, and the reaction mixture was allowed to cool to room temperature. Then, the reaction product was filtered through a 100-mesh filter cloth to obtain a polymer resin having a butadiene structure and phenolic hydroxyl groups (phenolic hydroxyl group-containing butadiene resin: 50% by mass of non-volatile components). Polymer resin A had a number average molecular weight of 5,900 and a glass transition temperature of -7°C.
[製造例2.高分子樹脂Dの合成]
 反応容器にポリカーボネートジオール(数平均分子量:約1,000、水酸基当量:500g/eq.、不揮発分:100%、クラレ社製「C-1015N」)80gおよびジブチル錫ジラウレート0.01gを、ジエチレングリコールモノエチルエーテルアセテート(ダイセル社製「エチルジグリコールアセテート」)37.6g中に均一に溶解させた。次いで、該混合物を50℃に昇温し、さらに撹拌しながら、トルエン-2,4-ジイソシアネート(イソシアネート基当量:87.08)27.8gを添加し、約3時間反応を行った。この反応物を室温まで冷却してから、これにベンゾフェノンテトラカルボン酸二無水物(酸無水物当量:161.1g/eq)14.3g、トリエチレンジアミン0.12g、及びジエチレングリコールモノエチルエーテルアセテート(ダイセル社製「エチルジグリコールアセテート」)84.0gを添加し、撹拌しながら130℃まで昇温し、約4時間反応を行った。FT-IRより2250cm-1のNCOピークの消失の確認を行った。NCOピーク消失の確認をもって反応の終点とみなし、反応物を室温まで降温してから、目開きが100μmである濾布で濾過して、イミド構造、ウレタン構造およびポリカーボネート構造を有する高分子樹脂D(不揮発分50質量%)を得た。数平均分子量は8500であった。
[Production Example 2. Synthesis of polymer resin D]
In a reaction vessel, 80 g of polycarbonate diol (number average molecular weight: about 1,000, hydroxyl equivalent: 500 g/eq., non-volatile content: 100%, "C-1015N" manufactured by Kuraray Co., Ltd.) and 0.01 g of dibutyltin dilaurate were added. It was uniformly dissolved in 37.6 g of ethyl ether acetate ("ethyl diglycol acetate" manufactured by Daicel). Then, the mixture was heated to 50° C., 27.8 g of toluene-2,4-diisocyanate (isocyanate group equivalent: 87.08) was added while stirring, and the reaction was carried out for about 3 hours. After cooling the reaction to room temperature, 14.3 g of benzophenonetetracarboxylic dianhydride (anhydride equivalent: 161.1 g/eq), 0.12 g of triethylenediamine, and diethylene glycol monoethyl ether acetate (Daicel 84.0 g of "Ethyl Diglycol Acetate" manufactured by Co., Ltd. was added, and the temperature was raised to 130° C. while stirring, and the reaction was carried out for about 4 hours. The disappearance of the NCO peak at 2250 cm −1 was confirmed by FT-IR. Confirmation of the disappearance of the NCO peak was regarded as the end point of the reaction, and the reaction product was cooled to room temperature and then filtered through a filter cloth having an opening of 100 μm to obtain polymer resin D ( 50% by mass of non-volatile matter) was obtained. The number average molecular weight was 8,500.
[実施例1]
 エポキシ樹脂混合物(ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂の混合物、日鉄ケミカル&マテリアル社製「ZX-1059」、エポキシ当量170g/eq.)3部、ナフタレン型エポキシ樹脂(DIC社製「HP4032D」、エポキシ当量140g/eq.)3部、フェノール系硬化剤(DIC社製「LA-3018-50P」、活性基当量約151g/eq.、不揮発成分50%の2-メトキシプロパノール溶液)4部、マレイミド樹脂(デジグナーモレキュールズ製「BMI-689」)3部、無機充填材2(平均粒径0.3μm、比表面積10.5m/g、信越化学工業社製のシランカップリング剤「KBM-573」で表面処理したシリカ粒子)65部、高分子樹脂A(不揮発成分50%)20部、イミダゾール系硬化促進剤(四国化成工業社製、「1B2PZ」)0.05部、有機顔料(Pigment green36、大日精化工業社製「CG5370」)0.05部、有機顔料(pigment blue 15:3、東洋インキ製造社製「FG7351」)0.05部、及び、溶媒としてのメチルエチルケトン15部を混合し、高速回転ミキサーで均一に分散して、樹脂ワニスを作製した。
[Example 1]
Epoxy resin mixture (mixture of bisphenol A type epoxy resin and bisphenol F type epoxy resin, "ZX-1059" manufactured by Nippon Steel Chemical & Materials Co., Ltd., epoxy equivalent 170 g / eq.) 3 parts, naphthalene type epoxy resin (manufactured by DIC "HP4032D", epoxy equivalent weight 140 g/eq.) 3 parts, phenol-based curing agent (manufactured by DIC Corporation "LA-3018-50P", active group equivalent weight about 151 g/eq., non-volatile component 50% 2-methoxypropanol solution) 4 part, maleimide resin ("BMI-689" manufactured by Digigna Molecules) 3 parts, inorganic filler 2 (average particle size 0.3 μm, specific surface area 10.5 m 2 /g, silane coupling manufactured by Shin-Etsu Chemical Co., Ltd.) Silica particles surface-treated with agent "KBM-573") 65 parts, polymer resin A (50% non-volatile component) 20 parts, imidazole curing accelerator (manufactured by Shikoku Kasei Kogyo Co., Ltd., "1B2PZ") 0.05 parts, Organic pigment (Pigment green 36, "CG5370" manufactured by Dainichiseika Kogyo Co., Ltd.) 0.05 parts, organic pigment (pigment blue 15:3, manufactured by Toyo Ink Manufacturing Co., Ltd. "FG7351") 0.05 parts, and methyl ethyl ketone as a solvent 15 parts were mixed and dispersed uniformly with a high-speed rotating mixer to prepare a resin varnish.
 次いで、支持体としてのポリエチレンテレフタレートフィルム(東レ社製「ルミラー T6AM」、厚さ38μm)上に、乾燥後の樹脂組成物層の厚みが50μmとなるように樹脂ワニスを均一に塗布し、80℃~120℃(平均100℃)で6分間乾燥させて、樹脂組成物層を形成した。粗面を有する保護フィルム(ポリプロピレンフィルム、王子エフテックス社製「アルファンMA-430」、厚さ20μm)を用意し、その保護フィルムの粗面を樹脂組成物層に貼り合わせて、支持体/樹脂組成物層/保護フィルムの層構成を有する樹脂シートを得た。 Next, on a polyethylene terephthalate film ("Lumirror T6AM" manufactured by Toray Industries, Inc., thickness 38 μm) as a support, a resin varnish was uniformly applied so that the thickness of the resin composition layer after drying was 50 μm, and the temperature was maintained at 80°C. Drying was performed at ~120°C (average 100°C) for 6 minutes to form a resin composition layer. A protective film having a rough surface (polypropylene film, "Alphan MA-430" manufactured by Oji F-Tex Co., Ltd., thickness 20 μm) is prepared, and the rough surface of the protective film is laminated to the resin composition layer to form a support / A resin sheet having a layer structure of resin composition layer/protective film was obtained.
[実施例2]
 エポキシ樹脂混合物(日鉄ケミカル&マテリアル社製「ZX-1059」)3部の代わりに、ナフチレンエーテル型エポキシ樹脂(DIC社製「HP6000L」、エポキシ当量213g/eq.)3部を用いた。また、樹脂ワニスに、活性エステル樹脂(DIC社製「HPC-8000L-65TM」、ジシクロペンタジエン型ジフェノール構造を含む活性エステル樹脂、不揮発成分65質量%のトルエン:MEKの1:1溶液、官能基当量281g/eq.)1.5部を追加した。さらに、フェノール系硬化剤(DIC社製「LA-3018-50P」、不揮発成分50%)の量を、4部から2部に変更した。また、65部の無機充填材2の代わりに、無機充填材3(平均粒径1.0μm、比表面積4.3m/g、信越化学工業社製のシランカップリング剤「KBM-573」で表面処理したシリカ粒子)90部を用いた。さらに、高分子樹脂A(不揮発成分50%)の量を、20部から40部に変更した。
 以上の事項以外は、実施例1と同じ方法によって、樹脂ワニス及び樹脂シートを製造した。
[Example 2]
Instead of 3 parts of the epoxy resin mixture (“ZX-1059” manufactured by Nippon Steel Chemical & Materials Co., Ltd.), 3 parts of a naphthylene ether type epoxy resin (“HP6000L” manufactured by DIC Corporation, epoxy equivalent: 213 g/eq.) was used. In addition, the resin varnish was added with an active ester resin ("HPC-8000L-65TM" manufactured by DIC Corporation, an active ester resin containing a dicyclopentadiene type diphenol structure, a 1:1 solution of toluene:MEK with a nonvolatile content of 65% by mass, a functional base equivalent of 281 g/eq.) 1.5 parts were added. Furthermore, the amount of phenol-based curing agent (“LA-3018-50P” manufactured by DIC, non-volatile component 50%) was changed from 4 parts to 2 parts. Further, instead of 65 parts of inorganic filler 2, inorganic filler 3 (average particle size 1.0 μm, specific surface area 4.3 m 2 /g, Shin-Etsu Chemical Co., Ltd. silane coupling agent “KBM-573”) 90 parts of surface-treated silica particles) were used. Furthermore, the amount of polymer resin A (50% non-volatile content) was changed from 20 parts to 40 parts.
A resin varnish and a resin sheet were produced in the same manner as in Example 1 except for the above matters.
[実施例3]
 エポキシ樹脂混合物(日鉄ケミカル&マテリアル社製「ZX-1059」)3部の代わりに、グリシジルアミン型エポキシ樹脂(三菱ケミカル社製「JER630LSD」、エポキシ当量95g/eq.)3部を用いた。また、フェノール系硬化剤(DIC社製「LA-3018-50P」、不揮発成分50%)の量を、4部から2部に変更した。さらに、樹脂ワニスに、クレゾールノボラック樹脂(DIC社製「KA-1163」、フェノール性水酸基当量118g/eq.)3部を追加した。また、マレイミド樹脂(デジグナーモレキュールズ製「BMI-689」)の量を、3部から6部に変更した。さらに、65部の無機充填材2の代わりに、無機充填材1(平均粒径0.1μm、比表面積30.1m/g、ヘキサメチルジシラザン(HMDS)で表面処理したシリカ粒子)50部を用いた。
 以上の事項以外は、実施例1と同じ方法によって、樹脂ワニス及び樹脂シートを製造した。
[Example 3]
Instead of 3 parts of the epoxy resin mixture ("ZX-1059" manufactured by Nippon Steel Chemical & Materials Co., Ltd.), 3 parts of glycidylamine type epoxy resin ("JER630LSD" manufactured by Mitsubishi Chemical Corporation, epoxy equivalent 95 g/eq.) was used. Also, the amount of phenol-based curing agent (“LA-3018-50P” manufactured by DIC, non-volatile component 50%) was changed from 4 parts to 2 parts. Furthermore, 3 parts of a cresol novolac resin (manufactured by DIC, "KA-1163", phenolic hydroxyl group equivalent: 118 g/eq.) was added to the resin varnish. Also, the amount of maleimide resin ("BMI-689" manufactured by Designer Molecules) was changed from 3 parts to 6 parts. Furthermore, instead of 65 parts of inorganic filler 2, 50 parts of inorganic filler 1 (average particle size 0.1 μm, specific surface area 30.1 m 2 /g, silica particles surface-treated with hexamethyldisilazane (HMDS)) was used.
A resin varnish and a resin sheet were produced in the same manner as in Example 1 except for the above matters.
[実施例4]
 エポキシ樹脂混合物(日鉄ケミカル&マテリアル社製「ZX-1059」)3部及びナフタレン型エポキシ樹脂(DIC社製「HP4032D」)3部の代わりに、グリシジルアミン型エポキシ樹脂(三菱ケミカル社製「JER630LSD」、エポキシ当量95g/eq.)3部及びジシクロペンタジエン型エポキシ樹脂(DIC社製「HP7200」、エポキシ当量258g/eq.)3部を用いた。また、フェノール系硬化剤(DIC社製「LA-3018-50P」、不揮発成分50%)4部の代わりに、クレゾールノボラック樹脂(DIC社製「KA-1163」、フェノール性水酸基当量118g/eq.)4部を用いた。さらに、マレイミド樹脂(デジグナーモレキュールズ製「BMI-689」)を使用しなかった。また、高分子樹脂A(不揮発成分50%)20部の代わりに、フェノキシ樹脂(三菱ケミカル社製「YX7553BH30」、不揮発成分30質量%のシクロヘキサノン:メチルエチルケトン(MEK)の1:1溶液、Mw=35000)10部を用いた。
 以上の事項以外は、実施例1と同じ方法によって、樹脂ワニス及び樹脂シートを製造した。
[Example 4]
Instead of 3 parts of epoxy resin mixture (“ZX-1059” manufactured by Nippon Steel Chemical & Materials Co., Ltd.) and 3 parts of naphthalene type epoxy resin (“HP4032D” manufactured by DIC Corporation), glycidylamine type epoxy resin (manufactured by Mitsubishi Chemical Corporation “JER630LSD , epoxy equivalent of 95 g/eq.) and 3 parts of a dicyclopentadiene type epoxy resin ("HP7200" manufactured by DIC, epoxy equivalent of 258 g/eq.) were used. Further, instead of 4 parts of a phenol-based curing agent (“LA-3018-50P” manufactured by DIC, non-volatile component 50%), cresol novolac resin (“KA-1163” manufactured by DIC, phenolic hydroxyl group equivalent 118 g/eq. ) 4 parts were used. Furthermore, no maleimide resin (“BMI-689” manufactured by Designer Molecules) was used. Further, instead of 20 parts of polymer resin A (50% non-volatile content), a phenoxy resin (manufactured by Mitsubishi Chemical Corporation "YX7553BH30", 1:1 solution of cyclohexanone:methyl ethyl ketone (MEK) with 30% by mass non-volatile content, Mw = 35000 ) 10 parts were used.
A resin varnish and a resin sheet were produced in the same manner as in Example 1 except for the above matters.
[実施例5]
 エポキシ樹脂混合物(日鉄ケミカル&マテリアル社製「ZX-1059」)3部の代わりに、グリシジルアミン型エポキシ樹脂(三菱ケミカル社製「JER630LSD」、エポキシ当量95g/eq.)3部を用いた。また、フェノール系硬化剤(DIC社製「LA-3018-50P」、不揮発成分50%)の量を、4部から2部に変更した。さらに、樹脂ワニスに、クレゾールノボラック樹脂(DIC社製「KA-1163」、フェノール性水酸基当量118g/eq.)3部を追加した。また、マレイミド樹脂(デジグナーモレキュールズ製「BMI-689」)の量を、3部から6部に変更した。さらに、65部の無機充填材2の代わりに、無機充填材1(平均粒径0.1μm、比表面積30.1m/g、ヘキサメチルジシラザン(HMDS)で表面処理したシリカ粒子)50部を用いた。また、高分子樹脂A(不揮発成分50%)20部の代わりに、エラストマーとしての水酸基含有アクリルポリマー(東亞合成社製「ARUFON UH-2000」、重量平均分子量11,000)10部を用いた。さらに、樹脂ワニスにシクロヘキサノン5部を追加した。
 以上の事項以外は、実施例1と同じ方法によって、樹脂ワニス及び樹脂シートを製造した。
[Example 5]
Instead of 3 parts of the epoxy resin mixture ("ZX-1059" manufactured by Nippon Steel Chemical & Materials Co., Ltd.), 3 parts of glycidylamine type epoxy resin ("JER630LSD" manufactured by Mitsubishi Chemical Corporation, epoxy equivalent 95 g/eq.) was used. Also, the amount of phenol-based curing agent (“LA-3018-50P” manufactured by DIC, non-volatile component 50%) was changed from 4 parts to 2 parts. Furthermore, 3 parts of a cresol novolac resin (manufactured by DIC, "KA-1163", phenolic hydroxyl group equivalent: 118 g/eq.) was added to the resin varnish. Also, the amount of maleimide resin ("BMI-689" manufactured by Designer Molecules) was changed from 3 parts to 6 parts. Furthermore, instead of 65 parts of inorganic filler 2, 50 parts of inorganic filler 1 (average particle size 0.1 μm, specific surface area 30.1 m 2 /g, silica particles surface-treated with hexamethyldisilazane (HMDS)) was used. Further, instead of 20 parts of polymer resin A (50% non-volatile component), 10 parts of hydroxyl group-containing acrylic polymer ("ARUFON UH-2000" manufactured by Toagosei Co., Ltd., weight average molecular weight of 11,000) was used as an elastomer. Additionally, 5 parts of cyclohexanone were added to the resin varnish.
A resin varnish and a resin sheet were produced in the same manner as in Example 1 except for the above matters.
[実施例6]
 高分子樹脂A(不揮発成分50%)20部の代わりに、粒子状エラストマーとしてのコア-シェル型ポリマー粒子(ダウ・ケミカル社製「EXL2655」)4部を用いたこと、及び、樹脂ワニスにシクロヘキサノン5部を追加したこと以外は、実施例1と同じ方法によって、樹脂ワニス及び樹脂シートを製造した。
[Example 6]
Instead of 20 parts of polymer resin A (50% non-volatile component), 4 parts of core-shell type polymer particles (“EXL2655” manufactured by Dow Chemical Co.) were used as a particulate elastomer, and cyclohexanone was used as a resin varnish. A resin varnish and a resin sheet were produced in the same manner as in Example 1, except that 5 parts were added.
[実施例7]
 高分子樹脂A(不揮発成分50%)20部の代わりに、製造例2で製造した高分子樹脂D(不揮発分50質量%)20部を用いたこと以外は、実施例1と同じ方法によって、樹脂ワニス及び樹脂シートを製造した。
[Example 7]
In the same manner as in Example 1, except that 20 parts of polymer resin D (50% by mass of nonvolatile content) produced in Production Example 2 was used instead of 20 parts of polymer resin A (50% nonvolatile content). A resin varnish and a resin sheet were produced.
[実施例8]
 エポキシ樹脂混合物(日鉄ケミカル&マテリアル社製「ZX-1059」)3部の代わりに、グリシジルアミン型エポキシ樹脂(三菱ケミカル社製「JER630LSD」、エポキシ当量95g/eq.)3部を用いた。また、フェノール系硬化剤(DIC社製「LA-3018-50P」、不揮発成分50%)の量を、4部から2部に変更した。さらに、樹脂ワニスに、クレゾールノボラック樹脂(DIC社製「KA-1163」、フェノール性水酸基当量118g/eq.)3部を追加した。また、65部の無機充填材2の代わりに、無機充填材1(平均粒径0.1μm、比表面積30.1m/g、ヘキサメチルジシラザン(HMDS)で表面処理したシリカ粒子)50部を用いた。さらに、高分子樹脂A(不揮発成分50%)20部の代わりに、エラストマーとしてのビスマレイミド樹脂(Designer Molecules社「BMI-3000」、分子量3000)5部を用いた。さらに、樹脂ワニスにシクロヘキサノンを5部を追加した。
 以上の事項以外は、実施例1と同じ方法によって、樹脂ワニス及び樹脂シートを製造した。
[Example 8]
Instead of 3 parts of the epoxy resin mixture ("ZX-1059" manufactured by Nippon Steel Chemical & Materials Co., Ltd.), 3 parts of glycidylamine type epoxy resin ("JER630LSD" manufactured by Mitsubishi Chemical Corporation, epoxy equivalent 95 g/eq.) was used. Also, the amount of phenol-based curing agent (“LA-3018-50P” manufactured by DIC, non-volatile component 50%) was changed from 4 parts to 2 parts. Furthermore, 3 parts of a cresol novolac resin (manufactured by DIC, "KA-1163", phenolic hydroxyl group equivalent: 118 g/eq.) was added to the resin varnish. Further, instead of 65 parts of inorganic filler 2, 50 parts of inorganic filler 1 (average particle size 0.1 μm, specific surface area 30.1 m 2 /g, silica particles surface-treated with hexamethyldisilazane (HMDS)) was used. Further, 5 parts of a bismaleimide resin (Designer Molecules Co., "BMI-3000", molecular weight 3000) was used as an elastomer instead of 20 parts of polymer resin A (50% non-volatile component). Furthermore, 5 parts of cyclohexanone were added to the resin varnish.
A resin varnish and a resin sheet were produced in the same manner as in Example 1 except for the above matters.
[比較例1]
 エポキシ樹脂混合物(日鉄ケミカル&マテリアル社製「ZX-1059」)3部の代わりに、ナフチレンエーテル型エポキシ樹脂(DIC社製「HP6000L」、エポキシ当量213g/eq.)3部を用いた。また、樹脂ワニスに、活性エステル樹脂(DIC社製「HPC-8000L-65TM」、ジシクロペンタジエン型ジフェノール構造を含む活性エステル樹脂、不揮発成分65質量%のトルエン:MEKの1:1溶液、官能基当量281g/eq.)1.5部を追加した。さらに、フェノール系硬化剤(DIC社製「LA-3018-50P」、不揮発成分50%)の量を、4部から2部に変更した。また、65部の無機充填材2の代わりに、無機充填材4(平均粒径2.0μm、比表面積2.5m/g、信越化学工業社製のシランカップリング剤「KBM-573」で表面処理したシリカ粒子)100部を用いた。
 以上の事項以外は、実施例1と同じ方法によって、樹脂ワニス及び樹脂シートを製造した。
[Comparative Example 1]
Instead of 3 parts of the epoxy resin mixture (“ZX-1059” manufactured by Nippon Steel Chemical & Materials Co., Ltd.), 3 parts of a naphthylene ether type epoxy resin (“HP6000L” manufactured by DIC Corporation, epoxy equivalent: 213 g/eq.) was used. In addition, the resin varnish was added with an active ester resin ("HPC-8000L-65TM" manufactured by DIC Corporation, an active ester resin containing a dicyclopentadiene type diphenol structure, a 1:1 solution of toluene:MEK with a nonvolatile content of 65% by mass, a functional base equivalent of 281 g/eq.) 1.5 parts were added. Furthermore, the amount of phenol-based curing agent (“LA-3018-50P” manufactured by DIC, non-volatile component 50%) was changed from 4 parts to 2 parts. Further, instead of 65 parts of inorganic filler 2, inorganic filler 4 (average particle size 2.0 μm, specific surface area 2.5 m 2 /g, Shin-Etsu Chemical Co., Ltd. silane coupling agent “KBM-573” 100 parts of surface-treated silica particles) were used.
A resin varnish and a resin sheet were produced in the same manner as in Example 1 except for the above matters.
[比較例2]
 エポキシ樹脂混合物(日鉄ケミカル&マテリアル社製「ZX-1059」)3部の代わりに、ナフチレンエーテル型エポキシ樹脂(DIC社製「HP6000L」、エポキシ当量213g/eq.)3部を用いた。また、樹脂ワニスに、活性エステル樹脂(DIC社製「HPC-8000L-65TM」、ジシクロペンタジエン型ジフェノール構造を含む活性エステル樹脂、不揮発成分65質量%のトルエン:MEKの1:1溶液、官能基当量281g/eq.)1.5部を追加した。さらに、フェノール系硬化剤(DIC社製「LA-3018-50P」、不揮発成分50%)の量を、4部から2部に変更した。また、65部の無機充填材2の代わりに、無機充填材4(平均粒径2.0μm、比表面積2.5m/g、信越化学工業社製のシランカップリング剤「KBM-573」で表面処理したシリカ粒子)100部を用いた。さらに、高分子樹脂A(不揮発成分50%)の量を、20部から60部に変更した。
 以上の事項以外は、実施例1と同じ方法によって、樹脂ワニス及び樹脂シートを製造した。
[Comparative Example 2]
Instead of 3 parts of the epoxy resin mixture (“ZX-1059” manufactured by Nippon Steel Chemical & Materials Co., Ltd.), 3 parts of a naphthylene ether type epoxy resin (“HP6000L” manufactured by DIC Corporation, epoxy equivalent: 213 g/eq.) was used. In addition, the resin varnish was added with an active ester resin ("HPC-8000L-65TM" manufactured by DIC Corporation, an active ester resin containing a dicyclopentadiene type diphenol structure, a 1:1 solution of toluene:MEK with a nonvolatile content of 65% by mass, a functional base equivalent of 281 g/eq.) 1.5 parts were added. Furthermore, the amount of phenol-based curing agent (“LA-3018-50P” manufactured by DIC, non-volatile component 50%) was changed from 4 parts to 2 parts. Further, instead of 65 parts of inorganic filler 2, inorganic filler 4 (average particle size 2.0 μm, specific surface area 2.5 m 2 /g, Shin-Etsu Chemical Co., Ltd. silane coupling agent “KBM-573” 100 parts of surface-treated silica particles) were used. Furthermore, the amount of polymer resin A (50% non-volatile content) was changed from 20 parts to 60 parts.
A resin varnish and a resin sheet were produced in the same manner as in Example 1 except for the above matters.
[樹脂組成物層のタック性の評価]
 恒温槽付きプローブタックテスター(テスター産業社製「TE-6002」)にて、樹脂組成物層のタック力を測定した。具体的には、25℃恒温槽内に静置した樹脂シートの保護フィルムを剥がし、その樹脂組成物層に、SUS製5mmφ円柱状プローブを、コンタクト速度0.5cm/秒で接触させ、1000gf/cmの荷重下で、1秒間保持した。その後、プローブを0.5cm/秒で引き離すときの剥離力を測定し、プローブタック(タック力)とした。測定は一つのサンプルにつき3回行い、各測定における平均値を求めた。プローブタック(タック力)の平均値が0.4N未満を「○」と判定し、0.4以上0.6N未満を「△」と判定し、0.6以上を「×」と判定した。
[Evaluation of tackiness of resin composition layer]
The tack force of the resin composition layer was measured using a probe tack tester with a constant temperature bath (“TE-6002” manufactured by Tester Sangyo Co., Ltd.). Specifically, the protective film of the resin sheet placed in a constant temperature bath at 25° C. was peeled off, and a SUS 5 mmφ cylindrical probe was brought into contact with the resin composition layer at a contact speed of 0.5 cm / sec, and 1000 gf / A load of cm 2 was held for 1 second. After that, the peel force when the probe was pulled apart at 0.5 cm/sec was measured and defined as probe tack (tack force). Each sample was measured three times, and an average value was obtained for each measurement. An average value of probe tack (tack force) of less than 0.4 N was judged as "good", an average value of 0.4 or more and less than 0.6 N was judged as "triangle", and an average value of 0.6 or more was judged as "poor".
[樹脂組成物層の溶融粘度の測定]
 樹脂シートの樹脂組成物層に含まれる樹脂組成物の溶融粘度を、動的粘弾性測定装置(ユー・ビー・エム社製「Rheosol-G3000」)を使用して測定した。この測定は、樹脂組成物層から採取した1gの試料について、直径18mmのパラレルプレートを使用して、行った。測定条件は、開始温度60℃から200℃まで、昇温速度5℃/分、測定温度間隔2.5℃、振動1Hz/degとした。得られた溶融粘度の測定値から、最低溶融粘度を求めた。最低溶融粘度が20000poise以下を「〇」と判定し、20000poiseより大きいと「×」と判定した。
[Measurement of Melt Viscosity of Resin Composition Layer]
The melt viscosity of the resin composition contained in the resin composition layer of the resin sheet was measured using a dynamic viscoelasticity measuring device ("Rheosol-G3000" manufactured by UBM). This measurement was performed on a 1 g sample taken from the resin composition layer using a parallel plate with a diameter of 18 mm. The measurement conditions were a starting temperature of 60° C. to 200° C., a temperature increase rate of 5° C./min, a measurement temperature interval of 2.5° C., and a vibration of 1 Hz/deg. The lowest melt viscosity was obtained from the measured values of the obtained melt viscosities. A minimum melt viscosity of 20,000 poise or less was evaluated as "◯", and a minimum melt viscosity of more than 20,000 poise was evaluated as "x".
[硬化物の弾性率の測定]
 離型処理が施された処理(離型面)と、離型処理が施されていない面(未処理面)とを有する離型PETフィルム(リンテック社製「501010」、厚さ38μm、240mm角)を用意した。この離型PETフィルムを、ガラス布基材エポキシ樹脂両面銅張積層板(松下電工社製「R5715ES」、厚さ0.7mm、255mm角)上に、離型PETフィルムの未処理面がガラス布基材エポキシ樹脂両面銅張積層板に接するように、設置した。離型PETフィルムの四辺をポリイミド接着テープ(幅10mm)で、ガラス布基材エポキシ樹脂両面銅張積層板に固定した。
[Measurement of elastic modulus of cured product]
A release PET film (“501010” manufactured by Lintec Co., Ltd., thickness 38 μm, 240 mm square ) was prepared. This release PET film is placed on a glass cloth-based epoxy resin double-sided copper-clad laminate (manufactured by Matsushita Electric Works, "R5715ES", thickness 0.7 mm, 255 mm square), and the untreated surface of the release PET film is a glass cloth. It was installed so as to be in contact with the base epoxy resin double-sided copper-clad laminate. The four sides of the release PET film were fixed to a double-sided copper-clad glass cloth-based epoxy resin laminate with a polyimide adhesive tape (width 10 mm).
 実施例及び比較例で作製した各樹脂シート(167mm×107mm角)から保護フィルムを剥離し、バッチ式真空加圧ラミネーター(ニッコー・マテリアルズ社製の2ステージビルドアップラミネーター「CVP700」)を用いて、樹脂組成物層が離型PETフィルムの離型面と接するように、中央にラミネートした。ラミネートは、30秒間減圧して気圧を13hPa以下とした後、100℃、圧力0.74MPaにて30秒間圧着させることにより実施した。
 次いで、支持体を剥離し、190℃で90分間の硬化条件で、樹脂組成物層を熱硬化させた。
The protective film was peeled off from each resin sheet (167 mm × 107 mm square) produced in Examples and Comparative Examples, and a batch-type vacuum pressure laminator (2-stage build-up laminator "CVP700" manufactured by Nikko Materials Co., Ltd.) was used. , was laminated in the center so that the resin composition layer was in contact with the release surface of the release PET film. Lamination was carried out by pressure bonding for 30 seconds at 100° C. and pressure of 0.74 MPa after reducing the pressure to 13 hPa or less for 30 seconds.
Then, the support was peeled off, and the resin composition layer was thermally cured under curing conditions of 190° C. for 90 minutes.
 熱硬化後、ポリイミド接着テープを剥がし、ガラス布基材エポキシ樹脂両面銅張積層板を取り外し、更に離型PETフィルムを剥離して、シート状の硬化物を得た。シート状の硬化物を、以下「評価用硬化物」と称する。 After thermal curing, the polyimide adhesive tape was peeled off, the glass cloth-based epoxy resin double-sided copper-clad laminate was removed, and the release PET film was peeled off to obtain a sheet-like cured product. The sheet-like cured product is hereinafter referred to as "evaluation cured product".
 評価用硬化物をダンベル状1号形に切り出し、試験片を得た。該試験片を、引張試験機(オリエンテック社製「RTC-1250A」)を用いて引張強度測定を行い、25℃における弾性率を求めた。測定は、JIS K7127に準拠して実施した。この操作を3回行い、その平均値を表に示した。 The cured product for evaluation was cut into dumbbell-shaped No. 1 specimens to obtain test pieces. The test piece was subjected to tensile strength measurement using a tensile tester (“RTC-1250A” manufactured by Orientec Co., Ltd.) to obtain the elastic modulus at 25°C. Measurement was performed in accordance with JIS K7127. This operation was performed three times, and the average value is shown in the table.
[硬化物の光線透過率の測定]
 紫外近赤外分光光度計(島津製作所社製「UV3100PC」)を用い、前記の評価用硬化物(厚み50μm)を積分球の入口開口部に置いて分光透過率を測定し、測定波長550nm、700nm、800nm及び900nmの値を抽出した。測定条件は以下のとおりである。測定波長範囲:300nm~2600nm、サンプリングピッチ:1nm、露光時間:103秒(測定開始から終了までの時間)、積分球:あり、スリット幅:20nm。
[Measurement of light transmittance of cured product]
Using an ultraviolet and near-infrared spectrophotometer (manufactured by Shimadzu Corporation "UV3100PC"), the cured product for evaluation (50 μm thick) was placed at the entrance opening of an integrating sphere to measure the spectral transmittance. Values at 700 nm, 800 nm and 900 nm were extracted. The measurement conditions are as follows. Measurement wavelength range: 300 nm to 2600 nm, sampling pitch: 1 nm, exposure time: 103 seconds (time from start to end of measurement), integrating sphere: yes, slit width: 20 nm.
 また、樹脂ワニスの塗布厚みを変更したこと以外は各実施例と同じ方法により、厚み40μm及び100μmの評価用硬化物の製造及び分光透過率の測定を行った。評価用硬化物(厚み40μm)及び評価用硬化物(厚み100μm)それぞれの分光透過率から、測定波長550nm及び900nmの値を抽出した。 In addition, evaluation cured products with a thickness of 40 μm and 100 μm were produced and the spectral transmittance was measured by the same method as in each example except that the coating thickness of the resin varnish was changed. Values at measurement wavelengths of 550 nm and 900 nm were extracted from the spectral transmittance of the cured product for evaluation (40 μm thick) and the cured product for evaluation (100 μm thick).
[硬化物の密着性の評価]
 上述した実施例及び比較例で得た樹脂シートから保護フィルムを剥離し、バッチ式真空加圧ラミネーター(ニッコー・マテリアルズ社製2ステージビルドアップラミネーター「CVP700」)を用いて、樹脂組成物層がガラス布基材エポキシ樹脂両面銅張積層板(松下電工社製「R5715ES」、厚さ0.7mm、255mm角)に接するように配置し、ラミネートした。このラミネートは、30秒間減圧して気圧を13hPa以下とした後、温度100℃、圧力0.74MPaにて30秒間圧着することにより、実施した。次いで、ラミネートされた樹脂シートを、大気圧下、100℃、圧力0.5MPaにて60秒間、熱プレスして平滑化した。その後、支持体を剥離した。
[Evaluation of adhesion of cured product]
The protective film was peeled off from the resin sheets obtained in the above-described Examples and Comparative Examples, and a batch-type vacuum pressure laminator (2-stage build-up laminator "CVP700" manufactured by Nikko Materials Co., Ltd.) was used to remove the resin composition layer. It was arranged and laminated so as to be in contact with a glass cloth-based epoxy resin double-sided copper-clad laminate ("R5715ES" manufactured by Matsushita Electric Works, thickness 0.7 mm, 255 mm square). This lamination was carried out by pressure bonding for 30 seconds at a temperature of 100° C. and a pressure of 0.74 MPa after reducing the pressure to 13 hPa or less for 30 seconds. Then, the laminated resin sheet was hot-pressed for 60 seconds at 100° C. under atmospheric pressure and a pressure of 0.5 MPa for smoothing. After that, the support was peeled off.
 ポリイミドフィルム(厚み12.5μm、東レ・デュポン社製「カプトン100EN」)を用意した。このポリイミドフィルムを130℃で30分乾燥させた後、上記樹脂組成物層にラミネートした。このラミネートは、前述したラミネートと同じ条件で行った。これにより、ポリイミドフィルム、樹脂組成物層、及び、ガラス布基材エポキシ樹脂両面銅張積層板のこの順で含む「中間複層体II」を得た。 A polyimide film (thickness 12.5 μm, "Kapton 100EN" manufactured by DuPont Toray) was prepared. After drying this polyimide film at 130° C. for 30 minutes, it was laminated on the resin composition layer. This lamination was performed under the same conditions as the lamination described above. As a result, an "intermediate multilayer body II" including the polyimide film, the resin composition layer, and the glass cloth-based epoxy resin double-sided copper-clad laminate in this order was obtained.
 中間複層体IIを、180℃のオーブンに投入して90分間追加で加熱した。これにより、樹脂組成物層の熱硬化が行われて、ポリイミドフィルム、樹脂組成物層の硬化物としてのソルダーレジスト層、及び、ガラス布基材エポキシ樹脂両面銅張積層板をこの順で含む「評価基板A」を得た。 The intermediate multilayer body II was placed in an oven at 180°C and additionally heated for 90 minutes. As a result, the resin composition layer is thermally cured, and the polyimide film, the solder resist layer as a cured product of the resin composition layer, and the glass cloth-based epoxy resin double-sided copper-clad laminate are included in this order. An evaluation substrate A” was obtained.
 評価基板Aを用いて、ポリイミドフィルムとソルダーレジスト層との密着力(ピール強度)の測定を行った。このピール強度の測定は、JIS C6481に準拠して行った。具体的には、下記の操作によって、ピール強度の測定を行った。
 評価基板Aのポリイミドフィルムに、幅10mm、長さ100mmの矩形部分を囲む切込みをいれた。この矩形部分の一端を剥がして、つかみ具(ティー・エス・イー社製、オートコム型試験機「AC-50C-SL」)で掴んだ。前記矩形部分の長さ35mmの範囲を垂直方向に引き剥がし、この引き剥がし時の荷重(kgf/cm)を、ピール強度として測定した。前記の引き剥がしは、室温(25℃)中にて、50mm/分の速度で行った。
Using the evaluation board A, the adhesion (peel strength) between the polyimide film and the solder resist layer was measured. The peel strength was measured according to JIS C6481. Specifically, the peel strength was measured by the following operation.
The polyimide film of the evaluation substrate A was cut to surround a rectangular portion having a width of 10 mm and a length of 100 mm. One end of this rectangular portion was peeled off and gripped with a gripper (Autocom type testing machine "AC-50C-SL" manufactured by TSE Co., Ltd.). A range of 35 mm in length of the rectangular portion was peeled off in the vertical direction, and the load (kgf/cm) at the time of this peeling was measured as the peel strength. The peeling was performed at room temperature (25° C.) at a speed of 50 mm/min.
 測定されたピール強度が大きいほど、樹脂組成物の硬化物とポリイミドフィルムとの密着性に優れることを表す。そこで、ポリイミドフィルムと硬化物との密着性は、以下の基準で評価した。
 「〇」:ピール強度が0.2kgf/cmを超える。
 「×」:ピール強度が0.2kgf/cm未満。
The greater the measured peel strength, the more excellent the adhesion between the cured resin composition and the polyimide film. Therefore, the adhesion between the polyimide film and the cured product was evaluated according to the following criteria.
"Good": The peel strength exceeds 0.2 kgf/cm.
"X": Peel strength is less than 0.2 kgf/cm.
[反りの測定]
 実施例及び比較例で調製した樹脂シートから保護フィルムを剥離し、その後、樹脂組成物層を、バッチ式真空加圧ラミネーター(ニッコー・マテリアルズ社製2ステージビルドアップラミネーター「CVP700」)を用いて、12インチシリコンウエハ(厚み775μm)上にラミネートし、厚さ50μmの樹脂組成物層を形成した。その後、170℃で240分加熱して、樹脂組成物層を熱硬化させた。さらに、支持体を剥離して、シリコンウエハと樹脂組成物の硬化物層とを含む試料基板を得た。シャドウモアレ測定装置(Akorometrix社製「ThermoireAXP」)を用いて、前記の試料基板の25℃での反り量を測定した。測定は、電子情報技術産業協会規格のJEITA EDX-7311-24に準拠して行った。具体的には、測定領域の基板面の全データの最小二乗法によって算出した仮想平面を基準面として、その基準面から垂直方向の最小値と最大値との差を反り量として求めた。
[Warpage measurement]
The protective film was peeled off from the resin sheets prepared in Examples and Comparative Examples, and then the resin composition layer was coated with a batch-type vacuum pressure laminator (2-stage build-up laminator "CVP700" manufactured by Nikko Materials Co., Ltd.). , and laminated on a 12-inch silicon wafer (thickness: 775 µm) to form a resin composition layer with a thickness of 50 µm. After that, the resin composition layer was thermally cured by heating at 170° C. for 240 minutes. Further, the support was peeled off to obtain a sample substrate including a silicon wafer and a cured product layer of the resin composition. Using a shadow moire measuring device (“Thermoire AXP” manufactured by Akorometrics), the amount of warpage of the sample substrate at 25° C. was measured. The measurement was performed in accordance with JEITA EDX-7311-24 of the Japan Electronics and Information Technology Industries Association standard. Specifically, a virtual plane calculated by the method of least squares of all data of the substrate surface in the measurement area was used as a reference plane, and the difference between the minimum value and the maximum value in the direction perpendicular to the reference plane was obtained as the amount of warpage.
[結果]
 上述した実施例及び比較例の結果を、下記の表に示す。下記の表において、各成分の量は、不揮発成分量を表す。また、下記の表において、略称の意味は、以下の通りである。
 T900:樹脂組成物の硬化物の厚み50μm、測定波長900nmにおける光線透過率。
 T550:樹脂組成物の硬化物の厚み50μm、測定波長550nmにおける光線透過率。
 T700:樹脂組成物の硬化物の厚み50μm、測定波長700nmにおける光線透過率。
 T800:樹脂組成物の硬化物の厚み50μm、測定波長800nmにおける光線透過率。
 T(40μm/900nm):樹脂組成物の硬化物の厚み40μm、測定波長900nmにおける光線透過率。
 T(100μm/900nm):樹脂組成物の硬化物の厚み100μm、測定波長900nmにおける光線透過率。
 T(40μm/550nm):樹脂組成物の硬化物の厚み40μm、測定波長550nmにおける光線透過率。
 T(100μm/550nm):樹脂組成物の硬化物の厚み100μm、測定波長550nmにおける光線透過率。
[result]
The results of the examples and comparative examples described above are shown in the table below. In the table below, the amount of each component represents the non-volatile content. In the table below, abbreviations have the following meanings.
T 900 : light transmittance at a thickness of 50 μm and a measurement wavelength of 900 nm for a cured resin composition.
T 550 : Light transmittance at a thickness of 50 μm and a measurement wavelength of 550 nm of a cured product of the resin composition.
T 700 : Light transmittance at a thickness of 50 μm and a measurement wavelength of 700 nm for a cured product of the resin composition.
T 800 : Light transmittance at a thickness of 50 μm and a measurement wavelength of 800 nm of a cured product of the resin composition.
T (40 μm/900 nm): Light transmittance at a thickness of 40 μm and a measurement wavelength of 900 nm for a cured product of the resin composition.
T (100 μm/900 nm): light transmittance at a measurement wavelength of 900 nm at a thickness of 100 μm of a cured resin composition.
T (40 μm/550 nm): Light transmittance at a thickness of 40 μm and a measurement wavelength of 550 nm for a cured resin composition.
T (100 μm/550 nm): Light transmittance at a measurement wavelength of 550 nm at a thickness of 100 μm of a cured resin composition.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 100 半導体チップパッケージ
 110 半導体チップ
 120 封止層
 130 再配線形成層
 140 再配線層
 150 ソルダーレジスト層
 160 バンプ
REFERENCE SIGNS LIST 100 semiconductor chip package 110 semiconductor chip 120 sealing layer 130 rewiring forming layer 140 rewiring layer 150 solder resist layer 160 bump

Claims (16)

  1.  樹脂組成物を含む樹脂組成物層を備える、ソルダーレジスト層形成用の樹脂シートであって、
     樹脂組成物が、(A)熱硬化性樹脂と、(B)無機充填材と、を含み、
     (B)無機充填材の比表面積が、3.0m/g以上であり、
     樹脂組成物層の厚みが、20μm以上、100μm以下である、樹脂シート。
    A resin sheet for forming a solder resist layer, comprising a resin composition layer containing a resin composition,
    The resin composition contains (A) a thermosetting resin and (B) an inorganic filler,
    (B) the inorganic filler has a specific surface area of 3.0 m 2 /g or more;
    A resin sheet, wherein the resin composition layer has a thickness of 20 μm or more and 100 μm or less.
  2.  (B)無機充填材の平均粒径が、1.5μm以下である、請求項1に記載の樹脂シート。 (B) The resin sheet according to claim 1, wherein the inorganic filler has an average particle size of 1.5 µm or less.
  3.  樹脂組成物の不揮発成分100質量%に対して、(B)無機充填材の量が、40質量%以上95質量%以下である、請求項1に記載の樹脂シート。 The resin sheet according to claim 1, wherein the amount of (B) the inorganic filler is 40% by mass or more and 95% by mass or less with respect to 100% by mass of the non-volatile components of the resin composition.
  4.  樹脂組成物層の厚みが、35μm以上、80μm以下である、請求項1に記載の樹脂シート。 The resin sheet according to claim 1, wherein the resin composition layer has a thickness of 35 µm or more and 80 µm or less.
  5.  (A)熱硬化性樹脂が、(A-1)エポキシ樹脂を含む、請求項1に記載の樹脂シート。 The resin sheet according to claim 1, wherein (A) the thermosetting resin contains (A-1) an epoxy resin.
  6.  (A-1)エポキシ樹脂が、ナフタレン環を含有するエポキシ樹脂を含む、請求項5に記載の樹脂シート。 (A-1) The resin sheet according to claim 5, wherein the epoxy resin contains an epoxy resin containing a naphthalene ring.
  7.  (A)熱硬化性樹脂が、(A-2)フェノール樹脂を含む、請求項1に記載の樹脂シート。 The resin sheet according to claim 1, wherein (A) the thermosetting resin contains (A-2) a phenolic resin.
  8.  (A)熱硬化性樹脂が、(A-3)活性エステル樹脂を含む、請求項1に記載の樹脂シート。 The resin sheet according to claim 1, wherein (A) the thermosetting resin contains (A-3) an active ester resin.
  9.  (A)熱硬化性樹脂が、(A-4)マレイミド樹脂を含む、請求項1に記載の樹脂シート。 The resin sheet according to claim 1, wherein (A) the thermosetting resin contains (A-4) a maleimide resin.
  10.  樹脂組成物が、更に(C)エラストマーを含む、請求項1に記載の樹脂シート。 The resin sheet according to claim 1, wherein the resin composition further contains (C) an elastomer.
  11.  樹脂組成物が、更に(D)有機着色剤を含む、請求項1に記載の樹脂シート。 The resin sheet according to claim 1, wherein the resin composition further contains (D) an organic colorant.
  12.  前記樹脂組成物の硬化物の、厚み50μm、測定波長900nmにおける光線透過率が、70%以上である、請求項1に記載の樹脂シート。 The resin sheet according to claim 1, wherein the cured product of the resin composition has a thickness of 50 µm and a light transmittance of 70% or more at a measurement wavelength of 900 nm.
  13.  請求項1~12のいずれか1項に記載の樹脂シートの樹脂組成物層の硬化物により形成されたソルダーレジスト層を備える、プリント配線板。 A printed wiring board comprising a solder resist layer formed from a cured product of the resin composition layer of the resin sheet according to any one of claims 1 to 12.
  14.  請求項1~12のいずれか1項に記載の樹脂シートの樹脂組成物層の硬化物により形成されたソルダーレジスト層を備える、半導体チップパッケージ。 A semiconductor chip package comprising a solder resist layer formed from a cured product of the resin composition layer of the resin sheet according to any one of claims 1 to 12.
  15.  請求項13に記載のプリント配線板を備える、半導体装置。 A semiconductor device comprising the printed wiring board according to claim 13.
  16.  請求項14に記載の半導体チップパッケージを備える、半導体装置。 A semiconductor device comprising the semiconductor chip package according to claim 14.
PCT/JP2022/032918 2021-09-15 2022-09-01 Resin sheet, printed circuit board, semiconductor chip package, and semiconductor device WO2023042669A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023548401A JPWO2023042669A1 (en) 2021-09-15 2022-09-01
CN202280061692.3A CN117981477A (en) 2021-09-15 2022-09-01 Resin sheet, printed wiring board, semiconductor chip package, and semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-150486 2021-09-15
JP2021150486 2021-09-15

Publications (1)

Publication Number Publication Date
WO2023042669A1 true WO2023042669A1 (en) 2023-03-23

Family

ID=85602177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032918 WO2023042669A1 (en) 2021-09-15 2022-09-01 Resin sheet, printed circuit board, semiconductor chip package, and semiconductor device

Country Status (4)

Country Link
JP (1) JPWO2023042669A1 (en)
CN (1) CN117981477A (en)
TW (1) TW202327890A (en)
WO (1) WO2023042669A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170643A1 (en) * 2016-03-31 2017-10-05 住友ベークライト株式会社 Thermosetting resin composition, resin film with carrier, pre-preg, metal-clad laminate sheet, resin substrate, printed wiring substrate and semiconductor device
WO2018016534A1 (en) * 2016-07-20 2018-01-25 日立化成株式会社 Composite film for electronic devices using high frequency band signals, printed wiring board and manufacturing method therefor
JP2018024774A (en) * 2016-08-10 2018-02-15 味の素株式会社 Resin composition
JP2018165796A (en) * 2017-03-28 2018-10-25 味の素株式会社 Photosensitive resin composition
JP2020119964A (en) * 2019-01-22 2020-08-06 東洋インキScホールディングス株式会社 Electromagnetic wave shield sheet-attached printed wiring board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170643A1 (en) * 2016-03-31 2017-10-05 住友ベークライト株式会社 Thermosetting resin composition, resin film with carrier, pre-preg, metal-clad laminate sheet, resin substrate, printed wiring substrate and semiconductor device
WO2018016534A1 (en) * 2016-07-20 2018-01-25 日立化成株式会社 Composite film for electronic devices using high frequency band signals, printed wiring board and manufacturing method therefor
JP2018024774A (en) * 2016-08-10 2018-02-15 味の素株式会社 Resin composition
JP2018165796A (en) * 2017-03-28 2018-10-25 味の素株式会社 Photosensitive resin composition
JP2020119964A (en) * 2019-01-22 2020-08-06 東洋インキScホールディングス株式会社 Electromagnetic wave shield sheet-attached printed wiring board

Also Published As

Publication number Publication date
TW202327890A (en) 2023-07-16
JPWO2023042669A1 (en) 2023-03-23
CN117981477A (en) 2024-05-03

Similar Documents

Publication Publication Date Title
JP2022027768A (en) Resin composition
JP7192674B2 (en) resin sheet
JP7263701B2 (en) Resin sheet with support
JP2023021385A (en) Manufacturing method for semiconductor device, and resin sheet
JP7409262B2 (en) resin composition
WO2023042669A1 (en) Resin sheet, printed circuit board, semiconductor chip package, and semiconductor device
KR20220034680A (en) Method for manufacturing light reflective substrate
JP2022151212A (en) Method for manufacturing printed wiring board
JP2022125606A (en) resin composition
JP7367891B2 (en) resin sheet
JP7494960B1 (en) Hardened body
JP7371606B2 (en) Manufacturing method of printed wiring board
JP7533670B2 (en) Resin composition
JP7521560B2 (en) Resin Sheet
JP7338758B2 (en) resin composition
JP7322427B2 (en) Method for manufacturing printed wiring board
JP2023055130A (en) resin composition
JP2024020829A (en) resin sheet
JP2024075484A (en) Resin composition
KR20240028939A (en) Resin composition
TW202432705A (en) Resin composition
TW202346444A (en) Resin composition capable of obtaining a cured product that is excellent in both crack resistance and desmear resistance
TW202408811A (en) Resin sheet characterized in that the resin sheet is equipped with a resin composition layer having excellent cutting property and detaching property
JP2023002324A (en) Resin sheet for semiconductor chip adhesion
TW202350027A (en) Method for manufacturing circuit board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869816

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023548401

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280061692.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22869816

Country of ref document: EP

Kind code of ref document: A1