WO2022269702A1 - エアロゾル生成装置の電源ユニット - Google Patents

エアロゾル生成装置の電源ユニット Download PDF

Info

Publication number
WO2022269702A1
WO2022269702A1 PCT/JP2021/023448 JP2021023448W WO2022269702A1 WO 2022269702 A1 WO2022269702 A1 WO 2022269702A1 JP 2021023448 W JP2021023448 W JP 2021023448W WO 2022269702 A1 WO2022269702 A1 WO 2022269702A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
remaining amount
unit
notification
power
Prior art date
Application number
PCT/JP2021/023448
Other languages
English (en)
French (fr)
Inventor
郁夫 藤長
創 藤田
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to PCT/JP2021/023448 priority Critical patent/WO2022269702A1/ja
Publication of WO2022269702A1 publication Critical patent/WO2022269702A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring

Definitions

  • the present invention relates to a power supply unit for an aerosol generator.
  • the number of puff actions (sucking actions) that can be performed per charge can be an important indicator. In order to improve such an index, it is important to reduce the power consumption of the display section and the like of the aerosol generator.
  • Patent Document 1 describes that electronic paper (e-ink) was adopted for the display of electronic cigarettes in order to reduce power consumption.
  • Patent Document 2 and Patent Document 3 also describe that e-ink can be adopted for the display portion of the aspirator.
  • the aerosol generation device When the aerosol generation device is equipped with multiple types of display units, it is important to appropriately control the display according to the state of the device so that power consumption is suppressed without impairing the user's comfort. In the prior art, display control from such a point of view has not been sufficiently performed.
  • the present invention provides, for example, a power supply unit for an aerosol generating device that effectively informs the user of the state of the device when the remaining battery level is low while suppressing power consumption.
  • a power supply unit for an aerosol generating device for powering a nebulizer having a heater for heating an aerosol source comprising a power supply and power from the power supply for supplying power to the heater.
  • the first remaining amount of the power supply when the remaining amount of the power supply is equal to or less than the first threshold, the first remaining amount is notified by the first notification unit and the second notification unit, and the power supply is suppressed. .
  • power consumption of the first notification unit is smaller than power consumption of the second notification unit.
  • the controller executes the power supply while continuing the notification by the first notification unit.
  • the controller can operate in a sleep mode in which the power consumption of the controller is less than in an active mode in which the power supply can be executed, and the first notification unit continues notification in the sleep mode. do.
  • the first reporting unit can continue reporting in the sleep mode without consuming power.
  • the controller continues the notification by the first notification unit until the remaining amount of the element to be displayed, which is consumed to generate the aerosol, recovers.
  • a third notification unit separate from the first notification unit and the second notification unit is further provided, and the controller, when the remaining amount of the power supply is greater than the first threshold, The first remaining amount is notified by the first reporting unit, the second reporting unit, and the third reporting unit, and the second remaining amount, which is the remaining amount of the second element consumed to generate the aerosol, is reported.
  • the frequency at which it is necessary to recover the remaining amount of the first element in order to generate the flavored aerosol continuously by the power supply is notified by the first notification unit and the second notification unit, More often than not the secondary component needs to be replenished in order to continue to generate flavored aerosol with the power supply.
  • the power consumption of the third reporting unit is smaller than the power consumption of the second reporting unit.
  • the controller continues the notification by the first notification unit even after stopping the notification by the second notification unit and the third notification unit.
  • a power supply unit for an aerosol generating device that effectively informs the user of the state of the device when the remaining battery level is low while suppressing power consumption.
  • FIG. 1 is an exploded perspective view of an aspirator;
  • 4A and 4B are diagrams showing a state transition diagram of a power supply unit and a display example;
  • FIG. FIG. 1 is an exploded perspective view of an aspirator;
  • 4A and 4B are diagrams showing a state transition diagram of a power supply unit and a display example;
  • FIG. 1 shows an exploded perspective view of the aspirator 100
  • FIG. 2 shows a completed assembled drawing of the aspirator 100
  • FIG. The inhaler 100 generates an aerosol, a flavored aerosol, or an aerosol in response to an operation requiring an aerosol, such as an inhalation operation by the user (hereinafter also referred to as an “aerosol generation request” or an “atomization request”). and flavorant-containing gas or aerosol or flavorant-containing aerosol to the user through mouthpiece 130 .
  • An inhaler controller 100 as an inhaler controller may comprise a power supply unit 102 , an atomizer 104 , a capsule holder 105 and a capsule 106 .
  • Atomizer 104 may be configured to generate a flavored aerosol from an aerosol source.
  • the aerosol source can be a liquid such as, for example, a polyhydric alcohol such as glycerin or propylene glycol. Alternatively, the aerosol source may contain a medicament.
  • the aerosol source can be liquid, solid, or a mixture of liquid and solid. Instead of an aerosol source, a vapor source such as water may be used.
  • the atomizer 104 may be provided as a detachable cartridge with respect to the power supply unit 102, which is the main body.
  • the atomizer 104 may be non-removably attached to the power supply unit 102 . In this specification, atomizer 104 is also referred to as cartridge 104 .
  • the power supply unit 102 may be understood as a drive unit that drives the atomizer 104, a holder that holds the atomizer 104, a main body that causes the atomizer 104 to function, or the like.
  • the power supply unit 102 has a holding portion 103 that holds the atomizer 104 .
  • Retainer 103 may be configured to house all or part of atomizer 104 .
  • the holding portion 103 may also be configured to hold a capsule-holder 105 .
  • capsule-holder 105 may be held by atomizer 104 .
  • Capsule holder 105 holds capsule 106 .
  • the holding portion 103 can include a locking mechanism that prevents the capsule-holder 105 from falling out of the holding portion 103 .
  • the locking mechanism may include a second engagement portion 103a that engages a first engagement portion 105a that may be provided on the capsule-holder 105 .
  • the first engaging portion 105a and the second engaging portion 103a are engaged and locked.
  • the connections 113, 114 of the atomizer 104 are pressed against the connections 111, 112 of the power supply unit 102, respectively, so that the respective electrical connections between the connections 113, 114 and the connections 111, 112 are established.
  • Capsule-holder 106 may be integrated with atomizer 104 or power supply unit 102 .
  • gas can be communicated between the atomizer 104 and the capsule 106.
  • Capsule 106 may contain flavor source 131 .
  • Flavor source 131 may be, for example, a molded body of tobacco material. Alternatively, the flavor source 131 may be composed of plants other than tobacco (for example, mint, herbs, Chinese medicine, coffee beans, etc.). Flavor sources such as menthol may be added to the flavor source. Flavor source 131 may be added to the aerosol source. The user can suck the flavored aerosol by holding the mouthpiece 130 formed at the tip of the capsule 106 in the mouth.
  • the power supply unit 102 may include electrical components 110 .
  • Electrical component 110 may include user interface 116 .
  • power supply unit 102 may be understood to include electrical components 110 and user interface 116 .
  • the user interface 116 can include an action button B as an operating unit that can be operated by the user.
  • the action button B is a button for triggering operations such as activation and display of the power supply unit 102 .
  • User interface 116 may further include a first notification unit and a second notification unit separate from the first notification unit.
  • the first notification unit may be an electronic paper (e-ink) display D1.
  • the electronic paper display D1 is a type of non-volatile display. Electronic paper technology eliminates the need for continuous power to keep the image on the display continuously.
  • the electronic paper display does not require power to maintain the current display state.
  • the electronic paper display can be said to be a display that consumes power only for rewriting the displayed content.
  • the second annunciator may be the vibration generator V.
  • FIG. The vibration generator V is configured by a vibration motor for vibrating the housing of the power supply unit 102 . By vibrating the housing with the vibration motor, the user holding the housing can be notified of the state.
  • the user interface 116 may further include a third notification section separate from the first notification section and the second notification section.
  • the third annunciator may be a light emitting display (LED) display D3.
  • the LED display D3, in one example, can be configured with a plurality of LEDs (eg, 10 or less, 20 or less, or 30 or less LEDs). In this case, although the amount of information that can be displayed by the LED display is smaller than that of the electronic paper display, the LED display can achieve high brightness and therefore has high visibility.
  • the user interface 116 may further include a fourth notification section separate from the first notification section, the second notification section, and the third notification section.
  • the fourth annunciator may be an organic light emitting diode (OLED) display D4. Due to the difference in display principle between the OLED display D4 and the electronic paper display D1, power consumption may differ from each other. Unlike the liquid crystal display, the OLED display D4 does not require a backlight device because the organic light emitting diode emits light by itself. Therefore, the power consumption of the electronic paper display is smaller than that of the OLED display. However, the electronic paper display does not have a self-luminous function like the OLED display, and the visibility in a dark environment may be inferior to that of the OLED display.
  • OLED organic light emitting diode
  • the power consumption of the electronic paper display D1 is smaller than the power consumption of the vibration generator V. Also, the power consumption of the LED display D3 is smaller than the power consumption of the vibration generator V.
  • FIG. 2 shows an arrangement example of the action button B, the electronic paper display D1, the LED display D3, and the OLED display D4.
  • the OLED display D4 is arranged on the upper surface of the power supply unit 102, and the electronic paper display D1 and the LED display D3 are arranged on different sides of the power supply unit 102.
  • the positions where the displays D1, D3, and D4 are arranged may be replaced with each other, or they may be arranged at different positions.
  • the LED display D3 may be positioned around a window such that the window is illuminated for viewing the remaining amount of aerosol source within the atomizer 104, for example as shown in the side view of FIG. .
  • the LED display D3 may be arranged around the action button B so that the area around the action button B lights up.
  • the position where the action button B is arranged is not limited to the illustrated example, and may be arranged at another position.
  • the power supply unit 102 can include a first connection portion 111 and a second connection portion 112 .
  • the first connection portion 111 is electrically connected to the third connection portion 113 of the atomizer 104
  • the second connection 112 can be electrically connected to the fourth connection 114 of the atomizer 104 .
  • the first connection portion 111, the second connection portion 112, the third connection portion 113, and the fourth connection portion 114 can be electrical contacts or connectors.
  • Power supply unit 102 may supply power to atomizer 104 through first connection 111 and second connection 112 .
  • the atomizer 104 can include a third connection 113 and a fourth connection 114 .
  • the atomizer 104 also includes a heater 127 for generating a flavored aerosol from the aerosol source, a container 125 holding the aerosol source, and transporting the aerosol source held by the container 125 to a heating area by the heater 127. , and a carriage 126 that holds in the heating area. At least a portion of the heated region may be located in a channel 128 provided within the atomizer 104 .
  • First connection portion 111 , third connection portion 113 , heater 127 , fourth connection portion 114 , and second connection portion 112 form a current path through which current flows through heater 127 .
  • the transport portion 126 may be made of, for example, a fibrous material such as glass fiber, a porous material such as ceramic, or a combination thereof. In addition, such a transport portion 126 may also be called a wick. However, the means for transporting the aerosol source in the container 125 to the heating region is not limited to the wick, and may be realized by a spray device such as a spray or a transport means such as a pump.
  • FIG. 4 shows a configuration example of the electrical component 110.
  • the electrical component 110 has a power supply 205 and a charging circuit (charging IC) 206 .
  • Electrical component 110 can function as a power supply that supplies power from power source 205 to heater 127 .
  • the power source 205 is a rechargeable battery (secondary battery) such as a lithium ion battery.
  • the power supply 205 may consist of an electric double layer capacitor such as a lithium ion capacitor.
  • the power supply 205 can be charged using power supplied from the V bus port.
  • a power supply device (external power source) (not shown) can be connected to the V bus port via a cable.
  • the V bus ports, cables, and power supplies may be configured to comply with Universal Serial Bus (USB) Type-A, Type-B, Type-C, etc. standards, for example.
  • USB Universal Serial Bus
  • a power source can supply power to the power supply 205 via the cable and V bus port.
  • the power supply device can be a personal computer (PC), a charger for a portable battery, or the like.
  • the power supply unit 102 When the power supply unit 102 is connected to the charger via the Vbus port and cable, the power supply unit 102 and the charger communicate with each other, after which charging from the charger to the power supply 205 is possible.
  • the connection between the power supply unit 102 and the power supply device is not limited to USB, and various other communication methods capable of data communication and power supply may be applied.
  • the electrical component 110 may comprise one or more voltage converters. If electrical component 110 comprises a plurality of voltage converters, at least two of them may generate voltages that are different from each other or equal to each other. In the configuration example shown in FIG. 4 , electrical component 110 comprises voltage converters 202 , 203 , 204 . The electrical component 110 may not have a voltage converter. In this case, the voltage output by the power supply 205 is supplied to the plurality of elements forming the electrical component 110 with a slight voltage drop due to wiring resistance. can be In the configuration example shown in FIG. 4, the voltage converters 202 and 203 are composed of switching regulators such as DC/DC converters, but at least one of them may be composed of an LDO (Low Drop Out). Also, in the configuration example shown in FIG. 4, the voltage converter 204 is composed of an LDO (Low Drop Out), but may be composed of a switching regulator such as a DC/DC converter.
  • the electrical component 110 can include an MCU (processor) 207 as a control section (controller) that operates according to software (program) installed in advance.
  • MCU 207 may be replaced by other devices such as ASICs.
  • the MCU 207 can be configured to control power supply to the heater 127 by operating the switch 201 or the like.
  • the MCU 207 can be configured to control notification by each notification unit by controlling drivers 211 , 212 , 213 , and 214 that are integrated circuits (ICs) that constitute the electrical component 110 .
  • Drivers 211, 212, 213, and 214 drive the electronic paper display D1, vibration motor V, LED display D3, and OLED display D4, respectively.
  • the MCU 207 may be understood as driving or controlling the displays D1, D3, D4 and the vibration motor V.
  • FIG. Drivers 211 , 212 , 213 , 214 may be supplied with voltage (power) by voltage converter 204 .
  • OLED display D4 may be supplied with voltage (power) by voltage converter 203 .
  • Action button B may be supplied with voltage (power) by voltage converter 204 .
  • the power supply unit 102 may include a puff sensor 209 that detects a user's inhalation action, ie, a puff, and the puff sensor 209 may be supplied with voltage (power) by a voltage converter 204 .
  • the puff sensor 209 detects, for example, the puff by detecting at least one of pressure, sound, and temperature (eg, the temperature of the air flowing into the flow path 128 of the atomizer 104 through the aforementioned openings, the temperature of the heater 127). can be detected.
  • the electrical component 110 can include a switch 201 for controlling energization (supply of power) to the heater 127 that is the load of the atomizer 104 .
  • Voltage converter 202 may supply voltage (power) to heater 127 via switch 201 .
  • a shunt resistor R shunt may be placed in a closed circuit comprising switch 201 and heater 127 .
  • Electrical component 110 may include measurement circuitry 210 for measuring the temperature of heater 127 .
  • the heater 127 can have a positive or negative temperature coefficient characteristic in which the resistance value RHTR changes according to its own temperature, and the resistance value RHTR of the heater 127 can have a strong correlation with the temperature of the heater 127 .
  • the measurement circuit 210 is a circuit for measuring the resistance value RHTR of the heater 127, and is configured to measure the voltage across the heater 127, for example.
  • the output of measurement circuit 210 is provided to MCU 207 , which may calculate a resistance value RHTR based on the output of measurement circuit 210 and the value of the current flowing through heater 127 .
  • the current value can be obtained, for example, using a measurement circuit (not shown) that measures the voltage across the shunt resistor Rshunt.
  • MCU 207 may control switch 201 to feedback control (eg, PID control) the temperature of heater 127 based on the temperature of heater 127 measured using measurement circuit 210 .
  • the electrical component 110 may comprise a first sensor 221 for sensing the presence or absence of the atomizer 104 and a second sensor 222 for sensing the presence or absence of the capsule 106 .
  • a voltage (power) can be supplied to the first sensor 221 and the second sensor 222 by a voltage converter 204 .
  • the first sensor 221 and the second sensor 222 can be, for example, photointerrupters, proximity sensors, RFID systems or switches.
  • a switch for detecting the presence or absence of atomizer 104 is turned on (or off) by inserting atomizer 104 into holder 103 and off (or on) by removing atomizer 104 from holder 103. I can.
  • a switch that senses the presence or absence of capsule 106 may be turned on (or off) by insertion of capsule 106 into retainer 103 and off (or on) by removal of capsule 106 from retainer 103 .
  • the MCU (processor) 207 as a controller can operate in four modes: sleep mode, active mode, aerosol generation mode, and charging mode.
  • the sleep mode is a state in which the main operations of the aspirator 100 are suspended, and the power consumption of the controller is at least lower than that of the active mode, which will be described later.
  • sleep mode no power is supplied to the heater 127 of the atomizer 104 .
  • sleep mode the power consumed by the inhaler 100 is minimized.
  • Sleep mode may also be referred to as power saving mode or standby mode.
  • sleep mode the power unit 102 is locked and the user cannot inhale aerosols.
  • the predetermined operation may be, for example, an operation of repeatedly pressing the action button B a predetermined number of times (eg, three times), an operation of long-pressing the action button B for a specified time (eg, three seconds), or the like. Also, if a predetermined period of time elapses without a predetermined operation in the active mode, the suction device 100 can return to the sleep mode.
  • the inhaler 100 transitions to the aerosol generation mode to generate aerosol.
  • the aspirator 100 can return to active mode.
  • the aspirator 100 transitions to charging mode and the power supply 205 is charged.
  • the external power source is removed from the Vbus port, or when fully charged, the aspirator 100 transitions to sleep mode.
  • the fully charged state means that the SOC (State Of Charge) or the state of charge is 100% or a predetermined value close thereto (for example, 98%, 95% or 90%) or more.
  • a display example b in FIG. 5 shows a display example by the electronic paper display D1 and/or the OLED display D4 in the active mode.
  • display by the electronic paper display D1 and/or the OLED display D4" means the case where only one of the electronic paper display D1 or the OLED display D4 displays information, and the case where only one of the electronic paper display D1 and the OLED display D4 displays information. displays information.
  • the electronic paper display D1 and/or the OLED display D4 display the remaining amount of the flavor source 131 in the capsule 106 (hereinafter referred to as "capsule remaining amount”) and the atomizer 104 (hereinafter referred to as "cartridge amount").
  • a display example a in FIG. 5 shows a display example of the electronic paper display D1 and/or the OLED display D4 in the charging mode. In charging mode, capsule level, cartridge level, and battery level can be displayed. A mark indicating that the battery is being charged may additionally be displayed in the remaining battery level indicator.
  • a display example c of FIG. 5 shows a display example of the electronic paper display D1 and/or the OLED display D4 in the aerosol generation mode.
  • the remaining amount of the capsule, the remaining amount of the cartridge, and the remaining amount of the battery tend to decrease, so as shown in the left part of the display example c in FIG. 5, at least one of the graphs has fewer bars. becoming.
  • the right part of the display example c in FIG. 5 indicates that the capsule remaining amount is low and that the battery has no remaining amount (depleted).
  • the display examples a to c in FIG. 5 are only examples, and the display modes of the capsule remaining amount, cartridge remaining amount, and battery remaining amount may be other modes.
  • icon display may be used to indicate only the presence or absence of each remaining amount.
  • each remaining amount may be indicated by a numerical value as in display examples b1, b2, and b3 shown in FIG.
  • the electronic paper display is adopted as the first notification unit, in the sleep mode, the notification by the first notification unit (display by the electronic paper display D1) can be continued without consuming power. be.
  • the operable time of the power supply unit 102 can be extended.
  • FIG. This operation is controlled by an MCU (processor) 207 as a controller.
  • the MCU 207 can include a memory that stores programs and a CPU that operates according to the programs. For example, a program corresponding to each flowchart is stored in memory and executed by the CPU.
  • step S1 the MCU 207 determines whether an external power supply (charger) has been connected to the Vbus port and charging of the power supply 205 has started. If charging is not detected, in step S2, the MCU 207 determines whether or not an activation command has been received due to a manual operation such as repeatedly pressing the action button B a predetermined number of times. When this activation command is received, in step S3, the sleep mode is withdrawn and the mode is changed to the active mode. When the activation command associated with the manual operation is not received in step S2, the MCU 207 determines whether or not the activation command is generated in step S4.
  • a manual operation such as repeatedly pressing the action button B a predetermined number of times.
  • the activation command can be generated at planned timing by, for example, a timer or the like. If no activation command is generated, the process returns to step S1.
  • the MCU 207 exits the sleep mode and transitions to the active mode in step S5.
  • the MCU 207 executes a rewrite subroutine #1, which is a process for rewriting the electronic paper display when replacing the cartridge or capsule.
  • the display of the electronic paper display D1 is controlled by executing the rewrite subroutine #1. Details of the rewrite subroutine #1 will be described later.
  • step S7 the MCU 207 transitions to sleep mode, and the process returns to step S1.
  • step S8 When charging is detected in step S1, in step S8, the MCU 207 exits the sleep mode and transitions to the active mode, and the MCU 207 executes a rewriting subroutine #2, which is processing related to rewriting the electronic paper display during charging. .
  • the display of the electronic paper display D1 is controlled by executing the rewriting subroutine #2. Details of the rewrite subroutine #2 will be described later.
  • step S10 the MCU 207 transitions to sleep mode, and the process returns to step S1.
  • the MCU 207 performs processing (rewriting subroutine #1) related to rewriting the electronic paper display when replacing the cartridge or capsule in response to detection of the start of charging and generation of a start command, and charging is started.
  • processing rewriting subroutine #2 relating to rewriting of the electronic paper display during charging is performed.
  • FIG. 8 shows the control flow after the sleep mode is canceled in step S3 and the transition to the active mode is made.
  • the rewrite subroutine #1 is repeatedly executed at a planned timing (for example, periodically) in parallel with the following processes, and charging is started. is monitored, and the rewrite subroutine #2 is executed as interrupt processing in response to detection of the start of charging.
  • step S11 the remaining amount of each of the multiple elements displayed using the displays D1, D3, and D4 only decreases, except when cartridge replacement, capsule replacement, or charging is performed. Therefore, in step S11, the MCU 207 acquires the remaining amounts of a plurality of elements, that is, the battery remaining amount, the cartridge remaining amount, and the capsule remaining amount.
  • a rewrite subroutine #3 which is a process related to paper display rewrite, is executed. The display of the electronic paper display D1 is controlled by executing the rewrite subroutine #3. Details of the rewriting subroutine #3 will be described later.
  • the remaining amount of each of the plurality of elements displayed on the display is the remaining amount of the elements consumed to generate the flavored aerosol. quantity.
  • the MCU 207 can obtain the remaining battery level based on the output voltage of the power supply 205 .
  • the MCU 207 can also obtain the remaining battery level based on the number of puffs after charging is completed.
  • the power supply unit 102 includes a management circuit that manages the power supply 205
  • the MCU 207 can acquire the remaining battery level based on the output from the management circuit.
  • the MCU 207 can acquire the remaining amount of the cartridge, for example, based on the number of puffs after the atomizer 104 is attached to the holding portion 103 of the power supply unit 102 .
  • the MCU 207 can acquire the remaining amount of cartridge based on the output of the sensor.
  • the MCU 207 can acquire the remaining amount of the capsule, for example, based on the number of puffs after the capsule 106 is attached to the holder 103 of the power supply unit 102 .
  • the power supply unit 102 includes a sensor for detecting the remaining amount
  • the MCU 207 can acquire the remaining capsule amount based on the output of the sensor.
  • step S13 the MCU 207 determines whether the remaining power (remaining battery power) of the power supply 205 is greater than the "threshold (low)".
  • the MCU 207 waits for an aerosol generation request (atomization request) in step S15.
  • the aerosol generation request can be, for example, notification or transmission of puff detection from the puff sensor 209 to the MCU 207 .
  • an operation unit such as a switch (not shown) is provided for that purpose, the aerosol generation request can be generated by the user's operation on the operation unit.
  • the aerosol generation request may be generated by an operation on the action button B by the user.
  • the MCU 207 starts power supply to the heater 127 in step S16, and prohibits the operation of the OLED display D4 in step S17. That is, the power supply to the heater 127 for generating the aerosol in step S17 is performed after stopping the notification by the fourth notification unit (display by the OLED display D4) (step S16), while the notification by the first notification unit ( display on the electronic paper display D1 in step S12) is continued. Therefore, the display by the electronic paper display D1 is continued even during the puff operation. Therefore, the user is more likely to notice the necessity of recovering the remaining amount of the element whose remaining amount is notified before the remaining battery amount is exhausted.
  • step S18 the MCU 207 lights the number of LEDs corresponding to the remaining battery level among the plurality of LEDs in the LED display D3.
  • step S19 the MCU 207 waits for the end of the aerosol generation request.
  • the MCU 207 stops power supply to the heater 127 in step S20. Note that if a predetermined time has passed since power supply to the heater 127 was started in step S16, the MCU 207 stops power supply to the heater 127 in step S20 without waiting for the end of the aerosol generation request. good.
  • step S21 the MCU 207 determines whether a predetermined time has passed since leaving the sleep mode (sleep release). If a predetermined period of time has elapsed since sleep cancellation, the MCU 207 transitions to sleep mode in step S25, and the process returns to S1. If the predetermined time has not elapsed since sleep cancellation, the MCU 207 determines in S22 whether or not an OLED display request has been made.
  • the OLED display request requests display of the OLED display D4.
  • the OLED display request can be, for example, an action of pressing the action button B a predetermined number of times (for example, once).
  • the MCU 207 determines whether or not the remaining battery level is equal to or greater than the "threshold (medium)" in step S23.
  • step S24 the MCU 207 notifies the remaining amount of each element (remaining battery level, remaining cartridge level, remaining capsule level) to the fourth notification unit. (displayed by OLED display D4).
  • step S22 If there is no OLED display request in step S22, if it is determined that the remaining battery level is less than the threshold (medium) in step S23, or after the OLED display is performed in step S24, the process goes to step S11. back to After step S24 or when it is determined in step S22 that there is no OLED display request, the process may return to S15. Therefore, when it is determined in step S23 that the remaining battery level is less than the threshold (medium), the electronic paper display D1 is displayed in step S12, but the OLED display D4 is not displayed in step S24. In this way, it is possible to notify the user of the remaining amount of each element by using an appropriate notification unit according to the remaining battery amount. In particular, according to the present embodiment, when the remaining battery level falls below the threshold (medium), the display by the OLED display D4 is not performed. and the operable time of the power supply unit 102 can be extended.
  • FIG. 9 shows the control flow after the power supply to the heater 127 is stopped in step S20.
  • the MCU 207 acquires the remaining amount of a plurality of elements, ie, the remaining battery amount, cartridge remaining amount, and capsule remaining amount.
  • the MCU 207 can obtain the remaining battery level based on the output voltage of the power supply 205 .
  • the MCU 207 can also obtain the remaining battery level based on the number of puffs after charging is complete.
  • the power supply unit 102 includes a management circuit that manages the power supply 205
  • the MCU 207 can acquire the remaining battery level based on the output from the management circuit.
  • the MCU 207 can acquire the remaining amount of the cartridge, for example, based on the number of puffs after the atomizer 104 is attached to the holding portion 103 of the power supply unit 102 .
  • the MCU 207 can acquire the remaining amount of cartridge based on the output of the sensor.
  • the MCU 207 can acquire the remaining amount of the capsule, for example, based on the number of puffs after the capsule 106 is attached to the holder 103 of the power supply unit 102 .
  • the power supply unit 102 includes a sensor for detecting the remaining amount
  • the MCU 207 can acquire the remaining capsule amount based on the output of the sensor.
  • a rewriting subroutine #3 which is a process related to rewriting the display as the remaining amount of each element decreases.
  • the display of the electronic paper display D1 is controlled by executing the rewrite subroutine #3. Details of the rewriting subroutine #3 will be described later.
  • the notification by the first notification unit (display by the electronic paper display D1) is continued even after the power supply to the heater 127 is stopped in step S20. Therefore, the user is more likely to notice the necessity of recovering the remaining amount of the element whose remaining amount is notified before the remaining battery amount is exhausted. Note that even after the remaining battery power is exhausted, the electronic paper display D2 allows the user to notice the need to recover the remaining power of the element whose remaining power is being notified.
  • step S28 the MCU 207 determines whether the remaining battery level is greater than the "threshold (low)" (first threshold).
  • the threshold (low) regarding the remaining battery level here may be the same as the threshold (low) regarding the remaining battery level used in step S13. If it is determined that the remaining battery level is greater than the threshold (low), the process proceeds to step S29.
  • step S29 the MCU 207 determines whether or not the cartridge remaining amount is equal to or greater than the threshold ⁇ set for the cartridge remaining amount. If it is determined that the cartridge remaining amount is equal to or greater than the threshold ⁇ , the process proceeds to step S30.
  • step S30 the MCU 207 determines whether or not the remaining amount of capsules is greater than or equal to the threshold value ⁇ set for the remaining amount of capsules. If it is determined that the capsule remaining amount is equal to or greater than the threshold ⁇ , ie, if the remaining amount of each element is equal to or greater than the respective threshold, the process returns to step S11. Note that the process may return to step S15 instead of step S11. Since the process returns to step S11 or step S15, the MCU 207 maintains the active mode and can start power supply to the heater 127 after waiting for the aerosol generation request in step S15. The order in which steps S29 and S30 are executed may be reversed, steps S29 and S30 may be executed at the same time, or at least one of steps S29 and S30 may be executed before step S28. good too.
  • step S29 If it is determined in step S29 that the cartridge remaining amount is less than the threshold value ⁇ , or if it is determined in step S30 that the capsule remaining amount is less than the threshold value ⁇ , the MCU 207 transitions to the sleep mode in step S31, The process returns to step S1. In this way, when it is determined in step S28 that the remaining battery level is greater than the threshold (low), the remaining capacity of each of the plurality of elements is notified by the first notification unit (displayed by the electronic paper display D1).
  • step S34 the MCU 207 drives the vibration motor V and blinks the plurality of LEDs in the LED display D3.
  • the electronic paper display D1 displays that the remaining battery power is exhausted, and in step S34, the battery is also charged by vibrating the vibration motor V and blinking the LED. It is reported that the remaining amount is exhausted. This will inform the user that the power supply 205 needs to be charged.
  • the electronic paper display D1 as the first notification unit and the vibration generation unit V as the second notification unit are used together (further also uses the LED display D3, which is the third notification unit), to notify the remaining amount of the element.
  • the power consumption for driving the vibration generating section V, which is the second notification section is small compared to the power consumption of the OLED display D4. Therefore, as soon as the second notification unit (and the third notification unit) performs the notification, the power source 205 becomes over-discharged and the second notification unit (and the third notification unit) makes only a few notifications. can be suppressed. Therefore, in a state where the remaining battery level has decreased to the threshold (low) (NO in step S28), the user can easily notice the necessity of recovering the remaining battery level while saving the power consumed for notification.
  • step S34 After driving the vibration motor V and blinking the LED in step S34, the MCU 207 transitions to sleep mode in step S31, and the process returns to step S1. Therefore, when the vibration motor V is driven and the LED is blinked in step S34, the power supply to the heater 127 is suppressed because the transition to the sleep mode occurs while the power supply to the heater 127 is stopped in step S20. .
  • the rewrite subroutine #1 is repeatedly executed at planned timing (for example, periodically), and the start of charging is monitored.
  • a rewrite subroutine #2 can be executed as interrupt processing in response to detection of the start of charging.
  • the indication of the remaining amount of elements can be recovered.
  • the MCU 207 keeps power on for notification by the first notification unit (display by the electronic paper display D1) until the remaining amount of the element is recovered. It can be continued without consumption. Such display by the electronic paper display D1 continues even if the power supply 205 is over-discharged, so the user can easily notice the need to recover the remaining amount of the element whose remaining amount is notified.
  • FIG. 13 shows a modified example of the control flow shown in FIG.
  • the first of the plurality of elements, capsule 106 is replaced more frequently than the other elements. More specifically, the frequency with which the remaining capsule amount (first remaining amount) needs to be recovered in order to generate flavored aerosol continuously by power supply to the heater 127 is determined by the amount of power continuously supplied to the heater 127 . More frequently than the battery 205 or cartridge (second element) remaining power (second remaining power) needs to be recharged in order to generate an aerosol that has been given . Therefore, in the control flow of FIG. 13, in a state where the remaining battery level has decreased to the threshold value (low), the mode of notification is changed depending on whether the remaining capsule level is low or not.
  • step S28 determines whether or not the remaining battery level is equal to or less than the threshold (low) (the first threshold or less). If the remaining amount of capsules is determined to be equal to or greater than the threshold ⁇ , the process proceeds to step S33, and if the remaining amount of capsules is determined to be less than the threshold ⁇ , the process proceeds to step S34.
  • the MCU 207 drives the vibration motor V in step S33. In this case, the remaining amount of capsule is notified by the electronic paper display D1 as the first notification unit and the vibration by the vibration motor V as the second notification unit (steps S27 and S33).
  • step S34 the MCU 207 drives the vibration motor V and blinks the plurality of LEDs in the LED display D3.
  • the remaining capsule amount is notified by the electronic paper display D1 as the first notification unit, the vibration by the vibration motor V as the second notification unit, and the LED display D3 as the third notification unit (steps S27 and S34). ).
  • the higher the frequency of recovery of the remaining amount of the element the more notification units are used to inform the user of the remaining amount. Therefore, it becomes easier for the user to notice that the remaining amount needs to be recovered. Therefore, for example, it is possible to prevent a situation in which the user cannot inhale the aerosol due to insufficient remaining amount.
  • the power consumption of the LED display D3, which is the third notification unit is smaller than the power consumption of driving the vibration motor V, which is the second notification unit. Therefore, it is possible to prevent a situation in which the power source 205 becomes over-discharged immediately after the third reporting unit issues a report, and the third reporting unit issues only a few reports. Therefore, when the remaining battery level is lower than the threshold (low) (NO in step S28), the user is more likely to notice the need to restore the remaining battery level while saving the power consumed for notification.
  • FIG. 10 shows the control flow of rewrite subroutine #1, which is performed in step S6 or repeatedly performed at predetermined timings in active mode.
  • the MCU 207 determines whether or not the capsule 106 has been removed from the power supply unit 102. If it is determined that the capsule 106 has been removed, the process proceeds to step S607; otherwise, the process proceeds to step S602. proceed. For example, if a second sensor 222 is provided, the MCU 207 can determine removal of the capsule 106 from the power supply unit 102 based on the output of the second sensor 222 .
  • step S602 the MCU 207 determines whether or not the cartridge (atomizer 104) has been removed from the power supply unit 102. If it is determined that the cartridge has been removed, the process proceeds to step S603. Exit subroutine #1. For example, when the first sensor 221 is provided, the MCU 207 can determine removal of the cartridge from the power supply unit 102 based on the output of the first sensor 221 . Alternatively, MCU 207 can determine cartridge removal from power supply unit 102 based on changes in the output of measurement circuit 210 .
  • the voltage obtained by dividing the output voltage of the voltage converter 202 by the heater 127 and the shunt resistor Rshunt when the switch 201 is turned on is It is input to the measurement circuit 210 .
  • the output voltage of the voltage converter 202 is input to the measuring circuit 210 when the switch 201 is turned on. Therefore, when the cartridge is removed from the holding portion 103 of the power supply unit 102, the output of the measurement circuit 210 changes when the switch 201 is turned on.
  • step S603 the MCU 207 prohibits power supply to the heater 127.
  • power supply to the heater 127 is prohibited, power is not supplied to the heater 127 even if an aerosol generation request occurs.
  • the MCU 207 waits for the cartridge to be attached to the power supply unit 102. For example, when the first sensor 221 is provided, the MCU 207 can determine that the cartridge is attached to the holding section 103 of the power supply unit 102 based on the output of the first sensor 221 . Alternatively, the MCU 207 can determine that the cartridge has been attached to the holding section 103 of the power supply unit 102 based on the change in the output of the measurement circuit 210 .
  • step S605 the MCU 207 updates (rewrites) the display of the cartridge remaining amount on the electronic paper display D1. After that, in step S606, the MCU 207 cancels the prohibition of power supply to the heater 127, and exits the rewriting subroutine #1.
  • step S607 the MCU 207 prohibits power supply to the heater 127 in response to the capsule 106 being removed.
  • power supply to the heater 127 is prohibited, power is not supplied to the heater 127 even if an aerosol generation request occurs.
  • the MCU 207 waits for the capsule 106 to be attached to the power supply unit 102. For example, when the second sensor 222 is provided, the MCU 207 can determine that the capsule 106 is attached to the holding portion 103 of the power supply unit 102 based on the output of the second sensor 222 .
  • step S609 the MCU 207 updates (rewrites) the display of the remaining amount of capsules on the electronic paper display D1. After that, in step S610, the MCU 207 cancels the prohibition of power supply to the heater 127, and exits the rewriting subroutine #1.
  • step S605 is a process when the cartridge is replaced
  • step S609 is a process when the capsule is replaced. Since it is generally assumed that the remaining amount of the cartridge or capsule will be recovered by exchanging the cartridge or capsule, as shown in the display example b in FIG.
  • control may be performed so that only rewriting in the direction of increasing the remaining amount of capsules is permitted.
  • the display of the remaining amount of the cartridge on the electronic paper display D1 may be rewritten based on the output of the sensor.
  • the display of the remaining amount of capsules on the electronic paper display D1 may be rewritten based on the output of the sensor.
  • FIG. 11 shows the control flow of rewrite subroutine #2, which is performed in step S9 or repeatedly performed at a predetermined timing in active mode.
  • the MCU 207 rewrites the remaining battery capacity of the electronic paper display D1 so that a charge mark appears in the remaining battery capacity (see display example a in FIG. 5).
  • step S92 the MCU 207 acquires the remaining battery level based on the output voltage of the power supply 205 and communication with the charging IC 206, for example.
  • step S93 the MCU 207 determines whether or not the acquired remaining battery level is greater than a predetermined threshold. If it is determined that the remaining battery level is greater than the predetermined threshold, the process proceeds to step S94; otherwise, the process proceeds to step S95.
  • step S94 the MCU 207 rewrites the electronic paper display D1 so that the remaining battery level increases.
  • the predetermined threshold can be a threshold for adjusting the rewriting frequency of the electronic paper display in step S94. After that, the process proceeds to step S95.
  • step S95 the MCU 207 determines whether or not charging has ended. For example, when the external power supply (charger) is removed from the Vbus port, or when the battery is fully charged, it can be determined that the charging has ended. If it is determined in step S95 that charging has not ended, the process returns to S92, and if it is determined that charging has ended, the process proceeds to step S96.
  • the external power supply charger
  • step S96 the MCU 207 rewrites the remaining battery capacity section on the second display so that the charging mark disappears from the remaining battery capacity section, and exits the rewriting subroutine #2.
  • FIG. 12 shows the control flow of rewrite subroutine #3 performed in steps S12 and S27. Since the remaining amount of the plurality of elements generally only decreases due to the generation of the aerosol, the remaining amount of the plurality of elements is only rewritten in the decreasing direction as shown in the display example c of FIG. may be controlled to allow
  • step S121 the MCU 207 determines whether the remaining battery level acquired in step S11 or step S26 is less than a predetermined threshold. If it is determined that the remaining battery level is less than the predetermined threshold, the process proceeds to step S122; otherwise, the process proceeds to step S123. In step S122, the MCU 207 rewrites the remaining battery level of the electronic paper display D1 in the decreasing direction. After that, the process proceeds to step S123.
  • step S123 the MCU 207 determines whether the remaining amount of capsules obtained in step S11 or step S26 is less than a predetermined threshold. If it is determined that the capsule remaining amount is less than the predetermined threshold, the process proceeds to step S124; otherwise, the process proceeds to step S125. In step S124, the MCU 207 rewrites the remaining amount of capsules on the electronic paper display D1 in the decreasing direction. After that, the process proceeds to step S125.
  • step S125 the MCU 207 determines whether the remaining amount of cartridge obtained in step S11 or step S26 is less than a predetermined threshold. If it is determined that the cartridge remaining amount is less than the predetermined threshold, the process proceeds to step S126, otherwise the rewriting subroutine #3 is exited. In step S126, the MCU 207 rewrites the cartridge remaining amount in the electronic paper display D1 in the decreasing direction. After that, the rewrite subroutine #3 is exited.
  • the predetermined threshold for the remaining battery level in step S121, the predetermined threshold for the remaining capsule level in step S123, and the predetermined threshold for the remaining cartridge level in step S125 are each used to adjust the rewriting frequency of the electronic paper display.
  • the thresholds compared with the remaining battery level in step S121 may include thresholds corresponding to the number of bars.
  • the processor 207 can compare the remaining battery level with a threshold corresponding to the current remaining battery level among a plurality of thresholds. This is also the case when the remaining amount of capsules and the remaining amount of cartridges are displayed in a bar graph format.
  • 100 Aspirator, 102: Power supply unit, 104: Atomizer (cartridge), 105: Capsule holder, 106: Capsule

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

エアロゾル源を加熱するヒータを有する霧化器に電力を供給する、エアロゾル生成装置の電源ユニットが提供される。電源ユニットは、電源と、前記電源からの電力を前記ヒータへ供給する電力供給部と、第1報知部と、前記第1報知部とは別体の第2報知部と、前記電力供給部による電力供給と、前記第1報知部および前記第2報知部による報知とを制御するコントローラとを有する。前記コントローラは、香味を有するエアロゾルを生成するために消費される第1要素の残量を取得し、前記電源の残量が第1閾値より大きい場合、前記第1要素の残量である第1残量を前記第1報知部により報知し、前記電源の残量が前記第1閾値以下の場合、前記第1残量を前記第1報知部と前記第2報知部とにより報知する。

Description

エアロゾル生成装置の電源ユニット
 本発明は、エアロゾル生成装置の電源ユニットに関する。
 吸引可能なエアロゾルを生成するエアロゾル生成装置において、1回の充電あたりに何回のパフ動作(吸引動作)を行えるかということが、一つの重要な指標となりうる。このような指標を向上させるためには、エアロゾル生成装置が有する表示部等における消費電力を低減することが重要になる。
 特許文献1には、消費電力を低減するために、電子タバコの表示部に電子ペーパー(e-ink)を採用したことが記載されている。この他、特許文献2および特許文献3にも、吸引器の表示部にe-inkを採用しうることが記載されている。
中国実用新案登録第203505584号明細書 米国特許出願公開第2017/0304567号明細書 米国特許第8851068号明細書
 エアロゾル生成装置が複数種類の表示部を備える場合、ユーザの快適性を損なうことなく電力消費が抑制されるよう、装置の状態に応じて適切に表示制御を行うことが重要である。従来技術ではそのような観点による表示制御が十分に行われていなかった。
 本発明は、例えば、消費電力を抑制しながら、電池残量が不足する状態で装置の状態をユーザに効果的に伝える、エアロゾル生成装置の電源ユニットを提供する。
 本発明の一側面によれば、エアロゾル源を加熱するヒータを有する霧化器に電力を供給する、エアロゾル生成装置の電源ユニットであって、電源と、前記電源からの電力を前記ヒータへ供給する電力供給部と、第1報知部と、前記第1報知部とは別体の第2報知部と、前記電力供給部による電力供給と、前記第1報知部および前記第2報知部による報知とを制御するコントローラと、を有し、前記コントローラは、香味を有するエアロゾルを生成するために消費される第1要素の残量を取得し、前記電源の残量が第1閾値より大きい場合、前記第1要素の残量である第1残量を前記第1報知部により報知し、前記電源の残量が前記第1閾値以下の場合、前記第1残量を前記第1報知部と前記第2報知部とにより報知する、ことを特徴とする電源ユニットが提供される。
 一実施形態によれば、前記電源の残量が前記第1閾値以下の場合、前記第1残量を前記第1報知部と前記第2報知部とにより報知するとともに、前記電力供給を抑制する。
 一実施形態によれば、前記第1報知部の消費電力は、前記第2報知部の消費電力より小さい。
 一実施形態によれば、前記コントローラは、前記第1報知部による報知を継続しながら前記電力供給を実行する。
 一実施形態によれば、前記コントローラは、前記電力供給を実行可能なアクティブモードよりも前記コントローラの消費電力が少ないスリープモードで動作可能であり、前記スリープモードで前記第1報知部による報知を継続する。
 一実施形態によれば、前記第1報知部は、電力を消費せずに前記スリープモードで報知を継続可能である。
 一実施形態によれば、前記コントローラは、前記エアロゾルを生成するために消費される、表示対象である要素の残量が回復するまで、前記第1報知部による報知を継続する。
 一実施形態によれば、前記第1報知部および前記第2報知部とは別体の第3報知部を更に備え、前記コントローラは、前記電源の残量が前記第1閾値より大きい場合、前記第1残量を前記第1報知部と前記第2報知部と前記第3報知部とにより報知し、前記エアロゾルを生成するために消費される第2要素の残量である第2残量を前記第1報知部と前記第2報知部とによって報知し、前記電力供給によって継続して香味が付与されたエアロゾルを生成するために前記第1要素の残量を回復する必要がある頻度は、前記電力供給によって継続して香味が付与されたエアロゾルを生成するために前記第2要素の残量を回復する必要がある頻度より多い。
 一実施形態によれば、前記第3報知部の消費電力は、前記第2報知部の消費電力より小さい。
 一実施形態によれば、前記コントローラは、前記第2報知部と前記第3報知部による報知を停止した後も、前記第1報知部による報知を継続する。
 本発明によれば、例えば、消費電力を抑制しながら、電池残量が不足する状態で装置の状態をユーザに効果的に伝える、エアロゾル生成装置の電源ユニットを提供することができる。
 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。
 添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述と共に本発明の原理を説明するために用いられる。
吸引器の分解斜視図。 吸引器の組み立て完成図。 吸引器の内部構成図。 電気部品の構成例を示す図。 電源ユニットの状態遷移図およびディスプレイの表示例を示す図。 ディスプレイの表示例を示す図。 電源ユニットの動作例を示すフローチャート。 電源ユニットの動作例を示すフローチャート。 電源ユニットの動作例を示すフローチャート。 電源ユニットの動作例を示すフローチャート。 電源ユニットの動作例を示すフローチャート。 電源ユニットの動作例を示すフローチャート。 図9に対する変形例に係るフローチャート。
 以下、添付図面を参照して実施形態を詳しく説明する。なお、以下の実施形態は特許請求の範囲に係る発明を限定するものではなく、また実施形態で説明されている特徴の組み合わせの全てが発明に必須のものとは限らない。実施形態で説明されている複数の特徴のうち二つ以上の特徴は任意に組み合わされてもよい。また、同一若しくは同様の構成には同一の参照番号を付し、重複した説明は省略する。
 図1~図3を参照して、エアロゾル生成装置の一形態である吸引器100の構成を説明する。図1には、吸引器100の分解斜視図が示され、図2には、吸引器100の組み立て完成図が示され、図3には、吸引器100の内部構成図が示されている。吸引器100は、ユーザによる吸引動作などのエアロゾルを要求する動作(以下では「エアロゾル生成要求」あるいは「霧化要求」ともいう。)に応じて、エアロゾル、または、香味を有するエアロゾル、または、エアロゾルおよび香味物質を含む気体、または、エアロゾル、または、香味物質を含むエアロゾルを吸口部130を通してユーザに提供するように構成されうる。吸引器用コントローラとしての吸引器100は、電源ユニット102と、霧化器104と、カプセルホルダ105と、カプセル106とを備えうる。
 霧化器104は、エアロゾル源から香味を有するエアロゾルを発生させるように構成されうる。エアロゾル源は、例えば、グリセリンまたはプロピレングリコール等の多価アルコール等の液体でありうる。あるいは、エアロゾル源は、薬剤を含んでもよい。エアロゾル源は、液体であってもよいし、固体であってもよいし、液体および固体の混合物であってもよい。エアロゾル源に代えて、水等の蒸気源が用いられてもよい。霧化器104は、本体部である電源ユニット102に対して着脱可能なカートリッジとして提供されてもよい。霧化器104は、電源ユニット102に対して着脱不能に備え付けられてもよい。この明細書において、霧化器104は、カートリッジ104と記載されることもある。電源ユニット102は、霧化器104を駆動する駆動ユニット、霧化器104を保持する保持体、または、霧化器104を機能させる本体等として理解されてもよい。
 電源ユニット102は、霧化器104を保持する保持部103を有する。保持部103は、霧化器104の全体または一部分を収容するように構成されうる。保持部103は、更にカプセルホルダ105を保持するように構成されていてもよい。あるいは、カプセルホルダ105は、霧化器104によって保持されてもよい。カプセルホルダ105は、カプセル106を保持する。一例において、保持部103は、カプセルホルダ105が保持部103から脱落することを防止するロック機構を含みうる。該ロック機構は、カプセルホルダ105に設けられうる第1係合部105aと係合する第2係合部103aを含みうる。例えば、カプセルホルダ105を保持部103に対して回転させながら挿入することにより、第1係合部105aと第2係合部103aとが係合してロック状態となる。該ロック状態において、霧化器104の接続部113、114が電源ユニット102の接続部111、112に対してそれぞれ押し付けられて、接続部113、114と接続111、112とのそれぞれの電気的接続が提供されうる。カプセルホルダ106は、霧化器104あるいは電源ユニット102と一体化されていてもよい。さらに、カプセル106がカプセルホルダ105の先端側に差し込まれると、霧化器104とカプセル106との間で気体流通可能な状態となる。カプセル106は、香味源131を含みうる。香味源131は、例えば、たばこ材料を成形した成形体でありうる。あるいは、香味源131は、たばこ以外の植物(例えば、ミント、ハーブ、漢方、コーヒー豆等)によって構成されてもよい。香味源には、メントールなどの香料が付与されていてもよい。香味源131は、エアロゾル源に添加されてもよい。ユーザは、カプセル106の先端に形成された吸口部130を口で銜えて、香味を有するエアロゾルを吸引することができる。
 電源ユニット102は、電気部品110を含みうる。電気部品110は、ユーザインタフェース116を含みうる。あるいは、電源ユニット102は、電気部品110およびユーザインタフェース116を含むものとして理解されてもよい。ユーザインタフェース116は、ユーザが操作可能な操作部としてのアクションボタンBを含みうる。アクションボタンBは、電源ユニット102の起動、表示等の動作のトリガとするためのボタンである。ユーザインタフェース116は、さらに、第1報知部と、第1報知部とは別体の第2報知部とを含みうる。本実施形態において、第1報知部は電子ペーパー(e-ink)ディスプレイD1でありうる。電子ペーパーディスプレイD1は、不揮発性ディスプレイの一種である。電子ペーパー技術によれば、ディスプレイに画像を連続的に保持するために電力を供給し続ける必要がない。言い換えると、電子ペーパーディスプレイは、現在の表示状態を維持するための電力を必要としない。電子ペーパーディスプレイは、表示する内容の書き換えのみに電力を消費するディスプレイであるとも言える。第2報知部は、振動発生部Vでありうる。振動発生部Vは、電源ユニット102の筐体を振動させるための振動モータで構成される。振動モータによって筐体を振動させることでそれを手にしているユーザに状態を報知することができる。
 ユーザインタフェース116は、更に、第1報知部および第2報知部とは別体の第3報知部を含みうる。第3報知部は、発光ディスプレイ(LED)ディスプレイD3でありうる。LEDディスプレイD3は、一例において、複数のLED(例えば、10個以下、20個以下、または30個以下のLED)で構成されうる。この場合、LEDディスプレイは、電子ペーパーディスプレイに比べれば表示できる情報量は少ないものの、高い輝度を実現できるため視認性が高い。
 ユーザインタフェース116は、更に、第1報知部、第2報知部、および第3報知部とは別体の第4報知部を含みうる。第4報知部は、有機発光ダイオード(OLED)ディスプレイD4でありうる。OLEDディスプレイD4と電子ペーパーディスプレイD1との表示原理の違いにより、消費電力は互いに異なりうる。OLEDディスプレイD4は、有機発光ダイオードが自ら発光するため、液晶ディスプレイのようにバックライト装置を必要としない。そのため、電子ペーパーディスプレイの消費電力は、OLEDディスプレイの消費電力より小さい。ただし、電子ペーパーディスプレイは、OLEDディスプレイのような自発光機能がなく、OLEDディスプレイと比べると、暗い環境下での視認性は劣りうる。
 一例において、電子ペーパーディスプレイD1の消費電力は、振動発生部Vの消費電力より小さい。また、LEDディスプレイD3の消費電力は、振動発生部Vの消費電力より小さい。
 図2には、アクションボタンB、電子ペーパーディスプレイD1、LEDディスプレイD3、およびOLEDディスプレイD4の配置例が示されている。図2の例では、OLEDディスプレイD4は電源ユニット102の上面に配置され、電子ペーパーディスプレイD1およびLEDディスプレイD3は電源ユニット102の互いに異なる側面に配置されている。ただし、ディスプレイD1、D3、D4の配置箇所は互いに入れ替わっていてもよいし、更に別の箇所に配置されていてもよい。LEDディスプレイD3は、例えば、図2の側面図に示されるような、霧化器104内のエアロゾル源の残量を目視するための窓部が光るように窓部の周囲に配置されてもよい。あるいはLEDディスプレイD3は、アクションボタンBの周囲が光るようにアクションボタンBの周囲に配置されてもよい。また、アクションボタンBの配置箇所も図示の例に限らず、他の箇所に配置されていてもよい。
 電源ユニット102は、第1接続部111および第2接続部112を含みうる。保持部103によって霧化器104が保持されカプセルホルダ105が保持部に取付けられた状態において、第1接続部111は霧化器104の第3接続部113と電気的に接続され、また、第2接続部112は、霧化器104の第4接続部114と電気的に接続されうる。第1接続部111、第2接続部112、第3接続部113、および第4接続部114は、電気接点あるいはコネクタでありうる。電源ユニット102は、第1接続部111および第2接続部112を通して霧化器104に電力を供給しうる。
 霧化器104は、第3接続部113および第4接続部114を含みうる。また、霧化器104は、エアロゾル源から香味を有するエアロゾルを発生させるためのヒータ127と、エアロゾル源を保持する容器125と、容器125によって保持されたエアロゾル源をヒータ127による加熱領域に輸送し、かつ加熱領域で保持する輸送部126とを含みうる。該加熱領域の少なくとも一部は、霧化器104内に設けられた流路128に配置されうる。第1接続部111、第3接続部113、ヒータ127、第4接続部114、および第2接続部112は、ヒータ127に電流を流すための電流経路を形成する。輸送部126は、例えば、ガラス繊維のような繊維素材またはセラミックのような多孔質素材またはこれらの組み合わせで構成されうる。なお、このような輸送部126はウィック(wick)ともよばれうる。ただし、容器125内のエアロゾル源を加熱領域に輸送する手段はウィックに限られず、スプレーのような噴霧装置またはポンプのような輸送手段によって実現されてもよい。
 ユーザが吸口部130を銜えて吸引動作を行うと、破線矢印で例示されるように、不図示の開口を通じて霧化器104の流路128に空気が流入し、ヒータ127がエアロゾル源を加熱することによって蒸気化および/またはエアロゾル化されたエアロゾル源がその空気によって吸口部130に向けて輸送される。吸口部130に向けて輸送される過程において、蒸気化されたエアロゾル源が冷却されて微小な液滴が形成されることで、エアロゾル化が促進されうる。そして、香味源131が配置されている構成においては、そのエアロゾルに香味源131が発生する香味物質が添加されて、これにより香味を有するエアロゾルが吸口部130に輸送され、ユーザの口に吸い込まれる。香味源131が発生する香味物質はエアロゾルに同伴されるため、ユーザの口腔内に留まらず、効率的にユーザの肺まで効率的に香味物質を輸送することができる。
 図4には、電気部品110の構成例が示されている。電気部品110は、電源205と、充電回路(充電IC)206とを有する。電気部品110は、電源205からの電力をヒータ127へ供給する電力供給部として機能することができる。
 電源205は、リチウムイオン電池などの充電可能な電池(二次電池)である。あるいは、電源205は、リチウムイオンキャパシタのような電気二重層キャパシタで構成されていてもよい。電源205は、Vbusポートより供給される電力を用いて充電をすることができる。Vbusポートには、ケーブルを介して不図示の給電機器(外部電源)が接続されうる。Vbusポート、ケーブル、および給電機器は、例えばユニバーサル・シリアル・バス(USB)のType-A、Type-B、Type-C等の規格に準拠するように構成されうる。給電機器は、ケーブルおよびVbusポートを介して、電源205に電力を供給することが可能である。給電機器は、パーソナルコンピュータ(PC)、携帯用バッテリ等の充電器でありうる。電源ユニット102がVbusポートおよびケーブルを介して充電器と接続されると、電源ユニット102と充電器とが相互に通信を行い、その後、充電器から電源205への充電が可能となる。なお、電源ユニット102と給電機器との接続はUSBに限らず、その他のデータ通信と電力供給が可能な様々な通信方式が適用されてもよい。
 電気部品110は、1または複数の電圧変換器を備えうる。電気部品110が複数の電圧変換器を備える場合、それらのうち少なくとも2つの電圧変換器は、互いに異なる電圧、または、互いに等しい電圧を発生しうる。図4に示された構成例では、電気部品110は、電圧変換器202、203、204を備えている。電気部品110は、電圧変換器を備えなくてもよく、この場合には、電気部品110を構成する複数の素子には、電源205が出力する電圧が配線抵抗による僅かな電圧降下を伴って提供されうる。図4に示された構成例では、電圧変換器202、203は、DC/DCコンバータのようなスイッチングレギュレータによって構成されているが、少なくとも一方は、LDO(Low DropOut)で構成されてもよい。また、図4に示された構成例では、電圧変換器204はLDO(Low DropOut)で構成されているが、DC/DCコンバータのようなスイッチングレギュレータによって構成されてもよい。
 電気部品110は、予め組み込まれたソフトウェア(プログラム)に従って動作する制御部(コントローラ)としてのMCU(プロセッサ)207を備えうる。MCU207は、ASIC等の他のデバイスによって置き換えられてもよい。MCU207は、スイッチ201などを操作することで、ヒータ127への電力供給を制御するように構成されうる。また、MCU207は、電気部品110を構成する集積回路(IC)であるドライバ211、212、213、214を制御することにより、各報知部による報知を制御するように構成されうる。ドライバ211、212、213、214は、それぞれ電子ペーパーディスプレイD1、振動モータV、LEDディスプレイD3、OLEDディスプレイD4を駆動する。よって、MCU207は、ディスプレイD1、D3、D4、振動モータVを駆動あるいは制御するものとして理解されてもよい。ドライバ211、212、213、214には、電圧変換器204によって電圧(電力)が供給されうる。OLEDディスプレイD4には、電圧変換器203によって電圧(電力)が供給されうる。アクションボタンBには、電圧変換器204によって電圧(電力)が供給されうる。
 電源ユニット102は、ユーザによる吸引動作、すなわちパフ、を検出するパフセンサ209を備えてもよく、パフセンサ209には、電圧変換器204によって電圧(電力)が供給されうる。パフセンサ209は、例えば、圧力、音、温度(例えば、前述の開口を通じて霧化器104の流路128に流入する空気の温度、ヒータ127の温度)のうちの少なくとも1つを検出することによってパフを検出しうる。
 電気部品110は、霧化器104の負荷であるヒータ127に対する通電(電力の供給)を制御するためのスイッチ201を備えうる。電圧変換器202は、スイッチ201を介してヒータ127に電圧(電力)を供給しうる。スイッチ201およびヒータ127を含んで構成される閉回路には、シャント抵抗Rshuntが配置されてもよい。電気部品110は、ヒータ127の温度を測定するための測定回路210を備えうる。ヒータ127は、自身の温度に応じて抵抗値RHTRが変化する正または負の温度係数特性を有することができ、ヒータ127の抵抗値RHTRはヒータ127の温度に強い相関を有しうる。測定回路210は、ヒータ127の抵抗値RHTRを測定するための回路であり、例えばヒータ127の両端の電圧を測定するように構成される。測定回路210の出力は、MCU207に提供され、MCU207は、測定回路210の出力およびヒータ127を通して流れる電流値に基づいて抵抗値RHTRを計算しうる。該電流値は、例えば、シャント抵抗Rshuntの両端の電圧を測定する不図示の測定回路を使って得ることができる。MCU207は、測定回路210を使って測定されるヒータ127の温度に基づいて、ヒータ127の温度をフィードバック制御(例えばPID制御)するように、スイッチ201を制御しうる。
 電気部品110は、霧化器104の存在または不存在を検知する第1センサ221と、カプセル106の存在または不存在を検知する第2センサ222とを備えうる。第1センサ221および第2センサ222には、電圧変換器204によって電圧(電力)が供給されうる。第1センサ221および第2センサ222は、例えば、フォトインタラプタ、近接センサ、RFIDシステムまたはスイッチでありうる。霧化器104の存在または不存在を検知するスイッチは、保持部103に対する霧化器104の挿入によってオン(またはオフ)し、保持部103からの霧化器104の取り外しによってオフ(またはオン)しうる。カプセル106の存在または不存在を検知するスイッチは、保持部103に対するカプセル106の挿入によってオン(またオフ)し、保持部103からのカプセル106の取り外しによってオフ(またはオン)しうる。
 図5の状態遷移図を参照して、実施形態における電源ユニット102の状態遷移および各状態におけるディスプレイの表示例を説明する。コントローラとしてのMCU(プロセッサ)207は、スリープモード、アクティブモード、エアロゾル生成モード、および充電モードの4つのモードで動作可能である。
 スリープモードは、吸引器100が主要な動作を休止している状態であり、少なくとも後述するアクティブモードよりもコントローラの消費電力が小さいモードである。スリープモードでは、霧化器104のヒータ127に対して電力が供給されることはない。スリープモードでは、吸引器100が消費する電力が最小限に抑制される。スリープモードは、省電力モードあるいはスタンバイモードとも呼ばれうる。スリープモードでは、電源ユニット102はロックされており、ユーザはエアロゾルの吸引を行うことはできない。
 スリープモードにおいてアクションボタンBに対する所定の操作が行われると、ロックが解除され、電源ユニット102はアクティブモードに遷移する。所定の操作とは、例えば、アクションボタンBを所定回数(例えば3回)にわたって繰り返し押す操作、アクションボタンBを規定時間(例えば3秒)にわたって長押しする操作等でありうる。また、アクティブモードにおいて所定の操作がないまま所定時間が経過すると、吸引器100はスリープモードに戻りうる。
 アクティブモードにおいてユーザによる吸引(パフ)がパフセンサ209によって検知されると、吸引器100はエアロゾルを生成するエアロゾル生成モードに遷移する。吸引が終了したとき、または、一回の吸引時間が規定の上限時間に達したときは、吸引器100はアクティブモードに戻りうる。
 スリープモードまたはアクティブモードにおいて外部電源(充電器)がVbusポートに接続されると、吸引器100は充電モードに遷移し、電源205の充電が行われる。外部電源がVbusポートから取り外されたとき、あるいは、満充電状態となったとき、吸引器100はスリープモードに遷移する。満充電状態は、SOC(State Of Charge、充電状態)あるいは充電率が100%又はそれに近い所定値(例えば、98%、95%又は90%)以上であることを意味する。
 図5の表示例bには、アクティブモードにおける電子ペーパーディスプレイD1および/またはOLEDディスプレイD4による表示例が示されている。なお、「電子ペーパーディスプレイD1および/またはOLEDディスプレイD4による表示」とは、電子ペーパーディスプレイD1またはOLEDディスプレイD4のいずれか一方のみが情報を表示する場合と、電子ペーパーディスプレイD1およびOLEDディスプレイD4の両方が情報を表示する場合とを含みうる。その具体的な制御については後述する。図5の表示例bでは、電子ペーパーディスプレイD1および/またはOLEDディスプレイD4には、カプセル106における香味源131の残量(以下「カプセル残量」という。)と、霧化器104(以下「カートリッジ」という。)におけるエアロゾル源の残量(以下「カートリッジ残量」という。)と、電源205の残量(以下「電池残量」という。)が、それぞれバーグラフ形式で表示されている。また、図5の表示例aには、充電モードにおける電子ペーパーディスプレイD1および/またはOLEDディスプレイD4の表示例が示されている。充電モードにおいて、カプセル残量、カートリッジ残量、および電池残量が表示されうる。電池残量の表示部には、充電中であることを示すマークが追加的に表示されうる。図5の表示例cには、エアロゾル生成モードにおける電子ペーパーディスプレイD1および/またはOLEDディスプレイD4の表示例が示されている。エアロゾルの生成によって、カプセル残量、カートリッジ残量、電池残量はそれぞれ減少する方向に向かうため、図5の表示例cにおける左側部分に示すように、少なくともいずれかのグラフのバーの数が少なくなっていく。図5の表示例cにおける右側部分は、カプセル残量が少ないことを示し、かつ、電池残量がない(枯渇している)ことを示している。
 図5の表示例a~cはそれぞれ一例に過ぎず、カプセル残量、カートリッジ残量、および電池残量の表示態様は、他の態様であってもよい。例えば、図6に示した表示例a1、b1、c1のように、各残量の有無だけがわかるアイコン表示であってもよい。あるいは、図6に示した表示例b1、b2、b3のように、各残量が数値で示されてもよい。また、本実施形態では、第1報知部として電子ペーパーディスプレイが採用されているため、スリープモードにおいて、電力を消費せずに第1報知部による報知(電子ペーパーディスプレイD1による表示)を継続可能である。このように、スリープモードでも残量通知がなされるため、ユーザは、残量が通知されている要素に対する残量の回復の必要性に気づきやすくなる。また、スリープモードにおける要素の残量の通知を、電源に蓄えられた電力量を消費することなく行うことができるため、電源ユニット102の動作可能時間を伸ばすことができる。
 図7~図12を参照して、電源ユニット102の動作例を説明する。この動作は、コントローラとしてのMCU(プロセッサ)207によって制御される。MCU207は、プログラムを格納したメモリと、該プログラムに従って動作するCPUとを含みうる。例えば、各フローチャートに対応するプログラムはメモリに格納され、該プログラムがCPUによって実行される。
 初期状態において、電源ユニット102は、スリープモードで待機している。ステップS1において、MCU207は、外部電源(充電器)がVbusポートに接続され電源205の充電が開始されたかどうかを判定する。充電が検知されなければ、ステップS2で、MCU207は、アクションボタンBが所定回数にわたって繰り返し押される等の手動操作が行われたことによる起動指令を受信したか否かを判定する。この起動指令が受信された場合には、ステップS3において、スリープモードから離脱してアクティブモードに遷移する。ステップS2で手動操作に伴う起動指令が受信されなかった場合には、ステップS4において、MCU207は、起動指令が発生したか否かを判定する。起動指令は、例えば、タイマー等によって、計画されたタイミングで発生させることができる。起動指令が発生しなければ、処理はステップS1に戻る。起動指令が発生した場合には、ステップS5において、MCU207は、スリープモードから離脱してアクティブモードに遷移する。次いで、ステップS6において、MCU207は、カートリッジまたはカプセル交換時の電子ペーパーディスプレイ書き換えに関する処理である書換サブルーチン#1を実行する。書換サブルーチン#1の実行により、電子ペーパーディスプレイD1の表示が制御される。書換サブルーチン#1の詳細については後述する。その後、ステップS7において、MCU207はスリープモードに遷移し、処理はステップS1に戻る。
 ステップS1で充電が検知された場合、ステップS8において、MCU207は、スリープモードから離脱してアクティブモードに遷移し、MCU207は、充電時の電子ペーパーディスプレイ書き換えに関する処理である書換サブルーチン#2を実行する。書換サブルーチン#2の実行により、電子ペーパーディスプレイD1の表示が制御される。書換サブルーチン#2の詳細については後述する。その後、ステップS10において、MCU207はスリープモードに遷移し、処理はステップS1に戻る。
 このように、スリープモードにおいては、MCU207は、充電の開始の検知および起動指令の発生に応じて、カートリッジまたはカプセル交換時の電子ペーパーディスプレイ書き換えに関する処理(書換サブルーチン#1)が行われ、充電の開始に応答して、充電時の電子ペーパーディスプレイ書き換えに関する処理(書換サブルーチン#2)が行われる。
 図8には、ステップS3でスリープモードが解除されアクティブモードに遷移した後の制御フローが示されている。なお、図示は省略するが、アクティブモードに入ってからは、以下の処理と並行して、書換サブルーチン#1が、計画されたタイミング(例えば、定期的)で繰り返し実行されるほか、充電の開始を監視しており、充電の開始が検知されたことに応答して割り込み処理として書換サブルーチン#2が実行されるものとする。
 ステップS11以降では、カートリッジ交換またはカプセル交換あるいは充電が行われる場合を除き、ディスプレイD1、D3、D4を使って表示される複数の要素のそれぞれの残量は減少に向かうのみである。そこで、ステップS11で、MCU207は、複数の要素の残量、すなわち、電池残量、カートリッジ残量、およびカプセル残量、を取得し、その後、ステップS12で、各要素の残量減少に伴う電子ペーパーディスプレイ書き換えに関する処理である書換サブルーチン#3を実行する。書換サブルーチン#3の実行により、電子ペーパーディスプレイD1の表示が制御される。書換サブルーチン#3の詳細については後述する。ディスプレイに表示される複数の要素のそれぞれの残量は、香味を有するエアロゾルを発生するために消費される要素の残量であり、本実施形態では、電池残量、カートリッジ残量、およびカプセル残量である。例えば、MCU207は、電源205の出力電圧に基づいて、電池残量を取得することができる。MCU207は、充電完了後におけるパフの回数に基づいて、電池残量を取得することもできる。あるいは、電源ユニット102が電源205を管理する管理回路を備える場合には、MCU207は、該管理回路からの出力に基づいて、電池残量を取得することができる。MCU207は、例えば、霧化器104が電源ユニット102の保持部103に装着されてからのパフの回数に基づいて、カートリッジ残量を取得することができる。あるいは、電源ユニット102がカートリッジ残量を検知するセンサを備える場合には、MCU207は、該センサの出力に基づいて、カートリッジ残量を取得することもできる。MCU207は、例えば、カプセル106が電源ユニット102の保持部103に装着されてからのパフの回数に基づいて、カプセル残量を取得することができる。あるいは、電源ユニット102が残量を検知するセンサを備える場合には、MCU207は、該センサの出力に基づいて、カプセル残量を取得することができる。
 ステップS13において、MCU207は、電源205の残量(電池残量)が「閾値(低)」より大きいか否かを判定する。「閾値(低)」は、電池残量に関して、アクティブモードでの動作を許容するかどうかを判定するための閾値である。より具体的には、「閾値(低)」は、例えばN回(例えばN=1)のパフ動作に対応するエアロゾルの生成さえも不可能であるものとして予め定められた電池残量の下限値として設定されうる。電池残量が「閾値(低)」以下である場合には、アクティブモードで動作することはできないものとして、ステップS14においてMCU207はスリープモードに遷移し、処理はステップS1に戻る。
 電池残量が「閾値(低)」より大きい場合、ステップS15において、MCU207は、エアロゾル生成要求(霧化要求)の発生を待つ。エアロゾル生成要求は、例えば、パフセンサ209からMCU207に対するパフの検出の通知あるいは送信でありうる。あるいは、エアロゾル生成要求は、そのための不図示のスイッチ等の操作部が設けられる場合には、ユーザによる該操作部に対する操作によって発生しうる。エアロゾル生成要求はユーザによるアクションボダンBに対する操作によって発生してもよい。
 ステップS15でエアロゾル生成要求の発生が検出されると、MCU207は、ステップS16において、ヒータ127に対する電力供給を開始し、ステップS17で、OLEDディスプレイD4の動作を禁止する。つまり、ステップS17におけるエアロゾル生成のためのヒータ127への電力供給は、第4報知部による報知(OLEDディスプレイD4による表示)を停止して行われる(ステップS16)一方、第1報知部による報知(ステップS12における電子ペーパーディスプレイD1による表示)を継続しながら行われる。したがって、パフ動作中においても電子ペーパーディスプレイD1による表示は継続される。このため、ユーザは、電池残量が枯渇する前に、残量が通知されている要素に対する残量の回復の必要性に気づきやすくなる。
 ステップS18で、MCU207は、LEDディスプレイD3における複数のLEDのうち電池残量に応じた個数のLEDを点灯する。ステップS19では、MCU207は、エアロゾル生成要求の終了を待つ。エアロゾル生成要求が終了したときは、ステップS20で、MCU207は、ヒータ127への電力供給を停止する。なお、ステップS16においてヒータ127に対する電力供給が開始されてから所定時間が経過した場合、エアロゾル生成要求の終了を待たずに、MCU207は、ステップS20で、ヒータ127への電力供給を停止してもよい。
 ステップS15でエアロゾル生成要求がなかった場合、ステップS21において、MCU207は、スリープモードからの離脱(スリープ解除)から所定時間が経過したかどうかを判断する。スリープ解除から所定時間が経過した場合は、ステップS25において、MCU207はスリープモードに遷移し、処理はS1に戻る。スリープ解除から所定時間が経過していなければ、S22において、MCU207は、OLED表示要求があったかどうかを判定する。OLED表示要求は、OLEDディスプレイD4の表示を要求するものである。OLED表示要求は、例えばアクションボタンBを所定回数(例えば、1回)押下する動作でありうる。ステップS22でOLED表示要求があった場合、ステップS23で、MCU207は、電池残量が「閾値(中)」以上か否かを判定する。「閾値(中)」は、電池残量に関して、アクティブモードでの動作に余裕がある状態であるかどうかを判定するための閾値である。より具体的には、「閾値(中)」は、例えばN回(例えばN=1)のパフ動作に対応するエアロゾルの生成は可能であるがN+1回のパフ動作に対応するエアロゾルの生成は不可能であるものとして予め定められた電池残量の閾値として設定されうる。電池残量が「閾値(中)」以上であれば、視認性に優れるOLED表示が許可される。具体的には、電池残量が「閾値(中)」以上の場合、ステップS24において、MCU207は、各要素の残量(電池残量、カートリッジ残量、カプセル残量)を、第4報知部により報知(OLEDディスプレイD4により表示)する。
 ステップS22でOLED表示要求がなかった場合、ステップS23で電池残量が閾値(中)未満であると判定された場合、または、ステップS24によるOLED表示が行われた後では、それぞれ、処理はS11へ戻る。なお、ステップS24の後又はステップS22でOLED表示要求がなかったと判定された場合、処理はS15に戻ってもよい。したがって、ステップS23で電池残量が閾値(中)未満であると判定された場合には、ステップS12において電子ペーパーディスプレイD1による表示は行われるがステップS24によるOLEDディスプレイD4による表示は行われない。このように、電池残量に応じた適切な報知部を使って各要素の残量をユーザに報知することができる。特に、本実施形態によれば、電池残量が閾値(中)以下になった場合にはOLEDディスプレイD4による表示が行われないため、電池残量が減った状態において電池残量の減少を緩やかにし、電源ユニット102の動作可能時間を伸ばすことができる。
 図9には、ステップS20でヒータ127への電力供給が停止された以降の制御フローが示されている。ステップS26において、MCU207は、複数の要素の残量、すなわち、電池残量、カートリッジ残量、およびカプセル残量、を取得する。例えば、MCU207は、電源205の出力電圧に基づいて、電池残量を取得することができる。MCU207は、充電完了後におけるパフの回数に基づいて、電池残量を取得することもできる。あるいは、電源ユニット102が電源205を管理する管理回路を備える場合には、MCU207は、該管理回路からの出力に基づいて、電池残量を取得することができる。MCU207は、例えば、霧化器104が電源ユニット102の保持部103に装着されてからのパフの回数に基づいて、カートリッジ残量を取得することができる。あるいは、電源ユニット102がカートリッジ残量を検知するセンサを備える場合には、MCU207は、該センサの出力に基づいて、カートリッジ残量を取得することもできる。MCU207は、例えば、カプセル106が電源ユニット102の保持部103に装着されてからのパフの回数に基づいて、カプセル残量を取得することができる。あるいは、電源ユニット102が残量を検知するセンサを備える場合には、MCU207は、該センサの出力に基づいて、カプセル残量を取得することができる。
 その後、ステップS27において、各要素の残量減少に伴うディスプレイ書き換えに関する処理である書換サブルーチン#3を実行する。書換サブルーチン#3の実行により、電子ペーパーディスプレイD1の表示が制御される。書換サブルーチン#3の詳細については後述する。このように本実施形態によれば、ステップS20によるヒータ127への電力供給の停止後も、第1報知部による報知(電子ペーパーディスプレイD1による表示)が継続される。このため、ユーザは、電池残量が枯渇する前に、残量が通知されている要素に対する残量の回復の必要性に気づきやすくなる。なお、ユーザは、電池残量が枯渇した後も、電子ペーパーディスプレイD2によって、残量が通知されている要素に対する残量の回復の必要性に気づくことができる。
 ステップS28において、MCU207は、電池残量が「閾値(低)」(第1閾値)より大きいか否かを判定する。ここでの電池残量に関する閾値(低)は、ステップS13に使用された電池残量に関する閾値(低)と同じでよい。電池残量が閾値(低)より大きいと判定された場合、処理はステップS29に進む。ステップS29において、MCU207は、カートリッジ残量がカートリッジ残量に対して設定された閾値α以上か否かを判定する。カートリッジ残量が閾値α以上と判定された場合、処理はステップS30に進む。ステップS30において、MCU207は、カプセル残量がカプセル残量に対して設定された閾値β以上か否かを判定する。カプセル残量が閾値β以上と判定された場合、すなわち、各要素の残量がそれぞれの閾値以上の場合、処理はステップS11に戻る。なお、ステップS11に代えて、処理はステップS15に戻ってもよい。処理はステップS11又はステップS15に戻るため、MCU207は、アクティブモードを維持しており、ステップS15でのエアロゾル生成要求を待ってヒータ127に対する電力供給を開始することが可能である。なお、ステップS29とステップS30が実行される順番は逆でもよいし、ステップS29とステップS30が同時に実行されてもよいし、ステップS29とステップS30の少なくとも一方がステップS28よりも先に実行されてもよい。
 ステップS29でカートリッジ残量が閾値α未満であると判定された場合、または、ステップS30でカプセル残量が閾値β未満であると判定された場合は、ステップS31においてMCU207はスリープモードに遷移し、処理はステップS1に戻る。このように、ステップS28で電池残量が閾値(低)より大きいと判定された場合は、複数の要素それぞれの残量は第1報知部により報知(電子ペーパーディスプレイD1により表示)される。
 ステップS28で電池残量が閾値(低)以下であると判定された場合、ステップS34において、MCU207は、振動モータVを駆動し、かつ、LEDディスプレイD3における複数のLEDを点滅させる。この場合、ステップS27(その処理の詳細は後述)により電子ペーパーディスプレイD1に電池残量が枯渇していることが表示されるとともに、ステップS34により振動モータVによるバイブレーションとLEDの点滅とによっても電池残量が枯渇していることが報知される。これによりユーザは電源205の充電が必要であることを知らされることになる。
 こうして、電池残量が閾値(低)まで低下した状態(ステップS28でNO)では、第1報知部である電子ペーパーディスプレイD1と第2報知部である振動発生部Vとを併用して(更には第3報知部であるLEDディスプレイD3をも併用して)、要素の残量の報知が行われる。本実施形態において、第2報知部である振動発生部Vの駆動による消費電力は、OLEDディスプレイD4の消費電力に比べれば小さなものである。そのため、第2報知部(および第3報知部)による報知を行った途端に電源205が過放電状態となり第2報知部(および第3報知部)による報知がわずかしか行われない事態となることを抑制できる。よって、電池残量が閾値(低)まで低下した状態(ステップS28でNO)では、報知のために消費する電力を節約しつつ、ユーザがその残量の回復の必要性に気づきやすくなる。
 ステップS34での振動モータVの駆動およびLEDの点滅の完了後、ステップS31において、MCU207はスリープモードに遷移し、処理はステップS1に戻る。したがって、ステップS34で振動モータVの駆動およびLEDの点滅が行われる場合は、ステップS20でヒータ127に対する電力供給が停止されたままスリープモードに遷移するので、ヒータ127に対する電力供給が抑制されている。
 上述したように、上記した図8および図9の制御フローと並行して、書換サブルーチン#1が、計画されたタイミング(例えば、定期的)で繰り返し実行されるほか、充電の開始を監視しており、充電の開始が検知されたことに応答して割り込み処理として書換サブルーチン#2が実行されうる。書換サブルーチン#1または書換サブルーチン#2が実行されることにより、要素の残量に関する表示が回復しうる。本実施形態においては、第1報知部は電子ペーパーディスプレイで構成されていることから、MCU207は、要素の残量が回復するまで第1報知部による報知(電子ペーパーディスプレイD1による表示)を電力を消費することなく継続することができる。このような電子ペーパーディスプレイD1による表示は、たとえ電源205が過放電に至っても継続されるため、ユーザは、残量が通知されている要素に対する残量の回復の必要性に気づきやすくなる。
 図13には、図9に示した制御フローの変形例が示されている。一例において、複数の要素のうちの第1要素であるカプセル106は、他の要素に比べて交換の頻度が多い。より詳しくは、ヒータ127に対する電力供給によって継続して香味が付与されたエアロゾルを生成するためにカプセル残量(第1残量)を回復する必要がある頻度は、該電力供給によって継続して香味が付与されたエアロゾルを生成するために電池205またはカートリッジ(第2要素)の残量(第2残量)を回復する必要がある頻度より多い。そこで、図13の制御フローでは、電池残量が閾値(低)まで低下した状態において、カプセル残量が少ないときとそうでないときとで報知の態様を異ならせる。
 例えば、ステップS28で電池残量が閾値(低)以下(第1閾値以下)であると判定された場合、ステップS32において、MCU207は、カプセル残量が閾値β以上か否かを判定する。カプセル残量が閾値β以上と判定された場合、処理はステップS33に進み、カプセル残量が閾値β未満と判定された場合、処理はステップS34に進む。ステップS33では、MCU207は、振動モータVを駆動する。この場合、第1報知部である電子ペーパーディスプレイD1と第2報知部である振動モータVによるバイブレーションとによって、カプセル残量が報知される(ステップS27およびS33)。一方、ステップS34では、MCU207は、振動モータVを駆動し、かつ、LEDディスプレイD3における複数のLEDを点滅させる。この場合、第1報知部である電子ペーパーディスプレイD1と第2報知部である振動モータVによるバイブレーションと第3報知部であるLEDディスプレイD3とによって、カプセル残量が報知される(ステップS27とS34)。
 ステップS32~S34の処理によれば、残量の回復頻度が高い要素ほど、多くの報知部によってその残量をユーザに知らせることになる。そのため、残量の回復が必要であることをユーザが気づきやすくなる。よって、例えばユーザがエアロゾルを吸引しようと思った時に残量不足で吸引ができなかったという事態が生じることを抑制できる。
 また、本実施形態において、第3報知部であるLEDディスプレイD3の消費電力は、第2報知部である振動モータVの駆動による消費電力より小さい。そのため、第3報知部による報知を行った途端に電源205が過放電状態となり第3報知部による報知がわずかしか行われない事態となることを抑制できる。よって、電池残量が閾値(低)より低下した状態(ステップS28でNO)では、報知のために消費する電力を節約しつつ、ユーザがその残量の回復の必要性に気づきやすくなる。
 図10には、ステップS6で行われる、あるいは、アクティブモードで所定のタイミングで繰り返し行われる、書換サブルーチン#1の制御フローが示されている。ステップS601において、MCU207は、カプセル106が電源ユニット102から取り外されたか否かを判定し、カプセル106が取り外されたと判定した場合には処理をステップS607に進め、そうでない場合は処理をステップS602に進める。例えば、第2センサ222が設けられている場合には、MCU207は、第2センサ222の出力に基づいて電源ユニット102からのカプセル106の取り外しを判定することができる。
 ステップS602において、MCU207は、カートリッジ(霧化器104)が電源ユニット102から取り外されたか否かを判定し、カートリッジが取り外されたと判定した場合には処理をステップS603に進め、そうでない場合は書換サブルーチン#1を抜ける。例えば、第1センサ221が設けられている場合は、MCU207は、第1センサ221の出力に基づいて電源ユニット102からのカートリッジの取り外しを判定することができる。あるいは、MCU207は、測定回路210の出力の変化に基づいて電源ユニット102からのカートリッジの取り外しを判定することができる。ここで、カートリッジが電源ユニット102の保持部103によって正しく保持されている状態では、スイッチ201をオンにしたときに電圧変換器202の出力電圧をヒータ127とシャント抵抗Rshuntとで分圧した電圧が測定回路210に入力される。一方、カートリッジが電源ユニット102の保持部103から取り外された場合、スイッチ201をオンにしたときに電圧変換器202の出力電圧が測定回路210に入力される。よって、電源ユニット102の保持部103からカートリッジが取り外されると、スイッチ201をオンにしたときに測定回路210の出力が変化する。
 ステップS603において、MCU207は、ヒータ127に対する電力の供給を禁止する。ヒータ127に対する電力の供給が禁止された状態では、エアロゾル生成要求が発生しても、ヒータ127に対する電力の供給はなされない。
 ステップS604において、MCU207は、カートリッジが電源ユニット102に取り付けられるのを待つ。例えば、第1センサ221が設けられている場合は、MCU207は、第1センサ221の出力に基づいて電源ユニット102の保持部103にカートリッジが取り付けられたと判定することができる。あるいは、MCU207は、測定回路210の出力の変化に基づいて電源ユニット102の保持部103にカートリッジが取り付けられたと判定することができる。
 ステップS605において、MCU207は、電子ペーパーディスプレイD1におけるカートリッジ残量の表示を更新する(書き換える)。その後、ステップS606において、MCU207は、ヒータ127に対する電力供給の禁止を解除して、書換サブルーチン#1を抜ける。
 ステップS607において、MCU207は、カプセル106が取り外されたことに応答して、ヒータ127に対する電力の供給を禁止する。ヒータ127に対する電力の供給が禁止された状態では、エアロゾル生成要求が発生しても、ヒータ127に対する電力の供給はなされない。
 ステップS608において、MCU207は、カプセル106が電源ユニット102に取り付けられるのを待つ。例えば、第2センサ222が設けられている場合は、MCU207は、第2センサ222の出力に基づいて電源ユニット102の保持部103にカプセル106が取り付けられたと判定することができる。
 ステップS609において、MCU207は、電子ペーパーディスプレイD1におけるカプセル残量の表示を更新する(書き換える)。その後、ステップS610において、MCU207は、ヒータ127に対する電力供給の禁止を解除して、書換サブルーチン#1を抜ける。
 上記したステップS605はカートリッジが交換された時の工程であり、また、ステップS609はカプセルが交換された時の工程である。カートリッジまたはカプセルの交換により、一般にはそれらの残量が回復することが想定されるから、図5の表示例bに示されるように、ステップS605ではカートリッジ残量の増加方向への書き換えのみが許可され、ステップS609ではカプセル残量の増加方向への書き換えのみが許可されるように制御されてもよい。ただし、カートリッジ残量を検知するセンサを備える場合には該センサの出力に基づいて、電子ペーパーディスプレイD1におけるカートリッジ残量の表示を書き換えるようにしてもよい。同様に、カプセル残量を検知するセンサを備える場合には該センサの出力に基づいて、電子ペーパーディスプレイD1におけるカプセル残量の表示を書き換えるようにしてもよい。
 図11には、ステップS9で行われる、あるいは、アクティブモードで所定のタイミングで繰り返し行われる、書換サブルーチン#2の制御フローが示されている。ステップS91において、MCU207は、電子ペーパーディスプレイD1の電池残量部を、電池残量部に充電マークが現れるよう書き換える(図5の表示例a参照)。
 ステップS92において、MCU207は、例えば電源205の出力電圧や充電IC206との通信に基づいて、電池残量を取得する。次いで、ステップS93において、MCU207は、取得した電池残量が所定の閾値より多いか否かを判定する。電池残量が所定の閾値より多いと判定された場合、処理はステップS94に進み、そうでなければ処理はステップS95に進む。ステップS94において、MCU207は、電子ペーパーディスプレイD1における電池残量の増加方向への書き換えを行う。ここで、所定の閾値は、ステップS94における電子ペーパーディスプレイの書き換え頻度を調整するための閾値とすることができる。その後、処理はステップS95に進む。
 ステップS95において、MCU207は、充電が終了したか否かを判定する。例えば、外部電源(充電器)がVbusポートから取り外されたとき、あるいは、満充電状態となった場合、充電が終了したと判定することができる。ステップS95で充電が終了していないと判定された場合、処理はS92に戻り、充電が終了したと判定された場合、処理はステップS96に進む。
 ステップS96において、MCU207は、第2ディスプレイにおける電池残量部を、電池残量部から充電マークが消えるように書き換え、書換サブルーチン#2を抜ける。
 図12には、ステップS12およびステップS27で行われる書換サブルーチン#3の制御フローが示されている。エアロゾルの生成が行われることにより、一般には複数の要素の残量は減少するのみであるから、図5の表示例cに示されるように、複数の要素の残量は減少方向への書き換えのみが許可されるように制御されてもよい。
 ステップS121において、MCU207は、ステップS11またはステップS26で取得された電池残量が所定の閾値より少ないか否かを判定する。電池残量が所定の閾値より少ないと判定された場合、処理はステップS122に進み、そうでなければ処理はステップS123に進む。ステップS122において、MCU207は、電子ペーパーディスプレイD1における電池残量を減少方向に書き換える。その後、処理はステップS123に進む。
 ステップS123において、MCU207は、ステップS11またはステップS26で取得されたカプセル残量が所定の閾値より少ないか否かを判定する。カプセル残量が所定の閾値より少ないと判定された場合、処理はステップS124に進み、そうでなければ処理はステップS125に進む。ステップS124において、MCU207は、電子ペーパーディスプレイD1におけるカプセル残量を減少方向に書き換える。その後、処理はステップS125に進む。
 ステップS125において、MCU207は、ステップS11またはステップS26で取得されたカートリッジ残量が所定の閾値より少ないか否かを判定する。カートリッジ残量が所定の閾値より少ないと判定された場合、処理はステップS126に進み、そうでなければ書換サブルーチン#3を抜ける。ステップS126において、MCU207は、電子ペーパーディスプレイD1におけるカートリッジ残量を減少方向に書き換える。その後、書換サブルーチン#3を抜ける。
 なお、ステップS121における電池残量に対する所定の閾値、ステップS123におけるカプセル残量に対する所定の閾値、および、ステップS125におけるカートリッジ残量に対する所定の閾値はそれぞれ、電子ペーパーディスプレイの書き換え頻度を調整するための閾値とすることができる。また、図5に例示されるように電池残量をバーグラフ形式で表示する場合、ステップS121で電池残量と比較される閾値は、バーの数だけ閾値を含みうる。ステップS121において、プロセッサ207は、複数の閾値のうち現在の電池残量に相当する閾値と、電池残量を比較しうる。これは、カプセル残量やカートリッジ残量をバーグラフ形式で表示する場合も同様である。
 発明は上記の実施形態に制限されるものではなく、発明の要旨の範囲内で、種々の変形・変更が可能である。
100:吸引器、102:電源ユニット、104:霧化器(カートリッジ)、105:カプセルホルダ、106:カプセル

Claims (10)

  1.  エアロゾル源を加熱するヒータを有する霧化器に電力を供給する、エアロゾル生成装置の電源ユニットであって、
     電源と、
     前記電源からの電力を前記ヒータへ供給する電力供給部と、
     第1報知部と、
     前記第1報知部とは別体の第2報知部と、
     前記電力供給部による電力供給と、前記第1報知部および前記第2報知部による報知とを制御するコントローラと、
     を有し、
     前記コントローラは、
      香味を有するエアロゾルを生成するために消費される第1要素の残量を取得し、
      前記電源の残量が第1閾値より大きい場合、前記第1要素の残量である第1残量を前記第1報知部により報知し、
      前記電源の残量が前記第1閾値以下の場合、前記第1残量を前記第1報知部と前記第2報知部とにより報知する、
     ことを特徴とする電源ユニット。
  2.  前記電源の残量が前記第1閾値以下の場合、前記第1残量を前記第1報知部と前記第2報知部とにより報知するとともに、前記電力供給を抑制する、ことを特徴とする請求項1に記載の電源ユニット。
  3.  前記第1報知部の消費電力は、前記第2報知部の消費電力より小さい、ことを特徴とする請求項1または2に記載の電源ユニット。
  4.  前記コントローラは、前記第1報知部による報知を継続しながら前記電力供給を実行する、ことを特徴とする請求項3に記載の電源ユニット。
  5.  前記コントローラは、
      前記電力供給を実行可能なアクティブモードよりも前記コントローラの消費電力が少ないスリープモードで動作可能であり、
      前記スリープモードで前記第1報知部による報知を継続する、
     ことを特徴とする請求項3または4に記載の電源ユニット。
  6.  前記第1報知部は、電力を消費せずに前記スリープモードで報知を継続可能である、ことを特徴とする請求項5に記載の電源ユニット。
  7.  前記コントローラは、前記エアロゾルを生成するために消費される、表示対象である要素の残量が回復するまで、前記第1報知部による報知を継続する、ことを特徴とする請求項1から6のうちいずれか1項に記載の電源ユニット。
  8.  前記第1報知部および前記第2報知部とは別体の第3報知部を更に備え、
     前記コントローラは、前記電源の残量が前記第1閾値より大きい場合、前記第1残量を前記第1報知部と前記第2報知部と前記第3報知部とにより報知し、前記エアロゾルを生成するために消費される第2要素の残量である第2残量を前記第1報知部と前記第2報知部とによって報知し、
     前記電力供給によって継続して香味が付与されたエアロゾルを生成するために前記第1要素の残量を回復する必要がある頻度は、前記電力供給によって継続して香味が付与されたエアロゾルを生成するために前記第2要素の残量を回復する必要がある頻度より多い、ことを特徴とする請求項1から7のうちいずれか1項に記載の電源ユニット。
  9.  前記第3報知部の消費電力は、前記第2報知部の消費電力より小さい、ことを特徴とする請求項8に記載の電源ユニット。
  10.  前記コントローラは、前記第2報知部と前記第3報知部による報知を停止した後も、前記第1報知部による報知を継続する、ことを特徴とする請求項8に記載の電源ユニット。
PCT/JP2021/023448 2021-06-21 2021-06-21 エアロゾル生成装置の電源ユニット WO2022269702A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/023448 WO2022269702A1 (ja) 2021-06-21 2021-06-21 エアロゾル生成装置の電源ユニット

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/023448 WO2022269702A1 (ja) 2021-06-21 2021-06-21 エアロゾル生成装置の電源ユニット

Publications (1)

Publication Number Publication Date
WO2022269702A1 true WO2022269702A1 (ja) 2022-12-29

Family

ID=84545277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023448 WO2022269702A1 (ja) 2021-06-21 2021-06-21 エアロゾル生成装置の電源ユニット

Country Status (1)

Country Link
WO (1) WO2022269702A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020026320A1 (ja) * 2018-07-31 2020-02-06 日本たばこ産業株式会社 充電装置、及び情報処理システム
WO2020084779A1 (ja) * 2018-10-26 2020-04-30 日本たばこ産業株式会社 香味生成装置、電源制御方法、プログラム及び電源ユニット
JP6761913B1 (ja) * 2020-03-10 2020-09-30 日本たばこ産業株式会社 吸引器用コントローラ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020026320A1 (ja) * 2018-07-31 2020-02-06 日本たばこ産業株式会社 充電装置、及び情報処理システム
WO2020084779A1 (ja) * 2018-10-26 2020-04-30 日本たばこ産業株式会社 香味生成装置、電源制御方法、プログラム及び電源ユニット
JP6761913B1 (ja) * 2020-03-10 2020-09-30 日本たばこ産業株式会社 吸引器用コントローラ

Similar Documents

Publication Publication Date Title
US11330845B2 (en) Aerosol generation system and power supply device with first and second sleep modes
US20170119052A1 (en) Application specific integrated circuit (asic) for an aerosol delivery device
EP3979456B1 (en) Power supply unit for aerosol generation device
AU2020236492B2 (en) Electronic aerosol provision system
US12011048B2 (en) Aerosol generation system
TW202131809A (zh) 電子氣溶膠供應系統
KR20180085648A (ko) 전력 효율이 개선된 미세 입자 발생 장치
WO2022269702A1 (ja) エアロゾル生成装置の電源ユニット
WO2022269704A1 (ja) エアロゾル生成装置の電源ユニット
US11944743B2 (en) Vapor provision systems
US20240100275A1 (en) Controller for inhalation apparatus
WO2022269701A1 (ja) 吸引器用コントローラ
KR20230042010A (ko) 듀얼 배터리 가열 장치를 갖는 에어로졸 발생기
WO2022269703A1 (ja) 吸引器用コントローラ
WO2024095341A1 (ja) エアロゾル生成装置及びプログラム
WO2022239337A1 (ja) エアロゾル生成装置の回路ユニット及びエアロゾル生成装置
EP4181712A1 (en) Method of managing an aerosol-generating device
EP4181713A1 (en) Method of managing an aerosol-generating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21946992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21946992

Country of ref document: EP

Kind code of ref document: A1