WO2022268144A1 - Procédé de diagnostic de vieillissement en ligne de batterie au lithium sur la base de caractéristiques de vieillissement d'impédance à deux points - Google Patents

Procédé de diagnostic de vieillissement en ligne de batterie au lithium sur la base de caractéristiques de vieillissement d'impédance à deux points Download PDF

Info

Publication number
WO2022268144A1
WO2022268144A1 PCT/CN2022/100598 CN2022100598W WO2022268144A1 WO 2022268144 A1 WO2022268144 A1 WO 2022268144A1 CN 2022100598 W CN2022100598 W CN 2022100598W WO 2022268144 A1 WO2022268144 A1 WO 2022268144A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium battery
aging
charge
impedance
aging characteristics
Prior art date
Application number
PCT/CN2022/100598
Other languages
English (en)
Chinese (zh)
Inventor
陈剑
刘浩
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Publication of WO2022268144A1 publication Critical patent/WO2022268144A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to a lithium battery online aging diagnosis method in the field of lithium battery research and development and application, and specifically relates to an online lithium battery aging diagnosis method based on two-point impedance aging characteristics.
  • lithium batteries Due to many advantages such as high energy density, low cost, fast response to power demand, and long cycle life, lithium batteries have been commercially used in various fields on a large scale. Aging diagnosis technology plays an important role in the safe and reliable operation of lithium batteries. However, due to the complex aging mechanism of lithium batteries, and the aging path is affected by many factors in the design, production and application process, it is a challenge to achieve simple, fast and accurate lithium battery aging diagnosis under complex dynamic operating conditions .
  • Electrochemical impedance spectroscopy is a method that can effectively detect the internal conditions of lithium batteries, and is widely used in the field of battery testing and research and development.
  • the measurement time of electrochemical impedance spectroscopy is long, and it is difficult to implement it online to reflect the real-time aging state of lithium batteries, which has certain limitations. Therefore, taking relevant measures to apply electrochemical impedance spectroscopy to online monitoring of lithium battery aging status is of great significance for improving the reliability, safety and durability of lithium batteries.
  • the present invention proposes an online aging diagnosis method for lithium batteries based on two-point impedance aging characteristics.
  • the present invention comprises the following steps:
  • the lithium battery aging diagnosis regression model is trained to obtain the trained lithium battery aging diagnosis regression model
  • Two-point impedance aging characteristics input the best two-point impedance aging characteristics of the lithium battery to be diagnosed into the trained lithium battery aging diagnosis regression model for diagnosis, and output the total lithium battery capacity of the current lithium battery to be diagnosed, according to the lithium battery The total capacity judges the current aging state of the lithium battery to be diagnosed.
  • Described step 2) specifically is:
  • two different electrochemical impedance spectrum frequencies in the electrochemical impedance spectrum in each charge-discharge cycle of the current lithium battery are used as an electrochemical impedance spectrum frequency combination, and the comparison in an electrochemical impedance spectrum frequency combination is calculated.
  • the difference between the impedance imaginary part of the high EIS frequency and the impedance imaginary part of the lower EIS frequency is used as a two-point impedance aging feature, and all EIS frequency combinations are traversed to obtain All two-point impedance aging characteristics of the current lithium battery in the current charge-discharge cycle.
  • Described step 4) specifically is:
  • the correlation coefficient between the two-point impedance aging characteristics of the same electrochemical impedance spectrum frequency combination in all charge and discharge cycles of all lithium batteries and the total capacity of the corresponding lithium batteries calculate the correlation coefficient between the two-point impedance aging characteristics of the same electrochemical impedance spectrum frequency combination in all charge and discharge cycles of all lithium batteries and the total capacity of the corresponding lithium batteries, and iterative calculation
  • the correlation coefficients corresponding to all electrochemical impedance spectrum frequency combinations are obtained, and the correlation coefficient matrix is formed by the correlation coefficients corresponding to all electrochemical impedance spectrum frequency combinations, and the electrochemical impedance spectrum frequency combination corresponding to the correlation coefficient with the largest absolute value in the correlation coefficient matrix is taken as The best electrochemical impedance spectrum frequency combination, and then the two-point impedance aging characteristics corresponding to the best electrochemical impedance spectrum frequency combination as the best two-point impedance aging characteristics, and finally the best two-point impedance aging characteristics of all lithium batteries in all charge and discharge cycles
  • the correlation coefficient is the Pearson correlation coefficient, specifically calculated by the following formula:
  • ⁇ X, Y represent the correlation coefficient between the same electrochemical impedance spectrum frequency combination corresponding to the two-point impedance aging characteristics and the total capacity of the lithium battery in the corresponding charge and discharge cycle in all charge and discharge cycles of all lithium batteries
  • X represents all lithium batteries
  • Y represents the set of the total capacity of lithium batteries in all charge-discharge cycles of all lithium batteries
  • E() represents the expected operation .
  • step 6 The same charging state of charge in step 6) is the same as the specific charging state of charge in step 1).
  • the lithium battery aging diagnosis regression model selects a linear regression model and a nonlinear regression model according to the distribution relationship between the best two-point impedance aging characteristics and the life of the lithium battery.
  • the invention solves the problem of difficulty in online aging diagnosis of lithium batteries in practical applications.
  • the two-point impedance aging feature based on electrochemical impedance spectroscopy is applied to the online aging diagnosis of lithium batteries.
  • the imaginary part of the impedance can calculate the two-point impedance aging characteristics, and then accurately diagnose the aging state of the lithium battery, which reduces the burden of data storage, calculation and cost, and is more suitable for online aging diagnosis of lithium batteries in practical application scenarios. Lithium batteries run more safely and reliably.
  • Fig. 1 is the overall flowchart of the present invention.
  • Fig. 2 is a schematic diagram of the electrochemical impedance spectrum measured under a specific state of charge in each charge and discharge cycle of the lithium battery in the embodiment of the present invention and the impedance point corresponding to the selected optimal frequency combination of the electrochemical impedance spectrum.
  • Fig. 3 is a graph showing the distribution relationship between the best two-point impedance aging characteristics and the corresponding total capacity of lithium batteries on the coordinate axis in all charge and discharge cycles of all lithium batteries in the embodiment of the present invention.
  • Fig. 4 is a diagram of the training and test results of the lithium battery aging diagnosis regression model in the embodiment of the present invention.
  • the present invention comprises the following steps:
  • the specific charging state of charge is specifically a value in the 0%-100% state of charge.
  • a specific implementation is a 100% state of charge.
  • the total number of charge and discharge cycles is the total number of cycles when the total capacity of the lithium battery decays to 75% of the initial total capacity of the lithium battery.
  • Step 2) is specifically:
  • two different electrochemical impedance spectrum frequencies in the electrochemical impedance spectrum in each charge-discharge cycle of the current lithium battery are used as an electrochemical impedance spectrum frequency combination, and the comparison in an electrochemical impedance spectrum frequency combination is calculated.
  • the difference between the impedance imaginary part of the high EIS frequency and the impedance imaginary part of the lower EIS frequency is used as a two-point impedance aging feature, and all EIS frequency combinations are traversed to obtain All two-point impedance aging characteristics of the current lithium battery in the current charge-discharge cycle.
  • the preset electrochemical impedance spectrum frequency range is preferably 0.01999 Hz-20004.45300 Hz, and there are 60 measured electrochemical impedance spectrum frequencies, as shown in Table 1.
  • Table 1 The higher the accuracy of the frequency of electrochemical impedance spectroscopy measured within the range allowed by the measuring equipment, the better.
  • Step 4) is specifically:
  • the electrochemical impedance spectrum frequency combination corresponding to the correlation coefficient with the largest absolute value in the correlation coefficient matrix is used as the best electrochemical impedance spectrum frequency combination, and then the two-point impedance aging characteristics corresponding to the best electrochemical impedance spectrum frequency combination are used as the best two.
  • Point impedance aging characteristics as shown in Figure 2.
  • the best two-point impedance aging characteristics of all lithium batteries in all charge and discharge cycles and the total capacity of lithium batteries in the corresponding charge and discharge cycles constitute a training set.
  • the best two-point impedance aging characteristics are specifically the two-point impedance aging characteristics of all lithium batteries under the optimal electrochemical impedance spectrum frequency combination.
  • the label of the two-point impedance aging feature under the impedance spectrum frequency combination is the total capacity of the lithium battery in the current charge and discharge cycle.
  • the row number and column number of the correlation coefficient in the correlation coefficient matrix represent the two electrochemical impedance spectrum frequencies in the electrochemical impedance spectrum frequency combination corresponding to the two-point impedance aging characteristics, and the row and column numbers of the correlation coefficient matrix Both represent the preset EIS frequency range.
  • the correlation coefficient is the Pearson correlation coefficient, specifically calculated by the following formula:
  • ⁇ X, Y represent the correlation coefficient between the same electrochemical impedance spectrum frequency combination corresponding to the two-point impedance aging characteristics and the total capacity of the lithium battery in the corresponding charge and discharge cycle in all charge and discharge cycles of all lithium batteries
  • X represents all lithium batteries
  • Y represents the set of the total capacity of lithium batteries in all charge-discharge cycles of all lithium batteries
  • E() represents the expected operation .
  • the lithium battery aging diagnosis regression model is trained to obtain the trained lithium battery aging diagnosis regression model; the adaptive neuro-fuzzy system model is selected in the embodiment.
  • the lithium battery aging diagnosis regression model selects the linear regression model and the nonlinear regression model according to the distribution relationship between the best two-point impedance aging characteristics and the life of the lithium battery.
  • step 6 The same charging state of charge in step 6) is the same as the specific charging state of charge in step 1).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

L'invention concerne un procédé de diagnostic de vieillissement en ligne d'une batterie au lithium sur la base de caractéristiques de vieillissement d'impédance à deux points, comprenant les étapes suivantes consistant à : 1, mesurer la spectroscopie d'impédance électrochimique de nouvelles batteries au lithium dans un état de charge spécifique de charge de chaque cycle de charge/décharge, et la capacité totale des batteries au lithium ; 2, calculer des caractéristiques de vieillissement d'impédance à deux points correspondant à différentes combinaisons de fréquences d'une batterie au lithium courante sur chaque cycle de charge/décharge ; 3, répéter les étapes 1-2 pour obtenir toutes les caractéristiques de vieillissement d'impédance à deux points et la capacité totale des batteries au lithium sur chaque cycle de charge/décharge ; 4, sélectionner les caractéristiques optimales de vieillissement d'impédance à deux points de toutes les batteries au lithium de chaque cycle de charge/décharge et la capacité totale des batteries au lithium correspondantes pour former un ensemble d'apprentissage ; 5, obtenir un modèle de régression de diagnostic de vieillissement de batterie au lithium entraîné ; et 6, pendant le diagnostic en ligne, mesurer, calculer et diagnostiquer les caractéristiques optimales de vieillissement d'impédance à deux points d'une batterie au lithium à diagnostiquer, et obtenir la capacité totale de ladite batterie au lithium, de manière à déterminer l'état de vieillissement. Selon le procédé, un diagnostic de vieillissement de batterie au lithium précis est réalisé, ce qui favorise un fonctionnement plus sûr et plus fiable.
PCT/CN2022/100598 2021-06-24 2022-06-23 Procédé de diagnostic de vieillissement en ligne de batterie au lithium sur la base de caractéristiques de vieillissement d'impédance à deux points WO2022268144A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110704922.0 2021-06-24
CN202110704922.0A CN113484784B (zh) 2021-06-24 2021-06-24 一种基于两点阻抗老化特征的锂电池在线老化诊断方法

Publications (1)

Publication Number Publication Date
WO2022268144A1 true WO2022268144A1 (fr) 2022-12-29

Family

ID=77936136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100598 WO2022268144A1 (fr) 2021-06-24 2022-06-23 Procédé de diagnostic de vieillissement en ligne de batterie au lithium sur la base de caractéristiques de vieillissement d'impédance à deux points

Country Status (2)

Country Link
CN (1) CN113484784B (fr)
WO (1) WO2022268144A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113484784B (zh) * 2021-06-24 2022-07-08 浙江大学 一种基于两点阻抗老化特征的锂电池在线老化诊断方法
CN113917352B (zh) * 2021-10-14 2022-07-26 浙江大学 基于阻抗老化特征的燃料电池催化层在线老化诊断方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6208147B1 (en) * 1998-06-16 2001-03-27 Korea Kumho Petrochenical Co., Ltd. Method of and apparatus for measuring battery capacity by impedance spectrum analysis
WO2016030075A1 (fr) * 2014-08-28 2016-03-03 Volkswagen Aktiengesellschaft Procédé et dispositif de détermination d'une valeur d'état et d'état de charge d'une batterie
CN107607880A (zh) * 2017-09-19 2018-01-19 哈尔滨工业大学 一种基于阻抗谱的锂离子电池内部健康特征提取方法
CN108957323A (zh) * 2017-05-18 2018-12-07 中信国安盟固利动力科技有限公司 一种电池健康状态的判断方法及装置
CN111537904A (zh) * 2020-04-09 2020-08-14 苏州湛云科技有限公司 一种基于交流阻抗虚部的锂离子电池寿命估计方法
CN112816895A (zh) * 2020-12-31 2021-05-18 中国科学院上海高等研究院 电化学阻抗谱的分析方法、系统、设备及计算机存储介质
CN112946489A (zh) * 2021-01-20 2021-06-11 北京交通大学 一种基于低频eis的快速容量评估方法
CN113484784A (zh) * 2021-06-24 2021-10-08 浙江大学 一种基于两点阻抗老化特征的锂电池在线老化诊断方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016085062A (ja) * 2014-10-23 2016-05-19 エンネット株式会社 電池劣化判定装置及び方法
CN106872905A (zh) * 2017-02-23 2017-06-20 哈尔滨工业大学 一种单体锂离子全电池参数获取方法
KR101989692B1 (ko) * 2017-09-26 2019-06-14 주식회사 포스코아이씨티 배터리 노화 진단 방법 및 시스템
DE102019109622A1 (de) * 2019-04-11 2020-10-15 Bundesrepublik Deutschland, Vertreten Durch Das Bundesministerium Für Wirtschaft Und Energie, Dieses Vertreten Durch Den Präsidenten Der Physikalisch-Technischen Bundesanstalt Verfahren zum Bestimmen eines Alterungsparameters, eines Ladezustandsparameters und einer Temperatur eines Akkumulators, insbesondere eines Lithium-Akkumulators
CN110426639B (zh) * 2019-07-24 2022-09-23 中国电力科学研究院有限公司 一种基于动态阻抗谱的锂离子电池寿命预测方法及系统
EP3812781B1 (fr) * 2019-10-23 2022-11-30 Novum engineerING GmbH Estimation de l'état d'une batterie électrochimique
CN112147530B (zh) * 2020-11-26 2021-03-02 中国电力科学研究院有限公司 一种电池状态评价方法及装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6208147B1 (en) * 1998-06-16 2001-03-27 Korea Kumho Petrochenical Co., Ltd. Method of and apparatus for measuring battery capacity by impedance spectrum analysis
WO2016030075A1 (fr) * 2014-08-28 2016-03-03 Volkswagen Aktiengesellschaft Procédé et dispositif de détermination d'une valeur d'état et d'état de charge d'une batterie
CN108957323A (zh) * 2017-05-18 2018-12-07 中信国安盟固利动力科技有限公司 一种电池健康状态的判断方法及装置
CN107607880A (zh) * 2017-09-19 2018-01-19 哈尔滨工业大学 一种基于阻抗谱的锂离子电池内部健康特征提取方法
CN111537904A (zh) * 2020-04-09 2020-08-14 苏州湛云科技有限公司 一种基于交流阻抗虚部的锂离子电池寿命估计方法
CN112816895A (zh) * 2020-12-31 2021-05-18 中国科学院上海高等研究院 电化学阻抗谱的分析方法、系统、设备及计算机存储介质
CN112946489A (zh) * 2021-01-20 2021-06-11 北京交通大学 一种基于低频eis的快速容量评估方法
CN113484784A (zh) * 2021-06-24 2021-10-08 浙江大学 一种基于两点阻抗老化特征的锂电池在线老化诊断方法

Also Published As

Publication number Publication date
CN113484784A (zh) 2021-10-08
CN113484784B (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
WO2022268144A1 (fr) Procédé de diagnostic de vieillissement en ligne de batterie au lithium sur la base de caractéristiques de vieillissement d'impédance à deux points
US11422194B2 (en) Battery diagnosis apparatus and battery diagnosis method based on current pulse method
CN113009349B (zh) 一种基于深度学习模型的锂离子电池健康状态诊断方法
Zheng et al. Fault identification and quantitative diagnosis method for series-connected lithium-ion battery packs based on capacity estimation
CN111736085A (zh) 一种基于电化学阻抗谱的锂离子电池健康状态估计方法
Lyu et al. SOH estimation of lithium-ion batteries based on fast time domain impedance spectroscopy
CN111929602B (zh) 一种基于容量估计的单体电池漏电或微短路定量诊断方法
CN112289385B (zh) 大功率质子交换膜燃料电池电堆电化学阻抗谱预测方法
CN113447828B (zh) 一种基于贝叶斯神经网络的锂电池温度估计方法及系统
WO2022237660A1 (fr) Procédé de diagnostic de vieillissement en ligne de batterie au lithium basé sur des caractéristiques de vieillissement à deux points
CN114865117B (zh) 锂离子电池电极嵌锂量检测方法、装置及电池管理系统
CN116298929A (zh) 一种电池组电芯一致性评估方法
WO2022237661A1 (fr) Procédé de prévision de durée de vie en ligne de batterie au lithium basé sur des caractéristiques de durée de vie à deux points
CN115754724A (zh) 一种适用于未来不确定性动态工况放电的动力电池健康状态估计方法
CN115856685A (zh) 一种全钒液流电池在不同充放电状态下内阻的测量方法
CN113466700B (zh) 一种基于两点阻抗寿命特征的锂电池在线寿命预测方法
CN106599333A (zh) 一种电源soh的估算方法
Zhang et al. Fault Diagnosis Method of Lithium-Ion Battery Leakage Based on Electrochemical Impedance Spectroscopy
CN113465773B (zh) 一种测算锂离子电池内部温度的方法
CN114720901A (zh) 一种锂离子电池健康状态估计的方法
CN112595986A (zh) 一种基于差热伏安曲线特征的电池寿命诊断方法
CN112649735A (zh) 一种快速得到电池包总容量的方法
CN113821914B (zh) 一种锂离子电池循环寿命低成本预测方法
Hu et al. Research for the state of lithium-ion battery health based on data-driven method
CN113917352B (zh) 基于阻抗老化特征的燃料电池催化层在线老化诊断方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22827636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22827636

Country of ref document: EP

Kind code of ref document: A1