WO2022267951A1 - 四角元件结构、介质滤波器及基站设备 - Google Patents

四角元件结构、介质滤波器及基站设备 Download PDF

Info

Publication number
WO2022267951A1
WO2022267951A1 PCT/CN2022/098928 CN2022098928W WO2022267951A1 WO 2022267951 A1 WO2022267951 A1 WO 2022267951A1 CN 2022098928 W CN2022098928 W CN 2022098928W WO 2022267951 A1 WO2022267951 A1 WO 2022267951A1
Authority
WO
WIPO (PCT)
Prior art keywords
coupling
resonator
hole
element structure
blind hole
Prior art date
Application number
PCT/CN2022/098928
Other languages
English (en)
French (fr)
Inventor
吴克利
张妍
王华红
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022267951A1 publication Critical patent/WO2022267951A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/2002Dielectric waveguide filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/205Comb or interdigital filters; Cascaded coaxial cavities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations

Definitions

  • the present application relates to the technical field of communications, and in particular to a quadrangular element structure, a dielectric filter and base station equipment.
  • Dielectric filters are formed by coupling between dielectric resonators.
  • a common method is to cascade multiple basic cross-coupling elements.
  • the basic cross-coupling elements include triplet elements (also known as triangular element structures), box-type (box) quadrangular elements (also known as box-type quadrangular element structures) and quadruplet (quadruplet) quadrangular elements (also known as quadruple quadrangular component structure).
  • the degree of freedom in the design of the suppression degree of the dielectric filter is limited.
  • a box-type square element can only produce one transmission zero, and the relative position of the two transmission zeros of a quadruple square element cannot be adjusted.
  • the transmission zero point is the notch point of the forward transmission coefficient (also called S21) of the scattering parameter (also called S parameter).
  • Embodiments of the present application provide a quadrangular element structure, a dielectric filter, and related base station equipment capable of improving the design freedom of suppression degree.
  • the present application provides a quadrangular component structure, including a first surface and a second surface arranged opposite to each other, the first surface includes four edges; the first surface is provided with four resonant blind holes and At least four coupling holes; each of the resonant blind holes corresponds to one angular orientation of the quadrangular element structure to form four resonators of the quadrangular element structure; resonant blind holes in every two adjacent angular orientations
  • the center connecting line between the centers of the at least one coupling hole is set corresponding to at least one coupling hole;
  • the coupling hole includes a coupling blind hole and/or a coupling through hole, the coupling blind hole penetrates the first surface, and the coupling through hole Holes run through the first surface and the second surface, and the circumference of each coupling through hole is less than 1/2 of the length of any edge.
  • the coupling blind holes are used to control the capacitive coupling between the resonators, and the coupling vias are used to control the magnetic coupling between the resonators.
  • the combination of the coupling blind hole and the coupling via can simultaneously control the adjacent coupling between resonators of the quadrangular element structure and the equivalent diagonal cross coupling between two resonators on the same diagonal of the quadrangular element structure.
  • the box-type four-corner element can generate two near-end transmission zeros, which increases the suppression degree of the dielectric filter and also improves the design freedom of the suppression degree of the box-type four-corner element.
  • the quadrangular element structure is a quadruple quadrangular element
  • the relative positions of the two near-end transmission zeros of the quadruple quadrangular element can be designed by adjusting the physical parameters of each coupling hole in the design stage of the quadruple quadrangular element.
  • the physical parameters include the position of the coupling hole and the pore structure parameters of the coupling hole.
  • the hole structure parameters include hole shape, hole depth, hole diameter, etc. of the coupling hole (coupling through hole or coupling blind hole).
  • the central connection of the four resonant blind holes forms an inner peripheral area, and the center of at least one of the four coupling holes is located at the In the above-mentioned inner peripheral area, the coupling strength of the equivalent diagonal cross-coupling between the two resonators on the corresponding diagonal of the quadrangular element structure can be weakened.
  • the central connections of the four resonant blind holes form an inner peripheral area , the center of at least one of the four coupling holes is located outside the inner peripheral area, so as to enhance the coupling strength of the equivalent diagonal cross-coupling between two resonators on the corresponding diagonals of the quadrangular element structure.
  • one of the at least four coupling holes is Coupling blind vias.
  • the depth of the coupling blind hole is greater than the Depth of the resonant blind via, used to control capacitive coupling.
  • all the coupling holes are coupling through holes.
  • the shape of the coupling hole is circular, elliptical One of shape and square.
  • the present application also provides a dielectric filter, including the quadrangular element structure, input signal source, and output load described in the first aspect or the first to sixth possible implementations of the first aspect;
  • the input signal source is signal-connected to one of the four resonators, and the output load is signal-connected to the other of the four resonators.
  • the resonator connected to the input signal source signal and the resonator connected to the output load signal correspond to the quadrangular element structure the same edge setting.
  • the structure of the four-corner element becomes a box-type four-corner element, and the box-type four-corner element can generate two near-end transmission zeros, which increases the degree of freedom in the design of the suppression degree of the dielectric filter.
  • the resonator signal-connected to the input signal source and the The resonator connected to the output load signal is located on the same diagonal line of the quadrangular element structure.
  • the quadrangular element structure is a quadruple quadrangular element. In the design stage of the quadruple quadrangular element, by adjusting the physical parameters of each coupling hole, the relative position of the two near-end transmission zero points of the quadruple quadrangular element can be designed, which increases the dielectric filter. Inhibition Degrees of Design Freedom.
  • the dielectric filter further includes at least one spaced channel A groove, the spacer through groove runs through the first surface and the second surface, and one spacer through groove is provided between every two adjacent quadrangular element structures.
  • the present application provides a base station device, including the dielectric filter and the antenna according to the second aspect or the first to third possible implementation manners of the second aspect of the present application, and the dielectric filter and The antenna signal connection.
  • Fig. 1 is a schematic block diagram of the link connection of the base station equipment provided by the present application
  • FIG. 2 is a schematic perspective view of a dielectric filter provided in the first embodiment of the present application
  • FIG. 3 is a schematic diagram of a three-dimensional structure of a quadrangular element structure of a dielectric filter
  • FIG. 4 is a schematic diagram of the distribution of four resonators with a quadrangular element structure
  • Fig. 5 is a schematic plan view of the dielectric filter shown in Fig. 2;
  • Figure 5a is a schematic diagram of a possible setting area of a coupling hole
  • Fig. 6 is a schematic plan view of a possible structure of a quadrangular element structure
  • Fig. 7 is a schematic plan view of another possible structure of the quadrangular element structure.
  • Fig. 8 is a schematic diagram of the mathematical topology model of the dielectric filter shown in Fig. 2;
  • Fig. 9a, Fig. 9b, Fig. 9c are the simulation result schematic diagrams of dielectric filter
  • Fig. 10 is a three-dimensional schematic diagram of another possible structure of the quadrangular element structure.
  • FIG. 11 is a perspective view of a dielectric filter provided in the second embodiment
  • Fig. 12 is a schematic diagram of the mathematical topology model of the dielectric filter shown in Fig. 11;
  • Figure 13a, Figure 13b and Figure 13c are schematic diagrams of simulation results of dielectric filters
  • Fig. 14 is a schematic perspective view of a dielectric filter provided in a third embodiment
  • Fig. 15 is a schematic diagram of a mathematical topology model of the dielectric filter shown in Fig. 14;
  • Fig. 16 is a schematic diagram of a simulation result of the dielectric filter shown in Fig. 14;
  • Fig. 17 is a schematic perspective view of a dielectric filter provided in a fourth embodiment
  • Fig. 18 is a schematic diagram of a mathematical topology model of the dielectric filter shown in Fig. 17;
  • FIG. 19 is a schematic diagram of a simulation result of the dielectric filter shown in FIG. 17 .
  • its RF front-end includes a filter to filter the received signal of the antenna through the filter and transmit it to the subsequent receiving circuit to suppress the received out-of-band spurious system signal The impact on the subsequent stage circuit, or filter the transmission signal of the subsequent stage transmission circuit and then transmit it through the antenna, so as to avoid the out-of-band spurious system signal entering the antenna for transmission.
  • a base station 1000 includes a power amplifier 110 , a dielectric filter 100 and an antenna 130 .
  • the power amplifier 110 is used to amplify signals.
  • the dielectric filter 100 is signal-connected to the antenna 130 .
  • the dielectric filter 100 is used for filtering the signal transmitted from the power amplifier 110 .
  • the antenna 130 is used to send out the signal filtered by the dielectric filter 100 .
  • the dielectric filter 100 is used as a transmission filter. It can be understood that in other application scenarios, the dielectric filter 100 can also be used as a receiving filter.
  • the first embodiment of the present application provides a dielectric filter 100 , including a quadrangular element structure 30 , an input signal source 37 and an output load 39 .
  • the quadrangular element structure 30 is signal-connected to a signal input source 37
  • the quadrangular element structure 30 is signal-connected to an output load 39 , so as to implement filtering processing on signals passing through the quadrangular element structure 30 .
  • the quadrangular element structure 30 includes a first surface 301 and a second surface 303 disposed opposite to each other.
  • the first surface 301 and the second surface 303 are outer surfaces of the quadrangular element structure 30 .
  • the quadrangular element structure 30 includes a dielectric body and a conductive layer covering the surface of the dielectric body.
  • the material constituting the dielectric body includes solid dielectric materials, such as insulating materials such as ceramics and high polymers.
  • the material constituting the conductive layer may be metal material, such as silver.
  • the above-mentioned conductive layer can be formed by electroplating metal on the surface of the dielectric body by using an electroplating process.
  • the outer surface of the four-corner rounded structure 30 is a metal surface.
  • the first surface 301 includes four edges 305 .
  • Four resonant blind holes 31 and at least four coupling holes 33 are disposed on the first surface 301 .
  • Each resonant blind hole 31 is correspondingly located at one corner of the quadrangular element structure 30 to form four resonators of the quadrangular element structure 30 .
  • Each resonant blind hole 31 and its surrounding dielectric and metal surfaces form a resonator.
  • the resonator is a quasi-TEM mode resonator.
  • Each edge 305 is provided corresponding to at least one coupling hole 33 .
  • At least one coupling hole 33 is corresponding to the central line between the centers of the resonant blind holes 31 in every two adjacent angular orientations.
  • the at least four coupling holes 33 include a coupling blind hole 331 and at least three coupling through holes 333 .
  • the blind coupling hole 331 runs through the first surface 301 but not through the second surface 303 for capacitive coupling.
  • the coupling hole 333 runs through the first surface 301 and the second surface 303 for controlling magnetic coupling.
  • the depth of the coupling blind hole 331 is greater than the depth of the resonance blind hole 31 to control capacitive coupling.
  • the perimeter of each coupling hole 333 is less than 1/2 of the side length of any edge 305 . It can be understood that the shape of the quadrangular element structure 30 includes but is not limited to a square.
  • the capacitive coupling controlled by the coupling blind hole 331 refers to obtaining different intensities of capacitive coupling between resonators by setting the physical parameters of the coupling blind hole 331 .
  • the coupling via 333 controls the magnetic coupling, which refers to obtaining magnetic coupling of different strengths between the resonators by setting the physical parameters of the coupling via 333 .
  • the physical parameters include the position of the coupling hole 33 (coupling through hole 333 or coupling blind hole 331 ) and hole structure parameters.
  • the hole structure parameters include hole shape, hole depth, hole diameter, etc. of the coupling hole (coupling through hole or coupling blind hole).
  • the resonant blind holes 31 in each corner of the quadrangular element structure 30 are correspondingly arranged adjacent to the resonant blind holes 31 in an adjacent corner. Every two adjacent resonant blind holes 31 form a group of adjacent resonant blind holes. In this way, the four resonator blind holes form four groups of adjacent resonant blind hole groups.
  • the four adjacent resonant blind via groups include a first adjacent resonant blind via group, a second adjacent resonant blind via group, a third adjacent resonant blind via group and a fourth adjacent resonant blind via group.
  • the four resonant blind vias 31 include a resonant blind via 311 , a resonant blind via 313 , a resonant blind via 315 and a resonant blind via 317 .
  • the resonant blind holes 311 and the resonant blind holes 313 are arranged side by side and adjacent to each other, and the resonant blind holes 311 and the resonant blind holes 313 form a first adjacent resonant blind hole group.
  • the resonant blind holes 311 and the resonant blind holes 315 are arranged in parallel and adjacent to each other, and the resonant blind holes 311 and the resonant blind holes 315 form a second adjacent resonant blind hole group.
  • the resonant blind holes 315 and the resonant blind holes 317 are arranged side by side and adjacent to each other, and the resonant blind holes 315 and the resonant blind holes 317 form a third adjacent resonant blind hole group.
  • the resonant blind holes 317 and the resonant blind holes 313 are arranged in parallel and adjacent to each other, and the resonant blind holes 315 and the resonant blind holes 313 form a fourth adjacent resonant blind hole group.
  • Two resonant blind holes 311 in each group of adjacent resonant blind hole groups are arranged corresponding to one edge 305 of the quadrangular element structure 30 .
  • the resonant blind hole 311 and the resonant blind hole 317 are approximately located on the same diagonal of the quadrangular element structure 30 .
  • the resonant blind hole 313 and the resonant blind hole 315 are approximately located on the same diagonal of the quadrangular element structure 30 .
  • the four resonators of the quadrangular element structure 30 are roughly distributed in a "field" shape. Each resonator corresponds to an angular orientation of a quadrangular element structure 30 .
  • the resonators in every two angular orientations are arranged adjacently.
  • the four resonators form four groups of adjacent resonator groups, and each group of adjacent resonator groups includes two resonators arranged in the same row or column.
  • the four resonators form two groups of diagonally crossed resonator groups, and each group of crossed resonator groups includes two resonators located on the same diagonal line of the quadrangular element structure 30 .
  • the four resonators include a first resonator 101 , a second resonator 102 , a third resonator 103 and a fourth resonator 104 .
  • the resonant blind hole 311 forms the first resonator 101 with the surrounding medium and metal surface.
  • the resonant blind hole 313 forms the second resonator 102 with the surrounding medium and metal surface.
  • the resonant blind hole 315 forms the third resonator 103 with the surrounding medium and metal surface.
  • the resonant blind hole 317 forms the fourth resonator 104 with the surrounding medium and metal surface.
  • the first resonator 101 is signal-connected to the input signal source 37
  • the fourth resonator 104 is signal-connected to the output load 39 .
  • the first resonator 101 and the second resonator 102 are arranged side by side, and the first resonator 101 and the second resonator 102 form a group of adjacent resonator groups.
  • the first resonator 101 and the third resonator 103 are arranged in parallel, and the first resonator 101 and the third resonator 103 form a group of adjacent resonator groups.
  • the third resonator 103 and the fourth resonator 104 are arranged side by side, and the third resonator 103 and the fourth resonator 104 form a group of adjacent resonator groups.
  • the second resonator 102 and the fourth resonator 104 are arranged in parallel, and the second resonator 102 and the fourth resonator 104 form a group of adjacent resonator groups.
  • the first resonator 101 and the fourth resonator 104 are approximately located on the same diagonal line of the quadrangular element structure 30 , and the first resonator 101 and the fourth resonator 104 form a cross-resonator group.
  • the second resonator 102 and the third resonator 103 are approximately located on the same diagonal line of the quadrangular element structure 30 , and the second resonator 102 and the third resonator 103 form a group of diagonally crossed resonators.
  • the distribution of the four resonators on the quadrangular element structure 30 in FIG. 4 is only exemplary, and is not the real dividing line of the four resonators of the quadrangular element structure 30 .
  • the coupling blind hole 331 is located between the resonator blind hole 311 and the resonator blind hole 313 of the first adjacent resonant blind hole group, and is used to control capacitive coupling.
  • the three coupling vias include a coupling via 3331 , a coupling via 3333 and a coupling via 3335 .
  • the coupling via 3331 is located between the resonator blind hole 311 and the resonator blind hole 315 of the second adjacent resonant blind hole group
  • the coupling via 3333 is located between the resonator blind hole 315 and the resonator blind hole of the third adjacent resonant blind hole group.
  • the coupling vias 3335 are located between the resonator blind holes 317 and the resonator blind holes 315 of the fourth adjacent resonant blind hole group.
  • the coupling via 3331 , the coupling via 3333 and the coupling via 3335 are used to control the magnetic coupling.
  • the present application does not limit that the coupling blind hole 331 is arranged between the resonant blind hole 311 and the resonant blind hole 313, and the coupling blind hole 331 may also be arranged between two resonant blind holes 31 of other adjacent resonant blind hole groups, for example, the first Between the resonant blind holes 311 and the resonant blind holes 315 of two adjacent resonant blind hole groups.
  • a coupling blind hole 331 is provided between two resonant blind holes 311 of one of the four groups of adjacent resonant blind hole groups, and a coupling blind hole 331 is provided between each of the remaining three groups of adjacent resonant blind hole groups. At least one coupling via 333 is provided between the resonant blind holes 311 .
  • the combination of the coupling via 333 and the coupling blind hole 331 can simultaneously control the adjacent coupling between each adjacent resonator of the quadrangular element structure 30, and between two resonators on each diagonal of the quadrangular element structure 30 Diagonal cross-coupling.
  • Adjacent coupling refers to the coupling between any adjacent resonators in the quadrangular element structure.
  • the combination of the coupling via 333 and the coupling blind hole 331 can control the adjacent coupling between the first resonator 101 and the second resonator 102, and the adjacent coupling between the first resonator 101 and the third resonator 103.
  • Diagonal cross-coupling refers to the coupling between two resonators on any diagonal of a quadrangular element structure.
  • the combination of the coupling via 333 and the coupling blind via 331 can control the diagonal cross-coupling between the first resonator 101 and the fourth resonator 104, and the cross-coupling between the second resonator 102 and the third resonator 103.
  • the resonant blind hole 31 is roughly a circular hole, and the center of the resonant blind hole 31 is the circle center of the resonant blind hole 31 .
  • At least one coupling hole 33 is corresponding to the center line between the centers of the resonant blind holes 311 in every two adjacent angular orientations.
  • the centers of the four resonant blind holes 311 are connected to form an inner peripheral area 34 .
  • the connecting line between the center of the resonant blind hole 311 and the center of the resonant blind hole 313 is the first central connecting line A1
  • the coupling blind hole 331 is arranged corresponding to the first central connecting line A1.
  • the connecting line between the center of the resonant blind hole 313 and the center of the resonant blind hole 315 is the second central connecting line A2, and the coupling through hole 3331 is arranged corresponding to the second central connecting line A2.
  • the connecting line between the center of the resonant blind hole 315 and the center of the resonant blind hole 317 is the third central connecting line A3, and the coupling through hole 3333 is arranged corresponding to the third central connecting line A3.
  • the connecting line between the center of the resonant blind hole 317 and the center of the resonant blind hole 313 is the fourth central connecting line A4, and the coupling through hole 3335 is arranged corresponding to the fourth central connecting line A4.
  • the first central connection line A1 is approximately parallel to the third central connection line A3 .
  • the second central line A2 is substantially parallel to the fourth central line A4.
  • the first central connection line A1 , the second central connection line A2 , the third central connection line A3 and the fourth central connection line A4 enclose an inner peripheral area 34 . It can be understood that the first central connection line A1 and the third central connection line A3 may not be parallel, and the second central connection line A2 and the fourth central connection line A4 may not be parallel.
  • the coupling hole 33 is circular, and the center of the coupling hole 33 is the center of the circle. It can be understood that the coupling hole 33 can also be oval, square and so on. For example, when the coupling hole 33 is elliptical, the center of the coupling hole 33 is the midpoint of the major axis of the ellipse. When the coupling hole 33 is square, the center of the coupling hole 33 is the intersection of two diagonal lines of the square.
  • the physical parameters of each coupling hole 33 (331, 3331, 3333, 3335) affect the coupling strength between the resonators.
  • the capacitive coupling with strong dispersion can be controlled, that is, the capacitive coupling coefficient changes rapidly with frequency.
  • the centers of the four coupling holes 33 including one coupling blind hole 331 and three coupling through holes 333
  • the distance between the first resonator 101 and the fourth resonator 104 The strength of the diagonal cross-coupling is weak, and the strength of the diagonal cross-coupling between the second resonator 102 and the third resonator 103 is weak.
  • the center of each coupling hole 33 may also be located outside the inner peripheral area 34 .
  • the center of the coupling blind hole 331 is taken as an example where the center of the first surface 301 can be disposed, as shown in FIG. 5 a .
  • the perpendicular line perpendicular to the first central line A1 be the first perpendicular line B1.
  • the perpendicular line perpendicular to the second central line A2 be the second perpendicular line B2.
  • the first axis C1 circumscribes the side edge of the resonant blind hole 311 facing the resonant blind hole 317 .
  • the first axis C1 is perpendicular to the second perpendicular B2.
  • the second axis C2 circumscribes the side of the resonant blind hole 317 facing the resonant blind hole 311, and the second axis C2 is perpendicular to the second mid-perpendicular line B2.
  • the first axis C1 , the second axis C2 , the second perpendicular B2 and the edge 305 corresponding to the coupling blind hole 331 enclose a region 40 (the shaded region 40 shown in FIG. 5 a ).
  • the center of the blind coupling hole 331 may be located in the region 40 , and the region 40 is roughly located between the second perpendicular line B2 and the edge 305 corresponding to the blind coupling hole 331 .
  • the centers of the coupling via 3331 , the coupling via 3333 , and the coupling via 3335 are located outside the inner peripheral area 34 .
  • the center of the blind coupling hole 331 is located outside the inner peripheral area 34 .
  • the center of each coupling through hole 333 (including 3331, 3333, 3335) and the center of the coupling blind hole 331 are offset to the outside of the inner peripheral area 34, the diagonal intersection between the first resonator 101 and the fourth resonator 104
  • the strength of the coupling is strong, and the strength of the diagonal cross-coupling between the second resonator 102 and the third resonator 103 is strong.
  • the center of the coupling through hole 3331 and the center of the coupling through hole 3333 are located in the inner peripheral area 34 .
  • the center of the coupling via 3335 is located outside the inner peripheral area 34 .
  • the center of the blind coupling hole 331 is located outside the inner peripheral area 34 .
  • the centers of a part of the coupling holes 33 combined with the three coupling through holes 333 (3331, 3333, 3335) and the coupling blind holes 331 are located outside the inner peripheral area 34, and the centers of a part of the coupling holes 33 are located in the inner peripheral area 34, so that the first The strength of the diagonal cross-coupling between the resonator 101 and the fourth resonator 104 is strong, and the strength of the diagonal cross-coupling between the second resonator 102 and the third resonator 103 is weak.
  • Figure 8 is the mathematical topology model corresponding to the dielectric filter shown in Figure 2.
  • the mathematical models of the four resonators are represented as resonator node 1, resonator node 2, and resonator node 3.
  • Resonator node 4 The first resonator 101 is characterized as resonator node 1
  • the second resonator 102 is characterized as resonator node 2
  • the third resonator 103 is characterized as resonator node 3
  • the fourth resonator 104 is characterized as resonator node 4 .
  • the input signal source is represented as S
  • the output load is represented as L.
  • the input signal source S is signal-connected to the resonator node 1
  • the output load L is signal-connected to the resonator node 4.
  • the quadrangular element structure 30 forms a box-type quadrangular element.
  • the second central line A2 between the center of the resonant blind hole 311 and the center of the resonant blind hole 315 corresponds to a coupling through hole 3331 , and the coupling through hole 3331 controls the magnetic coupling M13 .
  • the third central line A3 between the center of the resonant blind hole 315 and the center of the resonant blind hole 317 is provided with a coupling through hole 3333 , and the coupling through hole 3333 controls the magnetic coupling M34 .
  • the fourth central line A4 between the center of the resonant blind hole 313 and the center of the resonant blind hole 317 corresponds to the coupling through hole 3335 , and the coupling through hole 3335 controls the magnetic coupling M24 .
  • M is the coupling coefficient
  • the coupling coefficient refers to the strength of the coupling between the resonator and the resonator, between the input signal source (also called excitation) and the resonator, and between the output load (also called output) and the resonator
  • M13 refers to the coupling coefficient of the coupling between the first resonator 101 (resonator node 1) and the third resonator 103 (resonator node 3).
  • the second central line A2 between the center of the resonant blind hole 311 and the center of the resonant blind hole 313 corresponds to the coupling blind hole 331, and the center of the coupling blind hole 331 is located in the inner peripheral area 34, and the coupling blind hole 331 controls the dispersion capacity Coupling M12.
  • the combination of the coupling via 333 and the coupling blind via 331 can control the adjacent couplings M12, M13, M24, M34 and the equivalent diagonal cross coupling M14 among the four resonators.
  • FIG. 9 a , FIG. 9 b and FIG. 9 c are schematic diagrams of four kinds of simulation results of the quadrangular element structure 30 .
  • the two near-end transmission zeros Q1 and Q2 are located in the low frequency band of the working frequency band, and the suppression degree of the low frequency band of the working frequency band is obviously higher than that of the high frequency band.
  • the suppression degree of the low frequency band of the working frequency band is obviously higher than that of the high frequency band.
  • the two near-end transmission zeros Q1 and Q2 are located in the high frequency band of the working frequency band, and the suppression degree of the high frequency band of the working frequency band is obviously higher than that of the low frequency band.
  • the near-end transmission zero point Q1 is located in the low frequency band of the working frequency band
  • the near-end transmission zero point Q2 is located in the high frequency band of the working frequency band.
  • the box-type quadrangular element structure 30 Compared with the traditional box-type quadrangular element that can only produce one near-end transmission zero point, the box-type quadrangular element structure 30 provided by the first embodiment of the present application adds a near-end transmission zero point, thereby improving the box-type quadrangular element Inhibition Degrees of Design Freedom.
  • the box-type quadrangular element with the required performance can be obtained by designing the position of the coupling hole on the quadrangular element structure and the hole structure parameters of each coupling hole, which greatly improves the box-type quadrangular element. Inhibition of four-corner elements Design freedom.
  • the present application does not limit the signal connection between the input signal source 37 and the first resonator 101, the input signal source 37 can also be connected with other resonator signals, and the present application does not limit the signal connection between the output load 39 and the third resonator 103, The output load 39 can also be connected to other resonator signals.
  • the four resonators in the four-corner element structure are distributed in a "field" shape, and each resonator is arranged adjacent to the other two resonators.
  • the four resonators form two sets of cross-resonator groups, and each set of cross-resonator The group includes two resonators located on the same diagonal of the quadrangular element structure; among the two resonators in a crossed resonator group, one is connected with the input signal source signal 37, and the other is connected with the output load 39 signal, so that the quadrangular
  • the element structure forms a box-style quadrangular element. That is, the resonator signal-connected to the input signal source 37 and the resonator signal-connected to the output load 39 are located on the same diagonal line of the quadrangular element structure 30 .
  • one resonator is signal-connected to the input signal source signal 37, and the other resonator is signal-connected to the output load signal 39, so that the quadrangular element structure 30 forms a quadrangular Heavy square element.
  • the four resonators in the four-corner element structure are distributed in a "field" shape, each resonator is adjacent to the other two resonators, and the four resonators form four groups of adjacent resonator groups, and each group of adjacent resonators
  • the resonator group includes two resonators arranged in the same row or column; one of the two resonators in an adjacent resonator group is signal-connected to the input signal source, so that the quadrangular element structure forms a quadruple quadrangular element. That is, the resonator signal-connected to the input signal source 37 and the resonator signal-connected to the output load 39 are arranged corresponding to the same edge of the quadrangular element structure 30 .
  • all the coupling holes 33 are coupling through holes. As shown in FIG. The perimeter is less than 1/2 of the side length corresponding to the edge 305 .
  • a coupling through hole 3331 is provided between the resonant blind hole 311 and the resonant blind hole 313, a coupling through hole 3333 is provided between the resonant blind hole 313 and the resonant blind hole 315, and a coupling through hole 3333 is provided between the resonant blind hole 315 and the resonant blind hole 317.
  • Through holes 3335 , coupling through holes 3337 are provided between the resonant blind holes 317 and the resonant blind holes 311 .
  • Each edge 305 corresponds to a coupling via.
  • the present application does not limit the shape of the resonant blind hole 31 , for example, it may be a regular or irregular shape such as a square or an ellipse.
  • the difference between the dielectric filter provided in the second embodiment of the present application and the dielectric filter provided in the first embodiment is that, referring to FIG. 11 , the number of coupling holes may be greater than four.
  • the number of coupling holes is five, and the five coupling holes include one coupling blind hole 331 and four coupling through holes.
  • the four coupling vias include a coupling via 3331 , a coupling via 3333 , a coupling via 3335 and a coupling via 3337 .
  • the coupling blind hole 331 is located between the resonant blind hole 313 and the resonant blind hole 315 .
  • the coupling blind hole 331 is arranged corresponding to the second center line A2 between the center of the resonant blind hole 313 and the center of the resonant blind hole 315 .
  • the center of the blind coupling hole 331 is located outside the inner peripheral area 34 .
  • the centers of three coupling vias are located outside the inner peripheral area 34
  • the center of one coupling via is located within the inner peripheral area 34 .
  • the coupling via 3331 is located between the resonant blind hole 311 and the resonant blind hole 313 .
  • the coupling through hole 3331 is disposed corresponding to the first central line A1 between the center of the resonant blind hole 311 and the center of the resonant blind hole 313 , and the center of the coupling through hole 3331 is located outside the inner peripheral area 34 .
  • the coupling via 3333 is located between the resonant blind hole 315 and the resonant blind hole 317 .
  • the coupling through hole 3333 is disposed corresponding to the third central line A3 between the center of the resonant blind hole 315 and the center of the resonant blind hole 317 , and the center of the coupling through hole 3333 is located outside the inner peripheral area 34 .
  • the coupling via 3335 is located between the resonant blind via 311 and the resonant blind via 317 , and the coupling via 3335 is located between the resonant blind via 311 and the resonant blind via 317 .
  • the coupling through hole 3335 and the coupling through hole 3337 correspond to the fourth center line A4 between the center of the resonant blind hole 317 and the center of the resonant blind hole 311, and the center of the coupling through hole 3335 is located outside the inner peripheral area 34, and the coupling through hole The center of the hole 3337 is located outside the inner peripheral area 34 .
  • the resonant blind hole 311 forms a first resonator with its surrounding medium and metal surface
  • the resonant blind hole 313 forms a second resonator with its surrounding medium and metal surface
  • the resonant blind hole 315 forms a third resonator with its surrounding medium and metal surface
  • Hole 317 forms a fourth resonator with its surrounding dielectric and metal surfaces.
  • FIG. 12 is a mathematical topology model corresponding to the dielectric filter shown in FIG. 11 .
  • the mathematical model of the four resonators is characterized as resonator node 1 , resonator node 2 , resonator node 3 , and resonator node 4 .
  • S in FIG. 12 represents an input signal source
  • L in FIG. 11 represents an output load.
  • the first resonator is characterized as Resonator Node 1
  • the second resonator is characterized as Resonator Node 2
  • the third resonator is characterized as Resonator Node 3
  • the fourth resonator is characterized as Resonator Node 4 .
  • the coupling through hole 3331 is arranged corresponding to the first central line A1 between the center of the resonant blind hole 311 and the center of the resonant blind hole 313, and the coupling through hole 3331 controls the magnetic coupling M12.
  • the coupling through hole 3333 is arranged corresponding to the third central connection line A3 between the center of the resonant blind hole 315 and the center of the resonant blind hole 317, and the coupling through hole 3333 controls the magnetic coupling M34.
  • the coupling via 3335 is located between the resonant blind via 311 and the resonant blind via 317
  • the coupling via 3337 is located between the resonant blind via 311 and the resonant blind via 317.
  • the coupling via 3335 and the coupling via 3337 can control the magnetic coupling M14.
  • the coupling blind hole 331 is located between the resonant blind hole 313 and the resonant blind hole 315, and can control the dispersion capacitive coupling M23.
  • the combination of the coupling via hole and the coupling blind hole 331 can control the adjacent coupling between adjacent resonators, and the diagonal cross coupling between two resonators on the same diagonal of each quadrangular element structure.
  • FIG. 13 a , FIG. 13 b and FIG. 13 c are schematic diagrams of three simulation results of the quadrangular element structure 30 .
  • the third embodiment of the present application provides a bandpass 8th-order dielectric filter 100 , including a first quadrangular element structure 400 and a second quadrangular element structure 500 .
  • the first quadrangular element structure 400 is cascaded with the second quadrangular element structure 500 .
  • the first quadrangular element structure 400 is substantially the same as the first quadrangular element structure provided in the first embodiment.
  • the second quadrangular element structure 500 is substantially the same as the first quadrangular element structure provided in the first embodiment.
  • Both the first quadrangular element structure 400 and the second quadrangular element structure 500 include a first surface 301 and a second surface 303 disposed opposite to each other.
  • the first surface 301 of the first quadrangular element structure 400 and the first surface 301 of the second quadrangular element structure 500 are located on the same surface.
  • the second surface 303 of the first quadrangular element structure 400 is located on the same surface as the second surface 303 of the second quadrangular element structure 500 .
  • the first surface 301 of the first quadrangular element structure 400 is provided with four resonant blind holes, so that the first quadrangular element structure 400 forms four resonators.
  • a coupling hole is provided between every two adjacent resonant blind holes.
  • the four coupling holes of the first quadrangular element structure 400 include one coupling blind hole 231 and three coupling through holes 211 .
  • the coupling blind hole 231 runs through the first surface 301 of the first quadrangular element structure 400 but does not penetrate the second surface 303 of the first quadrangular element structure 400 .
  • the coupling through hole 211 of the first quadrangular element structure 400 runs through the first surface 301 of the first quadrangular element structure 400 and the second surface 303 of the first quadrangular element structure 400 .
  • the connecting line between the centers of the four resonant blind vias of the first quadrangular element structure 400 encloses an inner peripheral area 401 .
  • the centers of the four coupling holes of the first quadrangular element structure 400 are all located in the inner peripheral area 401 .
  • the four resonant blind vias include a resonant blind via 2011 , a resonant blind via 2013 , a resonant blind via 2015 and a resonant blind via 2017 .
  • the resonant blind hole 2011 is adjacent to the resonant blind hole 2013 and arranged side by side.
  • the resonant blind hole 2015 is adjacent to the resonant blind hole 2017 and arranged side by side.
  • the resonant blind hole 2011 is adjacent to the resonant blind hole 2015 and arranged side by side.
  • the resonant blind hole 2013 is adjacent to the resonant blind hole 2017 and arranged side by side.
  • the coupling blind hole 231 is located between the resonant blind hole 2011 and the resonant blind hole 2015 .
  • the coupling blind hole 231 is arranged corresponding to the center line between the center of the resonant blind hole 2011 and the center of the resonant blind hole 2015 .
  • the resonant blind hole 2011 and its surrounding medium and metal surface form a first resonator.
  • the resonator formed by the resonant blind hole 2013 and its surrounding medium and metal surface forms a second resonator.
  • the resonant blind hole 2015 and its surrounding medium and metal surface form a third resonator.
  • the resonator formed by the resonant blind hole 2017 and its surrounding medium and metal surface forms a fourth resonator.
  • the first resonator is signal-connected to the input signal source 291
  • the fourth resonator is signal-connected to the output load 292
  • the first quadrangular element structure 400 is a box-type quadrangular element structure.
  • the three coupling vias 211 include a coupling via 2111 , a coupling via 2113 and a coupling via 2115 .
  • the coupling via 2111 is located between the resonant blind hole 2011 and the resonant blind hole 2013 .
  • the coupling via 2113 is located between the resonant blind via 2015 and the resonant blind via 2017
  • the coupling via 2115 is located between the resonant blind via 2117 and the resonant blind via 2113 .
  • the coupling through hole 2111 is arranged corresponding to the center line between the center of the resonant blind hole 2011 and the center of the resonant blind hole 2013 .
  • the coupling through hole 2113 is arranged corresponding to the center line between the center of the resonant blind hole 2015 and the center of the resonant blind hole 2017 .
  • the coupling through hole 2115 is located on the center line between the center of the resonant blind hole 2117 and the center of the resonant blind hole 2113 .
  • the combination of the coupling vias and the coupling blind holes 331 of the first quadrangular element structure 400 can control adjacent coupling and diagonal cross coupling between resonators of the first quadrangular element structure 400 .
  • the first surface 301 of the second quadrangular element structure 500 is provided with four resonant blind holes, so that the second quadrangular element structure 500 forms four resonators.
  • a coupling hole is provided between every two adjacent resonant blind holes in the second quadrangular element structure 500 .
  • the four coupling holes of the second quadrangular element structure 500 include three coupling through holes 212 and one coupling blind hole 232 .
  • the coupling via hole 212 of the second quadrangular element structure 500 runs through the first surface 301 of the second quadrangular element structure 500 and the second surface 303 of the second quadrangular element structure 500 .
  • the coupling blind hole 232 runs through the first surface 301 of the second quadrangular element structure 500 but does not penetrate the second surface 303 of the second quadrangular element structure 500 .
  • the line connecting the centers of the four resonant blind holes of the second quadrangular element structure 500 forms an inner peripheral area 501 .
  • the four resonant blind vias of the second quadrangular element structure 500 include a resonant blind via 2021 , a resonant blind via 2023 , a resonant blind via 2025 and a resonant blind via 2027 .
  • the resonant blind hole 2021 is adjacent to the resonant blind hole 2023 and arranged side by side.
  • the resonant blind hole 2021 is adjacent to the resonant blind hole 2025 and arranged side by side.
  • the resonant blind hole 2025 is adjacent to the resonant blind hole 2027 and arranged side by side.
  • the resonant blind hole 2023 is adjacent to the resonant blind hole 2027 and arranged side by side.
  • the resonant blind hole 2021 and its surrounding medium form a fifth resonator.
  • the resonator formed by the resonant blind hole 2023 and its surrounding medium and metal surface forms the sixth resonator.
  • the resonant blind hole 2025 and its surrounding medium and metal surface form the seventh resonator.
  • the resonant blind hole 2027 and its surrounding medium and metal surface form the eighth resonator.
  • the fifth resonator is signal-connected to the input signal source S
  • the eighth resonator is signal-connected to the output load 292
  • the second quadrangular element structure 500 is a box-type quadrangular element structure.
  • the coupling blind hole 232 is located between the resonant blind hole 2025 and the resonant blind hole 2027, the coupling blind hole 232 is set corresponding to the center connecting line between the center of the resonant blind hole 2025 and the center of the resonant blind hole 2027, and the center of the coupling blind hole 232 is located within the inner peripheral area 501 .
  • the three coupling vias 212 include a coupling via 2121 , a coupling via 2123 and a coupling via 2125 .
  • the coupling via 2121 is located between the resonant blind hole 2021 and the resonant blind hole 2023 .
  • the coupling through hole 2121 is arranged corresponding to the center line between the center of the resonant blind hole 2021 and the center of the resonant blind hole 2023 .
  • the center of the coupling via 2121 is located in the inner peripheral area 501 .
  • the coupling via 2123 is located between the resonant blind hole 2021 and the resonant blind hole 2025 .
  • the coupling through hole 2123 is arranged corresponding to the center line between the center of the resonant blind hole 2021 and the center of the resonant blind hole 2025 .
  • the center of the coupling via 2123 is located in the inner peripheral area 501 .
  • the coupling via 2125 is located between the resonant blind hole 2123 and the resonant blind hole 2127 .
  • the coupling through hole 2125 is arranged corresponding to the center line between the center of the resonant blind hole 2023 and the center of the resonant blind hole 2027 .
  • the center of the coupling via 2125 is located in the inner peripheral area 501 .
  • the combination of the coupling vias 333 and the coupling blind holes 331 can control adjacent coupling and diagonal cross-coupling between resonators of the second quadrangular element structure 500 .
  • the dielectric filter 100 further includes a spacer slot 250 for separating the first quadrangular element structure 400 from the second quadrangular element structure 500 .
  • the first quadrangular element structure 400 is located on one side of the spaced through slot 250
  • the second quadrangular element structure 500 is located on the other side of the spaced through slot 250 .
  • the spacing channel 250 is located on the boundary edge between the first surface 301 of the first quadrangular element structure 400 and the first surface 301 of the second quadrangular element structure 500 .
  • the four resonant blind holes of the first quadrangular element structure 400 are arranged in a "Tian" shape or approximately "Tian” shape to realize four quasi-TEM mode resonators of the first quadrangular element structure 400 .
  • the four resonators formed by the second quadrangular element structure 500 can be represented as four resonator nodes: resonator node 1 , resonator node 2 , resonator node 3 and resonator node 4 .
  • the first resonator may be characterized as resonator node 1 .
  • the second resonator may be characterized as resonator node 2 .
  • the third resonator may be characterized as resonator node 3 .
  • the fourth resonator may be characterized as resonator node 4 .
  • the four resonant blind holes of the second quadrangular element structure 500 are arranged in a "Tian" shape or approximately "Tian” shape to realize four quasi-TEM mode resonators of the second quadrangular element structure 500 .
  • the four resonators of the second quadrangular element structure 500 are respectively represented as resonator node 5 , resonator node 6 , resonator node 7 and resonator node 8 .
  • the fifth resonator may be characterized as resonator node 5 .
  • the sixth resonator may be characterized as resonator node 6 .
  • the seventh resonator may be characterized as resonator node 7 .
  • the eighth resonator may be characterized as resonator node 8 .
  • the input signal source 291 is characterized as an input signal source S .
  • Output load 292 is characterized as output load L.
  • Resonator node 1 is signal-connected to the input signal source S.
  • the resonator node 4 is signal connected to the output load L.
  • the resonator node 6 is signal connected to the input signal source S.
  • the resonator node 8 is connected to the output load L signal.
  • the coupling through hole 2111 is set corresponding to the center line between the center of the resonant blind hole 2011 and the center of the resonant blind hole 2013, and the coupling through hole 2113 corresponds to the center of the resonant blind hole 2015 and the center of the resonant blind hole 2017.
  • the center line setting between the coupling vias 2115 is located at the center line setting between the center of the resonance blind hole 2117 and the center of the resonance blind hole 2113, and the coupling vias 2111, 2113, and 2115 control the magnetic coupling M12, M34 and M24.
  • the coupling blind hole 231 is arranged corresponding to the center line between the center of the resonant blind hole 2011 and the center of the resonant blind hole 2015, and the coupling blind hole 231 can control the dispersion capacitive coupling M13.
  • the combination of the coupling via 211 and the coupling blind hole 231 can control the adjacent couplings M12 , M34 , M24 , M13 and the equivalent diagonal coupling M14 among the four resonators of the first quadrangular element structure 400 .
  • the first quadrangular element structure 400 can add a near-end transmission zero, that is, generate two near-end transmission zeros (such as Figure 16 shows near-end transmission zeros fz1 and fz2).
  • the coupling through hole 2121 corresponds to the central connection line between the center of the resonant blind hole 2021 and the center of the resonant blind hole 2023
  • the coupling through hole 2123 corresponds to the central connection line between the center of the resonant blind hole 2021 and the center of the resonant blind hole 2025
  • the coupling through hole 2125 is set corresponding to the center line between the center of the resonant blind hole 2023 and the center of the resonant blind hole 2027, the coupling through hole 2121, the coupling through hole 2123, and the coupling through hole 2125 control the magnetic coupling M56, M57 and M68 .
  • the coupling blind hole 232 is set corresponding to the center line between the center of the resonant blind hole 2025 and the center of the resonant blind hole 2027, and can control the dispersion capacitive coupling M78.
  • the combination of the coupling via 212 and the coupling blind hole 232 can control the adjacent couplings M56 , M57 , M78 , M68 and the equivalent diagonal coupling M58 among the four resonators of the second quadrangular element structure 500 .
  • the second quadrangular element structure 500 can add a near-end transmission zero, that is, two near-end transmission zeros (such as fz3 and fz4 shown in Figure 16).
  • the bandpass 8th-order dielectric filter 100 provided by the third embodiment can generate four near-end transmission zeros, which is two more near-end transmission zeros than the existing bandpass 8th-order dielectric filter, and can increase the dielectric
  • the suppression degree of the filter 100 further optimizes the performance of the dielectric filter 100 greatly.
  • a higher degree of suppression means that the dielectric filter has a better ability to suppress out-of-band interference.
  • the fourth embodiment of the present application provides a dielectric filter 100 including a first quadrangular element structure 400 and a second quadrangular element structure 500 .
  • the first quadrangular element structure 400 is cascaded with the second quadrangular element structure 500 .
  • Both the first quadrangular element structure 400 and the second quadrangular element structure 500 include a first surface 301 and a second surface 303 disposed opposite to each other.
  • the first surface 301 of the first quadrangular element structure 400 is provided with four resonant blind holes and five coupling holes.
  • a coupling hole is provided between every two adjacent resonant blind holes in the first quadrangular element structure 400 .
  • the five coupling holes of the first quadrangular element structure 400 include one coupling blind hole 331 and four coupling through holes.
  • the coupling blind hole 331 runs through the first surface 301 of the first quadrangular element structure 400 but does not penetrate the second surface 303 of the first quadrangular element structure 400 .
  • the coupling via hole of the first quadrangular element structure 400 runs through the first surface 301 and the second surface 303 .
  • the line connection between the centers of four adjacent resonant blind vias of the first quadrangular element structure 400 encloses an inner peripheral area 401 .
  • the four resonant blind vias of the first quadrangular element structure 400 include a resonant blind via 3011 , a resonant blind via 3013 , a resonant blind via 3015 and a resonant blind via 3017 .
  • the resonant blind hole 3011 is adjacent to the resonant blind hole 3013 and arranged side by side.
  • the resonant blind holes 3015 are adjacent to and arranged side by side with the resonant blind holes 3015 .
  • the resonant blind hole 3011 is adjacent to the resonant blind hole 3017 and arranged side by side.
  • the resonant blind hole 3013 is adjacent to the resonant blind hole 3015 and arranged side by side.
  • the resonant blind hole 3011 and its surrounding medium and metal surface form a first resonator.
  • the resonator formed by the resonant blind hole 3013 and its surrounding medium and metal surface forms the second resonator.
  • the resonant blind hole 3015 and its surrounding medium and metal surface form a third resonator.
  • the resonator formed by the resonant blind hole 3017 and its surrounding medium and metal surface forms a fourth resonator.
  • the first resonator is signal-connected to the input signal source 391
  • the fourth resonator is signal-connected to the output load 392
  • the first quadrangular element structure 400 is a quadruple quadrangular element structure.
  • the four coupling vias of the first quadrangular element structure 400 include a coupling via 3111 , a coupling via 3113 , a coupling via 3115 , and a coupling via 3117 .
  • the coupling through hole 3111 is located between the resonant blind hole 3011 and the resonant blind hole 3013, the coupling through hole 3111 is set corresponding to the center line between the center of the resonant blind hole 3011 and the center of the resonant blind hole 3013, and the coupling through hole 3111 is located on the inner periphery Area 401 outside.
  • the coupling through hole 3113 is located between the resonant blind hole 3015 and the resonant blind hole 3017, the coupling through hole 3113 is set corresponding to the center line between the center of the resonant blind hole 3015 and the center of the resonant blind hole 3017, and the coupling through hole 3113 is located on the inner periphery Area 401 outside.
  • the coupling through hole 3115 is located between the resonant blind hole 3011 and the resonant blind hole 3017, the coupling through hole 3115 is set corresponding to the center line between the center of the resonant blind hole 3011 and the center of the resonant blind hole 3017, and the coupling through hole 3115 is located on the inner periphery within area 401.
  • the coupling through hole 3117 is located between the resonant blind hole 3011 and the resonant blind hole 3017, the coupling through hole 3117 is set corresponding to the center line between the center of the resonant blind hole 3011 and the center of the resonant blind hole 3017, and the coupling through hole 3117 is located on the inner periphery Area 401 outside.
  • the coupling blind hole 331 is arranged corresponding to the center line between the center of the resonant blind hole 3013 and the center of the resonant blind hole 3015 , and the center of the coupling blind hole 331 is located outside the inner peripheral area 401 .
  • the first surface 301 of the second quadrangular element structure 500 is provided with four resonant blind holes and five coupling holes.
  • a coupling hole is provided between every two adjacent resonant blind holes in the second quadrangular element structure 500 .
  • the five coupling holes of the second quadrangular element structure 500 include one coupling blind hole 332 and four coupling through holes.
  • the blind coupling hole 332 runs through the first surface 301 of the second quadrangular element structure 500 but not through the second surface 303 .
  • the coupling via hole of the second quadrangular element structure 500 runs through the first surface 301 of the second quadrangular element structure 500 and the second surface 303 of the second quadrangular element structure 500 .
  • the line connection between the centers of the four adjacent resonant blind vias of the second quadrangular element structure 500 encloses an inner peripheral area 501 .
  • the four resonant blind vias of the second quadrangular element structure 500 include a resonant blind via 3021 , a resonant blind via 3023 , a resonant blind via 3025 and a resonant blind via 3027 .
  • the resonant blind hole 3021 is adjacent to the resonant blind hole 3023 and arranged side by side.
  • the resonant blind hole 3021 is adjacent to the resonant blind hole 3027 and arranged side by side.
  • the resonant blind holes 3025 and the resonant blind holes 3027 are arranged side by side.
  • the resonant blind hole 3023 is adjacent to the resonant blind hole 3025 and arranged side by side.
  • the resonant blind hole 3021 and its surrounding medium and metal surface form a fifth resonator.
  • the resonator formed by the resonant blind hole 3023 and its surrounding medium and metal surface forms the sixth resonator.
  • the resonant blind hole 3025 and its surrounding medium and metal surface form the seventh resonator.
  • the resonance blind hole 3027 and its surrounding medium and metal surface form the eighth resonator.
  • the fifth resonator is signal-connected to the input signal source 391
  • the eighth resonator is signal-connected to the output load 392
  • the second quadrangular element structure 500 is a quadruple quadrangular element structure.
  • the four coupling vias 312 include a coupling via 3121 , a coupling via 3123 , a coupling via 3125 , and a coupling via 3127 .
  • the coupling through hole 3121 is located between the resonant blind hole 3021 and the resonant blind hole 3023, the coupling through hole 3121 is set corresponding to the center line between the center of the resonant blind hole 3021 and the center of the resonant blind hole 3023, and the center of the coupling through hole 3123 is located at Outside the inner circle area 501 .
  • the coupling through hole 3123 is located between the resonant blind hole 3025 and the resonant blind hole 3027, the coupling through hole 3123 is set corresponding to the center line between the center of the resonant blind hole 3025 and the center of the resonant blind hole 3027, and the center of the coupling through hole 3123 is located Outside the inner circle area 501 .
  • the coupling through hole 3125 is located between the resonant blind hole 3021 and the resonant blind hole 3027, the coupling through hole 3125 is set corresponding to the center line between the center of the resonant blind hole 3021 and the center of the resonant blind hole 3027, and the center of the coupling through hole 3125 is located within the inner peripheral area 501 .
  • the coupling through hole 3127 is located between the resonant blind hole 3021 and the resonant blind hole 3027, the coupling through hole 3127 is set corresponding to the center line between the center of the resonant blind hole 3021 and the center of the resonant blind hole 3027, and the center of the coupling through hole 3127 is located Outside the inner circle area 501 .
  • the coupling blind hole 332 is located between the resonant blind hole 3023 and the resonant blind hole 3025, the coupling blind hole 332 is set corresponding to the center line between the center of the resonant blind hole 3023 and the center of the resonant blind hole 3025, and the center of the coupling blind hole 332 Located outside the inner peripheral area 501 .
  • the four resonant blind holes of the first quadrangular element structure 400 are arranged in a "Tian" shape or approximately "Tian” shape, so that the first quadrangular element structure 400 forms four quasi-TEM mode resonators.
  • the four mode resonators of the first quadrangular element structure 400 can be characterized as four resonator nodes: resonator node 1 , resonator node 2 , resonator node 3 and resonator node 4 .
  • the first resonator may be characterized as resonator node 1 .
  • the second resonator may be characterized as resonator node 2 .
  • the third resonator may be characterized as resonator node 3 .
  • the fourth resonator may be characterized as resonator node 4 .
  • the four resonant blind holes 302 of the second quadrangular element structure 500 are arranged in a "Tian" shape or approximately "Tian” shape, so that the second quadrangular element structure 500 forms four quasi-TEM mode resonators.
  • the four quasi-TEM mode resonators of the second quadrangular element structure 500 can be characterized as four resonator nodes: resonator node 5 , resonator node 6 , resonator node 7 and resonator node 8 .
  • the fifth resonator may be characterized as resonator node 5 .
  • the sixth resonator may be characterized as resonator node 6 .
  • the seventh resonator may be characterized as resonator node 7 .
  • the eighth resonator may be characterized as resonator node 8 .
  • Input signal source 392 is characterized as input signal source S .
  • Output load 392 is characterized as output load L.
  • Resonator node 1 is signal-connected to the input signal source S.
  • the resonator node 4 is signal connected to the output load L.
  • the resonator node 5 is signal connected to the input signal source S.
  • the resonator node 8 is connected to the output load L signal.
  • the coupling through hole 3111 corresponds to the central line between the center of the resonant blind hole 3011 and the center of the resonant blind hole 3013
  • the coupling through hole 3113 corresponds to the central line between the center of the resonant blind hole 3015 and the center of the resonant blind hole 3017
  • the coupling through hole 3115 corresponds to the center line between the center of the resonant blind hole 3011 and the center of the resonant blind hole 3017
  • the coupling through hole 3117 corresponds to the center between the center of the resonant blind hole 3011 and the center of the resonant blind hole 3017
  • Connection settings can control magnetic M12, M34, coupling M14.
  • the coupling blind hole 331 is set corresponding to the center line between the center of the resonant blind hole 3013 and the center of the resonant blind hole 3015, and can control the dispersion capacitive coupling M23.
  • the combination of the coupling via 311 and the coupling blind hole 331 can control the adjacent couplings M12 , M14 , M23 , M34 and the equivalent diagonal cross-coupling M13 among the four resonators of the first quadrangular element structure 400 .
  • the first quadrangular element structure 400 has an equivalent diagonal cross-coupling M13 and a dispersion capacitive coupling M23, the physical parameters of each coupling hole of the first quadrangular element structure 400 are simulated during design to adjust the two near-end transmissions
  • the symmetry of the zero points (fz2 and fz3 shown in Figure 19), that is, the relative positions of the two near-end transmission zero points are designed.
  • the coupling through hole 3121 corresponds to the center line between the center of the resonant blind hole 3021 and the center of the resonant blind hole 3023
  • the coupling through hole 3123 corresponds to the center line between the center of the resonant blind hole 3025 and the center of the resonant blind hole 3027
  • the coupling through hole 3125 corresponds to the center line between the center of the resonant blind hole 3021 and the center of the resonant blind hole 3027
  • the coupling through hole 3127 corresponds to the center between the center of the resonant blind hole 3021 and the center of the resonant blind hole 3027
  • Wire setting can control the magnetic coupling M56, M78 and M56.
  • the coupling blind hole 332 is set corresponding to the center connecting line between the center of the resonant blind hole 3023 and the center of the resonant blind hole 3025, and controls the dispersion capacitive coupling M67.
  • the combination of the coupling via 312 and the coupling blind via 332 can control the adjacent couplings M56 , M67 , M58 , M78 and the equivalent diagonal cross coupling M68 among the four resonators of the second quadrangular element structure 500 .
  • the second quadrangular element structure 500 has an equivalent diagonal cross-coupling M68 and a dispersion capacitive coupling M67, the physical parameters of each coupling hole of the second quadrangular element structure 500 are simulated during design to adjust the two near-end transmissions
  • the symmetry of the zero points (fz1 and fz4 shown in Figure 19), that is, the relative positions of the two near-end transmission zero points are designed.
  • the expression “and/or” includes any and all combinations of the associated listed words.
  • the expression “A and/or B” may include A, may include B, or may include both A and B.
  • expressions including ordinal numbers such as "first” and “second” may modify each element.
  • elements are not limited by the above expressions.
  • the above expressions do not limit the order and/or importance of elements.
  • the above expressions are only used to distinguish one element from other elements.
  • the first user equipment and the second user equipment indicate different user equipments, although both the first user equipment and the second user equipment are user equipments.
  • a first element could be termed a second element
  • a second element could be termed a first element, without departing from the scope of the present application.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本申请提供一种四角元件结构、介质滤波器及基站设备。四角元件结构包括相背设置的第一表面与第二表面。第一表面包括四个边缘。第一表面设有四个谐振盲孔与至少四个耦合孔。每个所述谐振盲孔对应位于所述四角元件结构的一个角方位上,以形成所述四角元件结构的四个谐振器。每两个相邻角方位上的谐振盲孔的中心之间的中心连线与至少一个所述耦合孔相对应。耦合孔包括耦合盲孔和/或耦合通孔。耦合盲孔贯穿第一表面。耦合通孔贯穿第一表面与第二表面。耦合通孔的周长小于任意一个所述边缘边长的1/2。

Description

四角元件结构、介质滤波器及基站设备
本申请要求在2021年6月25日提交中国国家知识产权局、申请号为202110715021.1、申请名称为“四角元件结构、介质滤波器及基站设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别涉及一种四角元件结构、介质滤波器及基站设备。
背景技术
随着现代无线通信的频谱资源越来越密集,导致滤波器的规格要求越来越严格,包括带外抑制、插损、体积、成本等。介质滤波器是通过介质谐振器之间的耦合构成的。为了实现介质滤波器具有更高的抑制度,常见方法是级联多个基本交叉耦合元件。其中,基本交叉耦合元件包括三角(triplet)元件(又称三角元件结构)、箱式(box)四角元件(又称箱式四角元件结构)和四重(quadruplet)四角元件(又称四重四角元件结构)。
现有的四角元件由于结构设计上的局限性,致使介质滤波器的抑制度设计自由度受到限制。例如,箱式四角元件仅能产生一个传输零点,四重四角元件的两个传输零点的相对位置不可调节。其中,传输零点为散射参数(又称S参数)的正向传输系数(又称S21)的陷波点。
发明内容
本申请实施例提供了一种能够提高抑制度设计自由度的四角元件结构、介质滤波器及其相关的基站设备。
第一方面,本申请提供一种四角元件结构,包括相背设置的第一表面与第二表面,所述第一表面包括四个边缘;所述第一表面上设有四个谐振盲孔及至少四个耦合孔;每个所述谐振盲孔对应位于所述四角元件结构的一个角方位上以形成所述四角元件结构的四个谐振器;每两个相邻角方位上的谐振盲孔的中心之间的中心连线与至少一个所述耦合孔相对应设置;所述耦合孔包括耦合盲孔和/或耦合通孔,所述耦合盲孔贯穿所述第一表面,所述耦合通孔贯穿所述第一表面与所述第二表面,每个所述耦合通孔的周长小于任意一个边缘边长的1/2。
四个谐振盲孔位于四角元件结构的一个角方位上以形成四角元件结构的四个谐振器。耦合盲孔用于控制谐振器之间的容性耦合,所述耦合通孔用于控制谐振器之间的磁性耦合。耦合盲孔与耦合通孔的组合,能够同时控制四角元件结构的谐振器之间的相邻耦合以及四角元件结构同一对角线上的两个谐振器之间的等效对角交叉耦合。如此,若四角元件结构为箱式四角元件,则箱式四角元件可产生两个近端传输零点,增加了介质滤波器的抑制度,亦提高了箱式四角元件的抑制度设计自由度。若四角元件结构为四重四角元件,则可在四重四角元件的设计阶段,通过调节各耦合孔的物理参数,来设计四重四角元件的两个近端传输零点的相对位置。物理参数包括耦合孔的位置及耦合孔的孔结构参数。孔结构参数包括耦合孔(耦合通孔或耦合盲孔)的孔形状、孔深度、孔径等等。
根据第一方面,在本申请第一方面的第一种可能的实现方式中,所述四个谐振盲孔的中心连接围成内围区域,所述四个耦合孔中至少一个的中心位于所述内围区域内,以能够减弱四角元件结构相应对角线上的两个谐振器之间的等效对角交叉耦合的耦合强度。
根据第一方面或本申请第一方面的第一种可能的实现方式,在本申请第一方面的第二种可能的实现方式中,所述四个谐振盲孔的中心连接围成内围区域,所述四个耦合孔中至少一个的中心位于所述内围区域外,以能够加强四角元件结构相应对角线上的两个谐振器之间的等效对角交叉耦合的耦合强度。
根据第一方面或本申请第一方面的第一种至第二种可能的实现方式,在本申请第一方面的第三种可能的实现方式中,所述至少四个耦合孔中的一个为耦合盲孔。
根据第一方面或本申请第一方面的第一种至第三种可能的实现方式,在本申请第一方面的第四种可能的实现方式中,所述耦合盲孔的深度要大于所述谐振盲孔的深度,用于控制容性耦合。
根据第一方面或本申请第一方面的第一种至第四种可能的实现方式,在本申请第一方面的第五种可能的实现方式中,所有耦合孔均为耦合通孔。
根据第一方面或本申请第一方面的第一种至第五种可能的实现方式,在本申请第一方面的第六种可能的实现方式中,所述耦合孔的形状为圆形、椭圆形、方形中的一种。
第二方面,本申请还提供一种介质滤波器,包括第一方面或第一方面的第一种至第六种可能的实现方式中所述的四角元件结构、输入信号源与输出负载;所述输入信号源与所述四个谐振器中的一个信号连接,所述输出负载与所述四个谐振器中的另一个信号连接。
根据第二方面,在本申请第二方面的第一种可能的实现方式中,与所述输入信号源信号连接的谐振器及与所述输出负载信号连接的谐振器,对应所述四角元件结构的同一个边缘设置。如此,四角元件结构成为箱式四角元件,箱式四角元件可产生两个近端传输零点,增加了介质滤波器的抑制度设计自由度。
根据第二方面或本申请第一方面的第一种可能的实现方式,在本申请第二方面的第二种可能的实现方式中,与所述输入信号源信号连接的谐振器及与所述输出负载信号连接的谐振器,位于所述四角元件结构的同个对角线上。四角元件结构为四重四角元件,可在四重四角元件的设计阶段,通过调节各耦合孔的物理参数,设计四重四角元件的两个近端传输零点的相对位置,增加了介质滤波器的抑制度设计自由度。
根据第二方面或本申请第二方面的第一种至第二种可能的实现方式,在本申请第二方面的第三种可能的实现方式中,所述介质滤波器还包括至少一个间隔通槽,所述间隔通槽贯穿所述第一表面与所述第二表面,每相邻的两个所述四角元件结构之间设有一个所述间隔通槽。
第三方面,本申请提供一种基站设备,包括根据第二方面或本申请第二方面的第一种至第三种可能的实现方式所述的介质滤波器与天线,所述介质滤波器与所述天线信号连接。
附图说明
图1为本申请所提供的基站设备的链路连接示意框图;
图2为本申请第一实施方式所提供的介质滤波器的立体示意图;
图3为介质滤波器的四角元件结构的立体结构示意图;
图4为四角元件结构的四个谐振器的分布示意图;
图5为图2所示的介质滤波器的平面示意图;
图5a为耦合孔的可能设置区域的示意图;
图6为四角元件结构的一可能结构的平面示意图;
图7为四角元件结构的另一可能结构的平面示意图;
图8为图2所示的介质滤波器的数学拓扑模型示意图;
图9a、图9b、图9c为介质滤波器的模拟结果示意图;
图10为四角元件结构的又一可能结构的立体示意图;
图11为第二实施方式所提供的介质滤波器的立体示意图;
图12为图11所示的介质滤波器的数学拓扑模型示意图;
图13a、图13b与图13c为介质滤波器的模拟结果示意图;
图14为第三实施方式所提供的介质滤波器的立体示意图;
图15为图14所示的介质滤波器的数学拓扑模型示意图;
图16为图14所示的介质滤波器的仿真结果示意图;
图17为第四实施方式所提供的介质滤波器的立体示意图;
图18为图17所示的介质滤波器的数学拓扑模型示意图;
图19为图17所示的介质滤波器的仿真结果示意图。
具体实施方式
在无线通信系统中,作为通信设备的基站设备,其射频前端都包含滤波器,以通过滤波器对天线的接收信号进行滤波后传输至后级接收电路,以抑制接收的带外杂散系统信号对后级电路的影响,或者对后级发送电路的发送信号进行滤波后通过天线发送,以避免带外杂散系统信号进入天线发送。
请参阅图1中,一种基站1000,包括功率放大器110、介质滤波器100与天线130。功率放大器110用于放大信号。介质滤波器100与天线130信号连接。介质滤波器100用于对功率放大器110传送过来的信号进行滤波处理。天线130用于将经介质滤波器100滤波处理后的信号发出。
上述应用场景仅是一种示例,介质滤波器100用作发送滤波器。可以理解,在其他的应用场景中,介质滤波器100也可以用作接收滤波器。
请参阅图2,本申请第一实施方式提供一种介质滤波器100,包括四角元件结构30、输入信号源37与输出负载39。四角元件结构30与信号输入源37信号连接,四角元件结构30与输出负载39信号连接,以实现对通过四角元件结构30的信号进行滤波处理。
四角元件结构30包括相背设置的第一表面301与第二表面303。第一表面301与第二表面303为四角元件结构30的外表面。
需要说明的是,四角元件结构30包括介质本体及包覆于介质本体表面上的导电层。其中,构成介质本体的材料包括固态介电材料,例如陶瓷、高聚物等绝缘材料。构成导电层的材料可以为金属材料,例如银。可以采用电镀工艺在介质本体的表面电镀金属来形成上述导电层。换而言之,四角圆角结构30的外表面为金属面。
第一表面301包括四个边缘305。第一表面301上设有四个谐振盲孔31与至少四个耦合孔33。每个谐振盲孔31对应位于四角元件结构30的一个角方位上,以形成四角元件结构30的四个谐振器。每个谐振盲孔31及其周遭的介质和金属面形成一个谐振器。本实施方式中,谐振器为准TEM模谐振器。
每个边缘305对应至少一个耦合孔33设置。每两个相邻角方位上的谐振盲孔31的中心之间的中心连线与至少一个耦合孔33相对应。至少四个耦合孔33包括一个耦合盲孔331与至少三个耦合通孔333。耦合盲孔331贯穿第一表面301但未贯穿第二表面303,用于容性耦合。耦合通孔333贯穿第一表面301与第二表面303,用于控制磁性耦合。本实施方式中, 耦合盲孔331的深度大于谐振盲孔31的深度,控制容性耦合。每个耦合通孔333的周长小于任意一个边缘305边长的1/2。可以理解,四角元件结构30的形状包括但不限定为正方形。
耦合盲孔331控制容性耦合,是指通过设置耦合盲孔331的物理参数,来获取谐振器之间不同强度的容性耦合。耦合通孔333控制磁性耦合,是指通过设置耦合通孔333的物理参数,来获取谐振器之间不同强度的磁性耦合。物理参数包括耦合孔33(耦合通孔333或耦合盲孔331)的位置及孔结构参数。孔结构参数包括耦合孔(耦合通孔或耦合盲孔)的孔形状、孔深度、孔径等等。
四角元件结构30的每个角方位上的谐振盲孔31对应与相邻的一个角方位上的谐振盲孔31相邻设置。每相邻的两个谐振盲孔31组成一组相邻谐振盲孔组。如此,四个谐振器盲孔组成四组相邻谐振盲孔组。四组相邻谐振盲孔组包括第一相邻谐振盲孔组、第二相邻谐振盲孔组、第三相邻谐振盲孔组及第四相邻谐振盲孔组。
具体地,请结合参阅图3,四个谐振盲孔31包括谐振盲孔311、谐振盲孔313、谐振盲孔315及谐振盲孔317。谐振盲孔311与谐振盲孔313并排且相邻设置,谐振盲孔311与谐振盲孔313组成第一相邻谐振盲孔组。谐振盲孔311与谐振盲孔315并列且相邻设置,谐振盲孔311与谐振盲孔315组成第二相邻谐振盲孔组。谐振盲孔315与谐振盲孔317并排且相邻设置,谐振盲孔315与谐振盲孔317组成第三相邻谐振盲孔组。谐振盲孔317与谐振盲孔313并列且相邻设置,谐振盲孔315与谐振盲孔313组成第四相邻谐振盲孔组。每组相邻谐振盲孔组中的两个谐振盲孔311对应四角元件结构30的一个边缘305设置。谐振盲孔311与谐振盲孔317大致位于四角元件结构30的同一对角线上。谐振盲孔313与谐振盲孔315大致位于四角元件结构30的同一对角线上。
四角元件结构30的四个谐振器大致呈“田”型分布。每个谐振器对应位于一个四角元件结构30的角方位上。每两个角方位上的谐振器相邻设置。四个谐振器组成四组相邻谐振器组,每组相邻谐振器组包括两个同排或同列设置的谐振器。四个谐振器组成两组对角交叉谐振器组,每组交叉谐振器组包括两个位于四角元件结构30同一对角线上的谐振器。
请结合图3与图4,四个谐振器包括第一谐振器101、第二谐振器102、第三谐振器103及第四谐振器104。谐振盲孔311与周遭介质和金属面形成第一谐振器101。谐振盲孔313与周遭介质和金属面形成第二谐振器102。谐振盲孔315与周遭介质和金属面形成第三谐振器103。谐振盲孔317与周遭介质和金属面形成第四谐振器104。其中,第一谐振器101与输入信号源37信号连接,第四谐振器104与输出负载39信号连接。
第一谐振器101与第二谐振器102并排设置,第一谐振器101与第二谐振器102形成一组相邻谐振器组。第一谐振器101与第三谐振器103并列设置,第一谐振器101与第三谐振器103形成一组相邻谐振器组。第三谐振器103与第四谐振器104并排设置,第三谐振器103与第四谐振器104形成一组相邻谐振器组。第二谐振器102与第四谐振器104并列设置,第二谐振器102与第四谐振器104形成一组相邻谐振器组。第一谐振器101与第四谐振器104大致位于四角元件结构30的同一对角线上,第一谐振器101与第四谐振器104组成一组交叉谐振器组。第二谐振器102与第三谐振器103大致位于四角元件结构30的同一对角线上,第二谐振器102与第三谐振器103组成一组对角交叉谐振器组。
需要说明的是,图4对四角元件结构上的四个谐振器的分布仅是示例性地,并不是四角元件结构30的四个谐振器的真实分界线。
耦合盲孔331位于第一相邻谐振盲孔组的谐振器盲孔311与谐振器盲孔313之间,用于控制容性耦合。三个耦合通孔包括耦合通孔3331、耦合通孔3333与耦合通孔3335。耦合通 孔3331位于第二相邻谐振盲孔组的谐振器盲孔311与谐振器盲孔315之间,耦合通孔3333位于第三相邻谐振盲孔组的谐振器盲孔315与谐振器盲孔317之间,耦合通孔3335位于第四相邻谐振盲孔组的谐振器盲孔317与谐振器盲孔315之间。耦合通孔3331、耦合通孔3333与耦合通孔3335用于控制磁性耦合。本申请不限定耦合盲孔331设于谐振盲孔311与谐振盲孔313之间,耦合盲孔331也可以设于其他相邻谐振盲孔组的两个谐振盲孔31之间,例如,第二相邻谐振盲孔组的谐振盲孔311与谐振盲孔315之间。可以理解,四组相邻谐振盲孔组中的其中一组的两个谐振盲孔311之间设有耦合盲孔331,其余的三组相邻谐振盲孔组中的每一组的两个谐振盲孔311之间设有至少一个耦合通孔333。
耦合通孔333和耦合盲孔331的组合,能够同时控制四角元件结构30的各相邻谐振器之间的相邻耦合,以及四角元件结构30的各对角线上的两个谐振器之间的对角交叉耦合。相邻耦合,是指四角元件结构任意的相邻谐振器之间的耦合。例如,耦合通孔333和耦合盲孔331的组合,能够控制第一谐振器101与第二谐振器102之间的相邻耦合,第一谐振器101与第三谐振器103之间的相邻耦合,第三谐振器103与第四谐振器104之间的相邻耦合,以及第二谐振器102与第四谐振器104之间的相邻耦合。对角交叉耦合,是指四角元件结构任意一个对角线上的两个谐振器之间的耦合。例如,耦合通孔333和耦合盲孔331的组合,能够控制第一谐振器101与第四谐振器104之间的对角交叉耦合,以及第二谐振器102与第三谐振器103之间的对角交叉耦合。
谐振盲孔31大致为圆孔,谐振盲孔31的中心为谐振盲孔31的圆心。每两个相邻角方位上的谐振盲孔311的中心之间的中心连线与至少一个耦合孔33相对应。
请再结合参阅图4与图5,四个谐振盲孔311的中心连接围成内围区域34。较为具体地,谐振盲孔311的中心与谐振盲孔313的中心之间的连线为第一中心连线A1,耦合盲孔331对应第一中心连线A1设置。谐振盲孔313的中心与谐振盲孔315的中心之间的连线为第二中心连线A2,耦合通孔3331对应第二中心连线A2设置。谐振盲孔315的中心与谐振盲孔317的中心之间的连线为第三中心连线A3,耦合通孔3333对应第三中心连线A3设置。谐振盲孔317的中心与谐振盲孔313的中心之间的连线为第四中心连线A4,耦合通孔3335对应第四中心连线A4设置。第一中心连线A1与第三中心连线A3大致平行。第二中心连线A2与第四中心连线A4大致平行。第一中心连线A1、第二中心连线A2、第三中心连线A3及第四中心连线A4围成内围区域34。可以理解,第一中心连线A1与第三中心连线A3可以不平行,第二中心连线A2与第四中心连线A4可以不平行。
本实施方式中,耦合孔33为圆形,耦合孔33的中心为圆形的圆心。可以理解,耦合孔33还可以椭圆形、方形等。例如,耦合孔33为椭圆形时,耦合孔33的中心为椭圆形的长轴中点。耦合孔33为方形时,耦合孔33的中心为方形的两个对角线的交点。各耦合孔33(331、3331、3333、3335)的物理参数影响各谐振器之间的耦合强度。例如,耦合盲孔331的中心位于内围区域34内或内围区域34外时,能够控制强色散的容性耦合,即容性耦合系数随频率变化较快。本实施方式中,由于四个耦合孔33(包括一个耦合盲孔331与三个耦合通孔333)的中心均位于内围区域34内,第一谐振器101与第四谐振器104之间的对角交叉耦合的强度较弱,以及第二谐振器102与第三谐振器103之间的对角交叉耦合的强度较弱。
各耦合孔33的中心也可以位于内围区域34的外部。以下以耦合盲孔331的中心在第一表面301可以设置的区域为例,如图5a所示。设垂直第一中心连线A1的中垂线为第一中垂线B1。设垂直第二中心连线A2的中垂线为第二中垂线B2。第一轴线C1与谐振盲孔311朝向谐振盲孔317的一侧边缘外切。第一轴线C1与第二中垂线B2相垂直。第二轴线C2与谐振盲 孔317朝向谐振盲孔311一侧外切,第二轴线C2与第二中垂线B2相垂直。第一轴线C1、第二轴线C2、第二中垂线B2及耦合盲孔331所对应的边缘305围成区域40(图5a所示的阴影区域40)。耦合盲孔331的中心可以设于区域40内,区域40大致位于第二中垂线B2与耦合盲孔331所对应的边缘305之间。
如图6所示,在一种四角元件结构的可能结构中,耦合通孔3331的中心、耦合通孔3333的中心、耦合通孔3335的中心均位于内围区域34外。耦合盲孔331的中心位于内围区域34外。各耦合通孔333(包括3331、3333、3335)的中心和耦合盲孔331的中心往内围区域34的外部偏位时,第一谐振器101与第四谐振器104之间的对角交叉耦合的强度较强,以及第二谐振器102和第三谐振器103之间的对角交叉耦合的强度较强。
如图7所示,在一种四角元件结构的可能结构中,耦合通孔3331的中心与耦合通孔3333的中心均位于内围区域34内。耦合通孔3335的中心位于内围区域34外。耦合盲孔331的中心位于内围区域34外。三个耦合通孔333(3331、3333、3335)和耦合盲孔331组合的一部分耦合孔33的中心位于内围区域34的外部,一部分耦合孔33的中心位于内围区域34内,使得第一谐振器101与第四谐振器104之间的对角交叉耦合的强度较强,第二谐振器102和第三谐振器103之间的对角交叉耦合的强度较弱。
请结合参阅图5与图8,图8为图2所示的介质滤波器对应的数学拓扑模型,四个谐振器的数学模型分别被表征为谐振器节点1、谐振器节点2、谐振器节点3、谐振器节点4。第一谐振器101表征为谐振器节点1,第二谐振器102表征为谐振器节点2,第三谐振器103表征为谐振器节点3,第四谐振器104表征为谐振器节点4。其中,输入信号源表征为S,输出负载表征为L。输入信号源S与谐振器节点1信号连接,输出负载L与谐振器节点4信号连接,如此,四角元件结构30形成箱式四角元件。
谐振盲孔311的中心与谐振盲孔315的中心之间的第二中心连线A2对应一个耦合通孔3331,耦合通孔3331控制磁性耦合M13。谐振盲孔315的中心与谐振盲孔317的中心之间的第三中心连线A3设有一个耦合通孔3333,耦合通孔3333控制磁性耦合M34。谐振盲孔313的中心与谐振盲孔317的中心之间的第四中心连线A4对应耦合通孔3335,耦合通孔3335控制磁性耦合M24。其中,M为耦合系数,耦合系数是指谐振器与谐振器之间、输入信号源(又称激励)与谐振器之间、输出负载(又称输出)与谐振器之间耦合的强弱,例如,M13是指第一谐振器101(谐振器节点1)与第三谐振器103(谐振器节点3)之间耦合的耦合系数。谐振盲孔311的中心与谐振盲孔313的中心之间的第二中心连线A2对应耦合盲孔331,且耦合盲孔331的中心位于内围区域34内,耦合盲孔331控制色散容性耦合M12。耦合通孔333和耦合盲孔331的组合,可以控制四个谐振器之间的相邻耦合M12、M13、M24、M34和等效对角交叉耦合M14。
由于同时存在等效对角交叉耦合M14和色散容性耦合M12,使得四角元件结构30能够产生两个近端传输零点Q1与Q2(如图9a、图9b、图9c所示)。图9a、图9b及图9c为四角元件结构30的四种模拟结果示意图。例如,图9a中,两个近端传输零点Q1与Q2位于工作频段的低频段,工作频段的低频段的抑制度要明显高于高频段的抑制度。又如图9b中,两个近端传输零点Q1与Q2位于工作频段的高频段,工作频段的高频段的抑制度要明显高于低频段的抑制度。再如图9c中,近端传输零点Q1位于工作频段的低频段,近端传输零点Q2位于工作频段的高频段。
相对于仅能产生一个近端传输零点的传统的箱式四角元件,本申请第一实施方式提供的箱式的四角元件结构30增加了1个近端传输零点,进而提高了箱式四角元件的抑制度设计自 由度。另外,在箱式四角元件进行结构设计时,可通过设计耦合孔在四角元件结构上的位置以及各耦合孔的孔结构参数,来获取所需性能的箱式四角元件,极大地提高了箱式四角元件的抑制度设计自由度。
可以理解,本申请不限定输入信号源37与第一谐振器101信号连接,输入信号源37也可以与其他的谐振器信号连接,本申请不限定输出负载39与第三谐振器103信号连接,输出负载39也可以与其他的谐振器信号连接。
可以理解,四角元件结构中的四个谐振器呈“田”型分布,每个谐振器与另外两个谐振器相邻设置,四个谐振器组成两组交叉谐振器组,每组交叉谐振器组包括两个位于四角元件结构同一对角线上的谐振器;一个交叉谐振器组中的两个谐振器中,一个与输入信号源信号37连接,另一个与输出负载39信号连接,使四角元件结构形成箱式四角元件。即,与输入信号源37信号连接的谐振器及与输出负载39信号连接的谐振器,位于四角元件结构30的同一个对角线上。
一些实施方式中,一组相邻谐振器组的两个谐振器中,一个谐振器与输入信号源信号37信号连接,另一个谐振器与输出负载信号39信号连接,使四角元件结构30形成四重四角元件。可以理解,四角元件结构中的四个谐振器呈“田”型分布,每个谐振器与另外两个谐振器相邻设置,四个谐振器组成四组相邻谐振器组,每组相邻谐振器组包括两个同排或同列设置的谐振器;一个相邻谐振器组的两个谐振器中的一个与输入信号源信号连接,使四角元件结构形成四重四角元件。即,与输入信号源37信号连接的谐振器及与输出负载39信号连接的谐振器,对应四角元件结构30的同一个边缘设置。
在一些实施方式中,所有耦合孔33均为耦合通孔,如图10所示,耦合孔33贯穿第一表面301与第二表面303,耦合通孔用于控制磁性耦合,每个耦合通孔的周长小于对应所述边缘305边长的1/2。谐振盲孔311与谐振盲孔313之间设有耦合通孔3331,谐振盲孔313与谐振盲孔315之间设有耦合通孔3333,谐振盲孔315与谐振盲孔317之间设有耦合通孔3335,谐振盲孔317与谐振盲孔311之间设有耦合通孔3337。每个边缘305对应一个耦合通孔。
可以理解,本申请对谐振盲孔31的形状不作限定,例如,可以为方形、椭圆形等规则或不规则形状。
本申请第二实施方式提供的介质滤波器与第一实施方式提供的介质滤波器,区别在于,请参阅图11,耦合孔的数量可以大于四个。
耦合孔的数量为五个,五个耦合孔包括一个耦合盲孔331与四个耦合通孔。四个耦合通孔包括耦合通孔3331、耦合通孔3333、耦合通孔3335与耦合通孔3337。
耦合盲孔331位于谐振盲孔313与谐振盲孔315之间。耦合盲孔331对应谐振盲孔313的中心与谐振盲孔315的中心之间的第二中心连线A2设置。耦合盲孔331的中心位于内围区域34外。四个耦合通孔中,三个耦合通孔的中心位于内围区域34外,一个耦合通孔的中心位于内围区域34内。耦合通孔3331位于谐振盲孔311与谐振盲孔313之间。耦合通孔3331对应谐振盲孔311的中心与谐振盲孔313的中心之间的第一中心连线A1设置,且耦合通孔3331的中心位于内围区域34外。耦合通孔3333位于谐振盲孔315与谐振盲孔317之间。耦合通孔3333对应谐振盲孔315的中心与谐振盲孔317的中心之间的第三中心连线A3设置,且耦合通孔3333的中心位于内围区域34外。耦合通孔3335位于谐振盲孔311与谐振盲孔317之间,耦合通孔3335位于谐振盲孔311与谐振盲孔317之间。耦合通孔3335与耦合通孔3337对应谐振盲孔317的中心与谐振盲孔311的中心之间的第四中心连线A4设置,且耦 合通孔3335的中心位于内围区域34外,耦合通孔3337的中心位于内围区域34外。
谐振盲孔311与其周遭介质和金属面形成第一谐振器,谐振盲孔313与其周遭介质和金属面形成第二谐振器,谐振盲孔315与其周遭介质和金属面形成第三谐振器,谐振盲孔317与其周遭介质和金属面形成第四谐振器。
输入信号源37与第一谐振器信号连接,输出负载39与第四谐振器信号连接,使四角元件结构30成为四重四角元件。请结合参阅图12,图12为图11所示的介质滤波器所对应的数学拓扑模型。四个谐振器的数学模型表征为谐振器节点1、谐振器节点2、谐振器节点3、谐振器节点4。其中,图12中的S表示输入信号源,图11中的L表示输出负载。第一谐振器表征为谐振器节点1,第二谐振器表征为谐振器节点2表征,第三谐振器表征为谐振器节点3,第四谐振器表征为谐振器节点4。
耦合通孔3331对应谐振盲孔311的中心与谐振盲孔313的中心之间的第一中心连线A1设置,耦合通孔3331控制磁性耦合M12。耦合通孔3333对应谐振盲孔315的中心与谐振盲孔317的中心之间的第三中心连线A3设置,耦合通孔3333控制磁性耦合M34。耦合通孔3335位于谐振盲孔311与谐振盲孔317之间,耦合通孔3337位于谐振盲孔311与谐振盲孔317之间,耦合通孔3335与耦合通孔3337可以控制磁性耦合M14。耦合盲孔331位于谐振盲孔313与谐振盲孔315之间,可以控制色散容性耦合M23。耦合通孔和耦合盲孔331的组合,可以控制各相邻谐振器之间的相邻耦合,以及各四角元件结构的同一对角线上的两个谐振器之间的对角交叉耦合。因为存在等效对角交叉耦合M13和色散容性耦合M23,在对四重四角元件设计模拟时,可以通过调节各耦合孔的物理参数,来控制两个近端传输零点的对称性(即两个近端传输零点的相对位置),如图13a、图13b与图13c所示。图13a、图13b及图13c为四角元件结构30的三种模拟结果示意图。
请参阅图14,本申请第三实施方式提供一种带通8阶介质滤波器100,包括第一四角元件结构400及第二四角元件结构500。第一四角元件结构400与第二四角元件结构500级联。第一四角元件结构400与第一实施方式提供的第一四角元件结构大致相同。第二四角元件结构500与第一实施方式提供的第一四角元件结构大致相同。
第一四角元件结构400与第二四角元件结构500均包括相背设置的第一表面301与第二表面303。第一四角元件结构400的第一表面301与第二四角元件结构500的第一表面301位于同一表面上。第一四角元件结构400的第二表面303与第二四角元件结构500的第二表面303位于同一表面上。第一四角元件结构400的第一表面301设有四个谐振盲孔,使第一四角元件结构400形成四个谐振器。第一四角元件结构400中,每相邻的两个谐振盲孔之间设有一个耦合孔。第一四角元件结构400的四个耦合孔包括一个耦合盲孔231与三个耦合通孔211。耦合盲孔231贯穿第一四角元件结构400的第一表面301但未贯穿第一四角元件结构400的第二表面303。第一四角元件结构400的耦合通孔211贯穿第一四角元件结构400的第一表面301与第一四角元件结构400的第二表面303。
第一四角元件结构400的四个谐振盲孔的中心之间的连线围成内围区域401。第一四角元件结构400的四个耦合孔的中心均位于内围区域401内。四个谐振盲孔包括谐振盲孔2011、谐振盲孔2013、谐振盲孔2015及谐振盲孔2017。
谐振盲孔2011与谐振盲孔2013相邻且并排设置。谐振盲孔2015与谐振盲孔2017相邻且并排设置。谐振盲孔2011与谐振盲孔2015相邻且并列设置。谐振盲孔2013与谐振盲孔2017相邻且并列设置。耦合盲孔231位于谐振盲孔2011与谐振盲孔2015之间。耦合盲孔231 对应谐振盲孔2011的中心与谐振盲孔2015的中心之间的中心连线设置。谐振盲孔2011及其周遭介质和金属面形成第一谐振器。谐振盲孔2013及其周遭介质和金属面构成的谐振器形成第二谐振器。谐振盲孔2015及其周遭介质和金属面形成第三谐振器。谐振盲孔2017及其周遭介质和金属面构成的谐振器形成第四谐振器。第一谐振器与输入信号源291信号连接,第四谐振器与输出负载292信号连接,第一四角元件结构400为箱式四角元件结构。
三个耦合通孔211包括耦合通孔2111、耦合通孔2113与耦合通孔2115。耦合通孔2111位于谐振盲孔2011与谐振盲孔2013之间。耦合通孔2113位于谐振盲孔2015与谐振盲孔2017之间,耦合通孔2115位于谐振盲孔2117与谐振盲孔2113之间。耦合通孔2111对应谐振盲孔2011的中心与谐振盲孔2013的中心之间的中心连线设置。耦合通孔2113对应谐振盲孔2015的中心与谐振盲孔2017的中心之间的中心连线设置。耦合通孔2115位于谐振盲孔2117的中心与谐振盲孔2113的中心之间的中心连线设置。第一四角元件结构400的耦合通孔和耦合盲孔331的组合,能够控制第一四角元件结构400的各谐振器之间的相邻耦合和对角交叉耦合。
第二四角元件结构500的第一表面301设有四个谐振盲孔,使第二四角元件结构500形成四个谐振器。第二四角元件结构500的每相邻的两个谐振盲孔之间设有一个耦合孔。第二四角元件结构500的四个耦合孔包括三个耦合通孔212与一个耦合盲孔232。第二四角元件结构500的耦合通孔212贯穿第二四角元件结构500的第一表面301与第二四角元件结构500的第二表面303。耦合盲孔232贯穿第二四角元件结构500的第一表面301但未贯穿第二四角元件结构500的第二表面303。
第二四角元件结构500的四个谐振盲孔的中心连线围成内围区域501。第二四角元件结构500的四个谐振盲孔包括谐振盲孔2021、谐振盲孔2023、谐振盲孔2025及谐振盲孔2027。谐振盲孔2021与谐振盲孔2023相邻且并列设置。谐振盲孔2021与谐振盲孔2025相邻且并排设置。谐振盲孔2025与谐振盲孔2027相邻且并列设置。谐振盲孔2023与谐振盲孔2027相邻且并排设置。谐振盲孔2021及其周遭介质形成第五谐振器。谐振盲孔2023及其周遭介质和金属面构成的谐振器形成第六谐振器。谐振盲孔2025及其周遭介质和金属面形成第七谐振器。谐振盲孔2027及其周遭介质和金属面形成第八谐振器。第五谐振器与输入信号源S信号连接,第八谐振器与输出负载292信号连接,第二四角元件结构500为箱式四角元件结构。
耦合盲孔232位于谐振盲孔2025与谐振盲孔2027之间,耦合盲孔232对应谐振盲孔2025的中心与谐振盲孔2027的中心之间的中心连线设置,耦合盲孔232的中心位于内围区域501内。三个耦合通孔212包括耦合通孔2121、耦合通孔2123与耦合通孔2125。耦合通孔2121位于谐振盲孔2021与谐振盲孔2023之间。耦合通孔2121对应谐振盲孔2021的中心与谐振盲孔2023的中心之间的中心连线设置。耦合通孔2121的中心位于内围区域501内。耦合通孔2123位于谐振盲孔2021与谐振盲孔2025之间。耦合通孔2123对应谐振盲孔2021的中心与谐振盲孔2025的中心之间的中心连线设置。耦合通孔2123的中心位于内围区域501内。耦合通孔2125位于谐振盲孔2123与谐振盲孔2127之间。耦合通孔2125对应谐振盲孔2023的中心与谐振盲孔2027的中心之间的中心连线设置。耦合通孔2125的中心位于内围区域501内。耦合通孔333和耦合盲孔331的组合,能够控制第二四角元件结构500的各谐振器之间的相邻耦合和对角交叉耦合。
介质滤波器100还包括间隔通槽250,用于隔开第一四角元件结构400与第二四角元件结构500。第一四角元件结构400位于间隔通槽250的一侧,第二四角元件结构500位于间隔通槽250的另一侧。本实施方式中,间隔通槽250位于第一四角元件结构400的第一表面 301与第二四角元件结构500的第一表面301的交界边缘上。
请结合参阅图15,第一四角元件结构400的四个谐振盲孔按照“田”字形或近似“田”字形排布,实现第一四角元件结构400的四个准TEM模谐振器。第二四角元件结构500所构成的四个谐振器可以分别表征为四个谐振器节点:谐振器节点1、谐振器节点2、谐振器节点3与谐振器节点4。第一谐振器可以表征为谐振器节点1。第二谐振器可以表征为谐振器节点2。第三谐振器可以表征为谐振器节点3。第四谐振器可以表征为谐振器节点4。
第二四角元件结构500的四个谐振盲孔按照“田”字形或近似“田”字形排布,实现第二四角元件结构500的四个准TEM模谐振器。第二四角元件结构500的四个谐振器分别表征为谐振器节点5、谐振器节点6、谐振器节点7与谐振器节点8。第五谐振器可以表征为谐振器节点5。第六谐振器可以表征为谐振器节点6。第七谐振器可以表征为谐振器节点7。第八谐振器可以表征为谐振器节点8。
输入信号源291表征为输入信号源S。输出负载292表征为输出负载L。谐振器节点1与输入信号源S信号连接。谐振器节点4与输出负载L信号连接。谐振器节点6与输入信号源S信号连接。谐振器节点8与输出负载L信号连接。
更为具体地,耦合通孔2111对应谐振盲孔2011的中心与谐振盲孔2013的中心之间的中心连线设置,耦合通孔2113对应谐振盲孔2015的中心与谐振盲孔2017的中心之间的中心连线设置,耦合通孔2115位于谐振盲孔2117的中心与谐振盲孔2113的中心之间的中心连线设置,耦合通孔2111、耦合通孔2113、耦合通孔2115控制磁性耦合M12、M34与M24。耦合盲孔231对应谐振盲孔2011的中心与谐振盲孔2015的中心之间的中心连线设置,耦合盲孔231可控制色散容性耦合M13。耦合通孔211和耦合盲孔231组合,能够控制第一四角元件结构400的四个谐振器之间的相邻耦合M12、M34、M24、M13以及等效对角耦合M14。因为第一四角元件结构400存在等效对角交叉耦合M14和色散容性耦合M13,使得第一四角元件结构400可以增加1个近端传输零点,即产生两个近端传输零点(如图16所示的近端传输零点fz1和fz2)。
耦合通孔2121对应谐振盲孔2021的中心与谐振盲孔2023的中心之间的中心连线设置,耦合通孔2123对应谐振盲孔2021的中心与谐振盲孔2025的中心之间的中心连线设置,耦合通孔2125对应谐振盲孔2023的中心与谐振盲孔2027的中心之间的中心连线设置,耦合通孔2121、耦合通孔2123、耦合通孔2125控制磁性耦合M56、M57与M68。耦合盲孔232对应谐振盲孔2025的中心与谐振盲孔2027的中心之间的中心连线设置,可控制色散容性耦合M78。耦合通孔212和耦合盲孔232组合,能够控制第二四角元件结构500的四个谐振器之间的相邻耦合M56、M57、M78、M68以及等效对角耦合M58。因为第二四角元件结构500存在等效对角交叉耦合M58和色散容性耦合M78,使得第二四角元件结构500可以增加1个近端传输零点,即产生两个近端传输零点(如图16所示的fz3和fz4)。
综上,第三实施方式提供的带通8阶介质滤波器100能够产生四个近端传输零点,比现有的带通8阶的介质滤波器多了两个近端传输零点,能够增加介质滤波器100的抑制度,进而大大优化了介质滤波器100的性能。抑制度越高意味着介质滤波器对带外干扰抑制能力更好。
请参阅图17,本申请第四实施方式提供一种介质滤波器100,包括第一四角元件结构400及第二四角元件结构500。第一四角元件结构400与第二四角元件结构500级联。
第一四角元件结构400与第二四角元件结构500均包括相背设置的第一表面301与第二 表面303。第一四角元件结构400的第一表面301设有四个谐振盲孔与五个耦合孔。第一四角元件结构400中每相邻的两个谐振盲孔之间设有一个耦合孔。第一四角元件结构400的五个耦合孔包括一个耦合盲孔331与四个耦合通孔。耦合盲孔331贯穿第一四角元件结构400的第一表面301但未贯穿第一四角元件结构400的第二表面303。第一四角元件结构400的耦合通孔贯穿第一表面301与第二表面303。
第一四角元件结构400的四个相邻谐振盲孔的中心之间的连线连接围成内围区域401。第一四角元件结构400的四个谐振盲孔包括谐振盲孔3011、谐振盲孔3013、谐振盲孔3015及谐振盲孔3017。谐振盲孔3011与谐振盲孔3013相邻且并列设置。谐振盲孔3015与谐振盲孔3015相邻且并排设置。谐振盲孔3011与谐振盲孔3017相邻且并排设置。谐振盲孔3013与谐振盲孔3015相邻且并排设置。谐振盲孔3011及其周遭介质和金属面形成第一谐振器。谐振盲孔3013及其周遭介质和金属面构成的谐振器形成第二谐振器。谐振盲孔3015及其周遭介质和金属面形成第三谐振器。谐振盲孔3017及其周遭介质和金属面构成的谐振器形成第四谐振器。第一谐振器与输入信号源391信号连接,第四谐振器与输出负载392信号连接,第一四角元件结构400为四重四角元件结构。
第一四角元件结构400的四个耦合通孔包括耦合通孔3111、耦合通孔3113、耦合通孔3115、耦合通孔3117。耦合通孔3111位于谐振盲孔3011与谐振盲孔3013之间,耦合通孔3111对应谐振盲孔3011的中心与谐振盲孔3013的中心之间的中心连线设置,耦合通孔3111位于内围区域401外。耦合通孔3113位于谐振盲孔3015与谐振盲孔3017之间,耦合通孔3113对应谐振盲孔3015的中心与谐振盲孔3017的中心之间的中心连线设置,耦合通孔3113位于内围区域401外。耦合通孔3115位于谐振盲孔3011与谐振盲孔3017之间,耦合通孔3115对应谐振盲孔3011的中心与谐振盲孔3017的中心之间的中心连线设置,耦合通孔3115位于内围区域401内。耦合通孔3117位于谐振盲孔3011与谐振盲孔3017之间,耦合通孔3117对应谐振盲孔3011的中心与谐振盲孔3017的中心之间的中心连线设置,耦合通孔3117位于内围区域401外。耦合盲孔331对应谐振盲孔3013的中心与谐振盲孔3015的中心之间的中心连线设置,且耦合盲孔331的中心位于内围区域401外。
第二四角元件结构500的第一表面301设有四个谐振盲孔与五个耦合孔。第二四角元件结构500每相邻的两个谐振盲孔之间设有一个耦合孔。第二四角元件结构500的五个耦合孔包括一个耦合盲孔332与四个耦合通孔。耦合盲孔332贯穿第二四角元件结构500的第一表面301但未贯穿第二表面303。第二四角元件结构500的耦合通孔贯穿第二四角元件结构500的第一表面301与第二四角元件结构500的第二表面303。
第二四角元件结构500的四个相邻谐振盲孔的中心之间的连线连接围成内围区域501。第二四角元件结构500的四个谐振盲孔包括谐振盲孔3021、谐振盲孔3023、谐振盲孔3025及谐振盲孔3027。谐振盲孔3021与谐振盲孔3023相邻且并列设置。谐振盲孔3021与谐振盲孔3027相邻且并排设置。谐振盲孔3025与谐振盲孔3027相邻并列设置。谐振盲孔3023与谐振盲孔3025相邻且并排设置。谐振盲孔3021及其周遭介质和金属面形成第五谐振器。谐振盲孔3023及其周遭介质和金属面构成的谐振器形成第六谐振器。谐振盲孔3025及其周遭介质和金属面形成第七谐振器。谐振盲孔3027及其周遭介质和金属面形成第八谐振器。第五谐振器与输入信号源391信号连接,第八谐振器与输出负载392信号连接,第二四角元件结构500为四重四角元件结构。
四个耦合通孔312包括耦合通孔3121、耦合通孔3123、耦合通孔3125、耦合通孔3127。耦合通孔3121位于谐振盲孔3021与谐振盲孔3023之间,耦合通孔3121对应谐振盲孔3021 的中心与谐振盲孔3023的中心之间的中心连线设置,耦合通孔3123的中心位于内围区域501外。耦合通孔3123位于谐振盲孔3025与谐振盲孔3027之间,耦合通孔3123对应谐振盲孔3025的中心与谐振盲孔3027的中心之间的中心连线设置,耦合通孔3123的中心位于内围区域501外。耦合通孔3125位于谐振盲孔3021与谐振盲孔3027之间,耦合通孔3125对应谐振盲孔3021的中心与谐振盲孔3027的中心之间的中心连线设置,耦合通孔3125的中心位于内围区域501内。耦合通孔3127位于谐振盲孔3021与谐振盲孔3027之间,耦合通孔3127对应谐振盲孔3021的中心与谐振盲孔3027的中心之间的中心连线设置,耦合通孔3127的中心位于内围区域501外。耦合盲孔332位于谐振盲孔3023与谐振盲孔3025之间,耦合盲孔332对应谐振盲孔3023的中心与谐振盲孔3025的中心之间的中心连线设置,且耦合盲孔332的中心位于内围区域501外。
请结合参阅图18,第一四角元件结构400的四个谐振盲孔按照“田”字形或近似“田”字形排布,实现第一四角元件结构400形成四个准TEM模谐振器。第一四角元件结构400的四个模谐振器可以表征为四个谐振器节点:谐振器节点1、谐振器节点2、谐振器节点3与谐振器节点4。第一谐振器可以表征为谐振器节点1。第二谐振器可以表征为谐振器节点2。第三谐振器可以表征为谐振器节点3。第四谐振器可以表征为谐振器节点4。
第二四角元件结构500的四个谐振盲孔302按照“田”字形或近似“田”字形排布,实现第二四角元件结构500形成四个准TEM模谐振器。第二四角元件结构500的四个准TEM模谐振器可以表征为四个谐振器节点:谐振器节点5、谐振器节点6、谐振器节点7与谐振器节点8。第五谐振器可以表征为谐振器节点5。第六谐振器可以表征为谐振器节点6。第七谐振器可以表征为谐振器节点7。第八谐振器可以表征为谐振器节点8。
输入信号源392表征为输入信号源S。输出负载392表征为输出负载L。谐振器节点1与输入信号源S信号连接。谐振器节点4与输出负载L信号连接。谐振器节点5与输入信号源S信号连接。谐振器节点8与输出负载L信号连接。
耦合通孔3111对应谐振盲孔3011的中心与谐振盲孔3013的中心之间的中心连线设置,耦合通孔3113对应谐振盲孔3015的中心与谐振盲孔3017的中心之间的中心连线设置,耦合通孔3115对应谐振盲孔3011的中心与谐振盲孔3017的中心之间的中心连线设置,耦合通孔3117对应谐振盲孔3011的中心与谐振盲孔3017的中心之间的中心连线设置,可控制磁性M12、M34、耦合M14。耦合盲孔331对应谐振盲孔3013的中心与谐振盲孔3015的中心之间的中心连线设置,可控制色散容性耦合M23。
耦合通孔311和耦合盲孔331组合,能够控制第一四角元件结构400的四个谐振器之间的相邻耦合M12、M14、M23、M34以及等效对角交叉耦合M13。因为第一四角元件结构400存在等效对角交叉耦合M13和色散容性耦合M23,在设计时,模拟第一四角元件结构400的各耦合孔的物理参数,来调节两个近端传输零点(如图19所示的fz2和fz3)的对称性,即设计两个近端传输零点的相对位置。
耦合通孔3121对应谐振盲孔3021的中心与谐振盲孔3023的中心之间的中心连线设置,耦合通孔3123对应谐振盲孔3025的中心与谐振盲孔3027的中心之间的中心连线设置,耦合通孔3125对应谐振盲孔3021的中心与谐振盲孔3027的中心之间的中心连线设置,耦合通孔3127对应谐振盲孔3021的中心与谐振盲孔3027的中心之间的中心连线设置,可控制磁性耦合M56、M78与M56。
耦合盲孔332对应谐振盲孔3023的中心与谐振盲孔3025的中心之间的中心连线设置,控制色散容性耦合M67。耦合通孔312和耦合盲孔332组合,能够控制第二四角元件结构500 的四个谐振器之间的相邻耦合M56、M67、M58、M78以及等效对角交叉耦合M68。因为第二四角元件结构500存在等效对角交叉耦合M68和色散容性耦合M67,在设计时,模拟第二四角元件结构500的各耦合孔的物理参数,来调节两个近端传输零点(如图19所示的fz1和fz4)的对称性,即设计两个近端传输零点的相对位置。
应当理解的是,可以在本申请中使用的诸如“包括”以及“可以包括”之类的表述表示所公开的功能、操作或构成要素的存在性,并且并不限制一个或多个附加功能、操作和构成要素。在本申请中,诸如“包括”和/或“具有”之类的术语可解释为表示特定特性、数目、操作、构成要素、部件或它们的组合,但是不可解释为将一个或多个其它特性、数目、操作、构成要素、部件或它们的组合的存在性或添加可能性排除在外。
此外,在本申请中,表述“和/或”包括关联列出的词语中的任意和所有组合。例如,表述“A和/或B”可以包括A,可以包括B,或者可以包括A和B这二者。
在本申请中,包含诸如“第一”和“第二”等的序数在内的表述可以修饰各要素。然而,这种要素不被上述表述限制。例如,上述表述并不限制要素的顺序和/或重要性。上述表述仅用于将一个要素与其它要素进行区分。例如,第一用户设备和第二用户设备指示不同的用户设备,尽管第一用户设备和第二用户设备都是用户设备。类似地,在不脱离本申请的范围的情况下,第一要素可以被称为第二要素,类似地,第二要素也可以被称为第一要素。
当部件被称作“连接”或“接入”其他部件时,应当理解的是:该部件不仅直接连接到或接入到其他部件,而且在该部件和其它部件之间还可以存在另一部件。另一方面,当部件被称作“直接连接”或“直接接入”其他部件的情况下,应该理解它们之间不存在部件。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (12)

  1. 一种四角元件结构,其特征在于,包括相背设置的第一表面与第二表面,所述第一表面包括四个边缘,所述第一表面上设有四个谐振盲孔及至少四个耦合孔;每个所述谐振盲孔对应位于所述四角元件结构的一个角方位上,以形成所述四角元件结构的四个谐振器;每两个相邻角方位上的谐振盲孔的中心之间的中心连线与至少一个所述耦合孔相对应;所述耦合孔包括耦合盲孔和/或耦合通孔,其中,所述耦合盲孔贯穿所述第一表面,所述耦合通孔贯穿所述第一表面与所述第二表面,所述耦合通孔的周长小于任意一个所述边缘边长的1/2。
  2. 根据权利要求1所述的四角元件结构,其特征在于,所述四个谐振盲孔的中心连接围成内围区域,所述四个耦合孔中至少一个的中心位于所述内围区域内。
  3. 根据权利要求1所述的四角元件结构,其特征在于,所述四个谐振盲孔的中心连接围成内围区域,所述四个耦合孔中至少一个的中心位于所述内围区域外。
  4. 根据权利要求1-3任意一项所述的四角元件结构,其特征在于,所述至少四个耦合孔中的一个为耦合盲孔。
  5. 根据权利要求1-4任意一项所述的四角元件结构,其特征在于,所述耦合盲孔的深度大于所述谐振盲孔的深度。
  6. 根据权利要求1-5任意一项所述的四角元件结构,其特征在于,所有耦合孔均为耦合通孔。
  7. 根据权利要求1-6任意一项所述的四角元件结构,其特征在于,所述耦合孔的形状为圆形、椭圆形、方形中的一种。
  8. 一种介质滤波器,其特征在于,包括根据权利要求1-7任意一项所述的四角元件结构、输入信号源与输出负载;所述输入信号源与所述四个谐振器中的一个信号连接,所述输出负载与所述四个谐振器中的另一个信号连接。
  9. 根据权利要求8所述的介质滤波器,其特征在于,与所述输入信号源信号连接的谐振器及与所述输出负载信号连接的谐振器,对应所述四角元件结构的同一个边缘设置。
  10. 根据权利要求8所述的介质滤波器,其特征在于,与所述输入信号源信号连接的谐振器及与所述输出负载信号连接的谐振器,位于所述四角元件结构的同一个对角线上。
  11. 根据权利要求8所述的介质滤波器,其特征在于,所述四角元件结构的数量为至少两个,所述介质滤波器还包括至少一个间隔通槽,所述间隔通槽贯穿所述第一表面与所述第二表面,每相邻的两个所述四角元件结构之间设有一个所述间隔通槽。
  12. 一种基站设备,其特征在于,包括根据权利要求8-11任意一项所述的介质滤波器与天线,所述介质滤波器与所述天线信号连接。
PCT/CN2022/098928 2021-06-25 2022-06-15 四角元件结构、介质滤波器及基站设备 WO2022267951A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110715021.1A CN115528395A (zh) 2021-06-25 2021-06-25 四角元件结构、介质滤波器及基站设备
CN202110715021.1 2021-06-25

Publications (1)

Publication Number Publication Date
WO2022267951A1 true WO2022267951A1 (zh) 2022-12-29

Family

ID=84545250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/098928 WO2022267951A1 (zh) 2021-06-25 2022-06-15 四角元件结构、介质滤波器及基站设备

Country Status (2)

Country Link
CN (1) CN115528395A (zh)
WO (1) WO2022267951A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110556613A (zh) * 2019-09-29 2019-12-10 江西一创新材料有限公司 一种用于调节传输零点对称性的交叉耦合结构
CN210040477U (zh) * 2019-08-28 2020-02-07 中兴通讯股份有限公司 一种交叉耦合滤波器
CN210468054U (zh) * 2019-10-25 2020-05-05 京信通信技术(广州)有限公司 介质滤波器
JP2020072450A (ja) * 2018-11-02 2020-05-07 宇部興産株式会社 誘電体共振部品
CN111146534A (zh) * 2020-01-15 2020-05-12 深圳市大富科技股份有限公司 一种介质滤波器及通信装置
CN212277356U (zh) * 2020-04-16 2021-01-01 湖州东尼新材有限公司 一种八阶四零点的微波介质波导滤波器
WO2021004544A1 (zh) * 2019-07-11 2021-01-14 中兴通讯股份有限公司 一种滤波器耦合单元和滤波器
CN112886161A (zh) * 2015-11-27 2021-06-01 华为技术有限公司 介质滤波器,收发信机及基站

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112886161A (zh) * 2015-11-27 2021-06-01 华为技术有限公司 介质滤波器,收发信机及基站
JP2020072450A (ja) * 2018-11-02 2020-05-07 宇部興産株式会社 誘電体共振部品
WO2021004544A1 (zh) * 2019-07-11 2021-01-14 中兴通讯股份有限公司 一种滤波器耦合单元和滤波器
CN210040477U (zh) * 2019-08-28 2020-02-07 中兴通讯股份有限公司 一种交叉耦合滤波器
CN110556613A (zh) * 2019-09-29 2019-12-10 江西一创新材料有限公司 一种用于调节传输零点对称性的交叉耦合结构
CN210468054U (zh) * 2019-10-25 2020-05-05 京信通信技术(广州)有限公司 介质滤波器
CN111146534A (zh) * 2020-01-15 2020-05-12 深圳市大富科技股份有限公司 一种介质滤波器及通信装置
CN212277356U (zh) * 2020-04-16 2021-01-01 湖州东尼新材有限公司 一种八阶四零点的微波介质波导滤波器

Also Published As

Publication number Publication date
CN115528395A (zh) 2022-12-27

Similar Documents

Publication Publication Date Title
CN107534197B (zh) 介质滤波器,收发信机及基站
CN110265753B (zh) 一种介质波导滤波器
CN109713414B (zh) 一种有限传输零点位置可调的调频带通滤波器
TWI540787B (zh) 巴倫濾波器及射頻系統
CN109742493B (zh) 一种基于四模介质谐振器的差分双通带滤波器
CN110088977B (zh) 介质谐振器及应用其的介质滤波器、收发信机及基站
CN106450600A (zh) 一种基于带通带阻混合结构的边带陡峭平面双工器
CN105514547A (zh) 一种基于新型频率分离结构的低通-带通五工器
CN111509339A (zh) 一种介质滤波器耦合转换结构及通信设备
WO2022267951A1 (zh) 四角元件结构、介质滤波器及基站设备
CN109841933B (zh) 一种紧凑型宽带差分带通滤波器
CN112072224A (zh) 基于基片集成波导的平衡带通滤波器
WO2021035805A1 (zh) 滤波器及其滤波回路结构
CN104009271B (zh) 一种基于级联四个谐振器的平面带通滤波器
EP1357631A1 (en) Ultra-selective broadband bandpass filter using hybrid technology
WO2021056415A1 (zh) 陶瓷介质滤波器
CN212062642U (zh) 一种介质滤波器耦合转换结构及通信设备
US11978940B2 (en) Dielectric duplexer
JP2007089000A (ja) ストリップラインフィルタ
TWI531110B (zh) Balanced bandpass filter
CN205621824U (zh) 一种基于新型频率分离结构的低通-带通五工器
CN205621822U (zh) 高隔离度低通带通三工器
CN209843915U (zh) 一种介质波导滤波器
CN111033885A (zh) 腔体滤波器及通信射频器件
CN209515952U (zh) 一种微带宽阻带双工器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22827446

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22827446

Country of ref document: EP

Kind code of ref document: A1