WO2022267882A1 - 业务处理方法及业务处理设备 - Google Patents

业务处理方法及业务处理设备 Download PDF

Info

Publication number
WO2022267882A1
WO2022267882A1 PCT/CN2022/097416 CN2022097416W WO2022267882A1 WO 2022267882 A1 WO2022267882 A1 WO 2022267882A1 CN 2022097416 W CN2022097416 W CN 2022097416W WO 2022267882 A1 WO2022267882 A1 WO 2022267882A1
Authority
WO
WIPO (PCT)
Prior art keywords
service
bearer
frame
information
area
Prior art date
Application number
PCT/CN2022/097416
Other languages
English (en)
French (fr)
Inventor
刘峰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP22827378.5A priority Critical patent/EP4362361A1/en
Publication of WO2022267882A1 publication Critical patent/WO2022267882A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1611Synchronous digital hierarchy [SDH] or SONET
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2643Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA]
    • H04B7/2656Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA] for structure of frame, burst
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted

Definitions

  • the present application relates to the technical field of data processing, and in particular to a business processing method and business processing equipment.
  • the flexible Ethernet (FlexE, Flexible Ethernet) protocol standard technology defines the bandwidth of each time slot as 5Gbit/s, but the granularity of a single time slot is too large, which is not suitable for services with low transmission rates.
  • a 5Gbit/s FlexE time slot is currently divided into 480 sub-slots, and the bandwidth of each sub-slot is 10.1Mbit/s, so that it can carry 10Mbit/s s and above fine-grained customer services.
  • Embodiments of the present application provide a service processing method and a service processing device.
  • the embodiment of the present application provides a service processing method, including: in the case of carrying low-speed customer service in the communication network, determining the overhead information and determining the overhead information and the service data used to carry the overhead information and the service data in the bearer frame
  • the bearer frame is a specific code block flow composed of S blocks, D blocks and T blocks defined by the Ethernet protocol or a standard Ethernet frame; the overhead information and the service data are mapped to the payload in the area.
  • the embodiment of the present application provides a business processing device, including at least one processor and a memory for communicating with the at least one processor; the memory stores information that can be executed by the at least one processor instructions, the instructions are executed by the at least one processor, so that the at least one processor can execute the business processing method as described in the first aspect.
  • the embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are used to make the computer execute the business processing method.
  • Figure 1 is a general structure diagram of the FlexE protocol standard
  • Fig. 2 is the arrangement mode of bit blocks under 64B/66B encoding technology
  • Fig. 3 is the frame structure of basic unit frame
  • FIG. 4 is a structural diagram of a frame structure provided by an embodiment of the present application.
  • FIG. 5 is a structural diagram of a frame structure provided by an embodiment of the present application in the case of T7;
  • FIG. 6 is a structural diagram of overhead information provided by an embodiment of the present application.
  • Fig. 7 is a schematic diagram of multiple timestamp partial values transmitted in a multiframe provided by an embodiment of the present application.
  • FIG. 8 is a frame structure diagram in which the last byte in the payload area is set as an adjustment area provided by an embodiment of the present application;
  • FIG. 9 is a frame structure diagram in which the first byte in the payload area is set as an adjustment area provided by an embodiment of the present application.
  • FIG. 10 is an overall flowchart of a business processing method provided by an embodiment of the present application.
  • FIG. 11 is a flow chart of service processing in consideration of the bearer efficiency threshold provided by an embodiment of the present application.
  • Fig. 12 is a flow chart of determining a bearer efficiency threshold provided by an embodiment of the present application.
  • Fig. 13 is a schematic diagram of an example of a service processing procedure of a mapping mode one under the E1 service provided by an embodiment of the present application;
  • Fig. 14 is a schematic diagram of an example of the business processing procedure of the mapping mode 2 under the E1 business provided by an embodiment of the present application;
  • Fig. 15 is a schematic diagram of a service processing example of the third mapping mode under the E1 service provided by an embodiment of the present application.
  • Fig. 16 is a flow chart of adjusting area settings provided by an embodiment of the present application.
  • FIG. 17 is a flow chart of determining timestamp value information during the rate adaptation process provided by an embodiment of the present application.
  • Fig. 18 is a flow chart of dividing multiple overhead information parts in a multiframe provided by an embodiment of the present application.
  • FIG. 19 is a bit arrangement diagram for setting overhead information in an S block provided in Example 1 of the present application.
  • FIG. 20 is a frame structure diagram for setting overhead information in S blocks provided in Example 1 of the present application.
  • FIG. 21 is a frame structure diagram of setting overhead information and service data in S blocks provided by Example 1 of the present application.
  • Fig. 22 is a bit arrangement diagram of setting overhead information and service data in the S block provided by Example 1 of the present application;
  • Fig. 23 is a bit arrangement diagram of setting overhead information and service data in the S block provided by Example 1 of the present application;
  • Fig. 24 is a frame structure diagram of frames carried by the E1 service provided in Example 1 of the present application in mapping mode 1 and mapping mode 2;
  • Fig. 25 is a frame structure diagram of the bearer frame of the E1 service provided in Example 1 of the present application under the third mapping mode;
  • Fig. 26 is a schematic diagram of an example of the service processing process of the third mapping method under the T1 service provided in the second example of the present application;
  • FIG. 27 is a frame structure diagram of a bearer frame of a T1 service provided in Example 2 of the present application under mapping mode 3;
  • Fig. 28 is a schematic diagram of a business processing example of the standard Ethernet protocol provided in Example 3 of the present application and the mapping mode 1 under the E1 business;
  • Fig. 29 is a schematic diagram of a standard Ethernet protocol provided in Example 3 of the present application, and a schematic diagram of a business processing example of the mapping mode 2 under E1 business;
  • Fig. 30 is a schematic diagram of a business processing example of the standard Ethernet protocol provided in Example 3 of the present application and the mapping mode 3 under the E1 business;
  • Fig. 31 is a schematic structural diagram of a service processing device provided by an embodiment of the present application.
  • the FlexE protocol standard technical specification defines a customer service transmission method with a rate of n (n is a positive integer)*5Gbit/s, and the customer service at a speed above 5G can be carried efficiently through the FlexE physical interface.
  • Figure 1 shows the general structure of the FlexE protocol. Taking the service transmission bandwidth of 400G as an example, four 100G optical modules are combined into a 400G transmission channel through the FlexE protocol, which solves the problem without increasing the cost. Transmission requirements of 400G services.
  • the Ethernet protocol defines that before sending a 100G data message, the data packet message is encoded in 64B/66B, and the 64-bit data block is expanded into a 66-bit information block, adding 2 bits Located in front of the 66-bit block, it is used as the start sign of the 66-bit block, and then sent out from the optical transmission port in the form of a 66-bit block.
  • the optical transmission port of the receiving end device distinguishes 66-bit blocks from the received data stream, then restores the original 64-bit data from the 66-bit blocks, and reassembles the data message.
  • the FlexE protocol is under the conversion layer of 64B/66B encoding, and before sending 66-bit data blocks, it sorts and plans 66-bit data blocks.
  • the FlexE protocol provides a specific bit block arrangement, as shown in Figure 2, for 100G services, every 20 66-bit data blocks are divided into a data block group, and each group has a total of 20 data blocks, representing 20 time slots. Each time slot represents a service speed of 5Gbit/s bandwidth.
  • a FlexE overhead block is inserted every time 1023 data block groups (1023*20 data blocks) are sent.
  • Each 100G physical channel has only 20 time slots in total, and the total number of time slots is too small.
  • the bandwidth of each time slot is 5Gbit/s, and the granularity of a single time slot is too large, causing serious bandwidth waste when carrying low-speed services.
  • the 5G time slot rate carries and transmits fine-grained basic unit sequences, as shown in Figure 3.
  • the basic unit frame structure can carry 10M rate services. Firstly, 64/66 encoding is performed on the 10M client services. After encoding, each group of 8 66-bit code blocks is carried on a sub-slot.
  • each 66-bit code block into 65 bits (compress 2 sync header bits into 1 bit), forming 8 65-bit code blocks.
  • 24 groups of 8 65-bit code blocks are mapped in a basic unit frame structure as a whole, and then the basic unit frame structure is mapped to the 5G time slot of the FlexE protocol and sent out, that is, the time slot of the 5G rate of the FlexE protocol is passed to on the remote destination device.
  • the above bearer mode can carry services at a rate of 10Mbit/s, but in application scenarios with finer service granularity (low-speed services), for example, it is necessary to carry 2.048Mbit/s E1 or 1.544Mbit/s T1 services, if the above basic The sub-slots of the unit frame structure will still cause serious waste of bandwidth.
  • the embodiment of the present application provides a service processing method and service processing equipment.
  • the embodiment of the present application provides the corresponding The frame format and the service processing method under the frame format are used to ensure the transmission efficiency of low-speed services.
  • an embodiment of the present application provides a frame structure for carrying a frame, including a frame header block, a data block, and a frame end block.
  • the frame header flag block includes a frame header code block and a first data area.
  • the data block is set between the frame header block and the frame end block.
  • the frame end flag block includes the second data area and the end code block.
  • the area composed of the first data area, the data block, and the second data area is used to carry overhead information and service data, wherein the area used to carry service data is used as a payload area, and the size of the payload area is determined according to the carrying efficiency threshold.
  • the bearer efficiency threshold is determined according to the service rate of the service to be carried and the time slot rate for sending the service.
  • the traffic rate of a service is smaller than the slot rate of a time slot, so that multiple services are sent in one slot pipe.
  • the frame structure of this time slot rate is composed of S blocks + 195 D blocks + T blocks, wherein, S block represents the frame header block, which is used to carry the bearer frame
  • the frame structure in the embodiment of the present application considers the bearer efficiency threshold of the current time slot pipe, and determines which structure the bearer frame should adopt for the current time slot pipe according to the bearer efficiency threshold.
  • the frame structure of the bearer frame is composed of S block, D block and T block.
  • the D block is between the S block and the T block, and is used to carry the service data of the service.
  • the 64B/66B encoding technology each D block can carry 8 bytes of service data, and the number of D blocks can be set according to actual needs, so as to obtain different frame structures.
  • the S block is divided into two parts, which are the frame header code block and the first data area
  • the T block is divided into two parts, which are the second data area and the end code block respectively.
  • the first data area, several data blocks and the second data area constitute the payload area for carrying service data. If the occupation of overhead information is considered, then the first data area, several data blocks and the second data area constitute The area occupied by the overhead information is removed from the area, and the rest is the payload area.
  • the above S block, D block and T block occupy 66 bits. Except for the 2 bits of the synchronization head, the frame header code block defining the S block occupies at least one byte, and the content of the remaining 7 bytes is a fixed value, which can be replaced with overhead information or service data.
  • the T block is the same, except for the first 2 bits of synchronization, the end code block occupies at least one byte, and the content of the remaining 7 bytes can be used to carry business data.
  • T blocks are divided into 8 types: T0, T1, T2 , T3, T4, T5, T6, T7, T0 does not carry customer information, then T1 carries 1 byte of customer information, T2 carries 2 bytes of customer information, and so on, T7 carries 7 characters section of customer information.
  • the bearer frame used to carry low-speed services in the embodiment of the present application can use the T7 format as the T block.
  • the specific frame structure is shown in Figure 5, and the T7 bears 7 bytes of service data. Except for the first 2 bits of synchronization, the D block is used to carry actual data. For example, overhead information (indicated by O in the figure) and service data can be carried together in one D block.
  • a D block carries 8 bytes (64 bits) of data. If the overhead information occupies 2 bytes (16 bits), the remaining 6 bytes (48 bits) in the D block carry service data; The information occupies 3 bytes (24 bits), and the remaining 5 bytes (40 bits) in the D block carry service data; if the overhead information occupies 4 bytes (32 bits), the remaining 4 bytes in the D block Bytes (32 bits) carry service data. In FIG. 5, n represents the remaining number of bytes used to carry service data in the current D block.
  • the size of the first data area, the number of data blocks and the size of the second data area can all be determined according to the actual service rate and the time slot rate, by setting the size of the payload area, you can More service data is carried in a single bearer frame, thereby increasing the ratio between the payload area and the bearer frame, so as to reach the bearer efficiency threshold.
  • the impact of the bearer efficiency threshold on the size of the payload area will be described later in the embodiment of the service processing method, and the frame structure of the bearer frame will be described here first.
  • the overhead information is used to represent the characteristic information of the bearer frame, including the following information (but not limited to these information): member identifier, multiframe identifier, timestamp value information, adjustment indication information and check information, as shown in Figure 6, the overhead
  • member identifier member identifier
  • multiframe identifier multiframe identifier
  • timestamp value information adjustment indication information
  • check information check information
  • E1 service speed is 2.048Mbit/s
  • T1 service speed is 1.544Mbit/s s
  • different identification contents can be used to represent different E1/T1 customers.
  • sequence values can be used to represent different customers.
  • E1 services 00, 01, 10, and 11 represent four different E1 services. , use 000, 001, 010, 011, 100, and 101 to represent six different T1 services.
  • Each E1/T1 service chooses to carry different clients on different sequence values, and the contents of the sequence values represent different clients.
  • the multiframe ID is used to combine the bearer frames of multiple E1/T1 services into a multiframe to transmit more overhead information.
  • the multiframe identifier value is the bearer frame number of each E1/T1 service in the multiframe. For example, if the bearer frames of 4 E1/T1 services form a multiframe, the bearer frame numbers of each service are: 00, 01, 10, 11; if the bearer frames of 8 E1/T1 services form a multiframe, Then the bearer frame number of each service is: 000, 001, 010, 011, 100, 101, 110, 111.
  • the multiframe identification may also be in other similar identification manners, which will not be listed one by one here.
  • Timestamp value information When E1/T1 services are transmitted on the network, in addition to the transmission of customer service content, the clock information of customer services also needs to be transmitted to the destination device, and the destination device restores the original E1/T1 based on the clock information of customer services Service clock, so as to restore the E1/T1 customer service.
  • the E1/T1 service data is mapped to the bearer frame of the E1/T1 service, the mapped time value is recorded, and the time value can be used as the time stamp value information of the E1/T1 information.
  • the time stamp value information is composed of many bits, and the general international standard time value can reach up to 10 bytes (80 bits). When the time stamp value is carried by an E1/T1 service bearer frame, it will occupy a large amount of bandwidth.
  • the timestamp value information is divided into multiple parts according to the number of bearer frames in the multiframe, and the timestamp value information of each part is respectively recorded in each bearer frame in the multiframe. in the overhead information.
  • the time stamp value is divided into four parts, which are transmitted in four bearer frames in a multiframe, see the time stamp part value 0, the time stamp part value 1, the time stamp part value 2 and the time stamp part value 3 in Figure 7, These timestamp values are completely transmitted in these 4 bearer frames.
  • the time stamp value information can be the absolute time value when the E1/T1 service is mapped to the bearer frame, or the difference between the E1/T1 service clock frequency and the reference frequency when the E1/T1 service is mapped, and the reference frequency It can be obtained from the system clock of the local sending device, the clock of the fine-grained basic unit, or the clock of the FlexE time slot.
  • the time stamp value is an absolute time value
  • a series of E1/T1 service byte quantities and corresponding absolute time values will be received at the destination device, and the destination device will calculate according to the changes in the E1/T1 service byte quantity and absolute time value Output the frequency value of the service, generate and recover the E1/T1 clock.
  • time stamp value is the difference between the E1/T1 service clock frequency and the reference frequency
  • it is restored at the destination device according to the local reference frequency of the destination device and the time stamp value (representing the difference between the E1/T1 service clock and the reference clock) Recover the original E1/T1 clock.
  • Adjustment instruction information Since the rate of each E1/T1 service is different (the E1/T1 running in the protocol standard has slight fluctuations near the standard rate, so the actual rate of the E1/T1 rate is different), the rate of the E1/T1 service is the same as that of the E1
  • the speeds of bearer frames of /T1 services may also be different. In order to realize the speed adaptation of E1/T1 services and bearer frames of E1/T1 services, it is necessary to adjust the indication information to realize the speed adaptation between the two.
  • an adjustment area for rate adaptation is provided in the payload area, and adjustment indication information is recorded in the overhead information to indicate whether the adjustment area carries service data.
  • the payload area of an E1/T1 service bearer frame carries service data
  • all payload areas carry E1/T1 service data.
  • part of the payload area Set as the adjustment area as shown in Figure 8
  • set the last byte area of the payload area as the adjustment area.
  • the first byte area of the payload area can also be set as the adjustment area, as shown in FIG. 9 .
  • the adjustment area may or may not carry E1/T1 service data.
  • the adjustment area When the adjustment area bears E1/T1 business data, it means that the bearer frame bears more E1/T1 traffic, the speed of the bearer pipeline increases, and it can bear E1/T1 customer services with a higher speed; when the adjustment area does not bear E1/T1 When carrying T1 business data, it is equivalent to carrying less E1/T1 business volume, reducing the speed of the carrying pipeline, and being able to carry E1/T1 customer services with relatively low speed. Whether the adjustment area carries E1/T1 service data can be determined by the content of the adjustment indication information.
  • the content of the adjustment indication information is "1", it means that the adjustment area carries E1/T1 business data, and if the content of the adjustment indication information is "0", it means that the adjustment area is Does not carry E1/T1 business data.
  • the content of the adjustment indication information can also be other multi-bit contents, for example, the majority judgment principle is used to avoid the misjudgment problem caused by bit errors, for example, the content of the adjustment indication information is "111" (or two of the three digits are “ 1”, such as "110”, "101", “011") indicates that the adjustment area bears E1/T1 business data services, and the content of the adjustment indication information is "000” (or two of the three bits are "0", Such as "001", “010", and "100") The adjustment area does not carry E1/T1 service data.
  • Check information is used to check whether overhead information or overhead information and business data have errors during transmission.
  • Various cyclic redundancy algorithms can be used, such as CRC4, CRC6, CRC8, etc., and parity checks can also be used Algorithms, not one by one examples here.
  • the frame structure of the embodiment of the present application can also be applied to the standard Ethernet protocol using a physical interface with a rate of 10G.
  • the difference between the frame structures of the two protocols and the mapping relationship of service data in the frame structures will be described later with practical examples.
  • the embodiment of the present application provides a service processing method, including but not limited to the following steps S1 and S2.
  • Step S1 in the case of carrying low-speed customer services in the communication network, determine the overhead information and determine the payload area used to carry the overhead information and service data in the bearer frame, the bearer frame is defined by the S block and D block defined by the Ethernet protocol A specific code block stream composed of T blocks or standard Ethernet frames.
  • Step S2 mapping the overhead information and service data into the payload area.
  • the embodiment of the present application needs to consider the time slot rate under the current time slot pipe and the service rate of the service to be carried based on the frame structure of the above-mentioned bearer frame , so as to determine the number of D blocks and the size of the area used to carry service data in S blocks and T blocks.
  • FIG. 11 it can be specifically implemented with reference to the following steps S100 to S400 .
  • Step S100 acquire the service rate of the service to be carried and the time slot rate of the time slot used to send the service, the time slot rate is greater than the service rate so that the time slot can accommodate at least one service.
  • Step S200 determine the bearer efficiency threshold according to the time slot rate and the service rate.
  • Step S300 determine the size of the payload area in the bearer frame according to the bearer efficiency threshold, so that the ratio of the size of the payload area to the size of the bearer frame is greater than the bearer efficiency threshold, and the bearer frame is a data frame for carrying service data.
  • Step S400 map the service data of the service to the payload area of the bearer frame, so as to send the bearer frame through the time slot.
  • E1 service speed is 2.048Mbit/s
  • T1 service speed is 1.544Mbit/s s
  • the time slot rate is 10.1Mbit/s
  • the service rate is 2.048Mbit/s or 1.544Mbit/s.
  • the current time slot rate can only accommodate up to 4 E1 services (single E1 service speed is 2.048Mbit/s, and the total service rate is 8.192Mbit/s), so in one time slot
  • the lowest value of the bearer efficiency threshold when carrying 4 E1 services is 80.49%.
  • the current time slot rate can only accommodate up to 6 T1 services (the single T1 service speed is 1.544Mbit/s, and the total service rate is 9.264Mbit/s), so in one time slot
  • the minimum value of the bearer efficiency threshold when carrying 4 E1 services is 91.723%.
  • E1/T1 service is only an example, and other low-speed services can also be calculated in a corresponding manner for carrying efficiency thresholds according to international standards.
  • the data frame used to carry business data is called a bearer frame.
  • the frame format of the bearer frame is formed according to the frame structure introduced above. Since the frame structure of the bearer frame of E1 is composed of S blocks, several D blocks, and T blocks. The size of the frame header code block and the end code block is relatively fixed, and the size of the overhead information can also be pre-allocated corresponding bytes to carry. Therefore, changing the size of the payload area will directly determine Whether the ratio of the size of the payload area to the size of the bearer frame is greater than the bearer efficiency threshold.
  • the bearer efficiency threshold is 80.49%
  • the S block carries overhead information and does not carry any service data
  • the T block adopts T7 block.
  • the frame structure of the bearer frame can be determined according to the above calculation method to ensure the bearer efficiency at the current slot rate, and no examples are given here.
  • the service data is mapped to the bearer frame.
  • the feature of the first mapping mode is that the E1/T1 service rate is consistent with the transmission rate of the E1/T1 bearer frame. Different customers' E1 The transmission rates of /T1 bearer frames can be different.
  • the feature of mapping method 2 is that the rates of different E1/T1 services can be different, but the transmission rates of all E1/T1 bearer frames are the same.
  • the service processing device can determine the frame structure of the bearer frame actually used according to the application scenarios such as the service rate of the current service, so as to ensure that when the current time slot pipe carries the service, the bearer efficiency threshold is satisfied, and the problem of low-speed service bearer efficiency is not high .
  • the bearer efficiency threshold can be determined through the following steps S210 , S220 and S230 .
  • Step S210 determine the maximum number of services that can be carried by a single time slot according to the time slot rate and service rate.
  • Step S220 determine the total rate of services according to the number of services and the rate of services.
  • Step S230 determine the bearer efficiency threshold according to the ratio of the total service rate to the time slot rate.
  • a single time slot can carry up to 4 channels of E1 services or up to 6 channels of T1 services, and the standard service rate of E1 services is 2.048Mbit/s , so the total rate of 4 channels of E1 services is 8.192Mbit/s, the standard service rate of T1 services is 1.544Mbit/s, so the total rate of 6 channels of T1 services is 9.264Mbit/s, then the total rate of the above E1 services and time
  • the ratio of the slot rate is the bearer efficiency threshold of 80.49% for carrying E1 services.
  • the bearer efficiency threshold for bearer of T1 services is 91.723%.
  • the bearer frame includes a frame header marker block S block, a data block D block and a frame end marker block T block, and the data block is arranged between the frame header marker block and the frame end marker block; by adjusting the following At least one of them to change the size of the payload area in the bearing frame: the size of the area used to carry service data in the frame header block; or the number of data blocks; or the size of the area used to carry service data in the frame end block size.
  • the S block includes a frame header code block and a first data area
  • the first data area can be used to carry overhead information and/or service data.
  • adjust the first data area for The size of the area carrying service data can change the size of the payload area; similarly, when the formats of S blocks and T blocks are fixed, increasing or decreasing the number of D blocks can change the size of the payload area;
  • the T block includes the second data area and the end code block.
  • the second data area is used to carry business data, and the size can be adjusted as required.
  • the second data area of different sizes affects the net The size of the charge area.
  • step S400 in the process of mapping the service data of the service to the payload area of the bearer frame, different mapping methods may be adopted according to different mapping relationships between the service and the bearer frame, for example as follows.
  • service data is carried to the payload area according to one of the following mapping methods.
  • Mapping mode 1 the transmission rate of the bearer frame is the same as the service rate, and the payload area of the bearer frame directly bears the service data of the service corresponding to the bearer frame.
  • Mapping method 2 the transmission rate of each bearer frame is the same, and the payload area of the bearer frame is adjusted in size to bear the service data of the service corresponding to the bearer frame.
  • Mapping method 3 The transmission rate of each bearer frame is the same, and multiple customer services are carried in the payload area of the bearer frame.
  • the payload area of the bearer frame is divided into multiple service bearer areas, and each service bearer area is adjusted in size to carry Service data of the service corresponding to the frame.
  • the bearer frame is an Ethernet message structure
  • the frame header block is the head of the Ethernet message
  • the data block is the carrying content area of the Ethernet message
  • the frame end block is the Ethernet message block.
  • the CRC check field of the network message that is, the payload area is in the data field area of the Ethernet frame.
  • the front of the Ethernet frame is the header information field
  • the middle is the data field
  • the last is the CRC check field of the Ethernet message.
  • Service data is carried to the payload area according to one of the following mapping methods.
  • Mapping mode four the transmission rate of the Ethernet message is the same as the service rate, and the payload area of the Ethernet message directly bears the service data of the service corresponding to the Ethernet message.
  • Mapping mode five the transmission rate of each Ethernet message is the same, and the payload area of the Ethernet message is adjusted in size to carry the service data of the service corresponding to the Ethernet message.
  • Mapping method 6 The transmission rate of each Ethernet message is the same, and multiple customer services are carried in the payload area of the Ethernet message.
  • the payload area of the Ethernet message is divided into multiple service bearing areas. Each service bearing area
  • the service data of the service corresponding to the Ethernet packet is carried after the size adjustment is performed.
  • mapping methods 4 to 6 are similar to mapping methods 1 to 3 respectively.
  • the above two types of mapping methods under the two protocols are only different in the external structure of the bearer frame.
  • the process of carrying the bearer frame and the mapping process of customer service data are the same.
  • mapping methods 1 to 3 as an example, the service data of the above-mentioned one-way service is only mapped to the payload area of one of the bearer frames, which corresponds to the first mapping method.
  • the four-way E1 services correspond to the four bearer frames one by one.
  • the transmission rate of the bearer frame is the same as the service rate of the corresponding service, so the service data of each service is only encapsulated in the payload area of the corresponding bearer frame.
  • a bearer frame When a bearer frame is encapsulated, it will participate in round-robin scheduling, and no encapsulation is completed.
  • the bearer frame does not participate in round-robin scheduling. Since different bearer frames may have different speeds, different bearer frames have different probabilities of participating in scheduling.
  • multiple E1/T1 services complete the mapping and encapsulation of service bearer frames at the same time, they will be scheduled in turn in round robin.
  • Multiple E1/T1 service bearer frames are aggregated into one basic unit frame through round-robin scheduling, and are mapped to a sub-slot for bearer according to corresponding mapping rules.
  • the service data of the above-mentioned one-way service is mapped to the payload area of two or more bearer frames, corresponding to mapping method 2 and mapping method 3.
  • Mapping method 2 is shown in Figure 14.
  • the service rate is different from the transmission rate of the bearer frame, and the bearer frame
  • the transmission rate is determined according to the reference clock of the local device, and the transmission rate between the bearer frames is basically the same. Therefore, when the bearer frame carries business data, the payload area of one bearer frame is used to carry one line of business data.
  • the third mapping method is shown in Figure 15, and the four-way service is based on bit interleaving, byte interleaving or The interleaving method of setting partitions is encapsulated in the payload area.
  • preset partitions refers to the area where multiple services occupy different parts in one payload area
  • a payload area The first quarter of the area carries the first E1 service, the last quarter of the area carries the second E1 service, the last quarter of the area carries the third E1 service, and the last quarter of the area carries the fourth E1 service.
  • Road E1 business for example, a payload area The first quarter of the area carries the first E1 service, the last quarter of the area carries the second E1 service, the last quarter of the area carries the third E1 service, and the last quarter of the area carries the fourth E1 service.
  • Road E1 business for example, a payload area The first quarter of the area carries the first E1 service, the last quarter of the area carries the second E1 service,
  • the overhead information does not need the content of the customer identification to point out the service of each E1 customer, and it can be mapped and extracted directly according to the agreed relationship between the bearer area and the customer service number . It can be understood that the three interleaving methods used in the third mapping method are actually also applicable to the sixth mapping method, and the description will not be repeated here.
  • the service rate can fluctuate slightly around the service standard rate. Therefore, when the service processing device receives multiple services, different services may have different actual rates, and the transmission rate of the bearer frame can be based on the actual service rate.
  • the rate can be adjusted, or it can be adjusted according to the reference frequency provided by the service processing device (local device). Actually, it corresponds to the situation of mapping mode 2, mapping mode 3, mapping mode 5 or mapping mode 6. Specifically, in the process of mapping the service data of the service to the payload area of the bearer frame, rate adaptation is performed on the service and the bearer frame according to actual needs. Referring to FIG. 16 , it can be implemented in the following manner.
  • Step S410 determining an adjustment area for rate adaptation in the payload area.
  • Step S420 when the service rate of the service is too small, set the adjustment area not to bear the service data of the service.
  • Step S430 in the case that the service rate of the service is too high, set the service data of the bearer service in the adjustment area.
  • a corresponding adjustment area can be set in the payload area, and the adjustment indication information can be used to indicate whether the adjustment area carries service data, thereby fine-tuning the size of the payload area, so that the service and Speed matching is implemented between bearer frames.
  • mapping mode 2 or mapping mode 3 when in mapping mode 2 or mapping mode 3, the clock frequency is different between the service rate of E1/T1 services (the rate may be different among different E1/T1 clients) and the transmission rate of bearer frames, but The transmission rates of all bearer frames are basically the same, so the bearer frames can be sent in turn in a fixed order. Since the clock frequency between the E1/T1 service rate and the transmission rate of the bearer frame is different, speed adaptation is required when the service is mapped to the bearer frame, and the speed adjustment function is realized by adjusting the indication information. When the function of adjusting indication information is enabled, a part of the payload area is set as the adjustment area (for example, the first byte or the last byte of the payload area).
  • the adjustment area is set to carry service data or may not carry service data.
  • the adjustment area When the adjustment area is set to bear business data, it means that the total byte size of the bearer frame once carried business data becomes larger, which is equivalent to the speed of the bearer pipeline increases, and it can bear E1/T1 customer services with a relatively high service rate; when When the adjustment area is set to not bear business data, it means that the total number of bytes of business data carried by a bearer frame decreases, which is equivalent to a decrease in the speed of the bearer pipeline, and it can bear E1/T1 customer services with relatively low business speed. Whether the adjustment area bears service data is determined by the content of the adjustment indication information.
  • the difference between whether rate adaptation is performed is whether the reference frequency of the bearer frame is set according to the clock frequency of the service.
  • the reference frequency of the bearer frame is set according to the clock frequency of the service, there is no need Perform speed adaptation.
  • the reference frequency of the bearer frame is set according to the clock frequency of the local device, then perform speed adaptation according to the actual rate of the service (different services have a slight deviation around the standard service rate). Therefore, referring to FIG. 17 , the clock frequency adaptation process in the rate adaptation process may specifically be performed according to the following steps S440 and S450 .
  • Step S440 acquiring the service clock information of the service and the reference clock information of the bearer frame.
  • Step S450 determine the time stamp value information according to the service clock information and the reference clock information, and record the time stamp value information in the overhead information of the bearer frame.
  • the time information value of the customer service mapping or the deviation information value between the customer service clock and the reference clock is recorded at the same time.
  • the value can be used as the time stamp value information of these E1/T1 information, and recorded in the overhead information in the bearer frame.
  • the bearer frame is sent to the destination device, and the destination device parses the bearer frame and extracts the original E1/T1 service data.
  • extracting the original service data of E1/T1 judge whether the adjustment area carries the original service data according to the content of the adjustment instruction information, and decide whether to extract the original service data from the adjustment area.
  • the clock information of the E1/T1 service is recovered, and the recovered E1/T1 clock information is used to output the E1/T1 service data.
  • the E1/T1 clock information is recovered by using an adaptive algorithm according to the change of the E1/T1 service information volume.
  • the time stamp value information is composed of many bits, and the general international standard time value can reach up to 10 bytes (80 bits).
  • the time stamp value information is carried in an E1/T1 bearer frame, it will occupy a large amount of bandwidth, so In one E1/T1 bearer frame, only a part of the time stamp value information can be transmitted, and the transmission of all parts of the time stamp value information can be completed in one multiframe period. Therefore, referring to FIG. 18 , the recording of the time stamp value information in the above step S470 can be realized through the following step S451.
  • Step S451 when multiple bearer frames form a multiframe, divide the time stamp value information into multiple bearer frames in the multiframe, and each bearer frame of the multiframe only carries part of the time stamp value information.
  • the time stamp value information is divided into four parts, and four parts in a multiframe
  • the time stamp part value 0, the time stamp part value 1, the time stamp part value 2 and the time stamp part value 3 are transmitted in four bearer frames respectively, thereby reducing the time stamp information recording in a single bearer frame. overhead.
  • the transmission may be completed in any number of bearer frames.
  • mapping the service data into the payload area also includes: setting an adjustment indication information, indicating the adjustment area corresponding to one of the services in different bearer frames or, set a plurality of adjustment instruction information, and according to the corresponding relationship between the adjustment instruction information and the service, each adjustment instruction respectively indicates the state of the adjustment area corresponding to the corresponding service.
  • the above-mentioned adjustment instructions are divided into two cases.
  • the first case is to set an adjustment instruction information.
  • the adjustment area is set according to the adjustment instruction information. Since there is only one adjustment instruction information, therefore
  • the current bearer frame only applies the adjustment instruction information to one of the services, and the next bearer frame can indicate one of the services according to the adjustment instruction information;
  • the second case is to set multiple If there is a corresponding relationship between the adjustment indication information and the service, and any two adjustment indication information should indicate different content, then when the business data of these services are mapped, according to the current business
  • the corresponding adjustment indication information indicates the adjustment area. Therefore, different services in one bearer frame correspond to different adjustment indication information, which can realize a more reasonable bearer mode.
  • the embodiment of the present application can be used in the fine-grained basic unit frame (rate of 10.1Mbit/s) carried and transmitted on the 5G speed time slot of the FlexE protocol, and can also be used
  • the invention patent scheme bears the E1/T1 bearer frame and maps it to the sub-slot corresponding to the fine-grained basic unit frame, and the fine-grained basic unit
  • the unit frame passes through the standard 10G Ethernet interface (when the physical interface is 10G, in the scenario of the 10G interface, 40 basic unit frame structures form a multiframe, and there are 24 sub-slots in each basic unit frame, a total of 960 sub-slots , the bandwidth of each sub-slot is still 10M rate) to the destination device, and the physical interface carrying the fine-grained basic unit is 10G rate Ethernet, not the time slot of the FlexE interface. How
  • the embodiment of the present application determines the carrying efficiency threshold for carrying these services in the current time slot pipe through the time slot rate and service rate, and based on the carrying efficiency threshold setting Determine the size of the payload area in the bearer frame, so that the service is mapped to the bearer frame.
  • the carrying efficiency threshold setting Determine the size of the payload area in the bearer frame, so that the service is mapped to the bearer frame.
  • Example 1 is a scenario where the customer service is an E1 service (standard service rate is 2.048Mbit/s), and the E1 service is carried in a basic unit frame (transmission rate is 10.1Mbit/s).
  • the bandwidth of a sub-slot is 10.1M (unit bit/s), and the total bandwidth of 4 E1s (single E1 speed is 2.048M, unit bit/s) is 8.192M.
  • the bearer efficiency threshold is 80.49% when the slot bears 4 E1 customer services.
  • One of the methods to improve the carrying efficiency of the bearer frame is to increase the number of D code blocks in the bearer frame. When the number of D blocks in the E1 bearer frame structure is increased to 5, that is, the number of D blocks in the frame structure is 5, and the T block uses T7 blocks.
  • the E1 bearer frame is S block+5*D block+T7 block
  • the overhead information occupies the bandwidth of the payload area, and the overhead information only has 1 byte (8 bits)
  • the threshold is 80.49%, and it can carry 4 channels of E1 services.
  • the E1 bearer frame is composed of 1 S block + 6 D blocks + 1 T7 block
  • the number of D blocks in the E1 service bearer frame can be increased, and the E1 service bearer frame is changed to 1 S block + 7 D blocks + 1 T7 block.
  • 4-way E1 service is:
  • the overhead information is carried in the D code block, and the overhead information may also be carried in the S code block in an application.
  • the first two bits of the S code block are "10", indicating that it is a control type code block, followed by the control word with the content "0x78" (frame header code block), indicating that it is an S block.
  • the content of the 7 bytes after the content of the control word is a fixed value, consisting of 6 bytes of "0x55" and 1 byte of "0xD5".
  • the content of the 7 bytes after the content of the control word is a fixed value, which has no real role in transmission and can be replaced with overhead information, as shown in Figure 20.
  • the overhead information can be placed in any byte position in the last 7 bytes of the S block.
  • E1 service data can also be carried in S blocks, as shown in Figure 21.
  • service data can be stored in the last 7 bytes of S blocks Any byte position in , as shown in Figure 22 and Figure 23.
  • the overhead byte information and some E1 services are located in the S block, which is the case with the highest bearer efficiency.
  • Table 1 below shows the information about the number of bits of overhead information, the carrying efficiency under different numbers of D blocks, and whether 4-way E1 services can be carried.
  • the mapping mode 3 is adopted, the speed of the four E1 bearer frames is the same.
  • the four E1 services can be combined together, and there is only one E1 bearer frame, and the four E1 services are simultaneously transmitted in one service bearer frame.
  • the area carrying customer service data in the E1 bearer frame is divided into four sub-areas, respectively transmitting the first E1 customer service, the second E1 customer service, the third E1 customer service and the fourth E1 customer service
  • each E1 customer carries a fixed payload area.
  • the four-way E1 service data areas are arranged interleavedly in byte mode.
  • the four-way E1 service data areas can also be arranged interleavedly in double-byte mode, or customer services can each occupy an area, such as net
  • the front area (the first quarter area) of the load area carries all the first E1 services
  • the second rear area (the second first quarter area) carries the second E1 business
  • the second rear area (the second area) carries the third E1 service
  • the last area (the last quarter area) carries the fourth E1 service.
  • the customer service bearing process is shown in Figure 15. Since each E1 customer is carried in a fixed payload area, the overhead information does not need a member identifier to point out each E1 customer service, and can be mapped and extracted directly according to the agreed relationship between the bearer area and the customer service number.
  • the adjustment position is in the same state most of the time (when the rate of the bearer container in the payload area in the bearer frame is slightly greater than the E1 service rate, the adjustment position is in the bearer state most of the time; when the payload area in the bearer frame When the bearer container rate of the area is much higher than the E1 service rate, the adjustment position is in the unbearer state most of the time), so one state can be set as the default state, for example, the default state of the adjustment area is set as the bearer state, no need for a separate instruct.
  • the adjustment instruction signals of the four channels of E1 services can be shared and used to indicate the adjustment instructions of each channel of E1 services in a time-division multiplexed manner.
  • the multiframe number is "00"
  • the adjustment indication signal is used for the adjustment area state of the first road E1
  • the multiframe number is "01” and the adjustment indication signal is used for the adjustment area state of the second road E1
  • "10” means that the adjustment indication signal is used for the adjustment area status of the third channel E1
  • the multiframe number is "11” is the adjustment indication signal is used for the adjustment area status of the fourth channel E1.
  • the adjustment area is in the default adjustment state.
  • Example 2 is a scenario where the customer service is T1 service (standard service rate is 1.544Mbit/s), and the E1 service is carried in the basic unit frame (transmission rate is 10.1Mbit/s).
  • T1 service standard service rate is 1.544Mbit/s
  • E1 service is carried in the basic unit frame (transmission rate is 10.1Mbit/s).
  • the bandwidth of a sub-slot is 10.1M (unit bit/s), which can carry 6 channels of T1 services.
  • the minimum threshold of bearer efficiency for T1 customer service is 91.723%, and the bearer efficiency of bearer frame is required to be greater than that of T1 service.
  • mapping mode 1 or mapping mode 2 such as the bearer mode shown in Figure 20
  • the number of D blocks in the T1 bearer frame structure is at least 19 (when the number of D blocks is less than 19, for example, when the value of D is 18, the bearer efficiency Only 91.51%), that is, the T1 bearer frame structure is S block + 19*D block + T7 block, and the bearer efficiency is 91.77%, which is greater than the minimum bearer efficiency threshold of 91.723% when undertaking 6-way T1 customer services, and can carry 6-way T1 customer business.
  • the bearing mode in Figure 21 (T1 service data is carried in S blocks)
  • the number of D blocks in the T1 bearer frame structure is at least 3, and the bearing results of different D numbers and overhead information numbers are shown in Table 2 below.
  • the frame structure of the T1 service bearer frame is S block + 8*D Block+T7.
  • the T1 service mapping process is shown in Figure 26.
  • the structure of the T1 service bearer frame can be adopted as S Block+19*D block+T7.
  • the T1 service bearer frame structure can be adopted as S block+9*D block+T7, and the bearer structure of the service mapping can be shown in Figure 27.
  • Example 3 is the process of carrying frames in the standard Ethernet packet encapsulation format.
  • mapping bearer methods in the previous example are realized by using the bearer frame composed of the self-defined S block + D block + T format, and the standard Ethernet packet encapsulation format is used instead of the bearer frame composed of the S block + D block + T format.
  • the bearer process of mapping mode 1 becomes mapping mode 4, as shown in Figure 28; the bearer process of mapping mode 2 becomes mapping mode 5, as shown in Figure 29; the bearer process of mapping mode 3 becomes mapping mode 6 , as shown in Figure 30.
  • O corresponds to overhead information in mapping modes 1 to 3
  • B corresponds to service data (that is, D blocks of content in mapping modes 1 to 3).
  • Mapping methods 1 to 3 and mapping methods 4 to 6 are only different in the external structure of the bearer frame, and the process of carrying the bearer frame and the mapping process of the client content are the same.
  • the bearer frame adopts the Ethernet encapsulation format.
  • the header information (such as destination MAC address, source MAC address, type field, etc.) defined by the Ethernet standard is in front of the bearer message, and the CRC of the message is at the end Check information (the Ethernet message standard uses the CRC32 check algorithm).
  • Ethernet packet format When Ethernet packet format is used for encapsulation, because the header information and CRC check information in the Ethernet packet occupy a lot of bandwidth, which affects the effective bandwidth utilization rate of the bearer frame packet when carrying customer information, if it is in a 10M sub-slot To carry 4 channels of E1 or 6 channels of T1, it is necessary to increase the length of the bearer frame in the Ethernet format and increase the number of customer information in one bearer frame, thereby improving the bearer efficiency of the bearer message.
  • the bearer efficiency is X/(X+frame gap+preamble+overhead information bytes+X+CRC bytes), and 4
  • the result of the efficiency calculation formula is greater than 80.49% for E1 services, and the E1 bytes in the bearer frame are 108 bytes or more (in the case where the frame gap length is 12 bytes, the preamble is 8 bytes, and the overhead information is 2 bytes Down).
  • the number of E1 client bytes in the bearer frame can be a multiple of 4, and the number of bytes of E1 carried in the bearer frame can be 108 bytes (each E1 27 bytes, 108 bytes in total for 4-way E1), 112 bytes (28 bytes for each E1, 112 bytes for 4-way E1), 116 bytes (29 bytes for each E1 bytes, 116 bytes in total for 4-way E1), and so on.
  • the bearer efficiency is Y/(frame gap + preamble + overhead information bytes + Y + CRC bytes), and 6 channels are carried in 10M sub-slots
  • the result of the efficiency calculation formula needs to be greater than 91.723%.
  • the number of T1 bytes in the bearer frame is 288 bytes or more (in the case that the frame gap length is 12 bytes, the preamble is 8 bytes, and the overhead is 2 bytes).
  • the number of T1 bytes in the bearer frame can be a multiple of 6, and the number of T1 carried in the bearer frame can be 288 bytes (each T1 carries 48 bytes, 288 bytes for 6-way T1), 294 bytes (49 bytes for each T1, 294 bytes for 6-way T1), 300 bytes (50 bytes for each T1 , 6 T1 total 300 bytes), and so on.
  • the embodiment of the present application also provides a business processing device, including at least one processor and a memory for communicating with the at least one processor; the memory stores instructions that can be executed by at least one processor, and the instructions are processed by at least one executed by a processor, so that at least one processor can execute the aforementioned service processing method.
  • the memory 1002 as a non-transitory computer-readable storage medium, can be used to store non-transitory software programs and non-transitory computer-executable programs.
  • the memory 1002 may include a high-speed random access memory, and may also include a non-transitory memory, such as at least one disk memory, a flash memory device, or other non-transitory solid-state storage devices.
  • the storage 1002 may include storages that are set remotely relative to the control processor 1001, and these remote storages may be connected to the service processing device 1000 through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the device structure shown in FIG. 31 does not constitute a limitation on the service processing device 1000, and may include more or less components than shown in the illustration, or combine some components, or arrange different components. .
  • the embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are executed by one or more control processors, for example, by the Execution by one control processor 1001 of the above-mentioned control processor can make the above-mentioned one or more control processors execute the business processing method in the above-mentioned method embodiment, for example, execute the above-described steps S100 to S400 in FIG. 11 , and the method in FIG. Method steps S210 to S230 , method steps S430 to S450 in FIG. 16 , method steps S460 to S470 in FIG. 17 , and method steps S471 to S472 in FIG. 18 .
  • the service processing method provided by the embodiment of the present application has at least the following beneficial effects:
  • the embodiment of the present application provides a frame structure for carrying frames, Based on the frame format of the bearer frame, determine the payload area in the S block, D block, and T block or standard Ethernet frame, carry the service data through the payload area, and send the bearer frame to the network through the fine-grained service time slot pipeline destination device.
  • the bearer frame is sent through the time slot pipe, the overall efficiency of the time slot pipe is guaranteed, which can avoid the problem of bandwidth waste, and especially provides a solution for the transmission of various low-speed services in the SDH system standard.
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, tape, magnetic disk storage or other magnetic storage devices, or can Any other medium used to store desired information and which can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Time-Division Multiplex Systems (AREA)
  • Communication Control (AREA)

Abstract

一种业务处理方法及业务处理设备,其中,业务处理方法包括:在通信网中承载低速客户业务的情况下,确定开销信息并在承载帧中确定用于承载开销信息和业务数据的净荷区域(S1),将开销信息和业务数据映射到净荷区域中(S2)。

Description

业务处理方法及业务处理设备
相关申请的交叉引用
本申请基于申请号为202110687990.0,申请日为2021年06月21日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及数据处理技术领域,尤其涉及一种业务处理方法及业务处理设备。
背景技术
灵活以太网(FlexE,Flexible Ethernet)协议标准技术中定义了每个时隙的带宽为5Gbit/s,但是单个时隙的颗粒度过大,不适宜传输速率较低的业务。针对传输速率较低且客户业务数量较多的应用场景,目前将一个5Gbit/s速率的FlexE时隙划分成480个子时隙,每个子时隙的宽带为10.1Mbit/s,从而可以承载10Mbit/s及以上速率的细颗粒度的客户业务。
对于比10Mbit/s速率更小颗粒度的业务,例如同步数字体系(Synchronous Digital Hierarchy,SDH)标准中E1(速率为2.048Mbit/s)、T1(速率为1.544Mbit/s)业务,则没有给出解决办法,这些业务按照上述10Mbit/s子时隙承载时,则严重浪费带宽。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例提供了一种业务处理方法及业务处理设备。
第一方面,本申请实施例提供了一种业务处理方法,包括:在通信网中承载低速客户业务的情况下,确定开销信息并在承载帧中确定用于承载开销信息和所述业务数据的净荷区域,所述承载帧由以太网协议定义的S块、D块和T块组成的特定码块流或者标准以太网帧;将所述开销信息和所述业务数据映射到所述净荷区域中。
第二方面,本申请实施例提供了一种业务处理设备,包括至少一个处理器和用于与所述至少一个处理器通信连接的存储器;所述存储器存储有能够被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如第一方面所述的业务处理方法。
第三方面,本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使计算机执行如第一方面所述的业务处理方法。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的示例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1是FlexE协议标准的通用结构图;
图2是64B/66B编码技术下比特块排列方式;
图3是基本单元帧的帧结构;
图4是本申请一个实施例提供的帧结构的结构图;
图5是本申请一个实施例提供的帧结构在T7情况下的结构图;
图6是本申请一个实施例提供的开销信息的结构图;
图7是本申请一个实施例提供的复帧中传递多个时戳部分值的示意图;
图8是本申请一个实施例提供的净荷区域中最后一个字节设置成调整区域的帧结构图;
图9是本申请一个实施例提供的净荷区域中第一个字节设置成调整区域的帧结构图;
图10是本申请一个实施例提供的业务处理方法的整体流程图;
图11是本申请一个实施例提供的考虑承载效率门限进行业务处理的流程图;
图12是本申请一个实施例提供的确定承载效率门限的流程图;
图13是本申请一个实施例提供的E1业务下映射方式一的业务处理过程事例示意图;
图14是本申请一个实施例提供的E1业务下映射方式二的业务处理过程事例示意图;
图15是本申请一个实施例提供的E1业务下映射方式三的业务处理过程事例示意图;
图16是本申请一个实施例提供的调整区域设定的流程图;
图17是本申请一个实施例提供的速率适配过程中时戳值信息确定的流程图;
图18是本申请一个实施例提供的复帧中划分多个开销信息部分来承载的流程图;
图19是本申请示例一提供的在S块中设置开销信息的比特位排列图;
图20是本申请示例一提供的在S块中设置开销信息的帧结构图;
图21是本申请示例一提供的在S块中设置开销信息和业务数据的帧结构图;
图22是本申请示例一提供的在S块中设置开销信息和业务数据的比特位排列图;
图23是本申请示例一提供的在S块中设置开销信息和业务数据的比特位排列图;
图24是本申请示例一提供的E1业务在映射方式一和映射方式二下承载帧的帧结构图;
图25是本申请示例一提供的E1业务在映射方式三下承载帧的帧结构图;
图26是本申请示例二提供的T1业务下映射方式三的业务处理过程事例示意图;
图27是本申请示例二提供的T1业务在映射方式三下承载帧的帧结构图;
图28是本申请示例三提供的标准以太网协议、E1业务下映射方式一的业务处理过程事例示意图;
图29是本申请示例三提供的标准以太网协议、E1业务下映射方式二的业务处理过程事例示意图;
图30是本申请示例三提供的标准以太网协议、E1业务下映射方式三的业务处理过程事例示意图;
图31是本申请实施例提供的业务处理设备的结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
FlexE协议标准技术规范中定义了n(n为正整数)*5Gbit/s速率的客户业务传递方法,通过FlexE物理接口可以高效率地承载5G以上速度的客户业务。如图1所示为FlexE协议的通用结构,以支持400G的业务传输带宽为例,通过FlexE协议将4个100G光模块组合起来等效成一个400G传输通道,在不增加成本的情况下解决了400G业务的传递需求。对于物理层为100G速率,以太网协议定义100G的数据报文在发送前,是将数据包报文进行64B/66B编码,将64比特的数据块扩展成66比特的信息块,增加的2比特位于66比特块前面,作为66比特块的开始标志,然后以66比特块的方式从光传输口发送出去。在接收时,接收端设备的光传输口从接收到的数据流中辨别出66比特块,然后从66比特块中恢复出原始的64比特数据,重新组装出数据报文来。
FlexE协议处于64B/66B编码的转换层之下,在发送66比特数据块前,对66比特的数据块进行排序和规划。FlexE协议给出了特定的比特块排列方式,如图2所示,对于100G业务,每20个66比特数据块划分为一个数据块组,每组中共20个数据块,代表20个时隙,每个时隙代表5Gbit/s带宽的业务速度。发送66比特的数据块时,每发送完1023个数据块组(1023*20个数据块),插入一个FlexE开销块。插入开销块后,继续发送数据块,发送完第二个1023*20个数据块后,再插入开销块,以此类推,如图2所示的黑色开销块。这样在发送数据块的过程中,会周期性地插入开销块,相邻两个开销块的间隔是1023*20个数据块。对于物理线路速度为100Gbit/s,相当于FlexE协议将物理端口划分成20个时隙,因此每个时隙对应的带宽是5Gbit/s。FlexE协议定义的时隙数量和时隙带宽能够满足路由器、OTN网络等客户业务的传输需要,但在低速业务应用FlexE协议时,遇到如下一些困难。
1、每个100G的物理通道总共只有20个时隙,总时隙数量太少。
2、每个时隙带宽是5Gbit/s,单时隙的颗粒度又过大,承载低速业务时造成严重的带宽浪费。
为了解决低速业务的传输需求,需要进一步细化时隙管道,一些情形中提到在5G时隙速率中承载和传输细粒度的基本单元序列,如图3所示,通过定义基本单元帧结构,划分出24个子时隙,20个基本单元帧结构组成一个复帧,那么一个复帧中共有480个子时隙,考虑承载利用率的情况下,每个子时隙的带宽约为10.1Mbit/s,因此基本单元帧结构可以承载10M速率的业务,首先对10M的客户业务进行64/66编码,编码后每8个66比特码块为一组承载在一个子时隙上。在承载前,将每个66比特码块压缩为65比特(将2位同步头比特压缩为1位),形成8个65比特码块。24组8个65比特码块作为整体映射在一个基本单元帧结构中,基本单元帧结构然后再映射到FlexE协议的5G时隙中发送出去,即通过FlexE协议的5G速率的时隙传递到远端目的设备上。
上述承载方式可以承载10Mbit/s速率的业务,但在业务粒度更细(低速业务)的应用场景下,例如需要承载2.048Mbit/s的E1或1.544Mbit/s的T1业务,如果直接使用上述基本单元帧结构的子时隙,则仍然会造成严重的带宽浪费。
基于此,本申请实施例提供了一种业务处理方法及业务处理设备,对于更细粒度(低速业务)的业务场景,为了在目前10Mbit/s时隙下提高承载效率,本申请实施例提供相应的帧格式以及采用该帧格式下的业务处理方法,从而保证的低速业务的传输效率。
参照图4,本申请实施例提供了一种承载帧的帧结构,包括帧头标志块、数据块和帧结束标志块。
帧头标志块,包括帧头码块和第一数据区域。
数据块,设置在帧头标志块和帧结束标志块之间。
帧结束标志块,包括第二数据区域和结束码块。
第一数据区域、数据块和第二数据区域所组成的区域用于承载开销信息和业务数据,其中,用于承载业务数据的区域作为净荷区域,净荷区域的大小根据承载效率门限确定,承载效率门限根据需要承载的业务的业务速率和发送业务的时隙速率确定。
通常来说,业务的业务速率小于时隙的时隙速率,从而在一个时隙管道中发送多个业务。以10.1Mbit/s时隙速率为例,该时隙速率下帧结构按照S块+195个D块+T块的方式组成,其中,S块表示帧头标志块,用于承载该承载帧的帧头码块,D块表示数据块,用于承载业务数据,T块表示帧结束标志块,用于承载该承载帧的结束码块。如果按照上述帧结构来承载2.048Mbit/s的E1或1.544Mbit/s的T1业务,则会造成承载效率严重低下的问题。
因此,本申请实施例的帧结构考虑当前时隙管道的承载效率门限,根据承载效率门限来确定对于当前时隙管道,承载帧应该采用何种结构。首先,定义承载帧的帧结构由S块、D块和T块组成,如图4所示,D块处于S块和T块之间,用于承载业务的业务数据,在64B/66B编码技术下,每个D块上可以承载8个字节的业务数据,并且D块的数量可以根据实际需求设定,从而得到不同的帧结构。其中,S块分为两个部分,分别是帧头码块和第一数据区域,T块分为两个部分,分别是第二数据区域和结束码块,在不考虑开销信息占用的情况下,第一数据区域、若干个数据块和第二数据区域构成用于承载业务数据的净荷区域,如果考虑开销信息的占用,则在第一数据区域、若干个数据块和第二数据区域构成的区域中剔除开销信息占用的部分,余下则为净荷区域。
在64B/66B编码技术下,上述S块、D块和T块占用66比特。除开同步头2个比特,定义S块的帧头码块占用至少一个字节,其余7个字节的内容是固定值,可以替换为开销信息或者业务数据。T块同样,除开同步头2个比特,结束码块占用至少一个字节,其余7个字节的内容可以用于承载业务数据,以太网标准中T块分为8种:T0、T1、T2、T3、T4、T5、T6、T7,T0上不承载客户信息,那么T1上承载1个字节的客户信息,T2上承载2个字节的客户信息,依次类推,T7上承载7个字节的客户信息。为了提高承载效率,本申请实施例用于承载低速业务的承载帧可采用T7格式作为T块,具体帧结构如图5,在T7中承担7个字节的业务数据。D块中除开同步头2个比特,其余都用来承载实际数据,例如,开销信息(在图中用O表示)和业务数据可以共同在一个D块中承载。一个D块中承载8个字节(64个比特)的数据,如果开销信息占2个字节(16比特),则D块中剩余的6个字节(48比特)承载业务数据;如果开销信息占3个字节(24比特),则D块中剩余的5个字节(40比特)承载业务数据;如果开销信息占4个字节(32比特),则D块中剩余的4个字节(32比特)承载业务数据。图5中n表示当前D块中用于承载业务数据的剩余的字节数量。
可以理解的是,由于第一数据区域的大小、数据块的个数和第二数据区域的大小都是可以根据实际业务速率和时隙速率确定的,因此通过设定净荷区域的大小,可以使得单个承载帧中承载的业务数据更多,从而增大净荷区域和承载帧之间的比值,以达到承载效率门限。关于承载效率门限对净荷区域大小的影响,将在后面业务处理方法的实施例中得到说明,此处先针对承载帧的帧结构进行说明。
其中,开销信息用于表示承载帧的特征信息,包括如下若干信息(但不限于这些信息):成员标识、复帧标识、时戳值信息、调整指示信息和校验信息,如图6,开销信息作用如下。
成员标识:在多路业务的情况下,用于标识多路业务中每个业务的编号以区分各个业务成员。以一个子时隙带宽为10.1Mbit/s、承载E1/T1业务为例,可以同时传递4路E1(或6路T1)业务(E1业务速度为2.048Mbit/s,T1业务速度为1.544Mbit/s)。在实现上可以使用不同的标识内容代表不同E1/T1客户,例如可以采用序列值,以序列值来代表不同客户,对于E1业务可用:00、01、10、11表示不同四路不同的E1业务,用000、001、010、011、100、101代表六路不同的T1业务。每个E1/T1业务选择在不同的序列值上承载不同客户,序列值内容代表不同的客户。
复帧标识:复帧标识用于将多个E1/T1业务的承载帧组成一个复帧,用来传递更多开销信息。复帧标识值是复帧中每个E1/T1业务的承载帧编号。例如,如果4个E1/T1业务的承载帧组成一个复帧,则每个业务的承载帧编号是:00、01、10、11;如果8个E1/T1业务的承载帧组成一个复帧,则每个业务的承载帧编号是:000、001、010、011、100、101、110、111。复帧标识也可以其他类似标识方式,在此不一一举例。
时戳值信息:E1/T1业务在网络上传输时,除了客户业务内容传输外,也需要将客户业务的时钟信息传递到目的设备,目的设备根据客户业务的时钟信息恢复出原始的E1/T1业务时钟,从而恢复出E1/T1客户业务。当E1/T1的业务数据映射到E1/T1业务的承载帧中时,记录映射的时间值,该时间值可以作为这些E1/T1信息的时戳值信息。时戳值信息由许多比特组成,一般国际标准时间值最大可达10个字节(80位比特),该时戳值由一个E1/T1业务的承载帧承载时会占用大量带宽,因此,可以选择在一个E1/T1业务的承载帧中只传递时戳值信息的部分内容,从而在一个复帧周期中完成时戳值所有部分的传递。即,在多个承载帧组成复帧的情况下,时戳值信息按照复帧中承载帧的个数划分为多个部分,各个部分的时戳值信息分别记录到复帧中各个承载帧的开销信息中。例如时戳值分成四个部分,在一个复帧中的四个承载帧中传递,见图7中时戳部分值0、时戳部分值1、时戳部分值2和时戳部分值3,这些时戳值在这4个承载帧中传递完。
可以理解的是,时戳值信息可以是E1/T1业务映射到承载帧的绝对时间值,也可以是E1/T1业务映射时E1/T1业务时钟频率和参考频率之间的差值,参考频率可以由本地发送设备的系统时钟、细颗粒度基本单元时钟或FlexE时隙的时钟等等得到。当时戳值是绝对时间值时,在目的设备处会收到一系列E1/T1业务字节数量和对应的绝对时间值,在目的设备根据E1/T1业务字节数量和绝对时间值变化情况计算出业务的频率值,生成、恢复出E1/T1时钟。时戳值是E1/T1业务时钟频率和参考频率的差值时,在目的设备处恢复时根据目的设备本地的参考频率和该时戳值(代表E1/T1业务时钟和参考时钟的差值)恢复出原始E1/T1时钟。
调整指示信息:由于每路E1/T1业务的速率不同(协议标准中运行E1/T1在标准速率附近存在微小波动,因此实际速率下E1/T1的速率不同),E1/T1业务的速率和E1/T1业务的承载帧的速度也可能不同,为了实现E1/T1业务和E1/T1业务的承载帧的速度适配,需要调整指示信息来实现两者之间的速度适配。
其中,净荷区域中设有用于进行速率适配的调整区域,在开销信息中记录调整指示信息以指示调整区域是否承载业务数据。具体来说,在E1/T1业务的承载帧中净荷区域承载业务数据时,通常是在所有净荷区域都承载E1/T1的业务数据,当启用调整指示信息功能时,将部分净荷区域设置为调整区域,如图8将净荷区最后一个字节区域设置为调整区域。当然,在实际应用中,也可以将净荷区域的第一个字节区域设置为调整区域,如图9。调整区域可能承载E1/T1的业务数据,也可能不承载E1/T1的业务数据。当调整区域承载E1/T1的业务数据时,相当于承载帧承载E1/T1业务量变大,承载管道的速度增大,可以承载速度偏大的E1/T1客户业务;当调整区域不承载E1/T1的业务数据时,相当于承载E1/T1业务量变小,承载管道的速度减小,可以承载速度偏小的E1/T1客户业务。调整区域是否承载E1/T1业务数据可以由调整指示信息内容来决定,例如,调整指示信息内容为“1”表示调整区域承载E1/T1的业务数据,调整指示信息内容为“0”表示调整区域不承载E1/T1的业务数据。调整指示信息内容也可以是其他多位内容,例如,用多数判断原则来避免误码错误带来的误判问题,例如,调整指示信息内容为“111”(或三位中有两位为“1”,如“110”、“101”、“011”)表示调整区域承载E1/T1的业数据务,调整指示信息内容为“000”表示(或三位中由两位为“0”,如“001”、 “010”、“100”)调整区域不承载E1/T1的业务数据。
校验信息:校验信息用于校验开销信息或开销信息和业务数据在传递过程中是否出现发生错误,可以采用各类循环冗余算法,如CRC4、CRC6、CRC8等,也可以采用奇偶校验算法,在此不一一举例。
基于上述说明的帧结构,下面详细说明针对低速业务在处理过程中如何根据业务速率设定帧结构,来保证细颗粒度的时隙管道传输低速业务的效率。
可以理解的是,本申请实施例的帧结构除了能够应用在FlexE协议上,采用FlexE接口的时隙,还可以应用到标准以太网协议上,采用速率为10G的物理接口。针对这两种协议下帧结构的区别以及业务数据在帧结构中的映射关系,将在后面以实际示例进行说明。
参照图10,本申请实施例提供了一种业务处理方法,包括但不限于以下步骤S1以及步骤S2。
步骤S1,在通信网中承载低速客户业务的情况下,确定开销信息并在承载帧中确定用于承载开销信息和业务数据的净荷区域,承载帧由以太网协议定义的S块、D块和T块组成的特定码块流或者标准以太网帧。
步骤S2,将开销信息和业务数据映射到净荷区域中。
为了合理地在细颗粒度的业务时隙管道中承载尽可能多的业务,本申请实施例基于上述承载帧的帧结构需要考虑当前时隙管道下的时隙速率和需要承载的业务的业务速率,从而确定D块的数量以及S块和T块中用于承载业务数据的区域大小。参照图11,具体可以参照以下的步骤S100至步骤S400实现。
步骤S100,获取需要承载的业务的业务速率以及用于发送业务的时隙的时隙速率,时隙速率大于业务速率以使时隙容纳至少一路业务。
步骤S200,根据时隙速率和业务速率确定承载效率门限。
步骤S300,根据承载效率门限确定承载帧中净荷区域的大小,以使净荷区域的大小与承载帧的大小的比值大于承载效率门限,承载帧为用于承载业务的业务数据的数据帧。
步骤S400,将业务的业务数据映射到承载帧的净荷区域,以通过时隙发送承载帧。
以一个子时隙带宽为10.1Mbit/s、承载E1/T1业务为例,可以同时传递4路E1(或6路T1)业务(E1业务速度为2.048Mbit/s,T1业务速度为1.544Mbit/s),因此本申请实施例中时隙速率为10.1Mbit/s,业务速率为2.048Mbit/s或者1.544Mbit/s。
当业务速率为2.048Mbit/s时,当前时隙速率下最多只能容纳4路E1业务(单个E1业务速度为2.048Mbit/s,总业务速率为8.192Mbit/s),因此在一个时隙上承载4路E1业务时承载效率门限的最低值是80.49%。
当业务速率为1.544Mbit/s时,当前时隙速率下最多只能容纳6路T1业务(单个T1业务速度为1.544Mbit/s,总业务速率为9.264Mbit/s),因此在一个时隙上承载4路E1业务时承载效率门限的最低值是91.723%。
可以理解的是,上述E1/T1业务仅为举例说明,以国际标准来说,其他低速业务也可以按照相应的方式对承载效率门限进行计算。
为了方便区分各种数据帧,本申请实施例中将用于承载业务数据的数据帧称为承载帧,承载帧的帧格式按照上述介绍的帧结构构成,由于E1的承载帧的帧结构由S块、若干D块和T块组成,帧头码块和结束码块的大小相对固定,开销信息的大小也可以预先分配相应的字节来承载,因此,改变净荷区域的大小,将直接决定净荷区域的大小与承载帧的大小的比值,是否大于该承载效率门限。以E1业务为例,在承载效率门限为80.49%的情况下,当承载帧的帧结构中D块的数据为4个,S块承载开销信息且不承载任何业务数据,T块采用T7块,则净荷区域的有效字节数为4*8Byte(一个D块中8字节用于承载业务数据)+7Byte(T7块中有7个字节用于承载业务数据)=39Byte,即312比特,E1承载帧的总长度为(1+4+1)*66=396比特,E1承载帧的承载效率为312/369=78.78%,低于4路E1业务的最低承载效率80.49%要求,不能承载4路E1业务。此时,调整承载帧的帧结构,将帧结构中D块的数量设定为5块,其余不变,则净荷区域的有效字节数为5*8Byte+7Byte=47Byte,共376比特,E1承载帧的总长度为(1+5+1)*66=462比特,E1承载帧的承载效率为376/462=81.38%,大于4路E1业务的最低承载效率80.49%要求,可承载4路E1业务。
上述为承载E1业务情况下的举例,对于T1业务或者其他低速业务,可以按照上述计算方式确定承载帧的帧结构,来保证当前时隙速率下的承载效率,在此不一一举例。
根据当前承载帧的结构,将业务数据映射到承载帧中,具有两种映射承载方式,映射方式一的特点是E1/T1 的业务速率和E1/T1承载帧的传输速率一致,不同客户的E1/T1承载帧的传输速率之间可以不同,映射方式二的特点是不同E1/T1业务速率可以不同,但所有E1/T1承载帧的传输速率相同。至于不同映射方式下不同的业务处理方法,将在下面进行详细的说明,此处先对总体的方案进行概括说明。
通过上述步骤S100至步骤S400,对于低速业务在细颗粒度的时隙管道中的传输提供了相应的处理方式,基于承载效率门限这一参数,以及承载帧的帧结构可变设定的特点,业务处理设备可以根据当前业务的业务速率等应用场景,确定实际采用的承载帧的帧结构,从而保证当前时隙管道承载该业务的时候,满足承载效率门限,解决低速业务承载效率不高的问题。
参照图12,可以理解的是,针对不同业务和不同的时隙,承载效率门限可以通过以下的步骤S210、步骤S220和步骤S230确定。
步骤S210,根据时隙速率与业务速率确定单个时隙最多能承载的业务的数量。
步骤S220,根据业务的数量和业务速率确定业务总速率。
步骤S230,根据业务总速率和时隙速率的比值确定承载效率门限。
同样以一个子时隙带宽为10.1Mbit/s、承载E1/T1业务为例,单个时隙最多能承载4路E1业务或最多承载6路T1业务,E1业务的标准业务速率是2.048Mbit/s,因此4路E1业务的总速率为8.192Mbit/s,T1业务的标准业务速率是1.544Mbit/s,因此6路T1业务的总速率为9.264Mbit/s,那么上述E1业务的总速率与时隙速率的比值即为承载E1业务的承载效率门限80.49%,同理,承载T1业务的承载效率门限为91.723%。
根据上述承载帧的帧结构可知,承载帧包括帧头标志块S块、数据块D块和帧结束标志块T块,数据块设置在帧头标志块和帧结束标志块之间;通过调整以下至少之一以改变承载帧中净荷区域的大小:帧头标志块中用于承载业务数据的区域的大小;或数据块的个数;或帧结束标志块中用于承载业务数据的区域的大小。
其中,S块包括帧头码块和第一数据区域,第一数据区域可以用来承载开销信息和/或业务数据,当D块和T块的格式固定后,调整第一数据区域中用于承载业务数据的区域的大小,可以改变净荷区域的大小;同理,在S块和T块的格式固定的情况下,增加或者减小D块的个数,可以改变净荷区域的大小;T块包括第二数据区域和结束码块,第二数据区域用于承载业务数据,可以根据需要调整大小,在S块和D块的格式固定的情况下,不同大小的第二数据区域影响净荷区域的大小。
上述步骤S400,在将业务的业务数据映射到承载帧的净荷区域的过程中,根据业务和承载帧不同的映射关系,可以采用不同的映射方式,例如如下。
在FlexE协议下,业务数据根据以下之一的映射方式承载到净荷区域。
映射方式一:承载帧的传输速率与业务速率相同,承载帧的净荷区域直接承载与承载帧对应的业务的业务数据。
映射方式二:各个承载帧的传输速率相同,承载帧的净荷区域经过大小调整后承载与承载帧对应的业务的业务数据。
映射方式三:各个承载帧的传输速率相同,在承载帧的净荷区域承载多个客户业务,承载帧的净荷区域划分成多个业务承载区域,每个业务承载区进行大小调整后承载承载帧对应的业务的业务数据。
在标准以太网协议的帧格式中,承载帧为以太网报文结构,帧头标志块为以太网报文的头部,数据块为以太网报文的承载内容区,帧结束标志块为以太网报文的CRC校验字段,即净荷区域在以太网帧的数据字段区域,以太网帧的前面是头部信息字段,中间是数据字段,最后是以太网报文的CRC校验字段,业务数据根据以下之一的映射方式承载到净荷区域。
映射方式四:以太网报文的传输速率与业务速率相同,以太网报文的净荷区域直接承载与以太网报文对应的业务的业务数据。
映射方式五:各个以太网报文的传输速率相同,以太网报文的净荷区域经过大小调整后承载与以太网报文对应的业务的业务数据。
映射方式六:各个以太网报文的传输速率相同,在以太网报文的净荷区域承载多个客户业务,以太网报文的净荷区域划分成多个业务承载区域,每个业务承载区进行大小调整后承载以太网报文对应的业务的业务数据。
其中映射方式四至六分别类似于映射方式一至三,两种协议下上述两个类型的映射方式只是承载帧的外部结构不同,承载帧在承载过程、客户业务数据的映射处理方式是相同的。以映射方式一至三为例,上述一 路业务的业务数据仅映射到其中一个承载帧的净荷区域,对应映射方式一,参照图13所示,四路E1业务与四个承载帧一一对应,承载帧的传输速率与对应的业务的业务速率相同,因此每一路业务的业务数据仅封装在对应的承载帧的净荷区域中,当一个承载帧封装完成后才参与轮询调度,没有封装完成的承载帧则不参与轮询调度。由于不同的承载帧之间速度可能不同,不同的承载帧参与调度的概率不同。当多个E1/T1业务同时完成业务承载帧的映射封装时,则依次轮询调度。经过轮询调度将多个E1/T1业务承载帧汇聚成一条基本单元帧,按照对应的映射规则映射到一个子时隙进行承载。
上述一路业务的业务数据映射到两个以上承载帧的净荷区域,对应有映射方式二和映射方式三,映射方式二参照图14所示,业务速率与承载帧的传输速率不相同,承载帧的传输速率按照本地设备的参考时钟确定,承载帧之间传输速率基本一致,因此承载帧在承载业务数据的时候,采用一个承载帧的净荷区域承载一路业务数据的方式,将需要同一位置的多个承载帧来承载,并且首先完成封装的承载帧将先发送到时隙中而不采用轮询;映射方式三参照图15所示,四路业务按照比特间插、字节间插或预设分区间插的方式封装在净荷区域,对于预设分区间插的方式(预设分区间插是指多路业务在一个净荷区域中都占用不同一部分的区域),例如一个净荷区域的前面四份一区域承载第一路E1业务,次后四分之一区域承载第二路E1业务,再次后四分之一区域承载第三路E1业务,最后四分之一区域承载第四路E1业务。由于每路E1客户在固定的净荷区中承载,开销信息中可以不需要客户标识内容来指出每一路E1客户业务,直接按照约定好的承载区域与客户业务编号的关系进行映射和提取即可。可以理解的是,上述映射方式三中采用的三种间插方式,实际上也适用于映射方式六,在此不重复说明。
如上述提到,业务速率可以在业务标准速率附近微小波动,因此业务处理设备接收到多路业务的情况下,不同业务之间可能具有不同实际速率,而承载帧的传输速率可以根据实际的业务速率进行调整,也可以根据业务处理设备(本地设备)提供参考频率进行调整,实际来说就是对应映射方式二、映射方式三、映射方式五或映射方式六的情况。具体来说,将业务的业务数据映射到承载帧的净荷区域的过程中,根据实际需要对业务和承载帧进行速率适配,参照图16,具体可以通过以下方式实现。
步骤S410,在净荷区域中确定用于进行速率适配的调整区域。
步骤S420,在业务的业务速率偏小的情况下,设定调整区域不承载业务的业务数据。
步骤S430,在业务的业务速率偏大的情况下,设定调整区域承载业务的业务数据。
如前的帧结构的说明可知,为了进行速率适配,可以在净荷区域中设置相应调整区域,通过调整指示信息来指示调整区域是否承载业务数据,从而微调净荷区域的大小,使得业务和承载帧之间实现速度匹配。
具体来说,当处于映射方式二或者映射方式三时,E1/T1业务的业务速率(不同的E1/T1客户之间的速率可能不同)和承载帧的传输速率之间时钟频率不相同,但所有承载帧之间传输速率基本一致,那么承载帧可以按照固定顺序依次轮流发送。由于E1/T1的业务速率和承载帧的传输速率之间的时钟不同频,业务在映射到承载帧中时需要进行速度适配,通过调整指示信息实现速度调整功能。当启用调整指示信息功能时,将部分净荷区域设置为调整区域(例如净荷区域的第一个字节或者最后一个字节)。根据帧结构的设定规则,该调整区域设定为可能承载业务数据,也可能不承载业务数据。当调整区域设定为承载业务数据时,相当于承载帧一次承载业务数据的总字节量变大,等价于承载管道的速度增大,可以承载业务速率偏大的E1/T1客户业务;当调整区域设定为不承载业务数据时,相当于承载帧一次承载业务数据的总字节量变少,等价于承载管道的速度减小,可以承载业务速度偏小的E1/T1客户业务。调整区域是否承载业务数据由调整指示信息内容来决定。
由此可知,是否进行速率适配的区别在于承载帧的参考频率是否按照业务的时钟频率来设定,当承载帧的参考频率按照业务的时钟频率设定,那么业务和承载帧之间不需要进行速度适配,当承载帧的参考频率按照本地设备的时钟频率来设定,那么针对业务实际速率(不同业务在其标准业务速率附近具有微小偏差)来进行速度适配。因此,参照图17,速率适配过程中的时钟频率适配过程具体可以按照以下的步骤S440和步骤S450执行。
步骤S440,获取业务的业务时钟信息和承载帧的参考时钟信息。
步骤S450,根据业务时钟信息和参考时钟信息确定时戳值信息,并将时戳值信息记录在承载帧的开销信息中。
在速率适配过程中,当E1/T1业务的业务数据映射到E1/T1承载帧中时同时记录客户业务映射的时间信 息值,或客户业务时钟和参考时钟之间的偏差信息值,该信息值可以作为这些E1/T1信息的时戳值信息,记录于承载帧中的开销信息。时戳值信息封装完成后将承载帧发送到目的设备,目的设备解析承载帧并提取出E1/T1的原始业务数据。提取出E1/T1的原始业务数据时,根据调整指示信息内容判断调整区是否携带原始业务数据,从决定是否从调整区中提取原始业务数据。根据业务承载帧中的时戳值信息时,恢复出E1/T1业务的时钟信息,用恢复出的E1/T1时钟信息输出E1/T1的业务数据。当承载帧中没有承载时戳值信息时,则根据E1/T1业务信息量的变化情况采用自适应算法恢复出E1/T1的时钟信息。
如前,时戳值信息由许多比特组成,一般国际标准时间值最大可达10个字节(80位比特),时戳值信息在一个E1/T1承载帧中承载时会占用大量带宽,因此,可以在一个E1/T1承载帧中只传递该时戳值信息的一部分内容,在一个复帧周期中完成该时戳值信息的所有部分的传递。因此,参照图18,上述步骤S470中时戳值信息的记录可以通过以下的步骤S451实现。
步骤S451,在多个承载帧组成复帧的情况下,将时戳值信息划分在复帧中多个承载帧中承载,复帧的每个承载帧只承载部分时戳值信息。
为了解决时戳值信息过程而占用大量带宽的问题,以考虑在一个复帧的各个承载帧中分别承载部分时戳值信息,例如时戳值信息分成四个部分,在一个复帧中的四个承载帧传递,时戳部分值0、时戳部分值1、时戳部分值2和时戳部分值3,分别在四个承载帧中传递完,从而降低单个承载帧中记录时间戳信息的开销。当然,在具体应用中可以是任意数量个承载帧中传递完。
可以理解的是,在映射方式三或映射方式六的情况下,将业务数据映射到净荷区域中,还包括:设定一个调整指示信息,在不同承载帧中指示其中一个业务对应的调整区域的状态;或者,设定多个调整指示信息,根据调整指示信息与业务的对应关系,每个调整指示分别指示各自对应的业务对应的调整区域的状态。
上述分为两种情况进行调整指示,第一种情况是设置一个调整指示信息,所有业务在映射到承载帧的时候都按照这个调整指示信息进行调整区域的设置,由于只有一个调整指示信息,因此在一个承载帧进行业务数据封装的时候,当前承载帧仅对其中一路业务应用该调整指示信息,下一个承载帧中又可以按照这个调整指示信息指示其中一路业务;第二种情况是设置有多个调整指示信息并且有多路业务,调整指示信息与业务之间存在对应关系,并且任意两个调整指示信息之间应当指示不同的内容,那么这些业务的业务数据进行映射的时候,根据当前业务对应的调整指示信息来指示调整区域,因此一个承载帧中不同业务对应采用不同的调整指示信息,可以实现更合理的承载方式。
通过上述步骤实现低速业务的高效率传输,本申请实施例一方面可以用在FlexE协议的5G速度时隙上承载和传输的细颗粒度基本单元帧(速率为10.1Mbit/s)中,也可用在节约10G速率的以太网接口上传输的细颗粒度基本单元帧的场景中,发明专利方案承载E1/T1的承载帧映射到细颗粒度基本单元帧对应的子时隙中,细颗粒度基本单元帧通过标准10G以太网接口(当物理接口是10G时,在10G接口的场景中,40个基本单元帧结构组成一个复帧,每基本单元帧中有24个子时隙,共960个子时隙,每个子时隙带宽仍是10M速率)发送到目的设备,承载细颗粒度基本单元的物理接口是10G速率的以太网,而非FlexE接口的时隙。关于在标准以太网报文封装格式下如何进行业务承载,将在后续示例中进行说明。
针对低速业务在细颗粒度的时隙管道中传输效率不高的情况,本申请实施例通过时隙速率和业务速率确定当前时隙管道中承载这些业务的承载效率门限,基于该承载效率门限设定承载帧中净荷区域的大小,从而使得业务映射到承载帧,通过该时隙管道发送承载帧时,时隙管道整体的效率得到保证,可以避免FlexE协议下带宽浪费的问题,尤其为SDH体系标准中的各种低速业务的传输方法提供了解决办法。
下面以实际三个示例对本申请实施例的业务处理方法进行说明。
示例一是客户业务是E1业务(标准业务速率为2.048Mbit/s)的场景,将E1业务承载于基本单元帧(传输速率为10.1Mbit/s)中。
在基本单元帧中一个子时隙带宽是10.1M(单位bit/s),4个E1(单个E1速度为2.048M,单位bit/s)的总带宽8.192M,在基本单元帧的一个子时隙上承担4路E1客户业务时承载效率门限是80.49%。E1业务承载帧结构由S块、若干D块和T块组成,当帧结构中D块数量为4个、T块采用T7块,则净荷区域的有效字节数为:4*8byte(一个D块中8字节)+7byte(T7块中有7个字节)=39byte,共312比特。E1承载帧的总长度为:(1+4+1)*66=396比特,E1承载帧的承载效率为312/369=78.78%,低于4路E1业务的最低承载效率门限80.49%要求,不能承载4路E1业务。提高承载帧的承载效率方法之一就是增加承载帧中D码块的数量, 当E1承载帧结构中D块数量增加为5块,即帧结构中D块数量为5个、T块采用T7块,则净荷区域的有效字节数为:5*8byte(一个D块中8字节)+7byte(T7块中有7个字节)=47byte,共376比特。E1承载帧的总长度为:(1+5+1)*66=462比特,E1承载帧的承载效率为376/462=81.38%,大于4路E1业务的最低承载效率门限80.49%的要求,可承载4路E1业务。这个计算没有考虑开销字节带来的带宽损失,或开销字节位于S块中,不占用净荷区带宽,如图19。
对于E1承载帧为S块+5*D块+T7块的帧结构,当开销信息占用净荷区域的带宽,在开销信息只有1个字节(8个比特)时,E1业务承载效率为(376-8)/462=79.65%,小于4路E1业务的最低承载效率80.49%要求,无法承载4路E1业务。因此,在开销信息占1个字节情况下,如果承载4路E1业务,需要继续提高承载帧的承载效率,增加D块数量。当承载帧的帧结构为S块+6*D块+T7块,净荷区域的字节数量6*8+7=55字节,440个比特。帧结构总比特数量为(1+6+1)*66=528比特。当开销信息占用净荷区带宽,在开销信息只有1个字节(8个比特)时,E1业务承载效率为(440-8)/528=81.82%,大于满足4路E1业务的最低承载效率门限80.49%的要求,可承载4路E1业务。对于E1承载帧中由1个S块+6个D块+1个T7块组成的情况,当开销信息达到字节2个字节16个比特时,E1业务承载效率为(440-16)/528=80.3%,小于80.49%的最低要求,无法承载4路E1业务。在这种情况下,可以增加E1业务承载帧中D块数量,E1业务承载帧改为1个S块+7个D块+1个T7块。在7个D块的E1业务承载帧结构中,净荷区域的有效字节数为:7*8byte(一个D块中8字节)+7byte(T7块中有7个字节)=63byte,共504比特。E1业务承载帧的总长度为:(1+7+1)*66=594比特。在开销信息2字节(16比特的情况下),E1业务承载帧的承载效率为(504-16)/594=82.15%,大于满足4路E1业务的最低承载效率门限80.49%要求,可承载4路E1业务。
在本示例一的前述说明中,开销信息放在D码块中承载,在应用中开销信息也可以放在S码块中承载。在以太网标准中的64B/66B编码技术下,S码块前两个比特值是“10”,表示是一个控制类型的码块,次后是内容为“0x78”的控制字(帧头码块),表示是S块。控制字内容之后7个字节内容是固定值,由6个字节的“0x55”和1个字节的“0xD5”组成。控制字内容之后7个字节内容是固定值,在传输中没有实质作用,可以替换为开销信息,如图20所示。开销信息可以放在S块中后7个字节中任意字节位置。除了开销信息可以放在S块承载外,E1的业务数据也可以放在S块中进行承载,如图21所示,在图21的情况下,业务数据可以在S块中后7个字节中任意字节位置,具体如图22、图23所示。
对于图23的帧结构,开销字节信息和部分E1业务位于S块中,这是承载效率最高的情况。例如,当E1承载帧1个S块+1个D块+1个T7块时,净荷区域的字节数量为(7+1*8+7)=22,即176个比特。E1承载帧长度为(1+1+1)*66=198比特,在开销信息为1个字节(8个比特)时承载效率为(176-8)/198=84.85%,大于4路E1业务的最低承载效率门限的80.49%要求,可承载4路E1业务。对于不同的开销信息比特数量、不同D块数量下承载效率及是否可以承载4路E1业务情况如下表1。
Figure PCTCN2022097416-appb-000001
表1.承载帧的帧结构与承载4路E1业务的对应关系表
对于上面表1罗列帧结构中D块数量、开销信息的长度不同数值下组成情况,在具体应用中可以选择满足能承载4路E1业务选项。例如选择E1业务承载帧结构为S+2*D+T7,开销信息比特数量为24位(三个字节),则具体的E1业务承载帧结构如图24。
上述为采用映射方式一或映射方式二的情况。当采用映射方式三的情况下,四路E1承载帧的速度一致, 在应用中可以将四路E1业务合并在一起,只有一个E1承载帧,在一个业务承载帧中同时传递四路E1业务。如图25中,将E1承载帧中承载客户业务数据的区域划分成四个子区,分别传递第一路E1客户业务、第二路E1客户业务、第三路E1客户业务和第四路E1客户业务,每路E1客户在固定的净荷区域中承载。在图25中,四路E1业务数据区域按照字节模式间插排列,在应用中四路E1业务数据区域也可以按照双字节模式间插排列,也可以客户业务各自占用一片区域,例如净荷区中前面区域(前四分之一区)承载所有第一路E1业务,次后区域(次前四分之一区)承载第二路E1业务,再次后区域(次后四分之一区)承载第三路E1业务,最后区域(最后四分之一区)承载第四路E1业务,客户业务承载过程如图15。由于每路E1客户在固定的净荷区域中承载,开销信息中可以不需要成员标识来指出每一路E1客户业务,直接按照约定好的承载区域与客户业务编号的关系进行映射和提取即可。在一个基本单元中同时有四路E1业务,开销中可以同时有四路E1业务的调整指示信号。由于在大部分时间内调整位置都是处于同一个状态(当承载帧中净荷区域的承载容器速率微微大于E1业务速率时,调整位置大部分时间都是处于承载状态;当承载帧中净荷区域的承载容器速率远大于E1业务速率时,调整位置大部分时间都是处于未承载状态),因此可以将一个状态定为默认状态,例如将调整区的默认状态定为承载状态,不需要单独指示。在这种情况下,四路E1业务的调整指示信号可以共享起来,按照时分复用的方式分别用于指示每一路E1业务的调整指示。例如,在复帧号为“00”是调整指示信号用于第一路E1的调整区域状态;复帧号为“01”是调整指示信号用于第二路E1的调整区域状态;复帧号为“10”是调整指示信号用于第三路E1的调整区域状态;复帧号为“11”是调整指示信号用于第四路E1的调整区域状态。在一个承载帧中,当某路E1业务信号没有调整指示信号时,则调整区域处于默认调整状态。通过调整信号复用方式,可以减少调整信号的数量,节约开销信息资源。
示例二是客户业务是T1业务(标准业务速率为1.544Mbit/s)的场景,将E1业务承载于基本单元帧(传输速率为10.1Mbit/s)中,对于上述E1业务下的三种映射方式,在T1业务中也同样适用。
在基本单元帧中一个子时隙带宽是10.1M(单位bit/s),可以承载6路T1业务,6路T1的总带宽是9.264M,在基本单元帧的一个子时隙上承担6路T1客户业务时承载效率最低门限是91.723%,承载帧的承载效率要求大于T1业务的承载效率。为了达到承载效率门限要求,对于映射方式一或映射方式二,如图20的承载模式,T1承载帧结构中D块数量至少为19个(小于19个D时,例如18个D值时承载效率只有91.51%),即T1承载帧结构为S块+19*D块+T7块,承载效率为91.77%,大于承担6路T1客户业务时承载效率最低门限是91.723%,可以承载6路T1客户业务。对于图21的承载模式(S块中承载T1业务数据),T1承载帧结构中D块数量至少为3个,不同D数量和开销信息数量的承载结果如下表2所示。
Figure PCTCN2022097416-appb-000002
Figure PCTCN2022097416-appb-000003
表2.承载帧的帧结构与承载6路T1业务的对应关系表
对于承载6个T1的承载帧的帧结构,在开销信息的字节数量为2字节(16比特)时,如图23的格式,则T1业务承载帧的帧结构为S块+8*D块+T7。
对于承载6个T1的业务承载帧的帧结构,在开销字节数量为2字节(16比特时),在映射方式三中,6个T1承载帧可以合并为一个T1承载帧,在一个T1承载中同时承载6路T1业务,T1业务映射处理过程如图26。根据S块中承载开销和T1客户业务的数量不同,T1承载帧中的D块数量不同,当S块中只承载开销信息,不承载T1业务数据时,则T1业务承载帧结构可以采用为S块+19*D块+T7。当S块中承载2个开销信息和5个T1业务数据时,则T1业务承载帧结构可以采用为S块+9*D块+T7,可以业务映射承载结构如图27。
示例三是标准以太网报文封装格式下承载帧的承载过程。
前面事例的三种映射承载方式是采用自定义的S块+D块+T格式组成的承载帧实现,采用标准以太网报文封装格式代替S块+D块+T格式组成的承载帧,这样映射方式一的承载过程就变成映射方式四,如图28所示;映射方式二的承载过程就变成映射方式五,如图29所示;映射方式三的承载过程就变成映射方式六,如图30所示。在映射方式四到六格式中,O对应映射方式一至三中的开销信息,B对应业务数据(即映射方式一至三中D块承载内容)。映射方式一至三和映射方式四至六之间只是承载帧的外部结构不同,承载帧在承载过程、客户内容的映射处理方式是相同的。
在映射方式四至六中,承载帧采用以太网封装格式,承载报文前面是以太网标准定义的头部信息(如目的MAC地址、源MAC地址、类型域等信息),尾部是报文的CRC校验信息(以太网报文标准采用CRC32校验算法)。采用以太网报文格式封装时,由于以太网报文中头部信息、CRC校验信息占用许多带宽,影响承载帧报文在承载客户信息时的带宽有效利用率,如果在10M子时隙中需要承载4路E1或6路T1,则需要增加以太网格式的承载帧长度,增加一个承载帧中客户信息的数量,进而提高承载报文的承载效率。对于E1的场景,承载帧中承载E1字节数量为X时,则承载效率为X/(X+帧间隙+前导码+开销信息字节+X+CRC字节),10M子时隙中承载4路E1业务时需要效率计算公式结果大于80.49%,承载帧中E1字节在108个字节及以上(在帧间隙长度为12字节、前导码为8字节、开销信息为2字节情况下)。当一个10M带宽的子时隙中承载4路E1时,则承载帧中E1客户字节数量可以取4的倍数,则承载帧中承载E1的字节数量可以是108个字节(每路E1承载27个字节,4路E1共108个字节)、112个字节(每路E1承载28个字节,4路E1共112个字节)、116个字节(每路E1承载29个字节,4路E1共116个字节),依次类推。对于T1的场景,承载帧中承载T1字节数量为Y时,则承载效率为Y/(帧间隙+前导码+开销信息字节+Y+CRC字节),10M子时隙中承载6路T1业务时需要效率计算公式结果大于91.723%。承载帧中T1字节在288个字节及以上(在帧间隙长度为12字节、前导码为8字节、开销为2字节情况下)。当一个10M带宽的子时隙中承载6路T1时,则承载帧中T1字节数量可以取6的倍数,则承载帧中承载T1的数量可以是288个字节(每路T1承载48个字节,6路T1共288个字节)、294个字节(每路T1承载49个字节,6路T1共294个字节)、300个字节(每路T1承载50个字节,6路T1共300个字节),依次类推。
本申请实施例的还提供了一种业务处理设备,包括至少一个处理器和用于与至少一个处理器通信连接的存储器;存储器存储有能够被至少一个处理器执行的指令,指令被至少一个处理器执行,以使至少一个处理器能够执行前述的业务处理方法。
参照图31,以业务处理设备1000中的控制处理器1001和存储器1002可以通过总线连接为例。存储器1002作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序以及非暂态性计算机可执行程序。此外,存储器1002可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器、闪存器件、或其他非暂态固态存储器件。在一些实施方式中,存储器1002可包括相对于控制处理器1001远程设置的存储器,这些远程存储器可以通过网络连接至业务处理设备1000。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本领域技术人员可以理解,图31中示出的装置结构并不构成对业务处理设备1000的限定,可以包括比 图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
本申请实施例的还提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个控制处理器执行,例如,被图31中的一个控制处理器1001执行,可使得上述一个或多个控制处理器执行上述方法实施例中的业务处理方法,例如,执行以上描述的图11中的方法步骤S100至步骤S400、图12中的方法步骤S210至步骤S230、图16中的方法步骤S430至步骤S450、图17中的方法步骤S460至步骤S470以及图18中的方法步骤S471至步骤S472。
本申请实施例提供的业务处理方法,至少具有如下有益效果:针对低速客户业务在细颗粒度的时隙管道中传输效率不高的情况,本申请实施例提供了一种承载帧的帧结构,基于承载帧的帧格式在S块、D块和T块或标准以太网帧中确定净荷区域,通过该净荷区域承载业务数据,并通过细颗粒度的业务时隙管道将承载帧发送到目的设备。通过该时隙管道发送承载帧时,时隙管道整体的效率得到保证,可以避免带宽浪费的问题,尤其为SDH体系标准中的各种低速业务的传输提供了解决办法。
以上所描述的装置实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上是对本申请的若干实施方式进行了具体说明,但本申请并不局限于上述实施方式,熟悉本领域的技术人员在不违背本申请精神的前提下还可作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (11)

  1. 一种业务处理方法,包括:
    在通信网中承载低速客户业务的情况下,确定开销信息并在承载帧中确定用于承载开销信息和业务数据的净荷区域,所述承载帧是由以太网协议定义的S块、D块和T块组成的特定码块流或者标准以太网帧;
    将所述开销信息和所述业务数据映射到所述净荷区域中。
  2. 根据权利要求1所述的业务处理方法,其特征在于,所述开销信息至少包括以下之一:
    成员标识,用于区分多个业务中的各个业务成员;
    或复帧标识,用于区分组成复帧的各个承载帧;
    或时戳值信息,用于表示业务的时钟信息;
    或调整指示信息,用于指示调整区域是否用于承载业务数据,所述调整区域用于对所述业务和所述承载帧进行速率适配;
    或校验信息,用于存储校验字段。
  3. 根据权利要求1所述的业务处理方法,其中,在所述承载帧是由S块、D块和T块组成的码块流的情况下,所述净荷区域由D块的字节、S块中控制字节外的字节和T块中控制字节外的字节中的至少一个组成;
    所述业务数据根据以下之一的映射方式承载到所述净荷区域:
    映射方式一:所述承载帧的传输速率与业务速率相同,所述承载帧的净荷区域直接承载与所述承载帧对应的业务的业务数据;
    映射方式二:各个所述承载帧的传输速率相同,所述承载帧的净荷区域经过大小调整后承载与所述承载帧对应的业务的业务数据;
    映射方式三:各个所述承载帧的传输速率相同,在所述承载帧的净荷区域承载多个客户业务,所述承载帧的净荷区域划分成多个业务承载区域,每个业务承载区进行大小调整后承载所述业务承载区域对应的业务的业务数据。
  4. 根据权利要求1所述的业务处理方法,其中,在所述承载帧是标准以太网帧的情况下,所述净荷区域在以太网帧的数据字段区域,以太网帧的前面是头部信息字段,中间是数据字段,最后是以太网报文的CRC校验字段;
    所述业务数据根据以下之一的映射方式承载到所述净荷区域:
    映射方式四:所述以太网报文的传输速率与业务速率相同,所述以太网报文的净荷区域直接承载与所述以太网报文对应的业务的业务数据;
    映射方式五:各个所述以太网报文的传输速率相同,所述以太网报文的净荷区域经过大小调整后承载与所述以太网报文对应的业务的业务数据;
    映射方式六:各个所述以太网报文的传输速率相同,在所述以太网报文的净荷区域承载多个客户业务,所述以太网报文的净荷区域划分成多个业务承载区域,每个业务承载区进行大小调整后承载所述业务承载区对应的业务的业务数据。
  5. 根据权利要求3或4所述的业务处理方法,其中,在映射方式三或映射方式六的情况下,每个所述业务承载区按照比特间插、字节间插或预设分区间插的方式形成。
  6. 根据权利要求3或4所述的业务处理方法,其中,在映射方式二、映射方式三、映射方式五或映射方式六的情况下,所述将所述业务数据映射到所述净荷区域中,包括:
    在所述净荷区域中确定用于进行速率适配的调整区域;
    在所述业务的业务速率偏小的情况下,设定所述调整区域不承载所述业务数据;
    在所述业务的业务速率偏大的情况下,设定所述调整区域承载所述业务数据。
  7. 根据权利要求6所述的业务处理方法,还包括:
    获取所述业务的业务时钟信息和所述承载帧的参考时钟信息;
    根据所述业务时钟信息和所述参考时钟信息确定时戳值信息,并将所述时戳值信息记录在所述开销信息中;
    其中,所述时戳值信息为所述业务映射到所述承载帧的绝对时间值信息,或者为所述业务时钟信息与所 述参考时钟信息的偏差信息。
  8. 根据权利要求7所述的业务处理方法,其中,所述将所述时戳值信息记录在所述开销信息中,包括:
    在多个所述承载帧组成复帧的情况下,将所述时戳值信息划分在所述复帧中多个承载帧中承载,所述复帧的每个承载帧只承载部分所述时戳值信息。
  9. 根据权利要求7所述的业务处理方法,还包括:
    将承载有所述时戳值信息的所述承载帧通过细颗粒度的业务时隙管道发送到目的设备,以使所述目的设备根据所述时戳值信息恢复所述承载帧中承载业务数据的时钟信息。
  10. 根据权利要求3或4所述的业务处理方法,其中,在映射方式三或映射方式六的情况下,所述将所述业务数据映射到所述净荷区域中,还包括:
    设定一个调整指示信息,在不同所述承载帧中指示其中一个业务对应的调整区域的状态;
    或者,
    设定多个调整指示信息,根据所述调整指示信息与所述业务的对应关系,每个所述调整指示分别指示各自对应的所述业务对应的调整区域的状态。
  11. 一种业务处理设备,包括至少一个处理器和用于与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有能够被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如权利要求1至10中任意一项所述的业务处理方法。
PCT/CN2022/097416 2021-06-21 2022-06-07 业务处理方法及业务处理设备 WO2022267882A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22827378.5A EP4362361A1 (en) 2021-06-21 2022-06-07 Service processing method and service processing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110687990.0A CN115580370A (zh) 2021-06-21 2021-06-21 业务处理方法及业务处理设备
CN202110687990.0 2021-06-21

Publications (1)

Publication Number Publication Date
WO2022267882A1 true WO2022267882A1 (zh) 2022-12-29

Family

ID=84544114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/097416 WO2022267882A1 (zh) 2021-06-21 2022-06-07 业务处理方法及业务处理设备

Country Status (3)

Country Link
EP (1) EP4362361A1 (zh)
CN (1) CN115580370A (zh)
WO (1) WO2022267882A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7944941B1 (en) * 1999-06-01 2011-05-17 Ciena Corporation High speed Ethernet based on SONET technology
CN110557217A (zh) * 2018-06-01 2019-12-10 华为技术有限公司 一种业务数据的处理方法及装置
CN111917506A (zh) * 2020-07-21 2020-11-10 烽火通信科技股份有限公司 一种FlexE低速业务处理方法和装置
CN112865910A (zh) * 2019-11-28 2021-05-28 中兴通讯股份有限公司 一种数据传输方法、装置、终端设备和存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7944941B1 (en) * 1999-06-01 2011-05-17 Ciena Corporation High speed Ethernet based on SONET technology
CN110557217A (zh) * 2018-06-01 2019-12-10 华为技术有限公司 一种业务数据的处理方法及装置
CN112865910A (zh) * 2019-11-28 2021-05-28 中兴通讯股份有限公司 一种数据传输方法、装置、终端设备和存储介质
CN111917506A (zh) * 2020-07-21 2020-11-10 烽火通信科技股份有限公司 一种FlexE低速业务处理方法和装置

Also Published As

Publication number Publication date
CN115580370A (zh) 2023-01-06
EP4362361A1 (en) 2024-05-01

Similar Documents

Publication Publication Date Title
EP3319254B1 (en) Method for data transmission, transmitter and receiver
WO2021103928A1 (zh) 一种数据传输方法、装置、终端设备和存储介质
CN113300810B (zh) 一种传输速率的调整方法及网络设备
US20190097914A1 (en) Data forwarding method and device
US10715306B2 (en) Method and apparatus for sending service, method and apparatus for receiving service, and network system
WO2019062227A1 (zh) 数据传输方法、传输设备和传输系统
CN110266612A (zh) 数据传输方法及装置、网络设备及存储介质
WO2017201953A1 (zh) 一种客户业务处理的方法和设备
CN111490845A (zh) 一种传递客户业务的方法、装置和系统
WO2018130228A1 (zh) 业务传递的方法、设备和系统、存储介质
WO2019084732A1 (zh) 时钟同步的方法和装置
JP2020519100A (ja) フレックスイーサネットプロトコルにおいてトラヒックを伝送する方法、装置及びシステム
WO2022267882A1 (zh) 业务处理方法及业务处理设备
WO2022183875A1 (zh) 确定传输时隙的方法和相关装置
WO2023143403A1 (zh) 业务数据承载方法、承载帧结构及业务处理设备
US9553686B2 (en) Compression method for TDM frames in a packet network
WO2023165222A1 (zh) 待映射内容的映射方法、装置、存储介质及电子装置
CN109728874B (zh) 一种比特块处理方法及节点
WO2023284563A1 (zh) 时隙配置方法、时隙配置装置及计算机可读存储介质
WO2024001230A1 (zh) 承载方法、通信设备以及存储介质
WO2023231429A1 (zh) 数据传输方法、源端设备、宿端设备及存储介质
CN111224746A (zh) 一种业务比特流处理方法及装置
WO2024032297A1 (zh) 业务信息的处理方法、网络设备及存储介质
WO2024007804A1 (zh) 固定速率信号的速率恢复方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22827378

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022827378

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022827378

Country of ref document: EP

Effective date: 20240122