WO2024007804A1 - 固定速率信号的速率恢复方法及装置 - Google Patents

固定速率信号的速率恢复方法及装置 Download PDF

Info

Publication number
WO2024007804A1
WO2024007804A1 PCT/CN2023/098667 CN2023098667W WO2024007804A1 WO 2024007804 A1 WO2024007804 A1 WO 2024007804A1 CN 2023098667 W CN2023098667 W CN 2023098667W WO 2024007804 A1 WO2024007804 A1 WO 2024007804A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
rate
overhead
fixed
frame
Prior art date
Application number
PCT/CN2023/098667
Other languages
English (en)
French (fr)
Inventor
苑岩
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2024007804A1 publication Critical patent/WO2024007804A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/085Retrieval of network configuration; Tracking network configuration history
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/085Retrieval of network configuration; Tracking network configuration history
    • H04L41/0853Retrieval of network configuration; Tracking network configuration history by actively collecting configuration information or by backing up configuration information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0866Checking the configuration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0866Checking the configuration
    • H04L41/0869Validating the configuration within one network element

Definitions

  • Embodiments of the present disclosure relate to the field of communications, and specifically, to a rate recovery method and device for a fixed rate signal.
  • Fixed-rate signals are signals with a fixed bit rate.
  • Higher-rate signals transmitted in physical media are fixed-rate signals, such as Ethernet physical layer signals, Synchronous Digital Hierarchy (Synchronous Digital Hierarchy) , SDH) signal, Optical Transport Network (OTN) signal, Flexible Ethernet (FlexE) signal, etc.
  • a fixed-rate signal may be transmitted directly over the physical medium, or it may be encased in another fixed-rate signal for transmission.
  • Optical Transport Unit-k Optical Transport Unit-k, OTUk
  • Optical Data Unit-0 Optical Data Unit-0, ODU0
  • ODU0 may be loaded into the payload of ODU4, and then ODU4 is converted to OTU4, and OTU4 is transmitted in the physical medium.
  • a fixed-rate signal is loaded into another fixed-rate signal.
  • the loaded signal is named the client signal, and the signal loaded into other signals is named the service signal. That is, the client signal is loaded into the service signal.
  • the rate information of the client signal will be lost after the client signal is loaded into the service signal.
  • the rate of OTU4 follows the rate of ODU4. That is, when the rate of ODU4 changes slightly, OTU4 will also change accordingly. At this time, the rate information of ODU4 is actually stored in the rate information of OTU4, so the rate information of ODU4 is not lost.
  • ODU0 is loaded into ODU4
  • the rate of ODU4 will not change with ODU0, and the rate information of ODU0 will be lost.
  • the client signal is loaded into the service signal. After the service signal is transmitted, the client signal needs to be extracted from the service signal. If the rate of the client signal is lost, the extracted client signal is meaningless.
  • Embodiments of the present disclosure provide a rate recovery method and device for a fixed rate signal to at least solve the problem in the related art that the rate of the client signal is lost after the client signal is incorporated into the service signal for transmission.
  • a rate recovery method for a fixed-rate signal includes: loading the fixed-rate signal into the payload of a service signal at a source node, and using the frame of the service signal to The period is a statistical period, and the number of bits of the fixed-rate signal in each statistical period is counted.
  • the service signal is a fixed-rate, fixed-length frame signal.
  • the fixed-rate signal includes overhead and payload, and the fixed-rate signal includes overhead and payload.
  • the overhead of the rate signal includes rate information overhead; the designated time interval is determined according to the position of the specific overhead of the fixed rate signal in the payload of the service signal, and all statistical periods corresponding to the designated time interval are counted.
  • the sum of the number of bits of the fixed rate signal is used as rate information, the rate information is loaded into the rate information overhead of the fixed rate signal, and the service signal is sent from the source node, where, The specified time interval is greater than the statistical period; the sink node receives the service signal and obtains the fixed rate signal from the service signal, and adds the fixed rate signal to the service signal according to the specific overhead of the fixed rate signal.
  • the specified time interval is obtained from the position in the payload, the number of statistical periods corresponding to the specified time interval is obtained, the sum of the number of bits is obtained from the rate information overhead, and based on the statistical period sum of numbers
  • the sum of the bit numbers of the fixed-rate signal recovers the rate of the fixed-rate signal.
  • a rate recovery device for a fixed-rate signal.
  • the device includes: a statistics module, located in the source node, for loading the fixed-rate signal into the payload of the service signal, and
  • the frame period of the service signal is a statistical period, and the number of bits of the fixed-rate signal in each statistical period is counted.
  • the service signal uses a fixed-rate, fixed-length frame, and the fixed-rate signal includes overhead and payload.
  • the overhead of the fixed rate signal includes rate information overhead
  • the first sending module located in the source node, is used to determine the designated time according to the position of the specific overhead of the fixed rate signal in the payload of the service signal interval, and use the sum of the number of bits of the fixed rate signal counted in all statistical periods corresponding to the specified time interval as rate information, and load the rate information into the rate information overhead of the fixed rate signal, and send the service signal from the source node, where the specified time interval is greater than the statistical period
  • the first recovery module located in the sink node, is used to receive the service signal, and from the service signal Obtain the fixed rate signal, obtain the specified time interval according to the position of the specific rate overhead of the fixed rate signal in the payload of the service signal, and obtain the statistical period corresponding to the specified time interval
  • the number of bits is obtained from the rate information overhead, and the rate of the fixed rate signal is restored according to the number of statistical periods and the sum of the bit numbers of the fixed rate signal.
  • Figure 1 is a schematic structural diagram of a computer terminal according to an embodiment of the present disclosure
  • Figure 2 is a flow chart of a rate recovery method for a fixed rate signal according to an embodiment of the present disclosure
  • Figure 3 is a schematic diagram of multiple client signals being loaded into one service signal according to an embodiment of the present disclosure
  • Figure 4 is a schematic diagram of the correspondence between the transmission cycle and the statistical cycle according to an embodiment of the present disclosure
  • Figure 5 is a schematic diagram of the correspondence between the transmission cycle and the statistical cycle according to another embodiment of the present disclosure.
  • Figure 6 is a schematic structural diagram of a rate recovery device for fixed rate signals according to an embodiment of the present disclosure
  • Figure 7 is a schematic structural diagram of a rate recovery device for a fixed rate signal according to another embodiment of the present disclosure.
  • Fixed-rate signals are signals with a fixed bit rate, and higher-rate signals transmitted in physical media are fixed-rate signals.
  • a fixed-rate signal it may be a fixed-length frame signal, a non-fixed-length frame signal, or a frameless signal.
  • the fixed-length frame signal is composed of overhead and payload.
  • the fixed-length frame is composed of the overhead of A data units plus the payload of B data units, where A and B are integers greater than or equal to 1, and the The data unit is K bytes, or K P/Qb codes, where K is an integer greater than or equal to 1, P and Q are integers greater than or equal to 1 and Q is greater than P.
  • P/Qb encoding is 64/66b encoding.
  • A, B, K, P and Q are all fixed values.
  • the signal is composed of data frame by frame.
  • the overhead and payload in each frame are composed in a completely The same, and the fixed-length frame signal overhead includes frame positioning overhead to indicate The start of the current frame and the end of the previous frame.
  • a non-fixed length frame signal means that the signal consists of overhead and payload.
  • a non-fixed length frame signal consists of an overhead of E data units and a payload of F data units, where E and F are integers greater than or equal to 1, And the value of E or F corresponding to each frame can be changed, that is, the frame length of each frame may be different.
  • the data unit is K bytes, or K P/Qb codes, where K is an integer greater than or equal to 1, P and Q are integers greater than or equal to 1 and Q is greater than P.
  • the overhead of the non-fixed length frame signal It includes at least frame positioning overhead, which is used to mark the beginning of the current frame and the end of the previous frame.
  • the frameless signal is composed of the overhead of R data units plus the payload of S data units, where R and S are integers greater than or equal to 1, and the value of R or S can be changed, and the data units are K P/ Qb coding, where K is an integer greater than or equal to 1, P and Q are integers greater than or equal to 1, and Q is greater than P.
  • K is an integer greater than or equal to 1
  • P and Q are integers greater than or equal to 1
  • Q is greater than P.
  • a fixed-rate signal may be transmitted directly over the physical medium, or it may be encased in another fixed-rate signal for transmission. If the rates of the client signal and the service signal have no following relationship, the rate information of the client signal will be lost after the client signal is loaded into the service signal. When the client signal needs to be extracted from the service signal, if the rate of the client signal is lost, the extracted client signal is meaningless. Therefore, it is currently considered to record the rate information of the client signal when the client signal is loaded into the service signal, so that the rate of the client signal can be restored based on the recorded rate information when the client signal is taken out from the service signal. FIG.
  • FIG. 3 is a schematic diagram when j client signals are loaded into one service signal according to an embodiment of the present disclosure, where j is an integer greater than 1.
  • j is an integer greater than 1.
  • the rate of a fixed-rate signal is actually the number of bits transmitted per unit time, so the signal rate can be expressed by two values: time and the number of bits.
  • the transmission process of a signal is divided into many time periods connected end to end. This time period is named a statistical period. If the number of bits of the signal in each statistical period is known, then according to the time length of each statistical period and each statistical period The number of bits in the signal can be used to generate the signal rate using hardware. Therefore, multiple sets of data can be used to represent the rate of a fixed-rate signal. Each set of data includes a statistical period and the number of bits. If each statistical period is as equal as possible, the final rate recovery effect will be better based on the statistical period and the number of bits, and the hardware implementation will be simpler.
  • One processing method is to use the overhead of the service signal to record the rate information of the client signal.
  • n consecutive frames of the service signal can be used as the statistical period, where n is an integer greater than or equal to 1.
  • the number of bits of the client signal is counted in each statistical period, and the number of bits is written into the overhead of the service signal as rate information.
  • the node that extracts the client signal from the service signal can identify the frame structure after receiving the service signal, and the statistical period is equal to n frames, so as long as the frame structure is identified, the statistical period can be obtained, so that the statistical period does not need to pass Additional overhead is transmitted.
  • the number of bits of the customer signal is obtained through the specific overhead of the service signal. In this way, the number of bits of the customer signal can be restored according to the statistical period and the corresponding number of customer signals.
  • the rate at which client signals are replayed For example, when ODU0 is loaded into the payload of ODU4, ODU4 is a fixed-length frame signal. 80 consecutive ODU4 frames are used as the statistical period.
  • the number of bits of ODU0 is counted in each statistical period, and the number of bits of ODU0 is written as the rate information. into the specific overhead of ODU4, the data is counted once in each statistical period, and the statistical data is recorded as rate information in the specific overhead of ODU4.
  • the statistical period is obtained according to the frame header of the received ODU4 signal.
  • the number of bits of ODU0 within the statistical period can be obtained.
  • the rate of ODU0 can be obtained, thereby recovering the rate of ODU0.
  • Each period of transmitting rate information (referred to as the transmission cycle) will count the number of bits of the client signal as the rate information, and the rate information will be transmitted immediately after the completion of each statistical period, that is, the transmission period is equal to the statistical period.
  • the above-mentioned processing method of using the overhead of the service signal to record the rate information of the client signal has certain problems in practical applications. If the overhead ratio of the service signal is very low, it often means that the service signal overhead type is limited, and the overhead bandwidth is also very low.
  • a service signal needs to load multiple client signals at the same time, and the rate information of each client signal must occupy the service signal.
  • the overhead requires defining the overhead of many service signals to record the rate information of multiple client signals. At the same time, there are also requirements for the overhead bandwidth of the service signal recording rate information.
  • the payload bandwidth of the service signal is generally greater than the sum of the rates of the client signals, so a lot of bandwidth in the payload of the service signal is generally wasted. Taking this factor into account, it is more appropriate to use the overhead of the client signal to record the rate information of the client signal, which can more fully utilize the wasted bandwidth.
  • this processing method also has certain implementation difficulties. For example, if the client signal is also a fixed-length frame signal, since the frame period of the client signal is generally different from the frame period of the service signal, if the transmission period is equal to the statistical period, it means that the client The occurrence period of the overhead of signal transmission rate information is equal to n frames of the service signal.
  • the occurrence frequency of the overhead of the client signal is related to the frame period of the client signal, and the frame period of the client signal is inconsistent with the frame period of the service signal. This occurs. There is a conflict, making it difficult to convey the rate information of the client signal with the overhead of the client signal.
  • embodiments of the present disclosure provide a rate recovery method for fixed rate signals.
  • the rate information of the client signal is recorded with the overhead of the client signal, and the transmission period is inconsistent with the statistical period. For example, one or more statistical periods are transmitted in each transmission period. The rate information of each transmission period does not need to be strictly equal. Since the statistical period and the transmission period are inconsistent, the overhead of the client signal can be used while the statistical period is consistent. Therefore, when the client signal is extracted from the service signal, the overhead of the client signal can be used. The rate information in the client is used to recover the rate of the client signal.
  • FIG. 1 is a hardware structure block diagram of a computer terminal running a rate recovery method for a fixed rate signal according to an embodiment of the present disclosure.
  • the computer terminal may include one or more (only one is shown in Figure 1) processors 102 (the processor 102 may include but is not limited to a processing device such as a microprocessor MCU or a programmable logic device FPGA) and a memory 104 for storing data, wherein the above computer terminal may also include a Transmission device 106 and input and output device 108 for communication functions.
  • Figure 1 is only illustrative, and it does not limit the structure of the above-mentioned computer terminal.
  • the computer terminal may also include more or fewer components than shown in FIG. 1 , or have a different configuration than shown in FIG. 1 .
  • the memory 104 may be used to store computer programs, for example, software programs and modules of application software, such as the computer program corresponding to the rate recovery method for fixed rate signals in the embodiment of the present disclosure.
  • the processor 102 runs the computer program stored in the memory 104 , thereby executing various functional applications and data processing, that is, implementing the above method.
  • Memory 104 may include high-speed random access memory, and may also include non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid-state memory.
  • the memory 104 may further include memory located remotely relative to the processor 102, and these remote memories may be connected to the mobile terminal through a network. Examples of the above-mentioned networks include but are not limited to the Internet, intranets, local area networks, mobile communication networks and combinations thereof.
  • the transmission device 106 is used to receive or send data via a network.
  • Specific examples of the above-mentioned network may include a wireless network provided by a communication provider of the computer terminal.
  • the transmission device 106 includes a network adapter (Network Interface Controller, NIC for short), which can be connected to other network devices through a base station to communicate with the Internet.
  • the transmission device 106 may be a radio frequency (Radio Frequency, RF for short) module, which is used to communicate with the Internet wirelessly.
  • NIC Network Interface Controller
  • FIG. 1 is a method flow chart according to an embodiment of the present disclosure. As shown in Figure 1, the process includes the following steps:
  • Step S202 The source node loads the fixed rate signal into the payload of the service signal, and uses the frame period of the service signal as the statistical period to count the number of bits of the fixed rate signal in each statistical period, where,
  • the service signal is a fixed-rate, fixed-length frame signal, and the fixed-rate signal includes overhead and payload, wherein the overhead of the fixed-rate signal includes rate information overhead;
  • Step S204 Determine a designated time interval based on the position of the specific overhead of the fixed rate signal in the payload of the service signal, and calculate the bits of the fixed rate signal counted in all statistical periods corresponding to the designated time interval. The sum of the numbers is used as rate information, the rate information is loaded into the rate information overhead of the fixed rate signal, and the service signal is sent from the source node, wherein the specified time interval is greater than the statistical period;
  • Step S206 The sink node receives the service signal, obtains the fixed rate signal from the service signal, and determines the specific overhead of the fixed rate signal according to the position in the payload of the service signal. According to the specified time interval, the number of statistical periods corresponding to the specified time interval is obtained, the sum of the number of bits is obtained from the rate information overhead, and based on the number of statistical periods and the fixed rate signal The sum of the number of bits recovers the rate of the fixed rate signal.
  • the method before the sink node receives the service signal, the method further includes: receiving the service signal at an intermediate node, acquiring the fixed rate signal from the service signal, and recovering the fixed rate. The rate of the signal; the fixed rate signal is loaded into a new service signal and sent from the intermediate node.
  • the fixed-rate signal is a fixed-length frame signal
  • the specified time interval is determined by the position of the specific overhead of M frames of the fixed-rate signal, wherein the specific overhead may be frame positioning overhead, or Either is the rate information overhead, or is other overhead.
  • the starting time of the designated time interval is determined by the position of the specific overhead in the Nth frame among the M frames of the fixed rate signal.
  • the designated time The end time of the interval is determined by the position of the specific overhead in the Nth frame among the next M frames of the fixed rate signal, where M is an integer greater than or equal to 1, N is an integer greater than or equal to 1 and N is less than or equal to M.
  • the specified time interval includes C statistical periods, where C is an integer greater than or equal to 1, and the sum of the number of bits of the fixed rate signal counted in the C statistical periods is used as the rate information.
  • the fixed rate signal is a non-fixed length frame signal
  • the specified time interval is determined by the position of the specific overhead of M frames of the fixed rate signal, wherein the specific overhead is a frame
  • the positioning overhead is either the rate information overhead or other overhead.
  • the starting time of the specified time interval is determined by the position of the specific overhead in the Nth frame among the M frames of the fixed rate signal, so The end time of the specified time interval is determined by the position of the specific overhead in the Nth frame among the next M frames of the fixed rate signal, where M is an integer greater than or equal to 1, N is an integer greater than or equal to 1, and N is less than or equal to M, the specified time interval includes C statistical periods, where C is an integer greater than or equal to 1, and the sum of the number of bits of the fixed rate signal counted in C statistical periods is used as the rate information.
  • the non-fixed length frame signal is composed of the overhead of E data units and the payload of F data units, where E and F are integers greater than or equal to 1, and each frame corresponds to The value of E or F can be changed.
  • E and F are integers greater than or equal to 1
  • each frame corresponds to The value of E or F can be changed.
  • the current frame E and F are 1 and 100 respectively, and the next frame E and F are 2 and 128 respectively.
  • the data unit is K bytes, or K P/Qb codes, where K is an integer greater than or equal to 1, P and Q are integers greater than or equal to 1 and Q is greater than P.
  • the overhead of the non-fixed length frame signal It includes at least frame positioning overhead, which is used to mark the beginning of the current frame and the end of the previous frame.
  • the fixed rate signal is a frameless signal
  • the specified time interval is determined by the location of the specific overhead, where the specific overhead may be the rate information overhead, or other overhead
  • the starting time of the designated time interval is determined by the position of the specific overhead of the fixed rate signal
  • the end time of the designated time interval is determined by the position of the specific overhead of the next fixed rate signal
  • the specified time interval includes C statistical periods, where C is an integer greater than or equal to 1, and the sum of the number of bits of the fixed rate signal counted in C statistical periods is used as the rate information.
  • the frameless signal is composed of the overhead of R data units plus the payload of S data units, where R and S are integers greater than or equal to 1, and the data units are K P /Qb encoding, where K is an integer greater than or equal to 1, P and Q are integers greater than or equal to 1, and Q is greater than P.
  • K is an integer greater than or equal to 1
  • P and Q are integers greater than or equal to 1
  • Q is greater than P.
  • loading the fixed rate signal into the payload of the service signal includes: loading the fixed rate signal directly into the payload of the service signal; or loading the fixed rate signal into an intermediate signal, and the intermediate signal is loaded into the payload of the service signal, wherein the intermediate signal is a fixed-rate signal.
  • using the sum of the number of bits of the fixed rate signal counted in C statistical periods corresponding to the specified time interval as the rate information includes: determining the C statistical periods corresponding to the specified time interval. , and add the number of bits of the fixed rate signal for C statistical periods as the rate information.
  • determining C statistical periods corresponding to the specified time interval includes: C is counting the number of end points of the statistical period within the specified time interval, and the end point of the statistical period is the The frame positioning overhead of the service signal.
  • the designated time interval is determined based on the position of the specific overhead of the fixed rate signal in the payload of the service signal, and the statistical period corresponding to the designated time interval is obtained.
  • number, package Includes: obtaining the specified time interval and C statistical periods included in the specified time interval, where C is an integer greater than or equal to 1, and C is the number of the statistical periods corresponding to the specified time interval.
  • recovering the rate of the fixed rate signal based on the sum of the number of statistical periods and the number of bits of the fixed rate signal further includes: obtaining based on the frame positioning overhead of the service signal The time corresponding to the statistical period is used to calculate the rate of the fixed rate signal based on the number of bits of the fixed rate signal.
  • the fixed-length frame is composed of the overhead of A data units plus the payload of B data units, where A and B are integers greater than or equal to 1, and the data unit is K bytes , or K P/Qb codes, where K is an integer greater than or equal to 1, P and Q are integers greater than or equal to 1 and Q is greater than P.
  • the overhead of the fixed-length frame at least includes frame positioning overhead, which is used to indicate the current The start of the frame and the end of the previous frame.
  • the rate information is recorded with the overhead of the fixed rate signal. This saves the overhead resources of the service signal more than using the overhead of the service signal to record the rate information.
  • Each The length of the statistical period is strictly equal, so that the low-frequency clock introduced when the fixed signal rate is finally restored based on the rate information and the statistical period is the smallest, thereby ensuring the optimal rate recovery effect and ultimately solving the problem of rate recovery after the customer signal is transmitted through the service signal. .
  • the client signal is a fixed-rate signal.
  • the rate of the client signal is actually the number of bits transmitted per unit time, so the signal rate can be expressed by two values: time and the number of bits.
  • the transmission process of a signal can be divided into many time periods connected end to end. This time period is the statistical period. It is necessary to count the number of bits of the signal in each statistical period, thereby calculating By calculating the number of bits transmitted per unit time, we can obtain the rate of the client signal.
  • the rate information of the client signal needs to be loaded into the overhead and transmitted, and the period of transmitting the rate information is the transmission period.
  • the following embodiment makes the transmission period larger than the statistical period, and transmits the rate information of one or more statistical periods in each transmission period. , each transmission cycle does not need to be strictly equal, and the rate information is placed in the overhead of the client signal.
  • both the service signal and the client signal are fixed-length frames.
  • the statistical period is defined as the duration of n consecutive frames of the service signal, the number of bits of the client signal is counted in each statistical period, and the transmission period is defined as k consecutive frames of the client signal.
  • the duration of k is an integer greater than or equal to 1. Choose an appropriate k value to ensure that the transmission period must be greater than or equal to the statistical period. In this case, there will be one or more statistical periods within the duration of each transmission period. Define the corresponding relationship between the transmission period and the statistical period.
  • the frame header position of the first frame of k consecutive frames of client signals in which the transmission period is located is the starting point of this transmission period and the end point of the previous transmission period. It is generated once in each transmission period.
  • Rate information statistics existing in this transmission cycle
  • the number of bits of the client signal corresponding to the C statistical periods is added as the rate. information, and write the rate information into the rate information overhead of up to k client signal frames corresponding to the current transmission cycle.
  • the sink node After receiving the service signal, it analyzes the frame structure of the service signal to obtain the frame header position of each frame. According to the frame header position, each statistical period can be obtained. After extracting the client signal from the service signal, the frame structure of the client signal is analyzed to obtain each The frame header position of the frame, the transmission period is obtained according to the frame header position of the client signal, the number C of statistical period end points in this transmission period is counted, the rate information is obtained according to the rate information overhead, the rate information corresponds to the client of C statistical periods The sum of the bit numbers of the signal, the duration of the statistical period can be obtained based on C and the statistical period of the service signal, and then based on the sum of the bit numbers of the client signals corresponding to the C statistical periods, the rate of the client signal can be calculated to achieve recovery A function of the client signal rate.
  • the statistical period and the number of bits corresponding to the statistical period represent rate information.
  • the rate information does not necessarily have to be represented by the length of each statistical period and the corresponding number of bits. It can be represented by multiple consecutive
  • the same effect can be achieved by expressing the sum of the time lengths of statistical periods and the sum of the number of bits corresponding to these statistical periods.
  • T 1 , B 1 , T 2 , B 2 represent the duration of two consecutive statistical cycles and their corresponding number of bits, where T 1 and B 1 are the statistical cycle time corresponding to the first statistical cycle.
  • the length and number of bits, T 2 , B 2 are the statistical cycle time length and number of bits corresponding to the second statistical period.
  • Use T 1 , B 1 , T 2 , B 2 to express the rate, and use T 1+ T 2 , B 1 + B 2 can also represent the same rate.
  • the two rates only have different statistical time lengths, but actually represent the same rate.
  • the sink node obtains each statistical period and its corresponding bit number, when actually calculating the rate, it still needs to add the time of multiple consecutive statistical periods, and then add the corresponding bit numbers of these statistical periods to obtain an updated period. Average rate over time.
  • the number of bits of the client signal counted in a certain statistical period is Bbit, and B is an integer greater than 1.
  • n corresponding to the statistical period of the service signal
  • Vbit The number of bits of the client signal actually loaded in a frame
  • V does not have to be equal to B.
  • V generally does not differ much from B. From the perspective of multiple statistical periods, the average value of V The value is equal to the mean of B.
  • a service signal can be loaded with one or more client signals. Assume that one service signal is loaded with multiple client signals.
  • the payload of the general service signal will contain Contains multiple client signals and padding information. How to identify multiple client signals and padding information includes multiple implementation methods. For example, dividing the payload of the service signal into multiple time slots so that different customer services are located in different time slots. , identify different client signals through time slots, identify the padding information and client signals in the payload through the overhead in the service signal, convert the client signals into 64/66b encoding, and identify the padding information and clients through 64/66b encoding rules signals, etc.
  • the specific implementation method of various information in the payload of the service signal is not within the scope of the embodiments of the present disclosure. Its specific implementation method has nothing to do with the implementation method of restoring the client signal rate, and does not affect the implementation method described in the embodiments of the present disclosure. The implementation effect of the method to restore the client signal rate.
  • the transmission period is only used to periodically transmit rate information, so the setting of the transmission period
  • the definition is the period of transmitting rate information.
  • the frame header position of the first frame of k consecutive client signal frames can be used as the starting point of the transmission period, using The frame header position of the k+1th frame of k consecutive client signal frames is used as the end point of the transmission cycle, or a certain overhead position in the k consecutive client signal frames can be used as the starting point and end point of the transmission cycle . Even if the duration of each transmission cycle is not equal, the rate recovery effect will not be affected.
  • the transmission cycles must be continuous, that is, the end time point of the previous transmission cycle must be the starting time point of the next transmission cycle, and the sum of the durations of all transmission cycles equals all time lengths.
  • the significance of the transmission cycle is to periodically send the sum of multiple statistical cycles and their corresponding client signal bit numbers through the rate information overhead. That is, there is a correspondence between the transmission cycle and the statistical cycle.
  • This correspondence can be implemented in many ways. As long as the rules of the corresponding relationship are clear, for this purpose, as long as a reference point is defined in each statistical period, and then the reference point is used as a replacement for the statistical period, the corresponding relationship between the transmission period and the statistical period can be obtained, and the transmission period can be counted.
  • the number of reference points in the memory can be used to obtain the number of statistical periods C in the transmission period.
  • the reference point of the statistical period can be the end point of the statistical period, the middle point of the statistical period, or a certain determination of the statistical period.
  • the point at the position such as the point at the first 1/4 position of the statistical period.
  • FIG. 4 is a schematic diagram of the correspondence between the transmission cycle and the statistical cycle according to Embodiment 1 of the present disclosure.
  • the client signal is loaded into the service signal.
  • the service signal lists 11 consecutive frames. These frames contain 5*k consecutive frames of the client signal.
  • the statistical period is defined as 1 of the service signal.
  • the duration of frames, the frame header position of the service signal is defined as the starting point of the current statistical period and the end point of the previous statistical period, the transmission period is k consecutive customer signal frames, and the first frame of k consecutive customer signal frames is defined
  • the frame header position is the starting point of the current transmission cycle and the end point of the previous transmission cycle.
  • k is an integer greater than or equal to 1.
  • the value of k ensures that the transmission cycle must be greater than the statistical cycle. Since the bandwidth of the client signal is smaller than the payload bandwidth of the service signal, after the service signal is loaded into the payload of the client signal, in two consecutive frames, there may be a gap between the end of the previous frame and the header of the next frame, and the gap interval The length of time may vary, so that each transmission cycle is not completely equal. In fact, whether each transmission cycle is equal in this example has no impact on the implementation effect. Define the frame period of the service signal as the statistical period, and count the number of bits of the client signal in each statistical period.
  • each transmission period corresponds to C statistical periods of the service signal.
  • the statistical period is represented by the end point of the statistical period.
  • the end point of the statistical period is defined as the frame end position of the frame in which the statistical period is located.
  • the end of the statistical period existing in the counting transmission period is The number of points is taken as C.
  • the first transmission period is k consecutive frames - 1.
  • the C value is 3, and the rate
  • the information is B 1 + B 2 + B 3 ; similarly, the second transmission cycle is k consecutive k frames - 2, the C value is 2, and the rate information is B 4 + B 5 ; the third transmission cycle is k consecutive k frames -3, the C value is 2, and the rate information is B 6 +B 7 ; the fourth transmission cycle is k consecutive k frames -4, the C value is 2, and the rate information is B 8 +B 95 .
  • the service signal is a fixed-length frame
  • the client signal is a fixed-rate signal.
  • the client signal consists of the overhead of R data units plus the payload of S data units, where R and S are integers greater than or equal to 1, And the value of R or S can be changed.
  • the data unit is K P/Qb codes, where K is an integer greater than or equal to 1, P and Q are integers greater than or equal to 1 and Q is greater than P.
  • Rate information is defined in the overhead. overhead, and there is no frame positioning overhead.
  • the frame header position of the first frame in n consecutive service signal frames as the starting point of the current statistical period and the end point of the previous statistical period.
  • the reference point of the statistical period as the end point of the statistical period.
  • the rate of the client signal The information overhead is the starting point of the current transmission cycle and the end point of the previous transmission cycle.
  • the statistical period is defined as the duration of n consecutive frames of the service signal. Each statistical period counts the number of bits of the client signal and is generated regularly.
  • the rate information overhead is loaded into the payload of the service signal together with the client signal and the rate information overhead.
  • the transmission period is defined as the interval between two consecutive rate information overheads. Each transmission period does not need to be strictly equal. The transmission period must be greater than the statistical period.
  • the frame header position of the first frame in n consecutive service signal frames is defined as the starting point of the current statistical period and the end point of the previous statistical period
  • the reference point of the statistical period is defined as the end point of the statistical period
  • the client signal The rate information overhead is the starting point of the current transmission cycle and the end point of the previous transmission cycle.
  • the rate information is generated once for each transmission cycle.
  • the corresponding relationship between the transmission cycle and the statistical period is determined, and the number of statistical cycles C is obtained.
  • C is the transmission cycle.
  • the number of statistical period reference points in the memory, the number of client signal bits corresponding to C statistical periods is added as the rate information, and the rate information is written into the rate information overhead corresponding to the current transmission period, and the service signal is transferred from the source node issue.
  • the frame structure of the service signal is analyzed to obtain the frame header position of each frame.
  • Each statistical period can be obtained according to the frame header position
  • the client signal is extracted from the service signal
  • the transmission period is obtained according to the position of the rate information overhead.
  • obtain the rate information based on the content in the rate information overhead.
  • the rate information is the sum of the number of bits of the client signal corresponding to C statistical periods, where C is the number of statistical periods corresponding to the transmission period. Based on the above information, you can Calculate the rate of the client signal to realize the function of restoring the client signal rate.
  • the number of bits of the client signal counted in a certain statistical period is Bbit, and B is an integer greater than 1.
  • Bbit the number of bits of the client signal counted in a certain statistical period
  • Vbit the number of bits of the client signal actually loaded in
  • V the average value of V is equal to The average value of B.
  • a service signal can be loaded with one or more client signals. Assume that a service signal is loaded with multiple client signals. At the same time, rate information overhead must be added regularly to each client signal. When decoding the client signal from the service signal, The payload of a general service signal will contain multiple client signals, padding information and rate information overhead of each client service. How to identify the above information is not within the scope of the embodiments of this disclosure. Its specific implementation method and recovery of client signals The rate implementation method is irrelevant and does not affect the implementation effect of the method for restoring the client signal rate described in the embodiments of the present disclosure.
  • FIG. 5 is a schematic diagram of the correspondence between the transmission cycle and the statistical cycle according to Embodiment 2 of the present disclosure.
  • the client signal is loaded into the service signal.
  • the service signal lists 11 consecutive frames. There is no need to identify the frame structure of the client signal.
  • the client signal is The signal is treated as a bit stream consisting entirely of payload. After adding rate information overhead regularly, the client signal and rate information overhead are loaded into the payload of the service signal together.
  • the rate information overhead is added 5 times.
  • the statistical period is defined as the duration of one frame of the service signal, and the transmission The period is the time from the beginning of the rate information overhead to the next rate information overhead.
  • the transmission period must be greater than the statistical period. Each transmission period may not be completely equal.
  • each transmission period is equal or not has no impact on the implementation effect.
  • the frame period of the service signal as the statistical period, and count the number of bits of the client signal in each statistical period. Assume that the frame number of the current service signal is k, then the frame period time length of the service signal with frame number k is T k , and the frame number The number of bits of the client signal counted within the frame period of the service signal k is recorded as B k .
  • Each transmission cycle corresponds to one frame in the service signal, and the correspondence between the transmission cycle and the service signal frame is the statistical cycle frame number where the first bit of the rate information overhead corresponding to the transmission cycle is located.
  • the first bit of the rate information overhead of the first transmission cycle is located in the first frame of the service signal, so the frame number of the service signal corresponding to the first transmission cycle is 1; and so on, the second transmission
  • the frame number of the service signal corresponding to the period is 4; the frame number of the service signal corresponding to the third transmission period is 6; the frame number of the service signal corresponding to the fourth transmission period is 8; the service signal corresponding to the fifth transmission period
  • the frame number is 10.
  • the frame number of the service signal corresponding to the transmission period is the end period of the statistical period, and the frame number of the service signal corresponding to the previous transmission period is the starting period of the statistical period.
  • the starting period is The number of bits corresponding to all statistical periods from the beginning to the end of the period is added up as the rate information, and the rate information is written into the rate information overhead of the current transmission period of the client signal.
  • the first transmission cycle has no rate information because the previous transmission cycle does not exist.
  • the rate information of the second transmission cycle is B 1 + B 2 + B 3 .
  • the rate information of the third transmission cycle is B 4 +B 5
  • the rate information of the 4th transmission cycle is B 6 +B 7
  • the rate information of the 5th transmission cycle is B 8 +B 9 .
  • a method for restoring the client signal rate is provided.
  • the rate information is recorded when the client signal is loaded into the service signal.
  • the rate data is generated according to the statistical period when recording the rate information.
  • the rate data is processed regularly according to the transmission period. Generate rate information, where the transmission period is greater than the statistical period, write the rate information into the overhead of the client signal, and then restore the rate of the client signal based on the rate information when the service signal takes out the client signal.
  • the transmission period is larger than the statistical period, and the rate information is written into the overhead of the client signal. This fully utilizes the bandwidth in the payload of the service signal and overcomes the problem of writing the rate information into the overhead of the client signal. difficulty.
  • the solution of the above embodiments of the present disclosure is suitable for the scenario where CBR is mapped to the optical service unit (Optical Service Unit, OSU) to realize CBR rate transparent transmission, and the rate of the OSU needs to be regenerated at the OSU intermediate point.
  • the rate The transparent transmission effect is equivalent to Generic Mapping Procedure (GMP) mapping, but the rate information overhead occupies the OSU overhead and does not occupy the overhead of outer service signals.
  • GMP Generic Mapping Procedure
  • the rate information overhead occupies the OSU overhead and does not occupy the overhead of outer service signals.
  • the rate The solution of using high-speed ODU overhead for information overhead has obvious advantages.
  • the solution of the embodiment of the present disclosure is also applicable to the FlexE time slot transparent transmission CBR service.
  • the solution of the embodiment of the present disclosure is also applicable to the rate recovery when ODU0 is decoded from ODU4 after ODU0 is mapped to ODU4. It should be understood that the embodiments of the present disclosure are also applicable to other similar scenarios.
  • the method can be implemented with the help of software plus the necessary general hardware platform. Of course, it can also be implemented through hardware, but in many cases the former is a better implementation method.
  • the technical solution of the present disclosure can be embodied in the form of a software product in essence or that contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk, CD), including several instructions to cause a terminal device (which can be a mobile phone, computer, server, or network device, etc.) to execute the methods described in various embodiments of the present disclosure.
  • This embodiment also provides a rate recovery device for a fixed rate signal, which is used to implement the above embodiments and preferred implementations. What has already been described will not be described again.
  • the term "module” may be a combination of software and/or hardware that implements a predetermined function. Although the apparatus described in the following embodiments is preferably implemented in software, implementation in hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 6 is a structural block diagram of a rate recovery device for fixed rate signals according to an embodiment of the present disclosure. As shown in Figure 6, the device 100 includes a first sending module 10 and a first recovery module 20.
  • the first sending module 10 is located in the source node and is used to load the fixed rate signal into the payload of the service signal, and use the frame period of the service signal as the statistical period to count the fixed rate signal in each statistical period.
  • the number of bits of the rate signal wherein the service signal is a fixed-rate fixed-length frame signal, the fixed-rate signal includes overhead and payload, wherein the overhead of the fixed-rate signal includes rate information overhead; according to the fixed-rate signal
  • the position of the specific overhead of the rate signal in the payload of the service signal determines the designated time interval, and the sum of the number of bits of the fixed rate signal counted in all statistical periods corresponding to the designated time interval is used as the rate information.
  • the rate information is loaded into the rate information overhead of the fixed rate signal, and the service signal is sent from the source node, wherein the designated time interval is greater than the statistical period.
  • the first recovery module 20 is located in the sink node and is used to receive the service signal and obtain the fixed rate signal from the service signal.
  • the service signal is The position in the payload determines the specified time interval, obtains the number of statistical periods corresponding to the specified time interval, obtains the sum of the number of bits from the rate information overhead, and calculates the number of bits according to the number of statistical periods. The sum of the number and the number of bits of the fixed-rate signal restores the rate of the fixed-rate signal.
  • Figure 7 is a structural block diagram of a rate recovery device for a fixed rate signal according to another embodiment of the present disclosure. As shown in Figure 7, in addition to all the modules shown in Figure 6, the device 200 also includes a second recovery module 30 and a second recovery module 200. Send module 40.
  • the second recovery module 30 is located in the intermediate node and is used to receive the service signal sent by the first sending module 10 of the source node, obtain the fixed rate signal from the service signal, and recover the fixed rate signal. s speed.
  • the second sending module 40 is located in the intermediate node and is used to pack the fixed rate signal into a new service signal and send it from the intermediate node node so that the first recovery module 20 of the sink node receives the service signal. And restore the rate of the fixed rate signal.
  • each of the above modules can be implemented through software or hardware.
  • it can be implemented in the following ways, but is not limited to this: the above modules are all located in the same processor; or the above modules can be implemented in any combination.
  • the forms are located in different processors.
  • Embodiments of the present disclosure also provide a computer-readable storage medium, which stores a computer-readable storage medium.
  • a computer program wherein the computer program is configured to execute the steps in any one of the above method embodiments when running.
  • the computer-readable storage medium may include but is not limited to: U disk, read-only memory (Read-Only Memory, referred to as ROM), random access memory (Random Access Memory, referred to as RAM) , mobile hard disk, magnetic disk or optical disk and other media that can store computer programs.
  • ROM read-only memory
  • RAM random access memory
  • mobile hard disk magnetic disk or optical disk and other media that can store computer programs.
  • Embodiments of the present disclosure also provide an electronic device, including a memory and a processor.
  • a computer program is stored in the memory, and the processor is configured to run the computer program to perform the steps in any of the above method embodiments.
  • the above-mentioned electronic device may further include a transmission device and an input-output device, wherein the transmission device is connected to the above-mentioned processor, and the input-output device is connected to the above-mentioned processor.
  • each module or each step of the above-mentioned embodiments of the present disclosure can be implemented by a general computing device, and they can be concentrated on a single computing device, or distributed among multiple computing devices. over a network, they may be implemented with program code executable by a computing device, such that they may be stored in a storage device for execution by the computing device, and in some cases, may be executed in a sequence different from that described here.
  • the steps shown or described may be implemented by fabricating them separately into individual integrated circuit modules, or by fabricating multiple modules or steps among them into a single integrated circuit module. As such, the present disclosure is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Time-Division Multiplex Systems (AREA)
  • Communication Control (AREA)

Abstract

本公开实施例提供了一种固定速率信号的速率恢复方法及装置,包括:在源节点将固定速率信号装入服务信号的净荷中,并以所述服务信号的帧周期为统计周期,统计每个统计周期内所述固定速率信号的比特数;根据所述固定速率信号的特定开销在所述服务信号的净荷中的位置确定指定时间间隔,并将指定时间间隔所对应的所有统计周期所统计的所述固定速率信号的比特数之和作为速率信息,将所述速率信息装入所述固定速率信号的开销后从所述源节点发出,在宿节点接收所述服务信号,并从所述服务信号中获取所述固定速率信号,并根据获取的所述统计周期的个数和所述比特数之和恢复出所述固定速率信号的速率。

Description

固定速率信号的速率恢复方法及装置 技术领域
本公开实施例涉及通信领域,具体而言,涉及一种固定速率信号的速率恢复方法及装置。
背景技术
固定速率信号(Constant Bit Rate Signal,CBR)是比特速率固定的信号,在物理介质中传送的较高速率的信号都是固定速率的信号,例如以太网物理层信号,同步数字体系(Synchronous Digital Hierarchy,SDH)信号,光传送网(Optical Transport Network,OTN)信号,灵活以太网(Flexible Ethernet,FlexE)信号等。
固定速率信号可以直接在物理介质中传送,也可能会被装入另一个固定速率的信号中传输。例如OTN设备中,光通道传送单元-k(Optical Transport Unit-k,OTUk)是固定速率的信号,可以直接在物理介质中传输。光通道数据单元-0(Optical Data Unit-0,ODU0)是固定速率的信号,ODU0可能被装入ODU4的净荷中,然后将ODU4转为OTU4,OTU4在物理介质中传输。一个固定速率的信号被装入另一个固定速率的信号中,将被装入的信号命名为客户信号,将装入其他信号的信号命名为服务信号,即将客户信号装入服务信号中。如果客户信号和服务信号的速率无跟随关系,则客户信号装入服务信号后,客户信号的速率信息会丢失。例如ODU4装入OTU4中,OTU4的速率跟随ODU4的速率,即ODU4速率做细微变化时OTU4也会跟着变化,此时ODU4的速率信息实际保存在了OTU4的速率信息中,所以ODU4的速率信息没有丢失。但如果ODU0装入ODU4,ODU4的速率不会跟随ODU0变化,则ODU0的速率信息会丢失。客户信号装入服务信号,服务信号经过传输后,需要从服务信号取出客户信号,如果客户信号的速率丢失,则取出的客户信号无意义。
发明内容
本公开实施例提供了一种固定速率信号的速率恢复方法及装置,以至少解决相关技术中在客户信号被装入服务信号经传输后,导致客户信号的速率丢失的问题。
根据本公开的一个实施例,提供了一种固定速率信号的速率恢复方法,该方法包括:在源节点将所述固定速率信号装入服务信号的净荷中,并以所述服务信号的帧周期为统计周期,统计每个统计周期内所述固定速率信号的比特数,其中,所述服务信号是固定速率的定长帧信号,所述固定速率信号包括开销和净荷,其中所述固定速率信号的开销中包括速率信息开销;根据所述固定速率信号的特定开销在所述服务信号的净荷中的位置确定指定时间间隔,并将所述指定时间间隔所对应的所有统计周期所统计的所述固定速率信号的比特数之和作为速率信息,将所述速率信息装入所述固定速率信号的所述速率信息开销中,并将所述服务信号从所述源节点发出,其中,所述指定时间间隔大于所述统计周期;在宿节点接收所述服务信号,并从所述服务信号中获取所述固定速率信号,根据所述固定速率信号的所述特定开销在所述服务信号的净荷中的位置获取所述指定时间间隔,获取所述指定时间间隔所对应的统计周期的个数,从所述速率信息开销中获取所述比特数之和,并根据所述统计周期的个数和 所述固定速率信号的比特数之和恢复出所述固定速率信号的速率。
根据本公开的另一个实施例,提供了一种固定速率信号的速率恢复装置,该装置包括:统计模块,位于源节点中,用于将固定速率信号装入服务信号的净荷中,并以所述服务信号的帧周期为统计周期,统计每个统计周期内所述固定速率信号的比特数,其中,所述服务信号采用固定速率的定长帧,所述固定速率信号包括开销和净荷,其中所述固定速率信号的开销中包括速率信息开销;第一发送模块,位于源节点中,用于根据所述固定速率信号的特定开销在所述服务信号的净荷中的位置确定指定时间间隔,并将指定时间间隔所对应的所有统计周期所统计的所述固定速率信号的比特数之和作为速率信息,将所述速率信息装入所述固定速率信号的所述速率信息开销中,并将所述服务信号从所述源节点发出,其中,所述指定时间间隔大于所述统计周期;第一恢复模块,位于宿节点中,用于接收所述服务信号,并从所述服务信号中获取所述固定速率信号,根据所述固定速率信号的所述特定速率开销在所述服务信号的净荷中的位置获取所述指定时间间隔,并获取所述指定时间间隔所对应的统计周期的个数,从所述速率信息开销中获取所述比特数之和,并根据所述统计周期的个数和所述固定速率信号的比特数之和恢复出所述固定速率信号的速率。
附图说明
图1是根据本公开实施例的计算机终端结构示意图;
图2是根据本公开实施例的固定速率信号的速率恢复方法流程图;
图3是根据本公开实施例的多个客户信号装入1个服务信号的示意图;
图4是根据本公开实施例的传送周期和统计周期的对应关系示意图;
图5是根据本公开另一实施例的传送周期和统计周期的对应关系示意图;
图6是根据本公开实施例的固定速率信号的速率恢复装置结构示意图;
图7是根据本公开另一实施例的固定速率信号的速率恢复装置结构示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本公开的实施例。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
固定速率信号是比特速率固定的信号,在物理介质中传送的较高速率的信号都是固定速率的信号。对于固定速率的信号,可能为定长帧信号,也可能为非定长帧信号,还可能为无帧信号。具体地,定长帧信号由开销和净荷组成,例如,定长帧是由A个数据单元的开销加B个数据单元的净荷组成,其中A,B为大于等于1的整数,所述数据单元为K字节,或K个P/Qb编码,其中K为大于等于1的整数,P和Q为大于等于1的整数且Q大于P。例如,P/Qb编码的一个实例为64/66b编码,A、B、K、P和Q都是固定数值,由一帧一帧的数据组成信号,每帧中开销和净荷的组成方式完全一样,且定长帧信号的开销中有帧定位开销用来标示 当前帧的开始和上一帧的结束,定长帧中的帧就是由一定数量的开销和一定数量的净荷组成的信号结构。例如OTN中的ODUi信号,i=0,1,2,2e,3,4,flex,OTUk信号,k=1,2,3,4,FlexE标准中的FlexE Group信号等。非定长帧信号指信号由开销和净荷组成,例如,非定长帧信号由E个数据单元的开销和F个数据单元的净荷组成,其中E,F为大于或等于1的整数,且每帧对应的E或F的数值可改变,即每帧的帧长度可能都不一样。所述数据单元为K字节,或K个P/Qb编码,其中K为大于或等于1的整数,P和Q为大于等于1的整数且Q大于P,所述非定长帧信号的开销中至少包括帧定位开销,用于标示当前帧的开始和上一帧的结束。无帧信号是由R个数据单元的开销加S个数据单元的净荷组成,其中R,S为大于等于1的整数,且R或S的数值可改变,所述数据单元为K个P/Qb编码,其中K为大于等于1的整数,P和Q为大于等于1的整数且Q大于P,所述无帧信号的开销中没有帧定位开销。
固定速率信号可以直接在物理介质中传送,也可能会被装入另一个固定速率的信号中传输。如果客户信号和服务信号的速率无跟随关系,则客户信号装入服务信号后,客户信号的速率信息会丢失。当需要从服务信号取出客户信号时,如果客户信号的速率丢失,则取出的客户信号无意义。因此,目前考虑在客户信号装入服务信号时记录下客户信号的速率信息,这样在从服务信号取出客户信号时可以根据记录的速率信息恢复出客户信号的速率。图3为根据本公开实施例的j个客户信号装入1个服务信号时的示意图,j为大于1的整数。将1个或多个客户信号装入1个服务信号时,记录所有客户信号的速率信息,从1个服务信号取出1个或多个客户信号时需要根据每个客户信号的速率信息恢复出其各自的速率。
固定速率信号的速率实际是单位时间内传送的bit数量,所以信号速率可以用时间和bit数两个数值表示。将一个信号的传送过程分成许多个首尾相连的时间段,这个时间段命名为统计周期,如果知道每个统计周期内的信号的bit数量,则根据每个统计周期的时间长度和每个统计周期内的bit数,就可以用硬件产生出信号的速率。所以可以用多组数据表示固定速率信号的速率,每组数据包括统计周期和bit数。每个统计周期如果尽量相等,则最终根据统计周期和bit数恢复出速率时效果会更好,且硬件实现更简单。
如前所述,目前考虑在客户信号装入服务信号时记录下客户信号的速率信息,一种处理方式是使用服务信号的开销记录客户信号的速率信息。在将客户信号装入服务信号时,如果服务信号是定长帧信号,则可以用服务信号的n个连续的帧作为统计周期,n为大于或等于1的整数。在源节点,在将客户信号装入服务信号中时,每个统计周期内统计客户信号的bit数,将bit数作为速率信息写入服务信号的开销中。在宿节点,从服务信号中取出客户信号的节点,接收到服务信号后可以识别出帧结构,而统计周期等于n个帧,所以只要识别出帧结构就能获得统计周期,这样统计周期不用通过额外的开销传送,每个统计周期内通过服务信号的特定开销获取客户信号的bit数,这样根据统计周期和对应的客户信号bit数可以恢 复出客户信号的速率。例如ODU0装到ODU4的净荷中时,ODU4是定长帧信号,以80个连续的ODU4帧为统计周期,每个统计周期内统计出ODU0的bit数,将ODU0的bit数作为速率信息写入ODU4的特定开销中,每个统计周期统计一次数据,将统计的数据作为速率信息记录到ODU4的特定开销中,在从ODU4中取出ODU0时,根据接收到的ODU4信号的帧头得到统计周期,根据ODU4的特定开销得到统计周期内的ODU0的bit数,根据统计周期和统计周期内的bit数可以得到ODU0的速率,从而恢复出ODU0的速率。每个传送速率信息的周期(简称为传送周期)都会统计出客户信号的bit数作为速率信息,并且每个统计周期完成后都会立刻传送一次速率信息,即传送周期等于统计周期。
上述使用服务信号的开销记录客户信号的速率信息的处理方式在实际应用中存在一定的问题。如果服务信号的开销比例很低,往往意味着服务信号的开销种类有限,而且开销带宽也很低,一个服务信号需要同时装入多个客户信号,每个客户信号的速率信息都要占用服务信号的开销,这样需要定义很多服务信号的开销用于记录多个客户信号的速率信息,同时对服务信号记录速率信息的开销带宽也有要求。
实际应用中,服务信号的净荷装入多个客户信号时,一般服务信号的净荷带宽大于客户信号的速率和,所以服务信号的净荷一般会有很多带宽被浪费。考虑到这个因素,使用客户信号的开销记录客户信号的速率信息的处理方式能够更充分地利用浪费的带宽,更加合适。当然,该处理方式也有一定的实现难点,例如,如果客户信号也是定长帧信号,由于客户信号的帧周期一般和服务信号的帧周期不一样,若让传送周期等于统计周期,则意味着客户信号传递速率信息的开销的出现周期等于服务信号的n个帧,实际上客户信号的开销出现频率和客户信号的帧周期相关,而客户信号的帧周期和服务信号的帧周期不一致,这就出现了冲突,导致很难用客户信号的开销传递客户信号的速率信息。
为了解决上述至少之一的技术问题,本公开实施例提供了一种固定速率信号的速率恢复方法。在本实施例,在将客户信号装入服务信号时用客户信号的开销记录客户信号的速率信息,并且传送周期与统计周期是不一致的,例如,每个传送周期传送1个或多个统计周期的速率信息,每个传送周期不用严格相等,由于统计周期和传送周期不一致才能做到用客户信号的开销的同时统计周期是一致的,从而可在从服务信号取出客户信号时根据客户信号的开销中的速率信息恢复出客户信号的速率。
本申请实施例中所提供的方法实施例可以在移动终端、计算机终端或者类似的运算装置中执行。以运行在计算机终端上为例,图1是本公开实施例的一种固定速率信号的速率恢复方法所运行的计算机终端的硬件结构框图。如图1所示,计算机终端可以包括一个或多个(图1中仅示出一个)处理器102(处理器102可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)和用于存储数据的存储器104,其中,上述计算机终端还可以包括用于 通信功能的传输设备106以及输入输出设备108。本领域普通技术人员可以理解,图1所示的结构仅为示意,其并不对上述计算机终端的结构造成限定。例如,计算机终端还可包括比图1中所示更多或者更少的组件,或者具有与图1所示不同的配置。
存储器104可用于存储计算机程序,例如,应用软件的软件程序以及模块,如本公开实施例中的固定速率信号的速率恢复方法对应的计算机程序,处理器102通过运行存储在存储器104内的计算机程序,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器104可进一步包括相对于处理器102远程设置的存储器,这些远程存储器可以通过网络连接至移动终端。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置106用于经由一个网络接收或者发送数据。上述的网络具体实例可包括计算机终端的通信供应商提供的无线网络。在一个实例中,传输装置106包括一个网络适配器(Network Interface Controller,简称为NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置106可以为射频(Radio Frequency,简称为RF)模块,其用于通过无线方式与互联网进行通讯。
在本实施例中提供了一种运行于网络架构的固定速率信号的速率恢复方法,图2是根据本公开实施例的方法流程图,如图1所示,该流程包括如下步骤:
步骤S202,在源节点将固定速率信号装入服务信号的净荷中,并以所述服务信号的帧周期为统计周期,统计每个统计周期内所述固定速率信号的比特数,其中,所述服务信号是固定速率的定长帧信号,所述固定速率信号包括开销和净荷,其中所述固定速率信号的开销中包括速率信息开销;
步骤S204,根据所述固定速率信号的特定开销在所述服务信号的净荷中的位置确定一个指定时间间隔,并将指定时间间隔所对应的所有统计周期所统计的所述固定速率信号的比特数之和作为速率信息,将所述速率信息装入所述固定速率信号的所述速率信息开销中,并将所述服务信号从所述源节点发出,其中,所述指定时间间隔大于所述统计周期;
步骤S206,在宿节点接收所述服务信号,并从所述服务信号中获取所述固定速率信号,根据所述固定速率信号的所述特定开销在所述服务信号的净荷中的位置确定所述指定时间间隔,获取所述指定时间间隔所对应的统计周期的个数,从所述速率信息开销中获取所述比特数之和,并根据所述统计周期的个数和所述固定速率信号的比特数之和恢复出所述固定速率信号的速率。
在一个示例性实施例中,在宿节点接收所述服务信号之前,还包括:在中间节点接收所述服务信号,从所述服务信号中获取所述固定速率信号,并恢复出所述固定速率信号的速率;将所述固定速率信号装入新的服务信号中,并从所述中间节点发出。
在一个示例性实施例中,所述固定速率信号是定长帧信号,所述指定时间间隔由M个所述固定速率信号的帧的所述特定开销的位置决定,其中所述特定开销可以为帧定位开销,或 者为所述速率信息开销,或者为其他开销,所述指定时间间隔的起始时间由M个所述固定速率信号的帧中的第N帧的所述特定开销的位置确定,所述指定时间间隔的结束时间由下一个M个所述固定速率信号的帧中的第N帧的所述特定开销的位置确定,其中M为大于等于1的整数,N为大于等于1的整数且N小于等于M。所述指定时间间隔内包含C个统计周期,其中C为大于等于1的整数,将C个统计周期所统计的所述固定速率信号的比特数之和作为所述速率信息。
在一个示例性实施例中,所述固定速率信号是非定长帧信号,所述指定时间间隔由M个所述固定速率信号的帧的所述特定开销的位置决定,其中所述特定开销为帧定位开销,或者为所述速率信息开销,或者为其他开销,所述指定时间间隔的起始时间由M个所述固定速率信号的帧中的第N帧的所述特定开销的位置确定,所述指定时间间隔的结束时间由下一个M个所述固定速率信号的帧中的第N帧的所述特定开销的位置确定,其中M为大于等于1的整数,N为大于等于1的整数且N小于等于M,所述指定时间间隔内包含C个统计周期,其中C为大于等于1的整数,将C个统计周期所统计的所述固定速率信号的比特数之和作为所述速率信息。
在一个示例性实施例中,所述非定长帧信号是由E个数据单元的开销和F个数据单元的净荷组成,其中E,F为大于或等于1的整数,且每帧对应的E或F的数值可改变,例如当前帧E和F分别为1和100,下一帧E和F分别为2和128。所述数据单元为K字节,或K个P/Qb编码,其中K为大于或等于1的整数,P和Q为大于等于1的整数且Q大于P,所述非定长帧信号的开销中至少包括帧定位开销,用于标示当前帧的开始和上一帧的结束。
在一个示例性实施例中,所述固定速率信号是无帧信号,所述指定时间间隔由所述特定开销的位置决定,其中所述特定开销可以为所述速率信息开销,或者为其他开销,所述指定时间间隔的起始时间由所述固定速率信号的所述特定开销的位置确定,所述指定时间间隔的结束时间由下一个所述固定速率信号的所述特定开销的位置确定,所述指定时间间隔内包含C个统计周期,其中C为大于等于1的整数,将C个统计周期所统计的所述固定速率信号的比特数之和作为所述速率信息所。
在一个示例性实施例中,所述无帧信号是由R个数据单元的开销加S个数据单元的净荷组成,其中R,S为大于等于1的整数,所述数据单元为K个P/Qb编码,其中K为大于等于1的整数,P和Q为大于等于1的整数且Q大于P,所述无帧信号的开销中没有帧定位开销。
在一个示例性实施例中,将固定速率信号装入服务信号的净荷中包括:将所述固定速率信号直接装入所述服务信号的净荷中;或将所述固定速率信号装入中间信号,并将所述中间信号装入所述服务信号的净荷中,其中,所述中间信号为固定速率的信号。
在一个示例性实施例中,将指定时间间隔所对应的C个统计周期所统计的所述固定速率信号的比特数之和作为速率信息,包括:确定所述指定时间间隔对应的C个统计周期,并将C个统计周期的所述固定速率信号的比特数相加作为所述速率信息。
在一个示例性实施例中,确定所述指定时间间隔对应的C个统计周期,包括:C为计数所述指定时间间隔内统计周期的结束点的个数,所述统计周期的结束点为所述服务信号的帧定位开销。
在一个示例性实施例中,根据所述固定速率信号的所述特定开销在所述服务信号的净荷中的位置确定所述指定时间间隔,获取所述指定时间间隔所对应的所述统计周期的个数,包 括:获取所述指定时间间隔,以及所述指定时间间隔内包含的C个统计周期,其中C为大于等于1的整数,C为所述指定时间间隔所对应的所述统计周期的个数。
在一个示例性实施例中,根据所述统计周期的个数和所述固定速率信号的比特数之和恢复出所述固定速率信号的速率,还包括:根据所述服务信号的帧定位开销获取统计周期对应的时间,根据所述固定速率信号的比特数计算出所述固定速率信号的速率。
在一个示例性实施例中,所述定长帧是由A个数据单元的开销加B个数据单元的净荷组成,其中A,B为大于等于1的整数,所述数据单元为K字节,或K个P/Qb编码,其中K为大于等于1的整数,P和Q为大于等于1的整数且Q大于P,所述定长帧的开销中至少包括帧定位开销,用于标示当前帧的开始和上一帧的结束。
在本公开的上述实施例中,在将固定速率信号装入服务信号时,用固定速率信号的开销记录速率信息,这样比用服务信号的开销记录速率信息更节省服务信号的开销资源,每个统计周期的时间长度严格相等,这样最终根据速率信息和统计周期恢复出固定信号速率时引入的低频时钟最小,从而保证速率恢复效果最优,最终解决了客户信号经过服务信号传送后的速率恢复问题。
为了便于对本公开实施例所提供的技术方案的理解,下面将结合具体场景的实施例进行详细描述。
以下通过实施例对客户信号装入服务信号中传输,从服务信号中取出客户信号的同时恢复出客户信号速率的实现过程进行详细的描述。客户信号是固定速率信号,客户信号的速率实际是单位时间内传送的bit数量,所以信号速率可以用时间和bit数两个数值表示。为了对单位时间内传送的bit数量进行统计,可以将一个信号的传送过程分成许多个首尾相连的时间段,这个时间段就是统计周期,需要统计每个统计周期内的信号的bit数量,从而计算出单位时间内传送的bit数量,也就得到了客户信号的速率。为了在宿节点恢复出客户信号的速率,需要将客户信号的速率信息装入开销中予以传送,而传送速率信息的周期即为传送周期。不同于将速率信息装入服务信号的开销的处理方式中令传送周期等于统计周期的设计,以下实施例令传送周期大于统计周期,并且每个传送周期传送1个或多个统计周期的速率信息,每个传送周期不用严格相等,同时速率信息放到客户信号的开销中。
实施例1:
在本实施例中,服务信号和客户信号都是定长帧。
在源节点,将客户信号装入服务信号后,定义统计周期为服务信号的n个连续帧的持续时间,每个统计周期统计客户信号的bit数量,定义传送周期为客户信号的k个连续帧的持续时间,k为大于或等于1的整数,选择合适的k值保证传送周期一定大于或等于统计周期,此情况下每个传送周期的时长内会有一个或多个统计周期。定义传送周期的和统计周期的对应关系,定义传送周期所在的k个客户信号连续帧的第一帧的帧头位置为本传送周期的起点和上一个传送周期的终点,每个传送周期产生一次速率信息,统计本传送周期内存在的统计 周期的结束点的个数C,其中统计周期的结束点定义为服务信号的n个连续帧中第n个帧的帧尾位置,将C个统计周期对应的客户信号的bit数相加作为速率信息,并将速率信息写入当前传送周期对应的最多k个客户信号帧的速率信息开销中。
在宿节点,接收服务信号后分析服务信号的帧结构得到每个帧的帧头位置,根据帧头位置可获取每一个统计周期,从服务信号取出客户信号后分析客户信号的帧结构得到每个帧的帧头位置,根据客户信号的帧头位置获取传送周期,统计本传送周期内存在统计周期的结束点的个数C,根据速率信息开销获取速率信息,速率信息C个统计周期对应的客户信号的bit数之和,根据C和服务信号的统计周期可以得到统计周期的持续时间,再根据C个统计周期对应的客户信号的bit数之和,可以计算出客户信号的速率,从而实现恢复客户信号速率的功能。
本实施例的实现原理是对于客户信号,统计周期和统计周期对应的bit数表示速率信息,但速率信息不一定要用每一个统计周期的时间长度和对应的bit数表示,用多个连续的统计周期的时间长度之和与这些统计周期对应的bit数之和来表示也能达到同样的效果。举例来说,T1,B1,T2,B2,表示连续2个统计周期持续的时间长度和其对应的bit数量,其中T1,B1为第一个统计周期对应的统计周期时间长度和bit数量,T2,B2为第二个统计周期对应的统计周期时间长度和bit数量,用T1,B1,T2,B2可以表示速率,用T1+T2,B1+B2也能表示同样的速率,两个速率只是统计时间长度不一样,但实际表示同样的速率。一般宿节点即使得到每个统计周期及其对应的bit数,实际计算速率时仍旧需要将多个连续的统计周期的时间相加,再将这些统计周期对应的bit数相加,从而得到一段更长时间的平均速率。
注意,在本实施例中,假设在某个统计周期内统计到客户信号的bit数为Bbit,B为大于1的整数,将客户信号装入服务信号后,在服务信号的统计周期对应的n个帧内实际装入的客户信号的bit数为Vbit,V为大于1的整数,V不一定要等于B,V一般和B不会相差太多,从多个统计周期来看,V的平均值等于B的平均值。
如图3所示,一个服务信号可以装入一个或多个客户信号,假设1个服务信号装入了多个客户信号,在从服务信号解出客户信号时,一般服务信号的净荷中会包含多个客户信号和填充信息,如何识别出多个客户信号和填充信息的实现方法包括多种,例如将服务信号的净荷划分为多个时隙,让不同的客户业务位于不同的时隙中,通过时隙识别不同的客户信号,通过服务信号中的开销识别出净荷中的填充信息和客户信号,将客户信号转为64/66b编码,通过64/66b编码规则识别填充信息和客户信号等,服务信号的净荷中多种信息的具体实现方法不在本公开实施例讨论范围内,其具体实现方法和恢复客户信号速率的实现方法无关,而且也不影响本公开实施例所述的恢复客户信号速率的方法的实现效果。
还需要注意,在本实施例中,传送周期仅仅用来定期传送速率信息,所以传送周期的定 义就是传送速率信息的周期,有多种定义方式,例如在将客户信号装入服务信号后,可以用连续的k个客户信号帧的第1帧的帧头位置作为传送周期的起始点,用连续的k个客户信号帧的第k+1帧的帧头位置作为传送周期的结束点,也可以用连续的k个客户信号帧中的某个开销的位置作为传送周期的起始点和结束点。即使每个传送周期的持续时间长度不相等,也不会影响速率恢复效果。另外注意,传送周期必须连续,即前一个传送周期的结束时间点一定是下一个传送周期的起始时间点,所有传送周期的持续时间相加等于所有时间长度。
传送周期的意义在于定期将多个统计周期及其对应的客户信号bit数量之和通过速率信息开销送出,即传送周期和统计周期之间有对应关系,这个对应关系的实现方式可以有很多种,只要明确其对应关系的规则即可,为此只要在每个统计周期内定义一个参考点,然后用参考点作为统计周期的替代,即可得到传送周期和统计周期的对应关系,并计数传送周期内存在的参考点的个数即可得到传送周期内的统计周期个数C,统计周期的参考点可以用统计周期的结束点,也可以用统计周期的中间点,或统计周期的某个确定位置的点,例如统计周期前1/4位置的点。
图4是根据本公开实施例1的传送周期和统计周期的对应关系的示意图。如图4所示,客户信号装入服务信号中,服务信号列出了连续11帧,这些帧中装了客户信号的连续5*k帧,在此示例中,定义统计周期为服务信号的1个帧的持续时间,定义服务信号的帧头位置为当前统计周期的起始点和上一个统计周期的结束点,传送周期为连续k个客户信号帧,定义连续k个客户信号帧的第1帧的帧头位置为当前传送周期的起始点和上一个传送周期的结束点,k为大于或等于1的整数,k的取值保证传送周期一定大于统计周期。由于客户信号的带宽小于服务信号的净荷带宽,所以服务信号装入客户信号的净荷后,连续两个帧中,前一个帧尾和后一个帧头之间可能有空隙,而且空隙的间隔时间长度可能变化,这样每个传送周期不是完全相等的,实际本示例中每个传送周期是否相等对实现效果无影响。定义服务信号的帧周期为统计周期,每个统计周期统计客户信号的bit数量,假设当前服务信号的帧编号为k,则帧编号为k的服务信号的帧周期时间长度为Tk,帧编号为k的服务信号的帧周期内统计的客户信号的bit数量记为Bk。每个传送周期对应服务信号的C个统计周期,用统计周期的结束点代表统计周期,统计周期的结束点定义为统计周期所在的帧的帧尾位置,计数传送周期内存在的统计周期的结束点的个数作为C。图4中,第1个传送周期为连续k帧-1,观察其持续时间内的统计周期结束点,包括服务信号的第1帧,第2帧,第3帧,所以C值为3,速率信息为B1+B2+B3;同理,第2个传送周期为连续k帧-2,C值为2,速率信息为为B4+B5;第3个传送周期为连续k帧-3,C值为2,速率信息为B6+B7;第4个传送周期为连续k帧-4,C值为2,速率信息为B8+B95
实施例2:
在本实施例中,服务信号是定长帧,客户信号是固定速率信号,客户信号由R个数据单元的开销加S个数据单元的净荷组成,其中R,S为大于等于1的整数,且R或S的数值可改变,所述数据单元为K个P/Qb编码,其中K为大于等于1的整数,P和Q为大于等于1的整数且Q大于P,开销中定义有速率信息开销,且不存在帧定位开销。
定义连续n个服务信号帧中的第1个帧的帧头位置为当前统计周期的起始点和上一个统计周期的结束点,定义统计周期的参考点为统计周期的结束点,客户信号的速率信息开销为当前传送周期的起始点和上一个传送周期的结束点,在源节点,定义统计周期为服务信号的n个连续帧的持续时间,每个统计周期统计客户信号的bit数量,定期产生速率信息开销并将客户信号和速率信息开销一起装入服务信号的净荷中,定义传送周期为连续两个速率信息开销之间的间隔,每个传送周期不用严格相等,传送周期一定大于统计周期,定义连续n个服务信号帧中的第1个帧的帧头位置为当前统计周期的起始点和上一个统计周期的结束点,定义统计周期的参考点为统计周期的结束点,客户信号的速率信息开销为当前传送周期的起始点和上一个传送周期的结束点,每个传送周期产生一次速率信息,确定传送周期和统计周期的对应关系,得到统计周期的个数C,C为传送周期内存在的统计周期参考点的个数,将C个统计周期对应的客户信号bit数相加作为速率信息,并将速率信息写入当前传送周期对应的速率信息开销中,将服务信号从源节点发出。
在宿节点,接收服务信号后分析服务信号的帧结构得到每个帧的帧头位置,根据帧头位置可获取每一个统计周期,从服务信号取出客户信号,根据速率信息开销的位置获取传送周期对应的统计周期,根据速率信息开销中的内容获取速率信息,速率信息为C个统计周期对应的客户信号的bit数之和,其中C为传送周期对应的统计周期的个数,根据以上信息可以计算出客户信号的速率,从而实现恢复客户信号速率的功能。
在本实施例中,假设在某个统计周期内统计到客户信号的bit数为Bbit,B为大于1的整数,将客户信号装入服务信号后,在服务信号的统计周期对应的n个帧内实际装入的客户信号的bit数为Vbit,V为大于1的整数,V不一定要等于B,V一般和B不会相差太多,从多个统计周期来看,V的平均值等于B的平均值。
一个服务信号可以装入一个或多个客户信号,假设1个服务信号装入了多个客户信号,同时还要针对每个客户信号定期添加速率信息开销,在从服务信号解出客户信号时,一般服务信号的净荷中会包含多个客户信号,填充信息和各客户业务的速率信息开销,如何识别出以上信息的实现方法不在本公开实施例讨论范围内,其具体实现方法和恢复客户信号速率的实现方法无关,而且也不影响本公开实施例所述的恢复客户信号速率的方法的实现效果。
图5是根据本公开实施例2的传送周期和统计周期的对应关系的示意图。如图5所示,客户信号装入服务信号中,服务信号列出了连续11帧,不用识别客户信号的帧结构,将客户 信号当作一个全部由净荷组成的bit流。定期添加速率信息开销后,将客户信号和速率信息开销一起装入服务信号的净荷中,图5中添加了5次速率信息开销,定义统计周期为服务信号的1个帧的持续时间,传送周期为速率信息开销开始到下一个速率信息开销之前的时间,传送周期一定大于统计周期,每个传送周期可以不完全相等的,每个传送周期是否相等对实现效果无影响。定义服务信号的帧周期为统计周期,每个统计周期统计客户信号的bit数量,假设当前服务信号的帧编号为k,则帧编号为k的服务信号的帧周期时间长度为Tk,帧编号为k的服务信号的帧周期内统计的客户信号的bit数量记为Bk。每个传送周期都对应服务信号中的1个帧,其中传送周期和服务信号帧的对应关系为传送周期对应的速率信息开销的第1个bit所在的统计周期帧编号。图5中,第1个传送周期的速率信息开销的第1个bit位于服务信号的第1帧中,所以第1个传送周期对应的服务信号的帧编号为1;依次类推,第2个传送周期对应的服务信号的帧编号为4;第3个传送周期对应的服务信号的帧编号为6;第4个传送周期对应的服务信号的帧编号为8;第5个传送周期对应的服务信号的帧编号为10。对于某一个传送周期,其传送周期对应的服务信号的帧编号的前一帧为统计周期的结束周期,上一个传送周期对应的服务信号的帧编号为统计周期的起始周期,将起始周期开始到结束周期为止的所有统计周期对应的bit数相加作为速率信息,将速率信息写入客户信号的当前传送周期的速率信息开销中。根据上述定义,第1个传送周期,由于上一个传送周期不存在,所以无速率信息,第2个传送周期的速率信息为B1+B2+B3,第3个传送周期的速率信息为B4+B5,第4个传送周期的速率信息为B6+B7,第5个传送周期的速率信息为B8+B9
在本公开上述实施例中,提供了恢复客户信号速率的方法,在客户信号装入服务信号时记录速率信息,记录速率信息时根据统计周期产生速率数据,根据传送周期定期将速率数据做处理后产生速率信息,其中传送周期大于统计周期,将速率信息写入客户信号的开销中,再在服务信号取出客户信号时根据速率信息恢复出客户信号的速率。本公开实施例中传输周期大于统计周期,且速率信息写入客户信号的开销中,其充分利用了服务信号的净荷中的带宽,并克服了将速率信息写入客户信号的开销时的实现难点。
本公开上述实施例的方案适用于CBR映射到光服务层单元(Optical Service Unit,OSU)中实现CBR速率透传,需要在OSU中间点再生OSU的速率的场景,本公开实施例的方案,速率透传效果等效于通用映射规程(Generic Mapping Procedure,GMP)映射,但速率信息开销占用OSU的开销,不用占用外层服务信号的开销,相较于低速ODU通过GMP映射到高速ODU时,速率信息开销使用高速ODU的开销的方案,具有明显的优势。另外本公开实施例的方案也适用于FlexE时隙透传CBR业务,本公开实施例的方案同样适用于ODU0映射到ODU4中后从ODU4解出ODU0时的速率恢复。应当理解,本公开实施例也同样适用于其他的类似场景
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方 法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本公开各个实施例所述的方法。
在本实施例中还提供了一种固定速率信号的速率恢复装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图6根据本公开实施例的固定速率信号的速率恢复装置的结构框图,如图6示,该装置100包括第一发送模块10和第一恢复模块20。
第一发送模块10,位于源节点中,用于将所述固定速率信号装入服务信号的净荷中,并以所述服务信号的帧周期为统计周期,统计每个统计周期内所述固定速率信号的比特数,其中,所述服务信号是固定速率的定长帧信号,所述固定速率信号包括开销和净荷,其中所述固定速率信号的开销中包括速率信息开销;根据所述固定速率信号的特定开销在所述服务信号的净荷中的位置确定指定时间间隔,并将指定时间间隔所对应的所有统计周期所统计的所述固定速率信号的比特数之和作为速率信息,将所述速率信息装入所述固定速率信号的所述速率信息开销中,并将所述服务信号从所述源节点发出,其中,所述指定时间间隔大于所述统计周期。
第一恢复模块20,位于宿节点中,用于接收所述服务信号,并从所述服务信号中获取所述固定速率信号,根据所述固定速率信号的所述特定开销在所述服务信号的净荷中的位置确定所述指定时间间隔,获取所述指定时间间隔所对应的统计周期的个数,从所述速率信息开销中获取所述比特数之和,并根据所述统计周期的个数和所述固定速率信号的比特数之和恢复出所述固定速率信号的速率。
图7根据本公开另一实施例的固定速率信号的速率恢复装置的结构框图,如图7示,该装置200除包括图6所示的所有模块外,还包括第二恢复模块30和第二发送模块40。
第二恢复模块30,位于中间节点中,用于接收源节点的第一发送模块10发出的所述服务信号,从所述服务信号中获取所述固定速率信号,并恢复出所述固定速率信号的速率。
第二发送模块40,位于中间节点中,用于将所述固定速率信号装入新的服务信号中,并从所述中间节点节点发出,以便于宿节点的第一恢复模块20接收该服务信号并恢复出固定速率信号的速率。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
本公开的实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计 算机程序,其中,该计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
在一个示例性实施例中,上述计算机可读存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储计算机程序的介质。
本公开的实施例还提供了一种电子装置,包括存储器和处理器,该存储器中存储有计算机程序,该处理器被设置为运行计算机程序以执行上述任一项方法实施例中的步骤。
在一个示例性实施例中,上述电子装置还可以包括传输设备以及输入输出设备,其中,该传输设备和上述处理器连接,该输入输出设备和上述处理器连接。
本实施例中的具体示例可以参考上述实施例及示例性实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本公开实施例的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开实施例可以有各种更改和变化。凡在本公开实施例的原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (16)

  1. 一种固定速率信号的速率恢复方法,包括:
    在源节点将所述固定速率信号装入服务信号的净荷中,并以所述服务信号的帧周期为统计周期,统计每个统计周期内所述固定速率信号的比特数,其中,所述服务信号是固定速率的定长帧信号,所述固定速率信号包括开销和净荷,其中所述固定速率信号的开销中包括速率信息开销;
    根据所述固定速率信号的特定开销在所述服务信号的净荷中的位置确定指定时间间隔,并将所述指定时间间隔所对应的所有统计周期所统计的所述固定速率信号的比特数之和作为速率信息,将所述速率信息装入所述固定速率信号的所述速率信息开销中,并将所述服务信号从所述源节点发出,其中,所述指定时间间隔大于所述统计周期;
    在宿节点接收所述服务信号,并从所述服务信号中获取所述固定速率信号,根据所述固定速率信号的所述特定开销在所述服务信号的净荷中的位置确定所述指定时间间隔,获取所述指定时间间隔所对应的统计周期的个数,从所述速率信息开销中获取所述比特数之和,并根据所述统计周期的个数和所述固定速率信号的比特数之和恢复出所述固定速率信号的速率。
  2. 根据权利要求1所述的方法,其中,在宿节点接收所述服务信号之前,还包括:
    在中间节点接收所述服务信号,从所述服务信号中获取所述固定速率信号,并恢复出所述固定速率信号的速率;
    将所述固定速率信号装入新的服务信号中,并从所述中间节点发出。
  3. 根据权利要求1所述的方法,其中,其中,所述固定速率信号是定长帧信号,所述指定时间间隔由M个所述固定速率信号的帧的所述特定开销的位置决定,其中所述特定开销可以为帧定位开销,或者为所述速率信息开销,或者为其他开销,所述指定时间间隔的起始时间由M个所述固定速率信号的帧中的第N帧的所述特定开销的位置确定,所述指定时间间隔的结束时间由下一个M个所述固定速率信号的帧中的第N帧的所述特定开销的位置确定,其中M为大于等于1的整数,N为大于等于1的整数且N小于等于M。所述指定时间间隔内包含C个统计周期,其中C为大于等于1的整数,将C个统计周期所统计的所述固定速率信号的比特数之和作为所述速率信息。
  4. 根据权利要求1所述的方法,其中,其中,所述固定速率信号是非定长帧信号,所述指定时间间隔由M个所述固定速率信号的帧的所述特定开销的位置决定,其中所述特定开销为帧定位开销,或者为所述速率信息开销,或者为其他开销,所述指定时间间隔的起始时间由M个所述固定速率信号的帧中的第N帧的所述特定开销的位置确定,所述指定时间间隔的结束时间由下一个M个所述固定速率信号的帧中的第N帧的所述特定开销的位置确定,其中M为大于等于1的整数,N为大于等于1的整数且N小于等于M,所述指定时间间隔内包含C个统计周期,其中C为大于等于1的整数,将C个统计周期所统计的所述固定速率信号的比特数之和作为所述速率信息。
  5. 根据权利要求4所述的方法,其中,其中,所述非定长帧信号是由E个数据单元的开销和F个数据单元的净荷组成,其中E,F为大于或等于1的整数,且每帧对应的E或F的数值可改变,所述数据单元为K字节,或K个P/Qb编码,其中K为大于或等于1的整数,P和Q为大于等于1的整数且Q大于P,所述非定长帧信号的开销中至少包括帧定位开销,用于标示当前帧的开始和上一帧的结束。
  6. 根据权利要求1所述的方法,其中,其中,所述固定速率信号是无帧信号,所述指定时间间隔由所述特定开销的位置决定,其中所述特定开销可以为所述速率信息开销,或者为其他开销,所述指定时间间隔的起始时间由所述固定速率信号的所述特定开销的位置确定,所述指定时间间隔的结束时间由下一个所述固定速率信号的所述特定开销的位置确定,所述指定时间间隔内包含C个统计周期,其中C为大于等于1的整数,将C个统计周期所统计的所述固定速率信号的比特数之和作为所述速率信息所。
  7. 根据权利要求1所述的方法,其中,所述无帧信号是由R个数据单元的开销加S个数据单元的净荷组成,其中R,S为大于等于1的整数,且R或S的数值可改变,所述数据单元为K个P/Qb编码,其中K为大于等于1的整数,P和Q为大于等于1的整数且Q大于P,所述无帧信号的开销中没有帧定位开销。
  8. 根据权利要求1所述的方法,其中,将所述固定速率信号装入所述服务信号的净荷中包括:
    将所述固定速率信号直接装入所述服务信号的净荷中;或
    将所述固定速率信号装入中间信号,并将所述中间信号装入所述服务信号的净荷中,其中,所述中间信号为固定速率的信号。
  9. 根据权利要求1至8中任一项所述的方法,其中,将指定时间间隔所对应的C个统计周期所统计的所述固定速率信号的比特数之和作为速率信息,包括:
    确定所述指定时间间隔对应的C个统计周期,并将C个统计周期的所述固定速率信号的比特数相加作为所述速率信息。
  10. 根据权利要求9所述的方法,其中,确定所述指定时间间隔对应的C个统计周期,包括:C为计数所述指定时间间隔内统计周期的结束点的个数,所述统计周期的结束点为所述服务信号的帧定位开销。
  11. 根据权利要求1所述的方法,其中,根据所述统计周期的个数和所述固定速率信号的比特数之和恢复出所述固定速率信号的速率,还包括:
    根据所述服务信号的帧定位开销获取C个统计周期对应的时间,其中C为大于等于1的整数,根据所述固定速率信号的比特数之和计算出所述固定速率信号的速率。
  12. 根据权利要求1所述的方法,其中,所述定长帧是由A个数据单元的开销加B个数据单元的净荷组成,其中A,B为大于等于1的整数,所述数据单元为K字节,或K个P/Qb编码,其中K为大于等于1的整数,P和Q为大于等于1的整数且Q大于P,所述定长帧的开销中至少包括帧定位开销,用于标示当前帧的开始和上一帧的结束。
  13. 一种固定速率信号的速率恢复装置,包括:
    第一发送模块,位于源节点中,设置为将所述固定速率信号装入服务信号的净荷中,并以所述服务信号的帧周期为统计周期,统计每个统计周期内所述固定速率信号的比特数,其中,所述服务信号是固定速率的定长帧信号,所述固定速率信号包括开销和净荷,其中所述固定速率信号的开销中包括速率信息开销;根据所述固定速率信号的特定开销在所述服务信号的净荷中的位置确定指定时间间隔,并将指定时间间隔所对应的所有统计周期所统计的所述固定速率信号的比特数之和作为速率信息,将所述速率信息装入所述固定速率信号的所述速率信息开销中,并将所述服务信号从所述源节点发出,其中,所述指定时间间隔大于所述统计周期;
    第一恢复模块,位于宿节点中,设置为接收所述服务信号,并从所述服务信号中获取所述固定速率信号,根据所述固定速率信号的所述特定开销在所述服务信号的净荷中的位置确定所述指定时间间隔,获取所述指定时间间隔所对应的统计周期的个数,从所述速率信息开销中获取所述比特数之和,并根据所述统计周期的个数和所述固定速率信号的比特数之和恢复出所述固定速率信号的速率。
  14. 根据权利要求13所述的装置,其中,还包括:
    第二恢复模块,位于中间节点中,设置为接收所述服务信号,从所述服务信号中获取所述固定速率信号,并恢复出所述固定速率信号的速率;
    第二发送模块,位于中间节点中,设置为将所述固定速率信号装入新的服务信号中,并从所述中间节点发出。
  15. 一种计算机可读存储介质,其中,所述计算机可读存储介质中存储有计算机程序,其中,所述计算机程序被处理器执行时实现所述权利要求1至12任一项中所述的方法的步骤。
  16. 一种电子装置,包括存储器、处理器以及存储在所述存储器上并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现所述权利要求1至12任一项中所述的方法的步骤。
PCT/CN2023/098667 2022-07-07 2023-06-06 固定速率信号的速率恢复方法及装置 WO2024007804A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210795117.8A CN117411789A (zh) 2022-07-07 2022-07-07 固定速率信号的速率恢复方法及装置
CN202210795117.8 2022-07-07

Publications (1)

Publication Number Publication Date
WO2024007804A1 true WO2024007804A1 (zh) 2024-01-11

Family

ID=89454163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/098667 WO2024007804A1 (zh) 2022-07-07 2023-06-06 固定速率信号的速率恢复方法及装置

Country Status (2)

Country Link
CN (1) CN117411789A (zh)
WO (1) WO2024007804A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1741429A (zh) * 2004-08-26 2006-03-01 华为技术有限公司 实现低速信号在光传输网络中透明传送的方法和装置
US20080095535A1 (en) * 2006-10-08 2008-04-24 Huawei Technologies Co., Ltd. System, device and method for transporting signals through passive optical network
CN102655437A (zh) * 2011-03-03 2012-09-05 中兴通讯股份有限公司 差分时钟恢复方法及装置
CN112165434A (zh) * 2020-06-30 2021-01-01 中兴通讯股份有限公司 在分组交换系统中透传cbr信号的方法和系统
CN114499788A (zh) * 2020-10-26 2022-05-13 南京中兴软件有限责任公司 Cbr信号传输方法、系统及设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1741429A (zh) * 2004-08-26 2006-03-01 华为技术有限公司 实现低速信号在光传输网络中透明传送的方法和装置
US20080095535A1 (en) * 2006-10-08 2008-04-24 Huawei Technologies Co., Ltd. System, device and method for transporting signals through passive optical network
CN102655437A (zh) * 2011-03-03 2012-09-05 中兴通讯股份有限公司 差分时钟恢复方法及装置
CN112165434A (zh) * 2020-06-30 2021-01-01 中兴通讯股份有限公司 在分组交换系统中透传cbr信号的方法和系统
CN114499788A (zh) * 2020-10-26 2022-05-13 南京中兴软件有限责任公司 Cbr信号传输方法、系统及设备

Also Published As

Publication number Publication date
CN117411789A (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
US11165698B2 (en) Method for transmitting service signal by using ethernet channel and communications device
US10462471B2 (en) Data processing method, communications device, and communications system
JP6488058B2 (ja) データ伝送方法、送信機、及び受信機
WO2020156287A1 (zh) 传递客户业务的方法、装置和系统以及计算机可读存储介质
WO2021103928A1 (zh) 一种数据传输方法、装置、终端设备和存储介质
KR102383297B1 (ko) 서비스 주파수를 투명하게 전송하기 위한 방법 및 디바이스
CN108092739B (zh) 业务的传输方法和装置
CN102196321A (zh) 100ge数据在光传送网中的传送方法和数据发送装置
WO2022152012A1 (zh) 客户业务承载方法及装置
WO2021103640A1 (zh) 数据传输方法、装置、终端设备和存储介质
WO2020147661A1 (zh) 信号传输方法及装置、网络设备及计算机可读存储介质
WO2022088907A1 (zh) Cbr信号传输方法、系统及设备
EP3550932B1 (en) Data encapsulation and transmission methods, device, and computer storage medium
WO2024007804A1 (zh) 固定速率信号的速率恢复方法及装置
CN112165434B (zh) 在分组交换系统中透传cbr信号的方法和系统
US8982910B1 (en) Fixed generic mapping of client data to optical transport frame
WO2023124551A1 (zh) 分组信号的发送方法、装置、存储介质以及电子装置
JP2021533691A (ja) サービスビットストリームを処理する方法及び装置
CN112751645A (zh) 一种通信方法、设备及存储介质
WO2023165222A1 (zh) 待映射内容的映射方法、装置、存储介质及电子装置
EP4362361A1 (en) Service processing method and service processing device
WO2024001337A1 (zh) 端口业务映射处理方法、装置、存储介质及电子装置
CN115701188A (zh) 时隙配置方法、时隙配置装置及计算机可读存储介质
CN117640393A (zh) 业务信息的处理方法、网络设备及存储介质
CN114826476A (zh) 一种otn中实现gmp映射的方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23834578

Country of ref document: EP

Kind code of ref document: A1