WO2023124551A1 - 分组信号的发送方法、装置、存储介质以及电子装置 - Google Patents

分组信号的发送方法、装置、存储介质以及电子装置 Download PDF

Info

Publication number
WO2023124551A1
WO2023124551A1 PCT/CN2022/130708 CN2022130708W WO2023124551A1 WO 2023124551 A1 WO2023124551 A1 WO 2023124551A1 CN 2022130708 W CN2022130708 W CN 2022130708W WO 2023124551 A1 WO2023124551 A1 WO 2023124551A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
nms
new
nts
overhead
Prior art date
Application number
PCT/CN2022/130708
Other languages
English (en)
French (fr)
Inventor
苑岩
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023124551A1 publication Critical patent/WO2023124551A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/06Notations for structuring of protocol data, e.g. abstract syntax notation one [ASN.1]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/22Parsing or analysis of headers

Definitions

  • the present disclosure relates to the communication field, and in particular, to a method, device, storage medium, and electronic device for sending a packet signal.
  • the rate of the packet signal is not fixed, and the packet signal must be converted into a fixed rate signal before being transmitted on the physical medium.
  • Signal type for example, 1000base-x is the phy signal transmitted by Gigabit Ethernet in optical fiber), the optical channel transmission unit k (Optical Transport Unit, OTUk) signal in OTN (Optical Transport Network, OTUk) is flexible flexE group signal in Ethernet flexE (Flex Ethernet)/MTN (Metro Transport Network).
  • Method 1 Divide the payload of the transmission signal into k time slots, k is an integer greater than 1, and load the management signal in the transmission signal The number j is less than or equal to k, each time slot can only be occupied by one management signal, and j management signals are loaded into a maximum of k time slots of the payload of a transmission signal, the whole process is shown in Figure 1;
  • mode 2 The transmission signal corresponds to a high-level management signal, and the payload of the high-level management signal is divided into k time slots.
  • the number j of management signals loaded into the transmission signal is less than or equal to k, and each time slot can only be occupied by one management signal.
  • Fig. 3 is a manner in which two packet signals are transmitted through transmission signals, and the nodes form a ring network. In this way, for a packet signal, from the source point to the sink point, there is an intermediate point in the middle, and there are many packet signals on each network node to go to different nodes, so each node generally has a service In the dispatching system, for example, as shown in FIG.
  • node 2 when node 2 receives the packet signal 1 sent by node 1, it may output it at its own node, or may continue to output it to node 3.
  • a packet signal will be encapsulated into a management signal at the source point, and then one or more management signals will be encapsulated into a transmission signal, the transmission signal will be sent from the source point, and the transmission signal will be Solve multiple management signals.
  • multiple management signals After the management signals are processed by management overhead and management signal scheduling, multiple management signals will be repackaged into a new transmission signal and continue to be transmitted to the next intermediate point until the transmission signal is resolved at the sink point.
  • the management signal is output, and the management signal is decomposed into the packet signal, so as to complete the transmission of the packet signal.
  • only the management signal is processed at all intermediate points, that is, the packet signal only exists at the source point and the sink point, and does not exist at the intermediate point.
  • FIG. 4 The structure of a fixed-length frame plus a multiframe is shown in Figure 4. If the overhead and payload are distributed non-uniformly, the positions of the overhead and the payload are not fixed, that is, there is no frame structure, or although there is a frame structure, the length of the frame will constantly change during signal transmission.
  • OTN, flexE/MTN are common packet signal transmission technologies, and these two technologies are implemented based on the above-mentioned fixed-rate management signals and fixed-rate transmission signals, and also conform to the above-mentioned encapsulation of j management signals into one transmission signal
  • One or more of the three implementations, but their management signals and transmission signals have different characteristics, which are introduced as follows:
  • ODU is a management signal.
  • ODU can carry and manage a packet signal, and can also carry and manage one or more ODU signals lower than its rate.
  • the ODU signal rate is a fixed rate, and the overhead and payload are uniform.
  • Distribution that is, has a fixed-length frame structure; otu is a transmission signal, and the otu signal is obtained after adding transmission function overhead to the ODU signal.
  • the rate of the otu signal is a fixed rate, and the overhead and payload are evenly distributed.
  • this ODU signal can be loaded with a packet signal, and can also be loaded with one or more lower-speed ODU signals, that is, the way of packing OTU and ODU signals into a packet signal corresponds to the way described in Figure 2.
  • the rate of the ODU signal is not allowed to change once it is generated, and its rate is not allowed to change when the ODU signal is processed at an intermediate point. In this way, the ODU rate must be restored, and the rate recovery technology is complicated to implement.
  • MTN reuses most of the technologies of flexE, but adds an oam block to the flexE client to manage flexEclient.
  • flexE client is a management signal, and its rate is a fixed value.
  • the oam block in it is equivalent to the overhead of the management signal.
  • the oam block is actually a special 64/66b encoding block.
  • the 66b encoding block is equivalent to the payload and is used to pack the packet signal. Due to the special requirements for the insertion of the oam block, all the oam blocks are not evenly distributed in the flexE client.
  • the rate of the oam block is generated by the source point, and the intermediate point cannot be changed.
  • the rate of flexE client can be changed at the middle point, which also causes oam blocks to not be evenly distributed in flexE client, so flexE client is not a fixed-length frame, and flexE group is equivalent to transmitting a signal, its rate is a fixed value, and the overhead and payload are uniform distribution, the payload of the flexE group is divided into time slots, and one or more flexE client signals with added oam blocks are loaded into the payload time slots of the flexE group, that is, when one or more management signals are loaded into the payload of the transmitted signal In the gap, it corresponds to the method described in Figure 1.
  • the flexE client can change the rate at any time at the middle point.
  • the range of the change rate here is very limited. The rate can be changed by up to 200ppm, and 1ppm is equal to one millionth.
  • the rate of the flexE client is equal to the net value of the newly generated flexE group. The rate of the loaded time slot, while the rate of the newly generated flexE group is generated using the local clock, so the management signal flexE client does not need to recover the rate, which is simpler than the ODU in the OTN that must recover the signal rate.
  • the fixed-length frame signal means that the signal is composed of overhead and payload into a frame, and the overhead and payload are uniformly distributed and the length of the frame is a fixed value.
  • the number of loads is a fixed value, and the position of the overhead and payload in the frame is fixed, and the overhead is evenly distributed in the payload.
  • the ODU signal in OTN is a fixed-length frame signal; in contrast, a non-fixed-length frame refers to either no Frame, or the length of the frame is variable, such as the flexE client signal in MTN, using a specific 64b/66b control coding block as overhead, and using the 64b/66b coding block at the beginning of S and ending with T as payload, because overhead and payload are not Evenly distributed, there is no frame in the strict sense, so it is a non-fixed-length frame.
  • the hardware implementation of non-fixed-length frames is complicated, and the position of the oam block cannot be accurately predicted.
  • Embodiments of the present disclosure provide a method, device, storage medium, and electronic device for sending grouped signals, so as to at least solve the problem that in the related art, if the management signal is kept as a fixed-length frame, rate recovery must be performed at an intermediate point, but the rate of the management signal
  • the recovery technology is difficult to implement; the management signal is not a fixed-length frame, so there is no need to perform rate recovery at the intermediate point, but the non-fixed-length frame will make the overhead management more error-prone and other problems.
  • a method for sending a packet signal includes: defining a new transmission signal NTS and a new management signal NMS, wherein the new transmission signal NTS includes overhead and payload, and the new transmission signal The overhead and payload of the NTS are evenly distributed, the rate of the new transmission signal NTS is a fixed value, the new management signal NMS includes overhead and payload, and the overhead and payload of the new management signal NMS are evenly distributed, the The rate of the new management signal NMS is a fixed value;
  • a packet signal is loaded into the payload of the first new management signal NMS, one or A plurality of first said new management signals NMS are loaded into a first new transmission signal NTS, and said first new transmission signal NTS is sent from the source point; at an intermediate point, said first new transmission signal sent by the source point is received After the signal NTS, analyze the first new management signal NMS after processing the first new transmission signal NTS, process the overhead of the first new management signal NMS, and change the rate of the first new management signal NMS , get the second new management signal NMS, put the second new management signal NMS into the second new transmission signal NTS, and send the second new transmission signal NTS from the intermediate point, wherein the second new management The signal NMS is the first new management signal NMS after changing the rate; at the sink point, after receiving the second new transmission signal NTS sent by the intermediate point, the second new transmission signal NTS is processed and analyzed to obtain the The
  • an apparatus for sending a packet signal including: a definition module, configured to define a new transmission signal NTS and a new management signal NMS, wherein the new transmission signal NTS includes overhead and Payload, and the overhead and payload of the new transmission signal NTS are evenly distributed, the rate of the new transmission signal NTS is a fixed value, the new management signal NMS includes overhead and payload, and the new management signal NMS The overhead and the payload are evenly distributed, and the rate of the new management signal NMS is a fixed value; the processing module is configured to start from the source point, pass through the intermediate point, and send one or more packet signals to the sink point: in At the source point, a packet signal is loaded into the payload of the first new management signal NMS, one or more new management signals NMS are loaded into the first new transmission signal NTS, and the first new transmission signal NTS is loaded into the first new transmission signal NTS.
  • the signal NTS is sent from the source point; at the intermediate point, after receiving the first new transmission signal NTS sent by the source point or the previous intermediate point, the first new transmission signal NTS is processed and analyzed to obtain
  • the first new management signal NMS processes the first new management signal NMS to change the rate of the first new management signal NMS, and loads the first new management signal NMS after the rate change into the first new management signal NMS.
  • the second new transmission signal NTS is sent from the intermediate point; at the sink point, after receiving the second new transmission signal NTS sent by the intermediate point at the previous intermediate point, the second After the new transmission signal NTS is processed, the second new management signal NMS is analyzed, and after the second new management signal NMS is processed, the packet signal is parsed, and finally one or more packet signals are transmitted from the source point through the intermediate point to the Place to stay.
  • a computer-readable storage medium where a computer program is stored in the computer-readable storage medium, wherein the computer program is configured to perform any of the above-mentioned items when running.
  • an electronic device including a memory, a processor, and a computer program stored in the memory and operable on the processor, wherein the processor executes the above-mentioned tasks through the computer program. one method.
  • a new management signal and a new transmission signal are defined.
  • the rate of the new management signal can be modified at the intermediate point, and the new transmission signal
  • Both the new management signal and the new management signal are fixed-rate fixed-length frame signals, which can ensure that the effective overhead rate of the new management signal at the source point, the intermediate point, and the sink point remains unchanged, thus solving the difficulty in realizing the rate recovery of the new management signal at the intermediate point.
  • the new management signal is not a fixed-length frame, which leads to the defect of inconvenient management.
  • FIG. 1 is a schematic diagram (1) of an implementation of loading a management signal into a payload of a transmission signal in the related art
  • Fig. 2 is a schematic diagram (2) of an implementation of loading a management signal into a payload of a transmission signal in the related art
  • FIG. 3 is a schematic diagram of an implementation manner of transmitting a packet signal in a ring network by transmitting a signal in the related art
  • FIG. 4 is a block diagram of a hardware structure of a computer terminal according to a method for sending a packet signal according to an embodiment of the present disclosure
  • FIG. 5 is a flowchart of a method for sending a packet signal according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of overhead and payload of an NMS signal according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of an implementation of loading a packet signal into a payload of an NMS signal according to an embodiment of the present disclosure
  • Fig. 8 is a structural block diagram of an apparatus for sending a packet signal according to an embodiment of the present disclosure.
  • FIG. 4 is a block diagram of a hardware structure of a computer terminal according to a method for sending a packet signal according to an embodiment of the present disclosure.
  • the computer terminal can include one or more (only one is shown in Figure 4) processor 402 (processor 402 can include but not limited to microprocessor (Microprocessor Unit, MPU for short) or programmable logic A device (Programmable logic device, PLD for short)) and a memory 404 for storing data.
  • processor 402 can include but not limited to microprocessor (Microprocessor Unit, MPU for short) or programmable logic A device (Programmable logic device, PLD for short)
  • memory 404 for storing data.
  • the above-mentioned computer terminal may also include a transmission device 406 and an input and output device 408 for communication functions.
  • a transmission device 406 may also include a transmission device 406 and an input and output device 408 for communication functions.
  • the structure shown in FIG. 4 is only a schematic diagram, and does not limit the structure of the above computer terminal.
  • the computer terminal may also include more or less components than those shown in FIG. 4 , or have a different configuration with functions equivalent to those shown in FIG. 4 or more functions than those shown in FIG. 4 .
  • the memory 404 can be used to store computer programs, for example, software programs and modules of application software, such as computer programs corresponding to the method for sending packet signals in the embodiments of the present disclosure, and the processor 402 runs the computer programs stored in the memory 404, thereby Executing various functional applications and data processing is to realize the above-mentioned method.
  • the memory 404 may include high-speed random access memory, and may also include non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid-state memory.
  • the memory 404 may further include a memory that is remotely located relative to the processor 402, and these remote memories may be connected to a computer terminal through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the transmission device 406 is used to receive or transmit data via a network.
  • the specific example of the above-mentioned network may include a wireless network provided by the communication provider of the computer terminal.
  • the transmission device 406 includes a network adapter (Network Interface Controller, NIC for short), which can be connected to other network devices through a base station so as to communicate with the Internet.
  • the transmission device 406 may be a radio frequency (Radio Frequency, RF for short) module, which is used to communicate with the Internet in a wireless manner.
  • RF Radio Frequency
  • FIG. 5 is a flowchart of a method for sending a packet signal according to an embodiment of the present disclosure. As shown in FIG. 5, the steps of the method include:
  • Step S502 defining a new transmission signal NTS and a new management signal NMS, wherein the new transmission signal NTS includes overhead and payload, and the overhead and payload of the new transmission signal NTS are uniformly distributed, and the new transmission signal NTS
  • the rate is a fixed value
  • the new management signal NMS includes overhead and payload
  • the overhead and payload of the new management signal NMS are uniformly distributed
  • the rate of the new management signal NMS is a fixed value
  • the above-mentioned new transmission signal NTS and the above-mentioned new management signal NMS can be understood as fixed-rate fixed-length frame signals.
  • the NMS rate can be understood as the rate within the error range.
  • the NTS rate can be obtained by multiplying the NMS rate by a fixed coefficient. Since the fixed ratio of the fixed coefficient is difficult to obtain, the acquisition cost of the rate is reduced.
  • the rate of the new management signal NMS and the rate of the new transmission signal NTS can be in a fixed ratio, and a local clock can be multiplied by different coefficients, namely NTS and NMS rates are available.
  • Step S504 during the process of sending one or more packet signals from the source point, through the intermediate point, to the sink point:
  • a packet signal is loaded into the payload of the first new management signal NMS , one or more first described new management signals NMS are loaded into a first new transmission signal NTS, and the first new transmission signal NTS is sent from the source point; at an intermediate point, the source point or the last intermediate point is received
  • the second new management signal NMS is the first new management signal NMS after changing the rate; at the sink point, after receiving the second new transmission signal NTS sent by the previous intermediate point and receiving the intermediate point , analyzing the second new new
  • the new transmission signal NTS and the new management signal NMS in the process of sending one or more packet signals from the source point, through the intermediate point, to the sink point: at the source point, a packet signal is loaded into In the payload of a first new management signal NMS, one or more first new management signals NMS are loaded into a first new transmission signal NTS, and the first new transmission signal NTS is sent from the source point ; At the intermediate point, after receiving the first new transmission signal NTS sent by the source point, the first new management signal NMS is analyzed after the first new transmission signal NTS is processed, and the first new management signal NMS is processed.
  • the transmission signal NTS is sent from the intermediate point, wherein the second new management signal NMS is the first new management signal NMS after changing the rate; at the sink point, after receiving the second new transmission signal NTS sent by the intermediate point , analyzing the second new management signal NMS after processing the second new transmission signal NTS, processing the overhead of the second new management signal NMS, and analyzing the second new management signal NMS from the second new management signal NMS.
  • the packet signal finally realizes the transmission of one or more packet signals from the source point to the sink point through the intermediate point, and the rate of the new transmission signal NTS and the new management signal NMS is changed at the intermediate point, but the effective overhead rate of the NMS is maintained No change, so that the overhead management function of the NMS can be normally implemented, and at the same time, it is not necessary to restore the rate of the new management signal NMS
  • the new transmission signal NTS includes: a signal unit, wherein the signal unit includes at least one of the following: 64/66b coded block, u/vb coded block, r bytes; u and v are integers greater than 1, and v is greater than u, r is an integer greater than or equal to 1, and the signal unit is divided into an overhead signal unit and a payload signal unit according to different functions, wherein the overhead signal unit corresponds to the The overhead of the new transmission signal NTS, the payload signal unit corresponds to the payload of the new transmission signal NTS; the signal unit of the new transmission signal NTS forms a fixed-length frame, so as to realize the overhead of the new transmission signal NTS and The payload is evenly distributed, the fixed-length frame includes: the overhead of m cell units and the payload of q cell units, and n fixed-length frames form a multiframe, where m, q, and n are greater than or equal to 1 an integer of .
  • the new management signal NMS includes: a signal unit, wherein the signal unit includes at least one of the following: 64/66b coded block, u/vb coded block, r bytes; u, v are integers greater than 1, and v is greater than u, r is an integer greater than or equal to 1; the signal units of the new management signal NMS form a fixed-length frame, and the fixed-length frame includes: a cell unit The overhead and the payload of b cell units, and c fixed-length frames form a multiframe, where a, b, and c are integers greater than or equal to 1, and the signal units are divided into overhead signal units and payloads according to different functions A signal unit, where the overhead signal unit corresponds to the overhead of the new management signal NMS, and the payload signal unit corresponds to the payload of the new management signal NMS.
  • the overhead included in the new management signal NMS is divided into frame header overhead, padding overhead and other overhead, wherein part of the information in the frame header overhead is a fixed value, and in the A certain position in the multiframe appears fixedly, the frame header overhead is used to identify the starting position of the fixed-length frame, the filling overhead is only used to occupy the bandwidth, and after the preset time passes in the new management signal NMS
  • There is at least one filling overhead, and the other overhead is divided into overhead 1 to overhead s, where s is an integer greater than 1, and the other overhead is used to manage the new management signal NMS, and the new management signal NMS
  • the payload is used to load a packet signal, or to load one or more of said new management signals NMS.
  • the frame header overhead includes first information, or the other overhead includes second information, and the first information or the second information is used to identify the Specific positions of overhead 1 to overhead s in other overheads in the other overheads.
  • the method further includes: at the source point, loading the one packet signal into a payload of the first new management signal NMS, including: the first The rate of a new management signal NMS is equal to the rate of the first new transmission signal NTS multiplied by a fixed rate coefficient; wherein the fixed rate coefficient is equal to the theoretical rate of the first new management signal NMS divided by the first new transmission Theoretical rate of signal NTS.
  • the method further includes: at the intermediate point, changing the rate of the first new management signal NMS, including: changing the rate of the first new management signal NMS The rate is equal to the second new transfer signal NTS rate multiplied by a fixed rate factor equal to the theoretical rate of the first new management signal NMS divided by the theoretical rate of the second new transfer signal NTS.
  • the theoretical rate refers to the nominal rate of various signals
  • each signal has its own theoretical rate
  • the theoretical rate values of various signals are defined by the standards of various signals.
  • the actual rate of various signals has a certain deviation from the above-mentioned theoretical rate, and the limit value of this deviation is also defined in the standards of various signals.
  • the method further includes: at the source point, during the process of loading the one packet signal into a payload of the new management signal NMS: if the new management The signal unit of the signal NMS is the 64/66b coded block or r byte, then the packet signal is converted into an Ethernet MAC frame, and the Ethernet MAC frame is added with inter-frame padding information, and the inter-frame padding information will be added After the Ethernet MAC frame is converted into the 64/66b code block, so that the rate of the 64/66b code block is equal to the rate of the new management signal NMS payload, the 64/66b code block is loaded into the In the payload of the new management signal NMS.
  • the method further includes: at the source point, during the process of loading the one packet signal into a payload of the new management signal NMS: if the new management The signal unit of the signal NMS is the u/vb coding block, then the packet signal is converted into an Ethernet MAC frame, the Ethernet MAC frame is added with inter-frame filling information, and the Ethernet after adding the inter-frame filling information
  • the MAC frame is converted into a 64/66b coded block, and the 64/66b coded block is converted into a u/vb coded block, so that the rate of the u/vb coded block is equal to the rate of the new management signal NMS payload, and the The u/vb encoded block is loaded into the payload of the new management signal NMS.
  • the method further includes: at the source point, loading one or more of the new management signals NMS into one of the first new transfer signals NTS, at least including the following three ways Mode 1: Divide the payload of the new transmission signal NTS into k time slots, the number of the new management signals NMS is less than or equal to k, and each time slot can only be occupied by one new management signal NMS.
  • One or more of the new management signals NMS are loaded into a maximum of k time slots of the payload of the new transmission signal NTS;
  • mode 2 the first new transmission signal NTS corresponds to a high-order new management signal NMS,
  • the payload of the high-order new management signal NMS is divided into k time slots, the number of the first new management signal NMS is less than or equal to k, and each time slot can only be occupied by one first new management signal NMS, loading one or more of said first new management signals NMS into at most k time slots of the payload of said higher-order new management signals NMS, said higher-order new management signals NMS being loaded into said first new transmission
  • mode 3 one of the first new management signals NMS is loaded into the payload of one of the first new transmission signals NTS.
  • the method further includes: at an intermediate point, loading the second new management signal NMS into the second new transmission signal NTS, at least including the following three methods: Method 1: Dividing the payload of the new transmission signal NTS into k time slots, the number of the new management signals NMS is less than or equal to k, each time slot can only be occupied by one of the new management signal NMS, and one or more The new management signal NMS is loaded into a maximum of k time slots of the payload of the new transmission signal NTS; mode 2: the second new transmission signal NTS corresponds to a high-order new management signal NMS, and the high-order The payload of the new management signal NMS is divided into k time slots, the number of the second new management signal NMS is less than or equal to k, each time slot can only be occupied by one second new management signal NMS, and one or more The second new management signal NMS is loaded into at most k time slots of the payload of the high-order new management signal NMS, and the high
  • the overhead included in the new transmission signal NTS is used to manage the new transmission signal NTS, and the overhead included in the new transmission signal NTS includes the new transmission signal NTS NTS completes the relevant information of the delivery function.
  • the information related to the completion of the transmission function of the new transmission signal NTS includes error correction information, which is used for error correction processing after the introduction of error information in the transmission process of the new transmission signal NTS.
  • the overhead included in the new management signal NMS is used to manage the new management signal NMS.
  • multiple ways of sending the first new transmission signal NTS from the source point are provided, specifically: mode 1, the first new transmission signal NTS is not processed; Mode 2, adding some information to one of the first new transmission signals NTS and then converting them into multiple signals of other formats; Mode 3, adding some information to multiple first new transmission signals NTS and converting them into signals of other formats signal; the process of sending the second new transmission signal NTS from the intermediate point at least includes the following methods: method 1, the second new transmission signal NTS does not perform any processing; method 2, one of the second new transmission signals The transmission signal NTS is converted into a plurality of signals of other formats after adding some information; in mode 3, the multiple second new transmission signals NTS are converted into a signal of another format after adding some information.
  • method 2 can be understood as converting a first new transmission signal NTS into multiple low-speed signals, which is equivalent to inverse multiplexing, and method 3 is to combine multiple first new transmission signals NTS into one signal, which is equivalent to multiplexed on the signal.
  • the intermediate point receives the first new transmission signal NTS sent by the source point, and after the sink point receives the second new transmission signal NTS sent by the intermediate point,
  • the method also includes at least one of the following methods: method 1, directly receiving the first new transmission signal NTS or the second new transmission signal NTS; method 2, receiving the multiple signals in other formats, and deleting several After the information is converted into one of the first new transmission signal NTS or the second new transmission signal NTS; mode 3, receiving the signal in other formats, deleting some information and converting it into multiple first new transmission signals NTS or a plurality of said second new transmit signals NTS.
  • the method further includes: at an intermediate point, analyzing the first new management signal NMS after processing the first new transmission signal NTS, including: processing the first new transmission signal NTS Overhead of a new transmission signal NTS; one or more first new management signals NMS are deciphered from the first new transmission signal NTS according to the method 1, the method 2 or the method 3.
  • the method further includes: at the sink point, analyzing the second new management signal NMS after processing the second new transmission signal NTS, including: processing the second Overhead of the new transmission signal NTS; one or more second new management signals NMS are deciphered from the second new transmission signal NTS according to the method 1, the method 2 or the method 3.
  • processing the second new management signal NMS includes: processing the frame header overhead to identify the starting position of the fixed-length frame, according to the The first information in the frame header overhead, or the second information in the other overhead identifies the specific location of the other overhead, and processes the other overhead, so as to implement the first new management signal NMS management functions.
  • processing the overhead of the second new management signal NMS includes: processing the frame header overhead to identify the starting position of the fixed-length frame, according to The first information in the frame header overhead, or the second information in the other overhead identifies the specific location of the other overhead, and processes the other overhead, so as to implement the second new management Signal management functions of NMS.
  • identifying the start position of the fixed-length frame is equivalent to identifying the frame header, and when the frame header is identified, the overhead and the payload can be identified.
  • the rate of the first new management signal NMS is changed to obtain the second new management signal NMS, the overhead and payload of the first new management signal NMS can be taken out, and the overhead can be deleted
  • the overhead and payload of the first new management signal NMS can be taken out, and the overhead can be deleted
  • the other overheads as effective overheads, delete the inter-frame padding information in the payload as the effective payload
  • generate the second new management signal NMS and add the effective overhead to the padding writing the overhead into the overhead of the second new management signal NMS, modifying the first information in the frame header overhead in the second new management signal NMS, or modifying the The second information, so that the first information or the second information indicates the specific position of the overhead 1 to the overhead s in the other overheads, and write the effective payload after adding the interframe filling information In the payload of the second new management signal NMS;
  • deleting the inter-frame filling information in the payload as the effective payload specifically includes: if the signal unit of the first new management signal NMS is the 64/66b coded block or r bytes, then the 64 in the payload The /66b encoding block is converted into the Ethernet MAC frame and the inter-frame filling information, the inter-frame filling information is deleted, and only the Ethernet MAC frame is kept as an effective payload; if the first new management signal NMS If the signal unit is the u/vb coded block, then the u/vb coded block in the payload is converted into the 64/66b coded block, and the 64/66b coded block is converted into the Ethernet MAC frame and the inter-frame padding information, delete the inter-frame padding information, and only keep the Ethernet MAC frame as an effective payload;
  • adding the effective payload to the inter-frame filling information specifically includes: if the signal unit of the first new management signal NMS is the 64/66b coded block or r bytes, adding the effective payload to Interframe filling information is converted into the 64/66b coded block, so that the rate of the 64/66b coded block is equal to the rate of the payload of the second new management signal NMS; if the signal of the first new management signal NMS The unit is the u/vb coding block, then the effective payload is converted into the 64/66b coding block after adding interframe filling information, and the 64/66b coding block is converted into the u/vb coding block , so that the rate of the u/vb encoded block is equal to the rate of the payload of the second new management signal NMS.
  • parsing the packet signal from the second new management signal NMS includes: if the signal unit of the second new management signal NMS is the The 64/66b coded block or r bytes, then the 64/66b coded block is taken out from the payload of the second new management signal NMS, and the 64/66b coded block is converted into the Ethernet MAC frame and the inter-frame padding information, and convert the Ethernet MAC frame into the packet signal.
  • parsing the packet signal from the second new management signal NMS includes: if the signal unit of the second new management signal NMS is the said u/vb coded block, then take out said u/vb coded block from the payload of said second new management signal NMS, convert said u/vb coded block into said 64/66b coded block, and convert said u/vb coded block into said 64/66b coded block.
  • the 64/66b encoding block is converted into the Ethernet MAC frame and the inter-frame filling information, and the Ethernet MAC frame is converted into the packet signal.
  • an NMS signal may include overhead of m1 data blocks and payload of n1 data blocks, where m1 and n1 are integers, and the data blocks may be 64/66b coded blocks, or other u/vb codes similar to 64/66b coded blocks piece.
  • an encoding block is an information block composed of multiple bits, and can be divided into a control encoding block and a data encoding block according to its code type.
  • the control encoding block is generally used to represent the overhead
  • the data encoding block is generally used to represent the payload.
  • Data blocks may also be k1 bytes. Where u, v, k1 are integers.
  • the overhead of NMS includes filling overhead and non-filling overhead.
  • the filling overhead is only used to occupy bandwidth and can be added or deleted.
  • the non-filling overhead is used to manage NMS signals. Will appear.
  • FIG. 6 is a schematic diagram of overhead and payload of an NMS signal according to an embodiment of the present disclosure. As shown in Figure 6, there is special information in the overhead to identify whether the current overhead is a filling overhead or a non-filling overhead.
  • the NMS payload is used to load the packet signal, convert the packet signal into an Ethernet MAC frame, then add interframe padding information to the Ethernet MAC frame and convert it into a fixed-rate 64/66b encoding block, and then convert the 64/66b encoding block Convert to the above-mentioned u/vb encoding block, and then use the u/vb encoding block as the payload of the NMS signal, or directly load the 64/66b encoding block into the payload of the above-mentioned NMS signal, so that the rate of the NMS signal payload is exactly Equal to the rate of 64/66b encoded blocks.
  • Fig. 7 is a schematic diagram of an implementation of packing a packet signal into a payload of an NMS signal according to an embodiment of the present disclosure.
  • the rate of the non-filling overhead of the NMS remains unchanged.
  • the rate of the filling overhead plus the non-filling overhead is equal to the changed overhead rate of the NMS signal.
  • the rate of Ethernet MAC frames plus filling information between frames is equal to the rate of the payload of the changed NMS signal.
  • Ethernet MAC frame is a kind of data frame, including frame header, frame tail, and data part, wherein, the definition of Ethernet MAC frame comes from Ethernet standard IEEE 802.3, 64/66b coding block and 256/257b coding block The definition of also comes from IEEE802.3.
  • a method for converting a packet signal into a fixed signal rate transmission is proposed, and the specific steps are as follows:
  • Step 1 Define a new management signal NMS (New Manage Signal).
  • NMS includes overhead and payload, and the overhead and payload are uniformly distributed.
  • the rate of the NMS signal is a fixed value.
  • One packet signal is loaded into the net of one NMS signal. In the load, one or more NMS can be loaded into one NTS signal.
  • NTS New Transport Signal
  • NTS includes overhead and payload, overhead and payload are evenly distributed, the rate of NTS signal is a fixed value, and one or more NTS signals are converted to specific transmission after further processing
  • the signal STS Special Transport Sinal
  • STS can be transmitted in a specific physical medium.
  • the specific physical medium may be an optical cable.
  • Step 2 Realize the process that one or more packet signals start to be transmitted at the source point, pass through the intermediate point during the transmission process, and transmit to the destination point.
  • the specific steps are as follows:
  • pack 1 packet signal into 1 NMS signal pack 1 or more NMS signals into 1 NTS signal, and finally convert 1 or more NTS signals into STS signals (equivalent to the above-mentioned first The new transmission signal NTS) is sent from the source.
  • the STS signal sent by the source point or the intermediate point is received, and one or more NTS signals are recovered from one STS signal, and one or more NMS signals are recovered from one NTS signal, according to the local clock Change the NMS signal rate.
  • the packet signal can adapt to the changed rate of the NMS signal.
  • the changed rate of the NMS matches the new NTS signal rate.
  • One Or multiple NTS signals are converted to STS signals and sent from the intermediate point.
  • the receiving source point or the intermediate point sends out STS signals, recovers one or more NTS signals from one STS signal, recovers one or more NMS signals from one NTS signal, and recovers one or more NMS signals from one NMS signal
  • STS signals recovers one or more NTS signals from one STS signal
  • NMS signals recovers one or more NMS signals from one NMS signal
  • One packet signal is recovered from the signal, and one or more packet signals are finally transmitted from the source point to the sink point through the intermediate point.
  • the NMS signal in step 1 includes uniformly distributed overhead and payload, and the uniform distribution of overhead and payload specifically means that the NMS signal consists of the overhead of m2 data blocks plus the net of n2 data blocks m2 and n2 are integers, and the data block may be a 64/66b coding block, or other u/vb coding blocks similar to 64/66b coding blocks, where u and v are integers, such as 256/257b coding blocks, or 512 /513b encoding block, the data block may also be k2 bytes (k2 is an integer).
  • the NMS signal in step 1 includes overhead and payload, wherein overhead includes filling overhead and non-filling overhead, wherein filling overhead is only used to occupy bandwidth, and can be added or deleted, and non-filling overhead is used
  • the overhead In order to manage the NMS signal, the overhead must include the filling overhead, and the payload is used to load the packet signal.
  • the process of loading one packet signal into the payload of one NMS signal in step 1 includes: converting the packet signal into an Ethernet MAC frame, and then adding the Ethernet MAC frame to the frame After filling the information, convert it into a fixed-rate 64/66b code block, then convert the 64/66b code block into a u/vb code block in step 2, and then use the u/vb code block as the payload of the NMS signal, or directly
  • the 64/66b encoded block is loaded into the payload of the NMS signal in step 2, so that the rate of the NMS signal payload is exactly equal to the rate of the 64/66b encoded block.
  • one or more NMSs in step 1 may be loaded into one NTS signal, including the following two situations:
  • Case 1 One or more NMS signals are loaded into the payload of one NTS signal.
  • Case 2 is that if there is only one NMS signal, then there is only one NMS signal, then the payload of the NMS signal is loaded into the payload of one NTS signal, and the overhead of the NMS signal is loaded into the overhead of one NTS signal.
  • the above-mentioned process of loading one or more NMS signals into the payload of one NTS signal specifically includes: making the rate of the NMS signal exactly equal to the rate of the NTS payload, loading the NMS signal into the NTS payload.
  • the above-mentioned process of loading multiple NMS signals into the payload of one NTS signal specifically includes: dividing the payload of the NTS signal into m3 time slots, loading n3 NMS signals into k3 time slots of the NTS, Where n3 is less than or equal to k3, k3 is less than or equal to m3, one NMS signal can occupy one or more time slots, and one time slot can only be occupied by one NMS signal.
  • the NTS in step 1 includes overhead and payload, wherein the overhead is used to manage the NTS signal, and at the same time contains information related to the NTS signal's completion of the transmission function, and can also be used to load the NMS signal
  • the overhead, the payload is used to install the NMS signal or the payload of the NMS signal.
  • one or more NTS signals in step 1 are further processed and then converted into a specific transmission signal STS, which can be transmitted in a specific physical medium.
  • Further processing includes the following processing methods: Method 1 , NTS is directly used as an STS signal; method 2, add some information to one NTS signal and convert it into multiple STS signals; method 3, add several signals to multiple NTS signals and convert it into one STS signal.
  • the rate of the specific overhead of the NMS remains unchanged, and the packet signal can be adapted to the changed rate of the NMS signal, specifically , the specific overhead of NMS refers to the above-mentioned non-filling overhead.
  • the rate of the NMS signal changes, the rate of the non-filling overhead remains unchanged. You can increase or decrease the filling overhead so that the rate of the filling overhead plus the non-filling overhead is equal to the rate of the changed NMS signal. overhead rate.
  • the packet signal in step 1 can be adapted to the changed rate of the NMS signal, specifically: when changing the rate of the NMS signal, the Ethernet MAC frame padding information is increased or decreased to make the Ethernet
  • the rate of the network MAC frame plus the interframe filling information is equal to the rate of the payload of the changed NMS signal.
  • a new NMS and NTS signal is defined, a processing method for the NMS and NTS signal is provided, a technical solution for converting the packet signal into a fixed-rate signal transmission is realized, and the transmission efficiency of the packet signal is improved, and related technologies Compared with the Ethernet technology in the network, the OTN technology has obvious technical advantages compared with the MTN technology.
  • the method according to the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or the part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, disk, CD) contains several instructions to make a terminal device (which may be a mobile phone, a computer, a server, or a network device, etc.) execute the method of each embodiment of the present application.
  • a storage medium such as ROM/RAM, disk, CD
  • FIG. 8 is a structural block diagram of an apparatus for determining a request result according to an embodiment of the present application. As shown in Figure 8, including:
  • the definition module 82 is configured to define a new transmission signal NTS and a new management signal NMS, wherein the new transmission signal NTS includes overhead and payload, and the overhead and payload of the new transmission signal NTS are evenly distributed, and the new transmission signal NTS
  • the rate of the signal NTS is a fixed value
  • the new management signal NMS includes overhead and payload
  • the overhead and payload of the new management signal NMS are uniformly distributed
  • the rate of the new management signal NMS is a fixed value.
  • the processing module 84 is configured to send one or more packet signals from the source point to the sink point through the intermediate point: at the source point, a packet signal is loaded into a first new management signal NMS In the payload, one or more new management signals NMS are loaded into the first new transmission signal NTS, and the first new transmission signal NTS is sent from the source point; at an intermediate point, the said first new transmission signal NTS sent by the source point is received After the first new transmission signal NTS, analyze the first new management signal NMS after processing the first new transmission signal NTS, and process the first new management signal NMS to change the first new management signal NMS.
  • the rate of the management signal NMS, the first new management signal NMS after the rate change is loaded into the second new transmission signal NTS, and the second new transmission signal NTS is sent from the intermediate point; at the sink point, the intermediate point After the second new transmission signal NTS is sent out, process the second new transmission signal NTS and parse out a second new management signal NMS, process the second new management signal NMS and parse out a packet signal,
  • the final realization is to transmit one or more packet signals from the source point to the sink point through the intermediate point.
  • the new transmission signal NTS and the new management signal NMS in the process of sending one or more packet signals from the source point, through the intermediate point, to the sink point: at the source point, a packet signal is loaded into In the payload of a first new management signal NMS, one or more first new management signals NMS are loaded into a first new transmission signal NTS, and the first new transmission signal NTS is sent from the source point ; At the intermediate point, after receiving the first new transmission signal NTS sent by the source point, the first new management signal NMS is analyzed after the first new transmission signal NTS is processed, and the first new management signal NMS is processed.
  • the transmission signal NTS is sent from the intermediate point, wherein the second new management signal NMS is the first new management signal NMS after changing the rate; at the sink point, after receiving the second new transmission signal NTS sent by the intermediate point , analyzing the second new management signal NMS after processing the second new transmission signal NTS, processing the overhead of the second new management signal NMS, and analyzing the second new management signal NMS from the second new management signal NMS.
  • the packet signal finally realizes the transmission of one or more packet signals from the source point to the sink point through the intermediate point, and the rate of the new transmission signal NTS and the new management signal NMS is changed at the intermediate point, but the effective overhead rate of the NMS is maintained No change, so that the overhead management function of the NMS can be normally implemented, and at the same time, it is not necessary to restore the rate of the new management signal NMS
  • the new transmission signal NTS includes: a signal unit, wherein the signal unit includes at least one of the following: 64/66b coded block, u/vb coded block, r bytes; u and v are integers greater than 1, and v is greater than u, r is an integer greater than or equal to 1, and the signal unit is divided into an overhead signal unit and a payload signal unit according to different functions, wherein the overhead signal unit corresponds to the The overhead of the new transmission signal NTS, the payload signal unit corresponds to the payload of the new transmission signal NTS; the signal unit of the new transmission signal NTS forms a fixed-length frame, so as to realize the overhead of the new transmission signal NTS and The payload is evenly distributed, the fixed-length frame includes: the overhead of m cell units and the payload of q cell units, and n fixed-length frames form a multiframe, where m, q, and n are greater than or equal to 1 an integer of .
  • the new management signal NMS includes: a signal unit, wherein the signal unit includes at least one of the following: 64/66b coded block, u/vb coded block, r bytes; u, v are integers greater than 1, and v is greater than u, r is an integer greater than or equal to 1; the signal units of the new management signal NMS form a fixed-length frame, and the fixed-length frame includes: a cell unit The overhead and the payload of b cell units, and c fixed-length frames form a multiframe, where a, b, and c are integers greater than or equal to 1, and the signal units are divided into overhead signal units and payloads according to different functions A signal unit, where the overhead signal unit corresponds to the overhead of the new management signal NMS, and the payload signal unit corresponds to the payload of the new management signal NMS.
  • the overhead included in the new management signal NMS is divided into frame header overhead, padding overhead and other overhead, wherein part of the information in the frame header overhead is a fixed value, and in the A certain position in the multiframe appears fixedly, the frame header overhead is used to identify the starting position of the fixed-length frame, the filling overhead is only used to occupy the bandwidth, and after the preset time passes in the new management signal NMS
  • There is at least one filling overhead, and the other overhead is divided into overhead 1 to overhead s, where s is an integer greater than 1, and the other overhead is used to manage the new management signal NMS, and the new management signal NMS
  • the payload is used to load a packet signal, or to load one or more of said new management signals NMS.
  • the frame header overhead includes first information, or the other overhead includes second information, and the first information or the second information is used to identify the Specific positions of overhead 1 to overhead s in other overheads in the other overheads.
  • the device further includes a first loading module, which is set so that the rate of the first new management signal NMS is equal to the rate of the first new transmission signal NTS multiplied by a fixed rate coefficient; Wherein, the fixed rate coefficient is equal to dividing the theoretical rate of the first new management signal NMS by the theoretical rate of the first new transmission signal NTS.
  • the device further includes a second loading module, which is set to change the rate of the first new management signal NMS to be equal to the rate of the second new transmission signal NTS multiplied by A fixed rate factor equal to the theoretical rate of the first new management signal NMS divided by the theoretical rate of the second new transfer signal NTS.
  • the above-mentioned theoretical rate can be understood as the nominal rate of the packet signal, that is, the rate value specified in the standard defining the packet signal, and can also be used to represent the above-mentioned new management signal NMS, the above-mentioned new transmission signal NTS, the above-mentioned No. A new transmission signal NTS, the rate of the second new transmission signal NTS. Wherein, there will be a certain deviation between the real rate of the packet signal and the aforementioned theoretical rate.
  • the device further includes a third loading module, configured to load the packet signal into a payload of the new management signal NMS at the source point Middle: if the signal unit of the new management signal NMS is the 64/66b coded block or r byte, then convert the packet signal into an Ethernet MAC frame, and add interframe padding information to the Ethernet MAC frame, And convert the Ethernet MAC frame after adding the interframe filling information into the 64/66b code block, so that the rate of the 64/66b code block is equal to the rate of the new management signal NMS payload, and the 64/66b code block is converted into 66b The encoded block is loaded into the payload of said new management signal NMS.
  • a third loading module configured to load the packet signal into a payload of the new management signal NMS at the source point Middle: if the signal unit of the new management signal NMS is the 64/66b coded block or r byte, then convert the packet signal into an Ethernet MAC frame, and add interframe padding information to the Ethernet MAC frame, And convert
  • the device further includes a fourth loading module, configured to load the packet signal into the payload of the new management signal NMS at the source point: if the new management signal
  • the signal unit of the NMS is the u/vb coding block, then the packet signal is converted into an Ethernet MAC frame, the Ethernet MAC frame is added with inter-frame filling information, and the Ethernet MAC after adding the inter-frame filling information
  • the frame is converted into a 64/66b coded block, and the 64/66b coded block is converted into a u/vb coded block, so that the rate of the u/vb coded block is equal to the rate of the new management signal NMS payload, and the A u/vb encoded block is loaded into the payload of said new management signal NMS.
  • the device further includes a fifth loading module, configured to load one or more of the new management signals NMS into one of the first new transfer signals NTS at the source point , including at least the following three methods: Method 1: Divide the payload of the new transmission signal NTS into k time slots, the number of the new management signals NMS is less than or equal to k, and each time slot can only be used by one of the The new management signal NMS is occupied, and one or more of the new management signals NMS are loaded into a maximum of k time slots of the payload of the new transmission signal NTS; mode 2: the first new transmission signal NTS corresponds to a The high-order new management signal NMS, the payload of the high-order new management signal NMS is divided into k time slots, the number of the first new management signal NMS is less than or equal to k, and each time slot can only be used by one of the first new management signals Occupied by a new management signal NMS, loading one or more of said first new management signals NMS
  • the device further includes a sixth loading module, configured to load the second new management signal NMS into the second new transmission signal NTS at an intermediate point, at least including the following Three ways: Mode 1: Divide the payload of the new transmission signal NTS into k time slots, the number of the new management signals NMS is less than or equal to k, and each time slot can only be used by one of the new management signals NMS Occupy, load one or more of the new management signals NMS into at most k time slots of the payload of the new transmission signal NTS; mode 2: the second new transmission signal NTS corresponds to a high-order new management Signal NMS, the payload of the high-order new management signal NMS is divided into k time slots, the number of the second new management signal NMS is less than or equal to k, and each time slot can only be used by one second new management signal Occupied by NMS, one or more of the second new management signal NMS is loaded into the maximum k time slots of the payload of the high-order new
  • the overhead included in the new transmission signal NTS is used to manage the new transmission signal NTS, and the overhead included in the new transmission signal NTS includes the new transmission signal NTS NTS completes the relevant information of the delivery function.
  • the information related to the completion of the transmission function of the new transmission signal NTS includes error correction information, which is used for error correction processing after the introduction of error information in the transmission process of the new transmission signal NTS.
  • the overhead included in the new management signal NMS is used to manage the new management signal NMS.
  • the device further includes a signal sending module configured to provide multiple ways to send the first new transmission signal NTS from the source point, specifically: way 1, the first A new transmission signal NTS does not do any processing; mode 2, adding some information to one of the first new transmission signal NTS and then converting it into multiple signals in other formats; mode 3, converting multiple first new transmission signals NTS Add some information and convert it into a signal in other formats; the process of sending the second new transmission signal NTS from the intermediate point at least includes the following methods: mode 1, the second new transmission signal NTS does not do any processing ;Mode 2, after adding some information to a second new transmission signal NTS, convert it into a signal of multiple other formats; Mode 3, after adding some information to a plurality of the second new transmission signal NTS, convert it into another format signal of.
  • a signal sending module configured to provide multiple ways to send the first new transmission signal NTS from the source point, specifically: way 1, the first A new transmission signal NTS does not do any processing; mode 2, adding some information to one of the first new transmission signal NTS and then
  • method 2 can be understood as converting a first new transmission signal NTS into multiple low-speed signals, which is equivalent to inverse multiplexing, and method 3 is to combine multiple first new transmission signals NTS into one signal, which is equivalent to multiplexed on the signal.
  • the device further includes a signal receiving module, configured to provide a variety of implementations after receiving the second new transmission signal NTS sent by the previous intermediate point receiving the intermediate point, Including at least one of the following methods: method 1, directly receiving the first new transmission signal NTS or the second new transmission signal NTS; method 2, receiving the multiple signals in other formats, deleting some information and converting to One said new transmission signal NTS; mode 3, receiving said signal in other formats, deleting some information and converting it into a plurality of said first new transmission signals NTS or a plurality of said second new transmission signals NTS.
  • a signal receiving module configured to provide a variety of implementations after receiving the second new transmission signal NTS sent by the previous intermediate point receiving the intermediate point, Including at least one of the following methods: method 1, directly receiving the first new transmission signal NTS or the second new transmission signal NTS; method 2, receiving the multiple signals in other formats, deleting some information and converting to One said new transmission signal NTS; mode 3, receiving said signal in other formats, deleting some information and converting it into a plurality of
  • the device further includes a signal analysis module configured to process the overhead of the first new transmission signal NTS; according to the method 1, the method 2 or the method 3, from One or more of the first new management signals NMS are decoded from the first new transfer signal NTS.
  • a signal analysis module configured to process the overhead of the first new transmission signal NTS; according to the method 1, the method 2 or the method 3, from One or more of the first new management signals NMS are decoded from the first new transfer signal NTS.
  • the device further includes an analysis module configured to process the second new transmission signal NTS at the sink point and then analyze the second new management signal NMS, including: processing the overhead of the second new transmission signal NTS; deciphering one or more second new management signals from the second new transmission signal NTS according to the method 1, the method 2 or the method 3 NMS.
  • an analysis module configured to process the second new transmission signal NTS at the sink point and then analyze the second new management signal NMS, including: processing the overhead of the second new transmission signal NTS; deciphering one or more second new management signals from the second new transmission signal NTS according to the method 1, the method 2 or the method 3 NMS.
  • the device further includes a first processing module configured to process the frame header overhead to identify the start position of the fixed-length frame, and according to the frame header overhead in the The first information, or the second information in the other overhead identifies the specific location of the other overhead, and processes the other overhead, so as to realize the management function of the first new management signal NMS.
  • a first processing module configured to process the frame header overhead to identify the start position of the fixed-length frame, and according to the frame header overhead in the The first information, or the second information in the other overhead identifies the specific location of the other overhead, and processes the other overhead, so as to realize the management function of the first new management signal NMS.
  • the apparatus further includes a second processing module configured to process the frame header overhead to identify the start position of the fixed-length frame, and according to the frame header overhead in the The first information, or the second information in the other overhead identifies the specific location of the other overhead, and processes the other overhead, so as to realize the management function of the second new management signal NMS.
  • a second processing module configured to process the frame header overhead to identify the start position of the fixed-length frame, and according to the frame header overhead in the The first information, or the second information in the other overhead identifies the specific location of the other overhead, and processes the other overhead, so as to realize the management function of the second new management signal NMS.
  • the device further includes a rate changing module, configured to take out the overhead and payload of the first new management signal NMS, and delete the padding overhead and the frame header in the overhead Overhead, using the other overhead as an effective overhead, deleting the inter-frame filling information in the payload as an effective payload; generating the second new management signal NMS, adding the effective overhead to the filling overhead and writing it into the second new In the overhead of the management signal NMS, modify the first information in the frame header overhead in the second new management signal NMS, or modify the second information in the other overhead, so that the first information or the second information indicates the specific positions of the overhead 1 to overhead s in the other overheads, and write the effective payload into the second new management signal NMS after adding the interframe filling information payload;
  • a rate changing module configured to take out the overhead and payload of the first new management signal NMS, and delete the padding overhead and the frame header in the overhead Overhead, using the other overhead as an effective overhead, deleting the inter-frame filling information in the payload as an effective payload
  • deleting the inter-frame filling information in the payload as the effective payload specifically includes: if the signal unit of the first new management signal NMS is the 64/66b coded block or r bytes, then the 64 in the payload The /66b encoding block is converted into the Ethernet MAC frame and the inter-frame filling information, the inter-frame filling information is deleted, and only the Ethernet MAC frame is kept as an effective payload; if the first new management signal NMS If the signal unit is the u/vb coded block, then the u/vb coded block in the payload is converted into the 64/66b coded block, and the 64/66b coded block is converted into the Ethernet MAC frame and the inter-frame padding information, delete the inter-frame padding information, and only keep the Ethernet MAC frame as an effective payload;
  • adding the effective payload to the inter-frame filling information specifically includes: if the signal unit of the first new management signal NMS is the 64/66b coded block or r bytes, adding the effective payload to Interframe filling information is converted into the 64/66b coded block, so that the rate of the 64/66b coded block is equal to the rate of the payload of the second new management signal NMS; if the signal of the first new management signal NMS The unit is the u/vb coding block, then the effective payload is converted into the 64/66b coding block after adding interframe filling information, and the 64/66b coding block is converted into the u/vb coding block , so that the rate of the u/vb encoded block is equal to the rate of the payload of the second new management signal NMS.
  • the device further includes a coded block first deciphering module, which is set to if the signal unit of the second new management signal NMS is the 64/66b coded block or r bytes , the 64/66b coded block is taken out from the payload of the second new management signal NMS, the 64/66b coded block is converted into the Ethernet MAC frame and the inter-frame filling information, and the The Ethernet MAC frame is converted into the packet signal.
  • a coded block first deciphering module which is set to if the signal unit of the second new management signal NMS is the 64/66b coded block or r bytes , the 64/66b coded block is taken out from the payload of the second new management signal NMS, the 64/66b coded block is converted into the Ethernet MAC frame and the inter-frame filling information, and the The Ethernet MAC frame is converted into the packet signal.
  • the device further includes a second coding block derivation module, which is configured to: if the signal unit of the second new management signal NMS is the u/vb coding block, then from the Take the u/vb code block from the payload of the second new management signal NMS, convert the u/vb code block into the 64/66b code block, and convert the 64/66b code block into the The Ethernet MAC frame and the inter-frame filling information are used to convert the Ethernet MAC frame into the packet signal.
  • a second coding block derivation module which is configured to: if the signal unit of the second new management signal NMS is the u/vb coding block, then from the Take the u/vb code block from the payload of the second new management signal NMS, convert the u/vb code block into the 64/66b code block, and convert the 64/66b code block into the The Ethernet MAC frame and the inter-frame filling information are used to convert the Ethernet MAC frame into the packet signal.
  • the above-mentioned computer-readable storage medium may include but not limited to: U disk, read-only memory (Read-Only Memory, referred to as ROM), random access memory (Random Access Memory, referred to as RAM) , mobile hard disk, magnetic disk or optical disk and other media that can store computer programs.
  • ROM read-only memory
  • RAM random access memory
  • mobile hard disk magnetic disk or optical disk and other media that can store computer programs.
  • Embodiments of the present disclosure also provide an electronic device, including a memory and a processor, where a computer program is stored in the memory, and the processor is configured to run the computer program to execute the steps in any one of the above method embodiments.
  • the above-mentioned processor may be configured to execute the following steps through a computer program:
  • a packet signal is loaded into the payload of a first new management signal NMS, one or A plurality of the first new management signals NMS are loaded into a first new transmission signal NTS, and the first new transmission signal NTS is sent from the source point; at an intermediate point, the first new transmission signal sent by the source point is received After the signal NTS, analyze the first new management signal NMS after processing the first new transmission signal NTS, process the overhead of the first new management signal NMS, and change the first new management signal NMS The rate of the second new management signal NMS is obtained, the second new management signal NMS is loaded into the second new transmission signal NTS, and the second new transmission signal NTS is sent from the intermediate point; at the sink point, the intermediate point is received After the second new transmission signal NTS is sent, the second new transmission signal NTS is processed, and then the second new management signal NMS is analyzed, and the overhead of the second new management signal NMS
  • the above-mentioned processor may also be configured to execute the following steps through a computer program:
  • a packet signal is loaded into the payload of a first new management signal NMS, one or A plurality of the first new management signals NMS are loaded into a first new transmission signal NTS, and the first new transmission signal NTS is sent from the source point; at an intermediate point, the first new transmission signal sent by the source point is received After the signal NTS, analyze the first new management signal NMS after processing the first new transmission signal NTS, process the overhead of the first new management signal NMS, and change the first new management signal NMS The rate of the second new management signal NMS is obtained, the second new management signal NMS is loaded into the second new transmission signal NTS, and the second new transmission signal NTS is sent from the intermediate point; at the sink point, the intermediate point is received After the second new transmission signal NTS is sent, the second new transmission signal NTS is processed, and then the second new management signal NMS is analyzed, and the overhead of the second new management signal NMS
  • the electronic device may further include a transmission device and an input and output device, wherein the transmission device is connected to the processor, and the input and output device is connected to the processor.
  • each module or each step of the above-mentioned disclosure can be realized by a general-purpose computing device, and they can be concentrated on a single computing device, or distributed in a network composed of multiple computing devices
  • they can be implemented with program codes executable by a computing device, thus, they can be stored in a storage device to be executed by a computing device, and in some cases, they can be executed in an order different from that shown or shown here.
  • the described steps are realized by making them into respective integrated circuit modules, or making multiple modules or steps among them into a single integrated circuit module. As such, the present disclosure is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Quality & Reliability (AREA)
  • Time-Division Multiplex Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本公开提供了一种分组信号的发送方法、装置、存储介质以及电子装置,分组信号的发送方法包括:定义新传送信号NTS和新管理信号NMS;在源点,一个分组信号装入一个第一NMS的净荷中,一个或多个第一NMS装入一个第一NTS中,将第一NTS从源点发出;在中间点,接收源点发出的第一NTS后,对第一NTS做处理后解析出第一NMS,对第一NMS的开销进行处理,改变第一NMS的速率,得到第二NMS,将第二NMS装入第二NTS中,将第二NTS从中间点发出;在宿点,接收中间点发出的第二NTS后,对第二NTS做处理后解析出第二NMS,对第二NMS的开销进行处理,从第二NMS中解析出分组信号,最终实现将一个或多个分组信号从源点经过中间点传送到宿点。

Description

分组信号的发送方法、装置、存储介质以及电子装置
本公开要求于2021年12月31日提交中国专利局、申请号为202111676779.5、发明名称“分组信号的发送方法、装置、存储介质以及电子装置”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及通信领域,具体而言,涉及一种分组信号的发送方法、装置、存储介质以及电子装置。
背景技术
相关技术中,分组信号的速率不是固定的,分组信号必须转为固定速率信号才能在物理介质中传送。而固定速率信号指传送速率固定的信号,迄今为止,所有能在物理介质中高速传送的信号都是固定速率信号,例如以太网phy信号(phy=physical,表示以太网最终在物理介质上传输的信号类型,例如1000base-x就是千兆以太网在光纤中传送的phy信号),OTN(Optical Transport Network,光传送网)中的光通道传送单元k(Optical Transport Unit,简称为OTUk)信号,灵活以太网flexE(Flex Ethernet)/MTN(Metro Transport Network)中的flexE group信号。在将j个管理信号封装到一个传送信号中时有3种实现方式,方式1:将传送信号的净荷划分k个时隙,k为大于1的整数,装入传送信号中的管理信号的数量j小于等于k,每个时隙只能被一个管理信号占用,将j个管理信号装入一个传送信号的净荷的最多k个时隙中,整个过程如图1所示;方式2:传送信号对应一个高阶管理信号,将高阶管理信号的净荷划分k个时隙,装入传送信号中的管理信号的数量j小于等于k,每个时隙只能被一个管理信号占用,将j个管理信号装入高阶管理信号的净荷的最多k个时隙中,高阶管理信号装入传送信号的净荷中;方式3:一个管理信号装入一个传送信号的净荷中。方式2和方式3的实现过程如图2所示。如图3所示,图3为2个分组信号通过传送信号传送的方式,节点组成环网。这样对于一个分组信号来说从源点开始到宿点结束,中间还要经过中间点,且每个网络节点上有很多分组信号要去往不同的节点,这样每个节点一般还会有一个业务调度系统,例如对于图3,节点2接收到节点1发来的分组信号1可选在本节点输出,或者可选继续向节点3输出。针对以上场景,一个分组信号会在源点封装到一个管理信号中,然后一个或多个管理信号会封装到一个传送信号中,传送信号从源点发出,到第一个中间点后传送信号会解出多个管理信号,管理信号经过管理开销处理和管理信号调度处理后,多个管理信号会重新封装到一个新的传送信号中继续向下一个中间点传送,直到在宿点,传送信号解出管理信号,管理信号解出分组信号,从而完成分组信号的传送。在以上处理中,在所有中间点都是只处理到管理信号,即分组信号只会在源点和宿点存在,不会在中间点存在。
定长帧加复帧的结构如图4所示。如果开销和净荷非均匀分布,则开销和净荷的位置没有固定规律,即不存在帧结构,或者虽然存在帧结构但帧的长度会在信号传送过程中不断变化。
OTN,flexE/MTN是常见的分组信号传送技术,且这两种技术都是基于上述固定速率的管理信号和固定速率的传送信号实现的,而且也符合上述将j个管理信号封装到一个传送信号中的三种实现方式中的一种或多种,但他们的管理信号和传送信号具有不同的特点,分别介绍如下:
对于光传送网OTN,ODU为管理信号,ODU可以承载和管理一个分组信号,也可以承载和管理比其速率低的一个或多个ODU信号,ODU信号速率为固定速率,且开销和净荷均匀分布,即具有定长帧结构;otu为传送信号,给ODU信号增加传送功能开销后就得到otu信号,otu信号速率为固定速率,且开销和净荷均匀分布,由于Otu内部包含了一个ODU信号,此ODU信号可以装一个分组信号,也可以装一个或多个更低速的ODU信号,即otu和ODU信号装分组信号的方式对应图2所述的方式。ODU信号的速率一旦产生就不允许改变,在中间点对ODU信号处理开销时其速率不允许改变,这样必须恢复ODU速率,而速率恢复技术实现复杂。
MTN复用了flexE的绝大部分技术,只是在flexE client中增加了oam块用于对flexEclient进行管理,这里我们按照MTN技术来介绍。在MTN中,flexE client是管理信号,其速率为固定值,其中的oam块相当于管理信号的开销,oam块实际是特殊的64/66b编码块,除了oam块以外的flexE client中的64/66b编码块相当于净荷,用于装分组信号,由于oam块的插入有特殊要求,所有oam块在flexE client中不是均匀分布的,另外oam块的速率由源点产生,中间点不能改变,而flexE client的速率在中间点可以改变,这也导致oam块无法在flexE client中均匀分布,所以flexE client不是定长帧,flexE group相当于传送信号,其速率为固定值,开销和净荷均匀分布,flexE group的净荷划分为时隙,一个或多个增加了oam块的flexE client信号装入flexE group的净荷时隙中,即一个或多个管理信号装入传送信号的净荷时隙中,对应图1所述的方式。由于oam块在净荷中不是均匀分布的,即开销和净荷不是均匀分布,不具备定长帧结构,这样硬件实现复杂,且无法准确预测oam块的位置,在有误码时开销识别困难且更容易识别出错误的开销,导致开销管理更容易出错。另外flexE client在中间点可以随时改变速率,这里的改变速率的范围很有限,速率最多能改变200ppm,1ppm等于一百万分之一,改变速率后flexE client的速率等于新产生的flexE group的净荷时隙的速率,而新产生的flexE group的速率使用本地时钟产生,这样管理信号flexE client不用恢复速率,实现比OTN中的ODU必须恢复信号速率简单。
针对中间点管理信号的速率,现有技术有两种处理方式,分别为在方式1:中间点恢复管理信号的速率且管理信号为定长帧;方式2:在中间点改变管理信号的速率且管理信号为非定长帧。以上两种方式中,定长帧信号指信号由开销和净荷组成帧,开销和净荷均匀分布且帧的长度为固定数值,这里开销和净荷均匀分布是指帧中开销的数量和净荷的数量为固定值,且开销和净荷在帧中的位置固定且开销均匀的分布在净荷中,例如OTN中的ODU信号就是定长帧信号;相对的,非定长帧指要么没有帧,要么帧的长度可变,例如MTN中的flexE client信号,用特定的64b/66b控制编码块作为开销,用S开头T结尾的64b/66b编码块作为净荷,由于开销和净荷不是均匀分布,也不存在严格意义上的帧,所以是非定长帧。非定长帧硬件实现复杂,且无法准确预测oam块的位置,在有误码时开销识别困难且更容易识别 出错误的开销,导致开销管理更容易出错;如果需要恢复管理信号的速率,速率恢复技术实现复杂,相对来说改变管理信号的速率比恢复管理信号的速率实现更简单。这样,方式1的定长帧比方式2更好,但方式1需要恢复管理信号的速率比方式2差,现在没有方式3能做到管理信号为定长帧且在中间点改变管理信号的速率,如果能做到方式3,则方式1和方式2的缺点都能克服,且优点都能保留。
因此,有必要对相关技术中的管理信号要保持为定长帧就必须在中间点做速率恢复,但管理信号的速率恢复技术实现难度高;管理信号不是定长帧可以在中间点不用做速率恢复,但非定长帧会导致开销管理更容易出错等问题,尚未提出有效的解决方案。
发明内容
本公开实施例提供了一种分组信号的发送方法、装置、存储介质以及电子装置,以至少解决相关技术中管理信号要保持为定长帧就必须在中间点做速率恢复,但管理信号的速率恢复技术实现难度高;管理信号不是定长帧可以在中间点不用做速率恢复,但非定长帧会导致开销管理更容易出错等问题。
根据本公开实施例的一方面,一种分组信号的发送方法,包括:定义新传送信号NTS和新管理信号NMS,其中,所述新传送信号NTS包括开销和净荷,且所述新传送信号NTS的开销和净荷均匀分布,所述新传送信号NTS的速率为固定值,所述新管理信号NMS包括开销和净荷,且所述新管理信号NMS的开销和净荷均匀分布,所述新管理信号NMS的速率为固定值;
在将一个或多个分组信号从源点开始,经过中间点,发送到宿点的过程中:在源点,一个分组信号装入一个所述第一新管理信号NMS的净荷中,一个或多个第一所述新管理信号NMS装入一个第一新传送信号NTS中,将所述第一新传送信号NTS从源点发出;在中间点,接收源点发出的所述第一新传送信号NTS后,对所述第一新传送信号NTS做处理后解析出第一新管理信号NMS,对所述第一新管理信号NMS的开销进行处理,改变所述第一新管理信号NMS的速率,得到第二新管理信号NMS,将所述第二新管理信号NMS装入第二新传送信号NTS中,将所述第二新传送信号NTS从中间点发出,其中,所述第二新管理信号NMS为改变速率后的所述第一新管理信号NMS;在宿点,接收中间点发出的所述第二新传送信号NTS后,对所述第二新传送信号NTS做处理后解析出所述第二新管理信号NMS,对所述第二新管理信号NMS的开销进行处理,从所述第二新管理信号NMS中解析出所述分组信号,最终实现将一个或多个分组信号从源点经过中间点传送到宿点。
根据本公开实施例的又一方面,还提供了一种分组信号的发送装置,包括:定义模块,用于定义新传送信号NTS和新管理信号NMS,其中,所述新传送信号NTS包括开销和净荷,且所述新传送信号NTS的开销和净荷均匀分布,所述新传送信号NTS的速率为固定值,所述新管理信号NMS包括开销和净荷,且所述新管理信号NMS的开销和净荷均匀分布,所述新管理信号NMS的速率为固定值;处理模块,设置为在将一个或多个分组信号从源点开始,经过中间点,发送到宿点的过程中:在源点,一个分组信号装入一个所述第一新管理信号NMS的净荷中,一个或多个新管理信号NMS装入一个所述第一新传送信号NTS中,将所述第一新传送信号NTS从源点发出;在所述中间点,接收源点或上一个中间点接收源点发出的所述第一 新传送信号NTS后,对所述第一新传送信号NTS做处理后解析出所述第一新管理信号NMS,对所述第一新管理信号NMS进行处理,以改变所述第一新管理信号NMS的速率,将改变速率后的所述第一新管理信号NMS装入第二新传送信号NTS中,将所述第二新传送信号NTS从中间点发出;在宿点,接收上一个中间点接收中间点发出的所述第二新传送信号NTS后,对所述第二新传送信号NTS做处理后解析出第二新管理信号NMS,对所述第二新管理信号NMS做处理后解析出分组信号,最终实现将一个或多个分组信号从源点经过中间点传送到宿点。
根据本公开实施例的又一方面,还提供了一种计算机可读的存储介质,该计算机可读的存储介质中存储有计算机程序,其中,该计算机程序被设置为运行时执行上述任一项的方法。
根据本公开实施例的又一方面,还提供了一种电子装置,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,上述处理器通过计算机程序执行上述任一项的方法。
通过本公开,定义了新管理信号和新传送信号,将分组信号从源点发出,经过中间点,最终到宿点的传送过程中,在中间点可以修改新管理信号的速率,且新传送信号和新管理信号都是固定速率的定长帧信号,能够同时保证源点、中间点和宿点新管理信号的有效开销速率不变,从而解决了新管理信号在中间点速率恢复实现难度高,新管理信号不是定长帧导致存在管理不方便的缺陷。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本申请的一部分,本公开的示例性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1是相关技术中的将管理信号装到传送信号的净荷中的实现方式的示意图(一);
图2是相关技术中的将管理信号装到传送信号的净荷中的实现方式的示意图(二);
图3是相关技术中的分组信号在环网中通过传送信号实现传送的实现方式的示意图;
图4是根据本公开实施例的分组信号的发送方法的计算机终端的硬件结构框图;
图5是根据本公开实施例的分组信号的发送方法的流程图;
图6是根据本公开实施例的NMS信号的开销和净荷的示意图;
图7是根据本公开实施例的将分组信号装入NMS信号的净荷中的实现方式的示意图;
图8是根据本公开实施例的分组信号的发送装置的结构框图。
具体实施方式
为了使本技术领域的人员更好地理解本公开方案,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分的实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本公开保护的范围。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于 清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本申请实施例中所提供的方法实施例可以在计算机终端或者类似的运算装置中执行。以运行在计算机终端上为例,图4是本公开实施例的分组信号的发送方法的计算机终端的硬件结构框图。如图4所示,计算机终端可以包括一个或多个(图4中仅示出一个)处理器402(处理器402可以包括但不限于微处理器(Microprocessor Unit,简称是MPU)或可编程逻辑器件(Programmable logic device,简称是PLD))和用于存储数据的存储器404,在一个示例性实施例中,上述计算机终端还可以包括用于通信功能的传输设备406以及输入输出设备408。本领域普通技术人员可以理解,图4所示的结构仅为示意,其并不对上述计算机终端的结构造成限定。例如,计算机终端还可包括比图4中所示更多或者更少的组件,或者具有与图4所示等同功能或比图4所示功能更多的不同的配置。
存储器404可用于存储计算机程序,例如,应用软件的软件程序以及模块,如本公开实施例中的分组信号的发送方法对应的计算机程序,处理器402通过运行存储在存储器404内的计算机程序,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器404可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器404可进一步包括相对于处理器402远程设置的存储器,这些远程存储器可以通过网络连接至计算机终端。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置406用于经由一个网络接收或者发送数据。上述的网络具体实例可包括计算机终端的通信供应商提供的无线网络。在一个实例中,传输装置406包括一个网络适配器(Network lnterface Controller,简称为NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置406可以为射频(Radio Frequency,简称为RF)模块,其用于通过无线方式与互联网进行通讯。
图5是根据本公开实施例的分组信号的发送方法的流程图,如图5所示,该方法的步骤包括:
步骤S502,定义新传送信号NTS和新管理信号NMS,其中,所述新传送信号NTS包括开销和净荷,且所述新传送信号NTS的开销和净荷均匀分布,所述新传送信号NTS的速率为固定值,所述新管理信号NMS包括开销和净荷,且所述新管理信号NMS的开销和净荷均匀分布,所述新管理信号NMS的速率为固定值;
其中,上述新传送信号NTS和上述新管理信号NMS可以理解为固定速率的定长帧信号。
需要说明的是,NMS的速率可以理解为在误差范围内的速率,通过将NMS速率乘以一个固定系数可以得到NTS速率,由于固定比例的固定系数获取难度低,降低了获取速率的获取成本。在一个实施例中,在将新管理信号NMS装入新传送信号NTS时,新管理信号NMS的速率和新传送信号NTS的速率可以为固定比例关系,可以使用一个本地时钟乘以不同的系数即可得到NTS和NMS的速率。或者使用本地时钟1作为NTS的速率,使用本地时钟2作为NMS的速率,本地时钟1和本地时钟2不具备同步关系。
步骤S504,在将一个或多个分组信号从源点开始,经过中间点,发送到宿点的过程中: 在源点,一个分组信号装入一个所述第一新管理信号NMS的净荷中,一个或多个第一所述新管理信号NMS装入一个第一新传送信号NTS中,将所述第一新传送信号NTS从源点发出;在中间点,接收源点或上一个中间点接收源点发出的所述第一新传送信号NTS后,对所述第一新传送信号NTS做处理后解析出第一新管理信号NMS,对所述第一新管理信号NMS的开销进行处理,改变所述第一新管理信号NMS的速率,得到第二新管理信号NMS,将所述第二新管理信号NMS装入第二新传送信号NTS中,将所述第二新传送信号NTS从中间点发出,其中,所述第二新管理信号NMS为改变速率后的所述第一新管理信号NMS;在宿点,接收上一个中间点接收中间点发出的所述第二新传送信号NTS后,对所述第二新传送信号NTS做处理后解析出所述第二新管理信号NMS,对所述第二新管理信号NMS的开销进行处理,从所述第二新管理信号NMS中解析出所述分组信号,最终实现将一个或多个分组信号从源点经过中间点传送到宿点。
需要说明的是,经过的中间点可以是一个,也可以是多个,本申请对经过的中间点的数量不做限制。
通过上述步骤,通过定义新传送信号NTS和新管理信号NMS;在将一个或多个分组信号从源点开始,经过中间点,发送到宿点的过程中:在源点,一个分组信号装入一个所述第一新管理信号NMS的净荷中,一个或多个第一所述新管理信号NMS装入一个第一新传送信号NTS中,将所述第一新传送信号NTS从源点发出;在中间点,接收源点发出的所述第一新传送信号NTS后,对所述第一新传送信号NTS做处理后解析出第一新管理信号NMS,对所述第一新管理信号NMS的开销进行处理,改变所述第一新管理信号NMS的速率,得到第二新管理信号NMS,将所述第二新管理信号NMS装入第二新传送信号NTS中,将所述第二新传送信号NTS从中间点发出,其中,所述第二新管理信号NMS为改变速率后的所述第一新管理信号NMS;在宿点,接收中间点发出的所述第二新传送信号NTS后,对所述第二新传送信号NTS做处理后解析出所述第二新管理信号NMS,对所述第二新管理信号NMS的开销进行处理,从所述第二新管理信号NMS中解析出所述分组信号,最终实现将一个或多个分组信号从源点经过中间点传送到宿点,在中间点改变了新传送信号NTS和新管理信号NMS的速率,但保持NMS的有效开销的速率不变,使得NMS的开销管理功能可以正常实现,同时不需要恢复新管理信号NMS的速率,降低了实现难度。
进一步地,在一个示例性实施例中,所述新传送信号NTS包括:信号单元,其中,所述信号单元至少包括以下之一:64/66b编码块,u/vb编码块,r字节;u,v为大于1的整数,且v大于u,r为大于或等于1的整数,所述信号单元按照功能不同分为开销信号单元和净荷信号单元,其中,所述开销信号单元对应所述新传送信号NTS的开销,所述净荷信号单元对应所述新传送信号NTS的净荷;所述新传送信号NTS的信号单元组成定长帧,以实现所述新传送信号NTS的开销和净荷均匀分布,所述定长帧包括:m个信元单元的开销和q个信元单元的净荷,n个定长帧组成复帧,其中,m,q,n为大于或等于1的整数。
进一步地,在一个示例性实施例中,所述新管理信号NMS包括:信号单元,其中,所述信号单元至少包括以下之一:64/66b编码块,u/vb编码块,r字节;u,v为大于1的整数,且v大于u,r为大于或等于1的整数;所述新管理信号NMS的信号单元组成定长帧,所述定长帧包括:a个信元单元的开销和b个信元单元的净荷,c个定长帧组成复帧,其中,a,b, c为大于或等于1的整数,所述信号单元按照功能不同分为开销信号单元和净荷信号单元,所述开销信号单元对应所述新管理信号NMS的开销,所述净荷信号单元对应所述新管理信号NMS的净荷。
进一步地,在一个示例性实施例中,所述新管理信号NMS包括的开销分为帧头开销,填充开销和其他开销,其中,所述帧头开销中的部分信息为固定值,且在所述复帧中的某个位置固定出现,所述帧头开销用于识别定长帧的起始位置,所述填充开销仅用于占带宽,在经过预设时间后所述新管理信号NMS中出现至少一个填充开销,所述其他开销分为开销1到开销s,所述s为大于1的整数,所述其他开销用于对所述新管理信号NMS进行管理,所述新管理信号NMS的净荷用来装入一个分组信号,或装入一个或多个所述新管理信号NMS。
进一步地,在一个示例性实施例中,所述帧头开销中包含第一信息,或者所述其他开销中包含第二信息,所述第一信息或所述第二信息用于识别出所述其他开销中的开销1到开销s在所述其他开销中的具体位置。
进一步地,在一个示例性实施例中,所述方法还包括:在所述源点,将所述一个分组信号装入一个所述第一新管理信号NMS的净荷中,包括:所述第一新管理信号NMS的速率等于所述第一新传送信号NTS速率乘以固定速率系数;其中,所述固定速率系数等于所述第一新管理信号NMS的理论速率除以所述第一新传送信号NTS的理论速率。
进一步地,在一个示例性实施例中,所述方法还包括:在所述中间点,改变所述第一新管理信号NMS的速率,包括:改变速率后的所述第一新管理信号NMS的速率等于所述第二新传送信号NTS速率乘以固定速率系数,所述固定速率系数等于所述第一新管理信号NMS的理论速率除以所述第二新传送信号NTS的理论速率。
需要说明的是,理论速率指各种信号的标称速率,每种信号都有其各自的理论速率,各种信号的理论速率值由各种信号的标准定义。其中,各种信号的真实速率和上述理论速率会有一定的偏差,而且这个偏差的极限值也在各种信号的标准中有定义。
进一步地,在一个示例性实施例中,所述方法还包括:在所述源点,将所述一个分组信号装入一个所述新管理信号NMS的净荷的过程中:如果所述新管理信号NMS的信号单元为所述64/66b编码块或r字节,则将所述分组信号转为以太网MAC帧,将以太网MAC帧添加帧间填充信息后,并将添加帧间填充信息后的以太网MAC帧转换为所述64/66b编码块,使得所述64/66b编码块的速率等于所述新管理信号NMS净荷的速率,将所述64/66b编码块装入所述新管理信号NMS的净荷中。
进一步地,在一个示例性实施例中,所述方法还包括:在所述源点,将所述一个分组信号装入一个所述新管理信号NMS的净荷的过程中:如果所述新管理信号NMS的信号单元为所述u/vb编码块,则将所述分组信号转为以太网MAC帧,将以太网MAC帧添加帧间填充信息后,并将添加帧间填充信息后的以太网MAC帧转换为64/66b编码块,将所述64/66b编码块转换为u/vb编码块,使得所述u/vb编码块的速率等于所述新管理信号NMS净荷的速率,将所述u/vb编码块装入所述新管理信号NMS的净荷中。
进一步地,在一个示例性实施例中,所述方法还包括:在源点,一个或多个所述新管理信号NMS装入一个所述第一新传送信号NTS中,至少包括以下三种方式:方式1:将所述新 传送信号NTS的净荷划分k个时隙,所述新管理信号NMS的数量小于或等于k,每个时隙只能被一个所述新管理信号NMS占用,将一个或多个所述新管理信号NMS装入一个所述新传送信号NTS的净荷的最多k个时隙中;方式2:所述第一新传送信号NTS对应一个高阶新管理信号NMS,所述高阶新管理信号NMS的净荷划分k个时隙,所述第一新管理信号NMS的数量小于或等于k,每个时隙只能被一个所述第一新管理信号NMS占用,将一个或多个所述第一新管理信号NMS装入所述高阶新管理信号NMS的净荷的最多k个时隙中,所述高阶新管理信号NMS装入所述第一新传送信号NTS的净荷中;方式3:一个所述第一新管理信号NMS装入一个所述第一新传送信号NTS的净荷中。
进一步地,在一个示例性实施例中,所述方法还包括:在中间点,将所述第二新管理信号NMS装入第二新传送信号NTS中,至少包括以下三种方式:方式1:将所述新传送信号NTS的净荷划分k个时隙,所述新管理信号NMS的数量小于或等于k,每个时隙只能被一个所述新管理信号NMS占用,将一个或多个所述新管理信号NMS装入一个所述新传送信号NTS的净荷的最多k个时隙中;方式2:所述第二新传送信号NTS对应一个高阶新管理信号NMS,所述高阶新管理信号NMS的净荷划分k个时隙,所述第二新管理信号NMS的数量小于或等于k,每个时隙只能被一个所述第二新管理信号NMS占用,将一个或多个所述第二新管理信号NMS装入所述高阶新管理信号NMS的净荷的最多k个时隙中,所述高阶新管理信号NMS装入所述第二新传送信号NTS的净荷中;方式3:一个所述第二新管理信号NMS装入一个所述第二新传送信号NTS的净荷中。
进一步地,在一个示例性实施例中,所述新传送信号NTS中包括的开销用于对所述新传送信号NTS进行管理,以及所述新传送信号NTS中包括的开销包含所述新传送信号NTS完成传送功能的相关信息。
进一步地,在一个示例性实施例中,所述新传送信号NTS完成传送功能的相关信息包括纠错信息,用于所述新传送信号NTS在传送过程中引入了错误信息后的纠错处理。
进一步地,在一个示例性实施例中,所述新管理信号NMS中包括的开销用于对所述新管理信号NMS进行管理。
进一步地,在一个示例性实施例中,提供了将所述第一新传送信号NTS从源点发出的多种方式,具体为:方式1,所述第一新传送信号NTS不做任何处理;方式2,将一个所述第一新传送信号NTS添加若干信息后转为多个其他格式的信号;方式3,将多个所述第一新传送信号NTS添加若干信息后转为一个其他格式的信号;将所述第二新传送信号NTS从中间点发出的过程中,至少包括以下方式:方式1,所述第二新传送信号NTS不做任何处理;方式2,将一个所述第二新传送信号NTS添加若干信息后转为多个其他格式的信号;方式3,将多个所述第二新传送信号NTS添加若干信息后转为一个其他格式的信号。
需要说明的是,方式2可以理解为将一个第一新传送信号NTS转为多个低速信号,相当于反向复用,方式3是将多个第一新传送信号NTS合并为一个信号,相当于信号复用。
进一步地,在一个示例性实施例中,所述中间点接收源点发出的所述第一新传送信号NTS,所述宿点接收所述中间点发出的所述第二新传送信号NTS后,所述方法还至少包括以下方式 之一:方式1,直接接收所述第一新传送信号NTS或所述第二新传送信号NTS;方式2,接收所述的多个其他格式的信号,删除若干信息后转为一个所述第一新传送信号NTS或所述第二新传送信号NTS;方式3,接收所述的其他格式的信号,删除若干信息后转为多个所述第一新传送信号NTS或多个所述第二新传送信号NTS。
进一步地,在一个示例性实施例中,所述方法还包括:在中间点,对所述第一新传送信号NTS做处理后解析出所述第一新管理信号NMS,包括:处理所述第一新传送信号NTS的开销;按所述方式1、所述方式2或所述方式3从所述第一新传送信号NTS中解出一个或多个所述第一新管理信号NMS。
进一步地,在一个示例性实施例中所述方法还包括:在宿点,对所述第二新传送信号NTS做处理后解析出所述第二新管理信号NMS,包括:处理所述第二新传送信号NTS的开销;按所述方式1、所述方式2或所述方式3从所述第二新传送信号NTS中解出一个或多个所述第二新管理信号NMS。
进一步地,在一个示例性实施例中,在中间点,对所述第二新管理信号NMS进行处理,包括:处理所述帧头开销,以识别出定长帧的起始位置,根据所述帧头开销中的所述第一信息,或者所述其他开销中的所述第二信息识别出所述其他开销的具体位置,处理所述其他开销,以实现对所述第一新管理信号NMS的管理功能。
进一步地,在一个示例性实施例中,在宿点,对所述第二新管理信号NMS的开销进行处理,包括:处理所述帧头开销,以识别出定长帧的起始位置,根据所述帧头开销中的所述第一信息,或者所述其他开销中的所述第二信息识别出所述其他开销的具体位置,处理所述其他开销,以实现对所述第二新管理信号NMS的管理功能。
需要说明的是,在上述实施例中,识别出定长帧的起始位置,相当于识别出帧头,在识别出帧头的情况下,就能识别出开销和净荷。
进一步地,在一个示例性实施例中,改变所述第一新管理信号NMS的速率得到第二新管理信号NMS,可以取出所述第一新管理信号NMS的开销和净荷,在开销中删除所述填充开销和所述帧头开销,将所述其他开销作为有效开销,净荷中删除帧间填充信息作为有效净荷;生成所述第二新管理信号NMS,将所述有效开销增加填充开销后写入所述第二新管理信号NMS的开销中,修改所述第二新管理信号NMS中的所述帧头开销中的所述第一信息,或者修改所述其他开销中的所述第二信息,使得所述第一信息或所述第二信息指示所述开销1到开销s在所述其他开销中的具体位置,将所述有效净荷增加所述帧间填充信息后写入所述第二新管理信号NMS的净荷中;
其中,净荷中删除帧间填充信息作为有效净荷,具体包括:如果所述第一新管理信号NMS的信号单元为所述64/66b编码块或r字节,则将净荷中的64/66b编码块转为所述以太网MAC帧和所述帧间填充信息,删除所述帧间填充信息,只保留所述以太网MAC帧作为有效净荷;如果所述第一新管理信号NMS的信号单元为所述u/vb编码块,则将净荷中的所述u/vb编码块转为所述64/66b编码块,将所述64/66b编码块转为所述以太网MAC帧和所述帧间填充信息,删除所述帧间填充信息,只保留所述以太网MAC帧作为有效净荷;
其中,将所述有效净荷增加帧间填充信息,具体包括:如果所述第一新管理信号NMS的 信号单元为所述64/66b编码块或r字节,则将所述有效净荷添加帧间填充信息后转换为所述64/66b编码块,使得所述64/66b编码块的速率等于所述第二新管理信号NMS净荷的速率;如果所述第一新管理信号NMS的信号单元为所述u/vb编码块,则将所述有效净荷添加帧间填充信息后转换为所述64/66b编码块,将所述64/66b编码块转为所述u/vb编码块,使得所述u/vb编码块的速率等于所述第二新管理信号NMS净荷的速率。
进一步地,在一个示例性实施例中,在所述宿点,从所述第二新管理信号NMS中解析出所述分组信号,包括:如果所述第二新管理信号NMS的信号单元为所述64/66b编码块或r字节,则从所述第二新管理信号NMS的净荷中取出所述64/66b编码块,将所述64/66b编码块转为所述以太网MAC帧和所述帧间填充信息,将所述以太网MAC帧转为所述分组信号。
进一步地,在一个示例性实施例中,在所述宿点,从所述第二新管理信号NMS中解析出所述分组信号,包括:如果所述第二新管理信号NMS的信号单元为所述u/vb编码块,则从所述第二新管理信号NMS的净荷中取出所述u/vb编码块,将所述u/vb编码块转为所述64/66b编码块,将所述64/66b编码块转为所述以太网MAC帧和所述帧间填充信息,将所述以太网MAC帧转为所述分组信号。
需要说明的是,上述NMS信号的开销和净荷为均匀分布,且可以在中间点(即源点和宿点之间的节点)改变速率。NMS信号包括均匀分布的开销和净荷。例如,NMS信号可以包括m1个数据块的开销和n1个数据块的净荷,m1和n1为整数,数据块可能为64/66b编码块,或类似64/66b编码块的其他u/vb编码块。
需要说明的是,编码块是多个bit组成的信息块,根据其码型可分为控制编码块和数据编码块,控制编码块一般用来表示开销,数据编码块一般来用表示净荷,编码块的详细定义见相关标准,例如64/66b编码块和256/257b编码块来自IEEE802.3标准。数据块也可能为k1字节。其中u,v,k1为整数。
需要说明的是,NMS的开销包括填充开销和非填充开销两种,其中填充开销仅用于占带宽,可以增删,非填充开销用于对NMS信号进行管理,在一定的时间范围内填充开销一定会出现。
在一个实施例中,图6是根据本公开实施例的NMS信号的开销和净荷的示意图。如图6所示,开销中有特殊信息可以识别当前开销是填充开销还是非填充开销。NMS净荷用来装入分组信号,将分组信号转为以太网MAC帧,然后将以太网MAC帧添加帧间填充信息后转换为固定速率的64/66b编码块,然后将64/66b编码块转为上述u/vb编码块,然后将u/vb编码块作为NMS信号的净荷,或者直接将64/66b编码块装入上述的NMS信号的净荷中,使得NMS信号净荷的速率正好等于64/66b编码块的速率。
图7是根据本公开实施例的将分组信号装入NMS信号的净荷中的实现方式的示意图。如图7所示,当NMS信号需要改变速率时,NMS的非填充开销的速率保持不变,通过增减填充开销,使得填充开销加非填充开销的速率等于改变后的NMS信号的开销速率,同时通过以太网MAC帧间的填充信息使得以太网MAC帧加帧间填充信息的速率等于改变后的NMS信号的净荷的速率,通过以上方案可保证NMS信号的速率可以改变,同时保持非填充开销速率不变,且净荷中的分组信号正常传送。
其中,以太网MAC帧是一种数据帧,包括帧头,帧尾,还有数据部分,其中,以太网MAC 帧的定义来自以太网标准IEEE 802.3,64/66b编码块和256/257b编码块的定义也来自IEEE802.3。
在一个实施例中,提出了一种将分组信号转换为固定信号速率传送的方法,具体步骤如下:
步骤1:定义新管理信号NMS(New Manage Signal),NMS包括开销和净荷,且开销和净荷为均匀分布,NMS信号的速率为固定值,1个分组信号装入1个NMS信号的净荷中,1个或多个NMS可以装入1个NTS信号中。
以及,定义新传送信号NTS(New Transport Signal),NTS包括开销和净荷,开销和净荷均匀分布,NTS信号的速率为固定值,1个或多个NTS信号经过进一步处理后转为特定传送信号STS(Special Transport Sinal)后可在特定物理介质中传输。
其中,特定物理介质可以为光缆。
步骤2:实现1个或多个分组信号在源点开始传送,传送过程中经过中间点,传送到宿点的过程,具体步骤如下:
在源点将1个分组信号装入1个NMS信号中,1个或多个NMS信号装入1个NTS信号中,最后将1个或多个NTS信号转换为STS信号(相当于上述第一新传送信号NTS)后从源点发出。
在中间点,接收源点或中间点发出的STS信号,从1个STS信号中恢复出1个或多个NTS信号,从1个NTS信号中恢复出1个或多个NMS信号,按照本地时钟改变NMS信号速率,此过程中,分组信号可以适配NMS信号改变后的速率,在重新按照本地时钟产生新的NTS信号后,使得NMS改变后的速率和新的NTS信号速率匹配,将1个或多个NTS信号转换为STS信号后从中间点发出。
在宿点,接收源点或中间点发出STS信号,从1个STS信号中恢复出1个或多个NTS信号,从1个NTS信号中恢复出1个或多个NMS信号,从1个NMS信号中恢复出1个分组信号,最终实现将1个或多个分组信号从源点经过中间点传送到宿点。
可选的,在一个实施例中,步骤1中的NMS信号包括均匀分布的开销和净荷,开销和净荷均匀分布具体是指NMS信号由m2个数据块的开销加n2个数据块的净荷组成,m2和n2为整数,数据块可能为64/66b编码块,或类似64/66b编码块的其他u/vb编码块,其中u,v为整数,例如256/257b编码块,或512/513b编码块,数据块也可能为k2字节(k2为整数)。
可选的,在一个实施例中,步骤1中的NMS信号包括开销和净荷,其中开销包括填充开销和非填充开销两种,其中填充开销仅用于占带宽,可以增删,非填充开销用于对NMS信号进行管理,开销中一定包含填充开销,净荷用来装入分组信号。
可选的,在一个实施例中,步骤1中的1个分组信号装入1个NMS信号的净荷中的过程包括:将分组信号转为以太网MAC帧,然后将以太网MAC帧添加帧间填充信息后转换为固定速率的64/66b编码块,然后将64/66b编码块转为步骤2中的u/vb编码块,然后将u/vb编码块作为NMS信号的净荷,或者直接将64/66b编码块装入步骤2中的NMS信号的净荷中,使得NMS信号净荷的速率正好等于64/66b编码块的速率。
可选的,在一个实施例中,步骤1中的1个或多个NMS可以装入1个NTS信号中,包括如下两种情况:
情况1:1个或多个NMS信号装入1个NTS信号的净荷中。
情况2为如果NMS信号只有1个,则NMS信号只有1个,则将NMS信号的净荷装入1个NTS信号的净荷中,将NMS信号的开销装入1个NTS信号的开销中。
可选的,在一个实施例中,上述1个或多个NMS信号装入1个NTS信号的净荷中的过程具体包括:令NMS信号的速率正好等于NTS净荷的速率,将NMS信号装入NTS的净荷中。
其中,上述多个NMS信号装入1个NTS信号的净荷中的过程具体包括:将NTS信号的净荷划分为m3个时隙,将n3个NMS信号装入NTS的k3个时隙中,其中,n3小于等于k3,k3小于等于m3,1个NMS信号可以占用1个或多个时隙,1个时隙只能被1个NMS信号占用。
可选的,在一个实施例中,步骤1中的NTS包括开销和净荷,其中,开销用于对NTS信号进行管理,同时包含NTS信号完成传送功能相关的信息,还可以用于装NMS信号的开销,净荷用于装NMS信号或装NMS信号的净荷。
可选的,在一个实施例中,步骤1中的1个或多个NTS信号经过进一步处理后转为特定传送信号STS后可在特定物理介质中传输中的进一步处理包括如下处理方式:方式1,NTS直接作为STS信号使用;方式2,将1个NTS信号添加若干信息后转为多个STS信号;方式3,将多个NTS信号添加若干信号后转为1个STS信号。
可选的,在一个实施例中,在步骤1中的按照本地时钟改变NMS信号速率的过程中,NMS的特定开销的速率保持不变,分组信号可以适配NMS信号改变后的速率,具体地,NMS的特定开销指上述非填充开销,当NMS信号速率改变时,非填充开销的速率保持不变,可以通过增减填充开销,使得填充开销加非填充开销的速率等于改变后的NMS信号的开销速率。
可选的,在一个实施例中,步骤1中的分组信号能够适配NMS信号改变后的速率,具体为:当改变NMS信号速率时,通过增减上述以太网MAC帧间的填充信息使得以太网MAC帧加帧间填充信息的速率等于改变后的NMS信号的净荷的速率。
通过上述步骤,定义了全新的NMS和NTS信号,提供了对NMS和NTS信号的处理方法,实现了将分组信号转为固定速率信号发送的技术方案,提高了分组信号的发送效率,和相关技术中的以太网技术,OTN技术和MTN技术相比,具备明显的技术优势。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例的方法。
图8是根据本申请实施例的一种请求结果的确定装置的结构框图。如图8所示,包括:
定义模块82,设置为定义新传送信号NTS和新管理信号NMS,其中,所述新传送信号NTS包括开销和净荷,且所述新传送信号NTS的开销和净荷均匀分布,所述新传送信号NTS的速率为固定值,所述新管理信号NMS包括开销和净荷,且所述新管理信号NMS的开销和净荷均匀分布,所述新管理信号NMS的速率为固定值。
处理模块84,设置为在将一个或多个分组信号从源点开始,经过中间点,发送到宿点的过程中:在源点,一个分组信号装入一个所述第一新管理信号NMS的净荷中,一个或多个新管理信号NMS装入一个所述第一新传送信号NTS中,将所述第一新传送信号NTS从源点发出;在中间点,接收源点发出的所述第一新传送信号NTS后,对所述第一新传送信号NTS做处理 后解析出所述第一新管理信号NMS,对所述第一新管理信号NMS进行处理,以改变所述第一新管理信号NMS的速率,将改变速率后的所述第一新管理信号NMS装入第二新传送信号NTS中,将所述第二新传送信号NTS从中间点发出;在宿点,接收中间点发出的所述第二新传送信号NTS后,对所述第二新传送信号NTS做处理后解析出第二新管理信号NMS,对所述第二新管理信号NMS做处理后解析出分组信号,最终实现将一个或多个分组信号从源点经过中间点传送到宿点。
通过上述装置,通过定义新传送信号NTS和新管理信号NMS;在将一个或多个分组信号从源点开始,经过中间点,发送到宿点的过程中:在源点,一个分组信号装入一个所述第一新管理信号NMS的净荷中,一个或多个第一所述新管理信号NMS装入一个第一新传送信号NTS中,将所述第一新传送信号NTS从源点发出;在中间点,接收源点发出的所述第一新传送信号NTS后,对所述第一新传送信号NTS做处理后解析出第一新管理信号NMS,对所述第一新管理信号NMS的开销进行处理,改变所述第一新管理信号NMS的速率,得到第二新管理信号NMS,将所述第二新管理信号NMS装入第二新传送信号NTS中,将所述第二新传送信号NTS从中间点发出,其中,所述第二新管理信号NMS为改变速率后的所述第一新管理信号NMS;在宿点,接收中间点发出的所述第二新传送信号NTS后,对所述第二新传送信号NTS做处理后解析出所述第二新管理信号NMS,对所述第二新管理信号NMS的开销进行处理,从所述第二新管理信号NMS中解析出所述分组信号,最终实现将一个或多个分组信号从源点经过中间点传送到宿点,在中间点改变了新传送信号NTS和新管理信号NMS的速率,但保持NMS的有效开销的速率不变,使得NMS的开销管理功能可以正常实现,同时不需要恢复新管理信号NMS的速率,降低了实现难度。
进一步地,在一个示例性实施例中,所述新传送信号NTS包括:信号单元,其中,所述信号单元至少包括以下之一:64/66b编码块,u/vb编码块,r字节;u,v为大于1的整数,且v大于u,r为大于或等于1的整数,所述信号单元按照功能不同分为开销信号单元和净荷信号单元,其中,所述开销信号单元对应所述新传送信号NTS的开销,所述净荷信号单元对应所述新传送信号NTS的净荷;所述新传送信号NTS的信号单元组成定长帧,以实现所述新传送信号NTS的开销和净荷均匀分布,所述定长帧包括:m个信元单元的开销和q个信元单元的净荷,n个定长帧组成复帧,其中,m,q,n为大于或等于1的整数。
进一步地,在一个示例性实施例中,所述新管理信号NMS包括:信号单元,其中,所述信号单元至少包括以下之一:64/66b编码块,u/vb编码块,r字节;u,v为大于1的整数,且v大于u,r为大于或等于1的整数;所述新管理信号NMS的信号单元组成定长帧,所述定长帧包括:a个信元单元的开销和b个信元单元的净荷,c个定长帧组成复帧,其中,a,b,c为大于或等于1的整数,所述信号单元按照功能不同分为开销信号单元和净荷信号单元,所述开销信号单元对应所述新管理信号NMS的开销,所述净荷信号单元对应所述新管理信号NMS的净荷。
进一步地,在一个示例性实施例中,所述新管理信号NMS包括的开销分为帧头开销,填充开销和其他开销,其中,所述帧头开销中的部分信息为固定值,且在所述复帧中的某个位置固定出现,所述帧头开销用于识别定长帧的起始位置,所述填充开销仅用于占带宽,在经过预设时间后所述新管理信号NMS中出现至少一个填充开销,所述其他开销分为开销1到开销s,所述s为大于1的整数,所述其他开销用于对所述新管理信号NMS进行管理,所述新 管理信号NMS的净荷用来装入一个分组信号,或装入一个或多个所述新管理信号NMS。
进一步地,在一个示例性实施例中,所述帧头开销中包含第一信息,或者所述其他开销中包含第二信息,所述第一信息或所述第二信息用于识别出所述其他开销中的开销1到开销s在所述其他开销中的具体位置。
进一步地,在一个示例性实施例中,所述装置还包括第一装入模块,设置为所述第一新管理信号NMS的速率等于所述第一新传送信号NTS速率乘以固定速率系数;其中,所述固定速率系数等于所述第一新管理信号NMS的理论速率除以所述第一新传送信号NTS的理论速率。
进一步地,在一个示例性实施例中,所述装置还包括第二装入模块,设置为改变速率后的所述第一新管理信号NMS的速率等于所述第二新传送信号NTS速率乘以固定速率系数,所述固定速率系数等于所述第一新管理信号NMS的理论速率除以所述第二新传送信号NTS的理论速率。
需要说明的是,上述理论速率可以理解为分组信号的标称速率,即定义分组信号的标准中所指定的速率数值,也可以用来表示上述新管理信号NMS、上述新传送信号NTS、上述第一新传送信号NTS、上述第二新传送信号NTS的速率。其中,分组信号的真实速率和上述理论速率会有一定的偏差。
进一步地,在一个示例性实施例中,所述装置还包括第三装入模块,设置为在所述源点,将所述一个分组信号装入一个所述新管理信号NMS的净荷的过程中:如果所述新管理信号NMS的信号单元为所述64/66b编码块或r字节,则将所述分组信号转为以太网MAC帧,将以太网MAC帧添加帧间填充信息后,并将添加帧间填充信息后的以太网MAC帧转换为所述64/66b编码块,使得所述64/66b编码块的速率等于所述新管理信号NMS净荷的速率,将所述64/66b编码块装入所述新管理信号NMS的净荷中。
进一步地,所述装置还包括第四装入模块,设置为在所述源点,将所述一个分组信号装入一个所述新管理信号NMS的净荷的过程中:如果所述新管理信号NMS的信号单元为所述u/vb编码块,则将所述分组信号转为以太网MAC帧,将以太网MAC帧添加帧间填充信息后,并将添加帧间填充信息后的以太网MAC帧转换为64/66b编码块,将所述64/66b编码块转换为u/vb编码块,使得所述u/vb编码块的速率等于所述新管理信号NMS净荷的速率,将所述u/vb编码块装入所述新管理信号NMS的净荷中。
进一步地,在一个示例性实施例中,所述装置还包括第五装入模块,设置为在源点,一个或多个所述新管理信号NMS装入一个所述第一新传送信号NTS中,至少包括以下三种方式:方式1:将所述新传送信号NTS的净荷划分k个时隙,所述新管理信号NMS的数量小于或等于k,每个时隙只能被一个所述新管理信号NMS占用,将一个或多个所述新管理信号NMS装入一个所述新传送信号NTS的净荷的最多k个时隙中;方式2:所述第一新传送信号NTS对应一个高阶新管理信号NMS,所述高阶新管理信号NMS的净荷划分k个时隙,所述第一新管理信号NMS的数量小于或等于k,每个时隙只能被一个所述第一新管理信号NMS占用,将一个或多个所述第一新管理信号NMS装入所述高阶新管理信号NMS的净荷的最多k个时隙中,所述高阶新管理信号NMS装入所述第一新传送信号NTS的净荷中;方式3:一个所述第一新管理信号NMS装入一个所述第一新传送信号NTS的净荷中。
进一步地,在一个示例性实施例中,所述装置还包括第六装入模块,设置为在中间点,将所述第二新管理信号NMS装入第二新传送信号NTS中,至少包括以下三种方式:方式1:将所述新传送信号NTS的净荷划分k个时隙,所述新管理信号NMS的数量小于或等于k,每个时隙只能被一个所述新管理信号NMS占用,将一个或多个所述新管理信号NMS装入一个所述新传送信号NTS的净荷的最多k个时隙中;方式2:所述第二新传送信号NTS对应一个高阶新管理信号NMS,所述高阶新管理信号NMS的净荷划分k个时隙,所述第二新管理信号NMS的数量小于或等于k,每个时隙只能被一个所述第二新管理信号NMS占用,将一个或多个所述第二新管理信号NMS装入所述高阶新管理信号NMS的净荷的最多k个时隙中,所述高阶新管理信号NMS装入所述第二新传送信号NTS的净荷中;方式3:一个所述第二新管理信号NMS装入一个所述第二新传送信号NTS的净荷中。
进一步地,在一个示例性实施例中,所述新传送信号NTS中包括的开销用于对所述新传送信号NTS进行管理,以及所述新传送信号NTS中包括的开销包含所述新传送信号NTS完成传送功能的相关信息。
进一步地,在一个示例性实施例中,所述新传送信号NTS完成传送功能的相关信息包括纠错信息,用于所述新传送信号NTS在传送过程中引入了错误信息后的纠错处理。
进一步地,在一个示例性实施例中,所述新管理信号NMS中包括的开销用于对所述新管理信号NMS进行管理。
进一步地,在一个示例性实施例中,所述装置还包括信号发出模块,设置为提供将所述第一新传送信号NTS从源点发出的多种方式,具体为:方式1,所述第一新传送信号NTS不做任何处理;方式2,将一个所述第一新传送信号NTS添加若干信息后转为多个其他格式的信号;方式3,将多个所述第一新传送信号NTS添加若干信息后转为一个的其他格式的信号;将所述第二新传送信号NTS从中间点发出的过程中,至少包括以下方式:方式1,所述第二新传送信号NTS不做任何处理;方式2,将一个所述第二新传送信号NTS添加若干信息后转为多个其他格式的信号;方式3,将多个所述第二新传送信号NTS添加若干信息后转为一个其他格式的信号。
需要说明的是,方式2可以理解为将一个第一新传送信号NTS转为多个低速信号,相当于反向复用,方式3是将多个第一新传送信号NTS合并为一个信号,相当于信号复用。
进一步地,在一个示例性实施例中,所述装置还包括信号接收模块,设置为提供一种接收上一个中间点接收中间点发出的所述第二新传送信号NTS后的多种实现方式,至少包括以下方式之一:方式1,直接接收所述第一新传送信号NTS或所述第二新传送信号NTS;方式2,接收所述的多个其他格式的信号,删除若干信息后转为一个所述新传送信号NTS;方式3,接收所述的其他格式的信号,删除若干信息后转为多个所述第一新传送信号NTS或多个所述第二新传送信号NTS。
进一步地,在一个示例性实施例中,所述装置还包括信号解析模块,设置为处理所述第一新传送信号NTS的开销;按所述方式1、所述方式2或所述方式3从所述第一新传送信号NTS中解出一个或多个所述第一新管理信号NMS。
进一步地,在一个示例性实施例中,所述装置还包括解析模块,设置为在宿点,对所述第二新传送信号NTS做处理后解析出所述第二新管理信号NMS,包括:处理所述第二新传送信号NTS的开销;按所述方式1、所述方式2或所述方式3从所述第二新传送信号NTS中解出一个或多个所述第二新管理信号NMS。
进一步地,在一个示例性实施例中,所述装置还包括第一处理模块,设置为处理所述帧头开销,以识别出定长帧的起始位置,根据所述帧头开销中的所述第一信息,或者所述其他开销中的所述第二信息识别出所述其他开销的具体位置,处理所述其他开销,以实现对所述第一新管理信号NMS的管理功能。
进一步地,在一个示例性实施例中,所述装置还包括第二处理模块,设置为处理所述帧头开销,以识别出定长帧的起始位置,根据所述帧头开销中的所述第一信息,或者所述其他开销中的所述第二信息识别出所述其他开销的具体位置,处理所述其他开销,以实现对所述第二新管理信号NMS的管理功能。
进一步地,在一个示例性实施例中,所述装置还包括速率改变模块,设置为取出所述第一新管理信号NMS的开销和净荷,在开销中删除所述填充开销和所述帧头开销,将所述其他开销作为有效开销,净荷中删除帧间填充信息作为有效净荷;生成所述第二新管理信号NMS,将所述有效开销增加填充开销后写入所述第二新管理信号NMS的开销中,修改所述第二新管理信号NMS中的所述帧头开销中的所述第一信息,或者修改所述其他开销中的所述第二信息,使得所述第一信息或所述第二信息指示所述开销1到开销s在所述其他开销中的具体位置,将所述有效净荷增加所述帧间填充信息后写入所述第二新管理信号NMS的净荷中;
其中,净荷中删除帧间填充信息作为有效净荷,具体包括:如果所述第一新管理信号NMS的信号单元为所述64/66b编码块或r字节,则将净荷中的64/66b编码块转为所述以太网MAC帧和所述帧间填充信息,删除所述帧间填充信息,只保留所述以太网MAC帧作为有效净荷;如果所述第一新管理信号NMS的信号单元为所述u/vb编码块,则将净荷中的所述u/vb编码块转为所述64/66b编码块,将所述64/66b编码块转为所述以太网MAC帧和所述帧间填充信息,删除所述帧间填充信息,只保留所述以太网MAC帧作为有效净荷;
其中,将所述有效净荷增加帧间填充信息,具体包括:如果所述第一新管理信号NMS的信号单元为所述64/66b编码块或r字节,则将所述有效净荷添加帧间填充信息后转换为所述64/66b编码块,使得所述64/66b编码块的速率等于所述第二新管理信号NMS净荷的速率;如果所述第一新管理信号NMS的信号单元为所述u/vb编码块,则将所述有效净荷添加帧间填充信息后转换为所述64/66b编码块,将所述64/66b编码块转为所述u/vb编码块,使得所述u/vb编码块的速率等于所述第二新管理信号NMS净荷的速率。
进一步地,在一个示例性实施例中,所述装置还包括编码块第一解出模块,设置为如果所述第二新管理信号NMS的信号单元为所述64/66b编码块或r字节,则从所述第二新管理信号NMS的净荷中取出所述64/66b编码块,将所述64/66b编码块转为所述以太网MAC帧和所述帧间填充信息,将所述以太网MAC帧转为所述分组信号。
进一步地,在一个示例性实施例中,所述装置还包括编码块第二解出模块,设置为如果所述第二新管理信号NMS的信号单元为所述u/vb编码块,则从所述第二新管理信号NMS的净 荷中取出所述u/vb编码块,将所述u/vb编码块转为所述64/66b编码块,将所述64/66b编码块转为所述以太网MAC帧和所述帧间填充信息,将所述以太网MAC帧转为所述分组信号。
在一个示例性实施例中,上述计算机可读存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储计算机程序的介质。
本实施例中的具体示例可以参考上述实施例及示例性实施方式中所描述的示例,本实施例在此不再赘述。
本公开的实施例还提供了一种电子装置,包括存储器和处理器,该存储器中存储有计算机程序,该处理器被设置为运行计算机程序以执行上述任一项方法实施例中的步骤。
可选地,在本实施例中,上述处理器可以被设置为通过计算机程序执行以下步骤:
S1,定义新传送信号NTS和新管理信号NMS,其中,所述新传送信号NTS包括开销和净荷,且所述新传送信号NTS的开销和净荷均匀分布,所述新传送信号NTS的速率为固定值,所述新管理信号NMS包括开销和净荷,且所述新管理信号NMS的开销和净荷均匀分布,所述新管理信号NMS的速率为固定值;
S2,在将一个或多个分组信号从源点开始,经过中间点,发送到宿点的过程中:在源点,一个分组信号装入一个第一新管理信号NMS的净荷中,一个或多个所述第一新管理信号NMS装入一个第一新传送信号NTS中,将所述第一新传送信号NTS从源点发出;在中间点,接收源点发出的所述第一新传送信号NTS后,对所述第一新传送信号NTS做处理后解析出所述第一新管理信号NMS,对所述第一新管理信号NMS的开销进行处理,改变所述第一新管理信号NMS的速率,得到第二新管理信号NMS,将所述第二新管理信号NMS装入第二新传送信号NTS中,将所述第二新传送信号NTS从中间点发出;在宿点,接收中间点发出的所述第二新传送信号NTS后,对所述第二新传送信号NTS做处理后解析出所述第二新管理信号NMS,对所述第二新管理信号NMS的开销进行处理,从所述第二新管理信号NMS中解析出所述分组信号,最终实现将一个或多个分组信号从源点经过中间点传送到宿点。
可选的,在其他实施例中,上述处理器还可以被设置为通过计算机程序执行以下步骤:
S1,定义新传送信号NTS和新管理信号NMS,其中,所述新传送信号NTS包括开销和净荷,且所述新传送信号NTS的开销和净荷均匀分布,所述新传送信号NTS的速率为固定值,所述新管理信号NMS包括开销和净荷,且所述新管理信号NMS的开销和净荷均匀分布,所述新管理信号NMS的速率为固定值;
S2,在将一个或多个分组信号从源点开始,经过中间点,发送到宿点的过程中:在源点,一个分组信号装入一个第一新管理信号NMS的净荷中,一个或多个所述第一新管理信号NMS装入一个第一新传送信号NTS中,将所述第一新传送信号NTS从源点发出;在中间点,接收源点发出的所述第一新传送信号NTS后,对所述第一新传送信号NTS做处理后解析出所述第一新管理信号NMS,对所述第一新管理信号NMS的开销进行处理,改变所述第一新管理信号NMS的速率,得到第二新管理信号NMS,将所述第二新管理信号NMS装入第二新传送信号NTS中,将所述第二新传送信号NTS从中间点发出;在宿点,接收中间点发出的所述第二新传送信号NTS后,对所述第二新传送信号NTS做处理后解析出所述第二新管理信号NMS,对所述第二新管理信号NMS的开销进行处理,从所述第二新管理信号NMS中解析出所述分组信号,最终实现将一个或多个分组信号从源点经过中间点传送到宿点。
在一个示例性实施例中,上述电子装置还可以包括传输设备以及输入输出设备,其中,该传输设备和上述处理器连接,该输入输出设备和上述处理器连接。
本实施例中的具体示例可以参考上述实施例及示例性实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在部分情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (26)

  1. 一种分组信号的发送方法,包括:
    定义新传送信号NTS和新管理信号NMS,其中,所述新传送信号NTS包括开销和净荷,且所述新传送信号NTS的开销和净荷均匀分布,所述新传送信号NTS的速率为固定值,所述新管理信号NMS包括开销和净荷,且所述新管理信号NMS的开销和净荷均匀分布,所述新管理信号NMS的速率为固定值;
    在将一个或多个分组信号从源点开始,经过中间点,发送到宿点的过程中:
    在所述源点,一个分组信号装入一个第一新管理信号NMS的净荷中,一个或多个所述第一新管理信号NMS装入一个第一新传送信号NTS中,将所述第一新传送信号NTS从所述源点发出;
    在所述中间点,接收所述源点发出的所述第一新传送信号NTS后,对所述第一新传送信号NTS做处理后解析出所述第一新管理信号NMS,对所述第一新管理信号NMS的开销进行处理,改变所述第一新管理信号NMS的速率,得到第二新管理信号NMS,将所述第二新管理信号NMS装入第二新传送信号NTS中,将所述第二新传送信号NTS从所述中间点发出;
    在所述宿点,接收所述中间点发出的所述第二新传送信号NTS后,对所述第二新传送信号NTS做处理后解析出所述第二新管理信号NMS,对所述第二新管理信号NMS的开销进行处理,从所述第二新管理信号NMS中解析出所述分组信号,最终实现将一个或多个分组信号从所述源点经过所述中间点传送到所述宿点。
  2. 根据权利要求1所述的分组信号的发送方法,其中,所述方法还包括:
    所述新传送信号NTS包括:信号单元,其中,所述信号单元至少包括以下之一:64/66b编码块,u/vb编码块,r字节;u,v为大于1的整数,且v大于u,r为大于或等于1的整数,所述信号单元按照功能不同分为开销信号单元和净荷信号单元,其中,所述开销信号单元对应所述新传送信号NTS的开销,所述净荷信号单元对应所述新传送信号NTS的净荷;
    所述新传送信号NTS的信号单元组成定长帧,以实现所述新传送信号NTS的开销和净荷均匀分布,所述定长帧包括:m个信元单元的开销和q个信元单元的净荷,n个定长帧组成复帧,其中,m,q,n为大于或等于1的整数。
  3. 根据权利要求1所述的分组信号的发送方法,其中,所述方法还包括:
    所述新管理信号NMS包括:所述信号单元,其中,所述信号单元至少包括以下之一:所述64/66b编码块,所述u/vb编码块,r字节;u,v为大于1的整数,且v大于u,r为大于或等于1的整数,所述信号单元按照功能不同分为所述开销信号单元和所述净荷信号单元,所述开销信号单元对应所述新管理信号NMS的开销,所述净荷信号单元对应所述新管理信号NMS的净荷;
    所述新管理信号NMS的信号单元组成定长帧,所述定长帧包括:a个信元单元的开销和b个信元单元的净荷,c个定长帧组成复帧,其中,a,b,c为大于或等于1的整数。
  4. 根据权利要求3所述的分组信号的发送方法,其中,所述方法还包括:
    所述新管理信号NMS包括的开销分为帧头开销,填充开销和其他开销,其中,所述帧头开销中的部分信息为固定值,且在所述复帧中的某个位置固定出现,所述帧头开销用于识别所述定长帧的起始位置,所述填充开销仅用于占带宽,在经过预设时间后所述新管理信号NMS 中出现至少一个填充开销,所述其他开销分为开销1到开销s,所述s为大于1的整数,所述其他开销用于对所述新管理信号NMS进行管理,所述新管理信号NMS的净荷用来装入一个分组信号,或装入一个或多个所述新管理信号NMS。
  5. 根据权利要求4所述的分组信号的发送方法,其中,所述帧头开销中包含第一信息,或者所述其他开销中包含第二信息,所述第一信息或所述第二信息用于识别出所述其他开销中的开销1到开销s在所述其他开销中的具体位置。
  6. 根据权利要求1所述的分组信号的发送方法,其中,所述方法还包括:
    在所述源点,将所述一个分组信号装入一个所述第一新管理信号NMS的净荷中,包括:所述第一新管理信号NMS的速率等于所述第一新传送信号NTS速率乘以固定速率系数;其中,所述固定速率系数等于所述第一新管理信号NMS的理论速率除以所述第一新传送信号NTS的理论速率。
  7. 根据权利要求1所述的分组信号的发送方法,其中,所述方法还包括:
    在所述中间点,改变所述第一新管理信号NMS的速率,包括:改变速率后的所述第一新管理信号NMS的速率等于所述第二新传送信号NTS速率乘以所述固定速率系数,所述固定速率系数等于所述第一新管理信号NMS的理论速率除以所述第二新传送信号NTS的理论速率。
  8. 根据权利要求3所述的分组信号的发送方法,其中,所述方法还包括:
    在所述源点,将所述一个分组信号装入一个所述第一新管理信号NMS的净荷的过程中:
    如果所述第一新管理信号NMS的信号单元为所述64/66b编码块或所述r字节,则将所述分组信号转为以太网MAC帧,将所述以太网MAC帧添加帧间填充信息后,并将添加所述帧间填充信息后的所述以太网MAC帧转换为所述64/66b编码块,使得所述64/66b编码块的速率等于所述第一新管理信号NMS净荷的速率,将所述64/66b编码块装入所述第一新管理信号NMS的净荷中。
  9. 根据权利要求3所述的分组信号的发送方法,其中,所述方法还包括:
    在所述源点,将所述一个分组信号装入一个所述第一新管理信号NMS的净荷的过程中:
    如果所述第一新管理信号NMS的信号单元为所述u/vb编码块,则将所述分组信号转为所述以太网MAC帧,将所述以太网MAC帧添加所述帧间填充信息后,并将添加所述帧间填充信息后的所述以太网MAC帧转换为所述64/66b编码块,将所述64/66b编码块转换为所述u/vb编码块,使得所述u/vb编码块的速率等于所述第一新管理信号NMS净荷的速率,将所述u/vb编码块装入所述第一新管理信号NMS的净荷中。
  10. 根据权利要求8或9所述的分组信号的发送方法,其中,所述方法还包括:
    在所述源点,一个或多个所述第一新管理信号NMS装入一个所述第一新传送信号NTS中,至少包括以下三种方式:
    方式1:将所述第一新传送信号NTS的净荷划分k个时隙,所述k为大于1的整数,所述第一新管理信号NMS的数量小于或等于k,每个时隙只能被一个所述第一新管理信号NMS占用,将一个或多个所述第一新管理信号NMS装入一个所述第一新传送信号NTS的净荷的最多k个时隙中;
    方式2:所述第一新传送信号NTS对应一个高阶新管理信号NMS,所述高阶新管理信号NMS的净荷划分k个时隙,所述第一新管理信号NMS的数量小于或等于k,每个时隙只能被一个所述第一新管理信号NMS占用,将一个或多个所述第一新管理信号NMS装入所述高阶新管 理信号NMS的净荷的最多k个时隙中,所述高阶新管理信号NMS装入所述第一新传送信号NTS的净荷中;
    方式3:一个所述第一新管理信号NMS装入一个所述第一新传送信号NTS的净荷中。
  11. 根据权利要求1所述的分组信号的发送方法,其中,所述方法还包括:
    所述新传送信号NTS中包括的开销用于对所述新传送信号NTS进行管理,以及所述新传送信号NTS中包括的开销包含所述新传送信号NTS完成传送功能的相关信息。
  12. 根据权利要求11所述的分组信号的发送方法,其中,所述新传送信号NTS完成传送功能的相关信息包括纠错信息,且所述纠错信息用于所述新传送信号NTS在传送过程中引入了错误信息后的纠错处理。
  13. 根据权利要求1所述的分组信号的发送方法,其中,所述方法还包括:
    所述新管理信号NMS中包括的开销用于对所述新管理信号NMS进行管理。
  14. 根据权利要求1所述的分组信号的发送方法,其中,
    将所述第一新传送信号NTS从所述源点发出的过程中,至少包括以下方式:
    方式1,所述第一新传送信号NTS不做任何处理;
    方式2,将一个所述第一新传送信号NTS添加若干信息后转为多个其他格式的信号;
    方式3,将多个所述第一新传送信号NTS添加所述若干信息后转为一个其他格式的信号;
    将所述第二新传送信号NTS从所述中间点发出的过程中,至少包括以下方式:
    方式1,所述第二新传送信号NTS不做任何处理;
    方式2,将一个所述第二新传送信号NTS添加所述若干信息后转为多个其他格式的信号;
    方式3,将多个所述第二新传送信号NTS添加所述若干信息后转为一个其他格式的信号。
  15. 根据权利要求14所述的分组信号的发送方法,其中,所述中间点接收所述源点发出的所述第一新传送信号NTS,所述宿点接收所述中间点发出的所述第二新传送信号NTS后,所述方法还至少包括以下方式之一:
    方式1,直接接收所述第一新传送信号NTS或所述第二新传送信号NTS;
    方式2,接收所述的多个其他格式的信号,删除所述若干信息后转为一个所述第一新传送信号NTS或所述第二新传送信号NTS;
    方式3,接收所述的一个其他格式的信号,删除所述若干信息后转为多个所述第一新传送信号NTS或多个所述第二新传送信号NTS。
  16. 根据权利要求10所述的分组信号的发送方法,其中,所述方法还包括:
    在所述中间点,对所述第一新传送信号NTS做处理后解析出所述第一新管理信号NMS,包括:处理所述第一新传送信号NTS的开销;
    按所述方式1、所述方式2或所述方式3从所述第一新传送信号NTS中解出一个或多个所述第一新管理信号NMS。
  17. 根据权利要求4和5任一项中所述的分组信号的发送方法,其中,在所述中间点,对所述第一新管理信号NMS的开销进行处理,包括:
    处理所述帧头开销,以识别出所述定长帧的起始位置,根据所述帧头开销中的所述第一信息,或者所述其他开销中的所述第二信息识别出所述其他开销的具体位置,处理所述其他开销,以实现对所述第一新管理信号NMS的管理功能。
  18. 根据权利要求4和5任一项中所述的分组信号的发送方法,其中,在所述宿点,对 所述第二新管理信号NMS的开销进行处理,包括:
    处理所述帧头开销,以识别出所述定长帧的起始位置,根据所述帧头开销中的所述第一信息,或者所述其他开销中的所述第二信息识别出所述其他开销的具体位置,处理所述其他开销,以实现对所述第二新管理信号NMS的管理功能。
  19. 根据权利要求1、4、5、7、8、9和18所述的分组信号的发送方法,其中,改变所述第一新管理信号NMS的速率,得到第二新管理信号NMS,包括:
    取出所述第一新管理信号NMS的开销和净荷,在开销中删除所述填充开销和所述帧头开销,将所述其他开销作为有效开销,净荷中删除所述帧间填充信息作为有效净荷;
    生成所述第二新管理信号NMS,将所述有效开销增加所述填充开销后写入所述第二新管理信号NMS的开销中,修改所述第二新管理信号NMS中的所述帧头开销中的所述第一信息,或者修改所述其他开销中的所述第二信息,使得所述第一信息或所述第二信息指示所述开销1到开销s在所述其他开销中的具体位置,将所述有效净荷增加所述帧间填充信息后写入所述第二新管理信号NMS的净荷中;
    所述净荷中删除所述帧间填充信息作为所述有效净荷,具体包括:如果所述第一新管理信号NMS的信号单元为所述64/66b编码块或r字节,则将净荷中的所述64/66b编码块转为所述以太网MAC帧和所述帧间填充信息,删除所述帧间填充信息,只保留所述以太网MAC帧作为所述有效净荷;如果所述第一新管理信号NMS的信号单元为所述u/vb编码块,则将净荷中的所述u/vb编码块转为所述64/66b编码块,将所述64/66b编码块转为所述以太网MAC帧和所述帧间填充信息,删除所述帧间填充信息,只保留所述以太网MAC帧作为所述有效净荷;
    将所述有效净荷增加帧间填充信息,具体包括:如果所述第一新管理信号NMS的信号单元为所述64/66b编码块或r字节,则将所述有效净荷添加所述帧间填充信息后转换为所述64/66b编码块,使得所述64/66b编码块的速率等于所述第二新管理信号NMS净荷的速率;如果所述第一新管理信号NMS的信号单元为所述u/vb编码块,则将所述有效净荷添加所述帧间填充信息后转换为所述64/66b编码块,将所述64/66b编码块转为所述u/vb编码块,使得所述u/vb编码块的速率等于所述第二新管理信号NMS净荷的速率。
  20. 根据权利要求19中所述的分组信号的发送方法,其中,所述方法还包括:
    在所述中间点,将所述第二新管理信号NMS装入第二新传送信号NTS中,至少包括以下三种方式:
    方式1:将所述第二新传送信号NTS的净荷划分k个时隙,所述第二新管理信号NMS的数量小于或等于k,所述k为大于1的整数,每个时隙只能被一个所述第二新管理信号NMS占用,将一个或多个所述第二新管理信号NMS装入一个所述第二新传送信号NTS的净荷的最多k个时隙中;
    方式2:所述第二新传送信号NTS对应一个高阶新管理信号NMS,所述高阶新管理信号NMS的净荷划分k个时隙,所述第二新管理信号NMS的数量小于或等于k,每个时隙只能被一个所述第二新管理信号NMS占用,将一个或多个所述第二新管理信号NMS装入所述高阶新管理信号NMS的净荷的最多k个时隙中,所述高阶新管理信号NMS装入所述第二新传送信号NTS的净荷中;
    方式3:一个所述第二新管理信号NMS装入一个所述第二新传送信号NTS的净荷中。
  21. 根据权利要求20所述的分组信号的发送方法,其中,所述方法还包括:
    在所述宿点,对所述第二新传送信号NTS做处理后解析出所述第二新管理信号NMS,包括:处理所述第二新传送信号NTS的开销;
    按所述方式1、所述方式2或所述方式3从所述第二新传送信号NTS中解出一个或多个所述第二新管理信号NMS。
  22. 根据权利要求8所述的分组信号的发送方法,其中,在所述宿点,从所述第二新管理信号NMS中解析出所述分组信号,包括:
    如果所述第二新管理信号NMS的信号单元为所述64/66b编码块或r字节,则从所述第二新管理信号NMS的净荷中取出所述64/66b编码块,将所述64/66b编码块转为所述以太网MAC帧和所述帧间填充信息,将所述以太网MAC帧转为所述分组信号。
  23. 根据权利要求9所述的分组信号的发送方法,其中,在所述宿点,从所述第二新管理信号NMS中解析出所述分组信号,包括:
    如果所述第二新管理信号NMS的信号单元为所述u/vb编码块,则从所述第二新管理信号NMS的净荷中取出所述u/vb编码块,将所述u/vb编码块转为所述64/66b编码块,将所述64/66b编码块转为所述以太网MAC帧和所述帧间填充信息,将所述以太网MAC帧转为所述分组信号。
  24. 一种分组信号的发送装置,包括:
    定义模块,设置为定义新传送信号NTS和新管理信号NMS,其中,所述新传送信号NTS包括开销和净荷,且所述新传送信号NTS的开销和净荷均匀分布,所述新传送信号NTS的速率为固定值,所述新管理信号NMS包括开销和净荷,且所述新管理信号NMS的开销和净荷均匀分布,所述新管理信号NMS的速率为固定值;
    处理模块,设置为在将一个或多个分组信号从源点开始,经过中间点,发送到宿点的过程中:
    在所述源点,一个所述分组信号装入一个所述第一新管理信号NMS的净荷中,一个或多个所述第一新管理信号NMS装入一个所述第一新传送信号NTS中,将所述第一新传送信号NTS从所述源点发出;
    在所述中间点,接收所述源点发出的所述第一新传送信号NTS后,对所述第一新传送信号NTS做处理后解析出所述第一新管理信号NMS,对所述第一新管理信号NMS的开销进行处理,改变所述第一新管理信号NMS的速率,得到第二新管理信号NMS,将所述第二新管理信号NMS装入第二新传送信号NTS中,将所述第二新传送信号NTS从所述中间点发出;
    在所述宿点,接收所述中间点发出的所述第二新传送信号NTS后,对所述第二新传送信号NTS做处理后解析出所述第二新管理信号NMS,对所述第二新管理信号NMS的开销进行处理,从所述第二新管理信号NMS中解析出所述分组信号,最终实现将一个或多个分组信号从所述源点经过所述中间点传送到宿点。
  25. 一种计算机可读的存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行所述权利要求1至23任一项中所述的方法。
  26. 一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为通过所述计算机程序执行所述权利要求1至23任一项中所述的方法。
PCT/CN2022/130708 2021-12-31 2022-11-08 分组信号的发送方法、装置、存储介质以及电子装置 WO2023124551A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111676779.5 2021-12-31
CN202111676779.5A CN116418455A (zh) 2021-12-31 2021-12-31 分组信号的发送方法、装置、存储介质以及电子装置

Publications (1)

Publication Number Publication Date
WO2023124551A1 true WO2023124551A1 (zh) 2023-07-06

Family

ID=86997584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/130708 WO2023124551A1 (zh) 2021-12-31 2022-11-08 分组信号的发送方法、装置、存储介质以及电子装置

Country Status (2)

Country Link
CN (1) CN116418455A (zh)
WO (1) WO2023124551A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103891222A (zh) * 2011-10-20 2014-06-25 瑞典爱立信有限公司 对光传输网络中的现有业务流调整大小
CN103973265A (zh) * 2009-06-09 2014-08-06 华为技术有限公司 一种ODUflex通道带宽的无损调整方法和光传送网
CN104737501A (zh) * 2013-06-24 2015-06-24 华为技术有限公司 可变光通道带宽增加方法和减少方法及装置
WO2017070851A1 (en) * 2015-10-27 2017-05-04 Zte Corporation Channelization for flexible ethernet
US20210083774A1 (en) * 2018-05-25 2021-03-18 Huawei Technologies Co., Ltd. Data transmission method and apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103973265A (zh) * 2009-06-09 2014-08-06 华为技术有限公司 一种ODUflex通道带宽的无损调整方法和光传送网
CN103891222A (zh) * 2011-10-20 2014-06-25 瑞典爱立信有限公司 对光传输网络中的现有业务流调整大小
CN104737501A (zh) * 2013-06-24 2015-06-24 华为技术有限公司 可变光通道带宽增加方法和减少方法及装置
WO2017070851A1 (en) * 2015-10-27 2017-05-04 Zte Corporation Channelization for flexible ethernet
US20210083774A1 (en) * 2018-05-25 2021-03-18 Huawei Technologies Co., Ltd. Data transmission method and apparatus

Also Published As

Publication number Publication date
CN116418455A (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
US11252098B2 (en) Data transmission method, transmitter, and receiver
US10462471B2 (en) Data processing method, communications device, and communications system
US20200076731A1 (en) Method for transmitting service signal by using ethernet channel and communications device
US20220103282A1 (en) Client signal transmission method, device and system and computer-readable storage medium
WO2019128664A1 (zh) 一种数据传输方法、通信设备及存储介质
US11412074B2 (en) Method and device for transparently transmitting service frequency
US7684419B2 (en) Ethernet encapsulation over optical transport network
EP3832914A1 (en) Oam message transmission method, sending device, receiving device, and readable storage device
CN105790883B (zh) 一种处理信号的方法及通信设备
US11381338B2 (en) Data transmission method, communications device, and storage medium
US20230164624A1 (en) Service data processing, exchange and extraction methods, devices, and computer-readable medium
CN107786299B (zh) 一种发送和接收业务的方法、装置和网络系统
WO2022170830A1 (zh) 一种通信方法、设备和芯片系统
CN111385058A (zh) 一种数据传输的方法和装置
WO2023124551A1 (zh) 分组信号的发送方法、装置、存储介质以及电子装置
EP3813281A1 (en) Method for receiving code block stream, method for sending code block stream and communication apparatus
JP2021533691A (ja) サービスビットストリームを処理する方法及び装置
WO2021115215A1 (zh) 一种数据传输方法、通信设备及存储介质
CN116264587A (zh) 一种数据传输的方法以及相关装置
WO2024007804A1 (zh) 固定速率信号的速率恢复方法及装置
WO2020029893A1 (zh) 接收码块流的方法、发送码块流的方法和通信装置
CN117354159A (zh) 切片方法、业务处理方法、通信节点及存储介质
WO2012178190A1 (en) Method for mapping generic client signals into a generic framing procedure (gfp) path

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913814

Country of ref document: EP

Kind code of ref document: A1