WO2022267844A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2022267844A1
WO2022267844A1 PCT/CN2022/096329 CN2022096329W WO2022267844A1 WO 2022267844 A1 WO2022267844 A1 WO 2022267844A1 CN 2022096329 W CN2022096329 W CN 2022096329W WO 2022267844 A1 WO2022267844 A1 WO 2022267844A1
Authority
WO
WIPO (PCT)
Prior art keywords
pusch
dci
time slot
duration
terminal device
Prior art date
Application number
PCT/CN2022/096329
Other languages
English (en)
French (fr)
Inventor
薛祎凡
薛丽霞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022267844A1 publication Critical patent/WO2022267844A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the technical field of communication, and in particular to a communication method and device.
  • a discontinuous reception (DRX) mechanism is introduced to control the terminal equipment to monitor the physical downlink control channel (Physical Downlink Control). Channel, PDCCH) behavior.
  • the network device configures DRX parameters for the terminal device, so that the terminal device can continuously monitor the PDCCH to obtain scheduling information within the onDuration of the DRX cycle. If the terminal device does not receive any scheduling information within the onDuration, the terminal device may enter a sleep state and stop monitoring the PDCCH to save power consumption.
  • the downlink data sent by the network device to the terminal device has periodic characteristics, and the interval between data is relatively long. Short, and downlink data has high requirements for transmission delay, usually requiring a delay of not less than 10ms, otherwise it will affect user experience.
  • the type of uplink data such as video or audio sent by the terminal device to the network device also has the characteristics of periodic transmission.
  • the downlink data of an AR service transmits 60 frames of images per second, that is, the average arrival time interval of downlink data corresponding to two adjacent frames of images is 16.67ms, and the average arrival time interval of uplink data is also 16.67ms.
  • the uplink data does not have high requirements on the transmission delay, for example, the delay may be 60 ms.
  • the present application provides a communication method and device, which solves the problem of high power consumption caused by terminal equipment monitoring control information for scheduling uplink data and monitoring control information for scheduling downlink data in the prior art.
  • a communication method which is applied to a terminal device.
  • the method includes: receiving downlink control information DCI from a network device, the DCI schedules the transmission of the physical downlink shared channel PDSCH, and the DCI also schedules the physical uplink shared channel Transmission of channel PUSCH; receiving the PDSCH according to the DCI; sending the PUSCH according to the DCI, where the PUSCH includes uplink data.
  • the network device can schedule PDSCH and PUSCH at the same time through a DCI, so that the PDSCH and PUSCH can be transmitted in a short period of time, and the data transmission can be limited to a short period of time, reducing the time that the terminal equipment is in the active state. time, reducing the duration for monitoring the PDCCH, thereby reducing the power consumption of the terminal equipment.
  • the network device can simultaneously schedule the PDSCH and the PUSCH through only one DCI, which effectively reduces the signaling overhead of the DCI.
  • the method before receiving the DCI from the network device, the method further includes: receiving first configuration information from the network device, the first configuration information indicating the transmission parameters of the PUSCH , the transmission parameters include frequency domain resource allocation information and/or time domain resource allocation information.
  • the network device instructs the terminal device to send frequency domain resource allocation information and/or time domain resource allocation information of the PUSCH in the first configuration information, so that the terminal device can, after receiving the DCI, according to the first
  • the instruction in the configuration information determines the transmission parameters for sending the PUSCH, which can transmit the PDSCH and the PUSCH in a relatively short time, reduce the signaling overhead of the DCI, and effectively reduce the power consumption of the terminal equipment.
  • the time domain resource allocation information includes a first duration
  • the first duration is a time slot interval between a time slot where the DCI is located and a time slot where the PUSCH is located.
  • the network device indicates the first duration for the terminal device in the first configuration information, that is, the time slot interval for sending PUSCH and DCI, so that the terminal device can determine according to the first duration after receiving the DCI
  • the time slot for sending PUSCH so as to transmit PDSCH and PUSCH in a short time, reduce the signaling overhead of DCI, and effectively reduce the power consumption of terminal equipment.
  • the first configuration information includes a period value, and the period value is used to determine periodic time domain resources that the PUSCH can use.
  • the network device indicates the period value for the terminal device in the first configuration information, so that the terminal device can flexibly select the time to send the PUSCH from multiple time domain resources that can be used periodically according to the period value. Domain resources, so as to improve the flexibility of PUSCH transmission, and transmit PDSCH and PUSCH in a short time, reduce the signaling overhead of DCI, and effectively reduce the power consumption of terminal equipment.
  • the time slot where the PUSCH is located is the first periodic time domain resource after the time slot where the DCI is located; or, the time slot where the PUSCH is located is the first periodic time domain resource where the DCI is located.
  • the time slot is followed by the first periodic time domain resource separated by a second duration, the second duration being the first duration or the third duration reported by the terminal device.
  • the terminal device flexibly selects the time domain resource for sending the PUSCH from multiple time domain resources that can be used periodically according to the period value, for example, the first periodical resource after the time slot where the DCI is located can be selected.
  • Time domain resources or select the first periodic time domain resource with a second time interval after the time slot where the DCI is located, so as to improve the flexibility of PUSCH transmission, and transmit PDSCH and PUSCH in a short period of time, reducing the power of terminal equipment. consumption.
  • the DCI indicates a fourth duration and a fifth duration, where the fourth duration is a time slot interval between the time slot in which the DCI is located and the time slot in which the PDSCH is located , the fifth duration is the time slot interval between the time slot where the PDSCH is located and the time slot where the hybrid automatic repeat request HARQ feedback of the PDSCH is located; sending the PUSCH according to the DCI specifically includes: according to The fourth duration and the fifth duration determine a first duration, the first duration is the time slot interval between the time slot where the DCI is located and the time slot where the PUSCH is located, according to the first duration Send the PUSCH to the network device.
  • the network device may indicate some transmission parameters of the PUSCH through DCI instead of configuring through RRC signaling, so that the transmission parameters may be indicated more flexibly.
  • the PUSCH and HARQ-ACK feedback are sent in the same time slot, that is, two uplink transmissions are combined into one uplink transmission, thereby further reducing power consumption of terminal equipment and improving communication efficiency.
  • the method further includes: receiving second configuration information from the network device, where the second configuration information configures M OFDM symbol positions, and the M OFDM The symbol position is used for the transmission of the PUSCH, and each OFDM symbol position corresponds to a value of a fifth duration, wherein the fifth duration is the time slot where the PDSCH is located and the HARQ feedback of the PDSCH is located The time slot interval between the time slots.
  • the network device can indicate the M OFDM symbol positions for the terminal device to transmit the PUSCH through the second configuration information, and make one-to-one correspondence between the OFDM symbol positions and the fifth duration indicated in the DCI, so that it can be flexibly indicated Transmission parameters of PUSCH.
  • PUSCH and HARQ-ACK feedback are sent in the same time slot, that is, two uplink transmissions are combined into one uplink transmission, thereby further reducing power consumption of terminal equipment and improving communication efficiency.
  • the DCI sending the PUSCH specifically includes: determining the OFDM symbol position corresponding to the fifth duration according to the fifth duration indicated by the DCI; sending the PUSCH at the OFDM symbol position. PUSCH.
  • the network device can indicate the M OFDM symbol positions for the terminal device to transmit the PUSCH through the second configuration information, and then implicitly indicate the corresponding OFDM symbol positions in combination with the fifth duration in the DCI, so that it can flexibly Indicates the transmission parameters of the PUSCH, and can reduce the power consumption of the terminal equipment and improve the communication efficiency.
  • the transmission parameter further includes at least one of a HARQ process number HPN, a downlink allocation indicator DAI, a redundancy version RV, or a modulation and coding scheme MCS.
  • the network device may pre-instruct the terminal device to transmit some parameters of the PUSCH, thereby saving signaling overhead and improving communication efficiency.
  • the DCI includes at least one of HPN, DAI, RV or MCS indication.
  • the network device can dynamically indicate some transmission parameters of PUSCH through DCI, instead of using the fixed transmission parameters configured by the network device for the terminal device in advance, it can dynamically adapt to the current channel state, increasing the PUSCH Scheduling flexibility improves data transmission performance.
  • the HARQ process number HPN of the PDSCH is the same as the HPN of the PUSCH; the newly transmitted data indication DAI of the PDSCH is the same as the DAI of the PUSCH; the redundancy version RV of the PDSCH is the same as the HPN of the PUSCH The RV of the above PUSCH is the same.
  • the network device may implicitly indicate that the PDSCH and the PUSCH share the same transmission parameters, such as at least one of HPN, RV, or DAI, through the DCI, thereby saving signaling overhead.
  • the DCI includes a first field, and the first field is used to indicate whether the DCI schedules the PUSCH transmission.
  • the network device adds a specific field first field to the DCI for scheduling downlink data, which is used to indicate whether the DCI triggers the transmission of the PUSCH, so that the network device can be dynamically configured every time the PDSCH is scheduled. Indicates whether to trigger PUSCH transmission, making PUSCH scheduling more flexible.
  • the method further includes: receiving third configuration information from the network device, where the third configuration information includes first configuration information for N groups of PUSCH transmissions, and the first configuration information uses For instructing the transmission parameters of the PUSCH, wherein the transmission parameters include at least one of frequency domain resource allocation information, time domain resource allocation information, HPN, DAI, RV or MCS indication; the DCI includes the first indication information, The first indication information is used to indicate one of the N sets of first configuration information.
  • the third configuration information may include all PUSCH transmission parameters, thereby reducing the signaling overhead of PUSCH scheduling.
  • the third configuration information may only include part of the PUSCH transmission parameters, combined with the DCI dynamic indication method in the foregoing embodiment, the network device pre-configures part of the PUSCH transmission parameters, and DCI dynamically indicates the part of the PUSCH transmission parameters. , so that the flexibility of PUSCH scheduling can be improved.
  • the method before receiving the DCI from the network device, the method further includes: sending second indication information to the network device, where the second indication information includes a service type, or the terminal device The transmission interval of the uplink service data, or, the second indication information includes configuration parameters for requesting the network device to configure the corresponding PUSCH; the configuration parameters include the first configuration information, the second configuration information or at least one of the third configuration information.
  • the terminal device actively reports the second indication information, so that the network device can flexibly configure and schedule the PUSCH transmission parameters for the terminal device in time, and the network device can simultaneously schedule PDSCH and PUSCH through one DCI, reducing the number of terminal devices.
  • the invalid PDCCH monitoring time of the device saves power consumption for the terminal device.
  • a communication method which is applied to a network device, and the method includes: sending downlink control information DCI to a terminal device, the DCI schedules the transmission of the physical downlink shared channel PDSCH, and the DCI also schedules the physical uplink shared channel at the same time Transmission of PUSCH.
  • the method before sending the downlink control information DCI to the terminal device, the method further includes: sending first configuration information to the terminal device, the first configuration information instructing the terminal device to send the Transmission parameters of the PUSCH, where the transmission parameters include frequency domain resource allocation information and/or time domain resource allocation information.
  • the time domain resource allocation information includes a first duration
  • the first duration is a time slot interval between a time slot where the DCI is located and a time slot where the PUSCH is located.
  • the first configuration information includes a periodic value, where the periodic value is used to indicate the periodic time domain resources that can be used by the PUSCH sent by the terminal device.
  • the time slot where the PUSCH is located is the first periodic time domain resource after the time slot where the DCI is located; or, the time slot where the PUSCH is located is the time slot where the DCI is located Thereafter, the first periodic time-domain resource is separated by a second duration, where the second duration is the first duration or the third duration reported by the terminal device.
  • the DCI indicates a fourth duration and a fifth duration, where the fourth duration is the time slot interval between the time slot where the DCI is located and the time slot where the PDSCH is located, so
  • the fifth time length is the time slot interval between the time slot where the PDSCH is located and the time slot where the hybrid automatic repeat request HARQ feedback of the PDSCH is located; the fourth time length and the fifth time length are used for the
  • the terminal device determines a first duration, where the first duration is the time slot interval between the time slot where the DCI is located and the time slot where the PUSCH is located, and sends the PUSCH to the network device according to the first duration .
  • the method further includes: sending second configuration information to the terminal device, where the second configuration information configures M OFDM symbol positions, and the M OFDM symbols The position is used for the transmission of the PUSCH, and each OFDM symbol position corresponds to a value of a fifth duration, where the fifth duration is the time slot where the PDSCH is located and the HARQ feedback of the PDSCH is located The slot interval between slots.
  • the DCI includes an indication of the fifth duration, which is used to instruct the terminal device to determine the OFDM symbol position corresponding to the fifth duration.
  • the transmission parameter further includes at least one of a HARQ process number HPN, a downlink allocation indicator DAI, a redundancy version RV, or a modulation and coding scheme MCS.
  • the DCI includes at least one of HPN, DAI, RV or MCS indication.
  • the HARQ process number HPN of the PDSCH is the same as the HPN of the PUSCH; the newly transmitted data indication DAI of the PDSCH is the same as the DAI of the PUSCH; the redundancy version RV of the PDSCH is the same as the HPN of the PUSCH The RV of the above PUSCH is the same.
  • the DCI includes a first field, and the first field is used to indicate whether the DCI schedules the PUSCH transmission.
  • the method further includes: sending third configuration information to the network device, where the third configuration information includes first configuration information for N groups of PUSCH transmissions, and the first configuration information is used for Indicates the transmission parameters of the PUSCH, where the transmission parameters include at least one of frequency domain resource allocation information, time domain resource allocation information, HPN, DAI, RV or MCS indication; the DCI includes first indication information, the The first indication information is used to indicate one of the N sets of first configuration information.
  • the method before sending the downlink control information DCI to the terminal device, the method further includes: receiving second indication information from the terminal device, where the second indication information includes a service type, or, the The transmission interval of the uplink service data of the terminal device, or, the second indication information includes configuration parameters for requesting the network device to configure the PUSCH corresponding to the terminal device; the configuration parameters include the first At least one of configuration information, the second configuration information, or the third configuration information.
  • the present application further provides a communication device, the communication device may be a terminal device, and the communication device has the function of realizing the terminal device in any one of the above-mentioned first aspects.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the communication device includes a transceiver unit and a processing unit, and these units can perform the corresponding functions of the terminal device in any aspect of the first aspect above.
  • these units can perform the corresponding functions of the terminal device in any aspect of the first aspect above.
  • the structure of the communication device includes a transceiver and a processor, and optionally also includes a memory, and the transceiver is used to send and receive data, and to communicate with other devices in the communication system
  • the processor is configured to support the communication device to perform corresponding functions of the terminal device in any aspect of the first aspect above.
  • the memory coupled to the processor, holds program instructions and data necessary for the communication device.
  • the present application further provides a communication device, the communication device may be a network device, and the communication device has the function of implementing the network device in any one of the above-mentioned second aspects.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the communication device includes a transceiver unit and a processing unit, and these units can perform the corresponding functions of the network device in any aspect of the second aspect above.
  • these units can perform the corresponding functions of the network device in any aspect of the second aspect above.
  • the structure of the communication device includes a transceiver and a processor, and optionally also includes a memory, and the transceiver is used to send and receive data, and to communicate with other devices in the communication system
  • the processor is configured to support the communication device to perform corresponding functions of the network device in any aspect of the second aspect above.
  • the memory coupled to the processor, holds program instructions and data necessary for the communication device.
  • the embodiment of the present application provides a communication system, which may include the terminal device and the network device mentioned above.
  • the embodiment of the present application provides a computer-readable storage medium, the computer-readable storage medium stores program instructions, and when the program instructions are run on the computer, the computer is made to execute the above-mentioned first aspect or the second aspect.
  • Exemplary, computer readable storage media may be any available media that can be accessed by a computer.
  • computer readable media may include non-transitory computer readable media, random-access memory (random-access memory, RAM), read-only memory (read-only memory, ROM), electrically erasable In addition to programmable read-only memory (electrically EPROM, EEPROM), CD-ROM or other optical disk storage, magnetic disk storage medium or other magnetic storage device, or can be used to carry or store the desired program code in the form of instructions or data structures and can Any other media accessed by a computer.
  • random-access memory random-access memory
  • read-only memory read-only memory
  • ROM read-only memory
  • CD-ROM or other optical disk storage magnetic disk storage medium or other magnetic storage device, or can be used to carry or store the desired program code in the form of instructions or data structures and can Any other media accessed by a computer.
  • the embodiment of the present application provides a computer program product including computer program codes or instructions, which, when run on a computer, enables the computer to realize any aspect of the above-mentioned first aspect or the second aspect and any possibility thereof. method in the design.
  • the present application also provides a chip, including a processor, the processor is coupled to a memory, and is used to read and execute program instructions stored in the memory, so that the chip realizes the above first aspect Or the method in any aspect of the second aspect and any possible design thereof.
  • any communication device, computer-readable storage medium, computer program product, and communication system provided in the third aspect to the eighth aspect above can be implemented by the corresponding method provided above. Therefore, for the beneficial effects that can be achieved, reference can be made to the beneficial effects in the corresponding methods provided above, which will not be repeated here.
  • FIG. 1 is a system architecture diagram of a communication system provided by an embodiment of the present application
  • FIG. 2 is a structural diagram of a communication device provided in an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a DRX configuration of a terminal device provided in an embodiment of the present application
  • FIG. 4 is a schematic diagram of AR service transmission data provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of an AR service transmission data packet scenario provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIGS. 7-11 are schematic diagrams 1 to 5 of scheduling PUSCH and PDSCH provided by the embodiment of the present application;
  • FIG. 12 is a schematic flowchart of another communication method provided by the embodiment of the present application.
  • FIG. 13 is a schematic flowchart of another communication method provided by the embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of this embodiment, unless otherwise specified, “plurality” means two or more.
  • the communication system includes at least a terminal device 101 and a network device 102 .
  • the terminal device 101 involved in this embodiment of the present application may be a user equipment (user equipment, UE), where the UE includes a handheld device with a wireless communication function, a vehicle-mounted device, a wearable device, or a computing device.
  • the UE may be a mobile phone (mobile phone), a tablet computer or a computer with a wireless transceiver function.
  • the terminal device can also be a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) terminal device, a wireless terminal in industrial control, a wireless terminal in unmanned driving, a wireless terminal in telemedicine, a smart Wireless terminals in power grids, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • VR virtual reality
  • AR augmented reality
  • the device for realizing the function of the terminal may be a terminal; it may also be a device capable of supporting the terminal to realize the function, such as a chip system, and the device may be installed in the terminal.
  • the system-on-a-chip may be composed of chips, or may include chips and other discrete devices.
  • the network device 102 involved in this embodiment of the present application may include a base station (base station, BS), which may be a device deployed in a wireless access network and capable of performing wireless communication with a terminal.
  • BS base station
  • the base station may have various forms, such as a macro base station, a micro base station, a relay station, and an access point.
  • the base station involved in the embodiment of the present application may be a base station in 5G or a base station in LTE, where the base station in 5G may also be called a transmission reception point (transmission reception point, TRP) or gNB.
  • TRP transmission reception point
  • the device for realizing the function of the network device may be a network device; it may also be a device capable of supporting the network device to realize the function, such as a chip system, and the device may be installed in the network device.
  • the technical solutions provided by the embodiments of the present application are described by taking the apparatus for realizing the functions of the network equipment as network equipment and taking the network equipment as a base station as an example.
  • wireless communication may also be referred to as “communication” for short, and the term “communication” may also be described as “data transmission”, “information transmission” or “transmission”.
  • FIG. 1 is only an exemplary frame diagram, and the number of network element nodes included in FIG. 1 is not limited. In addition to the functional nodes shown in FIG. 1 , other nodes may also be included, such as: core network equipment, gateway equipment, application servers, etc., without limitation.
  • the access network device communicates with the core network device through a wired network or a wireless network, such as through a next generation (Next Generation, NG) interface.
  • Next Generation, NG next generation
  • each network element shown in FIG. 1 may adopt the composition structure shown in FIG. 2 or include the components shown in FIG. 2 .
  • Fig. 2 is a schematic structural diagram of a communication device 200 provided by the embodiment of the present application.
  • the communication device 200 can be a terminal device or a chip in the terminal device Or a system on a chip.
  • the communication device 200 may be a network device or a chip or a system on a chip in the network device.
  • the communication device 200 may include a processor 201 , a communication line 202 and a communication interface 203 . Further, the communication device 200 may further include a memory 204 . Wherein, the processor 201 , the memory 204 and the communication interface 203 may be connected through a communication line 202 .
  • the processor 201 can be a central processing unit (Central Processing Unit, CPU), a general-purpose processor, a network processor (Network Processor, NP), a digital signal processor (Digital Signal Processing, DSP), a microprocessor, a microcontroller , programmable logic devices, or any combination of them.
  • the processor 201 may also be other devices with processing functions, such as circuits, devices, or software modules.
  • the communication line 202 is used to transmit information between the components included in the communication device 200 .
  • the communication interface 203 is used for communicating with other devices or other communication networks.
  • the other communication network may be Ethernet, radio access network (Radio Access Network, RAN), wireless local area network (Wireless Local Area Networks, WLAN), etc.
  • the communication interface 203 may be an interface circuit, a pin, a radio frequency module, a transceiver or any device capable of realizing communication.
  • the memory 204 is used for storing instructions.
  • the instruction may be a computer program.
  • the memory 204 can be a read-only memory (Read-only Memory, ROM) or other types of static storage devices that can store static information and/or instructions, and can also be a random access memory (Random Access Memory, RAM) or can store Other types of dynamic storage devices that store information and/or instructions can also be Electrically Erasable Programmable read-only Memory (EEPROM), Compact Cisc read-only Memory (CD- ROM) or other optical disc storage, optical disc storage, magnetic disk storage media, or other magnetic storage devices, including compact discs, laser discs, optical discs, digital versatile discs, or Blu-ray discs.
  • EEPROM Electrically Erasable Programmable read-only Memory
  • CD- ROM Compact Cisc read-only Memory
  • CD- ROM Compact Cisc read-only Memory
  • magnetic disk storage media or other magnetic storage devices, including compact discs, laser discs, optical discs, digital versatile discs, or Blu-ray discs.
  • the memory 204 may exist independently of the processor 201, or may be integrated with the processor 201.
  • the memory 204 may be used to store instructions or program codes or some data, and the like.
  • the memory 204 may be located in the communication device 200 or outside the communication device 200, without limitation.
  • the processor 201 is configured to execute instructions stored in the memory 204, so as to implement the methods provided in the following embodiments of the present application.
  • the processor 201 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 2 .
  • the communications apparatus 200 includes multiple processors, for example, in addition to the processor 201 in FIG. 2 , it may further include a processor 207 .
  • the communication apparatus 200 further includes an output device 205 and an input device 206 .
  • the input device 206 is a device such as a keyboard, a mouse, a microphone, or a joystick
  • the output device 205 is a device such as a display screen and a speaker.
  • the communication device 200 may be a wearable device, a desktop computer, a portable computer, a network server, a mobile phone, a tablet computer, a wireless terminal, an embedded device, a chip system or a device having a structure similar to that shown in FIG. 2 .
  • the composition structure shown in FIG. 2 does not constitute a limitation to the communication device.
  • the communication device may include more or less components than those shown in the illustration, or combine certain components , or different component arrangements.
  • system-on-a-chip may be composed of chips, or may include chips and other discrete devices.
  • the terminal device when the terminal device is in the connected state, according to the DRX configuration information configured by the network device, it can continuously monitor the PDCCH within the duration onDuration, or enter the sleep time, and stop monitoring the PDCCH to achieve the purpose of power saving.
  • the DRX configuration may include configuration information of the DRX cycle and onDuration, and the terminal device may continuously monitor the PDCCH to acquire scheduling information during the onDuration of the DRX cycle. If the terminal device does not receive any scheduling information within the onDuration period, the terminal device enters a sleep time and stops monitoring the PDCCH to save power consumption.
  • the terminal device may also start or restart the inactivity timer InactivityTimer when listening to the PDCCH for scheduling initial data transmission.
  • the InactivityTimer is a timer used by the terminal device to extend the activation time. According to the InactivityTimer, it can be determined that when the terminal device successfully decodes an uplink or downlink PDCCH indicating initial transmission of user data, the length of time it remains in the activation time, that is, whenever the terminal device has initial transmission data to be scheduled, it starts or restarts the InactivityTimer timer.
  • the downlink data sent by the network device to the terminal device mainly includes data such as images or audio.
  • the cloud (such as a server, etc.) sends image data to AR glasses, etc., so that the AR glasses can generate a screen based on the received image data and present it to the user.
  • downlink data has the characteristics of periodic transmission.
  • image data can be transmitted in units of image frames, and the interval between image frames is relatively short.
  • downlink data has high requirements for transmission delay.
  • the air interface delay is not less than 10ms, that is, the data of an image frame needs to be transmitted over the air interface within 10ms, otherwise the user experience will be affected.
  • the downlink data of an AR service transmits 60 frames of images per second, that is, the ideal arrival time interval of data packets corresponding to two adjacent frames of images is 16.67 ms on average, that is, the terminal device side data
  • the ideal inter-arrival time for packets may be 16.67ms.
  • the server processes different data packets at different speeds, and the routing methods of different data packets from the application server to the base station through the Internet and the core network are different, the time when the data packets arrive at the base station may be jittered.
  • the actual arrival time of the data packet after considering the jitter may be shown in FIG. 5 .
  • the jitter range can usually be [-4ms, 4ms] (or equivalently [0, 8ms]).
  • the uplink data sent by the terminal device to the network device mainly includes: control information or action information (type 1) generated by the terminal device in response to user operations; in addition, the uplink data may also include:
  • the image or audio data (type 2) sent by the network device is used to feed back information about the user's surrounding environment or scene, and can be used by the network device to update image data for the terminal device, etc.
  • the AR glasses generate control information or action information in response to the user's operation, and upload it to the cloud (such as a server), and then the cloud (such as a server) can calculate updated image data according to the acquired control or action information, and The updated image data is sent to the AR glasses, so that the AR glasses can present images for the user according to the updated image data.
  • the cloud such as a server
  • the AR glasses can also send the collected image data of the surrounding environment or scene and upload it to the cloud, and the cloud can calculate and generate image data based on the image data of the environment or scene.
  • the generated image data may be sent to other terminal devices, for example, as a background image of other terminal devices.
  • the type of uplink data such as video or audio sent by the terminal device to the network device also has the characteristics of periodic transmission.
  • the average arrival time interval of uplink data may also be 16.67 ms.
  • the uplink data does not have high requirements on the transmission delay.
  • the air interface delay can be 60ms, that is, the data of one image frame can be transmitted within 60ms over the air interface.
  • AR-like services in view of the characteristics of the uplink and downlink data of the aforementioned AR service in this application, in this application, other uplink and downlink data services with similar characteristics may be called AR-like services, which will not be described later.
  • network equipment schedules the uplink data (type 2) and downlink data of terminal equipment separately, that is, the terminal equipment needs to be in the active state to monitor and schedule the downlink control of uplink data (type 2) Information (Downlink Control Information, DCI), it is also necessary to monitor the DCI for scheduling downlink data. Therefore, the terminal device needs to monitor for a long time, resulting in high power consumption.
  • DCI Downlink Control Information
  • the DCI can be carried on the PDCCH
  • the uplink data can be carried on the physical uplink shared channel (Physical Uplink Shared Channel, PUSCH).
  • Downlink data can be carried on a physical downlink shared channel (Physical Downlink Shared Channel, PDSCH).
  • the present application provides a communication method and device.
  • aligning the PDSCH scheduling with the PUSCH scheduling the same or the same PDSCH and PUSCH are scheduled in adjacent time slots, so that terminal devices can be active in a short period of time, so that terminal devices can extend the sleep time, effectively reduce power consumption for terminal devices, and improve user experience.
  • each device in the following embodiments may have the components shown in FIG. 2 .
  • the actions and terms involved in the various embodiments of the present application may refer to each other without limitation.
  • the names of messages exchanged between various devices or the names of parameters in messages are just examples, and other names may also be used in specific implementations, which are not limited.
  • An embodiment of the present application provides a configuration method for discontinuous reception, which is applied to the communication system shown in FIG. 1 .
  • the method may include:
  • the network device sends DCI to the terminal device, and the DCI schedules the transmission of the PDSCH and also schedules the transmission of the PUSCH.
  • scheduling refers to performing parameter indication and resource allocation for data transmission according to a certain scheduling algorithm or protocol.
  • implementing scheduling through the DCI means that the network device can indicate the transmission of the PDSCH for the terminal device through the DCI, and at the same time, the DCI can also indicate the transmission of the PUSCH.
  • the DCI sent by the network device to the terminal device is not only used to schedule the transmission of the PDSCH, but also used to trigger the transmission scheduling of the PUSCH.
  • the DCI schedules the PDSCH it may specifically indicate the transmission parameters of the PDSCH to the terminal device through the DCI.
  • the transmission parameters of the PUSCH can be pre-configured by the network device for the terminal device through radio resource control (Radio Resource Control, RRC), or can also be dynamically indicated through DCI.
  • RRC Radio Resource Control
  • the transmission parameters of PUSCH may mainly include frequency domain resource allocation (frequency domain resource allocation, FDRA) information of PUSCH, time domain resource allocation (time domain resource allocation, TDRA) information, hybrid automatic repeat request ( Hybrid Automatic Repeat reQuest (HARQ) process number (HARQ process number, HPN), downlink assignment index (DAI), redundancy version (redundancy version, RV), frequency hopping (frequency hopping, FH) or modulation and One or more of information such as modulation and coding scheme (MCS).
  • frequency domain resource allocation frequency domain resource allocation, FDRA
  • time domain resource allocation time domain resource allocation, TDRA
  • HARQ Hybrid Automatic Repeat reQuest
  • HARQ process number HARQ process number, HPN
  • DAI downlink assignment index
  • RV redundancy version
  • FH frequency hopping
  • MCS modulation and coding scheme
  • the terminal device receives DCI from the network device, receives a PDSCH according to the DCI, and sends a PUSCH according to the DCI, where the PUSCH includes uplink data.
  • the terminal device can receive the PDSCH according to the time-frequency resource position indicated in the DCI, and the PDSCH carries downlink data, specifically downlink data packets.
  • uplink data or downlink data refers to service data, that is, data generated by an application program (Application, APP) of a terminal device or a network device such as a server, and uplink data specifically refers to a data packet corresponding to the aforementioned type 2 uplink data.
  • the PUSCH may also carry HARQ feedback corresponding to the previously transmitted PDSCH, wherein the HARQ feedback may be used to indicate whether the terminal device successfully decodes and obtains corresponding downlink data from the PDSCH, for example, the HARQ feedback may include an acknowledgment ( acknowledgment, ACK) or non-acknowledgment (not acknowledgment, NACK), etc.
  • the HARQ feedback may include an acknowledgment ( acknowledgment, ACK) or non-acknowledgment (not acknowledgment, NACK), etc.
  • acknowledgment, ACK acknowledgment
  • NACK non-acknowledgment
  • the terminal device triggers the scheduling of the PUSCH according to the DCI, and the specific triggering method may include:
  • Method 1 Whenever the network device sends DCI for scheduling downlink data to the terminal device, the DCI will cause the terminal device to automatically trigger the transmission of the PUSCH.
  • a possible premise of adopting mode 1 is that the network device can configure a corresponding working mode or working state for the terminal device, that is, the terminal device is configured as a working mode or working state in which DCI not only schedules PDSCH but also schedules PUSCH. Therefore, when the terminal device is configured in this working mode or working state, each DCI for scheduling downlink data by the network device will trigger a PUSCH transmission of the terminal device. Correspondingly, when the terminal device is not configured in this working mode or working state, the DCI for scheduling downlink data of the network device is only used for scheduling the PDSCH.
  • the DCI includes a first field, and the first field is used to indicate whether the DCI schedules PUSCH transmission.
  • a specific field such as the first field, may be added to the DCI for scheduling downlink data to indicate whether the DCI triggers the transmission of the PUSCH.
  • the network device can be allowed to dynamically indicate whether to trigger the transmission of the PUSCH each time the PDSCH is scheduled, so that the scheduling of the PUSCH is more flexible.
  • the first field may occupy 1 bit, and the value of this bit may be "0", which may indicate that the DCI does not trigger the transmission of the PUSCH, and at this time, the DCI only schedules the transmission of the PDSCH.
  • the value of this bit is "1", which may indicate that PUSCH transmission is triggered, and at this time, the DCI simultaneously schedules the transmission of a PDSCH and a PUSCH.
  • the transmission of downlink data can be guaranteed first, that is, the transmission of PDSCH can be scheduled immediately after the arrival of downlink data.
  • the terminal device can schedule PUSCH and PDSCH at the same or similar time, as shown in FIG. 7 .
  • the network device can simultaneously schedule PDSCH and PUSCH through a DCI, so that the PDSCH and PUSCH can be transmitted in a short time, and the data transmission can be limited to a short time, reducing the number of terminal devices in the active state.
  • the time for monitoring the PDCCH is reduced, thereby reducing the power consumption of the terminal equipment.
  • the network device can simultaneously schedule the PDSCH and the PUSCH through only one DCI, which effectively reduces the signaling overhead of the DCI.
  • the method before the aforementioned step 601, that is, before the network device sends DCI to the terminal device, the method further includes:
  • the network device sends first configuration information to the terminal device, where the first configuration information indicates transmission parameters of the PUSCH.
  • S2 The terminal device receives first configuration information from the network device.
  • the transmission parameters of the PUSCH may include time domain resource allocation information, which is used to instruct the terminal device to send the time domain resource position of the PUSCH.
  • the time-domain resource allocation information may include a first duration, and the first duration may be used to represent a time slot interval between a time slot where the DCI is located and a time slot where the PUSCH is located.
  • the time slot interval between the time slot where the DCI is located and the time slot where the PUSCH is located may refer to the time slot interval between the starting time slot for transmitting DCI and the starting time slot for transmitting PUSCH, or may refer to the time slot for transmitting DCI
  • the time slot interval between the last time slot of the terminal device and the last time slot for transmitting the PUSCH may also refer to the time slot interval between the time slot in which the terminal device receives the DCI and the time slot in which the terminal device sends the PUSCH, or, It may also refer to a time slot interval between a time slot in which a network device sends DCI and a time slot in which a terminal device sends a PUSCH. It can be agreed according to the actual application, and this application does not make specific limitations on this.
  • the first duration included in the first configuration information sent by the network device to the terminal device is K2
  • the unit of K2 is a time slot
  • the time slot where the DCI is located is time slot n
  • the terminal device receives the DCI, it can
  • the PUSCH is sent in time slot n+K2, as shown in FIG. 8 .
  • the time domain resource configured by the network device for the terminal device to transmit the PUSCH may also be a periodic time domain resource. That is to say, the network device configures multiple time domain resources that appear periodically for the terminal device, such as T1, T2, and T3 in FIG. 9, as optional time domain resources for the terminal device to send PUSCH.
  • the first configuration information may include a periodic value
  • the periodic value is used by the terminal device to determine the periodic time domain resources that can be used by the PUSCH. Therefore, after receiving the DCI, the terminal device may select one of the periodically occurring multiple time domain resources for sending the PUSCH according to the period value included in the first configuration information.
  • the time slot where the terminal device determines to send the PUSCH may be the first periodic time domain resource after the time slot where the DCI is located; Periodic time domain resource.
  • the time slot where the PUSCH is sent determined by the terminal device may be the first periodic time domain resource after the time slot where the DCI is located.
  • the period value included in the first configuration information is t
  • the terminal device can determine, according to the period value T, that the periodical time domain resources available for the PUSCH are T1, T2, and T3.
  • the time slot where the DCI sent by the network device is time slot n, after receiving the DCI, the terminal device can send PUSCH on the first periodic time domain resource after time slot n, that is, as shown in Figure 9, it can be on T2 Send PUSCH.
  • the time slot where the terminal device determines to send the PUSCH may be after the time slot where the DCI is located.
  • the first periodic time-domain resource at intervals of the second duration.
  • the second duration may specifically be the first duration, that is, the time slot interval between the time slot where the DCI indicated in the first configuration information is located and the time slot where the PUSCH is located.
  • the second duration may specifically be equal to the third duration reported by the terminal device to the network device.
  • the third duration may be the preparation duration N2 for the terminal device to send the PUSCH, and its unit is an OFDM symbol, that is, the third duration is N2 OFDM symbols.
  • the third duration is related to the processing speed of the terminal device, and may be reported by the terminal device to the network device when it accesses the network device; in addition, the third duration may be the same as or different from the first duration, and the first duration and The unit of the third duration may also be in other forms, which is limited in this application.
  • the first duration is K2
  • the third duration is N2
  • the time slot in which the DCI is located is time slot n.
  • the terminal device can be separated by K2 hours after the time slot n. or, N2 symbols after the end symbol of the DCI, and send the PUSCH on the first periodic time domain resource thereafter, that is, the PUSCH can be sent on T3 as shown in FIG. 10 .
  • the first configuration information may be carried in RRC signaling.
  • the first configuration information may also include other PUSCH transmission parameters.
  • the PUSCH transmission parameters indicated in the first configuration information may also include HARQ process At least one of HPN, downlink allocation indicator DAI, redundancy version RV or modulation and coding scheme MCS.
  • the network device can configure TDRA in the PUSCH transmission parameters through one RRC signaling, and then configure the HARQ process number HPN, downlink allocation indicator DAI, redundancy version RV or modulation and coding scheme in the PUSCH transmission parameters through at least one RRC signaling At least one parameter in MCS.
  • the network device indicates the transmission parameters of sending PUSCH for the terminal device in the first configuration information, so that the terminal device can determine the transmission parameters of sending PUSCH according to the indication in the first configuration information after receiving the DCI , can transmit PDSCH and PUSCH in a short time, reduce DCI signaling overhead, and effectively reduce power consumption of terminal equipment.
  • the network device may also indicate some transmission parameters of the PUSCH through DCI instead of configuring through RRC signaling, so that the transmission parameters can be indicated more flexibly. Specifically, it may be indicated implicitly through the DCI, or may be indicated through a specific field in the DCI. For example, the network device may also use the DCI to implicitly indicate the time-domain resource position for transmitting the PUSCH, or the network device may add an indication bit corresponding to the MCS of the PUSCH in the DCI.
  • the network device can still indicate other PUSCH transmission parameters. Instructions may be made in conjunction with the following and preceding embodiments. That is to say, multiple optional implementations of this application can be combined with each other, and the implementations obtained by combining any implementations in this application should be covered within the scope of protection of this application. I won't repeat it here.
  • the time-domain resource position for transmitting the PUSCH is implicitly indicated through the DCI.
  • the DCI sent by the network device to the terminal device indicates the fourth duration and the fifth duration, wherein the fourth duration is the interval between the time slot where the DCI is located and the time slot where the PDSCH is located.
  • the time slot interval, the fifth duration is the time slot interval between the time slot where the PDSCH is located and the time slot where the HARQ feedback of the PDSCH is located.
  • the terminal device can determine the first duration according to the fourth duration and the fifth duration indicated in the DCI, and the first duration is the time slot interval between the time slot where the DCI is located and the time slot where the PUSCH is located, so that the terminal device can be based on The first duration determines the time slot position for sending the PUSCH to the network device.
  • the terminal device may send the PUSCH and the HARQ-ACK feedback in the same time slot, that is, the terminal device may determine the sum of the fourth duration and the fifth duration as the first duration.
  • the terminal device can determine that the time slot position for sending the PUSCH is n+K0+ K1.
  • PUSCH and HARQ-ACK feedback are sent in the same time slot, that is, two uplink transmissions are combined into one uplink transmission, thereby further reducing power consumption of terminal equipment and improving communication efficiency .
  • the DCI implicitly indicates that some transmission parameters of the PUSCH are the same as those of the PDSCH.
  • the network device may also use the DCI to implicitly indicate that the PDSCH and the PUSCH share part of the same transmission parameters, such as at least one of HPN, RV, or DAI.
  • the HPN, NDI, and RV values of the scheduled PDSCH and PUSCH can be the same, for example, the HPN of PDSCH is the same as the HPN of PUSCH; or, the DAI of PDSCH is the same as the DAI of PUSCH; or, the RV of PDSCH is the same as that of PUSCH RVs are the same.
  • the network device may configure multiple different fifth durations for the terminal device, and the value of each fifth duration corresponds to a type of OFDM symbol position.
  • each OFDM symbol position can be defined by adding a start symbol and a symbol length.
  • the network device may be configured in the following manner, that is, before step 601 of the foregoing implementation manner, the method may further include:
  • the network device sends second configuration information to the terminal device.
  • the second configuration information configures M OFDM symbol positions, and each OFDM symbol position corresponds to a value of a fifth duration.
  • the M OFDM symbol positions can be used as symbol positions that can be used for PUSCH transmission.
  • the fifth duration is the time slot interval between the time slot where the PDSCH is located and the time slot where the HARQ feedback of the PDSCH is located, for example, the aforementioned K1 value. That is, each K1 value corresponds to a kind of OFDM symbol position.
  • M may be a positive integer greater than or equal to 2.
  • S2 The terminal device receives second configuration information from the network device.
  • the terminal device receives the second configuration information and stores it locally, that is, records the values of M OFDM symbol positions and M fifth durations and their correspondences.
  • the aforementioned step 602 may specifically include:
  • the terminal device may determine the OFDM symbol position corresponding to the fifth duration according to the fifth duration indicated by the DCI and the second configuration information stored in step S2.
  • the terminal device may send the PUSCH to the network device at the OFDM symbol position determined according to step S3.
  • the DCI includes at least one of HPN, DAI, RV or MCS indications.
  • the DCI sent by the network device to the terminal device may also include some transmission parameters of the PUSCH, for example, at least one of HPN, DAI, RV or MCS indication.
  • a specific field in the DCI can be indicated by adding a specific field in the DCI.
  • a second field may be added in the DCI to indicate the MCS used to transmit the PUSCH.
  • the network device can dynamically indicate some transmission parameters of PUSCH through DCI, instead of using the fixed transmission parameters configured by the network device for the terminal device in advance, it can dynamically adapt to the current channel state, increasing the The flexibility of PUSCH scheduling improves the performance of data transmission.
  • the present application also provides an implementation mode, which is to pre-configure multiple sets of different PUSCH transmission parameters for the terminal equipment through the network equipment, and then indicate one of them through the DCI sent to the terminal equipment, so that the terminal equipment can determine Send the transmission parameters of PUSCH.
  • the network device may be configured in the following manner, that is, before step 601 of the foregoing implementation manner, the method may further include:
  • the network device sends third configuration information to the terminal device, where the third configuration information includes N groups of PUSCH transmission parameters.
  • S2 Receive third configuration information from the network device.
  • the transmission parameters of the PUSCH may include one or more of frequency domain resource allocation information, time domain resource allocation information, HPN, DAI, RV or MCS indication. Therefore, the transmission parameters of each group of PUSCH in the third configuration information here may include one or more of frequency domain resource allocation information, time domain resource allocation information, HPN, DAI, RV or MCS indication. That is, the transmission parameters of the PUSCH mentioned in the foregoing embodiments may be regarded as a set of transmission parameters of the PUSCH.
  • the transmission parameters of each group of PUSCH among N groups of PUSCH transmission parameters may be the first configuration information in the foregoing embodiments, that is, the third configuration information includes N groups (or N pieces) of first configuration information .
  • the first configuration information is used to indicate transmission parameters for transmitting the PUSCH, where the transmission parameters include at least one of frequency domain resource allocation information, time domain resource allocation information, HPN, DAI, RV or MCS indication.
  • the first configuration information may specifically include a first period or period value corresponding to the time-frequency resource for transmitting the PUSCH.
  • the third configuration information may include all PUSCH transmission parameters, thereby reducing signaling overhead of PUSCH scheduling.
  • the third configuration information may only include part of the PUSCH transmission parameters, combined with the DCI dynamic indication method in the foregoing embodiment, the network device pre-configures part of the PUSCH transmission parameters, and DCI dynamically indicates the part of the PUSCH transmission parameters. , so that the flexibility of PUSCH scheduling can be improved.
  • the DCI sent by the network device to the terminal device may include first indication information, where the first indication information is used to indicate the N groups of PUSCH transmission parameters. one of the groups.
  • step 602 of the foregoing implementation manner may specifically include:
  • the terminal device determines the transmission parameter of the corresponding PUSCH according to the first indication information included in the DCI.
  • the network device configures three sets of PUSCH transmission parameters for the terminal equipment, the first indication information included in the DCI may be 2 bits, and the first indication information is 00 to indicate the first set of PUSCH transmission parameters, the first indication information 01 indicates the transmission parameters of the second group of PUSCH, the first indication information is 10, indicating the transmission parameters of the third group of PUSCH, and the first indication information is 11, which may indicate that PUSCH transmission is not triggered.
  • the terminal device sends a PUSCH to the network device according to the determined transmission parameters.
  • the terminal device can report the service type to the network device in advance, so that the network device can Switch different scheduling methods according to different service types. Specifically, you can configure the relevant PUSCH transmission parameters to the corresponding terminal equipment, or enable specific fields in the DCI, etc., to realize the aforementioned simultaneous scheduling of PDSCH and PUSCH through a DCI Effect.
  • configuration may be performed in the following manner, that is, before step 601 of the foregoing embodiment, as shown in FIG. 12 , the method may also include:
  • the terminal device sends second indication information to the network device.
  • the second indication information may include the current service type of the terminal device, or the transmission interval of the uplink service data of the terminal device.
  • the transmission interval of the uplink service data may specifically refer to the time interval of the uplink data packet, so that the network device may compare the transmission interval of the uplink service data with the transmission interval of the downlink service data, and determine that the values of the two are the same or similar, That is, it can be determined that the service type of the terminal device is an AR service or an AR-like service, and data transmission can be performed through the scheduling method provided by the embodiment of the present application.
  • the second indication information may also include indication information for indicating that the delay tolerance of the uplink service of the terminal device is relatively large, or the delay budget is relatively large.
  • the second indication information may include request information for requesting the network device to configure configuration parameters corresponding to the PUSCH.
  • the configuration parameters corresponding to the PUSCH may specifically include at least one of the first configuration information, the second configuration information, or the third configuration information in the foregoing embodiments.
  • the network device receives the second indication information, and sends configuration parameters corresponding to the PUSCH to the terminal device.
  • the network device if the configuration parameters corresponding to the PUSCH sent by the network device only indicate some transmission parameters of the PUSCH, the network device also needs to explicitly indicate other PUSCH transmission parameters through the DCI. Therefore, the network device needs to use specific indication bits in the DCI.
  • a first field is added to the DCI subsequently sent to the terminal device, which is used to indicate that the DCI schedules PUSCH transmission.
  • a second field is added to the DCI to indicate the MCS for transmitting the PUSCH.
  • the network equipment can flexibly configure and schedule the PUSCH transmission parameters for the terminal equipment in a timely manner, and the network equipment can simultaneously schedule PDSCH and PUSCH through one DCI, reducing the invalid PDCCH monitoring of the terminal equipment. time, saving power consumption for terminal equipment.
  • the present application also provides another communication method, which does not change the existing DCI scheduling method, but restricts the value of the scheduling parameter of the network device, so as to achieve the effect of aligning uplink data and downlink data scheduling.
  • the network device schedules the PDSCH and the PUSCH for the terminal device in the first scheduling manner.
  • the terminal device receives the PDSCH and transmits the PUSCH in the first scheduling manner.
  • the first scheduling method may include:
  • the network device sends the first DCI to the terminal device, and sends the second DCI to the terminal device.
  • the first DCI is used for scheduling the transmission of the PDSCH, and the PDSCH includes downlink data
  • the second DCI is used for scheduling the transmission of the PUSCH
  • the PUSCH includes the uplink data.
  • HARQ feedback corresponding to PUSCH and PDSCH are transmitted in the same time slot.
  • the network device may send the first DCI to the terminal device and send the second DCI to the terminal device within the sixth time period.
  • the sixth duration may be X time slots.
  • the sixth duration corresponds to the same time slot or two adjacent time slots.
  • X 1, that is, the sixth duration corresponds to one time slot, then the network device may send the first DCI and the second DCI in the same time slot.
  • X 2, that is, the sixth duration corresponds to 2 time slots, then the network device may send the first DCI and the second DCI in two adjacent time slots.
  • the network device may send the first DCI first and then the second DCI, or may send the second DCI first and then the first DCI, and the order in which the network device sends the first DCI and the second DCI is not specifically limited.
  • the terminal device receives the first DCI and the second DCI from the network device, receives the PDSCH according to the first DCI, and sends the PUSCH according to the second DCI.
  • the terminal device may send the PUSCH and send the HARQ feedback corresponding to the PDSCH in the same time slot.
  • the first DCI is sent in time slot n1
  • it indicates the fourth duration (that is, the time slot interval between the time slot where the first DCI is located and the time slot where the PDSCH is located) and the fifth duration (that is, the time slot where the PDSCH
  • the fourth time length is K0
  • the fifth time length is K1.
  • the second DCI is sent in the time slot n2, which indicates the first duration (that is, the time slot interval between the time slot where the second DCI is located and the time slot where the PUSCH is located), for example, the first duration is K2.
  • n1+K0+K1 n2+K2, that is, it is ensured that the time slot where the terminal equipment sends the HARQ feedback is the same as that of the PUSCH.
  • the first scheduling method refers to that the network device sends two DCIs to the terminal device in the same or adjacent time slots, which are used to schedule downlink data transmission and uplink data transmission respectively, that is, the two DCIs are respectively PDSCH and PUSCH are scheduled.
  • the first scheduling manner further includes that the HARQ feedback of the PDSCH is in the same time slot as that of the PUSCH.
  • the corresponding terminal equipment when the uplink and downlink traffic volumes of the terminal equipment are equal, each time the network equipment schedules downlink data transmission for the terminal equipment, the corresponding terminal equipment must have uplink data transmission. Data needs to be sent to a network device.
  • the network device only schedules the terminal device in the first scheduling manner, and the network device does not separately schedule uplink data transmission or downlink data transmission for the terminal device.
  • the terminal device only receives the PDSCH and transmits the PUSCH in the first scheduling manner, and the terminal device neither receives the PDSCH nor transmits the PUSCH alone.
  • the network device schedules the terminal device in the first scheduling mode, or the network device schedules the terminal device The device independently schedules uplink data transmission and does not schedule downlink data transmission.
  • the terminal device receives the PDSCH and transmits the PUSCH in the first scheduling manner, or the terminal device receives the PDSCH and does not transmit the PUSCH.
  • the network device schedules the terminal device in the first scheduling manner, or the network device schedules the terminal device The device independently schedules downlink data transmission and does not schedule uplink data transmission.
  • the terminal device receives the PDSCH and transmits the PUSCH in the first scheduling manner, or, the terminal device transmits the PUSCH and does not receive the PDSCH.
  • the above-mentioned seventh duration may be preset in the setting of the network device, or may be reported to the network device through the terminal device before the network device schedules data transmission for the terminal device, or determined through negotiation between the network device and the terminal device of.
  • the seventh duration may be set to 10ms or 100ms.
  • the terminal device may send third indication information to the network device.
  • the third indication information may include the service type, or the transmission interval of the uplink service data of the terminal device, or the third indication information includes requesting the network device to schedule data transmission for the terminal device in the first scheduling manner.
  • the third indication information may also include an indication that the terminal device has a relatively large delay tolerance or a relatively large delay budget for the uplink service of the terminal device.
  • the above embodiments of the present application based on the existing scheduling method, use two DCIs in the same or adjacent time slots to schedule PDSCH and PUSCH respectively, so that uplink data and downlink data scheduling can be aligned. It can also reduce the time period for the terminal equipment to monitor the PDCCH invalidly, so as to save power consumption for the terminal equipment.
  • the present application further provides a communication device, where the communication device may be a terminal device.
  • the communication device has the function of realizing the terminal equipment in each of the foregoing possible implementation manners.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communications apparatus 1400 may include a transceiver unit 1401 and a processing unit 1402 , and these units may perform corresponding functions of the terminal device in each possible implementation manner above.
  • the transceiver unit 1401 may be configured to receive DCI from a network device.
  • the processing unit 1402 may be configured to receive the PDSCH according to the DCI, and send the PUSCH according to the DCI, where the PUSCH includes uplink data.
  • the transceiver unit 1401 may be configured to send the second indication information to the network device.
  • the communication apparatus 1400 may implement the functions of the terminal device in each of the foregoing possible implementation manners. For details, reference may be made to the detailed descriptions in the foregoing method examples, and details are not repeated here.
  • the present application also provides a communication device, where the communication device may be a network device.
  • the communication device has the function of implementing the network equipment in each of the foregoing possible implementation manners.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communications apparatus 1400 may include a transceiver unit 1401 and a processing unit 1402 , and these units may perform corresponding functions of the network devices in the foregoing possible implementation manners.
  • the transceiver unit 1401 may be configured to send DCI to a terminal device.
  • the processing unit 1402 may be configured to generate the DCI for simultaneously scheduling the PDSCH and the PUSCH.
  • the transceiver unit 1401 may be configured to receive the second indication information, and send configuration parameters corresponding to the PUSCH to the terminal device.
  • the communication apparatus 1400 may implement the functions of the network device in each of the foregoing possible implementation manners. For details, reference may be made to the detailed descriptions in the foregoing method examples, and details are not repeated here.
  • the above-mentioned transmission module may be a transceiver, which may include an antenna and a radio frequency circuit, etc.
  • the processing module may be a processor, such as a baseband chip.
  • the transmission module may be a radio frequency unit
  • the processing module may be a processor.
  • the transmission module may be an input interface and/or an output interface of the chip system
  • the processing module may be a processor of the chip system, for example: a central processing unit (central processing unit, CPU).
  • the communication device is presented in the form of dividing various functional modules in an integrated manner.
  • a “module” here may refer to a specific circuit, a processor and memory executing one or more software or firmware programs, an integrated logic circuit, and/or other devices that can provide the above functions.
  • the sidelink transmission device can take the form shown in FIG. 2 in the foregoing.
  • the function/implementation process of the processing unit 1402 in FIG. 14 may be realized by calling the computer program instructions stored in the memory 204 by the processor 201 in FIG. 2 .
  • the function/implementation process of the transceiver unit 1401 in FIG. 14 may be through the communication interface 203 in FIG. 2 .
  • the processor 201 in FIG. 2 can call the computer-executed instructions stored in the memory 204, so that the apparatus 200 can execute the operations of the terminal device or the network device in the above-mentioned method embodiments, so as to realize the above-mentioned each possible method of implementation.
  • the communication group device in each of the above device embodiments can completely correspond to the terminal device or network device in the method embodiment, and corresponding steps are performed by corresponding modules or units.
  • the transceiver A unit may be an interface circuit that the chip uses to receive signals from other chips or devices.
  • the above transceiver unit for sending or receiving is an interface circuit of the device, used to send signals to other devices, for example, when the device is implemented as a chip, the transceiver unit can be used to send signals to other chips or devices Interface circuit for sending signals.
  • a computer-readable storage medium including instructions, or a computer program product is also provided, and the above-mentioned instructions can be executed by the processor 201 of the communication device 200 to implement the methods of the above-mentioned embodiments. Therefore, the technical effects that can be obtained can refer to the above-mentioned method embodiments, and will not be repeated here.
  • the present application also provides a computer program product.
  • the computer program product includes an instruction. When the instruction is executed, the computer can respectively perform operations corresponding to the terminal device or the network device in the above method.
  • the embodiment of the present application also provides a system chip.
  • the system chip includes: a processing unit and a communication unit.
  • the processing unit may be, for example, a processor, and the communication unit may be, for example, an input/output interface, a pin, or a circuit.
  • the processing unit can execute computer instructions, so that the communication device used by the chip executes the operations of the terminal device and the network device in the method provided by the above embodiments of the present application.
  • any communication device provided in the foregoing embodiments of the present application may include the system chip.
  • the computer instructions are stored in a storage unit.
  • An embodiment of the present application also provides a communication system, and the communication system may include: any terminal device and network device in the foregoing implementation manners.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • a software program When implemented using a software program, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • a computer can be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • Embodiment 1 A communication method applied to a terminal device, the method comprising: receiving downlink control information DCI from a network device, the DCI schedules transmission of a physical downlink shared channel PDSCH, and the DCI also schedules a physical uplink shared channel at the same time Transmission of PUSCH; receiving the PDSCH according to the DCI; sending the PUSCH according to the DCI, where the PUSCH includes uplink data.
  • Embodiment 2 before the terminal device receives the DCI from the network device, the method further includes: receiving first configuration information from the network device, the first configuration information indicating that the PUSCH transmission parameters, where the transmission parameters include frequency domain resource allocation information and/or time domain resource allocation information.
  • Embodiment 3 the method according to Embodiment 2, comprising: the time domain resource allocation information includes a first duration, and the first duration is the interval between the time slot where the DCI is located and the time slot where the PUSCH is located .
  • Embodiment 4 The method according to Embodiment 2, comprising: the first configuration information includes a period value, and the period value is used to determine the periodic time domain resources that the PUSCH can use.
  • Embodiment 5 The method according to Embodiment 4, comprising: the time slot where the PUSCH is located is the first periodic time domain resource after the time slot where the DCI is located; or, the time slot where the PUSCH is located is the first periodic time domain resource.
  • the first periodic time-domain resource after the time slot where the DCI is located is separated by a second duration, and the second duration is the first duration or the third duration reported by the terminal device.
  • Embodiment 6 The method according to Embodiment 1 or Embodiment 2, comprising: the DCI indicates a fourth duration and a fifth duration, wherein the fourth duration is the time slot where the DCI is located and the time slot where the PDSCH is located The time slot interval between time slots, the fifth duration is the time slot interval between the time slot where the PDSCH is located and the time slot where the hybrid automatic repeat request HARQ feedback of the PDSCH is located; according to the DCI transmission
  • the PUSCH specifically includes: determining a first duration according to the fourth duration and the fifth duration, and the first duration is a time slot between the time slot where the DCI is located and the time slot where the PUSCH is located interval, sending the PUSCH to the network device according to the first duration.
  • Embodiment 7 According to the method described in Embodiment 2, the method further includes: receiving second configuration information from the network device, the second configuration information configuring M orthogonal frequency division multiplexing OFDM symbol positions, the The M OFDM symbol positions are used for the transmission of the PUSCH, and each of the OFDM symbol positions corresponds to a value of a fifth duration, wherein the fifth duration is the time slot where the PDSCH is located and the PDSCH The slot interval between the slots where the HARQ feedback is located.
  • Embodiment 8 According to the method described in Embodiment 7, sending the PUSCH according to the DCI specifically includes: determining the OFDM symbol position corresponding to the fifth duration according to the fifth duration indicated by the DCI; and sending the PUSCH at the OFDM symbol position. PUSCH.
  • Embodiment 9 The method according to any one of Embodiments 1 to 8, comprising: the transmission parameter further includes at least one of HARQ process number HPN, downlink allocation indication DAI, redundancy version RV or modulation and coding scheme MCS .
  • Embodiment 10 The method according to any one of embodiment 1 to embodiment 8, comprising: DCI includes at least one of HPN, DAI, RV or MCS indication.
  • Embodiment 11 The method according to Embodiment 10, comprising: the HARQ process number HPN of the PDSCH is the same as the HPN of the PUSCH; the newly transmitted data indication DAI of the PDSCH is the same as the DAI of the PUSCH; The redundancy version RV of the PDSCH is the same as the RV of the PUSCH.
  • Embodiment 12 The method according to any one of Embodiment 1 to Embodiment 11, comprising: the DCI includes a first field, and the first field is used to indicate whether the DCI schedules the PUSCH transmission.
  • Embodiment 13 The method according to any one of Embodiments 1 to 12, the method further includes: receiving third configuration information from the network device, where the third configuration information includes the first N groups of transmission PUSCH One piece of configuration information, the first configuration information is used to indicate transmission parameters for transmitting PUSCH, wherein the transmission parameters include at least one of frequency domain resource allocation information, time domain resource allocation information, HPN, DAI, RV or MCS indication ;
  • the DCI includes first indication information, where the first indication information is used to indicate one of the N sets of first configuration information.
  • Embodiment 14 according to the method described in any one of Embodiments 1 to 13, before receiving the DCI from the network device, the method further includes: sending second indication information to the network device, the second indication The information includes the service type, or the transmission interval of the uplink service data of the terminal device, or the second indication information includes configuration parameters for requesting the network device to configure the PUSCH; the configuration parameters include the at least one of the first configuration information, the second configuration information, or the third configuration information.
  • Embodiment 15 a communication method applied to a network device, the method includes: sending downlink control information DCI to the terminal device, the DCI schedules the transmission of the physical downlink shared channel PDSCH, and the DCI also schedules the physical uplink shared channel PUSCH at the same time transmission.
  • Embodiment 16 before sending the downlink control information DCI to the terminal device, the method further includes: sending first configuration information to the terminal device, the first configuration information indicating the The terminal device sends the transmission parameters of the PUSCH, where the transmission parameters include frequency domain resource allocation information and/or time domain resource allocation information.
  • the time domain resource allocation information includes a first duration, and the first duration is the time slot interval between the time slot where the DCI is located and the time slot where the PUSCH is located. .
  • the first configuration information includes a periodic value
  • the periodic value is used to indicate the periodic time domain resources that can be used by the PUSCH sent by the terminal device.
  • the time slot where the PUSCH is located is the first periodic time domain resource after the time slot where the DCI is located; or, the time slot where the PUSCH is located is the DCI After the time slot where it is located, there is a first periodic time domain resource separated by a second duration, the second duration being the first duration or the third duration reported by the terminal device.
  • the DCI indicates a fourth duration and a fifth duration, wherein the fourth duration is the time slot where the DCI is located and the time slot where the PDSCH is located The time slot interval between time slots, the fifth time length is the time slot interval between the time slot where the PDSCH is located and the time slot where the hybrid automatic repeat request HARQ feedback of the PDSCH is located; the fourth time length And the fifth duration is used by the terminal device to determine the first duration, the first duration is the time slot interval between the time slot where the DCI is located and the time slot where the PUSCH is located, according to the first The duration of sending the PUSCH to the network device.
  • Embodiment 21 The method according to Embodiment 16, comprising: sending second configuration information to the terminal device, where the second configuration information configures M orthogonal frequency division multiplexing OFDM symbol positions, and the M OFDM The symbol position is used for the transmission of the PUSCH, and each OFDM symbol position corresponds to a value of a fifth duration, wherein the fifth duration is the time slot where the PDSCH is located and the HARQ feedback of the PDSCH is located The time slot interval between the time slots.
  • the DCI includes an indication of the fifth duration, which is used to instruct the terminal device to determine the OFDM symbol position corresponding to the fifth duration.
  • the transmission parameters further include at least one of HARQ process number HPN, downlink allocation indicator DAI, redundancy version RV or modulation and coding scheme MCS.
  • the DCI includes at least one of HPN, DAI, RV or MCS indication.
  • Embodiment 25 According to the method described in Embodiment 24, the HARQ process number HPN of the PDSCH is the same as the HPN of the PUSCH; the newly transmitted data indication DAI of the PDSCH is the same as the DAI of the PUSCH; The redundancy version RV is the same as the RV of the PUSCH.
  • Embodiment 26 According to the method according to any one of Embodiment 15 to Embodiment 25, the DCI includes a first field, and the first field is used to indicate whether the DCI schedules the PUSCH transmission.
  • Embodiment 27 The method according to any one of Embodiment 15 to Embodiment 26, the method further includes: sending third configuration information to the network device, where the third configuration information includes the first N groups of PUSCH transmissions.
  • Configuration information the first configuration information is used to indicate transmission parameters for transmitting PUSCH, where the transmission parameters include at least one of frequency domain resource allocation information, time domain resource allocation information, HPN, DAI, RV or MCS indication;
  • the DCI includes first indication information, where the first indication information is used to indicate one of the N sets of first configuration information.
  • Embodiment 28 According to the method according to any one of Embodiment 15 to Embodiment 27, before sending the downlink control information DCI to the terminal device, the method further includes: receiving second indication information from the terminal device, The second indication information includes the service type, or, the transmission interval of the uplink service data of the terminal equipment, or, the second indication information includes the information used to request the network equipment to configure the PUSCH corresponding to the terminal equipment. configuration parameters; the configuration parameters include at least one of the first configuration information, the second configuration information, or the third configuration information.
  • a communication method applied to a terminal device includes: receiving a PDSCH in a first scheduling manner, and transmitting a PUSCH; the first scheduling manner includes: receiving the first DCI and a second DCI, the first DCI is used to schedule the transmission of the physical downlink shared channel PDSCH, and the second DCI is used to schedule the transmission of the physical uplink shared channel PUSCH, wherein the HARQ feedback corresponding to the PDSCH is related to the PUSCH in Transmission in the same time slot: receiving a PDSCH according to the first DCI, and sending a PUSCH according to the second DCI, where the PUSCH includes uplink data.
  • Embodiment 30 The method according to Embodiment 29, comprising: within the seventh duration, the terminal device only receives PDSCH and transmits PUSCH in the first scheduling mode, and the terminal device neither receives PDSCH nor transmits alone PUSCH; or, within the seventh duration, the terminal device receives the PDSCH and transmits the PUSCH in the first scheduling manner, or, the terminal device receives the PDSCH and does not transmit the PUSCH alone; or, within the seventh duration, the The terminal device receives the PDSCH and transmits the PUSCH in the first scheduling manner, or the terminal device transmits the PUSCH without receiving the PDSCH alone.
  • Embodiment 31 The method according to Embodiment 29 or Embodiment 30, including: before receiving the first DCI and the second DCI from the network device, the method further includes: sending third indication information to the network device, the The third indication information includes a service type, or, the transmission interval of uplink service data of the terminal device, or, the third indication information includes information for requesting the network device to schedule data transmission in the first scheduling manner.
  • the third indication information includes a service type, or, the transmission interval of uplink service data of the terminal device, or, the third indication information includes information for requesting the network device to schedule data transmission in the first scheduling manner.
  • Embodiment 32 The method according to Embodiment 29 to Embodiment 31, comprising: the sixth duration corresponds to the same time slot or two adjacent time slots.
  • Embodiment 33 A terminal device, where the terminal device includes one or more processors and one or more memories; the one or more memories are coupled to the one or more processors, and the one or more A memory is used to store computer program codes, the computer program codes include computer instructions, and when the one or more processors execute the computer instructions, the terminal device is executed as in Embodiment 1 to Embodiment 14, or Perform the method as described in any one of Embodiment 29 to Embodiment 32.
  • Embodiment 34 a network device
  • the terminal device includes one or more processors and one or more memories; the one or more memories are coupled to the one or more processors, and the one or more A memory is used to store computer program codes, the computer program codes include computer instructions, and when the one or more processors execute the computer instructions, the network device executes any one of Embodiment 15 to Embodiment 28 method described in the item.
  • Embodiment 35 A computer-readable storage medium, where computer-executable instructions are stored in the computer-readable storage medium, and when called by the computer, the computer-executable instructions are used to make the computer execute the above-mentioned embodiment 1-The method described in any one of Embodiment 14, or perform the method described in any one of the above-mentioned Embodiment 15 to Embodiment 28, or perform the method described in any one of the above-mentioned Embodiment 29 to Embodiment 32 method.
  • Embodiment 36 a chip, the chip is coupled with a memory, and is used to read and execute program instructions stored in the memory, so as to implement the method described in any one of the above-mentioned embodiments 1-14, or The method described in any one of the above-mentioned embodiment 15 to embodiment 28, or the method described in any one of the above-mentioned embodiment 29 to embodiment 32.
  • Embodiment 37 A computer program product.
  • the computer executes the method described in any one of the foregoing Embodiments 1 to 14, or executes the foregoing embodiments The method described in any one of Embodiment 15 to Embodiment 28, or perform the method described in any one of Embodiment 29 to Embodiment 32 above.

Abstract

本申请提供一种通信方法及装置,涉及通信技术领域,用于解决终端设备长时间用于监听调度上行数据的控制信息以及监听调度下行数据的控制信息,功耗较大的问题。该方法包括:终端设备接收来自网络设备的下行控制信息DCI,所述DCI调度物理下行共享信道PDSCH的传输,所述DCI同时还调度物理上行共享信道PUSCH的传输;终端设备根据所述DCI接收PDSCH;终端设备根据所述DCI发送PUSCH。

Description

一种通信方法及装置
本申请要求于2021年06月22日提交国家知识产权局、申请号为202110690133.6、申请名称为“一种调度数据传输的方法”的中国专利申请的优先权,以及于2021年07月31日提交国家知识产权局、申请号为202110877118.2、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
在无线通信系统中,在保证数据能够有效传输的前提下为了节省终端设备的功耗,引入了一种非连续接收(discontinuous reception,DRX)机制来控制终端设备监听物理下行控制信道(Physical Downlink Control Channel,PDCCH)的行为。网络设备为终端设备配置DRX参数,从而终端设备可以在DRX周期的持续时间onDuration内持续监听PDCCH获取调度信息。如终端设备在onDuration内没有接收到任何调度信息,则终端设备可以进入睡眠状态,停止监听PDCCH以节省功耗。
其中,对于增强现实(augmented reality,AR)业务,例如,AR视频会议或云游戏(cloud gaming,CG)等,网络设备向终端设备发送的下行数据具有周期性特点,数据之间的间隔时间较短,并且,下行数据对于传输时延的要求较高,通常要求时延不小于10ms,否则影响用户体验。相应的,对于终端设备向网络设备发送的视频或音频等这一类型的上行数据来说,也具有周期性传输的特点。示例性的,某一AR业务的下行数据为每秒传输60帧图像,即相邻两帧图像对应的下行数据的到达时间间隔平均为16.67ms,上行数据的到达时间间隔平均也为16.67ms。但上行数据对于传输时延的要求不高,例如时延可以为60ms。
现有的终端设备需要长时间用于监听调度上行数据的控制信息,以及监听调度下行数据的控制信息,因此,终端设备进入睡眠状态节省功耗的时长较短。这对于实现AR业务的终端设备,尤其电池容量比较小的例如可穿戴设备等来说,终端设备的功耗较大,导致续航时间难以满足用户需求,用户的使用体验较差。
发明内容
本申请提供一种通信方法及装置,解决了现有技术中终端设备长时间用于监听调度上行数据的控制信息以及监听调度下行数据的控制信息,从而导致的功耗较大的问题。
为达到上述目的,本申请采用如下技术方案:
第一方面,提供一种通信方法,应用于终端设备,该方法包括:接收来自网络设备的下行控制信息DCI,所述DCI调度物理下行共享信道PDSCH的传输,所述DCI同时还调度物理上行共享信道PUSCH的传输;根据所述DCI接收所述PDSCH;根据所述DCI发送所述PUSCH,所述PUSCH包括上行数据。
上述技术方案中,网络设备通过一条DCI可以同时调度PDSCH和PUSCH,从而 使得PDSCH和PUSCH在较短的时间内传输,可以将数据传输限制在较短的时间内完成,减少终端设备处于激活状态的时间,减少用于监测PDCCH的时长,从而降低终端设备的功耗。另外,网络设备仅通过一条DCI可以同时调度PDSCH和PUSCH,有效降低了DCI的信令开销。
在一种可能的实现方式中,所述接收来自网络设备的DCI之前,所述方法还包括:接收来自所述网络设备的第一配置信息,所述第一配置信息指示所述PUSCH的传输参数,所述传输参数包括频域资源分配信息和/或时域资源分配信息。
上述可能的实现方式中,网络设备通过在第一配置信息中为终端设备指示发送PUSCH的频域资源分配信息和/或时域资源分配信息,从而使得终端设备可以在接收到DCI之后,根据第一配置信息中的指示确定发送PUSCH的传输参数,可以在较短时间内传输PDSCH和PUSCH,降低DCI的信令开销,并有效降低终端设备的功耗。
在一种可能的实现方式中,时域资源分配信息包括第一时长,所述第一时长为所述DCI所在的时隙与所述PUSCH所在的时隙之间的时隙间隔。
上述可能的实现方式中,网络设备通过在第一配置信息中为终端设备指示第一时长,即发送PUSCH与DCI的时隙间隔,从而使得终端设备可以在接收到DCI之后,根据第一时长确定发送PUSCH的时隙,从而在较短时间内传输PDSCH和PUSCH,降低DCI的信令开销,并有效降低终端设备的功耗。
在一种可能的实现方式中,所述第一配置信息包括周期值,所述周期值用于确定所述PUSCH可以使用的周期性时域资源。
上述可能的实现方式中,网络设备通过在第一配置信息中为终端设备指示周期值,从而使得终端设备根据周期值从可以使用的周期性出现的多个时域资源中灵活选择发送PUSCH的时域资源,从而提高PUSCH传输的灵活性,并在较短时间内传输PDSCH和PUSCH,降低DCI的信令开销,并有效降低终端设备的功耗。
在一种可能的实现方式中,所述PUSCH所在的时隙为所述DCI所在的时隙之后的第一个周期性时域资源;或者,所述PUSCH所在的时隙为所述DCI所在的时隙之后间隔第二时长的第一个周期性时域资源,所述第二时长为所述第一时长或者所述终端设备上报的第三时长。
上述可能的实现方式中,终端设备根据周期值从可以使用的周期性出现的多个时域资源中灵活选择发送PUSCH的时域资源,如可以选择DCI所在的时隙之后的第一个周期性时域资源,或者选择DCI所在的时隙之后间隔第二时长的第一个周期性时域资源,从而提高PUSCH传输的灵活性,并在较短时间内传输PDSCH和PUSCH,降低终端设备的功耗。
在一种可能的实现方式中,所述DCI指示第四时长和第五时长,其中,所述第四时长为所述DCI所在的时隙与所述PDSCH所在的时隙之间的时隙间隔,所述第五时长为所述PDSCH所在的时隙与所述PDSCH的混合自动重传请求HARQ反馈所在的时隙之间的时隙间隔;根据所述DCI发送所述PUSCH,具体包括:根据所述第四时长以及所述第五时长确定第一时长,所述第一时长为所述DCI所在的时隙与所述PUSCH所在的时隙之间的时隙间隔,根据所述第一时长向所述网络设备发送所述PUSCH。
上述可能的实现方式中,网络设备可以通过DCI指示PUSCH的部分传输参数,而不是通过RRC信令进行配置,从而可以更加灵活地指示传输参数。另外,还通过将PUSCH与HARQ-ACK反馈在相同时隙发送,即将两次上行传输合并为一次上行传输,从而进一步降低终端设备的功耗,提高通信效率。
在一种可能的实现方式中,该方法还包括:接收来自所述网络设备的第二配置信息,所述第二配置信息配置M个正交频分复用OFDM符号位置,所述M个OFDM符号位置用于所述PUSCH的传输,每个所述OFDM符号位置与一个第五时长的取值对应,其中,所述第五时长为所述PDSCH所在的时隙与所述PDSCH的HARQ反馈所在的时隙之间的时隙间隔。
上述可能的实现方式中,网络设备可以通过第二配置信息为终端设备指示传输PUSCH的M个OFDM符号位置,并将OFDM符号位置与DCI中指示的第五时长一一对应,从而可以灵活地指示PUSCH的传输参数。另外,使得PUSCH与HARQ-ACK反馈在相同时隙发送,即将两次上行传输合并为一次上行传输,从而进一步降低终端设备的功耗,提高通信效率。
在一种可能的实现方式中,所述DCI发送所述PUSCH,具体包括:根据所述DCI指示的第五时长确定所述第五时长对应的OFDM符号位置;在所述OFDM符号位置发送所述PUSCH。
上述可能的实现方式中,网络设备可以通过第二配置信息为终端设备指示传输PUSCH的M个OFDM符号位置,再结合DCI中的第五时长隐式地指示对应的OFDM符号位置,从而可以灵活地指示PUSCH的传输参数,并能降低终端设备的功耗,提高通信效率。
在一种可能的实现方式中,传输参数还包括HARQ进程号HPN、下行分配指示DAI、冗余版本RV或调制和编码方案MCS中的至少一个。
上述可能的实现方式中,网络设备可以预先为终端设备指示传输PUSCH的部分参数,从而节省信令开销,提高通信效率。
在一种可能的实现方式中,所述DCI中包括HPN、DAI、RV或MCS指示中的至少一个。
上述可能的实现方式中,网络设备可以通过DCI动态指示PUSCH的部分传输参数,而非使用网络设备预先为终端设备配置好的固定的传输参数,可以动态适配当前的信道状态,增大了PUSCH调度的灵活性,改善数据传输的性能。
在一种可能的实现方式中,PDSCH的HARQ进程号HPN与所述PUSCH的HPN相同;所述PDSCH的新传数据指示DAI与所述PUSCH的DAI相同;所述PDSCH的冗余版本RV与所述PUSCH的RV相同。
上述可能的实现方式中,网络设备可以通过DCI隐式地指示PDSCH和PUSCH共享相同的传输参数,如HPN、RV或者DAI等中的至少一个,从而可以节省信令开销。
在一种可能的实现方式中,DCI包括第一字段,所述第一字段用于指示所述DCI是否调度所述PUSCH传输。
上述可能的实现方式中,网络设备通过在调度下行数据的DCI中加入一个特定字段第一字段,用于指示该DCI是否触发PUSCH的传输,从而可以在每次调度PDSCH 时,都允许网络设备动态指示是否触发PUSCH的传输,令PUSCH的调度更加灵活。
在一种可能的实现方式中,该方法还包括:接收来自所述网络设备的第三配置信息,所述第三配置信息包括N组传输PUSCH的第一配置信息,所述第一配置信息用于指示传输PUSCH的传输参数,其中,所述传输参数包括频域资源分配信息、时域资源分配信息、HPN、DAI、RV或MCS指示中的至少一个;所述DCI中包括第一指示信息,所述第一指示信息用于指示所述N组第一配置信息中的其中一组。
上述可能的实现方式中,第三配置信息中可以包括所有的PUSCH的传输参数,从而可以降低PUSCH调度的信令开销。或者,第三配置信息可以仅包括部分PUSCH的传输参数,与前述实施方式中DCI动态指示的方式进行结合,通过网络设备预先配置部分PUSCH的传输参数,以及DCI动态指示部分PUSCH的传输参数的方式,从而可以提高PUSCH调度的灵活性。
在一种可能的实现方式中,接收来自网络设备的DCI之前,所述方法还包括:向所述网络设备发送第二指示信息,所述第二指示信息包括业务类型,或者,所述终端设备的上行业务数据的传输间隔,或者,所述第二指示信息包括用于请求所述网络设备配置所述PUSCH对应的配置参数;所述配置参数包括所述第一配置信息、所述第二配置信息或所述第三配置信息中的至少一种。
上述可能的实现方式中,通过终端设备主动上报第二指示信息,从而使得网络设备及时为终端设备灵活地配置调度PUSCH的传输参数,网络设备可以通过一个DCI实现同时调度PDSCH以及PUSCH,减少了终端设备的无效PDCCH监测时间,为终端设备节省功耗。
第二方面,提供一种通信方法,应用于网络设备,该方法包括:向终端设备发送下行控制信息DCI,所述DCI调度物理下行共享信道PDSCH的传输,所述DCI同时还调度物理上行共享信道PUSCH的传输。
在一种可能的实现方式中,向终端设备发送下行控制信息DCI之前,所述方法还包括:向所述终端设备发送第一配置信息,所述第一配置信息指示所述终端设备发送所述PUSCH的传输参数,所述传输参数包括频域资源分配信息和/或时域资源分配信息。
在一种可能的实现方式中,时域资源分配信息包括第一时长,所述第一时长为所述DCI所在的时隙与所述PUSCH所在的时隙之间的时隙间隔。
在一种可能的实现方式中,第一配置信息包括周期值,所述周期值用于指示所述终端设备发送的所述PUSCH可以使用的周期性时域资源。
在一种可能的实现方式中,PUSCH所在的时隙为所述DCI所在的时隙之后的第一个周期性时域资源;或者,所述PUSCH所在的时隙为所述DCI所在的时隙之后间隔第二时长的第一个周期性时域资源,所述第二时长为所述第一时长或者所述终端设备上报的第三时长。
在一种可能的实现方式中,DCI指示第四时长和第五时长,其中,所述第四时长为所述DCI所在的时隙与所述PDSCH所在的时隙之间的时隙间隔,所述第五时长为所述PDSCH所在的时隙与所述PDSCH的混合自动重传请求HARQ反馈所在的时隙之间的时隙间隔;所述第四时长以及所述第五时长用于所述终端设备确定第一时长, 所述第一时长为所述DCI所在的时隙与所述PUSCH所在的时隙之间的时隙间隔,根据所述第一时长向所述网络设备发送所述PUSCH。
在一种可能的实现方式中,该方法还包括:向所述终端设备发送第二配置信息,所述第二配置信息配置M个正交频分复用OFDM符号位置,所述M个OFDM符号位置用于所述PUSCH的传输,每个所述OFDM符号位置与一个第五时长的取值对应,其中,所述第五时长为所述PDSCH所在的时隙与所述PDSCH的HARQ反馈所在的时隙之间的时隙间隔。
在一种可能的实现方式中,DCI中包括所述第五时长的指示,用于指示所述终端设备确定所述第五时长对应的OFDM符号位置。
在一种可能的实现方式中,传输参数还包括HARQ进程号HPN、下行分配指示DAI、冗余版本RV或调制和编码方案MCS中的至少一个。
在一种可能的实现方式中,DCI中包括HPN、DAI、RV或MCS指示中的至少一个。
在一种可能的实现方式中,PDSCH的HARQ进程号HPN与所述PUSCH的HPN相同;所述PDSCH的新传数据指示DAI与所述PUSCH的DAI相同;所述PDSCH的冗余版本RV与所述PUSCH的RV相同。
在一种可能的实现方式中,DCI包括第一字段,所述第一字段用于指示所述DCI是否调度所述PUSCH传输。
在一种可能的实现方式中,该方法还包括:向所述网络设备发送第三配置信息,所述第三配置信息包括N组传输PUSCH的第一配置信息,所述第一配置信息用于指示传输PUSCH的传输参数,其中,所述传输参数包括频域资源分配信息、时域资源分配信息、HPN、DAI、RV或MCS指示中的至少一个;所述DCI中包括第一指示信息,所述第一指示信息用于指示所述N组第一配置信息中的其中一组。
在一种可能的实现方式中,向终端设备发送下行控制信息DCI之前,所述方法还包括:接收来自所述终端设备的第二指示信息,所述第二指示信息包括业务类型,或者,所述终端设备的上行业务数据的传输间隔,或者,所述第二指示信息包括用于请求所述网络设备向所述终端设备配置所述PUSCH对应的配置参数;所述配置参数包括所述第一配置信息、所述第二配置信息或所述第三配置信息中的至少一种。
第三方面,本申请还提供了一种通信装置,所述通信装置可以是终端设备,该通信装置具有实现上述第一方面中任一方面的终端设备的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实现方式中,所述通信装置的结构中包括收发单元和处理单元,这些单元可以执行上述第一方面中任一方面的终端设备的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一种可能的实现方式中,所述通信装置的结构中包括收发器和处理器,可选的还包括存储器,所述收发器用于收发数据,以及用于与通信系统中的其他设备进行通信交互,所述处理器被配置为支持所述通信装置执行上述第一方面中任一方面的终端设备的相应的功能。所述存储器与所述处理器耦合,其保存所述通信装置必要的程序 指令和数据。
第四方面,本申请还提供了一种通信装置,所述通信装置可以是网络设备,该通信装置具有实现上述第二方面中任一方面的网络设备的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实现方式中,所述通信装置的结构中包括收发单元和处理单元,这些单元可以执行上述第二方面中任一方面的网络设备的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一种可能的实现方式中,所述通信装置的结构中包括收发器和处理器,可选的还包括存储器,所述收发器用于收发数据,以及用于与通信系统中的其他设备进行通信交互,所述处理器被配置为支持所述通信装置执行上述第二方面中任一方面的网络设备的相应的功能。所述存储器与所述处理器耦合,其保存所述通信装置必要的程序指令和数据。
第五方面,本申请实施例提供了一种通信系统,可以包括上述提及的终端设备和网络设备。
第六方面,本申请实施例提供的一种计算机可读存储介质,该计算机可读存储介质存储有程序指令,当程序指令在计算机上运行时,使得计算机执行上述第一方面或者第二方面中任一方面及其任一可能的设计中的方法。示例性的,计算机可读存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括非瞬态计算机可读介质、随机存取存储器(random-access memory,RAM)、只读存储器(read-only memory,ROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。
第七方面,本申请实施例提供一种包括计算机程序代码或指令的计算机程序产品,当其在计算机上运行时,使得计算机实现上述第一方面或者第二方面中任一方面及其任一可能的设计中的方法。
第八方面,本申请还提供了一种芯片,包括处理器,所述处理器与存储器耦合,用于读取并执行所述存储器中存储的程序指令,以使所述芯片实现上述第一方面或者第二方面中任一方面及其任一可能的设计中的方法。
可以理解地,上述第三方面至第八方面中提供的任一种通信装置、计算机可读存储介质、计算机程序产品和通信系统,均可以由上文所提供的对应的方法来实现,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
附图说明
图1为本申请实施例提供的一种通信系统的系统架构图;
图2为本申请实施例提供的一种通信装置的架构图;
图3为本申请实施例提供的一种终端设备的DRX配置示意图;
图4为本申请实施例提供的一种AR业务传输数据的示意图;
图5为本申请实施例提供的一种AR业务传输数据包的场景示意图;
图6为本申请实施例提供的一种通信方法的流程示意图;
图7-图11为本申请实施例提供的一种调度PUSCH和PDSCH的示意图一至图五;
图12为本申请实施例提供的另一种通信方法的流程示意图;
图13为本申请实施例提供的另一种通信方法的流程示意图;
图14为本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
需要说明的是,本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
首先,对本申请实施例的实施环境和应用场景进行简单介绍。
本申请可应用到现有的新无线(new radio,NR)系统中,也可用在其它任何有类似结构和功能的无线通信系统中。如图1所示,该通信系统至少包括终端设备101和网络设备102。
本申请实施例涉及到的终端设备101可以是用户设备(user equipment,UE),其中,UE包括具有无线通信功能的手持式设备、车载设备、可穿戴设备或计算设备。示例性地,UE可以是手机(mobile phone)、平板电脑或带无线收发功能的电脑。终端设备还可以是虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。
本申请实施例中,用于实现终端的功能的装置可以是终端;也可以是能够支持终端实现该功能的装置,例如芯片系统,该装置可以被安装在终端中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例提供的技术方案中,以用于实现终端设备功能的装置是UE为例,描述本申请实施例提供的技术方案。
本申请实施例涉及到的网络设备102可以包括基站(base station,BS),可以是一种部署在无线接入网中能够和终端进行无线通信的设备。
其中,基站可能有多种形式,比如宏基站、微基站、中继站和接入点等。示例性地,本申请实施例涉及到的基站可以是5G中的基站或LTE中的基站,其中,5G中的 基站还可以称为发送接收点(transmission reception point,TRP)或gNB。
本申请实施例中,用于实现网络设备的功能的装置可以是网络设备;也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。
在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备,以网络设备是基站为例,描述本申请实施例提供的技术方案。
本申请实施例提供的技术方案可以应用于网络设备和终端设备之间的无线通信。其中,在本申请实施例中,术语“无线通信”还可以简称为“通信”,术语“通信”还可以描述为“数据传输”、“信息传输”或“传输”。
需要说明的是,图1仅为示例性框架图,图1中包括的网元节点的数量不受限制。除图1所示功能节点外,还可以包括其他节点,如:核心网设备、网关设备、应用服务器等等,不予限制。接入网设备通过有线网络或无线网络与核心网设备相互通信,如通过下一代(Next Generation,NG)接口相互通信。
在具体实现时,图1所示各网元,如:终端设备、网络设备可采用图2所示的组成结构或者包括图2所示的部件。图2为本申请实施例提供的一种通信装置200的结构示意图,当该通信装置200具有本申请实施例所述终端设备的功能时,该通信装置200可以为终端设备或者终端设备中的芯片或者片上系统。当通信装置200具有本申请实施例所述的网络设备的功能时,通信装置200可以为网络设备或者网络设备中的芯片或者片上系统。
如图2所示,该通信装置200可以包括处理器201,通信线路202以及通信接口203。进一步的,该通信装置200还可以包括存储器204。其中,处理器201,存储器204以及通信接口203之间可以通过通信线路202连接。
其中,处理器201可以是中央处理器(Central Processing Unit,CPU)、通用处理器网络处理器(Network Processor,NP)、数字信号处理器(Digital Signal Processing,DSP)、微处理器、微控制器、可编程逻辑器件或它们的任意组合。处理器201还可以是其它具有处理功能的装置,如电路、器件或软件模块等。
通信线路202,用于在信装置200所包括的各部件之间传送信息。
通信接口203,用于与其他设备或其它通信网络进行通信。该其它通信网络可以为以太网,无线接入网(Radio Access Network,RAN),无线局域网(Wireless Local Area Networks,WLAN)等。通信接口203可以是接口电路、管脚、射频模块、收发器或者任何能够实现通信的装置。
存储器204,用于存储指令。其中,指令可以是计算机程序。
其中,存储器204可以是只读存储器(Read-only Memory,ROM)或可存储静态信息和/或指令的其他类型的静态存储设备,也可以是随机存取存储器(Random Access Memory,RAM)或者可存储信息和/或指令的其他类型的动态存储设备,还可以是电可擦可编程只读存储器(Electrically Erasable Programmable read-only Memory,EEPROM)、只读光盘(Compact Cisc read-only Memory,CD-ROM)或其他光盘存储、光碟存储、磁盘存储介质或其他磁存储设备,光碟存储包括压缩光碟、激光碟、光碟、数字通用光碟、或蓝光光碟等。
需要说明的是,存储器204可以独立于处理器201存在,也可以和处理器201集 成在一起。存储器204可以用于存储指令或者程序代码或者一些数据等。存储器204可以位于通信装置200内,也可以位于通信装置200外,不予限制。处理器201,用于执行存储器204中存储的指令,以实现本申请下述实施例提供的方法。
在一种示例中,处理器201可以包括一个或多个CPU,例如图2中的CPU0和CPU1。
作为一种可选的实现方式,通信装置200包括多个处理器,例如,除图2中的处理器201之外,还可以包括处理器207。
作为一种可选的实现方式,通信装置200还包括输出设备205和输入设备206。示例性地,输入设备206是键盘、鼠标、麦克风或操作杆等设备,输出设备205是显示屏、扬声器等设备。
需要说明的是,通信装置200可以是可穿戴设备、台式机、便携式电脑、网络服务器、移动手机、平板电脑、无线终端、嵌入式设备、芯片系统或有图2中类似结构的设备。此外,图2中示出的组成结构并不构成对该通信装置的限定,除图2所示部件之外,该通信装置可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
结合上述图1中,终端设备在连接态时可以根据网络设备配置的DRX配置信息,在持续时间onDuration内持续监听PDCCH,或者进入休眠时间,停止监听PDCCH以达到省电的目的。其中,如图3所示,DRX配置可以包括DRX周期和持续时间onDuration的配置信息,终端设备在该DRX周期的onDuration时段内可以持续监听PDCCH获取调度信息。如果终端设备在onDuration时段内没有接收到任何调度信息,则终端设备进入休眠时间,停止监听PDCCH以节省功耗。
另外,如图3所示,终端设备还可以在监听到调度初传数据的PDCCH的时候,启动或重启不活动定时器InactivityTimer,该InactivityTimer即为终端设备用于延长激活时间的定时器。根据InactivityTimer可以确定当终端设备成功解码一个指示初传的用户数据上行或下行PDCCH后,持续位于激活时间的时间长度,即每当终端设备有初传数据被调度,就启动或重启InactivityTimer定时器。
在AR业务等场景中,如图4所示,网络设备向终端设备发送的下行数据主要包括图像或者音频等数据。例如,云端(如服务器等)发送图像数据至AR眼镜等,从而AR眼镜可以根据接收到的图像数据生成画面呈现给用户。
其中,下行数据具有周期性传输的特点,例如,图像数据可以以图像帧为单位传输,图像帧之间的间隔时间较短,并且,下行数据对于传输时延的要求较高,为了避免用户看到的视频出现卡顿现象,通常要求空口时延不小于10ms,即一个图像帧的数据在空口需要在10ms内传输完毕,否则影响用户体验。
示例性的,如图5所示,某一AR业务的下行数据为每秒传输60帧图像,即相邻两帧图像对应的数据包的理想到达时间间隔平均为16.67ms,即终端设备侧数据包的理想到达时间间隔可以为16.67ms。
在一种实施方式中,由于每一个图像帧数据量的大小可能不同,编码方式也可能不同,因此生成数据包所需的时间不同。另外,由于服务器对不同的数据包的处理速度不同,并且不同的数据包从应用服务器通过互联网以及核心网到达基站的路由方式 不同,数据包到达基站的时间可能出现抖动(jitter)。考虑抖动之后的数据包实际到达时间可以如图5所示。目前,jitter范围通常可以为[-4ms,4ms](或者可以等效为[0,8ms])。
另外,如图4所示,终端设备向网络设备发送的上行数据主要包括:终端设备响应于用户操作生成的控制信息或者动作信息等(类型1);另外,上行数据还可以包括:终端设备向网络设备发送的图像或者音频等数据(类型2),用于反馈用户周围环境或者场景的信息,可以用于网络设备为终端设备更新图像数据等。
示例性的,AR眼镜响应于用户的操作生成控制信息或者动作信息,并上传至云端(如服务器),然后云端(如服务器)可以根据获取的控制或者动作信息计算得到更新后的图像数据,并将更新的图像数据再发给AR眼镜,从而AR眼镜可以根据更新后的图像数据为用户呈现画面。
另外,AR眼镜还可以发送采集到的周围环境或者场景等图像数据,并上传至云端,云端可以根据该环境或者场景等图像数据计算生成图像数据。例如,可以将生成的图像数据发送给其他终端设备,例如作为其他终端设备的背景画面等。
与前述的下行数据相对应的,对于终端设备向网络设备发送的视频或音频等这一类型的上行数据(类型2)来说,也具有周期性传输的特点。以相邻两帧图像对应的数据包的到达时间间隔平均为16.67ms为例,如图5所示,上行数据的到达时间间隔平均也可以为16.67ms。但上行数据对于传输时延的要求不高,例如空口时延可以为60ms,即一个图像帧的数据在空口在60ms内传输完毕即可。
需要说明的是,针对本申请前述AR业务的上下行数据的特点,在本申请中,其他的具有相似特点的上下行数据的业务可以称为类AR业务,后续对此不再说明。
目前针对AR业务以及类AR业务,网络设备对终端设备的上行数据(类型2)和下行数据是分别进行调度的,即终端设备需要处于激活状态,以监听调度上行数据(类型2)的下行控制信息(Downlink Control Information,DCI),还需要监听调度下行数据的DCI。因此,终端设备需要监听较长时间,导致功耗较大。
其中,需要说明的是,DCI可以承载于PDCCH,上行数据可以承载于物理上行共享信道(Physical Uplink Shared Channel,PUSCH)。下行数据可以承载于物理下行共享信道(Physical Downlink Shared Channel,PDSCH)。
基于上述问题,以及基于上述的AR业务中上行数据(类型2)以及下行数据的特点,本申请提供一种通信方法及装置,通过将PDSCH的调度与PUSCH的调度对齐,即可以在相同或者相邻的时隙内调度PDSCH以及PUSCH,使得终端设备可以在较短的时间内处于激活时间,从而终端设备可以延长休眠时间,有效为终端设备降低功耗,提升用户的使用体验。
下面结合图1所示通信系统,对本申请实施例提供的实施方式进行描述。其中,下述实施例中的各设备可以具有图2所示部件。其中,本申请各实施例之间涉及的动作,术语等均可以相互参考,不予限制。本申请的实施例中各个设备之间交互的消息名称或消息中的参数名称等只是一个示例,具体实现中也可以采用其他的名称,不予限制。
本申请实施例提供一种非连续接收的配置方法,应用于如图1所示的通信系统。 如图6所示,该方法可以包括:
601:网络设备向终端设备发送DCI,该DCI调度PDSCH的传输,同时还调度PUSCH的传输。
其中,在通信技术领域,调度是指根据一定的调度算法或者协议,为数据传输进行参数指示以及资源分配。在本申请的实施例中,通过DCI实现调度是指网络设备通过该DCI可以为终端设备指示PDSCH的传输,同时该DCI还可以指示PUSCH的传输。
也就是说,网络设备向终端设备发送的该DCI不仅用于调度PDSCH的传输,同时还用于触发PUSCH的传输调度。
进一步的,本申请的实施例中DCI调度PDSCH时,具体可以为通过DCI向终端设备指示PDSCH的传输参数。
另外,PUSCH的传输参数可以由网络设备预先通过无线资源控制(Radio Resource Control,RRC)为终端设备进行配置,或者也可以通过DCI动态指示。
在一种实施方式中,PUSCH的传输参数主要可以包括PUSCH的频域资源分配(frequency domain resource allocation,FDRA)信息、时域资源分配(time domain resource allocation,TDRA)信息、混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)的进程号(HARQ process number,HPN)、下行分配指示(downlink assignment index,DAI)、冗余版本(redundancy version,RV)、跳频(frequency hopping,FH)或调制和编码方案(modulation and coding scheme,MCS)等信息中的一种或者多种。
602:终端设备接收来自网络设备的DCI,并根据DCI接收PDSCH,根据DCI发送PUSCH,PUSCH包括上行数据。
终端设备可以根据DCI中指示的时频资源位置上接收PDSCH,PDSCH中携带有下行数据,具体的可以为下行数据包。
然后,终端设备可以根据DCI发送PUSCH,其中,PUSCH中携带有上行数据,具体的可以为上行数据包。其中,上行数据或者下行数据是指业务数据,即由终端设备的应用程序(Application,APP)或网络设备如服务器生成的数据,上行数据具体是指前述的类型2的上行数据对应的数据包。
可选的,PUSCH中可能还携带有之前传输的PDSCH对应的HARQ反馈,其中,HARQ反馈可以用于指示终端设备是否成功从PDSCH中解码获取到相应的下行数据,例如,HARQ反馈可以包括确认(acknowledge,ACK)或者,非确认(not acknowledge,NACK)等。具体可以参考相关技术的说明,此处不再赘述。
在一种实施方式中,终端设备根据DCI触发PUSCH的调度,具体触发方法可以包括:
方式一、每当网络设备向终端设备发送调度下行数据的DCI时,该DCI均使得终端设备自动触发PUSCH的发送。
采用方式一这种实施方式的一个可能的前提是,网络设备可以为终端设备配置对应的工作模式或者工作状态,即终端设备被配置为DCI既调度PDSCH同时还调度PUSCH的工作模式或者工作状态。从而,当终端设备被配置为该工作模式或者工作状态下时,网络设备调度下行数据的每一个DCI均会触发终端设备的一个PUSCH发送。 对应的,当终端设备没有配置为该工作模式或者工作状态下时,网络设备调度下行数据的DCI仅用于调度PDSCH。
方式二、该DCI包括第一字段,所述第一字段用于指示该DCI是否调度PUSCH传输。
也就是说,可以通过在调度下行数据的DCI中加入一个特定字段,例如第一字段,用于指示该DCI是否触发PUSCH的传输。通过这种方法,可以在每次调度PDSCH时,都允许网络设备动态指示是否触发PUSCH的传输,令PUSCH的调度更加灵活。
例如,该第一字段可以占用1个比特,该比特的取值为“0”可以表示为该DCI不触发PUSCH发送,此时该DCI仅调度PDSCH的传输。该比特的取值为“1”则可以表示触发PUSCH发送,此时该DCI同时调度一个PDSCH和一个PUSCH的传输。
具体的,基于方式一以及方式二,PUSCH传输参数的多种不同配置方式将在下文进行详细描述,此处不再赘述。
如图7所示,由于AR业务或类AR业务的上行数据和下行数据的数据包到达周期相同,在每个周期(例如,周期为16.67ms)内,必然会出现一个上行数据包和一个下行数据包。即在一个16.67ms的周期时长内,无论上行数据还是下行数据,都有数据包需要传输,不会出现无数据包可传的情况,因此可以将上行数据和下行数据的调度时间对齐。
另外,由于下行数据传输对传输时延要求较高,而上行数据传输对传输时延的要求不高,则可以首先保证下行数据的传输,即在下行数据到达后,立即调度PDSCH的传输。相反,上行数据到达后,可以延迟一段时间再进行传输。如终端设备可以在相同或者相近的时间内调度PUSCH和PDSCH,如图7所示。
通过上述的实施方式,网络设备通过一条DCI可以同时调度PDSCH和PUSCH,从而使得PDSCH和PUSCH在较短的时间内传输,可以将数据传输限制在较短的时间内完成,减少终端设备处于激活状态的时间,减少用于监测PDCCH的时长,从而降低终端设备的功耗。另外,网络设备仅通过一条DCI可以同时调度PDSCH和PUSCH,有效降低了DCI的信令开销。
在一种实施方式中,在前述的步骤601之前,也就是网络设备向终端设备发送DCI之前,该方法还包括:
S1:网络设备向终端设备发送第一配置信息,第一配置信息指示PUSCH的传输参数。
S2:终端设备接收来自网络设备的第一配置信息。
在一种实施方式中,PUSCH的传输参数可以包括时域资源分配信息,用于指示终端设备发送PUSCH的时域资源位置。
可选的,时域资源分配信息可以包括第一时长,第一时长可以用于表示DCI所在的时隙与PUSCH所在的时隙之间的时隙间隔。
具体的,DCI所在的时隙与PUSCH所在的时隙之间的时隙间隔可以指传输DCI的起始时隙与传输PUSCH的起始时隙之间的时隙间隔,或者,可以指传输DCI的最后一个时隙与传输PUSCH的最后一个时隙之间的时隙间隔,或者,还可以指终端设 备接收到DCI的时隙与终端设备发送PUSCH的时隙之间的时隙间隔,或者,还可以指网络设备发送DCI的时隙与终端设备发送PUSCH的时隙之间的时隙间隔等。可以根据实际应用进行约定,本申请对此不做具体限制。
示例性的,网络设备向终端设备发送的第一配置信息中包括的第一时长为K2,K2的单位为时隙,DCI所在的时隙为时隙n,则终端设备接收到DCI之后,可以在时隙n+K2发送PUSCH,如图8所示。
在另一种实施方式中,网络设备为终端设备配置的传输PUSCH的时域资源还可以是周期性的时域资源。也就是说,网络设备为终端设备配置周期性出现的多个时域资源,如图9中的T1、T2和T3等,作为终端设备发送PUSCH的可选时域资源。
具体的,第一配置信息可以包括周期值,该周期值用于终端设备确定PUSCH可以使用的周期性时域资源。从而终端设备可以在接收到DCI之后,根据第一配置信息中包括的周期值,选择周期性出现的多个时域资源中的其中一个时域资源用于发送PUSCH。
其中,终端设备确定的发送PUSCH所在的时隙,可以为DCI所在的时隙之后的第一个周期性时域资源;或者,还可以为DCI所在的时隙之后间隔第二时长的第一个周期性时域资源。下面将分别结合附图进行说明。
在一种实施方式中,终端设备确定的发送PUSCH所在的时隙,可以为DCI所在的时隙之后的第一个周期性时域资源。
示例性的,如图9所示,第一配置信息中包括的周期值为t,终端设备根据周期值T可以确定PUSCH可以使用的周期性时域资源为T1、T2和T3等。网络设备发送的DCI所在的时隙为时隙n,则终端设备接收到DCI之后,可以在时隙n之后的第一个周期性时域资源上发送PUSCH,即如图9中可以在T2上发送PUSCH。
在另一种实施方式中,考虑到终端设备进行上行数据的组包所消耗的时长,以及终端设备生成PUSCH的时长,终端设备确定的发送PUSCH所在的时隙,可以为DCI所在的时隙之后间隔第二时长的第一个周期性时域资源。
其中,第二时长具体可以为第一时长,即第一配置信息中指示的DCI所在的时隙与PUSCH所在的时隙之间的时隙间隔。
或者,第二时长具体还可以等于终端设备向网络设备上报的第三时长。示例性的,第三时长可以为终端设备发送PUSCH的准备时长N2,其单位为OFDM符号,即第三时长为N2个OFDM符号。该第三时长与终端设备的处理速度相关,可以是终端设备在接入该网络设备时就向网络设备上报的;另外,第三时长与第一时长可以相同,也可以不同,第一时长和第三时长的单位也可以为其他形式,本申请对此做限制。
示例性的,如图10所示,第一时长为K2,第三时长为N2,DCI所在的时隙为时隙n,则终端设备接收到DCI之后,可以在时隙n之后间隔K2个时隙,或者,在DCI的结束符号之后间隔N2个符号,在之后的第一个周期性时域资源上发送PUSCH,即如图10中可以在T3上发送PUSCH。
在一种实施方式中,第一配置信息可以承载于RRC信令。此外,第一配置信息中除了可以包括前述实施方式中涉及的PUSCH传输参数中的TDRA之外,还可以包括其他的PUSCH传输参数,例如,第一配置信息中指示的PUSCH传输参数还包括HARQ 进程号HPN、下行分配指示DAI、冗余版本RV或调制和编码方案MCS中的至少一个。
或者,网络设备可以通过一条RRC信令配置PUSCH传输参数中的TDRA,再通过至少一条RRC信令配置PUSCH传输参数中的HARQ进程号HPN、下行分配指示DAI、冗余版本RV或调制和编码方案MCS中的至少一个参数。
通过上述的实施方式,网络设备通过在第一配置信息中为终端设备指示发送PUSCH的传输参数,从而使得终端设备可以在接收到DCI之后,根据第一配置信息中的指示确定发送PUSCH的传输参数,可以在较短时间内传输PDSCH和PUSCH,降低DCI的信令开销,并有效降低终端设备的功耗。
在一种实施方式中,网络设备还可以通过DCI指示PUSCH的部分传输参数,而不是通过RRC信令进行配置,从而可以更加灵活地指示传输参数。具体的,可以通过DCI隐式地进行指示,或者,可以通过DCI中的特定字段进行指示。例如,网络设备还可以通过DCI隐式地指示传输PUSCH的时域资源位置,或者,网络设备可以在DCI中增加PUSCH的MCS对应的指示位等。
下面将示例性提供几种通过DCI指示PUSCH的部分传输参数的实施方式,在下述的实施方式中,网络设备除了可以通过DCI指示PUSCH的部分传输参数之外,其他的PUSCH传输参数的指示方式仍可以结合下述的以及前述的实施方式进行指示。也就是说,本申请的多个可选的实施方式之间可以相互结合,根据本申请中的任意实施方式进行结合而得到的实施方式,都应涵盖在本申请的保护范围之内,本申请对此不再赘述。
1、通过DCI隐式地指示传输PUSCH的时域资源位置。
具体的,上述实施例中的步骤601中,即网络设备向终端设备发送的DCI指示第四时长和第五时长,其中,第四时长为DCI所在的时隙与PDSCH所在的时隙之间的时隙间隔,第五时长为PDSCH所在的时隙与PDSCH的HARQ反馈所在的时隙之间的时隙间隔。
然后,终端设备可以根据DCI中指示的第四时长以及第五时长确定第一时长,第一时长即为DCI所在的时隙与PUSCH所在的时隙之间的时隙间隔,从而终端设备可以根据第一时长确定向网络设备发送PUSCH的时隙位置。
在一种实施方式中,终端设备可以将PUSCH与HARQ-ACK反馈在相同时隙发送,也就是说,终端设备可以将第四时长和第五时长之和确定为第一时长。
示例性的,如图11所示,DCI所在的时隙为n,DCI中指示的第四时长为K0,第五时长为K1,则终端设备可以确定发送PUSCH的时隙位置为n+K0+K1。
此时,由于PUSCH与HARQ-ACK反馈在相同时隙发送,也就是说,HARQ-ACK与PUSCH是一一对应的,HARQ-ACK可以不基于码本(codebook)进行反馈,因此DCI中无需指示DAI信息,可进一步降低DCI的信令开销。
上述的实施方式,除了可以减少信令开销,还通过将PUSCH与HARQ-ACK反馈在相同时隙发送,即将两次上行传输合并为一次上行传输,从而进一步降低终端设备的功耗,提高通信效率。
2、通过DCI隐式地指示PUSCH的部分传输参数与PDSCH的相同。
在一种实施方式中,网络设备还可以通过DCI隐式地指示PDSCH和PUSCH共享部分相同的传输参数,如HPN、RV或者DAI等中的至少一个。
也就是说,被调度的PDSCH和PUSCH的HPN、NDI、RV值可以相同,例如,PDSCH的HPN与PUSCH的HPN相同;或者,PDSCH的DAI与PUSCH的DAI相同;或者,PDSCH的RV与PUSCH的RV相同。
3、通过DCI中指示的第五时长确定发送PUSCH对应的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)的符号位置。
在一种实施方式中,网络设备可以为终端设备配置多个不同的第五时长,并且每个第五时长的取值对应一种OFDM符号位置。其中,每种OFDM符号位置可以通过起始符号加符号长度的方式来定义。
具体的,网络设备可以通过下述方式进行配置,即在前述实施方式的步骤601之前,该方法还可以包括:
S1:网络设备向终端设备发送第二配置信息,第二配置信息配置M个OFDM符号位置,每个OFDM符号位置与一个第五时长的取值对应。
其中,M个OFDM符号位置可以作为PUSCH传输可以使用的符号位置。第五时长为PDSCH所在的时隙与PDSCH的HARQ反馈所在的时隙之间的时隙间隔,例如,前述的K1值。即每个K1值对应一种OFDM符号位置。其中,M可以为大于等于2的正整数。
S2:终端设备接收来自网络设备的第二配置信息。
终端设备接收第二配置信息并存储在本地,即记录M个OFDM符号位置与M个第五时长的取值及其对应关系。
在这种实施方式下,前述的步骤602具体可以包括:
S3:终端设备可以根据DCI指示的第五时长,以及步骤S2存储的第二配置信息,确定第五时长对应的OFDM符号位置。
S4:终端设备可以在根据步骤S3确定的OFDM符号位置向网络设备发送PUSCH。
4、DCI中包括HPN、DAI、RV或MCS指示中的至少一个。
在一种实施方式中,上述实施方式中步骤601中,网络设备向终端设备发送的DCI中,还可以包括PUSCH的部分传输参数,例如,HPN、DAI、RV或MCS指示中的至少一个。
具体的,可以通过在DCI中增加特定字段进行指示。示例性的,可以在DCI中增加第二字段,用于指示传输PUSCH所使用的MCS。
通过上述的几种实施方式,网络设备可以通过DCI动态指示PUSCH的部分传输参数,而非使用网络设备预先为终端设备配置好的固定的传输参数,可以动态适配当前的信道状态,增大了PUSCH调度的灵活性,改善数据传输的性能。
另外,本申请还提供一种实施方式,是通过网络设备预先为终端设备配置多组不同的传输PUSCH的传输参数,然后再通过向终端设备发送的DCI指示其中的一组,从而使得终端设备确定发送PUSCH的传输参数。
具体的,网络设备可以通过下述方式进行配置,即在前述实施方式的步骤601之前,该方法还可以包括:
S1:网络设备向终端设备发送第三配置信息,第三配置信息包括N组PUSCH的传输参数。
S2:接收来自网络设备的第三配置信息。
根据前述内容,PUSCH的传输参数可以包括频域资源分配信息、时域资源分配信息、HPN、DAI、RV或MCS指示中的一个或者多个。因此,此处的第三配置信息中的每组PUSCH的传输参数中可以包括频域资源分配信息、时域资源分配信息、HPN、DAI、RV或MCS指示中的一个或者多个。即,前述实施例中提到的PUSCH的传输参数,可以认为是一组PUSCH的传输参数。
在一种实施方式中,N组PUSCH的传输参数中的每组PUSCH的传输参数可以为前述实施方式中的第一配置信息,即第三配置信息包括N组(或N个)第一配置信息。第一配置信息用于指示传输PUSCH的传输参数,其中,传输参数包括频域资源分配信息、时域资源分配信息、HPN、DAI、RV或MCS指示中的至少一个。
示例性的,第一配置信息具体可以包括传输PUSCH的时频资源对应的第一时段或者周期值等。
在一种实施方式中,第三配置信息中可以包括所有的PUSCH的传输参数,从而可以降低PUSCH调度的信令开销。或者,第三配置信息可以仅包括部分PUSCH的传输参数,与前述实施方式中DCI动态指示的方式进行结合,通过网络设备预先配置部分PUSCH的传输参数,以及DCI动态指示部分PUSCH的传输参数的方式,从而可以提高PUSCH调度的灵活性。
在上述这种实施方式下,前述的实施方式的步骤601中,网络设备向终端设备发送的DCI中可以包括第一指示信息,其中,第一指示信息用于指示N组PUSCH的传输参数中的其中一组。
则前述的实施方式的步骤602,具体可以包括:
S3:终端设备根据DCI中包括的第一指示信息确定对应的PUSCH的传输参数。
例如,网路设备为终端设备配置了三组PUSCH的传输参数,DCI中包括的第一指示信息可以为2个比特,第一指示信息为00表示第一组PUSCH的传输参数,第一指示信息为01表示第二组PUSCH的传输参数,第一指示信息为10表示第三组PUSCH的传输参数,第一指示信息为11可以表示不触发PUSCH传输。
S4:终端设备根据确定的传输参数向网络设备发送PUSCH。
由于本申请的实施方式是针对AR业务以及类AR业务进行的调度方式的优化,因此,为了区分不同业务类型匹配不同的调度方式,终端设备可以预先向网络设备上报业务类型,从而使得网络设备可以根据不同的业务类型切换不同的调度方式,具体的,可以向对应的终端设备配置相关的PUSCH的传输参数,或者,使能DCI中的特定字段等,实现前述的通过一个DCI同时调度PDSCH以及PUSCH的效果。
具体的,当终端设备确定当前的业务类型为AR业务以及类AR业务时,可以通过下述方式进行配置,即在前述实施方式的步骤601之前,如图12所示,该方法还可以包括:
1201:终端设备向网络设备发送第二指示信息。
其中,第二指示信息可以包括终端设备当前的业务类型,或者,终端设备的上行 业务数据的传输间隔。其中,上行业务数据的传输间隔具体可以指上行数据包的时间间隔,从而网络设备可以根据该上行业务数据的传输间隔与下行业务数据的传输间隔进行对比,确定这二者的值相同或者相近,即可以确定该终端设备的业务类型为AR业务以及类AR业务,可以通过本申请实施例提供的调度方式进行数据传输。
第二指示信息还可以包括用于指示终端设备上行业务的时延容忍度较大,或者时延预算较大的指示信息。
或者,第二指示信息可以包括用于请求网络设备配置PUSCH对应的配置参数的请求信息。其中,PUSCH对应的配置参数具体可以包括前述实施方式中的第一配置信息、第二配置信息或第三配置信息中的至少一种。
1202:网络设备接收第二指示信息,向终端设备发送PUSCH对应的配置参数。
如果根据前述的实施方式,若网络设备发送的PUSCH对应的配置参数中仅指示了PUSCH的部分传输参数,则网络设备还需要通过DCI显示地指示其他的PUSCH的传输参数,因此,网络设备需要使能DCI中的特定指示位。
例如,后续向该终端设备发送的DCI中增加第一字段,用于指示该DCI调度PUSCH传输。或者,DCI中增加第二字段,用于指示传输PUSCH的MCS。
上述的实施方式,通过终端设备的主动上报,从而使得网络设备及时为终端设备灵活地配置调度PUSCH的传输参数,网络设备可以通过一个DCI实现同时调度PDSCH以及PUSCH,减少了终端设备的无效PDCCH监测时间,为终端设备节省功耗。
另外,本申请还提供另一种通信方式,不改变现有的DCI调度方式,而是通过限制网络设备的调度参数的取值,从而也可以达到将上行数据与下行数据调度对齐的效果。
在一定时段内,网络设备以第一调度方式为终端设备调度PDSCH以及PUSCH。或者,也可以理解为终端设备以第一调度方式接收PDSCH,以及传输PUSCH。
其中,如图13所示,第一调度方式可以包括:
1301:网络设备向终端设备发送第一DCI,以及向终端设备发送第二DCI。
其中,第一DCI用于调度PDSCH的传输,PDSCH包括下行数据,第二DCI用于调度PUSCH的传输,PUSCH包括上行数据。PUSCH与PDSCH对应的HARQ反馈在相同时隙传输。
需要说明的是,为了保证上下行调度发生在尽可能短的时间内,网络设备可以在第六时长内向终端设备发送第一DCI,以及向终端设备发送第二DCI。
具体的,第六时长可以是X个时隙。优选的,第六时长对应同一个时隙或者相邻的两个时隙。
示例性的,X=1,即第六时长对应一个时隙,则网络设备发送第一DCI与第二DCI可以在同一个时隙发送。X=2,即第六时长对应2个时隙,则网络设备发送第一DCI与第二DCI可以在相邻的两个时隙。其中,网络设备可以先发送第一DCI后发送第二DCI,或者可以先发送第二DCI后发送第一DCI,网络设备发送第一DCI与第二DCI的先后顺序并不做具体限制。
1302:终端设备接收来自网络设备第一DCI和第二DCI,并根据第一DCI接收 PDSCH,根据第二DCI发送PUSCH。
终端设备发送PUSCH可以与发送PDSCH对应的HARQ反馈在相同时隙内。
示例性的,若第一DCI在时隙n1中发送,其中指示了第四时长(即第一DCI所在的时隙与PDSCH所在的时隙之间的时隙间隔)和第五时长(即PDSCH所在的时隙与PDSCH的HARQ反馈所在的时隙之间的时隙间隔),例如,第四时长为K0,第五时长为K1。第二DCI在时隙n2中发送,其中指示了第一时长(即第二DCI所在的时隙与PUSCH所在的时隙之间的时隙间隔),例如,第一时长为K2。其中,n1+K0+K1=n2+K2,即保证了终端设备发送HARQ反馈与PUSCH所在时隙相同。
换句话说,第一调度方式即是指,网络设备通过在相同或者相邻的时隙内,向终端设备发送两个DCI,分别用于调度下行数据传输以及上行数据传输,即两个DCI分别调度PDSCH以及PUSCH。可选的,第一调度方式还包括PDSCH的HARQ反馈与PUSCH所在时隙相同。
在一种实施方式中,针对AR业务或类AR业务,在终端设备的上下行业务量相当的情况下,网络设备每次为该终端设备调度下行数据传输,必然对应的,该终端设备有上行数据需要向网络设备发送。
则在第七时长内,网络设备仅以第一调度方式调度该终端设备,网络设备对该终端设备不单独调度上行数据传输,也不单独调度下行数据传输。
相对应的,在第七时长内,终端设备仅以第一调度方式接收PDSCH以及传输PUSCH,终端设备不单独接收PDSCH,也不单独传输PUSCH。
在另一种实施方式中,若某一终端设备的上行业务量大于下行业务量的情况下,在第七时长内,网络设备以第一调度方式调度该终端设备,或者,网络设备对该终端设备单独调度上行数据传输,不调度下行数据传输。
相对应的,在第七时长内,终端设备以第一调度方式接收PDSCH以及传输PUSCH,或者,终端设备接收PDSCH,不传输PUSCH。
在另一种实施方式中,若某一终端设备的下行业务量大于上行业务量的情况下,在第七时长内,网络设备以第一调度方式调度该终端设备,或者,网络设备对该终端设备单独调度下行数据传输,不调度上行数据传输。
相对应的,在第七时长内,终端设备以第一调度方式接收PDSCH以及传输PUSCH,或者,终端设备传输PUSCH,不接收PDSCH。
其中,上述的第七时长可以是在网络设备的设置中预先设置好的,也可以是网络设备为终端设备调度数据传输之前,通过终端设备上报至网络设备的,或者网络设备与终端设备协商确定的。例如,第七时长可以设置为10ms,或者100ms。
在一种实施方式中,上述的网络设备以第一调度方式为终端设备调度PDSCH以及PUSCH的实施方式之前,终端设备可以向网络设备发送第三指示信息。其中,第三指示信息可以包括业务类型,或者,终端设备的上行业务数据的传输间隔,或者,第三指示信息包括用于请求网络设备以第一调度方式为该终端设备调度数据传输。或者,第三指示信息还可以包括用于指示该终端设备的上行业务的时延容忍度较大,或者时延预算较大。
上述本申请的实施方式,基于现有的调度方式,通过在相同或者相邻时隙的两个 DCI,用于分别调度PDSCH以及PUSCH,从而可以将上行数据与下行数据调度对齐。也可以减少终端设备无效监测PDCCH的时长,为终端设备节省功耗。
可以理解的,本申请实施例中同一个步骤或者具有相同功能的步骤或者消息在不同实施例之间可以互相参考借鉴。
基于上述的各实施方式,本申请还提供一种通信装置,该通信装置可以是终端设备。该通信装置具有实现上述各个可能的实施方式中的终端设备的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,如图14所示,该通信装置1400可以包括收发单元1401和处理单元1402,这些单元可以执行上述各个可能的实施方式中的终端设备的相应功能。
例如,参照上述实施例中的步骤602,收发单元1401可以用于执行接收来自网络设备的DCI。处理单元1402可以用于执行根据DCI接收PDSCH,根据DCI发送PUSCH,PUSCH包括上行数据。
另外,在另一种实施方式中,参照图12中步骤1201,收发单元1401可以用于向网络设备发送第二指示信息。
具体的,该通信装置1400可以实现上述各个可能的实施方式中的终端设备的功能,具体可以参见前述各个方法示例中的详细描述,此处不做赘述。
另外,本申请还提供一种通信装置,该通信装置可以是网络设备。该通信装置具有实现上述各个可能的实施方式中的网络设备的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,如图14所示,该通信装置1400可以包括收发单元1401和处理单元1402,这些单元可以执行上述各个可能的实施方式中的网络设备的相应功能。
例如,参照上述实施例中的步骤601,收发单元1401可以用于向终端设备发送DCI。处理单元1402可以用于执行生成该同时调度PDSCH和PUSCH的DCI。
另外,在另一种实施方式中,参照图12中步骤1202,收发单元1401可以用于接收第二指示信息,向终端设备发送PUSCH对应的配置参数。
具体的,该通信装置1400可以实现上述各个可能的实施方式中的网络设备的功能,具体可以参见前述各个方法示例中的详细描述,此处不做赘述。
可以理解的,结合图2所示,当上述装置是电子设备时,上述的传输模块可以是收发器,可以包括天线和射频电路等,处理模块可以是处理器,例如基带芯片等。当该装置是具有上述实施例中的第一通信设备和/或第二通信设备功能的部件时,传输模块可以是射频单元,处理模块可以是处理器。当装置是芯片系统时,传输模块可以是芯片系统的输入接口和/或输出接口,处理模块可以是芯片系统的处理器,例如:中央处理单元(central processing unit,CPU)。
需要说明的是,上述装置中具体的执行过程和实施例可以参照上述方法实施例中终端设备或者网络设备执行的步骤和相关的描述,所解决的技术问题和带来的技术效 果也可以参照前述实施例所述的内容,此处不再一一赘述。
在本实施例中,该通信装置以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定电路、执行一个或多个软件或固件程序的处理器和存储器、集成逻辑电路、和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该侧行链路的传输装置可以采用如前述中的图2所示的形式。
示例性的,图14中的处理单元1402的功能/实现过程可以通过图2中的处理器201调用存储器204中存储的计算机程序指令来实现。例如,图14中收发单元1401的功能/实现过程可以通过图2中的通信接口203。
在一些实施方式中,图2中的处理器201可以通过调用存储器204中存储的计算机执行指令,使得装置200可以执行上述各个方法实施例中的终端设备或者网络设备的操作,实现本申请的上述各个可能的实施方法。
上述各个装置实施例中的通信组装置可以与方法实施例中的终端设备或者网络设备完全对应,由相应的模块或者单元执行相应的步骤,例如,当该装置以芯片的方式实现时,该收发单元可以是该芯片用于从其他芯片或者装置接收信号的接口电路。以上用于发送或接收的收发单元是一种该装置的接口电路,用于向其他装置发送信号,例如,当该装置以芯片的方式实现时,该收发单元可以是用于向其他芯片或者装置发送信号的接口电路。
在示例性实施例中,还提供了一种包括指令的计算机可读存储介质,或者计算机程序产品,上述指令可由通信装置200的处理器201执行以完成上述实施例的方法。因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
本申请还提供了一种计算机程序产品,该计算机程序产品包括指令,当该指令被执行时,以使得该计算机分别可以执行对应于上述方法的终端设备或者网络设备的操作。
本申请实施例还提供了一种系统芯片,该系统芯片包括:处理单元和通信单元,该处理单元,例如可以是处理器,该通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行计算机指令,以使该芯片所应用的通信装置执行上述本申请实施例提供的方法中的终端设备和网络设备的操作。
可选地,上述本申请实施例中提供的任意一种通信装置可以包括该系统芯片。
可选地,该计算机指令被存储在存储单元中。
本申请实施例还提供了一种通信系统,该通信系统可以包括:上述的实施方式中的任一种终端设备和网络设备。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的 公知常识或惯用技术手段。
结合以上,本申请还提供如下实施例:
实施例1、一种通信方法,应用于终端设备,该方法包括:接收来自网络设备的下行控制信息DCI,所述DCI调度物理下行共享信道PDSCH的传输,所述DCI同时还调度物理上行共享信道PUSCH的传输;根据所述DCI接收所述PDSCH;根据所述DCI发送所述PUSCH,所述PUSCH包括上行数据。
实施例2、根据实施例1所述的方法,终端设备接收来自网络设备的DCI之前,该方法还包括:接收来自所述网络设备的第一配置信息,所述第一配置信息指示所述PUSCH的传输参数,所述传输参数包括频域资源分配信息和/或时域资源分配信息。
实施例3、根据实施例2所述的方法,包括:时域资源分配信息包括第一时长,第一时长为所述DCI所在的时隙与所述PUSCH所在的时隙之间的时隙间隔。
实施例4、根据实施例2所述的方法,包括:第一配置信息包括周期值,所述周期值用于确定所述PUSCH可以使用的周期性时域资源。
实施例5、根据实施例4所述的方法,包括:PUSCH所在的时隙为所述DCI所在的时隙之后的第一个周期性时域资源;或者,所述PUSCH所在的时隙为所述DCI所在的时隙之后间隔第二时长的第一个周期性时域资源,所述第二时长为所述第一时长或者所述终端设备上报的第三时长。
实施例6、根据实施例1或实施例2所述的方法,包括:DCI指示第四时长和第五时长,其中,所述第四时长为所述DCI所在的时隙与所述PDSCH所在的时隙之间的时隙间隔,所述第五时长为所述PDSCH所在的时隙与所述PDSCH的混合自动重传请求HARQ反馈所在的时隙之间的时隙间隔;根据所述DCI发送所述PUSCH,具体包括:根据所述第四时长以及所述第五时长确定第一时长,所述第一时长为所述DCI所在的时隙与所述PUSCH所在的时隙之间的时隙间隔,根据所述第一时长向所述网络设备发送所述PUSCH。
实施例7、根据实施例2所述的方法,该方法还包括:接收来自所述网络设备的第二配置信息,所述第二配置信息配置M个正交频分复用OFDM符号位置,所述M个OFDM符号位置用于所述PUSCH的传输,每个所述OFDM符号位置与一个第五时长的取值对应,其中,所述第五时长为所述PDSCH所在的时隙与所述PDSCH的HARQ反馈所在的时隙之间的时隙间隔。
实施例8、根据实施例7所述的方法,根据DCI发送PUSCH具体包括:根据所述DCI指示的第五时长确定所述第五时长对应的OFDM符号位置;在所述OFDM符号位置发送所述PUSCH。
实施例9、根据实施例1至实施例8任一项所述的方法,包括:传输参数还包括HARQ进程号HPN、下行分配指示DAI、冗余版本RV或调制和编码方案MCS中的至少一个。
实施例10、根据实施例1至实施例8任一项所述的方法,包括:DCI中包括HPN、DAI、RV或MCS指示中的至少一个。
实施例11、根据实施例10所述的方法,包括:所述PDSCH的HARQ进程号HPN与所述PUSCH的HPN相同;所述PDSCH的新传数据指示DAI与所述PUSCH的DAI 相同;所述PDSCH的冗余版本RV与所述PUSCH的RV相同。
实施例12、根据实施例1至实施例11任一项所述的方法,包括:DCI包括第一字段,所述第一字段用于指示所述DCI是否调度所述PUSCH传输。
实施例13、根据实施例1至实施例12任一项所述的方法,该方法还包括:接收来自所述网络设备的第三配置信息,所述第三配置信息包括N组传输PUSCH的第一配置信息,所述第一配置信息用于指示传输PUSCH的传输参数,其中,所述传输参数包括频域资源分配信息、时域资源分配信息、HPN、DAI、RV或MCS指示中的至少一个;所述DCI中包括第一指示信息,所述第一指示信息用于指示所述N组第一配置信息中的其中一组。
实施例14、根据实施例1至实施例13任一项所述的方法,接收来自网络设备的DCI之前,所述方法还包括:向所述网络设备发送第二指示信息,所述第二指示信息包括业务类型,或者,所述终端设备的上行业务数据的传输间隔,或者,所述第二指示信息包括用于请求所述网络设备配置所述PUSCH对应的配置参数;所述配置参数包括所述第一配置信息、所述第二配置信息或所述第三配置信息中的至少一种。
实施例15、一种通信方法,应用于网络设备,该方法包括:向终端设备发送下行控制信息DCI,所述DCI调度物理下行共享信道PDSCH的传输,所述DCI同时还调度物理上行共享信道PUSCH的传输。
实施例16、根据实施例15所述的方法,所述向终端设备发送下行控制信息DCI之前,所述方法还包括:向所述终端设备发送第一配置信息,所述第一配置信息指示所述终端设备发送所述PUSCH的传输参数,所述传输参数包括频域资源分配信息和/或时域资源分配信息。
实施例17、根据实施例16所述的方法,时域资源分配信息包括第一时长,所述第一时长为所述DCI所在的时隙与所述PUSCH所在的时隙之间的时隙间隔。
实施例18、根据实施例16所述的方法,第一配置信息包括周期值,所述周期值用于指示所述终端设备发送的所述PUSCH可以使用的周期性时域资源。
实施例19、根据实施例18所述的方法,PUSCH所在的时隙为所述DCI所在的时隙之后的第一个周期性时域资源;或者,所述PUSCH所在的时隙为所述DCI所在的时隙之后间隔第二时长的第一个周期性时域资源,所述第二时长为所述第一时长或者所述终端设备上报的第三时长。
实施例20、根据实施例15或实施例16所述的方法,所述DCI指示第四时长和第五时长,其中,所述第四时长为所述DCI所在的时隙与所述PDSCH所在的时隙之间的时隙间隔,所述第五时长为所述PDSCH所在的时隙与所述PDSCH的混合自动重传请求HARQ反馈所在的时隙之间的时隙间隔;所述第四时长以及所述第五时长用于所述终端设备确定第一时长,所述第一时长为所述DCI所在的时隙与所述PUSCH所在的时隙之间的时隙间隔,根据所述第一时长向所述网络设备发送所述PUSCH。
实施例21、根据实施例16所述的方法,包括:向所述终端设备发送第二配置信息,所述第二配置信息配置M个正交频分复用OFDM符号位置,所述M个OFDM符号位置用于所述PUSCH的传输,每个所述OFDM符号位置与一个第五时长的取值对应,其中,所述第五时长为所述PDSCH所在的时隙与所述PDSCH的HARQ反馈所 在的时隙之间的时隙间隔。
实施例22、根据实施例21所述的方法,DCI中包括所述第五时长的指示,用于指示所述终端设备确定所述第五时长对应的OFDM符号位置。
实施例23、根据实施例15至实施例22任一项所述的方法,传输参数还包括HARQ进程号HPN、下行分配指示DAI、冗余版本RV或调制和编码方案MCS中的至少一个。
实施例24、根据实施例15至实施例22任一项所述的方法,DCI中包括HPN、DAI、RV或MCS指示中的至少一个。
实施例25、根据实施例24所述的方法,所述PDSCH的HARQ进程号HPN与所述PUSCH的HPN相同;所述PDSCH的新传数据指示DAI与所述PUSCH的DAI相同;所述PDSCH的冗余版本RV与所述PUSCH的RV相同。
实施例26、根据实施例15至实施例25任一项所述的方法,DCI包括第一字段,所述第一字段用于指示所述DCI是否调度所述PUSCH传输。
实施例27、根据实施例15至实施例26任一项所述的方法,该方法还包括:向所述网络设备发送第三配置信息,所述第三配置信息包括N组传输PUSCH的第一配置信息,所述第一配置信息用于指示传输PUSCH的传输参数,其中,所述传输参数包括频域资源分配信息、时域资源分配信息、HPN、DAI、RV或MCS指示中的至少一个;所述DCI中包括第一指示信息,所述第一指示信息用于指示所述N组第一配置信息中的其中一组。
实施例28、根据实施例15至实施例27任一项所述的方法,所述向终端设备发送下行控制信息DCI之前,所述方法还包括:接收来自所述终端设备的第二指示信息,所述第二指示信息包括业务类型,或者,所述终端设备的上行业务数据的传输间隔,或者,所述第二指示信息包括用于请求所述网络设备向所述终端设备配置所述PUSCH对应的配置参数;所述配置参数包括所述第一配置信息、所述第二配置信息或所述第三配置信息中的至少一种。
实施例29、一种通信方法,应用于终端设备,该方法包括:以第一调度方式接收PDSCH,以及传输PUSCH;所述第一调度方式包括:在第六时长内,接收来自网络设备第一DCI和第二DCI,所述第一DCI用于调度物理下行共享信道PDSCH的传输,所述第二DCI用于调度物理上行共享信道PUSCH的传输,其中,PDSCH对应的HARQ反馈与所述PUSCH在相同时隙传输;根据所述第一DCI接收PDSCH,根据所述第二DCI发送PUSCH,所述PUSCH包括上行数据。
实施例30、根据实施例29所述的方法,包括:在第七时长内,所述终端设备仅以第一调度方式接收PDSCH以及传输PUSCH,所述终端设备不单独接收PDSCH,也不单独传输PUSCH;或者,在第七时长内,所述终端设备以所述第一调度方式接收PDSCH以及传输PUSCH,或者,所述终端设备接收PDSCH,不单独传输PUSCH;或者,在第七时长内,所述终端设备以所述第一调度方式接收PDSCH以及传输PUSCH,或者,所述终端设备传输PUSCH,不单独接收PDSCH。
实施例31、根据实施例29或实施例30所述的方法,包括:接收来自网络设备第一DCI和第二DCI之前,所述方法还包括:向所述网络设备发送第三指示信息,所述第三指示信息包括业务类型,或者,所述终端设备的上行业务数据的传输间隔,或者, 所述第三指示信息包括用于请求所述网络设备以所述第一调度方式调度数据传输。
实施例32、根据实施例29至实施例31所述的方法,包括:第六时长对应同一个时隙或者相邻的两个时隙。
实施例33、一种终端设备,所述终端设备包括一个或多个处理器和一个或多个存储器;所述一个或多个存储器与所述一个或多个处理器耦合,所述一个或多个存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令,当所述一个或多个处理器执行所述计算机指令时,使得所述终端设备执行如实施例1至实施例14、或执行如实施例29至实施例32任一项所述的方法。
实施例34、一种网络设备,所述终端设备包括一个或多个处理器和一个或多个存储器;所述一个或多个存储器与所述一个或多个处理器耦合,所述一个或多个存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令,当所述一个或多个处理器执行所述计算机指令时,使得所述网络设备执行如实施例15至实施例28任一项所述的方法。
实施例35、一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机可执行指令,所述计算机可执行指令在被所述计算机调用时用于使所述计算机执行上述实施例1-实施例14中任一项所述的方法,或者执行上述实施例15至实施例28中任一项所述的方法,或者执行上述实施例29至实施例32中任一项所述的方法。
实施例36、一种芯片,所述芯片与存储器耦合,用于读取并执行所述存储器中存储的程序指令,以实现上述实施例1-实施例14中任一项所述的方法,或者上述实施例15至实施例28中任一项所述的方法,或者上述实施例29至实施例32中任一项所述的方法。
实施例37、一种计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机如执行上述实施例1-实施例14中任一项所述的方法,或者执行上述实施例15至实施例28中任一项所述的方法,或者执行上述实施例29至实施例32中任一项所述的方法。
最后应说明的是:以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (33)

  1. 一种通信方法,其特征在于,应用于终端设备,所述方法包括:
    接收来自网络设备的下行控制信息DCI,所述DCI调度物理下行共享信道PDSCH的传输,所述DCI同时还调度物理上行共享信道PUSCH的传输;
    根据所述DCI接收所述PDSCH;
    根据所述DCI发送所述PUSCH,所述PUSCH包括上行数据。
  2. 根据权利要求1所述的方法,其特征在于,所述接收来自网络设备的DCI之前,所述方法还包括:
    接收来自所述网络设备的第一配置信息,所述第一配置信息指示所述PUSCH的传输参数,所述传输参数包括频域资源分配信息和/或时域资源分配信息。
  3. 根据权利要求2所述的方法,其特征在于,所述时域资源分配信息包括第一时长,所述第一时长为所述DCI所在的时隙与所述PUSCH所在的时隙之间的时隙间隔。
  4. 根据权利要求2所述的方法,其特征在于,所述第一配置信息包括周期值,所述周期值用于确定所述PUSCH可以使用的周期性时域资源。
  5. 根据权利要求4所述的方法,其特征在于,所述PUSCH所在的时隙为所述DCI所在的时隙之后的第一个周期性时域资源;
    或者,所述PUSCH所在的时隙为所述DCI所在的时隙之后间隔第二时长的第一个周期性时域资源,所述第二时长为所述第一时长或者所述终端设备上报的第三时长。
  6. 根据权利要求1或2所述的方法,其特征在于,所述DCI指示第四时长和第五时长,其中,所述第四时长为所述DCI所在的时隙与所述PDSCH所在的时隙之间的时隙间隔,所述第五时长为所述PDSCH所在的时隙与所述PDSCH的混合自动重传请求HARQ反馈所在的时隙之间的时隙间隔;
    根据所述DCI发送所述PUSCH,具体包括:
    根据所述第四时长以及所述第五时长确定第一时长,所述第一时长为所述DCI所在的时隙与所述PUSCH所在的时隙之间的时隙间隔,根据所述第一时长向所述网络设备发送所述PUSCH。
  7. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的第二配置信息,所述第二配置信息配置M个正交频分复用OFDM符号位置,所述M个OFDM符号位置用于所述PUSCH的传输,每个所述OFDM符号位置与一个第五时长的取值对应,其中,所述第五时长为所述PDSCH所在的时隙与所述PDSCH的HARQ反馈所在的时隙之间的时隙间隔。
  8. 根据权利要求7所述的方法,其特征在于,根据所述DCI发送所述PUSCH,具体包括:
    根据所述DCI指示的第五时长确定所述第五时长对应的OFDM符号位置;
    在所述OFDM符号位置发送所述PUSCH。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述传输参数还包括HARQ进程号HPN、下行分配指示DAI、冗余版本RV或调制和编码方案MCS中的至少一个。
  10. 根据权利要求1-8任一项所述的方法,其特征在于,所述DCI中包括HPN、 DAI、RV或MCS指示中的至少一个。
  11. 根据权利要求10所述的方法,其特征在于,所述PDSCH的HARQ进程号HPN与所述PUSCH的HPN相同;所述PDSCH的新传数据指示DAI与所述PUSCH的DAI相同;所述PDSCH的冗余版本RV与所述PUSCH的RV相同。
  12. 根据权利要求1-11任一项所述的方法,其特征在于,所述DCI包括第一字段,所述第一字段用于指示所述DCI是否调度所述PUSCH传输。
  13. 根据权利要求1-12任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的第三配置信息,所述第三配置信息包括N组传输PUSCH的第一配置信息,所述第一配置信息用于指示传输PUSCH的传输参数,其中,所述传输参数包括频域资源分配信息、时域资源分配信息、HPN、DAI、RV或MCS指示中的至少一个;
    所述DCI中包括第一指示信息,所述第一指示信息用于指示所述N组第一配置信息中的其中一组。
  14. 根据权利要求1-13任一项所述的方法,其特征在于,所述接收来自网络设备的DCI之前,所述方法还包括:
    向所述网络设备发送第二指示信息,所述第二指示信息包括业务类型,或者,所述终端设备的上行业务数据的传输间隔,或者,所述第二指示信息包括用于请求所述网络设备配置所述PUSCH对应的配置参数;所述配置参数包括所述第一配置信息、所述第二配置信息或所述第三配置信息中的至少一种。
  15. 一种通信方法,其特征在于,应用于网络设备,所述方法包括:
    向终端设备发送下行控制信息DCI,所述DCI调度物理下行共享信道PDSCH的传输,所述DCI同时还调度物理上行共享信道PUSCH的传输。
  16. 根据权利要求15所述的方法,其特征在于,所述向终端设备发送下行控制信息DCI之前,所述方法还包括:
    向所述终端设备发送第一配置信息,所述第一配置信息指示所述终端设备发送所述PUSCH的传输参数,所述传输参数包括频域资源分配信息和/或时域资源分配信息。
  17. 根据权利要求16所述的方法,其特征在于,所述时域资源分配信息包括第一时长,所述第一时长为所述DCI所在的时隙与所述PUSCH所在的时隙之间的时隙间隔。
  18. 根据权利要求16所述的方法,其特征在于,所述第一配置信息包括周期值,所述周期值用于指示所述终端设备发送的所述PUSCH可以使用的周期性时域资源。
  19. 根据权利要求18所述的方法,其特征在于,所述PUSCH所在的时隙为所述DCI所在的时隙之后的第一个周期性时域资源;
    或者,所述PUSCH所在的时隙为所述DCI所在的时隙之后间隔第二时长的第一个周期性时域资源,所述第二时长为所述第一时长或者所述终端设备上报的第三时长。
  20. 根据权利要求15或16所述的方法,其特征在于,所述DCI指示第四时长和第五时长,其中,所述第四时长为所述DCI所在的时隙与所述PDSCH所在的时隙之间的时隙间隔,所述第五时长为所述PDSCH所在的时隙与所述PDSCH的混合自动重传请求HARQ反馈所在的时隙之间的时隙间隔;
    所述第四时长以及所述第五时长用于所述终端设备确定第一时长,所述第一时长为所述DCI所在的时隙与所述PUSCH所在的时隙之间的时隙间隔,根据所述第一时长向所述网络设备发送所述PUSCH。
  21. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第二配置信息,所述第二配置信息配置M个正交频分复用OFDM符号位置,所述M个OFDM符号位置用于所述PUSCH的传输,每个所述OFDM符号位置与一个第五时长的取值对应,其中,所述第五时长为所述PDSCH所在的时隙与所述PDSCH的HARQ反馈所在的时隙之间的时隙间隔。
  22. 根据权利要求21所述的方法,其特征在于,所述DCI中包括所述第五时长的指示,用于指示所述终端设备确定所述第五时长对应的OFDM符号位置。
  23. 根据权利要求15-22任一项所述的方法,其特征在于,所述传输参数还包括HARQ进程号HPN、下行分配指示DAI、冗余版本RV或调制和编码方案MCS中的至少一个。
  24. 根据权利要求15-22任一项所述的方法,其特征在于,所述DCI中包括HPN、DAI、RV或MCS指示中的至少一个。
  25. 根据权利要求24所述的方法,其特征在于,所述PDSCH的HARQ进程号HPN与所述PUSCH的HPN相同;所述PDSCH的新传数据指示DAI与所述PUSCH的DAI相同;所述PDSCH的冗余版本RV与所述PUSCH的RV相同。
  26. 根据权利要求15-25任一项所述的方法,其特征在于,所述DCI包括第一字段,所述第一字段用于指示所述DCI是否调度所述PUSCH传输。
  27. 根据权利要求15-26任一项所述的方法,其特征在于,所述方法还包括:
    向所述网络设备发送第三配置信息,所述第三配置信息包括N组传输PUSCH的第一配置信息,所述第一配置信息用于指示传输PUSCH的传输参数,其中,所述传输参数包括频域资源分配信息、时域资源分配信息、HPN、DAI、RV或MCS指示中的至少一个;
    所述DCI中包括第一指示信息,所述第一指示信息用于指示所述N组第一配置信息中的其中一组。
  28. 根据权利要求15-27任一项所述的方法,其特征在于,所述向终端设备发送下行控制信息DCI之前,所述方法还包括:
    接收来自所述终端设备的第二指示信息,所述第二指示信息包括业务类型,或者,所述终端设备的上行业务数据的传输间隔,或者,所述第二指示信息包括用于请求所述网络设备向所述终端设备配置所述PUSCH对应的配置参数;所述配置参数包括所述第一配置信息、所述第二配置信息或所述第三配置信息中的至少一种。
  29. 一种终端设备,其特征在于,包括:一个或多个处理器和一个或多个存储器;
    所述一个或多个存储器与所述一个或多个处理器耦合,所述一个或多个存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令,当所述一个或多个处理器执行所述计算机指令时,使得所述终端设备执行如权利要求1-14任一项所述的方法。
  30. 一种网络设备,其特征在于,包括:一个或多个处理器和一个或多个存储器;
    所述一个或多个存储器与所述一个或多个处理器耦合,所述一个或多个存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令,当所述一个或多个处理器执行所述计算机指令时,使得所述网络设备执行如权利要求15-28任一项所述的方法。
  31. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机可执行指令,所述计算机可执行指令在被所述计算机调用时用于使所述计算机执行上述权利要求1-14中任一项所述的方法,或者执行上述权利要求15-28中任一项所述的方法。
  32. 一种芯片,其特征在于,所述芯片与存储器耦合,用于读取并执行所述存储器中存储的程序指令,以实现如权利要求1-14中任一项所述的方法,或者实现如述权利要求15-28中任一项所述的方法。
  33. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机如执行权利要求1-14中任一项所述的方法,或者执行如权利要求15-28中任一项所述的方法。
PCT/CN2022/096329 2021-06-22 2022-05-31 一种通信方法及装置 WO2022267844A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110690133 2021-06-22
CN202110690133.6 2021-06-22
CN202110877118.2A CN115515210A (zh) 2021-06-22 2021-07-31 一种通信方法及装置
CN202110877118.2 2021-07-31

Publications (1)

Publication Number Publication Date
WO2022267844A1 true WO2022267844A1 (zh) 2022-12-29

Family

ID=84499639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/096329 WO2022267844A1 (zh) 2021-06-22 2022-05-31 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN115515210A (zh)
WO (1) WO2022267844A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110719645A (zh) * 2018-07-13 2020-01-21 维沃移动通信有限公司 一种信道检测指示方法、终端及网络设备
WO2021060766A1 (ko) * 2019-09-27 2021-04-01 삼성전자 주식회사 무선 통신 시스템에서 단말의 빔 변경 방법 및 장치
WO2021088017A1 (zh) * 2019-11-08 2021-05-14 Oppo广东移动通信有限公司 用于确定下行控制信息类型的方法及设备
WO2022067726A1 (zh) * 2020-09-30 2022-04-07 华为技术有限公司 用于资源调度的通信方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110719645A (zh) * 2018-07-13 2020-01-21 维沃移动通信有限公司 一种信道检测指示方法、终端及网络设备
WO2021060766A1 (ko) * 2019-09-27 2021-04-01 삼성전자 주식회사 무선 통신 시스템에서 단말의 빔 변경 방법 및 장치
WO2021088017A1 (zh) * 2019-11-08 2021-05-14 Oppo广东移动通信有限公司 用于确定下行控制信息类型的方法及设备
WO2022067726A1 (zh) * 2020-09-30 2022-04-07 华为技术有限公司 用于资源调度的通信方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LENOVO, MOTOROLA MOBILITY: "PDSCH/PUSCH scheduling enhancements for NR from 52.6 GHz to 71GHz", 3GPP DRAFT; R1-2100061, vol. RAN WG1, 18 January 2021 (2021-01-18), pages 1 - 9, XP051970233 *

Also Published As

Publication number Publication date
CN115515210A (zh) 2022-12-23

Similar Documents

Publication Publication Date Title
US11601881B2 (en) Control monitoring upon receipt of discontinuous reception trigger
WO2019137378A1 (zh) 通信方法、通信设备和网络设备
CN108270536B (zh) 一种监听指示及监听方法、装置
RU2459362C1 (ru) Сигнализация о качестве канала для процедур постоянного/полупостоянного выделения радиоресурсов
WO2018059564A1 (zh) 一种确定非连续接收配置信息的方法及装置
US10623981B2 (en) Information transmission method, apparatus, and system
JP2021533641A (ja) 通信方法および通信デバイス
WO2011053441A1 (en) Coordinated signaling of scheduling information for uplink and downlink communications
CN109429306B (zh) 一种通信方法及终端设备
US20230284136A1 (en) Sidelink control information based sensing
WO2020143730A1 (zh) 一种通信方法和通信装置
KR20090059056A (ko) 무선 통신 시스템을 위한 불연속 수신을 개선하는 방법 및 관련된 통신 기기
WO2020259254A1 (zh) 搜索空间的监测方法及装置
JP2022529115A (ja) 無線通信システムにおける制御チャネル監視
JP2022517311A (ja) Ue支援情報を送信することに関するユーザ装置
CN112534935A (zh) 用于促进harq传输的方法和设备
WO2021063265A1 (zh) 一种确定生效时间的方法及装置
WO2016058469A1 (zh) 一种数据传输方法及装置
WO2022222892A1 (zh) 一种非连续接收的配置方法及装置
WO2022267844A1 (zh) 一种通信方法及装置
CN116709544A (zh) 一种drx传输方法及相关设备
US20230371118A1 (en) Communication method and device
WO2019095204A1 (zh) 网络配置方法、装置、网元及系统
CN111885729B (zh) 部分宽带的确定方法及通信装置
CN115175374A (zh) 非连续接收控制方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22827341

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE