WO2021088017A1 - 用于确定下行控制信息类型的方法及设备 - Google Patents

用于确定下行控制信息类型的方法及设备 Download PDF

Info

Publication number
WO2021088017A1
WO2021088017A1 PCT/CN2019/116801 CN2019116801W WO2021088017A1 WO 2021088017 A1 WO2021088017 A1 WO 2021088017A1 CN 2019116801 W CN2019116801 W CN 2019116801W WO 2021088017 A1 WO2021088017 A1 WO 2021088017A1
Authority
WO
WIPO (PCT)
Prior art keywords
dci
type
terminal device
value
domain resource
Prior art date
Application number
PCT/CN2019/116801
Other languages
English (en)
French (fr)
Inventor
徐伟杰
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2019/116801 priority Critical patent/WO2021088017A1/zh
Priority to CN202210101175.6A priority patent/CN114501498B/zh
Priority to EP19951349.0A priority patent/EP4009706B1/en
Priority to CN201980094025.3A priority patent/CN113647149A/zh
Publication of WO2021088017A1 publication Critical patent/WO2021088017A1/zh
Priority to US17/682,525 priority patent/US20220190981A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0219Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave where the power saving management affects multiple terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections

Definitions

  • This application relates to the field of communications, and more specifically, to a method and device for determining the type of downlink control information.
  • the dormant behavior of the terminal device on the Scell may mean that the terminal device does not monitor the physical downlink control channel (PDCCH) on the Scell.
  • PDCCH physical downlink control channel
  • the network device can instruct the terminal device to enter the dormant behavior of the Scell through downlink control information (DCI).
  • DCI downlink control information
  • One type of DCI can be used not only to instruct terminal equipment to enter the dormant behavior of Scell, but also to schedule data, and the other DCI is only used to instruct the terminal.
  • the device enters the sleep behavior of Scell.
  • This application provides a method and device for determining the type of downlink control information, so that a terminal device can determine which type of DCI the acquired DCI belongs to.
  • a method for determining a type of downlink control information including: a terminal device receives downlink control information DCI; the terminal device determines the value of the first bit field in the DCI according to the value of the bit in the DCI The type of DCI, and/or, the terminal device determines the type of DCI according to the radio network temporary identifier RNTI used to scramble the cyclic redundancy check CRC of the DCI; wherein, the DCI includes the first type DCI and the second type of DCI, the first type of DCI is used to schedule data and is used to instruct the terminal equipment to work on the dormant bandwidth part of the BWP or the non-dormant BWP on the secondary cell, and the second type of DCI is used to indicate all The terminal equipment works in a dormant BWP or a non-dormant BWP on the secondary cell.
  • a method for determining the type of downlink control information including: a network device sends downlink control information DCI, the DCI includes a first bit field, and the value of the bit of the first bit field is used for Indicate the type of the DCI, and/or the radio network temporary identifier RNTI used to scramble the cyclic redundancy check CRC of the DCI is used to indicate the type of the DCI; wherein the DCI includes the first type of DCI And a second type of DCI, the first type of DCI is used to schedule data and is used to instruct the terminal equipment to work on the dormant bandwidth part BWP or non-dormant BWP on the secondary cell, and the second type of DCI is used to indicate the The terminal equipment works in a dormant BWP or a non-dormant BWP on the secondary cell.
  • a terminal device which is used to execute the method in the above-mentioned first aspect or its implementation manners.
  • the terminal device includes a functional module for executing the method in the foregoing first aspect or each of its implementation manners.
  • a network device which is used to execute the method in the above second aspect or each of its implementation manners.
  • the terminal device includes a functional module for executing the method in the foregoing second aspect or each of its implementation manners.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above-mentioned first aspect or each of its implementation manners.
  • a network device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above-mentioned second aspect or each of its implementation modes.
  • a device for implementing the method in any one of the foregoing first aspect and second aspect or each of its implementation manners.
  • the device includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the device executes any one of the above-mentioned first aspect and second aspect or any of the implementations thereof method.
  • a computer-readable storage medium for storing a computer program that enables a computer to execute any one of the above-mentioned first aspect and second aspect or the method in each implementation manner thereof.
  • a computer program which when run on a computer, causes the computer to execute any one of the above-mentioned first aspect and second aspect or the method in each implementation manner thereof.
  • the terminal device can distinguish different types of DCI according to different values of bits in the first information field, or according to different RNTIs of CRC scrambled DCI.
  • Fig. 1 is a schematic diagram of a wireless communication system applied in an embodiment of the present application.
  • Fig. 2 is a schematic diagram of a DRX cycle provided by an embodiment of the present application.
  • Fig. 3 is a schematic diagram of a method for determining a DCI type provided by an embodiment of the present application.
  • Fig. 4 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • Fig. 5 is a schematic block diagram of a network device according to an embodiment of the present application.
  • Fig. 6 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of a device according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • Fig. 1 is a schematic diagram of a system 100 according to an embodiment of the present application.
  • the terminal device 110 is connected to a first network device 130 in a first communication system and a second network device 120 in a second communication system.
  • the first network device 130 is a Long Term Evolution (Long Term Evolution).
  • the second network device 120 is a network device under a New Radio (NR).
  • LTE Long Term Evolution
  • NR New Radio
  • the first network device 130 and the second network device 120 may include multiple cells.
  • FIG. 1 is an example of a communication system in an embodiment of the present application, and the embodiment of the present application is not limited to that shown in FIG. 1.
  • the communication system to which the embodiment of the present application is adapted may include at least multiple network devices under the first communication system and/or multiple network devices under the second communication system.
  • the system 100 shown in FIG. 1 may include one main network device under the first communication system and at least one auxiliary network device under the second communication system. At least one auxiliary network device is respectively connected to the one main network device to form multiple connections, and is connected to the terminal device 110 to provide services for it. Specifically, the terminal device 110 may simultaneously establish a connection through the main network device and the auxiliary network device.
  • connection established between the terminal device 110 and the main network device is the main connection
  • connection established between the terminal device 110 and the auxiliary network device is the auxiliary connection.
  • the control signaling of the terminal device 110 may be transmitted through the main connection
  • the data of the terminal device 110 may be transmitted through the main connection and the auxiliary connection at the same time, or may be transmitted only through the auxiliary connection.
  • first communication system and the second communication system in the embodiments of the present application are different, but the specific types of the first communication system and the second communication system are not limited.
  • the first communication system and the second communication system may be various communication systems, such as: Global System of Mobile Communication (GSM) system, Code Division Multiple Access (CDMA) system, Wideband Code Division Multiple Access (WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, LTE Time Division Duplex (TDD) ), Universal Mobile Telecommunication System (UMTS), etc.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • the main network device and the auxiliary network device may be any access network device.
  • the access network device may be a base station (Base Transceiver) in the Global System of Mobile Communications (GSM) system or Code Division Multiple Access (CDMA).
  • BTS can also be a base station (NodeB, NB) in a Wideband Code Division Multiple Access (WCDMA) system, or an evolved base station in a Long Term Evolution (LTE) system (Evolutional Node B, eNB or eNodeB).
  • GSM Global System of Mobile Communications
  • CDMA Code Division Multiple Access
  • Station, BTS can also be a base station (NodeB, NB) in a Wideband Code Division Multiple Access (WCDMA) system, or an evolved base station in a Long Term Evolution (LTE) system (Evolutional Node B, eNB or eNodeB).
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • the access network device may also be a Next Generation Radio Access Network (NG RAN), or a base station (gNB) in an NR system, or a cloud radio access network (Cloud
  • NG RAN Next Generation Radio Access Network
  • gNB base station
  • Cloud Cloud
  • the access network device can be a relay station, access point, in-vehicle device, wearable device, or the public land mobile network (PLMN) that will evolve in the future Network equipment, etc.
  • PLMN public land mobile network
  • the first network device 130 is taken as the main network device, and the second network device 120 is taken as an auxiliary network device as an example.
  • the first network device 130 may be an LTE network device, and the second network device 120 may be an NR network device.
  • the first network device 130 may be an NR network device
  • the second network device 120 may be an LTE network device.
  • both the first network device 130 and the second network device 120 may be NR network devices.
  • the first network device 130 may be a GSM network device, a CDMA network device, etc.
  • the second network device 120 may also be a GSM network device, a CDMA network device, or the like.
  • the first network device 130 may be a Macrocell
  • the second network device 120 may be a Microcell, Picocell, Femtocell, or the like.
  • the terminal device 110 may be any terminal device, and the terminal device 110 includes but is not limited to:
  • a terminal device configured to receive/send communication signals; and/or Internet of Things (IoT) equipment.
  • a terminal device set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” or a "mobile terminal”.
  • Examples of mobile terminals include, but are not limited to, satellite or cellular phones; Personal Communications System (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, Internet/intranet PDA with internet access, web browser, memo pad, calendar, and/or Global Positioning System (GPS) receiver; and conventional laptop and/or palmtop receivers or others including radio telephone transceivers Electronic device.
  • Terminal equipment can refer to access terminals, user equipment (UE), user units, user stations, mobile stations, mobile stations, remote stations, remote terminals, mobile equipment, user terminals, terminals, wireless communication equipment, user agents, or User device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in 5G networks, or terminal devices in the future evolution of PLMN, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • a discontinuous reception (DRX) transmission mechanism is introduced in LTE.
  • PDCCH the blind PDCCH detection will be stopped at this time
  • the basic mechanism of DRX is to configure a DRX cycle (cycle) for the UE in a radio resource control (radio resource control, RRC) connected (CONNECTED) state.
  • RRC radio resource control
  • the DRX cycle consists of an active period (active time) and an inactive period.
  • the UE monitors and receives the PDCCH; during the "Opportunity for DRX" time, the UE does not receive the PDCCH to reduce power consumption.
  • the transmission of the paging message is also a DRX mechanism in the RRC idle state, and the DRX cycle is the cycle of the paging message at this time.
  • time is divided into successive DRX cycles.
  • the enhancement mechanism of DRX is currently being discussed.
  • the terminal is only scheduled opportunistically during the periodical activation period, even when the terminal traffic load is very low.
  • the terminal will be scheduled only in a few DRX cycles; for the paging message that adopts the DRX mechanism, the terminal has less time to receive the paging message. Therefore, after the terminal is configured with the DRX mechanism, there is still PDCCH detection during most active periods and no data scheduling is detected. If the terminal blindly detects the PDCCH when there is no data scheduling, the detected power is wasted. Therefore, there is room for further optimization for the current DRX mechanism.
  • a solution provided by the embodiments of this application is that if the base station determines that it is necessary to schedule the terminal in DRX on duration, it sends an energy-saving signal to the terminal.
  • the energy-saving signal is used to wake up the terminal so that the terminal starts the onduration timer in the DRX cycle. Perform PDCCH detection; otherwise, if the base station determines that the terminal does not need to be scheduled on DRX on duration, it instructs the terminal not to perform PDCCH detection, thereby avoiding waste of detection power.
  • DRX on duration is the time period from the start of the timer to the end or timeout of the timer when the terminal device starts the DRX on duration timer at the start position of the DRX cycle.
  • the energy-saving signal can also be used to indicate the target BWP used when the terminal wakes up, the configuration of the used PDCCH search space, and other information.
  • the 3rd generation partnership project (3GPP) currently discusses supporting the dormancy behavior of the terminal scell (dormancy behavior).
  • the so-called dormancy behavior of the scell means that the terminal does not monitor the PDCCH on the scell, and only performs channel state information (CSI) measurement, automatic gain control (AGC), beam management (beam management), and wireless Related operations such as resource management (radio resource management, RRM) measurement.
  • CSI channel state information
  • AGC automatic gain control
  • beam management beam management
  • RRM wireless resource management
  • 3GPP agrees that the dormancy behavior of the scell is implemented by the terminal switching from the scell to the dormancy BWP, see the following conclusion.
  • the following conclusion further clarifies that the indication signaling based on layer 1 (layer 1, L1) is used to indicate whether the terminal triggers the dormancy behavior of the scell, that is, whether to switch to the dormancy BWP.
  • the L1 signaling in the embodiment of the present application may be a PDCCH, and the PDCCH is used to transmit DCI.
  • the first type of DCI is not only used to indicate whether the terminal equipment is working on the dormant BWP in the secondary cell, but also used to schedule data
  • the second type of DCI is only used for Indicate whether the terminal device works on the dormant BWP in the secondary cell, and is not used for data scheduling.
  • the terminal device can switch the status of the secondary cell according to the content of the signaling, and transmit the data scheduled by the network device according to the resource location indicated in the signaling. If the terminal device acquires the second type of DCI, the terminal device can only switch the status of the secondary cell according to the content of the signaling.
  • the embodiment of the present application provides a method for determining the type of downlink control information, so that a terminal device can determine which type of DCI the acquired DCI belongs to. As shown in Fig. 3, the method includes steps S310 to S320.
  • the network device sends the DCI, and the terminal device receives the DCI.
  • the terminal device determines the type of DCI according to the value of the bits in the first bit field in the DCI; and/or, the terminal device determines the type of DCI according to the cyclic redundancy check (CRC) wireless network used to scramble the DCI
  • CRC cyclic redundancy check
  • the temporary identity (radio network tempory identity, RNTI) determines the type of DCI.
  • the DCI includes a first type of DCI and a second type of DCI.
  • the first type of DCI is used to schedule data and is used to instruct the terminal equipment to work on the dormant BWP or non-dormant BWP on the secondary cell
  • the second type of DCI is used to indicate the terminal
  • the device works in a dormant BWP or a non-dormant BWP on the secondary cell.
  • the first type of DCI is used for not only indicating the working status of the terminal equipment on the secondary cell, but also for scheduling data
  • the second type of DCI is only used for indicating the working status of the terminal equipment on the secondary cell.
  • the embodiment of this application implicitly distinguishes the first type of DCI from the second type of DCI based on the difference in the bit value of the first bit field in the DCI or the difference in the RNTI of the CRC scrambling the DCI, without the need for special It can be indicated by signaling, which can save signaling overhead.
  • the embodiment of the present application does not specifically limit the first bit field, and may be any one or more bit fields in the DCI.
  • the first bit field can be any of the following: frequency domain resource allocation information field, time domain resource assignment (TDRA) information field, hybrid automatic repeat request, HARQ) The information field of the process number.
  • TDRA time domain resource assignment
  • HARQ hybrid automatic repeat request
  • bits In the DCI format, there are some bit values or value combinations that cannot be used for actual data transmission. Therefore, the values or value combinations of these bits can be used to indicate the type of DCI.
  • the terminal device may determine the type of DCI according to the value of the bits in the information field allocated by frequency domain resources.
  • the DCI type may be determined according to the agreed bit value of the information field of the frequency domain resource allocation. For example, when the bit value is the first value, the DCI is the first type DCI; when the bit value is the second value, the DCI is the second type DCI.
  • the terminal device can determine that the DCI is the second type of DCI; if the bit value of the information field of the frequency domain resource allocation is not all 0, the terminal device can The DCI is determined to be the first type of DCI. This is because for normal frequency domain resource allocation, a certain number of physical resource blocks (PRB) will be allocated to the terminal within the scope of the activated BWP. If the bit value is 0, it means that there is no PRB allocation, and therefore the DCI cannot be used for data scheduling, so the terminal device can determine that the DCI is the second type of DCI.
  • PRB physical resource blocks
  • DCI uses 4 bits to represent the information field of frequency domain resource allocation
  • the value of the 4 bits in the DCI is 0000
  • the 4 bits in the DCI are When the value of the bit is not 0000, it indicates that the DCI is the first type of DCI.
  • the above description is based on only 4 bits.
  • the number of bits used in the information field of frequency domain resource allocation is related to the carrier bandwidth or BWP, and is not limited to 4 bits.
  • the information field of frequency domain resource allocation is used to implicitly indicate the type of DCI, which can save signaling overhead.
  • the method of distinguishing DCI by bit value is simple and does not increase the processing complexity of terminal equipment. degree.
  • the terminal device may determine the type of DCI according to the value of the bits of the information field of the time domain resource allocation.
  • the DCI type may be determined according to the value of the bit value of the information field of the agreed time domain resource allocation. For example, when the bit value is the first value, the DCI is the first type DCI; when the bit value is the second value, the DCI is the second type DCI.
  • the second value can be 0000 or 1111, that is, if the bit value of the information field of time domain resource allocation is 0000 or 1111
  • the terminal device can determine that the DCI is the second type of DCI; if the bit values of the information field of the time domain resource allocation are not 0000 and 1111, the terminal device can determine that the DCI is the first type of DCI.
  • the terminal device can also determine the target information according to the value of the bits in the information field of the time domain resource allocation; the terminal device can determine the type of DCI according to the target information.
  • the target information may include at least one of the following information: k0, k2, information of the time domain resource allocation table that needs to be read by the terminal device, L, and S.
  • k0 represents the time slot interval between the time slot where the DCI is located and the time slot of the physical downlink shared channel (PDSCH) scheduled by the DCI
  • k2 represents the time slot where the DCI is located and the physical uplink scheduled by the DCI
  • L represents the number of symbols allocated by time domain resources
  • S represents the starting position of the time domain symbols used by the PDSCH or PUSCH scheduled by the DCI.
  • the information field of the time domain resource allocation can be represented by 4 bits, and the value of the bits can be any value between 0-15. Assuming the bit value is m, m can represent the row index of the time domain resource allocation table (the row index number starts from 0), that is, the row index of the time domain resource allocation table that needs to be read by the terminal device is m.
  • the time domain resource allocation table may include k0, k2, L, S and other information.
  • the terminal device can read the information in the time-domain resource allocation table according to the row index indicated by the information field of the time-domain resource allocation, so as to determine k0, k2, L, and S.
  • the time domain resource allocation table may be configured by the network device to the terminal device through RRC signaling.
  • the terminal device can determine the type of DCI according to k0.
  • the terminal device may determine that the DCI is the second type of DCI. If k0 is not configured, it can also mean that k0 is empty.
  • k0 represents the time slot interval between DCI and the PDSCH scheduled by DCI, usually the value of k0 does not exceed 32. If k0 determined by the terminal equipment exceeds 32, it means that k0 is an invalid value, and the terminal equipment can determine that DCI is the second Type DCI.
  • the terminal device can determine the type of DCI according to k2.
  • the terminal device may determine that the DCI is the second type of DCI. If k2 is not configured, it can also mean that k2 is empty.
  • k2 represents the time slot interval between DCI and the PUSCH scheduled by DCI, usually the value of k2 does not exceed 32. If k2 determined by the terminal equipment exceeds 32, it means that k2 is an invalid value, and the terminal equipment can determine that DCI is the second Type DCI.
  • the terminal device can determine the type of DCI according to the information of the time domain resource allocation table that needs to be read by the terminal device.
  • the terminal device may determine that the DCI is the second type of DCI.
  • the terminal device can consider the DCI It is the second type of DCI.
  • the terminal device may consider the DCI to be the second type of DCI.
  • the terminal device may consider the DCI to be the second type of DCI.
  • the terminal device can determine the type of DCI according to L.
  • L represents the continuous symbol length of the PDSCH or PUSCH, if L is configured as 0, it means that there is no valid time-domain symbol allocation. Therefore, the DCI cannot be used for data scheduling, and the terminal device can consider the DCI to be the second type of DCI.
  • the terminal device may also consider the DCI to be the second type of DCI.
  • the terminal device can determine the type of DCI according to S.
  • the terminal device may determine that the DCI is the second type of DCI. This is because S represents the starting position of the time domain symbols used to transmit PDSCH or PUSCH scheduled by DCI. If S determined according to the information field of the time domain resource allocation is greater than or equal to the number of symbols contained in a time slot, the terminal equipment It can be considered that this is an unreasonable configuration and cannot be used for data transmission, and the DCI can be determined as the second type of DCI.
  • a time slot includes 14 time domain symbols, the largest symbol number is 13. Therefore, when S is greater than or equal to 14, the terminal device can consider this as an unreasonable configuration and cannot be used for data transmission. Determined as the second type of DCI.
  • the terminal device can determine the type of DCI according to the value of the bits in the information field of the HARQ process number.
  • the DCI type may be determined according to the agreed bit value of the information field of the HARQ process number. For example, when the bit value is the third value, the DCI is the first type DCI; when the bit value is the fourth value, the DCI is the second type DCI.
  • the fourth value can be 0000 or 1111. That is to say, if the bit value of the HARQ process number information field is 0000 or 1111, the terminal device It can be determined that the DCI is the second type of DCI; if the bit values of the information field of the HARQ process number are not 0000 and 1111, the terminal device can determine that the DCI is the first type of DCI.
  • the terminal device can distinguish different types of DCI according to the difference of the RNTI used to scramble the CRC of the DCI.
  • the terminal device may determine that the DCI is the first type of DCI; if the RNTI used to scramble the CRC is the second RNTI, the terminal device may determine that the DCI is the first RNTI Two types of DCI, where the first RNTI is different from the second RNTI.
  • the terminal device After the terminal device receives the DCI sent by the network device, it can use the RNTI to descramble the CRC of the DCI. If the first RNTI can be used to descramble, that is, the PDCCH is correctly received, the terminal device can determine that the DCI is the first type of DCI; If the second RNTI can be used to descramble, that is, the PDCCH is correctly received, the terminal device can determine that the DCI is the second type of DCI.
  • the first RNTI may be, for example, a cell RNTI (cell RNTI, C-RNTI).
  • the second RNTI may be sent by the network device to the terminal device through RRC signaling, or the second RNTI may be pre-configured in the terminal device.
  • any one of the methods described above may be used to determine the type of DCI, or a combination of multiple methods described above may be used to determine the type of DCI.
  • the terminal device may determine the type of DCI according to the value of bits in the information field of frequency domain resource allocation and the value of bits in the information field of time domain resource allocation. If the bit value of the information field allocated by the frequency domain resource is 0000, the terminal device can determine that the DCI is the second type of DCI; if the bit value of the information field allocated by the frequency domain resource is not 0000, the terminal device may further determine the value according to the time The value of the bits in the information field of the domain resource allocation determines the type of DCI.
  • the terminal device can determine that the DCI is the second type of DCI; if the bit value of the information field allocated by the time domain resource is not 0000 or 1111, the terminal device It can be determined that the DCI is the first type of DCI.
  • the wireless communication method according to the embodiment of the present application is described in detail above.
  • the device according to the embodiment of the present application will be described below in conjunction with FIG. 4 to FIG. 8.
  • the technical features described in the method embodiment are applicable to the following device embodiments.
  • FIG. 4 is a schematic block diagram of a terminal device provided by an embodiment of the present application.
  • the terminal device may be any of the terminal devices described above.
  • the terminal device 400 shown in FIG. 4 includes a communication unit 410 and a processing unit 420, where:
  • the communication unit 410 is configured to receive downlink control information DCI.
  • the processing unit 420 is configured to determine the type of the DCI according to the bit value of the first bit field in the DCI, and/or according to the wireless network used to scramble the cyclic redundancy check CRC of the DCI Temporarily identify RNTI to determine the type of DCI.
  • the DCI includes a first type of DCI and a second type of DCI
  • the first type of DCI is used for scheduling data and used to instruct the terminal device to work on the dormant bandwidth part BWP or non-dormant BWP on the secondary cell
  • the second type of DCI is used to indicate that the terminal device works in a dormant BWP or a non-dormant BWP on the secondary cell.
  • the first bit field includes at least one of the following: an information field for frequency domain resource allocation, an information field for time domain resource allocation, and an information field for HARQ process number of hybrid automatic repeat request.
  • the first bit field is an information field of the time domain resource allocation
  • the processing unit 420 is configured to: if the bit value of the information field of the time domain resource allocation is the first value, then It is determined that the DCI is the first type of DCI; and/or, if the bit value of the information field of the time domain resource allocation is the second value, then the DCI is determined to be the second type of DCI.
  • the second value is 0000 or 1111.
  • the first bit field is the information field allocated by the time domain resource
  • the processing unit 420 is configured to: determine the target information according to the bit value of the information field allocated by the time domain resource;
  • the target information determines the type of DCI, and the target information includes at least one of the following information: k0, k2, information of the time domain resource allocation table that needs to be read by the terminal device, L, S; wherein, k0 represents the time slot interval between the time slot where the DCI is located and the time slot of the physical downlink shared channel PDSCH scheduled by the DCI, and k2 represents the time slot where the DCI is located and the physical uplink shared channel PUSCH scheduled by the DCI
  • the time slot interval between the time slots, L represents the number of symbols allocated by time domain resources
  • S represents the starting position of the time domain symbols used by the PDSCH or PUSCH scheduled by the DCI.
  • the target information is k0
  • the processing unit 420 is configured to: if k0 is infinity or an invalid value or k0 is not configured, determine that the DCI is the second type of DCI.
  • the target information is k2, and the processing unit 420 is configured to: if k2 is infinity or an invalid value, or k2 is not configured, determine that the DCI is the second type of DCI.
  • the target information is information of a time domain resource allocation table that needs to be read by the terminal device
  • the processing unit 420 is configured to: if a row in the time domain resource allocation table read by the terminal device is needed If the index number of is out of the range of the index number that can be provided by the configured time domain resource allocation table, it is determined that the DCI is the second type of DCI; and/or if the time domain resource allocation table read by the terminal device is required If k0 is infinity or an invalid value or k0 is not configured in the time domain resource allocation table, it is determined that the DCI is the second type of DCI; and/or if k2 in the time domain resource allocation table read by the terminal device is required If it is infinity or an invalid value, or k2 is not configured in the time domain resource allocation table, it is determined that the DCI is the second type of DCI.
  • the target information is L
  • the processing unit 420 is configured to: if L is 0, determine that the DCI is the second type of DCI.
  • the target information is S
  • the processing unit 420 is configured to: if S is not configured or S is greater than 13, determine that the DCI is the second type of DCI.
  • the first bit field is an information field of the frequency domain resource allocation
  • the processing unit 420 is configured to: if the value of all bits in the information field of the frequency domain resource allocation is 0, Then it is determined that the DCI is the second type of DCI.
  • the first bit field is the information field of the HARQ process number
  • the processing unit 420 is configured to: if the bit value of the information field of the HARQ process number is the third value, determine the DCI It is the first type of DCI; and/or, if the bit value of the information field of the HARQ process number is the fourth value, it is determined that the DCI is the second type of DCI.
  • the fourth value is 0000 or 1111.
  • the processing unit 420 is configured to: if the RNTI used to scramble the CRC of the DCI is the first RNTI, determine that the DCI is the first type of DCI; if it is used to scramble the CRC of the DCI If the RNTI is a second RNTI, it is determined that the DCI is a second type of DCI, and the first RNTI is different from the second RNTI.
  • the first RNTI is a cell RNTI.
  • the second RNTI is the RNTI received by the terminal device and sent by the network device through radio resource control signaling, or the second RNTI is pre-configured.
  • Fig. 5 is a schematic block diagram of a network device provided by an embodiment of the present application.
  • the network device may be any of the network devices described above.
  • the network device 500 shown in FIG. 5 includes a communication unit 510, wherein:
  • the communication unit 510 is configured to send downlink control information DCI, where the DCI includes a first bit field, and the bit value of the first bit field is used to indicate the type of the DCI, and/or used for scrambling
  • the radio network temporary identifier RNTI of the cyclic redundancy check CRC of the DCI is used to indicate the type of the DCI.
  • the DCI includes a first type of DCI and a second type of DCI
  • the first type of DCI is used for scheduling data and used to instruct the terminal device to work on the dormant bandwidth part BWP or non-dormant BWP on the secondary cell
  • the second type of DCI is used to indicate that the terminal device works in a dormant BWP or a non-dormant BWP on the secondary cell.
  • the first bit field includes at least one of the following: an information field for frequency domain resource allocation, an information field for time domain resource allocation, and an information field for HARQ process number of hybrid automatic repeat request.
  • the value of the bit value of the information field of the time domain resource allocation is the first value used to indicate that the DCI is the first type of DCI, and/or the bit value of the information field of the time domain resource allocation is The value of the second value is used to indicate that the DCI is the second type of DCI.
  • the second value is 0000 or 1111.
  • the bit value of the information field of the time domain resource allocation is used to determine target information
  • the target information is used to indicate the type of the DCI
  • the target information includes at least one of the following information: k0 , K2, information, L, S of the time domain resource allocation table that needs to be read by the terminal device; where k0 represents the time slot between the time slot of the DCI and the time slot of the physical downlink shared channel PDSCH scheduled by the DCI K2 represents the time slot interval between the time slot where the DCI is located and the time slot of the physical uplink shared channel PUSCH scheduled by the DCI, L represents the number of symbols allocated by time domain resources, and S represents the DCI The start position of the time domain symbol used by the scheduled PDSCH or PUSCH.
  • k0 is infinity or an invalid value or k0 is not configured to indicate that the DCI is the second type of DCI.
  • k2 is infinity or an invalid value, or k2 is not configured to indicate that the DCI is the second type of DCI.
  • the index number of the row in the time domain resource allocation table that needs to be read by the terminal device exceeds the range of the index number that can be provided by the configured time domain resource allocation table to indicate that the DCI is the second type of DCI; And/or, k0 in the time domain resource allocation table that needs to be read by the terminal device is infinite or an invalid value or the time domain resource allocation table is not configured with k0 to indicate that the DCI is a second type of DCI; and/ Or, k2 in the time domain resource allocation table that needs to be read by the terminal device is infinite or an invalid value or the time domain resource allocation table is not configured with k2 to indicate that the DCI is the second type of DCI.
  • L being 0 is used to indicate that the DCI is the second type of DCI.
  • S is not configured or S is greater than 13 to indicate that the DCI is the second type of DCI.
  • the value of all bits in the information field of the frequency domain resource allocation is 0 to indicate that the DCI is the second type of DCI.
  • the bit value of the information field of the HARQ process number is a third value used to indicate that the DCI is a first type of DCI, and/or the bit value of the information field of the HARQ process number is The fourth value is used to indicate that the DCI is the second type of DCI.
  • the fourth value is 0000 or 1111.
  • the RNTI used to scramble the CRC of the DCI is the first RNTI used to indicate that the DCI is the first type of DCI; the RNTI used to scramble the CRC of the DCI is the second RNTI used to indicate the The DCI is a second type of DCI, and the first RNTI is different from the second RNTI.
  • the first RNTI is a cell RNTI.
  • the second RNTI is the RNTI received by the terminal device and sent by the network device through radio resource control signaling, or the second RNTI is pre-configured.
  • the above-mentioned communication module may be a communication interface or a transceiver, or an input/output interface of a communication chip or a system-on-chip.
  • the aforementioned determining module may be one or more processors.
  • FIG. 6 is a schematic structural diagram of a communication device 600 provided by an embodiment of the present application.
  • the communication device 600 shown in FIG. 6 includes a processor 610, and the processor 610 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620.
  • the processor 610 may call and run a computer program from the memory 620 to implement the method in the embodiment of the present application.
  • the memory 620 may be a separate device independent of the processor 610, or may be integrated in the processor 610.
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 600 may specifically be a network device of an embodiment of the present application, and the communication device 600 may implement the corresponding process implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, it will not be repeated here. .
  • the communication device 600 may specifically be a mobile terminal/terminal device of an embodiment of the application, and the communication device 600 may implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the application. For the sake of brevity , I won’t repeat it here.
  • Fig. 7 is a schematic structural diagram of a device according to an embodiment of the present application.
  • the apparatus 700 shown in FIG. 7 includes a processor 710, and the processor 710 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the apparatus 700 may further include a memory 720.
  • the processor 710 may call and run a computer program from the memory 720 to implement the method in the embodiment of the present application.
  • the memory 720 may be a separate device independent of the processor 710, or may be integrated in the processor 710.
  • the device 700 may further include an input interface 730.
  • the processor 710 can control the input interface 730 to communicate with other devices or devices, and specifically, can obtain information or data sent by other devices or devices.
  • the device 700 may further include an output interface 740.
  • the processor 710 can control the output interface 740 to communicate with other devices or devices, and specifically, can output information or data to other devices or devices.
  • the device can be applied to the network equipment in the embodiments of the present application, and the device can implement the corresponding processes implemented by the network equipment in the various methods of the embodiments of the present application.
  • the device can implement the corresponding processes implemented by the network equipment in the various methods of the embodiments of the present application.
  • details are not described herein again.
  • the device can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the device can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the device can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the device can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the device mentioned in the embodiment of the present application may be a chip, and the chip may also be called a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-chip.
  • FIG. 8 is a schematic block diagram of a communication system 800 provided by an embodiment of the present application. As shown in FIG. 8, the communication system 800 includes a terminal device 810 and a network device 820.
  • the terminal device 810 can be used to implement the corresponding function implemented by the terminal device in the above method
  • the network device 820 can be used to implement the corresponding function implemented by the network device in the above method. For brevity, it will not be repeated here. .
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA ready-made programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application can be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is to say, the memory in the embodiments of the present application is intended to include, but is not limited to, these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application , For the sake of brevity, I won’t repeat it here.
  • the embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, For the sake of brevity, I will not repeat them here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program runs on the computer, it causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiment of the present application.
  • the computer program runs on the computer, the computer executes each method in the embodiment of the present application. For the sake of brevity, the corresponding process will not be repeated here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disks or optical disks and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种用于确定下行控制信息类型的方法及设备,使得终端设备能够确定出获取的DCI属于哪种类型的DCI。该方法包括:终端设备接收下行控制信息DCI;所述终端设备根据所述DCI中的第一比特域的比特取值,确定所述DCI的类型,和/或,所述终端设备根据用于加扰所述DCI的循环冗余校验CRC的无线网络临时标识RNTI,确定所述DCI的类型;其中,所述DCI包括第一类型DCI和第二类型DCI,所述第一类型DCI用于调度数据且用于指示所述终端设备在辅小区上工作于休眠带宽部分BWP或非休眠BWP,所述第二类型DCI用于指示所述终端设备在辅小区上工作于休眠BWP或非休眠BWP。

Description

用于确定下行控制信息类型的方法及设备 技术领域
本申请涉及通信领域,并且更具体地,涉及一种用于确定下行控制信息类型的方法及设备。
背景技术
为了实现终端设备的节能,目前提出了一种支持终端设备在辅小区(secondary cell,Scell)的休眠行为。终端设备在Scell上的休眠行为可以指终端设备在Scell上不监听物理下行控制信道(physical downlink control channel,PDCCH)。
网络设备可以通过下行控制信息(downlink control information,DCI)指示终端设备进入Scell的休眠行为。目前,有两种类型的DCI可用于指示终端设备进入Scell的休眠行为,一种DCI不仅能够用于指示终端设备进入Scell的休眠行为,还用于调度数据,另一种DCI仅用于指示终端设备进入Scell的休眠行为。
但是,终端设备如何确定获取的DCI具体是哪种类型的DCI,目前还没有明确的方式。
发明内容
本申请提供一种用于确定下行控制信息类型的方法及设备,使得终端设备能够确定出获取的DCI属于哪种类型的DCI。
第一方面,提供了一种用于确定下行控制信息类型的方法,包括:终端设备接收下行控制信息DCI;所述终端设备根据所述DCI中的第一比特域的比特取值,确定所述DCI的类型,和/或,所述终端设备根据用于加扰所述DCI的循环冗余校验CRC的无线网络临时标识RNTI,确定所述DCI的类型;其中,所述DCI包括第一类型DCI和第二类型DCI,所述第一类型DCI用于调度数据且用于指示所述终端设备在辅小区上工作于休眠带宽部分BWP或非休眠BWP,所述第二类型DCI用于指示所述终端设备在辅小区上工作于休眠BWP或非休眠BWP。
第二方面,提供了一种用于确定下行控制信息类型的方法,包括:网络设备发送下行控制信息DCI,所述DCI中包括第一比特域,所述第一比特域的比特取值用于指示所述DCI的类型,和/或,用于加扰所述DCI的循环冗余校验CRC的无线网络临时标识RNTI用于指示所述DCI的类型;其中,所述DCI包括第一类型DCI和第二类型DCI,所述第一类型DCI用于调度数据且用于指示所述终端设备在辅小区上工作于休眠带宽部分BWP或非休眠BWP,所述第二类型DCI用于指示所述终端设备在辅小区上工作于休眠BWP或非休眠BWP。
第三方面,提供了一种终端设备,用于执行上述第一方面或其各实现方式 中的方法。
具体地,该终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第四方面,提供了一种网络设备,用于执行上述第二方面或其各实现方式中的方法。
具体地,该终端设备包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
第五方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面或其各实现方式中的方法。
第七方面,提供了一种装置,用于实现上述第一方面、第二方面中的任一方面或其各实现方式中的方法。
具体地,该装置包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面、第二方面中的任一方面或其各实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面、第二方面中的任一方面或其各实现方式中的方法。
第九方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面、第二方面中的任一方面或其各实现方式中的方法。
基于上述技术方案,终端设备可以根据第一信息域的比特取值的不同,或根据加扰DCI的CRC的RNTI的不同,来区分不同类型的DCI。
附图说明
图1是本申请实施例应用的无线通信系统的示意图。
图2是本申请实施例提供的一种DRX周期的示意图。
图3是本申请实施例提供的一种用于确定DCI类型的方法的示意图。
图4是本申请实施例的终端设备的示意性框图。
图5是本申请实施例的网络设备的示意性框图。
图6是本申请实施例的通信设备的示意性结构图。
图7是本申请实施例的装置的示意性结构图。
图8是本申请实施例提供的通信系统的示意性结构图。
具体实施方式
图1是本申请实施例的系统100的示意图。
如图1所示,终端设备110与第一通信系统下的第一网络设备130和第 二通信系统下的第二网络设备120相连,例如,该第一网络设备130为长期演进(Long Term Evolution,LTE)下的网络设备,该第二网络设备120为新空口(New Radio,NR)下的网络设备。
其中,该第一网络设备130和该第二网络设备120下可以包括多个小区。
应理解,图1是本申请实施例的通信系统的示例,本申请实施例不限于图1所示。
作为一个示例,本申请实施例适应的通信系统可以包括至少该第一通信系统下的多个网络设备和/或该第二通信系统下的多个网络设备。
例如,图1所示的系统100可以包括第一通信系统下的一个主网络设备和第二通信系统下的至少一个辅助网络设备。至少一个辅助网络设备分别与该一个主网络设备相连,构成多连接,并分别与终端设备110连接为其提供服务。具体地,终端设备110可以通过主网络设备和辅助网络设备同时建立连接。
可选地,终端设备110和主网络设备建立的连接为主连接,终端设备110与辅助网络设备建立的连接为辅连接。终端设备110的控制信令可以通过主连接进行传输,而终端设备110的数据可以通过主连接以及辅连接同时进行传输,也可以只通过辅连接进行传输。
作为又一示例,本申请实施例中的第一通信系统和第二通信系统不同,但对第一通信系统和该第二通信系统的具体类别不作限定。
例如,该第一通信系统和该第二通信系统可以是各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)等。
所述主网络设备和所述辅助网络设备可以为任意接入网设备。
可选地,在一些实施例中,所述接入网设备可以是全球移动通讯(Global System of Mobile communication,GSM)系统或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统中的基站(NodeB,NB),还可以是长期演进(Long Term Evolution,LTE)系统中的演进型基站(Evolutional Node B,eNB或eNodeB)。
可选地,所述接入网设备还可以是下一代无线接入网(Next Generation Radio Access Network,NG RAN),或者是NR系统中的基站(gNB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该接入网设备可以为中继站、接入点、车载设备、可穿戴设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
在图1所示的系统100中,以该第一网络设备130为主网络设备,以该第二网络设备120为辅助网络设备为例。
该第一网络设备130可以为LTE网络设备,该第二网络设备120可以为NR网络设备。或者该第一网络设备130可以为NR网络设备,第二网络设备120可以为LTE网络设备。或者该第一网络设备130和该第二网络设备120都可以为NR网络设备。或者该第一网络设备130可以为GSM网络设备,CDMA网络设备等,该第二网络设备120也可以为GSM网络设备,CDMA网络设备等。或者第一网络设备130可以是宏基站(Macrocell),第二网络设备120可以为微蜂窝基站(Microcell)、微微蜂窝基站(Picocell)或者毫微微蜂窝基站(Femtocell)等。
可选地,所述终端设备110可以是任意终端设备,所述终端设备110包括但不限于:
经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端设备的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端设备可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端设备可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。
出于终端节电的考虑,LTE中引入非连续接收(discontinuous reception,DRX)传输机制。在没有数据传输的时候,可以通过停止接收PDCCH(此时会停止PDCCH盲检)来降低功耗,从而提升电池使用时间。DRX的基本机制是为处于无线资源控制(radio resource control,RRC)连接(CONNECTED)态的UE配置一个DRX周期(cycle)。如图2所示,DRX cycle由激活期(active time)和非激活期组成。在“On Duration”时间内,UE监听并接收PDCCH; 在“Opportunity for DRX”时间内,UE不接收PDCCH以减少功耗。
另外,寻呼消息的传输也是一种RRC空闲(idle)状态的DRX机制,此时DRX周期为寻呼消息的周期。
从2可以看出,在时域上,时间被划分成一个个连续的DRX cycle。
在5G以及LTE演进项目中,目前正讨论DRX的增强机制,例如网络虽然给终端配置了DRX机制,终端在周期性出现的激活期内仅是机会性地得到调度,甚至在终端业务负荷很低的情况下终端仅仅在少数的DRX周期内会得到调度;对于采用DRX机制的寻呼消息而言,终端接收到寻呼消息的时机更少。因此,终端在配置了DRX机制后,仍然存在在多数激活期内的PDCCH检测并没有检测到数据调度。如果终端在没有数据调度的时候盲检PDCCH,检测的功率就被浪费掉了。因此针对目前的DRX机制,存在更进一步的优化空间。
本申请实施例提供的一种解决方案是,如果基站判断需要在DRX on duration调度终端,则向终端发送节能信号,该节能信号用于唤醒终端,使得终端在DRX周期内启动on duration timer,以进行PDCCH检测;否则,如果基站判断不需要在DRX on duration调度终端,则指示终端不进行PDCCH检测,从而能够避免检测功率的浪费。
DRX on duration为终端设备在DRX周期的起始位置启动DRX on duration定时器,并从所述定时器启动时刻至所述定时器结束或超时时刻之间的时间段。
另外在研究中发现,节能信号除了用于唤醒终端检测PDCCH,还可以用于指示终端唤醒时所使用的目标BWP、所使用的PDCCH搜索空间(search space)的配置等信息。
为了实现终端的节能,第三代合作伙伴计划(3rd generation partnership project,3GPP)目前讨论支持终端scell的休眠行为(dormancy behavior)。所谓的scell的dormancy behavior是指终端在scell上处于不监听PDCCH,仅执行信道状态信息(channel state information,CSI)测量,自动增益控制(automatic gain control,AGC),波束管理(beam management)、无线资源管理(radio resource management,RRM)测量等相关的操作。
进一步地,3GPP同意scell的dormancy behavior是通过终端在scell上切换至dormancy BWP上实现的,见下面结论。下面结论还进一步明确了基于层1(layer 1,L1)的指示信令用于指示终端是否触发scell的dormancy behavior,也即是否切换至dormancy BWP。
可选地,本申请实施例中的L1信令可以为PDCCH,PDCCH用于传输DCI。
特别地,在DRX active time期间,支持两种不同情况的DCI,第一种DCI不仅用于指示终端设备在辅小区是否工作于休眠BWP上,还用于调度数据,第二种DCI仅用于指示终端设备在辅小区是否工作于休眠BWP上,而不用于数据调度。
如果终端设备获取的是第一种DCI,则终端设备可以按照信令的内容进行辅小区状态的切换,且根据信令中指示的资源位置传输网络设备调度的数据。如果终端设备获取的是第二种DCI,则终端设备可以仅按照信令的内容进行辅小区状态的切换。
由上可知,在DRX active time期间,支持两种不同情况的DCI,但是,终端设备如何确定获取的DCI具体是哪种类型,目前还没有明确的方式。
本申请实施例提供一种用于确定下行控制信息类型的方法,使得终端设备能够确定出获取的DCI属于哪种类型的DCI。如图3所示,该方法包括步骤S310~S320。
S310、网络设备发送DCI,终端设备接收DCI。
S320、终端设备根据DCI中的第一比特域的比特取值,确定DCI的类型;和/或,终端设备根据用于加扰DCI的循环冗余校验(cyclic redundancy check,CRC)的无线网络临时标识(radio network tempory identity,RNTI),确定DCI的类型。
其中,该DCI包括第一类型DCI和第二类型DCI,第一类型DCI用于调度数据且用于指示终端设备在辅小区上工作于休眠BWP或非休眠BWP,第二类型DCI用于指示终端设备在辅小区上工作于休眠BWP或非休眠BWP。
本申请实施例中,第一类型DCI除了用于指示终端设备在辅小区上的工作状态之外,还用于调度数据,第二类型DCI仅用于指示终端设备在辅小区上的工作状态。
本申请实施例通过DCI中的第一比特域的比特取值的不同,或者加扰DCI的CRC的RNTI的不同,来隐式地区分第一类型DCI和第二类型DCI,而不需要专门的信令来指示,能够节省信令开销。
本申请实施例对第一比特域不做具体限定,可以是DCI中的任何一个或多个比特域。例如,第一比特域可以是以下中的任意一种:频域资源分配的信息域、时域资源分配(time domain resource assignment,TDRA)的信息域、混合自动重传请求(hybrid automatic repeat request,HARQ)进程号的信息域。
在DCI格式中,存在一些比特的取值或取值组合不能用于实际的数据传输,因此,可以采用这些比特的取值或取值组合来指示DCI的类型。
若第一比特域为频域资源分配的信息域,则终端设备可以根据频域资源分配的信息域的比特取值,确定DCI的类型。
本申请实施例可以按照约定的频域资源分配的信息域的比特取值来确定DCI的类型。例如,当比特取值为第一值时,DCI为第一类型DCI;当比特取值为第二值时,DCI为第二类型DCI。
举例说明,如果频域资源分配的信息域的比特取值为0时,终端设备可以确定DCI为第二类型DCI;如果频域资源分配的信息域的比特取值不全为0时,终端设备可以确定DCI为第一类型DCI。这是由于对于正常的频域资源分配,会在激活BWP范围内向终端分配一定数目的物理资源块(physical resource block,PRB)。如果比特取值为0,说明没有PRB的分配,因此该DCI 不能用于数据调度,从而终端设备可以确定该DCI为第二类型DCI。
假设DCI使用4个比特位来表示频域资源分配的信息域,则当DCI中的该4个比特位的取值为0000时,表示该DCI为第二类型DCI;当DCI中的该4个比特位的取值不为0000时,表示该DCI为第一类型DCI。
上文仅是以4个比特进行举例描述,频域资源分配的信息域所使用的比特数目与载波带宽或BWP有关,并不局限于4个比特。
本申请实施例通过复用频域资源分配的信息域来隐式地指示DCI的类型,能够节省信令开销,另外,通过比特取值来区分DCI的方式简单,不会增加终端设备的处理复杂度。
若第一比特域为时域资源分配的信息域,则终端设备可以根据时域资源分配的信息域的比特取值,确定DCI的类型。
本申请实施例可以按照约定的时域资源分配的信息域的比特取值来确定DCI的类型。例如,当比特取值为第一取值时,DCI为第一类型DCI;当比特取值为第二取值时,DCI为第二类型DCI。
举例说明,如果使用4个比特位来表示时域资源分配的信息域,则第二取值可以为0000或1111,也就是说,如果时域资源分配的信息域的比特取值为0000或1111时,终端设备可以确定DCI为第二类型DCI;如果时域资源分配的信息域的比特取值不为0000和1111时,终端设备可以确定DCI为第一类型DCI。
此外,终端设备还可以根据时域资源分配的信息域的比特取值,确定目标信息;终端设备可以根据目标信息,确定DCI的类型。其中,目标信息可以包括以下信息中的至少一种:k0、k2、需要所述终端设备读取的时域资源分配表格的信息、L、S。
k0表示所述DCI所在的时隙与DCI调度的物理下行共享信道(physical downlink shared channel,PDSCH)的时隙之间的时隙间隔,k2表示所述DCI所在的时隙与DCI调度的物理上行共享信道(physical uplink shared channel,PUSCH)的时隙之间的时隙间隔,L表示时域资源分配的符号数目,S表示DCI调度的PDSCH或PUSCH所使用的时域符号的起始位置。
时域资源分配的信息域可以采用4个比特来表示,其比特取值可以为0~15之间的任意值。假设比特取值为m,则m可以表示时域资源分配表格的行索引(行索引编号从0开始),即需要终端设备读取的时域资源分配表格的行索引为m。
时域资源分配表格中可以包括k0、k2、L、S等信息。终端设备可以根据时域资源分配的信息域指示的行索引,读取时域资源分配表格中的信息,从而确定k0、k2、L、S。
时域资源分配表格可以是网络设备通过RRC信令配置给终端设备的。
假设目标信息为k0,终端设备可以根据k0,确定DCI的类型。
例如,如果k0为无穷大或无效值或未配置k0,则终端设备可以确定DCI为第二类型DCI。未配置k0也可以表示k0为空。
由于k0表示DCI与DCI调度的PDSCH之间的时隙间隔,通常k0的取值不超过32,如果终端设备确定出的k0超过32,则表示k0为无效值,终端设备可以确定DCI为第二类型DCI。
假设目标信息为k2,终端设备可以根据k2,确定DCI的类型。
例如,如果k2为无穷大或无效值或未配置k2,则终端设备可以确定DCI为第二类型DCI。未配置k2也可以表示k2为空。
由于k2表示DCI与DCI调度的PUSCH之间的时隙间隔,通常k2的取值不超过32,如果终端设备确定出的k2超过32,则表示k2为无效值,终端设备可以确定DCI为第二类型DCI。
本申请实施通过一些不合理的取值来隐式地指示DCI的类型,而不需要专门的信令来指示,能够节省信令开销。
假设目标信息为需要终端设备读取的时域资源分配表格的信息,则终端设备可以根据需要终端设备读取的时域资源分配表格的信息,确定DCI的类型。
作为一个示例,如果需要终端设备读取的时域资源分配表格中的行的索引号超出配置的时域资源分配表格能够提供的索引号的范围,则终端设备可以确定DCI为第二类型DCI。
例如,如果配置的时域资源分配表格仅包含12行,但DCI指示终端设备读取TDRA表格的第13行,超出了TDRA表格能够提供的行数,在该情况下,终端设备可以认为该DCI为第二类型DCI。
作为另一个示例,如果DCI指示终端设备读取TDRA表格的中的k0,且该k0为无穷大或无效值,或该TDRA表格未配置k0,则终端设备可以认为该DCI为第二类型DCI。
作为又一示例,如果DCI指示终端设备读取TDRA表格的中的k2,且该k2为无穷大或无效值,或该TDRA表格未配置k2,则终端设备可以认为该DCI为第二类型DCI。
假设目标信息为L,则终端设备可以根据L,确定DCI的类型。
由于L表示PDSCH或PUSCH持续的符号长度,如果L配置为0,表示没有有效的时域符号分配,因此该DCI不能用于数据调度,终端设备可以认为该DCI为第二类型DCI。
当然,如果DCI指示的L为无穷大或无效值,终端设备也可以认为该DCI为第二类型DCI。
假设目标信息为S,则终端设备可以根据S,确定DCI的类型。
若未配置S或S大于或等于一个时隙内包含的符号数量,则终端设备可以确定DCI为第二类型DCI。这是由于S表示传输DCI调度的PDSCH或PUSCH所使用的时域符号的起始位置,如果根据时域资源分配的信息域确定的S大于或等于一个时隙内包含的符号数量,则终端设备可以认为这是不合理的配置,无法用于数据传输,可以将该DCI确定为第二类型DCI。
若一个时隙包括14个时域符号,则最大的符号编号为13,因此,当S大 于或等于14时,终端设备可以认为这是不合理的配置,无法用于数据传输,可以将该DCI确定为第二类型DCI。
若第一比特域为HARQ进程号的信息域,则终端设备可以根据HARQ进程号的信息域的比特取值,确定DCI的类型。
本申请实施例可以按照约定的HARQ进程号的信息域的比特取值来确定DCI的类型。例如,当比特取值为第三取值时,DCI为第一类型DCI;当比特取值为第四取值时,DCI为第二类型DCI。
举例说明,如果采用4个比特表示HARQ进程号的信息域,则第四取值可以为0000或1111,也就是说,如果HARQ进程号的信息域的比特取值为0000或1111,则终端设备可以确定DCI为第二类型DCI;如果HARQ进程号的信息域的比特取值不为0000和1111,则终端设备可以确定DCI为第一类型DCI。
终端设备可以根据用于加扰DCI的CRC的RNTI的不同来区分不同类型的DCI。
若用于加扰DCI的CRC的RNTI为第一RNTI,则终端设备可以确定该DCI为第一类型DCI;若用于加扰CRC的RNTI为第二RNTI,则终端设备可以确定该DCI为第二类型DCI,其中,第一RNTI与第二RNTI不同。
终端设备接收到网络设备发送的DCI后,可以采用RNTI对DCI的CRC进行解扰,如果采用第一RNTI能够解扰,即正确接收到PDCCH,则终端设备可以确定该DCI为第一类型DCI;如果采用第二RNTI能够解扰,即正确接收到PDCCH,则终端设备可以确定该DCI为第二类型DCI。
第一RNTI例如可以是小区RNTI(cell RNTI,C-RNTI)。
第二RNTI例如可以是网络设备通过RRC信令发送给终端设备的,或者第二RNTI可以是预配置在终端设备中的。
本申请实施例可以采用上文描述的任意一种方式确定DCI的类型,也可以采用上文描述的多种方式的结合来确定DCI的类型。例如,终端设备可以根据频域资源分配的信息域的比特取值以及时域资源分配的信息域的比特取值,来确定DCI的类型。如果频域资源分配的信息域的比特取值为0000,则终端设备可以确定DCI为第二类型DCI;如果频域资源分配的信息域的比特取值不为0000,则终端设备可以进一步根据时域资源分配的信息域的比特取值,确定DCI的类型。如果时域资源分配的信息域的比特取值为0000或1111,则终端设备可以确定DCI为第二类型DCI;如果时域资源分配的信息域的比特取值不为0000和1111,则终端设备可以确定DCI为第一类型DCI。
上文中详细描述了根据本申请实施例的无线通信的方法,下面将结合图4至图8,描述根据本申请实施例的装置,方法实施例所描述的技术特征适用于以下装置实施例。
图4是本申请实施例提供的一种终端设备的示意性框图,该终端设备可以是上文描述的任一种终端设备。图4所示的终端设备400包括通信单元410和处理单元420,其中:
通信单元410,用于接收下行控制信息DCI。
处理单元420,用于根据所述DCI中的第一比特域的比特取值,确定所述DCI的类型,和/或,根据用于加扰所述DCI的循环冗余校验CRC的无线网络临时标识RNTI,确定所述DCI的类型。
其中,所述DCI包括第一类型DCI和第二类型DCI,所述第一类型DCI用于调度数据且用于指示所述终端设备在辅小区上工作于休眠带宽部分BWP或非休眠BWP,所述第二类型DCI用于指示所述终端设备在辅小区上工作于休眠BWP或非休眠BWP。
可选地,所述第一比特域包括以下中的至少一种:频域资源分配的信息域、时域资源分配的信息域、混合自动重传请求HARQ进程号的信息域。
可选地,所述第一比特域为所述时域资源分配的信息域,所述处理单元420用于:若所述时域资源分配的信息域的比特取值为第一取值,则确定所述DCI为第一类型DCI;和/或,若所述时域资源分配的信息域的比特取值为第二取值,则确定所述DCI为第二类型DCI。
可选地,所述第二取值为0000或1111。
可选地,所述第一比特域为所述时域资源分配的信息域,所述处理单元420用于:根据所述时域资源分配的信息域的比特取值,确定目标信息;根据所述目标信息,确定所述DCI的类型,所述目标信息包括以下信息中的至少一种:k0、k2、需要所述终端设备读取的时域资源分配表格的信息、L、S;其中,k0表示所述DCI所在的时隙与所述DCI调度的物理下行共享信道PDSCH的时隙之间的时隙间隔,k2表示所述DCI所在的时隙与所述DCI调度的物理上行共享信道PUSCH的时隙之间的时隙间隔,L表示时域资源分配的符号数目,S表示所述DCI调度的PDSCH或PUSCH所使用的时域符号的起始位置。
可选地,所述目标信息为k0,所述处理单元420用于:若k0为无穷大或无效值或未配置k0,则确定所述DCI为第二类型DCI。
可选地,所述目标信息为k2,所述处理单元420用于:若k2为无穷大或无效值或未配置k2,则确定所述DCI为第二类型DCI。
可选地,所述目标信息为需要所述终端设备读取的时域资源分配表格的信息,所述处理单元420用于:若需要所述终端设备读取的时域资源分配表格中的行的索引号超出配置的时域资源分配表格能够提供的索引号的范围,则确定所述DCI为第二类型DCI;和/或,若需要所述终端设备读取的时域资源分配表格中的k0为无穷大或无效值或所述时域资源分配表格未配置k0,则确定所述DCI为第二类型DCI;和/或,若需要所述终端设备读取的时域资源分配表格中的k2为无穷大或无效值或所述时域资源分配表格未配置k2,则确定所述DCI为第二类型DCI。
可选地,所述目标信息为L,所述处理单元420用于:若L为0,则确定所述DCI为第二类型DCI。
可选地,所述目标信息为S,所述处理单元420用于:若未配置S或S大于13,则确定所述DCI为第二类型DCI。
可选地,所述第一比特域为所述频域资源分配的信息域,所述处理单元420用于:若所述频域资源分配的信息域的所有比特位的取值均为0,则确定所述DCI为第二类型DCI。
可选地,所述第一比特域为HARQ进程号的信息域,所述处理单元420用于:若所述HARQ进程号的信息域的比特取值为第三取值,则确定所述DCI为第一类型DCI;和/或,若所述HARQ进程号的信息域的比特取值为第四取值,则确定所述DCI为第二类型DCI。
可选地,所述第四取值为0000或1111。
可选地,所述处理单元420用于:若用于加扰所述DCI的CRC的RNTI为第一RNTI,则确定所述DCI为第一类型DCI;若用于加扰所述DCI的CRC的RNTI为第二RNTI,则确定所述DCI为第二类型DCI,所述第一RNTI与所述第二RNTI不同。
可选地,所述第一RNTI为小区RNTI。
可选地,所述第二RNTI是所述终端设备接收所述网络设备通过无线资源控制信令发送的RNTI,或所述第二RNTI是预配置的。
图5是本申请实施例提供的一种网络设备的示意性框图,该网络设备可以是上文描述的任一种网络设备。图5所示的网络设备500包括通信单元510,其中:
通信单元510,用于发送下行控制信息DCI,所述DCI中包括第一比特域,所述第一比特域的比特取值用于指示所述DCI的类型,和/或,用于加扰所述DCI的循环冗余校验CRC的无线网络临时标识RNTI用于指示所述DCI的类型。
其中,所述DCI包括第一类型DCI和第二类型DCI,所述第一类型DCI用于调度数据且用于指示所述终端设备在辅小区上工作于休眠带宽部分BWP或非休眠BWP,所述第二类型DCI用于指示所述终端设备在辅小区上工作于休眠BWP或非休眠BWP。
可选地,所述第一比特域包括以下中的至少一种:频域资源分配的信息域、时域资源分配的信息域、混合自动重传请求HARQ进程号的信息域。
可选地,所述时域资源分配的信息域的比特取值为第一取值用于指示所述DCI为第一类型DCI,和/或,所述时域资源分配的信息域的比特取值为第二取值用于指示所述DCI为第二类型DCI。
可选地,所述第二取值为0000或1111。
可选地,所述时域资源分配的信息域的比特取值用于确定目标信息,所述目标信息用于指示所述DCI的类型,所述目标信息包括以下信息中的至少一种:k0、k2、需要所述终端设备读取的时域资源分配表格的信息、L、S;其中,k0表示所述DCI所在的时隙与所述DCI调度的物理下行共享信道PDSCH的时隙之间的时隙间隔,k2表示所述DCI所在的时隙与所述DCI调度的物理上行共享信道PUSCH的时隙之间的时隙间隔,L表示时域资源分配的符号数目,S表示所述DCI调度的PDSCH或PUSCH所使用的时域符号的起始位置。
可选地,k0为无穷大或无效值或未配置k0用于指示所述DCI为第二类型DCI。
可选地,k2为无穷大或无效值或未配置k2用于指示所述DCI为第二类型DCI。
可选地,需要所述终端设备读取的时域资源分配表格中的行的索引号超出配置的时域资源分配表格能够提供的索引号的范围用于指示所述DCI为第二类型DCI;和/或,需要所述终端设备读取的时域资源分配表格中的k0为无穷大或无效值或所述时域资源分配表格未配置k0用于指示所述DCI为第二类型DCI;和/或,需要所述终端设备读取的时域资源分配表格中的k2为无穷大或无效值或所述时域资源分配表格未配置k2用于指示所述DCI为第二类型DCI。
可选地,L为0用于指示所述DCI为第二类型DCI。
可选地,未配置S或S大于13用于指示所述DCI为第二类型DCI。
可选地,所述频域资源分配的信息域的所有比特位的取值均为0用于指示所述DCI为第二类型DCI。
可选地,所述HARQ进程号的信息域的比特取值为第三取值用于指示所述DCI为第一类型DCI,和/或,所述HARQ进程号的信息域的比特取值为第四取值用于指示所述DCI为第二类型DCI。
可选地,所述第四取值为0000或1111。
可选地,用于加扰所述DCI的CRC的RNTI为第一RNTI用于指示所述DCI为第一类型DCI;用于加扰所述DCI的CRC的RNTI为第二RNTI用于指示所述DCI为第二类型DCI,所述第一RNTI与所述第二RNTI不同。
可选地,所述第一RNTI为小区RNTI。
可选地,所述第二RNTI是所述终端设备接收所述网络设备通过无线资源控制信令发送的RNTI,或所述第二RNTI是预配置的。
可选地,在一些实施例中,上述通信模块可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述确定模块可以是一个或多个处理器。
图6是本申请实施例提供的一种通信设备600示意性结构图。图6所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图6所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图6所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600具体可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600具体可为本申请实施例的移动终端/终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图7是本申请实施例的装置的示意性结构图。图7所示的装置700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图7所示,装置700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该装置700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或装置进行通信,具体地,可以获取其他设备或装置发送的信息或数据。
可选地,该装置700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或装置进行通信,具体地,可以向其他设备或装置输出信息或数据。
可选地,该装置可应用于本申请实施例中的网络设备,并且该装置可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该装置可应用于本申请实施例中的移动终端/终端设备,并且该装置可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的装置可以为芯片,该芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图8是本申请实施例提供的一种通信系统800的示意性框图。如图8所示,该通信系统800包括终端设备810和网络设备820。
其中,该终端设备810可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备820可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate  Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。针对这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括 若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (76)

  1. 一种用于确定下行控制信息类型的方法,其特征在于,包括:
    终端设备接收下行控制信息DCI;
    所述终端设备根据所述DCI中的第一比特域的比特取值,确定所述DCI的类型,和/或,所述终端设备根据用于加扰所述DCI的循环冗余校验CRC的无线网络临时标识RNTI,确定所述DCI的类型;
    其中,所述DCI包括第一类型DCI和第二类型DCI,所述第一类型DCI用于调度数据且用于指示所述终端设备在辅小区上工作于休眠带宽部分BWP或非休眠BWP,所述第二类型DCI用于指示所述终端设备在辅小区上工作于休眠BWP或非休眠BWP。
  2. 根据权利要求1所述的方法,其特征在于,所述第一比特域包括以下中的至少一种:频域资源分配的信息域、时域资源分配的信息域、混合自动重传请求HARQ进程号的信息域。
  3. 根据权利要求2所述的方法,其特征在于,所述第一比特域为所述时域资源分配的信息域,所述终端设备根据所述DCI中的第一比特域的比特取值,确定所述DCI的类型,包括:
    若所述时域资源分配的信息域的比特取值为第一取值,则所述终端设备确定所述DCI为第一类型DCI;和/或,
    若所述时域资源分配的信息域的比特取值为第二取值,则所述终端设备确定所述DCI为第二类型DCI。
  4. 根据权利要求3所述的方法,其特征在于,所述第二取值为0000或1111。
  5. 根据权利要求2所述的方法,其特征在于,所述第一比特域为所述时域资源分配的信息域,所述终端设备根据所述DCI中的第一比特域的比特取值,确定所述DCI的类型,包括:
    所述终端设备根据所述时域资源分配的信息域的比特取值,确定目标信息;
    所述终端设备根据所述目标信息,确定所述DCI的类型,所述目标信息包括以下信息中的至少一种:k0、k2、需要所述终端设备读取的时域资源分配表格的信息、L、S;
    其中,k0表示所述DCI所在的时隙与所述DCI调度的物理下行共享信道PDSCH的时隙之间的时隙间隔,k2表示所述DCI所在的时隙与所述DCI调度的物理上行共享信道PUSCH的时隙之间的时隙间隔,L表示时域资源分配的符号数目,S表示所述DCI调度的PDSCH或PUSCH所使用的时域符号的起始位置。
  6. 根据权利要求5所述的方法,其特征在于,所述目标信息为k0,所述终端设备根据所述目标信息,确定所述DCI的类型,包括:
    若k0为无穷大或无效值或未配置k0,则所述终端设备确定所述DCI为第二类型DCI。
  7. 根据权利要求5所述的方法,其特征在于,所述目标信息为k2,所述终端设备根据所述目标信息,确定所述DCI的类型,包括:
    若k2为无穷大或无效值或未配置k2,则所述终端设备确定所述DCI为第二类型DCI。
  8. 根据权利要求5所述的方法,其特征在于,所述目标信息为需要所述终端设备读取的时域资源分配表格的信息,所述终端设备根据所述目标信息,确定所述DCI的类型,包括:
    若需要所述终端设备读取的时域资源分配表格中的行的索引号超出配置的时域资源分配表格能够提供的索引号的范围,则所述终端设备确定所述DCI为第二类型DCI;和/或,
    若需要所述终端设备读取的时域资源分配表格中的k0为无穷大或无效值或所述时域资源分配表格未配置k0,则所述终端设备确定所述DCI为第二类型DCI;和/或,
    若需要所述终端设备读取的时域资源分配表格中的k2为无穷大或无效值或所述时域资源分配表格未配置k2,则所述终端设备确定所述DCI为第二类型DCI。
  9. 根据权利要求5所述的方法,其特征在于,所述目标信息为L,所述终端设备根据所述目标信息,确定所述DCI的类型,包括:
    若L为0,则所述终端设备确定所述DCI为第二类型DCI。
  10. 根据权利要求5所述的方法,其特征在于,所述目标信息为S,所述终端设备根据所述目标信息,确定所述DCI的类型,包括:
    若未配置S或S大于13,则所述终端设备确定所述DCI为第二类型DCI。
  11. 根据权利要求2所述的方法,其特征在于,所述第一比特域为所述频域资源分配的信息域,所述终端设备根据所述DCI格式中的第一比特域的比特取值,确定所述DCI的类型,包括:
    若所述频域资源分配的信息域的所有比特位的取值均为0,则所述终端设备确定所述DCI为第二类型DCI。
  12. 根据权利要求2所述的方法,其特征在于,所述第一比特域为HARQ进程号的信息域,所述终端设备根据所述DCI格式中的第一比特域的比特取值,确定所述DCI的类型,包括:
    若所述HARQ进程号的信息域的比特取值为第三取值,则所述终端设备确定所述DCI为第一类型DCI;和/或,
    若所述HARQ进程号的信息域的比特取值为第四取值,则所述终端设备确定所述DCI为第二类型DCI。
  13. 根据权利要求12所述的方法,其特征在于,所述第四取值为0000或1111。
  14. 根据权利要求1所述的方法,其特征在于,所述终端设备根据用于加扰所述DCI的循环冗余校验CRC的无线网络临时标识RNTI,确定所述DCI的类型,包括:
    若用于加扰所述DCI的CRC的RNTI为第一RNTI,则所述终端设备确定所述DCI为第一类型DCI;
    若用于加扰所述DCI的CRC的RNTI为第二RNTI,则所述终端设备确定所述DCI为第二类型DCI,所述第一RNTI与所述第二RNTI不同。
  15. 根据权利要求14所述的方法,其特征在于,所述第一RNTI为小区RNTI。
  16. 根据权利要求14或15所述的方法,其特征在于,所述第二RNTI是所述终端设备接收所述网络设备通过无线资源控制信令发送的RNTI,或所述第二RNTI是预配置的。
  17. 一种用于确定下行控制信息类型的方法,其特征在于,包括:
    网络设备发送下行控制信息DCI,所述DCI中包括第一比特域,所述第一比特域的比特取值用于指示所述DCI的类型,和/或,用于加扰所述DCI的循环冗余校验CRC的无线网络临时标识RNTI用于指示所述DCI的类型;
    其中,所述DCI包括第一类型DCI和第二类型DCI,所述第一类型DCI用于调度数据且用于指示所述终端设备在辅小区上工作于休眠带宽部分BWP或非休眠BWP,所述第二类型DCI用于指示所述终端设备在辅小区上工作于休眠BWP或非休眠BWP。
  18. 根据权利要求17所述的方法,其特征在于,所述第一比特域包括以下中的至少一种:频域资源分配的信息域、时域资源分配的信息域、混合自动重传请求HARQ进程号的信息域。
  19. 根据权利要求18所述的方法,其特征在于,所述时域资源分配的信息域的比特取值为第一取值用于指示所述DCI为第一类型DCI;所述时域资源分配的信息域的比特取值为第二取值用于指示所述DCI为第二类型DCI。
  20. 根据权利要求19所述的方法,其特征在于,所述第一取值为0000或1111。
  21. 根据权利要求18所述的方法,其特征在于,所述时域资源分配的信息域的比特取值用于确定目标信息,所述目标信息用于指示所述DCI的类型,所述目标信息包括以下信息中的至少一种:k0、k2、需要所述终端设备读取的时域资源分配表格的信息、L、S;
    其中,k0表示所述DCI所在的时隙与所述DCI调度的物理下行共享信道PDSCH的时隙之间的时隙间隔,k2表示所述DCI所在的时隙与所述DCI调度的物理上行共享信道PUSCH的时隙之间的时隙间隔,L表示时域资源分配的符号数目,S表示所述DCI调度的PDSCH或PUSCH所使用的时域符号的起始位置。
  22. 根据权利要求21所述的方法,其特征在于,k0为无穷大或无效值或未配置k0用于指示所述DCI为第二类型DCI。
  23. 根据权利要求21所述的方法,其特征在于,k2为无穷大或无效值或未配置k2用于指示所述DCI为第二类型DCI。
  24. 根据权利要求21所述的方法,其特征在于,需要所述终端设备读取 的时域资源分配表格中的行的索引号超出配置的时域资源分配表格能够提供的索引号的范围用于指示所述DCI为第二类型DCI;和/或,
    需要所述终端设备读取的时域资源分配表格中的k0为无穷大或无效值或所述时域资源分配表格未配置k0用于指示所述DCI为第二类型DCI;和/或,
    需要所述终端设备读取的时域资源分配表格中的k0为无穷大或无效值或所述时域资源分配表格未配置k2用于指示所述DCI为第二类型DCI。
  25. 根据权利要求21所述的方法,其特征在于,L为0用于指示所述DCI为第二类型DCI。
  26. 根据权利要求21所述的方法,其特征在于,未配置S或S大于13用于指示所述DCI为第二类型DCI。
  27. 根据权利要求18所述的方法,其特征在于,所述频域资源分配的信息域的所有比特位的取值均为0用于指示所述DCI为第二类型DCI。
  28. 根据权利要求18所述的方法,其特征在于,所述HARQ进程号的信息域的比特取值为第三取值用于指示所述DCI为第一类型DCI;和/或,所述HARQ进程号的信息域的比特取值为第四取值用于指示所述DCI为第二类型DCI。
  29. 根据权利要求28所述的方法,其特征在于,所述第四取值为0000或1111。
  30. 根据权利要求17所述的方法,其特征在于,用于加扰所述DCI的CRC的RNTI为第一RNTI用于指示所述DCI为第一类型DCI;
    用于加扰所述DCI的CRC的RNTI为第二RNTI用于指示所述DCI为第二类型DCI,所述第一RNTI与所述第二RNTI不同。
  31. 根据权利要求30所述的方法,其特征在于,所述第一RNTI为小区RNTI。
  32. 根据权利要求30或31所述的方法,其特征在于,所述第二RNTI是所述终端设备接收所述网络设备通过无线资源控制信令发送的RNTI,或所述第二RNTI是预配置的。
  33. 一种终端设备,其特征在于,包括:
    通信单元,用于接收下行控制信息DCI;
    处理单元,用于根据所述DCI中的第一比特域的比特取值,确定所述DCI的类型,和/或,根据用于加扰所述DCI的循环冗余校验CRC的无线网络临时标识RNTI,确定所述DCI的类型;
    其中,所述DCI包括第一类型DCI和第二类型DCI,所述第一类型DCI用于调度数据且用于指示所述终端设备在辅小区上工作于休眠带宽部分BWP或非休眠BWP,所述第二类型DCI用于指示所述终端设备在辅小区上工作于休眠BWP或非休眠BWP。
  34. 根据权利要求33所述的终端设备,其特征在于,所述第一比特域包括以下中的至少一种:频域资源分配的信息域、时域资源分配的信息域、混合自动重传请求HARQ进程号的信息域。
  35. 根据权利要求34所述的终端设备,其特征在于,所述第一比特域为所述时域资源分配的信息域,所述处理单元用于:
    若所述时域资源分配的信息域的比特取值为第一取值,则确定所述DCI为第一类型DCI;和/或,
    若所述时域资源分配的信息域的比特取值为第二取值,则确定所述DCI为第二类型DCI。
  36. 根据权利要求35所述的终端设备,其特征在于,所述第二取值为0000或1111。
  37. 根据权利要求34所述的终端设备,其特征在于,所述第一比特域为所述时域资源分配的信息域,所述处理单元用于:
    根据所述时域资源分配的信息域的比特取值,确定目标信息;
    根据所述目标信息,确定所述DCI的类型,所述目标信息包括以下信息中的至少一种:k0、k2、需要所述终端设备读取的时域资源分配表格的信息、L、S;
    其中,k0表示所述DCI所在的时隙与所述DCI调度的物理下行共享信道PDSCH的时隙之间的时隙间隔,k2表示所述DCI所在的时隙与所述DCI调度的物理上行共享信道PUSCH的时隙之间的时隙间隔,L表示时域资源分配的符号数目,S表示所述DCI调度的PDSCH或PUSCH所使用的时域符号的起始位置。
  38. 根据权利要求37所述的终端设备,其特征在于,所述目标信息为k0,所述处理单元用于:
    若k0为无穷大或无效值或未配置k0,则确定所述DCI为第二类型DCI。
  39. 根据权利要求37所述的终端设备,其特征在于,所述目标信息为k2,所述处理单元用于:
    若k2为无穷大或无效值或未配置k2,则确定所述DCI为第二类型DCI。
  40. 根据权利要求37所述的终端设备,其特征在于,所述目标信息为需要所述终端设备读取的时域资源分配表格的信息,所述处理单元用于:
    若需要所述终端设备读取的时域资源分配表格中的行的索引号超出配置的时域资源分配表格能够提供的索引号的范围,则确定所述DCI为第二类型DCI;和/或,
    若需要所述终端设备读取的时域资源分配表格中的k0为无穷大或无效值或所述时域资源分配表格未配置k0,则确定所述DCI为第二类型DCI;和/或,
    若需要所述终端设备读取的时域资源分配表格中的k2为无穷大或无效值或所述时域资源分配表格未配置k2,则确定所述DCI为第二类型DCI。
  41. 根据权利要求37所述的终端设备,其特征在于,所述目标信息为L,所述处理单元用于:
    若L为0,则确定所述DCI为第二类型DCI。
  42. 根据权利要求37所述的终端设备,其特征在于,所述目标信息为S, 所述处理单元用于:
    若未配置S或S大于13,则确定所述DCI为第二类型DCI。
  43. 根据权利要求34所述的终端设备,其特征在于,所述第一比特域为所述频域资源分配的信息域,所述处理单元用于:
    若所述频域资源分配的信息域的所有比特位的取值均为0,则确定所述DCI为第二类型DCI。
  44. 根据权利要求34所述的终端设备,其特征在于,所述第一比特域为HARQ进程号的信息域,所述处理单元用于:
    若所述HARQ进程号的信息域的比特取值为第三取值,则确定所述DCI为第一类型DCI;和/或,
    若所述HARQ进程号的信息域的比特取值为第四取值,则确定所述DCI为第二类型DCI。
  45. 根据权利要求44所述的终端设备,其特征在于,所述第四取值为0000或1111。
  46. 根据权利要求33所述的终端设备,其特征在于,所述处理单元用于:
    若用于加扰所述DCI的CRC的RNTI为第一RNTI,则确定所述DCI为第一类型DCI;
    若用于加扰所述DCI的CRC的RNTI为第二RNTI,则确定所述DCI为第二类型DCI,所述第一RNTI与所述第二RNTI不同。
  47. 根据权利要求46所述的终端设备,其特征在于,所述第一RNTI为小区RNTI。
  48. 根据权利要求46或47所述的终端设备,其特征在于,所述第二RNTI是所述终端设备接收所述网络设备通过无线资源控制信令发送的RNTI,或所述第二RNTI是预配置的。
  49. 一种用于确定下行控制信息类型的网络设备,其特征在于,包括:
    通信单元,用于发送下行控制信息DCI,所述DCI中包括第一比特域,所述第一比特域的比特取值用于指示所述DCI的类型,和/或,用于加扰所述DCI的循环冗余校验CRC的无线网络临时标识RNTI用于指示所述DCI的类型;
    其中,所述DCI包括第一类型DCI和第二类型DCI,所述第一类型DCI用于调度数据且用于指示所述终端设备在辅小区上工作于休眠带宽部分BWP或非休眠BWP,所述第二类型DCI用于指示所述终端设备在辅小区上工作于休眠BWP或非休眠BWP。
  50. 根据权利要求49所述的网络设备,其特征在于,所述第一比特域包括以下中的至少一种:频域资源分配的信息域、时域资源分配的信息域、混合自动重传请求HARQ进程号的信息域。
  51. 根据权利要求50所述的网络设备,其特征在于,所述时域资源分配的信息域的比特取值为第一取值用于指示所述DCI为第一类型DCI,和/或,所述时域资源分配的信息域的比特取值为第二取值用于指示所述DCI为第二 类型DCI。
  52. 根据权利要求51所述的网络设备,其特征在于,所述第二取值为0000或1111。
  53. 根据权利要求50所述的网络设备,其特征在于,所述时域资源分配的信息域的比特取值用于确定目标信息,所述目标信息用于指示所述DCI的类型,所述目标信息包括以下信息中的至少一种:k0、k2、需要所述终端设备读取的时域资源分配表格的信息、L、S;
    其中,k0表示所述DCI所在的时隙与所述DCI调度的物理下行共享信道PDSCH的时隙之间的时隙间隔,k2表示所述DCI所在的时隙与所述DCI调度的物理上行共享信道PUSCH的时隙之间的时隙间隔,L表示时域资源分配的符号数目,S表示所述DCI调度的PDSCH或PUSCH所使用的时域符号的起始位置。
  54. 根据权利要求53所述的网络设备,其特征在于,k0为无穷大或无效值或未配置k0用于指示所述DCI为第二类型DCI。
  55. 根据权利要求53所述的网络设备,其特征在于,k2为无穷大或无效值或未配置k2用于指示所述DCI为第二类型DCI。
  56. 根据权利要求53所述的网络设备,其特征在于,需要所述终端设备读取的时域资源分配表格中的行的索引号超出配置的时域资源分配表格能够提供的索引号的范围用于指示所述DCI为第二类型DCI;和/或,
    需要所述终端设备读取的时域资源分配表格中的k0为无穷大或无效值或所述时域资源分配表格未配置k0用于指示所述DCI为第二类型DCI;和/或,
    需要所述终端设备读取的时域资源分配表格中的k2为无穷大或无效值或所述时域资源分配表格未配置k2用于指示所述DCI为第二类型DCI。
  57. 根据权利要求53所述的网络设备,其特征在于,L为0用于指示所述DCI为第二类型DCI。
  58. 根据权利要求53所述的网络设备,其特征在于,未配置S或S大于13用于指示所述DCI为第二类型DCI。
  59. 根据权利要求50所述的网络设备,其特征在于,所述频域资源分配的信息域的所有比特位的取值均为0用于指示所述DCI为第二类型DCI。
  60. 根据权利要求50所述的网络设备,其特征在于,所述HARQ进程号的信息域的比特取值为第三取值用于指示所述DCI为第一类型DCI,和/或,所述HARQ进程号的信息域的比特取值为第四取值用于指示所述DCI为第二类型DCI。
  61. 根据权利要求60所述的网络设备,其特征在于,所述第四取值为0000或1111。
  62. 根据权利要求49所述的网络设备,其特征在于,用于加扰所述DCI的CRC的RNTI为第一RNTI用于指示所述DCI为第一类型DCI;
    用于加扰所述DCI的CRC的RNTI为第二RNTI用于指示所述DCI为第二类型DCI,所述第一RNTI与所述第二RNTI不同。
  63. 根据权利要求62所述的网络设备,其特征在于,所述第一RNTI为小区RNTI。
  64. 根据权利要求62或63所述的网络设备,其特征在于,所述第二RNTI是所述终端设备接收所述网络设备通过无线资源控制信令发送的RNTI,或所述第二RNTI是预配置的。
  65. 一种终端设备,其特征在于,所述终端设备包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行权利要求1至16中任一项所述的方法。
  66. 一种网络设备,其特征在于,所述网络设备包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行权利要求17至32中任一项所述的方法。
  67. 一种通信装置,其特征在于,所述通信装置包括处理器,所述处理器用于从存储器中调用并运行计算机程序,使得安装有所述通信装置的设备执行权利要求1至16中任一项所述的方法。
  68. 一种通信装置,其特征在于,所述通信装置包括处理器,所述处理器用于从存储器中调用并运行计算机程序,使得安装有所述通信装置的设备执行权利要求17至32中任一项所述的方法。
  69. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行权利要求1至16中任一项所述的方法。
  70. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行权利要求17至32中任一项所述的方法。
  71. 一种计算机程序产品,其特征在于,包括计算机程序指令,所述计算机程序指令使得计算机执行权利要求1至16中任一项所述的方法。
  72. 一种计算机程序产品,其特征在于,包括计算机程序指令,所述计算机程序指令使得计算机执行权利要求17至32中任一项所述的方法。
  73. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行权利要求1至16中任一项所述的方法。
  74. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行权利要求17至32中任一项所述的方法。
  75. 一种通信系统,其特征在于,包括如权利要求33至48中任一项所述的终端设备。
  76. 一种通信系统,其特征在于,包括如权利要求49至64中任一项所述的网络设备。
PCT/CN2019/116801 2019-11-08 2019-11-08 用于确定下行控制信息类型的方法及设备 WO2021088017A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2019/116801 WO2021088017A1 (zh) 2019-11-08 2019-11-08 用于确定下行控制信息类型的方法及设备
CN202210101175.6A CN114501498B (zh) 2019-11-08 2019-11-08 用于确定下行控制信息类型的方法及设备
EP19951349.0A EP4009706B1 (en) 2019-11-08 2019-11-08 Method for determining downlink control information type, and apparatus
CN201980094025.3A CN113647149A (zh) 2019-11-08 2019-11-08 用于确定下行控制信息类型的方法及设备
US17/682,525 US20220190981A1 (en) 2019-11-08 2022-02-28 Method for determining downlink control information type, and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/116801 WO2021088017A1 (zh) 2019-11-08 2019-11-08 用于确定下行控制信息类型的方法及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/682,525 Continuation US20220190981A1 (en) 2019-11-08 2022-02-28 Method for determining downlink control information type, and apparatus

Publications (1)

Publication Number Publication Date
WO2021088017A1 true WO2021088017A1 (zh) 2021-05-14

Family

ID=75848170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/116801 WO2021088017A1 (zh) 2019-11-08 2019-11-08 用于确定下行控制信息类型的方法及设备

Country Status (4)

Country Link
US (1) US20220190981A1 (zh)
EP (1) EP4009706B1 (zh)
CN (2) CN113647149A (zh)
WO (1) WO2021088017A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210176012A1 (en) * 2019-12-05 2021-06-10 Qualcomm Incorporated Downlink control information for dormancy indication and one-shot hybrid automatic repeat request feedback
WO2022267844A1 (zh) * 2021-06-22 2022-12-29 华为技术有限公司 一种通信方法及装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11601930B2 (en) * 2021-02-02 2023-03-07 Qualcomm Incorporated Early termination of PUSCH transmission
CN117460030A (zh) * 2022-07-18 2024-01-26 维沃移动通信有限公司 信道信号传输方法及装置、终端及网络侧设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101646224A (zh) * 2008-08-06 2010-02-10 大唐移动通信设备有限公司 下行控制信息处理方法和系统以及基站设备和终端设备
CN102195742A (zh) * 2010-03-16 2011-09-21 华为技术有限公司 一种物理下行控制信道的配置方法、网络设备和终端
CN108293256A (zh) * 2015-12-07 2018-07-17 英特尔Ip公司 非授权频谱中的多子帧上行链路调度
CN109088707A (zh) * 2017-06-14 2018-12-25 中国移动通信有限公司研究院 分级控制信道的传输方法、检测方法、装置及设备
US20190246378A1 (en) * 2018-02-07 2019-08-08 Huawei Technologies Co., Ltd. Systems and methods for scheduling wireless communications

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101646224A (zh) * 2008-08-06 2010-02-10 大唐移动通信设备有限公司 下行控制信息处理方法和系统以及基站设备和终端设备
CN102195742A (zh) * 2010-03-16 2011-09-21 华为技术有限公司 一种物理下行控制信道的配置方法、网络设备和终端
CN108293256A (zh) * 2015-12-07 2018-07-17 英特尔Ip公司 非授权频谱中的多子帧上行链路调度
CN109088707A (zh) * 2017-06-14 2018-12-25 中国移动通信有限公司研究院 分级控制信道的传输方法、检测方法、装置及设备
US20190246378A1 (en) * 2018-02-07 2019-08-08 Huawei Technologies Co., Ltd. Systems and methods for scheduling wireless communications

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210176012A1 (en) * 2019-12-05 2021-06-10 Qualcomm Incorporated Downlink control information for dormancy indication and one-shot hybrid automatic repeat request feedback
US11611411B2 (en) * 2019-12-05 2023-03-21 Qualcomm Incorporated Downlink control information for dormancy indication and one-shot hybrid automatic repeat request feedback
WO2022267844A1 (zh) * 2021-06-22 2022-12-29 华为技术有限公司 一种通信方法及装置

Also Published As

Publication number Publication date
EP4009706B1 (en) 2023-10-04
US20220190981A1 (en) 2022-06-16
EP4009706A1 (en) 2022-06-08
CN113647149A (zh) 2021-11-12
EP4009706A4 (en) 2022-08-03
CN114501498A (zh) 2022-05-13
CN114501498B (zh) 2023-08-15

Similar Documents

Publication Publication Date Title
EP3412086B1 (en) Methods of reliable paging transmission under ue edrx
US11924907B2 (en) Method for discontinuous transmission and terminal device
WO2020019187A1 (zh) 一种信道监听方法及装置、终端设备、网络设备
US9420533B2 (en) Discontinuous reception
WO2021088017A1 (zh) 用于确定下行控制信息类型的方法及设备
CN114271021B (zh) 用于确定非连续接收持续定时器的启动状态的方法及设备
US20220039013A1 (en) Method and device for discontinuous reception
WO2021056136A1 (zh) 监听wus的方法、发送信息的方法及设备
CN114270917B (zh) 一种drx配置方法及装置、终端设备、网络设备
WO2019196038A1 (zh) 节能信号的传输方法和设备
TW202002695A (zh) 一種下行控制通道的檢測方法及裝置、終端設備
WO2019037127A1 (zh) 通信方法、终端设备和网络设备
WO2020150903A1 (zh) 省电信号图案的使用方法、装置、设备及系统
CN116248241A (zh) 一种通信方法及设备
US9565631B2 (en) Method and arrangement for controlling discontinuous reception by a user equipment
JP2024503648A (ja) リソース選択方法、装置及びシステム
WO2021092861A1 (zh) 无线通信的方法、终端设备和网络设备
US11895729B2 (en) Discontinuous reception method, terminal device and network device
WO2022141009A1 (zh) 寻呼消息发送的方法和装置
CN114375595B (zh) 无线通信方法、终端设备和网络设备
WO2020088455A1 (zh) 通信方法和通信装置
CN114902748B (zh) 辅助载波的睡眠指示方法、装置、终端及存储介质
WO2021087898A1 (zh) 一种状态转换方法及装置、通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951349

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019951349

Country of ref document: EP

Effective date: 20220304

NENP Non-entry into the national phase

Ref country code: DE