WO2022267761A1 - 一种单输入单输出可见光通信系统的星座设计方法 - Google Patents

一种单输入单输出可见光通信系统的星座设计方法 Download PDF

Info

Publication number
WO2022267761A1
WO2022267761A1 PCT/CN2022/093623 CN2022093623W WO2022267761A1 WO 2022267761 A1 WO2022267761 A1 WO 2022267761A1 CN 2022093623 W CN2022093623 W CN 2022093623W WO 2022267761 A1 WO2022267761 A1 WO 2022267761A1
Authority
WO
WIPO (PCT)
Prior art keywords
constellation
visible light
communication system
light communication
function
Prior art date
Application number
PCT/CN2022/093623
Other languages
English (en)
French (fr)
Inventor
陈明
何玉芝
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Publication of WO2022267761A1 publication Critical patent/WO2022267761A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/116Visible light communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/54Intensity modulation
    • H04B10/541Digital intensity or amplitude modulation

Definitions

  • the invention relates to a constellation design of a single-input and single-output visible light communication system, and belongs to the technical field of visible light communication.
  • the present invention proposes a constellation design method for a single-input single-output visible light communication system. Based on the single-input single-output visible light system model, a model for maximizing the entropy function of the received signal is proposed, and then the Lagrange The multiplier method transforms the optimization problem with equality constraints into an optimization problem without equality constraints. By analyzing the equality constraints of the optimal solution and the change law of the entropy function with the dimming factor, the optimal Excellent constellation modulation design.
  • the present invention provides a constellation design method for a single-input single-output visible light communication system, including the following steps:
  • Step A Establish a single-input single-output visible light communication system SISO-VLC model, which is expressed as:
  • Z is the noise independent of the input signal X, which obeys the Gaussian distribution with zero mean and variance s2, namely X is the input light intensity signal, which is a finite discrete modulation, and the probability density function is:
  • ⁇ ( ) represents the Dirac function
  • N represents the number of modulated constellation points, and satisfies equal approximate values
  • x i , i 1, L
  • N represents the position coordinates of the constellation points, and satisfies non-negativity constraints and peak finite constraints, which is:
  • A represents the peak optical power
  • represents the dimming coefficient
  • the probability density function of the received signal Y is:
  • Step B According to the SISO-VLC system model in step A, establish a system mutual information maximization model, which is expressed as:
  • H(Y) is the entropy function of the received signal Y of the SISO-VLC system, which is the functional of the constellation positions x 1 , x 2 ,...,x N , and its expression is:
  • log( ⁇ ) represents the logarithmic function
  • Step C Using the Lagrangian multiplier method, transform the problem with equality constraints given in step B into a mutual information maximization model without equality constraints, and give the necessary and sufficient conditions for the optimal solution to be satisfied and The law of the influence of the dimming factor on the position of the constellation point, the solution process is as follows:
  • Step C-1 The Lagrangian function of the mutual information maximization model is:
  • x i of the model and the corresponding a i , v should satisfy the following equations:
  • Step C-3 Analyze the relationship between the distance of adjacent constellation points and the entropy function; expand the entropy function of the system received signal Y:
  • the entropy function H(Y) can be derived from d N-1 :
  • the invention provides a constellation design method for a single-input single-output visible light communication system; the system input signal is a finite discrete signal, and the signal satisfies the constellation design under the constraints of peak optical power and average optical power, and the channel capacity is not only It is related to the optical signal-to-noise ratio and is also affected by the dimming factor ⁇ .
  • the partial derivative analysis of the function H(Y) with respect to d n finds that H(Y) is an increasing function with respect to d 1 , d 2 ,...d N-1 . Due to the high signal-to-noise ratio of the indoor VLC system, a high signal-to-noise ratio is given The specific form of the optimal constellation design in the comparison scenario.
  • Fig. 1 is a schematic diagram of the position distribution of constellation points when the dimming factor is 0 ⁇ 0.5, and there is a shift D shift of the constellation points toward zero optical power at this time.
  • Fig. 3 is a schematic diagram of the position distribution of constellation points when the dimming factor is 0.5 ⁇ 1, at this time, there is a shift D shift towards the peak optical power of the constellation points.
  • the invention provides a constellation design method of a single-input single-output visible light system.
  • the input signal of the system is a finite discrete signal. Considering that the signal satisfies the constellation design under the constraints of peak optical power and average optical power, the channel capacity is not only related to the optical signal-to-noise ratio, but also affected by the dimming factor ⁇ .
  • Step A Establish the SISO-VLC system model; the input signal probability density function is:
  • Step C using the Lagrange multiplier method to solve the optimization problem
  • Step C-1 The Lagrangian function of the mutual information maximization model given in step B is:
  • Step C-2 Analyze the influence of the dimming factor on the position of the constellation point; when the dimming factor changes from ⁇ to 1- ⁇ , the mutual information of the system remains unchanged, and the position of the constellation point changes as follows:
  • the offset is 0; when the dimming factor is 0.5 ⁇ 1, the constellation point distribution law is shown in Figure 3, and the specific constellation point positions are:

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本发明给出了一种单输入单输出可见光通信系统的星座设计方法。所述方法基于室内单输入单输出可见光通信系统模型,考虑光强信号的非负性,峰值光强有限以及均值光功率有限三个约束条件,通过求解系统互信息量最大值优化问题,利用拉格朗日乘子法进行分析,得到一种容量可达的最优星座设计方法。采用本方法,在相同光功率约束条件下,单输入单输出可见光通信系统得到更大的信道容量。

Description

一种单输入单输出可见光通信系统的星座设计方法 技术领域
本发明涉及一种单输入单输出可见光通信系统的星座设计,属于可见光通信技术领域。
背景技术
目前关于有关单输入单输出可见光通信系统中的容量分析与星座设计,大多数从容量上下界角度研究,直接对容量进行分析求解的较少,另一方面,对容量可达时最优信号调制方式的研究方法更少,难以满足实际可见光系统中信号调制方式的设计需求。
发明内容
针对现有技术的不足,本发明提出了一种单输入单输出可见光通信系统的星座设计方法,基于单输入单输出可见光系统模型,提出了接收信号熵函数最大化模型,然后通过拉格朗日乘子法将有等式约束的优化问题转化为无等式约束的优化问题,通过分析最优解的等式约束条件以及熵函数随调光因子的变化规律,给出了容量可达时最优星座调制设计。
为了解决上述问题,本发明给出一种单输入单输出可见光通信系统的星座设计方法,包括如下步骤:
步骤A:建立单输入单输出可见光通信系统SISO-VLC模型,此模型表述为:
Y=X+Z
其中,Z是独立于输入信号X的噪声,服从均值为零、方差为s 2的高斯分布,即
Figure PCTCN2022093623-appb-000001
X是输入光强信号,为有限离散调制,概率密度函数为:
Figure PCTCN2022093623-appb-000002
其中δ(·)表示狄拉克函数,N表示调制星座点数量,满足等概取值,x i,i=1,L,N表示星座点的位置坐标,满足非负性约束和峰值有限约束,即:
0≤x 1<x 2<…<x N≤A
Figure PCTCN2022093623-appb-000003
其中,A表示峰值光功率,ξ表示调光系数,满足ξ∈[0,1];接收信号Y的概率密度函数为:
Figure PCTCN2022093623-appb-000004
其中exp(·)表示指数函数;
步骤B:根据步骤A中SISO-VLC系统模型建立系统互信息量最大化模型,模型表述为:
Figure PCTCN2022093623-appb-000005
约束条件:
0≤x 1<x 2<…<x N≤A
Figure PCTCN2022093623-appb-000006
其中H(Y)是SISO-VLC系统接收信号Y熵函数,为星座位置x 1,x 2,…,x N的泛函,其表达式为:
Figure PCTCN2022093623-appb-000007
其中log(·)表示对数函数;
步骤C:利用拉格朗日乘子法,将步骤B中给出的有等式约束问题转化无等式约束的互信息量最大化模型求解,并给出最优解满足的充要条件以及调光因子对星座点位置的影响规律,求解过程如下:
步骤C-1:互信息量最大化模型的拉格朗日函数为:
Figure PCTCN2022093623-appb-000008
其中a i是非负整数,i=1,…,N+1,v是任意常数,x=(x 1,x 2,…,x N)表示星座点位置向量;步骤B中互信息量最大化模型的最优解x i以及相应的a i,v应满足下列等式:
Figure PCTCN2022093623-appb-000009
0≤x 1<x 2<…<x N≤A
Figure PCTCN2022093623-appb-000010
a 1(-x 1)=0
a i(x i-1-x i)=0,i=2,…,N
a N+1(x N-A)=0
a i ≥0,i=1,…,N+1
计算得最优解满足的充要条件为:
Figure PCTCN2022093623-appb-000011
Figure PCTCN2022093623-appb-000012
Figure PCTCN2022093623-appb-000013
其中
Figure PCTCN2022093623-appb-000014
步骤C-2:分析调光因子对星座位置的影响规律;若光信噪比和调光系数给定时最优星座点位置向量为x=(x 1,x 2,…,x N) T,那么调光系数变为ξ′=1-ξ时,接收信号熵函数前后的被积函数分别为:
Figure PCTCN2022093623-appb-000015
Figure PCTCN2022093623-appb-000016
可以发现Λ(A/2-x i)=Λ(x i-A/2),也即Λ与Λ′关于点A/2对称,因此函数Λ与Λ′的变量y在区间(-∞,+∞)的积分相等;因此调光系数由ξ变为ξ′=1-ξ时,H(Y)=H′(Y),也即系统容量不变,设此时星座位置向量变为x′,相对应的系统互信息量最大化模型的拉格朗日函数为:
Figure PCTCN2022093623-appb-000017
证明可得x′在取得最优解时同样满足步骤C-1所述定理,因此调光因子变为ξ′=1-ξ时,最优星座点位置向量x′变为:
x=(x 1,x 2,…,x N) T=(A-x N,A-x N-1,…,A-x 1) T
步骤C-3:分析相邻星座点距离与熵函数的关系;将系统接收信号Y的熵函数展开得:
Figure PCTCN2022093623-appb-000018
其中d i=x i+1-x i表示相邻星座点的距离,
Figure PCTCN2022093623-appb-000019
为高斯函数,表达式为:
Figure PCTCN2022093623-appb-000020
熵函数H(Y)对d N-1求导可得:
Figure PCTCN2022093623-appb-000021
由于d 1,…,d N-1≥0,又
Figure PCTCN2022093623-appb-000022
是高斯函数,因而y≥0时,
Figure PCTCN2022093623-appb-000023
所以:
Figure PCTCN2022093623-appb-000024
同理可证明SISO-VLC系统在考虑平均光功率约束时,对于固定的星座点个数N和调光系数ξ,随着A/σ增大,互信息量最大化模型中的H(Y)是关于d 1,d 2,…d N-1的增函数;极限情况下,最优解等间隔分布,此时偏移量D shift=|1-2ξ|A,最优星座点位置为:
Figure PCTCN2022093623-appb-000025
有益效果
本发明给出了一种单输入单输出可见光通信系统的星座设计方法;系统输入信号为有限离散信号,考虑信号满足峰值光功率受限以及均值光功率受限约束下的星座设计,信道容量不仅与光信噪比相关,还受调光因子ξ的影响。可利用泛函分析法并引入拉格朗日乘子,将含等式约束的最大化接收信号熵模型转化为无等式约束优化模型,进一步可以得到星座位置向量取得最优时的充要条件;通过分析发现调光因子分别为ξ和1-ξ时,系统容量不变性以及最优星座点位置x=(x 1,…,x N)关于x=A/2的对偶性;通过对熵函数H(Y)关于d n的偏导数分析发现H(Y)是关于d 1,d 2,…d N-1的增函数,由于室内VLC系统信噪比较高,给出了高信噪比场景下最优星座设计具体形式。
附图说明
图1是调光因子在0<ξ<0.5时的星座点位置分布示意图,此时星座点存在向零值光功率的偏移D shift
图2是调光因子为ξ=0.5时星座点位置分布示意图,此时最优星座分布为均匀分布。
图3是调光因子在0.5<ξ<1时的星座点位置分布示意图,此时星座点存在向峰值光功率的偏移D shift
具体实施方式
本发明给出了一种单输入单输出可见光系统的星座设计方法。系统输入信号为有限离散 信号,考虑信号满足峰值光功率受限以及均值光功率受限约束下的星座设计,信道容量不仅与光信噪比相关,还受调光因子ξ的影响。
为了更好的说明本发明方法,下面结合更详细的例子加以说明:
考虑星座点个数N=4时的最优星座设计问题,不妨设调光系数为0 ξ 0.5;
一种单输入单输出可见光通信系统的星座设计方法,
步骤A:建立SISO-VLC系统模型;输入信号概率密度函数为:
Figure PCTCN2022093623-appb-000026
其中x 2,x 3,x 4∈[0,A]表示输入信号的调制幅度,满足0<x 2<x 3<x 4≤A。此时输出信号Y的概率密度函数f Y(y)表示为:
Figure PCTCN2022093623-appb-000027
其中
Figure PCTCN2022093623-appb-000028
为高斯函数;接收信号Y的熵为:
Figure PCTCN2022093623-appb-000029
步骤B:建立系统互信息量最大化模型;星座点个数N=4时,最大化接收信号熵函数优化问题变为:
Figure PCTCN2022093623-appb-000030
约束条件:
0≤x 2<x 3<x 4≤A
Figure PCTCN2022093623-appb-000031
步骤C:利用拉格朗日乘子法求解优化问题;
步骤C-1:步骤B给出的互信息量最大化模型的拉格朗日函数为:
Figure PCTCN2022093623-appb-000032
步骤B互信息量最大化模型对应的解x 2,x 3,x 4以及相应的系数a i需满足的条件为:
Figure PCTCN2022093623-appb-000033
0<x 2<x 3<x 4≤A
Figure PCTCN2022093623-appb-000034
a i(x i-1-x i)=0,i=2,3,4
a 5(x 4-A)=0
a i≥0,i=1,…,5
计算得:
Figure PCTCN2022093623-appb-000035
Figure PCTCN2022093623-appb-000036
Figure PCTCN2022093623-appb-000037
其中
Figure PCTCN2022093623-appb-000038
步骤C-2:分析调光因子对星座点位置影响;调光因子从ξ变为1-ξ时,系统互信息量不变,星座点位置变化为:
(x 1,x 2,x 3,x N) T=(A-x 4,A-x 3,A-x 2,A-x 1) T
步骤C-3:分析相邻星座距离与接收信号熵函数的关系;令d 1=x 2-x 1,d 2=x 3-x 2,d 3=x 4-x 3为相邻星座点距离,则d 1,d 2,d 3>0,由平均光功率约束有(x 2+x 3+x 4)/4=ξA,从而3d 1+2d 2+d 3=4ξA,因此熵函数H(Y)可改写为:
Figure PCTCN2022093623-appb-000039
计算可得:
Figure PCTCN2022093623-appb-000040
当A/σ较小时,存在星座点近似重合的情况,随着A/σ的增大,四个星座点分开,并逐渐趋近于等间隔分布;A/σ足够大时,最优星座点位置分布为:
x 1=0,
Figure PCTCN2022093623-appb-000041
x 4=2ξA,0 ξ 0.5
此时的星座分布规律如图1所示,偏移量为D shift=(1-2ξ)A;若调光因子ξ=0.5,则此时星座分布规律如图2所示,具体星座点位置为:
x 1=0,
Figure PCTCN2022093623-appb-000042
x 4=A,ξ=0.5
此时偏移量为0;在调光因子0.5<ξ≤1时,星座点分布规律则如图3所示,具体星座点位置为:
x 1=(2ξ-1)A,
Figure PCTCN2022093623-appb-000043
x 4=A,0.5<ξ≤1
此时偏移量为D shift=(2ξ-1)A。

Claims (4)

  1. 一种单输入单输出可见光通信系统的星座设计方法,其特征在于,包括如下步骤:
    步骤A:建立单输入单输出可见光通信系统SISO-VLC模型;
    步骤B:根据步骤A中SISO-VLC系统模型建立系统互信息量最大化模型;
    步骤C:利用拉格朗日乘子法,求解步骤B中给出的互信息量最大化模型,并给出最优解满足的充要条件。
  2. 根据权利要求1所述的一种单输入单输出可见光通信系统的星座设计方法,其特征在于,步骤A中单输入单输出可见光通信系统SISO-VLC模型表述为:
    Y=X+Z
    其中,Z是独立于输入信号X的噪声,服从均值为零、方差为σ 2的高斯分布,即
    Figure PCTCN2022093623-appb-100001
    X是输入光强信号,为有限离散调制,概率密度函数为:
    Figure PCTCN2022093623-appb-100002
    其中δ(·)表示狄拉克函数,N表示调制星座点数量,满足等概取值,x i表示星座点的位置坐标,i=1,…,N,满足非负性约束和峰值有限约束,即:
    0≤x 1<x 2<…<x N≤A
    Figure PCTCN2022093623-appb-100003
    其中,A表示峰值光功率,ξ表示调光系数,满足ξ∈[0,1];接收信号Y的概率密度函数为:
    Figure PCTCN2022093623-appb-100004
    其中exp(·)表示指数函数。
  3. 根据权利要求2所述的一种单输入单输出可见光通信系统的星座设计方法,其特征在于,步骤B中系统互信息量最大化模型表述为:
    Figure PCTCN2022093623-appb-100005
    约束条件:
    0≤x 1<x 2<…<x N≤A
    Figure PCTCN2022093623-appb-100006
    其中H(Y)是SISO-VLC系统接收信号Y熵函数,为星座位置x 1,x 2,…,x N的泛函,其表达式为:
    Figure PCTCN2022093623-appb-100007
    其中log(·)表示对数函数。
  4. 根据权利要求3所述的一种单输入单输出可见光通信系统的星座设计方法,其特征在于,步骤C的求解过程如下:
    步骤C-1:步骤B中互信息量最大化模型的拉格朗日函数为:
    Figure PCTCN2022093623-appb-100008
    其中a i是非负整数,i=1,…,N+1,v是任意常数,x=(x 1,x 2,…,x N)表示星座点位置向量;步骤B中互信息量最大化模型的最优解x i,i=1,…,N以及相应的a i,i=1,…,N+1,v需要满足下列等式:
    Figure PCTCN2022093623-appb-100009
    计算得到最优解满足的充要条件为:
    Figure PCTCN2022093623-appb-100010
    Figure PCTCN2022093623-appb-100011
    Figure PCTCN2022093623-appb-100012
    其中
    Figure PCTCN2022093623-appb-100013
    步骤C-2:若光信噪比A/σ和调光系数ξ给定时,最优星座点位置向量为x=(x 1,x 2,…,x N) T,那么调光系数变为1-ξ时,系统信道容量不变且最优星座点位置向量x′变为:
    x=(x 1,x 2,…,x N) T=(A-x N,A-x N-1,…,A-x 1) T
    步骤C-3:对于固定的星座点个数N和调光系数ξ,随着光信噪比A/σ增大,步骤B中互信息量最大化模型的熵函数H(Y)是关于d 1,d 2,…d N-1的增函数,其中d i=x i+1-x i表示相邻星座点的距离;极限情况下,最优星座设计为等间隔分布,偏移量为D shift=|1-2ξ|A,最优星座点位置为:
    Figure PCTCN2022093623-appb-100014
PCT/CN2022/093623 2021-06-25 2022-05-18 一种单输入单输出可见光通信系统的星座设计方法 WO2022267761A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110708788.1A CN113452443A (zh) 2021-06-25 2021-06-25 一种单输入单输出可见光通信系统的星座设计方法
CN202110708788.1 2021-06-25

Publications (1)

Publication Number Publication Date
WO2022267761A1 true WO2022267761A1 (zh) 2022-12-29

Family

ID=77812670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/093623 WO2022267761A1 (zh) 2021-06-25 2022-05-18 一种单输入单输出可见光通信系统的星座设计方法

Country Status (2)

Country Link
CN (1) CN113452443A (zh)
WO (1) WO2022267761A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116131948A (zh) * 2023-04-17 2023-05-16 广东工业大学 基于可见光通信的Gray-GSM星座构建方法、装置、终端及介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113452443A (zh) * 2021-06-25 2021-09-28 东南大学 一种单输入单输出可见光通信系统的星座设计方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105553554A (zh) * 2016-01-25 2016-05-04 中国人民解放军信息工程大学 可见光通信信号星座设计方法、装置及系统
US20180269972A1 (en) * 2017-03-15 2018-09-20 Nec Laboratories America, Inc. Secured hybrid coded modulation for 5g - and beyond - access networks
CN109617603A (zh) * 2019-01-04 2019-04-12 清华大学 基于索引调制的可见光通信混合调光方法及装置
CN113452443A (zh) * 2021-06-25 2021-09-28 东南大学 一种单输入单输出可见光通信系统的星座设计方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106301563B (zh) * 2016-06-06 2018-12-14 中国人民解放军信息工程大学 与信道相适应的vlc-mimo星座设计方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105553554A (zh) * 2016-01-25 2016-05-04 中国人民解放军信息工程大学 可见光通信信号星座设计方法、装置及系统
US20180269972A1 (en) * 2017-03-15 2018-09-20 Nec Laboratories America, Inc. Secured hybrid coded modulation for 5g - and beyond - access networks
CN109617603A (zh) * 2019-01-04 2019-04-12 清华大学 基于索引调制的可见光通信混合调光方法及装置
CN113452443A (zh) * 2021-06-25 2021-09-28 东南大学 一种单输入单输出可见光通信系统的星座设计方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIA LINQIONG: "Capacity Analysis and Constellation Design of Visible Light Communication Systems", CHINA DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, INFORMATION TECHNOLOGY, 15 May 2019 (2019-05-15), XP093017423 *
WANG JINYUAN: "Capacity Analysis and Constellation Design in Visible Light Communication Systems", CHINA DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, INFORMATION TECHNOLOGY, 15 January 2017 (2017-01-15), XP093017427 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116131948A (zh) * 2023-04-17 2023-05-16 广东工业大学 基于可见光通信的Gray-GSM星座构建方法、装置、终端及介质

Also Published As

Publication number Publication date
CN113452443A (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
WO2022267761A1 (zh) 一种单输入单输出可见光通信系统的星座设计方法
CN107817465B (zh) 超高斯噪声背景下的基于无网格压缩感知的doa估计方法
CN108229550B (zh) 一种基于多粒度级联森林网络的云图分类方法
WO2016082562A1 (zh) 基于无线电信号频谱特征模板的信号识别方法及系统
CN109741318A (zh) 基于有效感受野的单阶段多尺度特定目标的实时检测方法
CN104200445A (zh) 一种最优对比度和最小信息损失的图像去雾方法
CN113902021A (zh) 一种高能效的聚类联邦边缘学习策略生成方法和装置
CN109511095B (zh) 一种基于支持向量机回归的可见光定位方法及系统
CN111447662B (zh) 一种无线供电反向散射网络能效优化方法
CN113406974A (zh) 一种面向无人机集群联邦学习的学习与资源联合优化方法
CN114154545A (zh) 强互干扰条件下无人机测控信号智能识别方法
CN107094043B (zh) 基于块迭代法的改进后的mmse低复杂度信号检测方法
CN116206359A (zh) 基于毫米波雷达与动态采样神经网络的人体步态识别方法
CN103530866B (zh) 一种基于高斯云变换的图像处理方法及装置
Lijun et al. Analysis of intelligent agricultural system and control mode based on fuzzy control and sensor network
CN116939681A (zh) 一种基于智能超表面和空中计算的联邦学习系统
CN114844538B (zh) 一种基于宽学习的毫米波mimo用户增量协作波束选择方法
WO2023083152A1 (zh) 图像分割方法、装置、设备及存储介质
CN110061826A (zh) 一种最大化多载波分布式天线系统能效的资源分配方法
Sun et al. Semantic-driven computation offloading and resource allocation for UAV-assisted monitoring system in vehicular networks
Rizk et al. Indoor Localization System for Seamless Tracking Across Buildings and Network Configurations
CN110161471A (zh) 一种针对云mimo雷达的采样率和量化比特的计算方法
CN112686861A (zh) 一种土地利用变化遥感监测分析方法、装置及智能终端
Powari et al. Novel Romberg approximation of the Gaussian Q function and its application over versatile κ− μ shadowed fading channel
Huang et al. Modulation classification of MQAM signals based on gradient color constellation and deep learning

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22827259

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE