WO2022267544A1 - 通信设备、通信方法以及通信系统 - Google Patents

通信设备、通信方法以及通信系统 Download PDF

Info

Publication number
WO2022267544A1
WO2022267544A1 PCT/CN2022/079467 CN2022079467W WO2022267544A1 WO 2022267544 A1 WO2022267544 A1 WO 2022267544A1 CN 2022079467 W CN2022079467 W CN 2022079467W WO 2022267544 A1 WO2022267544 A1 WO 2022267544A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical signal
wss
optical
module
wave
Prior art date
Application number
PCT/CN2022/079467
Other languages
English (en)
French (fr)
Inventor
王步云
容华彬
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022267544A1 publication Critical patent/WO2022267544A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • H04J14/0212Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM] using optical switches or wavelength selective switches [WSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation

Definitions

  • FIG. 1 is a schematic structural diagram of a communication device carrying two-dimensional optical layer services.
  • the communication device includes a westbound module 101 and an eastbound module 102 .
  • the westbound module 101 includes a wavelength selective switch (wavelength selective switching, WSS) 103 .
  • Eastbound module 102 includes WSS 104.
  • WSS 103 divides the eastbound service optical signal into two parts. Part of it is the downwave optical signal in the east direction.
  • the downwave optical signal in the east direction is downwaved in the westbound module 101 .
  • the other part is the remaining service optical signals.
  • the WSS 104 performs multiplexing on the remaining service optical signals and eastbound optical signals, and outputs the multiplexed optical signals.
  • the WSS 104 demultiplexes the westbound service optical signal into two parts. Part of it is westward downwave optical signal. The downwave optical signal in the west direction is downwaved in the eastbound module 102 . The other part is the remaining service optical signals.
  • the WSS 103 performs multiplexing on the remaining service optical signals and west-bound optical signals, and outputs the multiplexed optical signals.
  • WSS is an important device for realizing WDM.
  • WSS is relatively expensive, resulting in higher cost of communication equipment.
  • the present application provides a communication device, a communication method and a communication system.
  • one WSS completes the first upwave optical signal and the second upwave optical signal, which can reduce the number of WSSs in the communication device, thereby reducing the cost of the communication device.
  • the first aspect of the present application provides a communication device.
  • Communication equipment includes westbound module, WSS and eastbound module.
  • the westbound module is used to transmit the first service optical signal and the first added optical signal to the WSS.
  • the eastbound module is used to transmit the second service optical signal and the second added optical signal to the WSS.
  • the first upstream optical signal may be an east upstream optical signal, and the first service optical signal may be an east service optical signal.
  • the second uplink optical signal may be a west uplink optical signal, and the second service optical signal may be a westward service optical signal.
  • the WSS is used for multiplexing the first service optical signal and the second up-wavelength optical signal to obtain the first optical signal and output the first optical signal.
  • the WSS is also used to multiplex the second service optical signal and the first up-wavelength optical signal to obtain a second optical signal and output the second optical signal.
  • one WSS completes the first upwave optical signal and the second upwave optical signal, which can reduce the number of WSSs in the communication device, thereby reducing the cost of the communication device.
  • the first wave adding unit includes a first optical switch and a first optical splitter.
  • the first optical splitter is used to receive the west upward wave optical signal, and split the west upward wave optical signal into a first upward wave optical signal and a third upward wave optical signal.
  • the first optical splitter is also used to send the first up-wavelength optical signal to the WSS, and send the third up-wavelength optical signal to the first optical switch. If the WSS is in a normal state, the first optical switch is used to receive the third upwave optical signal and the second optical signal. At this time, the first optical switch is used to output the second optical signal. If the WSS is abnormal, the first optical switch may not be able to receive the second optical signal.
  • the west upward wave optical signal is also referred to as the third upward wave optical signal.
  • the first optical coupler is used for receiving the third upwave optical signal and outputting the third upwave optical signal.
  • the upwave of the west-bound optical signal can be completed, thereby improving the reliability of communication.
  • the first wave adding unit includes a first optical switch and a second optical switch.
  • the first optical switch is used for receiving west-upward wave optical signals. If the WSS is in a normal state, the first optical switch is used to transmit west-upward optical signals to the WSS. At this time, the west upward optical signal is also referred to as the first upward optical signal.
  • the second optical switch is used to receive the second optical signal from the WSS and output the second optical signal. If the WSS is in an abnormal state, the first optical switch is used to transmit the west-upward wave optical signal to the second optical switch.
  • the communication device further includes a first detection module and a controller.
  • the first detection module is used to detect the second optical signal to obtain the first detection signal.
  • the controller is used to determine whether the WSS is in an abnormal state according to the first detection signal. Among them, through real-time detection, it can be found that the WSS is in an abnormal state as early as possible, thereby improving the reliability of communication.
  • the second service optical signal may be lost.
  • the fourth optical signal after the fourth optical signal is obtained through the second service optical signal, the fourth optical signal may be output through the eastbound module. Therefore, the present application can avoid loss of the second service optical signal, thereby improving communication reliability.
  • the WSS is also used to perform multiplexing on the first service optical signal, the first upstream optical signal, and the second upstream optical signal to obtain the first Three optical signals, outputting a third optical signal.
  • the WSS is also used to combine the second service optical signal, the first up-wave optical signal and the second up-wave optical signal to obtain a fourth optical signal, and output the fourth optical signal .
  • the eastbound module fails, the second upstream optical signal may be lost.
  • the third optical signal may be output through the westbound module.
  • the communication device further includes a second detection module and a controller.
  • the second detection module is used to detect the second service optical signal to obtain the second detection signal.
  • the controller is used to determine whether the eastbound module is in an abnormal state according to the second detection signal. Among them, through real-time detection, it can be found that the eastbound module is in an abnormal state as early as possible, thereby improving the reliability of communication.
  • the second detection module can also be used to detect the first service optical signal to obtain another second detection signal.
  • the controller is used to determine whether the westbound module is in an abnormal state according to another second detection signal.
  • the second aspect of the present application provides a communication method, and the communication method is applied to a communication device.
  • the communication device includes a WSS, and the communication method includes the following steps: the communication device acquires a first service optical signal and a first added optical signal.
  • the communication device acquires the second service optical signal and the second added optical signal.
  • the communication device multiplexes the first service optical signal and the second up-wave optical signal through the WSS to obtain the first optical signal, and outputs the first optical signal.
  • the communication device multiplexes the second service optical signal and the first up-wave optical signal through the WSS to obtain a second optical signal, and outputs the second optical signal.
  • the first uplink optical signal is acquired in the following manner: the communication device receives the west uplink optical signal, and the communication device obtains the first uplink optical signal according to the west uplink optical signal.
  • the communication method further includes the following steps: the communication device obtains the third up-wave optical signal according to the west-up wave optical signal.
  • the first up-wavelength optical signal and the third up-wavelength optical signal carry the same data. If the WSS is in an abnormal state, the communication device outputs a third up-wavelength optical signal.
  • the communication method further includes: the communication device detects the second optical signal to obtain the first detection signal. The communication device determines whether the WSS is in an abnormal state according to the first detection signal. Similarly, the communication device detects the first optical signal to obtain another first detection signal. The communication device determines whether the WSS is in an abnormal state according to another first detection signal.
  • the communication device includes a westbound module and an eastbound module.
  • the communication device acquires the first service optical signal and the first added optical signal through the westbound module.
  • the communication device acquires the second service optical signal and the second added optical signal through the eastbound module.
  • the communication method further includes the following steps: if the eastbound module is in an abnormal state, the communication device multiplexes the first service optical signal and the first upwave optical signal through the WSS to obtain a third optical signal, and outputs the third optical signal. And/or, if the westbound module is in an abnormal state, the communication device multiplexes the second service optical signal and the second upstream optical signal through the WSS to obtain a fourth optical signal, and outputs the fourth optical signal.
  • the communication device includes a westbound module and an eastbound module.
  • the communication device acquires the first service optical signal and the first added optical signal through the westbound module.
  • the communication device acquires the second service optical signal and the second added optical signal through the eastbound module.
  • the communication method further includes the following steps: if the eastbound module is in an abnormal state, the first service optical signal, the first up-wave optical signal and the second up-wave optical signal are combined by the WSS to obtain a third optical signal, and the third optical signal is output. light signal. And/or, if the westbound module is in an abnormal state, the WSS performs multiplexing on the second service optical signal, the first up-wave optical signal and the second up-wave optical signal to obtain a fourth optical signal, and outputs the fourth optical signal.
  • the communication method further includes the following steps: after multiplexing the second service optical signal and the first up-wavelength optical signal through the WSS to obtain the second optical signal, outputting the second optical signal to the network device Two light signals.
  • a third detection signal is received from a network device. Determine whether the eastbound module is in an abnormal state according to the third detection signal.
  • the communication device acquires the first service optical signal in the following manner: the communication device receives the eastbound service optical signal. The communication device divides the eastbound service optical signal into a first service optical signal and a first downwave optical signal. Similarly, the communication device acquires the second service optical signal in the following manner: the communication device receives the westbound service optical signal. The communication device divides the westbound service optical signal into a second service optical signal and a second downwave optical signal.
  • FIG. 1 is a schematic structural diagram of a communication device carrying two-dimensional optical layer services
  • FIG. 6 is a fifth structural schematic diagram of the communication device provided in this application.
  • FIG. 8 is a schematic diagram of the first structure of the WSS provided in this application.
  • FIG. 12 is a schematic flowchart of a communication method provided in this application.
  • the present application provides a communication device, a communication method and a communication system.
  • one WSS completes the first upwave optical signal and the second upwave optical signal, which can reduce the number of WSSs, thereby reducing the cost of communication equipment.
  • first”, “second”, “eastward”, “westward” and the like used in this application are only used for the purpose of distinguishing descriptions, and cannot be understood as indicating or implying relative importance, nor can they be understood as Indicate or imply order, direction.
  • reference numerals and/or letters are repeated in the various figures of this application for the sake of brevity and clarity. Repetition does not imply a strictly limited relationship between the various embodiments and/or configurations.
  • Fig. 2 is a first structural schematic diagram of a communication device provided in this application.
  • the communication device includes a westbound module 201, a WSS 203 and an eastbound module 202.
  • the westbound module 201 is used to transmit the first service optical signal and the first added optical signal to the WSS 203.
  • the eastbound module 202 is used to transmit the second service optical signal and the second added optical signal to the WSS 203.
  • the WSS 203 is used to multiplex the first service optical signal and the second up-wave optical signal to obtain the first optical signal and output the first optical signal.
  • the WSS 203 is also used to multiplex the second service optical signal and the first up-wave optical signal to obtain a second optical signal and output the second optical signal.
  • the WSS 203 completes the first upwave optical signal and the second upwave optical signal, which can reduce the number of WSSs in the communication equipment, thereby reducing the cost of the communication equipment.
  • the west-bound module 201 receives west-uplink optical signals through the first uplink unit.
  • the first up-wave optical signal may be a west-up optical signal.
  • the first up-wave optical signal may also be obtained from the west-up optical signal. If the first uplink optical signal is obtained according to the west uplink optical signal, the first uplink unit is configured to obtain the first uplink optical signal according to the west uplink optical signal. If the WSS 203 fails and is in an abnormal state, the WSS 203 may lose the west-bound optical signal. For this reason, the first uplink unit can also be used to obtain a third uplink optical signal according to the west uplink optical signal. The first up-wavelength optical signal and the third up-wavelength optical signal carry the same data. If the WSS 203 is in an abnormal state, the first wave adding unit is also used to output the third wave adding optical signal. Several examples of the first wave adding unit are described respectively below.
  • the protection of the west upward wave optical signal is realized by the first optical switch and the first optical splitter. Moreover, the first wave adding unit in FIG. 3 only needs one optical switch. Therefore, the communication device in FIG. 3 can reduce the cost of the first wave adding unit.
  • the second wave adding unit is also used to output the fourth wave adding optical signal.
  • the second wavelength adding unit includes an optical splitter 303 and an optical switch 304 .
  • the optical splitter 303 and the optical switch 304 are used to implement functions similar to those of the optical splitter 301 and the optical switch 302 , please refer to the optical signal transmission path in FIG. 3 for details.
  • the first service optical signal may be an eastbound service optical signal, and the first service optical signal may also be obtained according to the eastbound service optical signal.
  • the westbound module 201 further includes a first downwave unit.
  • the first downwave unit includes an optical splitter or an array waveguide grating (array waveguide grating, AWG).
  • the first wave-down unit includes an optical splitter 305 (also referred to as a second optical splitter). The optical splitter 305 is used to receive the eastbound service optical signal, and divide the eastbound service optical signal into the first service optical signal and the first drop wave optical signal.
  • the first wave adding unit includes a first optical coupler and a first optical switch.
  • Fig. 4 is a third schematic structural diagram of a communication device provided in this application. As shown in FIG. 4 , the communication device includes a westbound module 201, a WSS 203 and an eastbound module 202.
  • the westbound module 201 includes an optical switch 401 (also referred to as a first optical switch) and an optical coupler 402 (also referred to as a first optical coupler).
  • the optical switch 401 is used for receiving west-upward wave optical signals. If the WSS 203 is in the normal state, the optical switch 401 is in the first state. The optical switch 401 is used to transmit the west-up wave optical signal to the WSS 203. At this time, the west upward optical signal is also referred to as the first upward optical signal. After the WSS 203 combines the first upwave optical signal and the second service optical signal into a second optical signal, the optical coupler 402 is used to receive the second optical signal from the WSS 203 and output the second optical signal. If the WSS 203 breaks down and is in an abnormal state, the optical switch 401 is in the second state. The optical switch 401 is used to transmit the west-up wave optical signal to the optical coupler 402 . At this time, the west upward wave optical signal is also referred to as the third upward wave optical signal. The optical coupler 402 is used for receiving the third up-wave optical signal and outputting the third up-wave optical signal.
  • the protection of the west upward wave optical signal is realized by the first optical coupler and the first optical switch.
  • the power of the first uplink optical signal or the third uplink optical signal is equal to half of the power of the west uplink optical signal.
  • the power of the first uplink optical signal or the third uplink optical signal is equal to the power of the west uplink optical signal. Therefore, the communication device in FIG. 4 can reduce power loss.
  • the second wave adding unit includes an optical switch 403 and an optical coupler 404 .
  • the optical switch 403 and the optical coupler 404 are used to implement functions similar to those of the optical switch 401 and the optical coupler 402 , please refer to the optical signal transmission path in FIG. 4 for details.
  • the first wave adding unit includes a first optical switch and a second optical switch.
  • Fig. 5 is a fourth schematic structural diagram of a communication device provided in this application. As shown in FIG. 5 , the communication device includes a westbound module 201, a WSS 203 and an eastbound module 202.
  • the westbound module 201 includes an optical switch 501 (also referred to as a first optical switch) and an optical switch 502 (also referred to as a second optical switch).
  • the optical switch 501 is used for receiving the west-up wave optical signal. If WSS 203 is in normal state, then optical switch 501 is in the first state. The optical switch 501 is used to transmit the west-up wave optical signal to the WSS 203. At this time, the west upward optical signal is also referred to as the first upward optical signal. Optical switch 502 is in a first state. After the WSS 203 combines the first upwave optical signal and the second service optical signal into a second optical signal, the optical switch 502 is used to receive the second optical signal from the WSS 203 and output the second optical signal. If the WSS 203 breaks down and is in an abnormal state, the optical switch 501 is in the second state.
  • the optical switch 501 is used to transmit the west-up wave optical signal to the optical switch 502 .
  • the west upward wave optical signal is also referred to as the third upward wave optical signal.
  • Optical switch 502 is in a second state.
  • the optical switch 502 is configured to receive the third up-wavelength optical signal and output the third up-wavelength optical signal.
  • the communication device in this application adds a first detection module.
  • the first detection module is used for detecting the state of WSS 203.
  • the communication device in FIG. 4 is taken as an example below to describe the first detection module.
  • Fig. 6 is a fifth structural schematic diagram of the communication device provided in this application. As shown in FIG. 6 , the communication device includes a westbound module 201 , a controller 501 and a detection module 502 (also referred to as a first detection module).
  • the westbound module 301 includes an optical switch 401 and an optical coupler 402 .
  • the optical switch 401 is used for receiving west-upward wave optical signals.
  • the communication device may further include another detection module.
  • Another detection module is used to detect the first optical signal to obtain another first detection signal.
  • the controller 501 is used to determine whether the WSS 203 is in an abnormal state according to another first detection signal.
  • the controller 501 is used for generating a control signal according to the detection signal.
  • the control signal is used to control the state of the optical switch 403 .
  • the westbound module 201 and the eastbound module 202 share one detection module.
  • the first detection module is used to detect the second optical signal to obtain the first detection signal.
  • the controller 501 can be configured to generate a control signal according to the first detection signal.
  • the control signal is used to control the states of the optical switch 401 and the optical switch 403 .
  • westbound module 201 and the eastbound module 202 may also fail.
  • eastbound module 201 may also include an optical amplifier. The optical amplifier is used to amplify the first optical signal or the fourth up-wavelength optical signal. If the optical amplifier fails, the eastbound module 201 cannot normally output the first optical signal or the fourth upstream optical signal. At this time, the eastbound module 201 may lose the first service optical signal, affecting normal communication.
  • the WSS 203 in the present application can also provide a loopback channel when the westbound module 201 or the eastbound module 202 fails, so as to avoid the loss of the first service optical signal or the second service optical signal.
  • the failure of the eastbound module 202 in FIG. 4 will be taken as an example below to describe accordingly.
  • the eastbound module 202 is in an abnormal state. After receiving the westbound service optical signal, the eastbound module 202 may not be able to send the second service optical signal to the WSS 203, nor can it obtain the second downwave optical signal. Similarly, after receiving the east-up optical signal, the east-bound module 202 may not be able to send the second up-wave optical signal to the WSS 203. At this moment, WSS 203 is in the normal state, and the light switch 401 is in the first state. The optical switch 401 is used to send the first upwave optical signal to the WSS 203. After receiving the eastbound service optical signal, the optical splitter 305 is used to send the first service optical signal to the WSS 203.
  • the first wave adding unit includes an optical switch 401 and an optical coupler 402 .
  • the optical switch 401 and the optical coupler 402 are used to prevent the failure of the WSS 203 from causing loss of the west-bound optical signal.
  • the optical coupler 402 is used to output the third optical signal.
  • the first uplink unit may not include the optical switch 401 and the optical coupler 402 .
  • WSS 203 can directly output the third optical signal.
  • FIG. 8 is a schematic diagram of the first structure of the WSS provided in this application. As shown in FIG. 8, when the westbound module 201 (not shown in the figure) fails, the WSS 203 may not be able to receive the first service optical signal and the first added optical signal from the westbound module 201.
  • the WSS 203 is configured to receive the second service optical signal and the second added optical signal from the eastbound module 203 (not shown in the figure).
  • the WSS 203 is used to multiplex the second service optical signal and the second up-wave optical signal to obtain a fourth optical signal. WSS 203 is used to output the fourth optical signal.
  • Fig. 10 is a third structural schematic diagram of the WSS provided in this application.
  • the WSS 203 may not be able to receive the first service optical signal.
  • the WSS 203 is used to receive the second service optical signal and the second added optical signal from the eastbound module 202.
  • the WSS 203 is also used to receive the first adding optical signal from the first adding unit of the west module 201.
  • the WSS 203 is used to multiplex the second service optical signal, the second upwave optical signal and the first upwave optical signal to obtain a fourth optical signal and output the fourth optical signal.
  • the WSS 203 may perform wavelength selection during the multiplexing process, thereby discarding some wavelengths.
  • the first service optical signal includes optical signals of 4 wavelengths.
  • the optical signals of the four wavelengths are ⁇ 1 , ⁇ 2 , ⁇ 3 and ⁇ 4 respectively.
  • the first up-wavelength optical signal includes optical signals of three wavelengths.
  • the optical signals of the three wavelengths are ⁇ 5 , ⁇ 6 and ⁇ 71 respectively.
  • the second up-wavelength optical signal includes optical signals of two wavelengths.
  • the optical signals of the two wavelengths are ⁇ 72 and ⁇ 8 , respectively.
  • the WSS 203 When the WSS 203 combines the first service optical signal, the first added optical signal and the second added optical signal, the WSS 203 discards ⁇ 72 in the second added optical signal.
  • the third optical signal includes optical signals of 8 wavelengths.
  • the optical signals of the eight wavelengths are ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 , ⁇ 5 , ⁇ 6 , ⁇ 71 and ⁇ 8 .
  • the communication device further includes a second detection module and a controller.
  • the communication device determines whether the eastbound module 202 is in an abnormal state through the second detection module.
  • FIG. 11 is a seventh structural schematic diagram of the communication device provided in this application.
  • the communication device further includes a detection module 1101 (also referred to as a second detection module).
  • the detection module 1101 is configured to detect the second service optical signal to obtain a second detection signal.
  • the detecting module 502 may detect optical power or wavelength characteristics of the second service optical signal.
  • the controller 501 is configured to determine whether the eastbound module 202 is in an abnormal state according to the second detection signal.
  • the controller 501 is used for generating a control signal according to the second detection signal.
  • the control signal is used to control the WSS 203 to select the object of multiplexing and the output port.
  • the controller 501 determines that the eastbound module 202 is in a normal state.
  • the controller 501 is configured to send a first control signal to the WSS 203.
  • the WSS 203 is used to select the object of multiplexing and the output port according to the first control signal.
  • the WSS 203 is used to multiplex the first service optical signal and the second up-wave optical signal to obtain the first optical signal, and send the first optical signal to the eastbound module 202.
  • the WSS 203 is also used to multiplex the second service optical signal and the first up-wave optical signal to obtain a second optical signal, and send the second optical signal to the westbound module 201.
  • the controller 501 determines that the eastbound module 202 is in an abnormal state.
  • the controller 501 is configured to send a second control signal to the WSS 203.
  • the WSS 203 is used to select the object of multiplexing and the output port according to the second control signal.
  • the WSS 203 is used to multiplex the first service optical signal and the first upwave optical signal to obtain a third optical signal, and send the third optical signal to the westbound module 201.
  • a second detection module may be used to detect in real time whether the eastbound module 202 is in an abnormal state. Therefore, it is possible to reduce the cost of communication equipment on the basis of improving the reliability of communication.
  • the communication device receives the third detection signal from the network device.
  • the communication device determines whether the eastbound module 202 is in an abnormal state according to the third detection signal.
  • the eastbound module 202 is used to send the first optical signal to the network device.
  • the network device includes a detection module 1102 .
  • the detection module 1102 is configured to detect the first optical signal to obtain a third detection signal.
  • the controller 501 of the communication device is configured to receive the third detection signal, and determine whether the eastbound module 202 is in an abnormal state according to the third detection signal.
  • the controller 501 determines that the eastbound module 202 is in a normal state. If the third detection signal indicates that the power of the first optical signal is less than a certain threshold, the controller 501 determines that the eastbound module 202 is in an abnormal state.
  • the controller 501 is also configured to generate a control signal according to the third detection signal. The control signal is used to control the WSS 203 to select the object of multiplexing and the output port. In the second manner, the peer end (network device) detects whether the eastbound module 202 is in a normal state, which can improve detection accuracy.
  • the communication device includes a second detection module, a third detection module, and a fourth detection module.
  • the communication device is configured to determine whether the eastbound module 202 is in an abnormal state according to the comprehensive detection results of the second detection module, the third detection module and the fourth detection module.
  • the communication device further includes a detection module 1103 (also referred to as a fourth detection module).
  • the detection module 1103 is configured to detect the westbound service optical signal to obtain a fourth detection signal.
  • the detection module 1102 is configured to detect the first optical signal to obtain a third detection signal.
  • the detection module 1101 is configured to detect the second service optical signal to obtain a second detection signal.
  • the communication device is configured to determine whether the eastbound module 202 is in an abnormal state according to the second detection signal, the third detection signal and the fourth detection signal. For example, if the second detection signal indicates that the power of the second service optical signal is less than a certain threshold, the fourth detection signal indicates that the power of the westbound service optical signal is greater than or equal to a certain threshold, and the third detection signal indicates that the power of the first optical signal is greater than or equal to a certain threshold. or equal to a certain threshold, the controller 501 determines that the eastbound module 202 is in a normal state.
  • the controller 501 determines that the eastbound module 202 is in an abnormal state.
  • the controller 501 is further configured to generate a control signal according to the second detection signal, the third detection signal and the fourth detection signal.
  • the control signal is used to control the WSS 203 to select the object of multiplexing and the output port.
  • the second wave-drop unit of the eastbound module 202 fails, the second wave-add unit of the eastbound module 202 is in a normal state. At this time, the eastbound module 202 can normally transmit the first service optical signal, and there is no need to provide a loopback channel for the first service optical signal through the WSS 203.
  • This kind of scene can be detected through the aforementioned third method. For example, if the second detection signal indicates that the power of the second service optical signal is less than a certain threshold, and the fourth detection signal indicates that the power of the westbound service optical signal is greater than or equal to a certain threshold, then the second drop signal of the eastbound module 202 can be determined. The unit is in an abnormal state.
  • the third detection signal indicates that the power of the first optical signal is greater than or equal to a certain threshold, it can be determined that the second wave adding unit of the eastbound module 202 is in a normal state. Therefore, through the third way, the accuracy of detection can be improved.
  • Fig. 12 is a schematic flowchart of a communication method provided in this application. As shown in Fig. 12, the communication method includes the following steps.
  • the communication device receives the eastbound service optical signal.
  • the first service optical signal may be an eastbound service optical signal, and the first service optical signal may also be obtained by the communication device according to the eastbound service optical signal. Specifically, the communication device divides the eastbound service optical signal into the first downwave optical signal and the first service optical signal through the first downwave unit.
  • the first wave dropping unit may be an optical splitter or an AWG.
  • the communication device receives the west-upward wave optical signal.
  • the first up-wave optical signal may be a west-up optical signal, and the first up-wave optical signal may also be obtained by a communication device according to the west-up optical signal. Specifically, the communication device receives the west-uplink optical signal through the first uplink unit.
  • the communication device obtains the first up-wavelength optical signal through the first up-wavelength unit.
  • the first upstream optical signal and the west upstream optical signal carry the same data.
  • step 1202 the communication device acquires the second service optical signal and the second added optical signal.
  • the communication device receives the westbound service optical signal.
  • the second service optical signal may be a westbound service optical signal, and the second service optical signal may also be obtained by the communication device according to the westbound service optical signal.
  • the communication device divides the eastbound service optical signal into the second downwave optical signal and the second service optical signal through the second downwave unit.
  • the communication device receives the east-up wave optical signal.
  • the second up-wave optical signal may be an east-up optical signal, and the second up-wave optical signal may also be obtained by the communication device according to the east-up optical signal.
  • the communication device receives the east-uplink optical signal through the second uplink unit.
  • the communication device obtains the second up-wavelength optical signal through the second up-wavelength unit.
  • the second upstream optical signal and the east upstream optical signal carry the same data.
  • step 1203 the communication device multiplexes the first service optical signal and the second up-wavelength optical signal through the WSS to obtain the first optical signal, and outputs the first optical signal.
  • the communication device may also obtain the third up-wave optical signal according to the west-up wave optical signal.
  • the first up-wavelength optical signal and the third up-wavelength optical signal carry the same data. If the WSS is in an abnormal state, the communication device outputs a third up-wavelength optical signal.
  • the communication device can determine whether the WSS is in an abnormal state through the first detection module.
  • the first detection module is used for detecting the second optical signal.
  • the communications device includes a westbound module and an eastbound module.
  • the communication device acquires the first service optical signal and the first added optical signal through the westbound module.
  • the communication device acquires the second service optical signal and the second added optical signal through the eastbound module.
  • the communication method further includes the following steps: if the eastbound module is in an abnormal state, the communication device multiplexes the first service optical signal and the first upwave optical signal through the WSS to obtain a third optical signal, and outputs the third optical signal. And/or, if the westbound module is in an abnormal state, the communication device multiplexes the second service optical signal and the second upstream optical signal through the WSS to obtain a fourth optical signal, and outputs the fourth optical signal.
  • the communication method further includes the following steps: if the eastbound module is in an abnormal state, the communication device performs multiplexing on the first service optical signal, the first up-wave optical signal and the second up-wave optical signal through the WSS to obtain The third optical signal is to output the third optical signal. And/or, if the westbound module is in an abnormal state, the communication device performs multiplexing on the second service optical signal, the first up-wave optical signal and the second up-wave optical signal through the WSS to obtain a fourth optical signal, and outputs the fourth optical signal . In other embodiments, the communication method further includes the following steps: the communication device detects the second service optical signal to obtain a second detection signal.
  • the communication device determines whether the eastbound module is in an abnormal state according to the second detection signal. Specifically, the communication device obtains the second detection signal through the second detection module. Similarly, the communication device detects the first service optical signal to obtain another second detection signal. The communication device determines whether the westbound module is in an abnormal state according to another second detection signal.
  • the communication method in this application may be applied to the aforementioned communication device. Therefore, for relevant descriptions in the communication method, reference may be made to the relevant descriptions in the aforementioned communication device.
  • the relevant descriptions in the aforementioned communication device For example, for descriptions about the first wave adding unit and the first wave dropping unit, reference may be made to the related descriptions in the foregoing Figures 3 to 5 .
  • the second wave adding unit and the second wave dropping unit reference may be made to the relevant descriptions in the foregoing FIGS. 3 to 5 .
  • the first detection module reference may be made to the relevant description in the foregoing FIG. 6 .
  • the fourth optical signal reference may be made to the relevant description in the foregoing FIG. 8 .
  • the communication device 1301 may also be configured to perform some or all of the operations that the communication device in FIG. 12 can perform.
  • the communication device 1301 is further configured to receive an eastbound service optical signal, and obtain the first optical signal or the third optical signal according to the eastbound service optical signal.
  • the communication device 1301 is further configured to output the third optical signal, or to send the first optical signal to the network device 1302 .
  • the network device 1302 may also be a communication device.
  • the network device 1302 uses the first optical signal or the fourth optical signal as an eastbound service optical signal.
  • the westbound service optical signal output by the network device 1302 is also referred to as a second optical signal or a third optical signal.
  • the network device 1302 may perform some or all of the operations that the aforementioned communication device can perform according to the eastbound service optical signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本申请公开了通信设备,应用于通信领域。通信设备包括西向模块、WSS和东向模块。西向模块用于向WSS传输第一业务光信号和第一上波光信号。东向模块用于向WSS传输第二业务光信号和第二上波光信号。WSS用于对第一业务光信号和第二上波光信号进行合波,得到第一光信号,输出第一光信号。WSS还用于对第二业务光信号和第一上波光信号进行合波,得到第二光信号,输出第二光信号。在本申请中,通过一个WSS完成第一上波光信号和第二上波光信号的上波,可以减少通信设备中WSS的数量,从而降低的成本。

Description

通信设备、通信方法以及通信系统
本申请要求于2021年6月22日提交中国国家知识产权局、申请号202110692971.7、申请名称为“通信设备、通信方法以及通信系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及通信设备、通信方法以及通信系统。
背景技术
波分复用(wavelength division multiplexing,WDM)作为一种大容量低功耗的光层网络技术,广泛应用于当前的业务承载网络中。
图1为承载二维光层业务的通信设备的结构示意图。如图1所示,通信设备包括西向模块101和东向模块102。西向模块101包括波长选择开关(wavelength selective switching,WSS)103。东向模块102包括WSS 104。对于东向业务光信号,WSS 103将东向业务光信号分为两部分。一部分为东向的下波光信号。东向的下波光信号在西向模块101下波。另一部分为剩余的业务光信号。WSS 104对剩余的业务光信号和东向上波光信号进行合波,输出合波后的光信号。类似的,对于西向业务光信号,WSS 104将西向业务光信号分波为两部分。一部分为西向的下波光信号。西向的下波光信号在东向模块102下波。另一部分为剩余的业务光信号。WSS 103对剩余的业务光信号和西向上波光信号进行合波,输出合波后的光信号。
在上述通信设备中,WSS是实现WDM的重要器件。但是,WSS的价格较为昂贵,导致通信设备的成本较高。
发明内容
本申请提供了一种通信设备、通信方法以及通信系统。在本申请中,通过一个WSS完成第一上波光信号和第二上波光信号的上波,可以减少通信设备中WSS的数量,从而降低通信设备的成本。
本申请第一方面提供了一种通信设备。通信设备包括西向模块、WSS和东向模块。西向模块用于向WSS传输第一业务光信号和第一上波光信号。东向模块用于向WSS传输第二业务光信号和第二上波光信号。第一上波光信号可以是东向上波光信号,第一业务光信号可以是东向业务光信号。第二上波光信号可以是西向上波光信号,第二业务光信号可以是西向业务光信号。WSS用于对第一业务光信号和第二上波光信号进行合波,得到第一光信号,输出第一光信号。WSS还用于对第二业务光信号和第一上波光信号进行合波,得到第二光信号,输出第二光信号。
在本申请中,通过一个WSS完成第一上波光信号和第二上波光信号的上波,可以减少通信设备中WSS的数量,从而降低通信设备的成本。
在第一方面的一种可选方式中,西向模块包括第一上波单元。第一上波单元用于接收西向上波光信号,根据西向上波光信号得到第一上波光信号。第一上波单元还用于根据西向上波光信号得到第三上波光信号。第一上波光信号和第三上波光信号携带相同的数据。 两个光信号携带相同的数据是指两个光信号转化为两个电信号后,两个电信号的比特流相同。在本申请中,西向上波光信号和第一上波光信号、第三上波光信号携带相同的数据。因此,第一上波光信号、第三上波光信号也可称为西向上波光信号。若WSS故障,处于非正常状态,则第一上波单元还用于输出第三上波光信号。其中,若WSS处于非正常状态,则WSS可能无法完成西向上波光信号的上波,从而丢失西向上波光信号。在本申请中,在WSS处于非正常状态时,通过西向模块完成西向上波光信号的上波,可以正常传输西向上波光信号,从而提高通信的可靠性。
在第一方面的一种可选方式中,第一上波单元包括第一光开关和第一分光器。第一分光器用于接收西向上波光信号,将西向上波光信号分为第一上波光信号和第三上波光信号。第一分光器还用于向WSS发送第一上波光信号,向第一光开关发送第三上波光信号。若WSS处于正常状态,则第一光开关用于接收第三上波光信号和第二光信号。此时,第一光开关用于输出第二光信号。若WSS不正常状态,则第一光开关可能无法接收到第二光信号。此时,第一光开关用于输出第三上波光信号。其中,通过第一光开关和第一分光器,可以在WSS处于非正常状态时,完成西向上波光信号的上波,从而提高通信的可靠性。
在第一方面的一种可选方式中,第一上波单元包括第一光耦合器和第一光开关。第一光开关用于接收西向上波光信号。若WSS处于正常状态,则第一光开关用于向WSS传输西向上波光信号。此时,西向上波光信号也称为第一上波光信号。在WSS将第一上波光信号和第二业务光信号合波为第二光信号后,第一光耦合器用于从WSS接收第二光信号,输出第二光信号。若WSS处于非正常状态,则第一光开关用于向第一光耦合器传输西向上波光信号。此时,西向上波光信号也称为第三上波光信号。第一光耦合器用于接收第三上波光信号,输出第三上波光信号。其中,通过第一光耦合器和第一光开关,可以在WSS处于非正常状态时,完成西向上波光信号的上波,从而提高通信的可靠性。
在第一方面的一种可选方式中,第一上波单元包括第一光开关和第二光开关。第一光开关用于接收西向上波光信号。若WSS处于正常状态,则第一光开关用于向WSS传输西向上波光信号。此时,西向上波光信号也称为第一上波光信号。在WSS将第一上波光信号和第二业务光信号合波为第二光信号后,第二光开关用于从WSS接收第二光信号,输出第二光信号。若WSS处于非正常状态,则第一光开关用于向第二光开关传输西向上波光信号。此时,西向上波光信号也称为第三上波光信号。第二光开关用于接收第三上波光信号,输出第三上波光信号。其中,通过第一光开关和第二光开关,可以在WSS处于非正常状态时,完成西向上波光信号的上波,从而提高通信的可靠性。
在第一方面的一种可选方式中,通信设备还包括第一检测模块和控制器。第一检测模块用于检测第二光信号,得到第一检测信号。控制器用于根据第一检测信号确定WSS是否处于非正常状态。其中,通过实时检测,可以尽早发现WSS处于非正常状态,从而提高通信的可靠性。
在第一方面的一种可选方式中,若东向模块处于非正常状态,则WSS还用于对第一业务光信号和第一上波光信号进行合波,得到第三光信号,输出第三光信号。和/或,若西向模块处于非正常状态,则WSS还用于对第二业务光信号和第二上波光信号进行合波,得到 第四光信号,输出第四光信号。其中,当东向模块故障时,可能会丢失第一业务光信号。在本申请中,在通过第一业务光信号得到第三光信号后,可以通过西向模块输出第三光信号。因此,本申请可以避免丢失第一业务光信号,从而提高通信的可靠性。类似地,当西向模块故障时,可能会丢失第二业务光信号。在本申请中,在通过第二业务光信号得到第四光信号后,可以通过东向模块输出第四光信号。因此,本申请可以避免丢失第二业务光信号,从而提高通信的可靠性。
在第一方面的一种可选方式中,若东向模块处于非正常状态,则WSS还用于对第一业务光信号、第一上波光信号和第二上波光信号进行合波,得到第三光信号,输出第三光信号。和/或,若西向模块处于非正常状态,则WSS还用于对第二业务光信号、第一上波光信号和第二上波光信号进行合波,得到第四光信号,输出第四光信号。其中,当东向模块故障时,可能会丢失第二上波光信号。在本申请中,在通过第二上波光信号得到第三光信号后,可以通过西向模块输出第三光信号。因此,本申请可以避免丢失第二上波光信号,从而提高通信的可靠性。类似地,当西向模块故障时,可能会丢失第一上波光信号。在本申请中,在通过第一上波光信号得到第四光信号后,可以通过东向模块输出第四光信号。因此,本申请可以避免丢失第一上波光信号,从而提高通信的可靠性。
在第一方面的一种可选方式中,通信设备还包括第二检测模块和控制器。第二检测模块用于检测第二业务光信号,得到第二检测信号。控制器用于根据第二检测信号确定东向模块是否处于非正常状态。其中,通过实时检测,可以尽早发现东向模块处于非正常状态,从而提高通信的可靠性。类似地,第二检测模块还可以用于检测第一业务光信号,得到另一个第二检测信号。控制器用于根据另一个第二检测信号确定西向模块是否处于非正常状态。
在第一方面的一种可选方式中,WSS还用于向网络设备发送第一光信号。通信设备还包括接收器和控制器。接收器用于从网络设备接收第三检测信号。第三检测信号是网络设备检测第二光信号得到的。控制器用于根据第三检测信号确定东向模块是否处于非正常状态。其中,通过对端(网络设备)检测第一光信号,可以提高检测的确定性。
在第一方面的一种可选方式中,西向模块包括第一下波单元。第一下波单元用于接收东向业务光信号,将东向业务光信号分为第一业务光信号和第一下波光信号,向WSS发送第一业务光信号。类似地,东向模块还可以包括第二下波单元。第二下波单元用于接收西向业务光信号,将西向业务光信号分为第二业务光信号和第二下波光信号。
本申请第二方面提供了一种通信方法,通信方法应用于通信设备。通信设备包括WSS,通信方法包括一下步骤:通信设备获取第一业务光信号和第一上波光信号。通信设备获取第二业务光信号和第二上波光信号。通信设备通过WSS对第一业务光信号和第二上波光信号进行合波,得到第一光信号,输出第一光信号。通信设备通过WSS对第二业务光信号和第一上波光信号进行合波,得到第二光信号,输出第二光信号。
在第二方面的一种可选方式中,通过以下方式获取第一上波光信号:通信设备接收西向上波光信号,通信设备根据西向上波光信号得到第一上波光信号。通信方法还包括以下步骤:通信设备根据西向上波光信号得到第三上波光信号。第一上波光信号和第三上波光 信号携带相同的数据。若WSS处于非正常状态,则通信设备输出第三上波光信号。
在第二方面的一种可选方式中,通信设备还包括第一分光器和第一光开关。通信设备通过第一分光器将西向上波光信号分为第一上波光信号和第三上波光信号。若WSS处于正常状态,则通信设备通过第一光开关接收第三上波光信号和第二光信号。此时,通信设备通过第一光开关输出第二光信号。若WSS不正常状态,则通信设备可能无法通过第一光开关接收到第二光信号。此时,通信设备通过第一光开关输出第三上波光信号。
在第二方面的一种可选方式中,通信设备还包括第一光耦合器和第一光开关。若WSS处于正常状态,则通信设备通过第一光开关向WSS传输西向上波光信号。此时,西向上波光信号也称为第一上波光信号。在WSS将第一上波光信号和第二业务光信号合波为第二光信号后,通信设备通过第一光耦合器从WSS接收第二光信号,输出第二光信号。若WSS处于非正常状态,则通信设备通过第一光耦合器输出西向上波光信号。此时,西向上波光信号也称为第三上波光信号。第三上波光信号和西向上波光信号携带相同的数据。
在第二方面的一种可选方式中,通信方法还包括:通信设备检测第二光信号,得到第一检测信号。通信设备根据第一检测信号确定WSS是否处于非正常状态。类似地,通信设备检测第一光信号,得到另一个第一检测信号。通信设备根据另一个第一检测信号确定WSS是否处于非正常状态。
在第二方面的一种可选方式中,通信设备包括西向模块和东向模块。通信设备通过西向模块获取第一业务光信号和第一上波光信号。通信设备通过东向模块获取第二业务光信号和第二上波光信号。通信方法还包括以下步骤:若东向模块处于非正常状态,则通信设备通过WSS对第一业务光信号和第一上波光信号进行合波,得到第三光信号,输出第三光信号。和/或,若西向模块处于非正常状态,则通信设备通过WSS对第二业务光信号和第二上波光信号进行合波,得到第四光信号,输出第四光信号。
在第二方面的一种可选方式中,通信设备包括西向模块和东向模块。通信设备通过西向模块获取第一业务光信号和第一上波光信号。通信设备通过东向模块获取第二业务光信号和第二上波光信号。通信方法还包括以下步骤:若东向模块处于非正常状态,则通过WSS对第一业务光信号、第一上波光信号和第二上波光信号进行合波,得到第三光信号,输出第三光信号。和/或,若西向模块处于非正常状态,则通过WSS对第二业务光信号、第一上波光信号和第二上波光信号进行合波,得到第四光信号,输出第四光信号。
在第二方面的一种可选方式中,通信方法还包括以下步骤:通信设备检测第二业务光信号,得到第二检测信号。通信设备根据第二检测信号确定东向模块是否处于非正常状态。类似地,通信设备检测第二业务光信号,得到另一个第二检测信号。通信设备根据另一个第二检测信号确定西向模块是否处于非正常状态。
在第二方面的一种可选方式中,通信方法还包括以下步骤:在通过WSS对第二业务光信号和第一上波光信号进行合波,得到第二光信号后,向网络设备输出第二光信号。从网络设备接收第三检测信号。根据第三检测信号确定东向模块是否处于非正常状态。
在第二方面的一种可选方式中,通信设备通过以下方式获取第一业务光信号:通信设备接收东向业务光信号。通信设备将东向业务光信号分为第一业务光信号和第一下波光信 号。类似地,通信设备通过以下方式获取第二业务光信号:通信设备接收西向业务光信号。通信设备将西向业务光信号分为第二业务光信号和第二下波光信号。
本申请第三方面提供了一种通信系统。通信系统包括网络设备和前述第一方面或第一方面任意一中可选方式中所述的通信设备。其中,网络设备用于向通信设备发送西向业务光信号。通信设备用于根据西向业务光信号得到第二光信号或第四光信号。通信设备还用于输出第二光信号,或用于向网络设备发送第四光信号。
附图说明
图1为承载二维光层业务的通信设备的结构示意图;
图2为本申请中提供的通信设备的第一个结构示意图;
图3为本申请中提供的通信设备的第二个结构示意图;
图4为本申请中提供的通信设备的第三个结构示意图;
图5为本申请中提供的通信设备的第四个结构示意图;
图6为本申请中提供的通信设备的第五个结构示意图;
图7为本申请中提供的通信设备的第六个结构示意图;
图8为本申请中提供的WSS的第一个结构示意图;
图9为本申请中提供的WSS的第二个结构示意图;
图10为本申请中提供的WSS的第三个结构示意图;
图11为本申请中提供的通信设备的第七个结构示意图;
图12为本申请中提供的通信方法的流程示意图;
图13为本申请中提供的通信系统的结构示意图。
具体实施方式
本申请提供了一种通信设备、通信方法以及通信系统。在本申请中,通过一个WSS完成第一上波光信号和第二上波光信号的上波,可以减少WSS的数量,从而降低通信设备的成本。应理解,本申请中使用的“第一”、“第二”、“东向”、“西向”等仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序、方向。另外,为了简明和清楚,本申请多个附图中重复参考编号和/或字母。重复并不表明各种实施例和/或配置之间存在严格的限定关系。
本申请中的通信设备应用于光通信领域。在光通信领域中,波分复用(wavelength division multiplexing,WDM)是一种大容量、低功耗的光层网络技术。其中,WSS是实现WDM的重要器件。但是,WSS的价格较为昂贵,导致通信设备的成本较高。
为此,本申请提供了一种通信设备。图2为本申请中提供的通信设备的第一个结构示意图。如图2所示,通信设备包括西向模块201、WSS 203和东向模块202。西向模块201用于向WSS 203传输第一业务光信号和第一上波光信号。东向模块202用于向WSS 203传输第二业务光信号和第二上波光信号。WSS 203用于对第一业务光信号和第二上波光信号进行合波,得到第一光信号,输出第一光信号。WSS 203还用于对第二业务光信号和第一 上波光信号进行合波,得到第二光信号,输出第二光信号。在本申请中,通过WSS 203完成第一上波光信号和第二上波光信号的上波,可以减少通信设备中WSS的数量,从而降低通信设备的成本。
西向模块201通过第一上波单元接收西向上波光信号。第一上波光信号可以是西向上波光信号。第一上波光信号也可以是根据西向上波光信号得到的。若第一上波光信号是根据西向上波光信号得到的,则第一上波单元用于根据西向上波光信号得到第一上波光信号。若WSS 203发生故障,处于非正常状态,则WSS 203可能丢失西向上波光信号。为此,第一上波单元还可以用于根据西向上波光信号得到第三上波光信号。第一上波光信号和第三上波光信号携带相同的数据。若WSS 203处于非正常状态,则第一上波单元还用于输出第三上波光信号。下面对第一上波单元的几种示例分别进行描述。
首先,第一上波单元包括第一光开关和第一分光器。图3为本申请中提供的通信设备的第二个结构示意图。如图3所示,通信设备包括西向模块201、WSS 203和东向模块202。西向模块201包括分光器301(也称为第一分光器)和光开关302(也称为第一光开关)。分光器301的分光比为1:2。分光器301用于接收西向上波光信号。将西向上波光信号分为第一上波光信号和第三上波光信号。分光器301还用于向WSS 203发送第一上波光信号,向光开关302发送第三上波光信号。
若WSS 203处于正常状态,则光开关302用于接收第三上波光信号和第二光信号。其中,第二光信号是WSS 203对第二业务光信号和第一上波光信号进行合波得到的。此时,光开关302处于第一状态,光开关302用于输出第二光信号。若WSS 203处于非正常状态,则光开关302可能无法接收到第二光信号。此时,光开关302处于第二状态。光开关302用于输出第三上波光信号。因此,当WSS 203处于非正常状态时,第一上波单元可以为西向上波光信号提供保护,防止西向上波光信号丢失。
在图3中,通过第一光开关和第一分光器实现了对西向上波光信号的保护。并且,图3中的第一上波单元只需要一个光开关。因此,图3中的通信设备可以降低第一上波单元的成本。
类似地,东向模块202通过第二上波单元接收东向上波光信号。第二上波光信号可以是东向上波光信号,第二上波光信号也可以是根据东向上波光信号得到的。若第二上波光信号是根据东向上波光信号得到的,则第二上波单元用于根据东向上波光信号得到第二上波光信号。若WSS 203发生故障,处于非正常状态,则WSS 203可能丢失东向上波光信号。为此,第二上波单元还用于根据东向上波光信号得到第四上波光信号。第四上波光信号和第二上波光信号携带相同的数据。若WSS 203处于非正常状态,则第二上波单元还用于输出第四上波光信号。在图3中,第二上波单元包括分光器303和光开关304。分光器303、光开关304用于实现和分光器301、光开关302类似的功能,具体请参阅图3中的光信号传输路径。
在其它实施例中,第一业务光信号可以是东向业务光信号,第一业务光信号也可以是根据东向业务光信号得到的。若第一业务光信号是根据东向业务光信号得到的,则西向模块201还包括第一下波单元。第一下波单元包括分光器或阵列波导光栅(array waveguide  grating,AWG)。例如,如图3所示,第一下波单元包括分光器305(也称为第二分光器)。分光器305用于接收东向业务光信号,将东向业务光信号分为第一业务光信号和第一下波光信号。第一下波光信号在西向模块201下波。分光器305还用于向WSS 203发送第一业务光信号。类似地,如图3所示,东向模块201还包括分光器306。分光器306用于接收西向业务光信号,将西向业务光信号分为第二业务光信号和第二下波光信号。第二下波光信号在东向模块202下波。分光器306还用于向WSS 203发送第二业务光信号。
其次,第一上波单元包括第一光耦合器和第一光开关。图4为本申请中提供的通信设备的第三个结构示意图。如图4所示,通信设备包括西向模块201、WSS 203和东向模块202。西向模块201包括光开关401(也称为第一光开关)和光耦合器402(也称为第一光耦合器)。
光开关401用于接收西向上波光信号。若WSS 203处于正常状态,则光开关401处于第一状态。光开关401用于向WSS 203传输西向上波光信号。此时,西向上波光信号也称为第一上波光信号。在WSS 203将第一上波光信号和第二业务光信号合波为第二光信号后,光耦合器402用于从WSS 203接收第二光信号,输出第二光信号。若WSS 203发生故障,处于非正常状态,则光开关401处于第二状态。光开关401用于向光耦合器402传输西向上波光信号。此时,西向上波光信号也称为第三上波光信号。光耦合器402用于接收第三上波光信号,输出第三上波光信号。
在图4中,通过第一光耦合器和第一光开关实现了对西向上波光信号的保护。在图3中,第一上波光信号或第三上波光信号的功率等于西向上波光信号的功率的二分之一。在图4中,第一上波光信号或第三上波光信号的功率等于西向上波光信号的功率。因此,图4中的通信设备可以降低功率的损耗。
类似地,在图4中,第二上波单元包括光开关403和光耦合器404。光开关403、光耦合器404用于实现和光开关401、光耦合器402类似的功能,具体请参阅图4中的光信号传输路径。
在图4以及后续的附图中,关于分光器305和分光器306的相关描述,请参阅前述图3中的相关描述。应理解,在图3、图4以及后续的附图中,分光器305和分光器306只是一个示例。在实际应用中,下波单元还可以是AWG。并且,若通信设备不需要完成下波功能,则通信设备可以不包括下波单元。此时,东向业务光信号即为第一业务光信号。西向业务光信号即为第二业务光信号。
应理解,为了方便描述,在图4中,示出了光开关401用于输出第一上波光信号和第三上波光信号。在实际应用中的某个时刻,光开关401用于输出第一上波光信号或第三上波光信号中的一个光信号。类似地,关于其它器件,例如光耦合器402、光开关403等,也存在类似的描述。
最后,第一上波单元包括第一光开关和第二光开关。图5为本申请中提供的通信设备的第四个结构示意图。如图5所示,通信设备包括西向模块201、WSS 203和东向模块202。西向模块201包括光开关501(也称为第一光开关)和光开关502(也称为第二光开关)。
光开关501用于接收西向上波光信号。若WSS 203处于正常状态,则光开关501处于 第一状态。光开关501用于向WSS 203传输西向上波光信号。此时,西向上波光信号也称为第一上波光信号。光开关502处于第一状态。在WSS 203将第一上波光信号和第二业务光信号合波为第二光信号后,光开关502用于从WSS 203接收第二光信号,输出第二光信号。若WSS 203发生故障,处于非正常状态,则光开关501处于第二状态。光开关501用于向光开关502传输西向上波光信号。此时,西向上波光信号也称为第三上波光信号。光开关502处于第二状态。光开关502用于接收第三上波光信号,输出第三上波光信号。
类似地,在图5中,第二上波单元包括光开关503和光开关504。光开关503、光开关504用于实现和光开关501、光开关502类似的功能,具体请参阅图5中的光信号传输路径。
为了实时检测WSS 203是否处于非正常状态,本申请中的通信设备增加第一检测模块。第一检测模块用于检测WSS 203的状态。下面以图4中的通信设备为例,对第一检测模块进行描述。图6为本申请中提供的通信设备的第五个结构示意图。如图6所示,通信设备包括西向模块201、控制器501和检测模块502(也称为第一检测模块)。西向模块301包括光开关401和光耦合器402。光开关401用于接收西向上波光信号。当光开关401处于第一状态时,光开关401用于向WSS 203(图中未示出)发送第一上波光信号。当光开关401处于第二状态时,光开关401用于向光耦合器402发送第三上波光信号。
若WSS 203处于正常状态,则WSS 203用于将第一上波光信号和第二业务光信号进行合波,得到第二光信号。此时,光耦合器402可以接收到第二光信号。若WSS 203处于非正常状态,则WSS 203无法正常向西向模块201发送第二光信号。此时,光耦合器402无法接收到第二光信号。检测模块502用于检测第二光信号,得到第一检测信号。例如,检测模块502可以检测第二光信号的光功率或波长特性。控制器501用于根据第一检测信号确定WSS 203是否处于非正常状态。例如,若第一检测信号表征第二光信号的功率大于或等于某个阈值,则确定WSS 203处于正常状态;若第一检测信号表征第二光信号的功率小于某个阈值,则确定WSS 203处于非正常状态。控制器501用于根据第一检测信号生成控制信号。控制信号用于控制光开关401的状态。
类似地,通信设备还可以包括另一个检测模块。另一个检测模块用于检测第一光信号,得到另一个第一检测信号。控制器501用于根据另一个第一检测信号确定WSS 203是否处于非正常状态。控制器501用于根据检测信号生成控制信号。控制信号用于控制光开关403的状态。
在其它实施例中,为了减少检测模块的数量,降低成本,西向模块201和东向模块202共用一个检测模块。具体地,第一检测模块用于检测第二光信号,得到第一检测信号。控制器501可以用于根据第一检测信号生成控制信号。控制信号用于控制光开关401和光开关403的状态。
在实际应用中,西向模块201和东向模块202也可能发生故障。例如,东向模块201还可以包括光放大器。光放大器用于对第一光信号或第四上波光信号进行放大。若光放大器故障,则东向模块201无法正常输出第一光信号或第四上波光信号。此时,东向模块201可能会丢失第一业务光信号,影响正常通信。
为此,本申请中的WSS 203还可以在西向模块201或东向模块202故障时提供环回通 道,避免第一业务光信号或第二业务光信号丢失。下面将以图4中的东向模块202发生故障为例,对此进行相应描述。
图7为本申请中提供的通信设备的第六个结构示意图。如图7所示,通信设备包括西向模块201、WSS 203和东向模块202。西向模块201包括第一上波单元和第一下波单元。第一上波单元包括光开光401和光耦合器402。第一下波单元包括分光器305。东向模块202包括第二上波单元和第二下波单元。第二上波单元包括光开光403和光耦合器404。第一下波单元包括分光器306。若东向模块202处于正常状态,通信设备的功能请参阅前述图2、图3、或图4中的相关描述。
假设东向模块202处于非正常状态。在接收到西向业务光信号后,东向模块202可能无法向WSS 203发送第二业务光信号,也无法得到第二下波光信号。类似地,在接收到东向上波光信号后,东向模块202可能无法向WSS 203发送第二上波光信号。此时,WSS 203处于正常状态,光开光401处于第一状态。光开关401用于向WSS 203发送第一上波光信号。在接收到东向业务光信号后,分光器305用于向WSS 203发送第一业务光信号。在接收到第一业务光信号和第一上波光信号后,WSS 203用于将第一业务光信号和第一上波光信号合波,得到第三光信号。在接收到第三光信号后,光耦合器402用于输出第三光信号。
在图7中,第一上波单元包括光开关401和光耦合器402。光开关401和光耦合器402用于防止WSS 203故障导致西向上波光信号丢失。此时,光耦合器402用于输出第三光信号。在实际应用中,当第一上波光信号为西向上波光信号时,第一上波单元可以不包括光开关401和光耦合器402。此时,WSS 203可以直接输出第三光信号。
类似地,当西向模块201故障时,WSS 203也可以为第二业务光信号提供环回通道。图8为本申请中提供的WSS的第一个结构示意图。如图8所示,当西向模块201(图中未示出)故障时,WSS 203可能无法从西向模块201接收到第一业务光信号和第一上波光信号。WSS 203用于从东向模块203(图中未示出)接收第二业务光信号和第二上波光信号。WSS 203用于对第二业务光信号和第二上波光信号进行合波,得到第四光信号。WSS 203用于输出第四光信号。
在前述图7中,东向模块202的第二上波单元和第二下波单元同时故障。此时,WSS 203既无法接收到第二业务光信号,也无法接收第二上波光信号。在实际应用中,在第二下波单元故障的情况下,第二上波单元可能处于正常状态。图9为本申请中提供的WSS的第二个结构示意图。如图9所示,当东向模块202的第二下波单元故障时,WSS 203可能无法接收第二业务光信号。此时,WSS 203用于从西向模块201接收第一业务光信号和第一上波光信号。WSS 203还用于从东向模块202的第二上波单元接收第二上波光信号。WSS 203用于对第一业务光信号、第一上波光信号和第二上波光信号进行合波,得到第三光信号,输出第三光信号。
类似地,在实际应用中,在西向模块201的第一下波单元故障的情况下,西向模块201的第一上波单元可能处于正常状态。图10为本申请中提供的WSS的第三个结构示意图。如图10所示,当西向模块201的第一下波单元故障时,WSS 203可能无法接收到第一业务光信号。此时,WSS 203用于从东向模块202接收第二业务光信号和第二上波光信号。WSS 203 还用于从西向模块201的第一上波单元接收第一上波光信号。WSS 203用于对第二业务光信号、第二上波光信号和第一上波光信号进行合波,得到第四光信号,输出第四光信号。
应理解,在前述任意一个实施例中,WSS 203在合波过程中,可能会进行波长选择,从而丢弃部分波长。例如,第一业务光信号包括4个波长的光信号。4个波长的光信号分别为λ 1、λ 2、λ 3和λ 4。第一上波光信号包括3个波长的光信号。3个波长的光信号分别为λ 5、λ 6和λ 71。第二上波光信号包括2个波长的光信号。2个波长的光信号分别为λ 72和λ 8。在WSS 203对第一业务光信号、第一上波光信号和第二上波光信号进行合波过程中,WSS 203丢弃了第二上波光信号中的λ 72。此时,在第三光信号包括8个波长的光信号。8个波长的光信号分别为λ 1、λ 2、λ 3、λ 4、λ 5、λ 6、λ 71和λ 8
在前述图7至图10的描述中,当西向模块201或东向模块202处于非正常状态时,WSS203用于为第一业务光信号或第二业务光信号提供环回通道。在实际应用中,可以通过增加检测模块检测实时检测西向模块201或东向模块202是否处于非正常状态。下面将以检测图4中的东向模块202是否处于非正常状态为例,进行相应的描述。
在第一种方式中,通信设备还包括第二检测模块和控制器。通信设备通过第二检测模块确定东向模块202是否处于非正常状态。在图4的基础上,图11为本申请中提供的通信设备的第七个结构示意图。如图11所示,通信设备还包括检测模块1101(也称为第二检测模块)。检测模块1101用于检测第二业务光信号,得到第二检测信号。例如,检测模块502可以检测第二业务光信号的光功率或波长特性。控制器501用于根据第二检测信号确定东向模块202是否处于非正常状态。控制器501用于根据第二检测信号生成控制信号。控制信号用于控制WSS 203选择合波的对象以及输出端口。
例如,若第二检测信号表征第二业务光信号的功率大于或等于某个阈值,则控制器501确定东向模块202处于正常状态。控制器501用于向WSS 203发送第一控制信号。WSS 203用于根据第一控制信号选择合波的对象以及输出端口。具体地,WSS 203用于对第一业务光信号和第二上波光信号进行合波,得到第一光信号,向东向模块202发送第一光信号。WSS 203还用于对第二业务光信号和第一上波光信号进行合波,得到第二光信号,向西向模块201发送第二光信号。
若第二检测信号表征第二业务光信号的功率小于某个阈值,则控制器501确定东向模块202处于非正常状态。控制器501用于向WSS 203发送第二控制信号。WSS 203用于根据第二控制信号选择合波的对象以及输出端口。例如,WSS 203用于对第一业务光信号和第一上波光信号进行合波,得到第三光信号,向西向模块201发送第三光信号。
在图11中,可以通过一个第二检测模块实时检测东向模块202是否处于非正常状态。因此,可以在提高通信的可靠性的基础上,降低通信设备的成本。
在第二种方式中,通信设备接收来自网络设备的第三检测信号。通信设备根据第三检测信号确定东向模块202是否处于非正常状态。如图11所示,在东向模块202从WSS 203 接收第一光信号后,东向模块202用于向网络设备发送第一光信号。网络设备包括检测模块1102。检测模块1102用于检测第一光信号,得到第三检测信号。通信设备的控制器501用于接收第三检测信号,根据第三检测信号确定东向模块202是否处于非正常状态。例如,若第三检测信号表征第一光信号的功率大于或等于某个阈值,则控制器501确定东向模块202处于正常状态。若第三检测信号表征第一光信号的功率小于某个阈值,则控制器501确定东向模块202处于非正常状态。控制器501还用于根据第三检测信号生成控制信号。控制信号用于控制WSS 203选择合波的对象以及输出端口。在第二方式中,通过对端(网络设备)检测东向模块202是否处于正常状态,可以提高检测的准确性。
在第三种方式中,通信设备包括第二检测模块、第三检测模块和第四检测模块。通信设备用于根据第二检测模块、第三检测模块和第四检测模块的综合检测结果来确定东向模块202是否处于非正常状态。如图11所示,通信设备还包括检测模块1103(也称为第四检测模块)。检测模块1103用于检测西向业务光信号,得到第四检测信号。检测模块1102用于检测第一光信号,得到第三检测信号。检测模块1101用于检测第二业务光信号,得到第二检测信号。通信设备用于根据第二检测信号、第三检测信号和第四检测信号来确定东向模块202是否处于非正常状态。例如,若第二检测信号表征第二业务光信号的功率小于某个阈值,第四检测信号表征西向业务光信号的功率大于或等于某个阈值,第三检测信号表征第一光信号的功率大于或等于某个阈值,则控制器501确定东向模块202处于正常状态。若第四检测信号表征西向业务光信号的功率小于某个阈值,或第三检测信号表征第一光信号的功率小于某个阈值,则控制器501确定东向模块202处于非正常状态。控制器501还用于根据第二检测信号、第三检测信号和和第四检测信号生成控制信号。控制信号用于控制WSS 203选择合波的对象以及输出端口。
在实际应用中的一种场景中,东向模块202的第二下波单元故障时,东向模块202的第二上波单元处于正常状态。此时,东向模块202可以正常传输第一业务光信号,无需通过WSS 203为第一业务光信号提供环回通道。通过前述第三种方式,可以检测到这种场景。例如,若第二检测信号表征第二业务光信号的功率小于某个阈值,第四检测信号表征西向业务光信号的功率大于或等于某个阈值,则可以确定东向模块202的第二下波单元处于非正常状态。若第三检测信号表征第一光信号的功率大于或等于某个阈值,则可以确定东向模块202的第二上波单元处于正常状态。因此,通过第三种方式,可以提高检测的准确性。
前面对本申请中的通信设备进行描述,下面对本申请中通信方法进行描述。图12为本申请中提供的通信方法的流程示意图。如图12所示,通信方法包括以下步骤。
在步骤1201中,通信设备获取第一业务光信号和第一上波光信号。
通信设备接收东向业务光信号。第一业务光信号可以是东向业务光信号,第一业务光信号也可以是通信设备根据东向业务光信号得到。具体地,通信设备通过第一下波单元将东向业务光信号分为第一下波光信号和第一业务光信号。第一下波单元可以是分光器或AWG。通信设备接收西向上波光信号。第一上波光信号可以是西向上波光信号,第一上波光信号也可以是通信设备根据西向上波光信号得到。具体地,通信设备通过第一上波单元接收西向上波光信号。通信设备通过第一上波单元得到第一上波光信号。第一上波光信号和西向 上波光信号携带相同的数据。
在步骤1202中,通信设备获取第二业务光信号和第二上波光信号。
通信设备接收西向业务光信号。第二业务光信号可以是西向业务光信号,第二业务光信号也可以是通信设备根据西向业务光信号得到。具体地,通信设备通过第二下波单元将东向业务光信号分为第二下波光信号和第二业务光信号。通信设备接收东向上波光信号。第二上波光信号可以是东向上波光信号,第二上波光信号也可以是通信设备根据东向上波光信号得到。具体地,通信设备通过第二上波单元接收东向上波光信号。通信设备通过第二上波单元得到第二上波光信号。第二上波光信号和东向上波光信号携带相同的数据。
在步骤1203中,通信设备通过WSS对第一业务光信号和第二上波光信号进行合波,得到第一光信号,输出第一光信号。
在步骤1204中,通信设备通过WSS对第二业务光信号和第一上波光信号进行合波,得到第二光信号,输出第二光信号。
在其它实施例中,通信设备还可以根据西向上波光信号得到第三上波光信号。第一上波光信号和第三上波光信号携带相同的数据。若WSS处于非正常状态,则通信设备输出第三上波光信号。通信设备可以通过第一检测模块确定WSS是否处于非正常状态。第一检测模块用于检测第二光信号。
在其它实施例中,通信设备包括西向模块和东向模块。通信设备通过西向模块获取第一业务光信号和第一上波光信号。通信设备通过东向模块获取第二业务光信号和第二上波光信号。通信方法还包括以下步骤:若东向模块处于非正常状态,则通信设备通过WSS对第一业务光信号和第一上波光信号进行合波,得到第三光信号,输出第三光信号。和/或,若西向模块处于非正常状态,则通信设备通过WSS对第二业务光信号和第二上波光信号进行合波,得到第四光信号,输出第四光信号。
在其它实施例中,通信方法还包括以下步骤:若东向模块处于非正常状态,则通信设备通过WSS对第一业务光信号、第一上波光信号和第二上波光信号进行合波,得到第三光信号,输出第三光信号。和/或,若西向模块处于非正常状态,则通信设备通过WSS对第二业务光信号、第一上波光信号和第二上波光信号进行合波,得到第四光信号,输出第四光信号。在其它实施例中,通信方法还包括以下步骤:通信设备检测第二业务光信号,得到第二检测信号。通信设备根据第二检测信号确定东向模块是否处于非正常状态。具体地,通信设备通过第二检测模块得到第二检测信号。类似地,通信设备检测第一业务光信号,得到另一个第二检测信号。通信设备根据另一个第二检测信号确定西向模块是否处于非正常状态。
在其它实施例中,在通过WSS对第一业务光信号和第二上波光信号进行合波,得到第一光信号后,通信设备向网络设备输出第一光信号。通信方法还包括以下步骤:通信设备从网络设备接收第三检测信号。根据第三检测信号确定东向模块是否处于非正常状态。网络设备包括第三检测模块。第三检测模块用于检测第一光信号。
应理解,本申请中的通信方法可以应用于前述的通信设备。因此,关于通信方法中的相关描述,可以参考前述通信设备中的相关描述。例如,关于第一上波单元、第一下波单 元的描述可以参阅前述图3至图5中的相关描述。关于第二上波单元、第二下波单元的描述可以参阅前述图3至图5中的相关描述。关于第一检测模块的描述可以参阅前述图6中的相关描述。关于第四光信号的描述可以参阅前述图8中的相关描述。关于第三光信号的描述可以参阅前述图9中的相关描述。关于第四光信号的描述可以参阅前述图10中的相关描述。关于第三检测模块的相关描述,可以参阅前述图11中的相关描述。
前面对本申请中的通信方法进行描述,下面对本申请中的通信系统进行描述。图13为本申请中提供的通信系统的结构示意图。如图13所示,通信系统包括通信设备1301和网络设备1302。其中,网络设备1302用于向通信设备1301发送西向业务光信号。通信设备1301用于根据西向业务光信号得到第二光信号或第四光信号。通信设备1301还用于输出第二光信号,或用于向网络设备1302发送第四光信号。
关于通信设备1301的相关描述,可以参考前述图1至图11中的相关描述。并且,通信设备1301还可以用于执行前述图12中通信设备所能执行的部分或全部操作。例如,通信设备1301还用于接收东向业务光信号,根据东向业务光信号得到第一光信号或第三光信号。通信设备1301还用于输出第三光信号,或用于向网络设备1302发送第一光信号。
应理解,关于网络设备1302中的相关描述,也可以参考前述通信设备的相关描述,即网络设备1302也可以是通信设备。例如,网络设备1302将第一光信号或第四光信号作为东向业务光信号。网络设备1302输出的西向业务光信号也称为第二光信号或第三光信号。此时,网络设备1302可以根据东向业务光信号执行前述通信设备所能执行的部分或全部操作。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。

Claims (21)

  1. 一种通信设备,其特征在于,包括:
    西向模块、波长选择开关WSS和东向模块;
    所述西向模块用于向所述WSS传输第一业务光信号和第一上波光信号;
    所述东向模块用于向所述WSS传输第二业务光信号和第二上波光信号;
    所述WSS用于对所述第一业务光信号和所述第二上波光信号进行合波,得到第一光信号,输出所述第一光信号;
    所述WSS还用于对所述第二业务光信号和所述第一上波光信号进行合波,得到第二光信号,输出所述第二光信号。
  2. 根据权利要求1所述的设备,其特征在于,所述西向模块包括第一上波单元;
    所述第一上波单元用于接收西向上波光信号,根据所述西向上波光信号得到所述第一上波光信号;
    所述第一上波单元还用于根据所述西向上波光信号得到第三上波光信号,所述第一上波光信号和所述第三上波光信号携带相同的数据;
    若所述WSS处于非正常状态,则所述第一上波单元还用于输出所述第三上波光信号。
  3. 根据权利要求2所述的设备,其特征在于,所述第一上波单元包括第一光开关和第一分光器;
    所述第一上波单元用于根据所述西向上波光信号得到第三上波光信号包括:所述第一分光器用于接收所述西向上波光信号,将所述西向上波光信号分为所述第一上波光信号和所述第三上波光信号,向所述WSS发送所述第一上波光信号,向所述第一光开关发送所述第三上波光信号;
    所述第一光开关用于接收所述第三上波光信号和所述第二光信号;
    若所述WSS处于非正常状态,则所述第一上波单元用于输出所述第三上波光信号包括:若所述WSS处于非正常状态,则所述第一光开关用于输出所述第三上波光信号。
  4. 根据权利要求2所述的设备,其特征在于,所述第一上波单元包括第一光耦合器和第一光开关;
    所述第一光开关用于接收所述目标上波光信号;
    所述第一上波单元用于根据所述西向上波光信号得到第三上波光信号包括:所述第一光开关用于向所述第一光耦合器传输所述第三上波光信号,所述第三上波光信号和所述西向上波光信号携带相同的数据;
    若所述WSS处于非正常状态,则所述第一上波单元用于输出所述第三上波光信号包括:若所述WSS处于非正常状态,则所述第一光耦合器用于接收所述第三上波光信号,输出所述第三上波光信号。
  5. 根据权利要求2至4中任意一项所述的设备,其特征在于,所述通信设备还包括第一检测模块和控制器;
    所述第一检测模块用于检测所述第二光信号,得到第一检测信号;
    所述控制器用于根据所述第一检测信号确定所述WSS是否处于非正常状态。
  6. 根据权利要求1至5中任意一项所述的设备,其特征在于,
    若所述东向模块处于非正常状态,则所述WSS还用于对所述第一业务光信号和所述第一上波光信号进行合波,得到第三光信号,输出所述第三光信号;
    和/或,
    若所述西向模块处于非正常状态,则所述WSS还用于对所述第二业务光信号和所述第二上波光信号进行合波,得到第四光信号,输出所述第四光信号。
  7. 根据权利要求1至5中任意一项所述的设备,其特征在于,
    若所述东向模块处于非正常状态,则所述WSS还用于对所述第一业务光信号、所述第一上波光信号和所述第二上波光信号进行合波,得到第三光信号,输出所述第三光信号;
    和/或,
    若所述西向模块处于非正常状态,则所述WSS还用于对所述第二业务光信号、所述第一上波光信号和所述第二上波光信号进行合波,得到第四光信号,输出所述第四光信号。
  8. 根据权利要求6或7所述的设备,其特征在于,所述通信设备还包括第二检测模块和控制器;
    所述第二检测模块用于检测所述第二业务光信号,得到第二检测信号;
    所述控制器用于根据所述第二检测信号确定所述东向模块是否处于非正常状态。
  9. 根据权利要求6或7所述的设备,其特征在于,
    所述WSS还用于向网络设备发送所述第一光信号;
    所述通信设备还包括接收器和控制器;
    所述接收器用于从所述网络设备接收第三检测信号;
    所述控制器用于根据所述第三检测信号确定所述东向模块是否处于非正常状态。
  10. 根据权利要求1至9中任意一项所述的设备,其特征在于,所述西向模块包括第一下波单元;
    所述第一下波单元用于接收东向业务光信号,将所述东向业务光信号分为所述第一业务光信号和第一下波光信号,向所述WSS发送所述第一业务光信号。
  11. 一种通信方法,应用于通信设备,所述通信设备包括波长选择开关WSS,其特征在于,包括:
    获取第一业务光信号和第一上波光信号;
    获取第二业务光信号和第二上波光信号;
    通过所述WSS对所述第一业务光信号和所述第二上波光信号进行合波,得到第一光信号,输出所述第一光信号;
    通过所述WSS对所述第二业务光信号和所述第一上波光信号进行合波,得到第二光信号,输出所述第二光信号。
  12. 根据权利要求11所述的通信方法,其特征在于,所述获取第一上波光信号包括:
    接收西向上波光信号;
    根据所述西向上波光信号得到所述第一上波光信号;
    所述方法还包括:
    根据所述西向上波光信号得到第三上波光信号,所述第一上波光信号和第三上波光信号携带相同的数据;
    若所述WSS处于非正常状态,则输出所述第三上波光信号。
  13. 根据权利要求12所述的通信方法,其特征在于,所述通信设备还包括第一光开关和第一分光器;
    所述根据所述西向上波光信号得到第三上波光信号包括:
    通过所述第一分光器将所述西向上波光信号分为所述第一上波光信号和所述第三上波光信号;
    若所述WSS处于非正常状态,则输出所述第三上波光信号包括:
    若所述WSS处于非正常状态,则通过所述第一光开关输出所述第三上波光信号。
  14. 根据权利要求12所述的通信方法,其特征在于,所述通信设备还包括第一光耦合器和第一光开关;
    所述根据所述西向上波光信号得到第三上波光信号包括:
    通过所述第一光开关向所述第一光耦合器传输所述第三上波光信号,所述第三上波光信号和所述西向上波光信号携带相同的数据;
    若所述WSS处于非正常状态,则输出所述第三上波光信号包括:
    若所述WSS处于非正常状态,则通过所述第一光耦合器输出所述第三上波光信号。
  15. 根据权利要求12至14中任意一项所述的通信方法,其特征在于,所述方法还包括:
    检测所述第二光信号,得到第一检测信号;
    根据所述第一检测信号确定所述WSS是否处于非正常状态。
  16. 根据权利要求11至15中任意一项所述的通信方法,其特征在于,所述通信设备包括西向模块和东向模块;
    所述方法还包括:
    若所述东向模块处于非正常状态,则通过所述WSS对所述第一业务光信号和所述第一上波光信号进行合波,得到第三光信号,输出所述第三光信号;
    和/或,
    若所述西向模块处于非正常状态,则通过所述WSS对所述第二业务光信号和所述第二上波光信号进行合波,得到第四光信号,输出所述第四光信号。
  17. 根据权利要求11至15中任意一项所述的通信方法,其特征在于,所述通信设备包括西向模块和东向模块;
    所述方法还包括:
    若所述东向模块处于非正常状态,则通过所述WSS对所述第一业务光信号、所述第一上波光信号和所述第二上波光信号进行合波,得到第三光信号,输出所述第三光信号;
    和/或,
    若所述西向模块处于非正常状态,则通过所述WSS对所述第二业务光信号、所述第一上波光信号和所述第二上波光信号进行合波,得到第四光信号,输出所述第四光信号。
  18. 根据权利要求16或17所述的通信方法,其特征在于,所述方法还包括:
    检测所述第二业务光信号,得到第二检测信号;
    根据所述第二检测信号确定所述东向模块是否处于非正常状态。
  19. 根据权利要求16或17所述的通信方法,其特征在于,
    所述方法还包括:
    向网络设备发送所述第一光信号;
    从所述网络设备接收第三检测信号;
    根据所述第三检测信号确定所述东向模块是否处于非正常状态。
  20. 根据权利要求11至19中任意一项所述的通信方法,其特征在于,
    所述获取第一业务光信号包括:
    接收东向业务光信号;
    将所述东向业务光信号分为所述第一业务光信号和第一下波光信号。
  21. 一种通信系统,其特征在于,包括网络设备和前述权利要求1至10中任意一项所述的通信设备;
    其中,所述网络设备用于向所述通信设备发送西向业务光信号;
    所述通信设备用于根据西向业务光信号得到第二光信号或第四光信号;
    所述通信设备还用于输出第二光信号,或用于向所述网络设备发送第四光信号。
PCT/CN2022/079467 2021-06-22 2022-03-07 通信设备、通信方法以及通信系统 WO2022267544A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110692971.7 2021-06-22
CN202110692971.7A CN115514443A (zh) 2021-06-22 2021-06-22 通信设备、通信方法以及通信系统

Publications (1)

Publication Number Publication Date
WO2022267544A1 true WO2022267544A1 (zh) 2022-12-29

Family

ID=84499696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/079467 WO2022267544A1 (zh) 2021-06-22 2022-03-07 通信设备、通信方法以及通信系统

Country Status (2)

Country Link
CN (1) CN115514443A (zh)
WO (1) WO2022267544A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1467930A (zh) * 2002-07-08 2004-01-14 华为技术有限公司 一种光纤环网系统及其光分插复用模块及其升级扩容方法
US20120002964A1 (en) * 2010-06-30 2012-01-05 Fujitsu Limited Optical add drop multiplexer
CN104022927A (zh) * 2014-05-19 2014-09-03 武汉邮电科学研究院 固移融合波分接入环及接入方法
CN104904140A (zh) * 2013-12-25 2015-09-09 华为海洋网络有限公司 一种光分插复用光分支器
CN105049112A (zh) * 2015-06-03 2015-11-11 武汉邮电科学研究院 基于监控波长的波分接入保护环
US10367596B1 (en) * 2017-05-23 2019-07-30 Ii-Vi Delaware, Inc. Multiple wavelength selective switch with shared switch

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1467930A (zh) * 2002-07-08 2004-01-14 华为技术有限公司 一种光纤环网系统及其光分插复用模块及其升级扩容方法
US20120002964A1 (en) * 2010-06-30 2012-01-05 Fujitsu Limited Optical add drop multiplexer
CN104904140A (zh) * 2013-12-25 2015-09-09 华为海洋网络有限公司 一种光分插复用光分支器
CN104022927A (zh) * 2014-05-19 2014-09-03 武汉邮电科学研究院 固移融合波分接入环及接入方法
CN105049112A (zh) * 2015-06-03 2015-11-11 武汉邮电科学研究院 基于监控波长的波分接入保护环
US10367596B1 (en) * 2017-05-23 2019-07-30 Ii-Vi Delaware, Inc. Multiple wavelength selective switch with shared switch

Also Published As

Publication number Publication date
CN115514443A (zh) 2022-12-23

Similar Documents

Publication Publication Date Title
US7369765B2 (en) Optical network with selective mode switching
US8335428B2 (en) Method and system for protection switching
US11128940B2 (en) Transmission method for an optical burst transport network, slave node, and computer storage medium
JP4844219B2 (ja) 光ネットワーク及びノード
JP4899577B2 (ja) 光ネットワーク及びノード
US20060188258A1 (en) Method and system for time-sharing transmission frequencies in an optical network
US20060222360A1 (en) System and method for protecting optical light-trails
US7466917B2 (en) Method and system for establishing transmission priority for optical light-trails
US8155521B2 (en) Multi-degree cross-connector system, operating method and optical communication network using the same
JP2007174641A (ja) 放送サービスのためのtdmaponoltシステム
US20120087648A1 (en) Method and system for protection switching
US8886032B2 (en) Wavelength multiplexing optical transmission system, transmitter, and receiver
CN108512623B (zh) 量子信道与经典信道的合纤qkd系统及其传输方法
EP2673900A1 (en) Optical protection and switch enabled optical repeating
US20120121267A1 (en) Optical add-drop multiplexer branching unit and corresponding optical transmission method and system
JP2010283644A (ja) 光アクセス網、光通信方法および光加入者装置
WO2022267544A1 (zh) 通信设备、通信方法以及通信系统
WO2017041222A1 (zh) 一种wdm系统中的oadm节点及方法
WO2015192467A1 (zh) 光电接收、发射方法、装置,光电收发方法、模块、设备
US20060216029A1 (en) Method and system for improving upstream efficiency in extended broadcasting networks
JP2007067952A (ja) 光スイッチ装置、光アクセスネットワーク、そのシステム、光波長多重伝送方法およびプログラム
JP2011223407A (ja) 光通信システム及び光通信方法
WO2024027346A1 (zh) 一种放大信号的装置、接收光信号的装置和方法
JP2010226669A (ja) 光信号伝送システム及び光信号伝送システム用光受信装置
Jia et al. Demonstration of low-latency coherent optical connectivity for consolidated inter-hub ring architecture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22827049

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22827049

Country of ref document: EP

Kind code of ref document: A1