WO2022267393A1 - 一种电源模块、均压装置及电子设备 - Google Patents
一种电源模块、均压装置及电子设备 Download PDFInfo
- Publication number
- WO2022267393A1 WO2022267393A1 PCT/CN2021/139342 CN2021139342W WO2022267393A1 WO 2022267393 A1 WO2022267393 A1 WO 2022267393A1 CN 2021139342 W CN2021139342 W CN 2021139342W WO 2022267393 A1 WO2022267393 A1 WO 2022267393A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- power module
- power
- output
- module
- Prior art date
Links
- 238000004891 communication Methods 0.000 claims abstract description 44
- 238000000034 method Methods 0.000 claims description 19
- 238000001514 detection method Methods 0.000 claims description 12
- 230000008569 process Effects 0.000 claims description 7
- 230000017525 heat dissipation Effects 0.000 claims description 4
- 238000013461 design Methods 0.000 abstract description 9
- 230000008859 change Effects 0.000 abstract description 5
- 230000006870 function Effects 0.000 description 14
- 238000007726 management method Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 6
- 239000003990 capacitor Substances 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 238000013500 data storage Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
Definitions
- the present application relates to the field of series power supplies, in particular to a power supply module, a voltage equalizing device and electronic equipment.
- the purpose of this application is to provide a power supply module, a voltage equalizing device and electronic equipment, so that when the output voltage of a power supply module drops, the power supply modules other than the faulty power supply module can actively increase the output voltage to avoid voltage kickback.
- the present application provides a power supply module
- the power supply module is a first power supply module
- the first power supply module is configured with a first input port, a second input port, a first output port, a second output port and the first communication port, the first input port and the second input port are used to connect the power supply;
- the first output port is used to connect the first end of the load, and the second output port is used to connect the second
- the third output port of the second power supply module, the fourth output port of the second power supply module is connected to the second end of the load, and the second power supply module includes a single or multiple output terminals in series;
- the first communication The port is used to connect the second communication port of the second power module;
- the first power module includes:
- a power management circuit connected to the first input port, the second input port, the first output port, and the second output port, for:
- a first difference between the calibration voltage value and the current first output voltage is determined, wherein the calibration voltage value is the first The set value of the output voltage; determine the first voltage value used for voltage equalization compensation according to the first difference and the number of power modules in the second power module, and generate the first voltage value for indicating the first voltage value
- a voltage compensation signal the first voltage compensation signal is sent to the second power module through the first communication port, and the voltage equalization compensation means that each power module in the second power module performs voltage compensation. the same amount of adjustment for compensation; or,
- a first difference between the calibration voltage value and the current first output voltage is determined, wherein the calibration voltage value is the first A set value of the output voltage; generating a second voltage compensation signal indicating the first difference, sending the second voltage compensation signal to the second power module through the first communication port, the first The two voltage compensation signals are used to indicate the second voltage value used for determining the voltage equalization compensation, and the voltage equalization compensation means that the voltage compensation adjustment amount of each of the power modules in the second power modules is the same.
- the first power module when the first power module detects a fault through the power management circuit, it determines the first difference of its own voltage drop, and generates the first voltage compensation signal or the second voltage compensation signal according to the first difference. signal, and then sent to the second power module, so that the second power module increases the voltage according to the first voltage compensation signal or the second voltage compensation signal, and actively increases the output voltage by controlling the second power module, finally making the series system
- the total voltage in the system remains unchanged, and the voltage kickback is avoided while realizing the voltage redundancy design of the series system.
- the present application also provides a pressure equalizing device, including:
- the first power module as described above is configured with the first output port, the first output port, the second output port, and the first communication port, and the first output port is used to connect the load
- the first end of the second output port, the second output port is used to connect the third output port of the second power module;
- the first communication port is used to connect the second power module a second communication port;
- the second power supply module includes a single or a plurality of output terminals connected in series, and the fourth output port of the second power supply module is connected to the second end of the load.
- the present application also provides an electronic device, including:
- a voltage equalizing device as described above connected to a load, for providing a preset voltage value for the load;
- the load is used to work when the voltage equalizing device supplies power.
- the present application also provides a voltage control method, which is applied to a voltage equalization device, and the voltage equalization device includes a plurality of power modules connected in series at the output end, and an output of the first power module of the plurality of power modules The port is connected to one end of the load, and an output port of the last power module of the plurality of power modules is connected to the other end of the load; the method includes:
- the first difference between the calibration voltage value and the current first output voltage is determined, wherein the calibration voltage value is a set value of the first output voltage Fixed value: determine the first voltage value used for voltage equalization compensation according to the first difference and the number of multiple power modules in the second power module, and generate a first voltage compensation used to indicate the first voltage value signal, and send the first voltage compensation signal to the second power module; the second power module adjusts the second voltage output value according to the first voltage compensation signal, and sends the The first voltage compensation signal, repeating the above signal sending and voltage adjustment process until the last power module adjusts the second voltage output value, the voltage equalization compensation means that the voltage adjustment amount of each power module performing voltage compensation is the same;
- the first difference between the calibration voltage value and the current first output voltage is determined, wherein the calibration voltage value is the first output voltage set value; generate a second voltage compensation signal indicating the first difference, and send the second voltage compensation signal to the second power module; the second power module according to the second voltage Compensate the signal and the number of multiple power modules in the second power module to obtain a second voltage value, adjust the second voltage output value according to the second voltage value, and send the second voltage value to the next power module connected in series
- the second voltage compensation signal repeats the above signal sending and voltage adjustment process until the last power module adjusts the second voltage output value.
- the voltage equalization compensation means that the voltage adjustment amount of each power module performing voltage compensation is the same.
- FIG. 1 is a schematic structural diagram of a power module provided by the present application
- Fig. 2 is the structural representation of the pressure equalizing device provided by the present application.
- Fig. 3 is a schematic diagram of an example of the structure of the pressure equalizing device provided by the present application.
- FIG. 4 is a schematic diagram of another example of the structure of the pressure equalizing device provided by the present application.
- FIG. 5 is a schematic diagram of the specific structure of the power supply module provided by the present application.
- FIG. 6 is a schematic structural diagram of a terminal device provided by the present application.
- a series system is a system in which the failure of any one of all the units that make up the system will cause the failure of the entire system.
- the series system in this application refers to the power module series system.
- each module is an output node of the energy transmission path of the entire power module series system.
- the energy transmission path of the entire series system is cut off by the faulty module, and the power module series system is in a fault state at this time.
- Redundant design also known as redundancy design technology, refers to adding more than one set of functional channels, working components or components to complete the same function where the system or equipment plays a key role in completing the task, so as to ensure that when the part fails, the system Or the equipment can still work normally, reducing the failure probability of the system or equipment and improving system reliability.
- the redundancy design in this application is based on the setting of the power module series system, so that the power module series system can still continue to work when a power module fails, so as to obtain enough time to wait for maintenance.
- the redundant design of the power module series system taking the series connection of N power modules as an example, requires two sets of power module series systems, and the total outputs of the two systems are connected in parallel as backup for each other.
- the cost is too high.
- the present application provides a power module, which enables the power modules other than the faulty power module to actively increase the output voltage when the output voltage of one power module drops, so as to avoid voltage kickback.
- FIG. 1 is a schematic structural diagram of a power module provided by the present application.
- the power module is a first power module 100, and the first power module 100 is configured with a first input port IN1, a second input port IN2, The first output port OUT1, the second output port OUT2 and the first communication port.
- the first input port IN1, the second input port IN2, the first output port OUT1, and the second output port OUT2 can be any commonly used power connection ports, and the specific specifications can be selected by oneself, and are not uniquely limited here.
- the first communication interface may be a CAN bus interface (such as the CAN bus shown in FIG. 4 ), an I2C bus interface, etc., and no unique limitation is made here.
- the first input port IN1 and the second input port IN2 are used to connect the power supply; referring to FIG. 2, the first output port OUT1 is used to connect the first end of the load RL, and the second output port OUT2 is used for The third output port OUT3 of the second power supply module 200 is connected, and the fourth output port OUT4 of the second power supply module 200 is connected to the second end of the load RL.
- the second power supply module 200 includes a single or multiple output terminals connected in series the power module; the first communication port is used to connect to the second communication port of the second power module 200 .
- the first power supply module 100 includes a power management circuit, and the power management circuit is respectively connected to the first input port IN1, the second input port IN2, the first output port OUT1 and the second output port OUT2 .
- the power management circuit is connected to a power supply through the first input port IN1 and the second access port.
- the power supply may be a standard commercial power supply or a custom power supply, which is not uniquely limited here.
- the power management circuit is connected to various devices in the first power module 100 , the load RL or the second power module 200 through the first output port OUT1 and the second output port OUT2 .
- the first input port IN1 can be a positive port or a negative port, and the corresponding second input port IN2 can also be a negative port or a positive port; the first output port OUT1 can be a positive port or a negative port, and the corresponding The second output port OUT2 can also be a negative port or a positive port.
- the power management circuit is configured to: when detecting that the first output voltage of the first output port OUT1 (that is, Vo1+ and Vo1-, hereinafter collectively referred to as Vo1) is zero or receiving an alarm signal, determine the calibration voltage value and the current first output voltage.
- the second power supply module 200 in the middle adjusts the corresponding output voltage to ensure that the total output voltage in the series system (that is, Vout+ and Vout-, hereinafter collectively referred to as Vout) remains unchanged, so as to avoid the transmission reliability problem of the load RL end and prevent the second
- the power module 200 sends a voltage kickback.
- the voltage will also change, and an alarm signal is generated at this time to know the current first output voltage Vo1 of the first power module 100, and then notify The second power module 200 performs voltage regulation.
- the current first output voltage Vo1 is obtained, and the drop rate of the first power module 100 is obtained by calculating the initial calibration voltage value and the first output voltage Vo1.
- the voltage value that is, the first difference.
- the output voltage of each power module is theoretically the same (that is, the set value of the output voltage is the same), so the first difference should be calculated according to the second power module
- the number of power modules in 200 is equally divided to obtain a first voltage value, and a first voltage compensation signal is generated according to the first voltage value, and sent to the second power module 200 through the first communication port, so that the first The set value of the second output voltage (i.e.
- Vo2+ and Vo2- hereinafter collectively referred to as Vo2
- the power management circuit is further configured to: when receiving the third voltage compensation signal of the second power module 200, analyze the third voltage value according to the third voltage compensation signal, and in the first The third voltage value is added on the basis of the set value of the output voltage Vo1, wherein the third voltage value is used for voltage compensation.
- the first power module 100 when the first power module 100 does not fail and receives the third voltage compensation signal from other faulty power modules, the first power module 100 can also analyze the voltage compensation signal from the third power supply module according to the third power compensation signal. the third voltage value.
- the third voltage value is the same as the first voltage value, therefore, the first power module 100 can directly increase the third voltage value based on the set value of the first output voltage Vo1. voltage value to increase the output value of the first output voltage Vo1.
- the power management circuit is further configured to: when the first power module 100 is replaced and powered on again, increase the first output voltage Vo1 in sections, and increase the When the first output voltage Vo1 is used, according to the increased first value of the first output voltage Vo1 and the number of the power modules in the second power module 200, the second voltage for reverse voltage equalization compensation is determined. Five voltage values, generate a fifth voltage compensation signal for indicating the fifth voltage value, send the fifth voltage compensation signal to the second power module 200 through the first communication port, and the reverse average The voltage compensation refers to that the setting value of the second output voltage Vo2 of each of the power modules in the second power module 200 is lowered by the same amount.
- the failure of the first power module 100 is eliminated or a new first power module 100 is replaced, and the first power module 100 is re-connected to the series system to be powered on.
- the setting of increasing the first output voltage Vo1 step by step fixed value so that the first output voltage Vo1 rises slowly, avoiding instantaneous high voltage.
- the first power module 100 While increasing the set value of the first output voltage Vo1 in sections, the first power module 100 sends a corresponding fifth voltage compensation signal to the second power module 200, so that the second power module 200
- Each power supply module in the power supply module has also gradually reduced the second output voltage Vo2 in a segmented form, which avoids the reliability of the total output voltage Vout being affected by the excessive voltage variation range.
- the power processing circuit is configured to: when detecting that the first output voltage Vo1 of the first output port OUT1 is zero or receiving an alarm signal, determine the calibration voltage value and the current first output voltage Vo1 The first difference, wherein the calibration voltage value is the set value of the first output voltage Vo1; generate a second voltage compensation signal indicating the first difference, through the first communication port Sending the second voltage compensation signal to the second power supply module 200, the second voltage compensation signal is used to indicate a second voltage value used for determining voltage equalization compensation, and the voltage equalization compensation refers to the second
- the adjustment amount of voltage compensation performed by each power module in the power module 200 is the same.
- the first power module 100 may not pre-calculate the compensation value, but only calculate the first difference, and directly generate a second voltage compensation signal from the first difference and send it to the second power module 200
- each power module in the second power module 200 analyzes the first difference from the second voltage compensation signal by itself, and divides the first difference by the number of power modules Through calculation, the second voltage value to be compensated by each power module is obtained, and finally the set value of the second output voltage Vo2 is increased by the second voltage value.
- the fourth voltage value is analyzed according to the fourth voltage compensation signal, and the power module individual
- the third voltage value is obtained by counting, and the third voltage value is added on the basis of the set value of the first output voltage Vo1, wherein the third voltage value is used for voltage compensation.
- the first power supply module 100 can also analyze the fourth voltage compensation signal according to the fourth power supply compensation signal. the fourth voltage value.
- the fourth voltage value is the same as the first difference value, therefore, the first power module 100 needs to perform calculation based on the fourth voltage value and the number of power modules except the faulty power module, The third voltage value is obtained, and then the third voltage value is increased on the basis of the set value of the first output voltage Vo1, so as to increase the output value of the first output voltage Vo1.
- the power management circuit is further configured to: when the first power module 100 is replaced and powered on again, increase the first output voltage Vo1 in sections, and increase the When the first output voltage Vo1 is increased, according to the increased first value of the first output voltage Vo1, it is determined to generate a sixth voltage compensation signal for indicating the first value, through the first communication port Sending the sixth voltage compensation signal to the second power module 200, the sixth voltage compensation signal is used to indicate the fifth voltage value used to determine the reverse voltage equalization compensation, the reverse voltage equalization compensation refers to The lowering amount of the set value of the second output voltage Vo2 of each power module in the second power module 200 is the same.
- six voltage compensation signals may be generated directly according to the first increment value, and then the sixth voltage compensation signal is sent to the second power module 200, and each power module in the second power module 200 automatically A fifth voltage value is calculated according to the sixth voltage compensation signal, and then the set value of the second output voltage Vo2 of the power module is adjusted down according to the fifth voltage value.
- the power management circuit includes a detection unit 110 and a control unit 120 .
- the detection unit 110 is connected to the first output port OUT1 and is used for detecting whether the first output voltage Vo1 is zero, or detecting a fault to generate the alarm signal.
- the detection unit 110 can be any detection circuit or detection device, such as a voltage detection circuit, a voltmeter, etc., which are selected according to the actual power module type and power module design, and only need to meet various detection requirements. Here Do not expand.
- the control unit 120 is connected to the detection unit 110 and the first communication port, and is used to determine the first voltage value or the second voltage value, and send the first voltage value or the second voltage value to the power modules in the second power module 200 Second voltage value.
- the control unit 120 may include a plurality of processors, and the plurality of processors may be respectively used to execute different algorithms to realize the corresponding functions disclosed in this application, and the processor may be a central processing unit (CPU) or other processing units. core, the multiple processors may be heterogeneous processors, that is, processors of different types, and the specific implementation solutions of the processors are not expanded in this embodiment.
- control unit 120 is specifically configured to: identify a fault type according to the first output voltage Vo1 or the alarm signal, wherein the fault type is used to indicate a fault location and/or a specific fault problem ; If the fault type does not affect the redundancy function, then determine whether the first power module 100 meets the redundancy requirement; when the first power module 100 meets the redundancy requirement, then determine the first difference.
- the alarm signal indicates other specific problems, for example, whether the fan of the first power module 100 is working normally , whether the first power module 100 generates negative pressure, whether the control unit 120 and the detection unit 110 in the power management circuit work normally, whether the specific components in the first power module 100 work normally, whether the second Whether each circuit in a power supply module 100 is connected or not can be set according to specific conditions, and no unique limitation is made here. Specifically, since the redundant function of the power supply module is pre-set, if the corresponding requirement cannot be met, the redundant function cannot be realized. Therefore, it is necessary to judge according to the first output voltage Vo1 and the alarm signal at this time. Whether the failure of the fault affects the redundancy function, if not, continue to judge whether the current first power module 100 meets the redundancy requirements, and only when the first power module 100 meets the redundancy requirements, then determine the second a difference.
- the first power supply module 100 further includes external protection diodes (such as Do0, Doi and Don in Figure 4, hereinafter collectively referred to as Do), and the output and input terminals of the external protection diode Do are respectively connected to The first output port OUT1 and the second port; the external protection diode Do is used to ensure that the second power module 200 is between the load RL when the first power module 100 is in a series system and fails. series loop path.
- the external protection diode Do can be any diode with unidirectional conduction function, and no unique limitation is made here.
- the series circuit path of the entire series system is guaranteed through the external protection diode Do, so as to ensure that the series system can still work after the failure of the first power module 100, realizing redundancy. additional functions.
- control unit 120 is further configured to: when it is determined that the first power supply module 100 satisfies the level-1 redundancy condition, the first power supply module 100 meets the redundancy requirement, wherein the Level 1 redundancy conditions include the presence of an external protection diode Do.
- the redundancy function can be realized by performing corresponding redundancy control on the circuit. Therefore, if it is judged that the first power module 100 meets the redundancy conditions, it proves that the first power module 100 meets the redundancy requirements.
- control unit 120 is further configured to: determine whether the first power supply module 100 meets the second-level redundancy condition when the first power supply module 100 does not meet the first-level redundancy condition; When the first power supply module 100 satisfies the secondary redundancy condition, the first power supply module 100 meets the redundancy requirement.
- the first power module 100 is not provided with the above-mentioned external protection diode Do, it is necessary to further confirm whether the first power module 100 satisfies the secondary redundancy condition, and the secondary redundancy condition includes the second If the output voltage Vo1 is not a negative voltage, the fan of the first power module 100 works normally, and the first communication port works normally. Specifically, the first output voltage Vo1 is not a negative voltage, indicating that the first power module 100 still has a diode for preventing voltage kickback, and the fan is working normally, indicating that it can dissipate heat and ensure that the The first power module 100 is not overheated, and the first communication port works normally, indicating that the voltage compensation signal can be sent to the second power module 200 . If the first power module 100 meets the secondary redundancy condition, it can also meet the redundancy requirement.
- control unit 120 is further configured to: when it is determined that the first power module 100 meets the redundancy requirement, the first power module 100 enters a redundant working state.
- the first power supply module 100 directly enters a redundant working state, and the redundant working state includes stopping the first power supply module 100.
- the voltage output of the power module 100 adjusts the fan to a diode heat dissipation mode, and sends redundancy status indication information to the power modules in the second power module 200 . Stopping the voltage output of the first power module 100 can completely exclude the first power module 100 from the series system, so as to prevent the danger of the first power module 100 working in a faulty environment.
- the fan is adjusted to the diode heat dissipation mode, so that the fan works with a lower heat dissipation power, the risk of low-voltage operation is small, and the first power supply module 100 can maintain a lower temperature, avoiding the first power supply module 100 Module 100 is overheating.
- control unit 120 is further configured to: when it is determined that the first power supply module 100 does not meet the redundancy requirement, the first power supply module 100 stops working and generates fault information;
- the second power module 200 sends the fault information.
- the first power supply module 100 still does not meet the redundancy requirement, it means that the first power supply module 100 cannot implement the redundancy function, so the first power supply module 100 first sends the second power supply module 200 Send fault information, and then power off; wherein, the fault information is used to instruct the second power module 200 to power off.
- the second power module 200 also powers off, so that the entire series system is powered off and enters a state of waiting for maintenance. In this example, when the first power supply module 100 cannot implement the redundancy function, the entire system is powered off to further avoid reliability problems.
- the present application also provides a pressure equalizing device, and the above pressure equalizing device includes:
- the first power supply module 100 is configured with a first output port OUT1, a second output port OUT2 and a first communication port, the first output port OUT1 is used to connect the first end of the load RL, the The second output port OUT2 is used to connect the third output port OUT3 of the second power module 200; the first communication port is used to connect the second communication port of the second power module 200; the second power module 200, including a single or multiple power supply modules with output terminals connected in series, and the fourth output port OUT4 of the second power supply module 200 is connected to the second terminal of the load RL.
- first power module 100 and the second power module 200 are connected in series to form a power module series system, and one or more power modules in the first power module 100 and the second power module 200
- the structure and function are the same.
- the third output port OUT3 is an output port of the single power module; the fourth output The port OUT4 is another output port of the single power module, that is, only two power modules are included in the entire voltage equalizing device.
- the second power module 200 includes N power modules connected in series at the output terminals, where N is an integer greater than 1; at this time, the power module series system includes N+1 power module.
- the third output port OUT3 is an output port of the first power supply module in the power supply modules connected in series with the N output ends; the other output port of the first power supply module and the other N-1 power supply modules The output ports are connected in series; the fourth output port OUT4 is another output port of the Nth power module among the power modules with the N output terminals connected in series.
- the output port OUT4 is the negative output port of the power module N# (202), and the positive output port of the power module N# (202) is connected to the negative output port of the N-1th power module.
- the output voltage of the power module i# (201) is Voi (i.e. Voi+ and Voi- in FIG. 4 )
- the output voltage of the power module N# (202) is Von (i.e. Von+ in FIG. 4 and Von-), wherein, during normal operation, the set values of Voi and Von and the output voltage of the power module between the two are the same.
- each of the N-1 power supply modules includes a third communication port, and the N power supply modules are connected in series through the third communication port to form a CAN bus structure for communication. Since the power module has been described in detail above, it will not be repeated here.
- the present application further provides an electronic device, including: the voltage equalizing device as described above, connected to a load RL, and used to provide a preset voltage value for the load RL; the load RL, It is used to work when the voltage equalizing device is powered.
- the inside of the voltage equalizing device is a series system of power supply modules, which are connected to the load RL to provide the load RL with a corresponding voltage to meet the corresponding power supply requirements.
- the power supply module in the voltage equalizing device can realize corresponding redundant functions, and when a single power supply module fails, it can prevent voltage recoil and avoid power supply reliability problems. Since the pressure equalizing device has been described in detail above, details are not repeated here.
- the present application also provides a voltage control method applied to a voltage equalization device, the voltage equalization device includes a plurality of power modules connected in series at the output end, and the first power module of the plurality of power modules An output port of one of the multiple power modules is connected to one end of the load, and an output port of the last power module of the plurality of power modules is connected to the other end of the load; the method includes:
- Step 101 When it is detected that the power supply voltage of the first power module is zero or an alarm signal is received, determine the first difference between the calibration voltage value and the current first output voltage Vo1, wherein the calibration voltage value is the first The set value of the output voltage Vo1; determine the first voltage value used for voltage equalization compensation according to the first difference and the number of the plurality of power modules, and generate a first voltage indicating the first voltage value Compensation signal, sending the first voltage compensation signal to the second power module; the second power module adjusts the second voltage output value according to the first voltage compensation signal, and sends the first voltage compensation signal to the next power module in series The first voltage compensation signal, repeat the above signal sending and voltage adjustment process until the last power module adjusts the second voltage output value, the voltage equalization compensation means that the voltage adjustment amount of each power module performing voltage compensation is the same.
- the current first output voltage Vo1 is obtained, and the dropped voltage of the first power module is obtained by calculating the initial calibration voltage value and the first output voltage Vo1 Numeric value, which is the first difference.
- the output voltage of each power module is theoretically the same (that is, the set value of the output voltage is the same), so the first difference should be calculated according to the second power module Divide the number of power supply modules in equal parts to obtain the first voltage value, generate a first voltage compensation signal according to the first voltage value, and send it to the second power supply module through the first communication port, so that the second power supply
- the setting value of the second output voltage Vo2 of each power module in the module is increased by the same first voltage value to maintain the total output voltage Vout of the entire series system unchanged, and at the same time, because the power module actively increases the second output voltage Vo2 , therefore, there is no voltage kickback, avoiding the risk of voltage kickback.
- the method includes:
- Step 102 When it is detected that the power supply voltage of the first power module is zero or an alarm signal is received, determine the first difference between the calibration voltage value and the current first output voltage Vo1, wherein the calibration voltage value is the first output a set value of voltage Vo1; generate a second voltage compensation signal indicating the first difference, and send the second voltage compensation signal to the second power module; the second power module according to the The second voltage compensation signal and the number of the power modules obtain a second voltage value, and then adjust the second voltage output value according to the second voltage value, and send the second voltage compensation signal to the next power module connected in series , repeating the above signal sending and voltage adjustment process until the last power module adjusts the second voltage output value, the voltage equalization compensation means that the voltage adjustment amount of each power module performing voltage compensation is the same.
- the first power module may not pre-calculate the compensation value, but only calculate the first difference, and directly generate a second voltage compensation signal from the first difference and send it to the second power module, Analyzing the first difference from the second voltage compensation signal by each power module in the second power module, and dividing the first difference by the number of power modules to obtain The second voltage value to be compensated by each power module itself, and finally the set value of the second output voltage Vo2 is increased by the second voltage value.
- the present application also provides a computer-readable storage medium, the computer-readable storage medium stores one or more programs, and the one or more programs can be executed by one or more processors, so as to realize the above-mentioned embodiments The steps in the described water route detection method based on the remote sensing cloud platform.
- the present application also provides a terminal device, as shown in Figure 6, which includes at least one processor (processor) 20; a display screen 21; and a memory (memory) 22, which may also include a communication interface (Communications Interface) 23 and a bus twenty four.
- processor processor
- the display screen 21 is configured to display the preset user guidance interface in the initial setting mode.
- the communication interface 23 can transmit information.
- the processor 20 can invoke logic instructions in the memory 22 to execute the methods in the above-mentioned embodiments.
- logic instructions in the memory 22 may be implemented in the form of software functional units and when sold or used as an independent product, may be stored in a computer-readable storage medium.
- the memory 22 can be configured to store software programs and computer-executable programs, such as program instructions or modules corresponding to the methods in the embodiments of the present disclosure.
- the processor 20 runs software programs, instructions or modules stored in the memory 22 to execute functional applications and data processing, ie to implement the methods in the above-mentioned embodiments.
- the memory 22 may include a program storage area and a data storage area, wherein the program storage area may store an operating system and at least one application required by a function; the data storage area may store data created according to the use of the terminal device, and the like.
- the memory 22 may include a high-speed random access memory, and may also include a non-volatile memory.
- various media that can store program codes such as U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc., can also be temporary state storage medium.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Direct Current Feeding And Distribution (AREA)
Abstract
本申请提供了一种电源模块、均压装置及电子设备,所述电源模块为第一电源模块,所述第一电源模块被配置有第一输入端口、第二输入端口、第一输出端口、第二输出端口以及第一通信端口,所述第一模块包括电源管理电路。本申请通过所述电源管理电路检测到故障时,确定变化自身电压下降的第一差值,根据所述第一差值生成第一电压补偿信号或者第二电压补偿信号,再发送至第二电源模块,使得所述第二电源模块根据所述第一电压补偿信号或者第二电压补偿信号调高电压,通过控制第二电源模块主动提高输出电压,最终使得串联系统中的总电压不变,在实现串联系统的电压冗余设计的同时避免电压反冲。
Description
本申请涉及串联电源领域,特别涉及一种电源模块、均压装置及电子设备。
目前,在更高压的应用场景中,需要将电源模块之间输出串联。现有技术中,在N个电源模块输出串联的系统中,若其中一个电源模块发生输出电压下降,则会导致串联系统输出的总电压直接分压到剩下的N-1个模块输出端口上,当输出端口没设计防反电路时,该电压会直接反灌到模块的输出电解电容上,从而造成输出电解电容过压。这样的系统设计在单模块出现短路故障时,会给其他模块的输出电解电容造成严重的可靠性风险。
因此,现有技术仍有待改进。
发明内容
鉴于上述现有技术的不足之处,本申请的目的在于提供一种电源模块、均压装置及电子设备,在一个电源模块输出电压下降时,使除故障电源模块之外的电源模块主动提高输出电压,避免电压反冲。
为了达到上述目的,本申请采取了以下技术方案:
第一方面,本申请提供了一种电源模块,所述电源模块为第一电源模块,所述第一电源模块被配置有第一输入端口、第二输入端口、第一输出端口、第二输出端口以及第一通信端口,所述第一输入端口和所述第二输入端口用于连接电源;所述第一输出端口用于连接负载的第一端,所述第二输出端口用于连接第二电源模块的第三输出端口,第二电源模块的第四输出端口连接所述负载的第二端,所述第二电源模块包括单个或者多个输出端串联的电源模块;所述第一通信端口用于连接所述第二电源模块的第二通信端口;所述第一电源模块包括:
电源管理电路,连接所述第一输入端口、所述第二输入端口、所述第一输出端口、所述第二输出端口,用于:
检测到所述第一输出端口的第一输出电压为零或接收到报警信号时,确定标定电压值与当前第一输出电压的第一差值,其中,所述标定电压值为所述第一输出电压的设定值;根据所述第一差值和所述第二电源模块中电源模块的数量确定用于均压补偿的第一电压数值,生成用于指示所述第一电压数值的第一电压补偿信号,通过所述第一通信端口向所述第二电源模块发送所述第一电压补偿信号,所述均压补偿是指所述第二电源模块中每个所述电源模块进行电压补偿的调整量相同;或者,
检测到所述第一输出端口的第一输出电压为零或接收到报警信号时,确定标定电压值与当前第一输出电压的第一差值,其中,所述标定电压值为所述第一输出电压的设定值;生成用于指示所述第一差值的第二电压补偿信号,通过所述第一通信端口向所述第二电源模块发送所述第二电压补偿信号,所述第二电压补偿信号用于指示用于确定均压补偿的第二电压数值,所述均压补偿是指所述第二电源模块中每个所述电源模块进行电压补偿的调整量相同。
可见,本申请实施例中,第一电源模块通过电源管理电路检测到故障时,确定变化自身电压下降的第一差值,根据所述第一差值生成第一电压补偿信号或者第二电压补偿信号,再发送至第二电源模块,使得所述第二电源模块根据所述第一电压补偿信号或者第二电压补偿信号调高电压,通过控制第二电源模块主动提高输出电压,最终使得串联系统中的总电压不变,在实现串联系统的电压冗余设计的同时避免电压反冲。
第二方面,本申请还提供一种均压装置,包括:
如上文所述的第一电源模块,被配置有第一输出端口所述第一输出端口、第二输出端口所述第二输出端口以及第一通信端口,所述第一输出端口用于连接负载的第一端,第二输出端口所述第二输出端口用于连接第二电源模块的第三输出端口所述第三输出端口;所述第一通信端口用于连接所述第二电源模块的第二通信端口;
所述第二电源模块,包括单个或者多个输出端串联的电源模块,所述第二 电源模块的第四输出端口所述第四输出端口连接所述负载的第二端。
第三方面,本申请还提供一种电子设备,包括:
如上文所述的均压装置,连接负载,用于为所述负载提供预设电压值;
所述负载,用于在所述均压装置供电时工作。
第四方面,本申请还提供一种电压控制方法,应用于均压装置,所述均压装置包括输出端串联的多个电源模块,且所述多个电源模块第一个电源模块的一输出端口连接负载的一端,所述多个电源模块最后一个电源模块的一输出端口连接负载的另一端;所述方法包括:
检测到第一电源模块的供电电压为零或接收到报警信号时,确定标定电压值与当前第一输出电压的第一差值,其中,所述标定电压值为所述第一输出电压的设定值;根据所述第一差值和第二电源模块中的多个电源模块的数量确定用于均压补偿的第一电压数值,生成用于指示所述第一电压数值的第一电压补偿信号,向所述第二电源模块发送所述第一电压补偿信号;所述第二电源模块根据所述第一电压补偿信号调整第二电压输出值,并向下一个串联的电源模块发送所述第一电压补偿信号,重复上述信号发送和电压调整过程直至最后一个电源模块调整第二电压输出值,所述均压补偿是指每个进行电压补偿的电源模块的电压调整量相同;
或者,检测到第一电源模块的供电电压为零或接收到报警信号时,确定标定电压值与当前第一输出电压的第一差值,其中,所述标定电压值为所述第一输出电压的设定值;生成用于指示所述第一差值的第二电压补偿信号,向所述第二电源模块发送所述第二电压补偿信号;所述第二电源模块根据所述第二电压补偿信号及所述第二电源模块中的多个电源模块的个数得到第二电压数值,再根据所述第二电压数值调整第二电压输出值,并向下一个串联的电源模块发送所述第二电压补偿信号,重复上述信号发送和电压调整过程直至最后一个电源模块调整第二电压输出值,所述均压补偿是指每个进行电压补偿的电源模块的电压调整量相同。
图1为本申请提供的电源模块的结构示意图;
图2为本申请提供的均压装置的结构示意图;
图3为本申请提供的均压装置的结构一个实例的示意图;
图4为本申请提供的均压装置的结构另一个实例的示意图;
图5为本申请提供的电源模块的具体结构示意图;
图6为本申请提供的终端设备的结构示意图。
本技术领域技术人员可以理解,除非特意声明,这里使用的单数形式“一”、“一个”和“该”也可包括复数形式。应该进一步理解的是,本申请的说明书中使用的措辞“包括”是指存在特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件和/或它们的组。应该理解,当我们称元件被“连接”或“耦接”到另一元件时,它可以直接连接或耦接到其他元件,或者也可以存在中间元件。此外,这里使用的“连接”或“耦接”可以包括无线连接或无线耦接。这里使用的措辞“和/或”包括一个或更多个相关联的列出项的全部或任一单元和全部组合。本申请中的“多个”是指两个及以上。
本申请的具体实施方式是为了便于对本申请的技术构思、所解决的技术问题、构成技术方案的技术特征和带来的技术效果做更为详细的说明。需要说明的是,对于这些实施方式的解释说明并不构成对本申请的保护范围的限定。此外,下文所述的实施方式中所涉及的技术特征只要彼此之间不构成冲突就可以相互组合。
首先,对本申请实施例中涉及的部分名词进行解释,以便于本领域技术人员理解。
1、串联系统。串联系统是组成系统的所有单元中任一单元失效就会导致整个系统失效的系统。本申请中的串联系统是指电源模块串联系统,当多个电源模块输出串联使用时,每一个模块都是整个电源模块串联系统传能通路的一个输出节点。当电源模块串联系统中的一个模块出现故障后,整个串联系统的 能量传输通路就被该故障模块切断了,这时电源模块串联系统就都处于故障状态。
2、冗余设计。冗余设计又称余度设计技术,是指在系统或设备完成任务起关键作用的地方,增加一套以上完成相同功能的功能通道、工作元件或部件,以保证当该部分出现故障时,系统或设备仍能正常工作,减少系统或者设备的故障概率,提高系统可靠性。本申请中的冗余设计是基于电源模块串联系统进行设置,使得电源模块串联系统在某个电源模块发生故障时,仍然能够继续工作,以获得足够的时间等待检修。
目前,电源模块串联系统的冗余设计,以N个电源模块的串联为例,需要两组电源模块串联系统,将两个系统总输出并联互为备份,当其中一组出现故障时,则切换至另外一组进行工作,成本过高。
同时当电源模块串联系统的输出接电池负载或者容性负载时,如果串联系统内的某一电源模块出现输出短路故障时,则导致串联系统输出的总电压直接分压到剩下的N-1个模块输出端口上,若输出端口未设置防反电路,则会造成电压反冲,使得输出端口的电解电容(如图3和/或图4中的Co0、Coi和Con)过压,进而造成可靠性风险。
针对上述问题,本申请提供一种电源模块,在一个电源模块输出电压下降时,使除故障电源模块之外的电源模块主动提高输出电压,避免电压反冲。
请参阅图1,图1是本申请提供的电源模块的结构示意图,该电源模块为第一电源模块100,所述第一电源模块100被配置有第一输入端口IN1、第二输入端口IN2、第一输出端口OUT1、第二输出端口OUT2以及第一通信端口。所述第一输入端口IN1、第二输入端口IN2、第一输出端口OUT1、第二输出端口OUT2可以是任意常用的电源接线端口,具体规格可自行选择,在此不做唯一性限定。所述第一通信接口可以是CAN总线接口(例如图4所示的CAN总线)、I2C总线接口等,在此不做唯一性限定。所述第一输入端口IN1和所述第二输入端口IN2用于连接电源;可参阅图2,所述第一输出端口OUT1用于连接负载RL的第一端,所述第二输出端口OUT2用于连接第二电源模块200的第三输出端口OUT3,第二电源模块200的第四输出端口OUT4连接所述负载RL的第二端,所 述第二电源模块200包括单个或者多个输出端串联的电源模块;所述第一通信端口用于连接所述第二电源模块200的第二通信端口。所述第一电源模块100包括电源管理电路,所述电源管理电路分别连接所述第一输入端口IN1、所述第二输入端口IN2、所述第一输出端口OUT1以及所述第二输出端口OUT2。所述电源管理电路通过所述第一输入端口IN1和第二接入端口接入电源,所述电源可以是标准市电,也可以是自定义电源,在此不做唯一性限定。所述电源管理电路通过所述第一输出端口OUT1和第二输出端口OUT2连接第一电源模块100中的各种器件、负载RL或第二电源模块200。所述第一输入端口IN1可以是正极端口或负极端口,相应的所述第二输入端口IN2也可以是负极端口或正极端口;所述第一输出端口OUT1可以是正极端口或负极端口,相应的所述第二输出端口OUT2也可以是负极端口或正极端口。
所述电源管理电路,用于:检测到所述第一输出端口OUT1的第一输出电压(即Vo1+和Vo1-,以下统称Vo1)为零或接收到报警信号时,确定标定电压值与当前第一输出电压Vo1的第一差值,其中,所述标定电压值为所述第一输出电压Vo1的设定值;根据所述第一差值和所述第二电源模块200中电源模块的数量确定用于均压补偿的第一电压数值,生成用于指示所述第一电压数值的第一电压补偿信号,通过所述第一通信端口向所述第二电源模块200发送所述第一电压补偿信号,所述均压补偿是指所述第二电源模块200中每个所述电源模块进行电压补偿的调整量相同。
示例的,在检测到所述第一端口的所述第一输出电压Vo1为零时,证明所述第一电源模块100发生故障,且无法参与供电,因此,需要首先发出相应的指令通知串联系统中第二电源模块200调整相应的输出电压,以保证串联系统中的总输出电压(即Vout+和Vout-,以下统称Vout)不变,以免负载RL端发送可靠性问题,也防止所述第二电源模块200发送电压反冲。
同理的,当检测到所述第一电源模块100的其他故障时,也会导致电压发生变化,此时生成报警信号得知所述第一电源模块100的当前第一输出电压Vo1,然后通知第二电源模块200进行电压调整。
具体的,在检测到所述第一输出电压Vo1发生变化后,获取当前第一输出 电压Vo1,通过初始的标定电压值与所述第一输出电压Vo1计算得到所述第一电源模块100下降的电压数值,即第一差值。此时,由于上述串联系统是均压系统,因此每个电源模块的输出电压理论上相同(即输出电压的设定值相同),所以要将所述第一差值按照所述第二电源模块200中的电源模块数量进行等分,得到第一电压数值,根据所述第一电压数值生成第一电压补偿信号,通过所述第一通信端口发送至第二电源模块200中,使得所述第二电源模块200中每个电源模块的第二输出电压(即Vo2+和Vo2-,以下统称Vo2)的设定值增加相同的第一电压数值,维持整个串联系统的总输出电压Vout不变,同时由于是所述电源模块主动提升第二输出电压Vo2,因此,不存在电压反冲,避免了电压反冲的风险。
进一步的,所述电源管理电路还用于:在接收到所述第二电源模块200的第三电压补偿信号时,根据所述第三电压补偿信号解析出第三电压数值,在所述第一输出电压Vo1的设定值的基础上增加所述第三电压数值,其中,所述第三电压数值用于进行电压补偿。
示例的,当所述第一电源模块100未发生故障,且接收到其他故障电源模块的第三电压补偿信号时,所述第一电源模块100同样能够根据所述第三电源补偿信号解析出所述第三电压数值。可选的,所述第三电压数值与所述第一电压数值相同,因此,所述第一电源模块100可直接在所述第一输出电压Vo1的设定值的基础上增加所述第三电压数值,以提高所述第一输出电压Vo1的输出值。
更进一步的,在一个可能的实例中,所述电源管理电路还用于:当更换所述第一电源模块100并重新上电时,分段增加所述第一输出电压Vo1,并在增加所述第一输出电压Vo1时,根据所增加的所述第一输出电压Vo1的第一增值与所述第二电源模块200中所述电源模块的个数,确定用于反向均压补偿的第五电压数值,生成用于指示所述第五电压数值的第五电压补偿信号,通过所述第一通信端口向所述第二电源模块200发送所述第五电压补偿信号,所述反向均压补偿是指所述第二电源模块200中每个所述电源模块的第二输出电压Vo2的设定值下调量相同。
示例的,当维护人员检修完毕后,使得所述第一电源模块100的故障被排 除或者更换了新的第一电源模块100,并将所述第一电源模块100重新接入串联系统中上电后,为了避免所述第一电源模块100的电压陡增,以及所述第二电源模块200的电压陡降,因此,本示例中以步进方式分段增加所述第一输出电压Vo1的设定值,使得所述第一输出电压Vo1缓慢上升,避免了瞬时高压。在分段增加所述第一输出电压Vo1的设定值的同时,所述第一电源模块100向所述第二电源模块200发送相应的第五电压补偿信号,使得所述第二电源模块200中的每个电源模块也已分段的形式逐步降低第二输出电压Vo2,避免了电压变化幅度过大影响总输出电压Vout的可靠性。
在一个可能的实例中,所述电源处理电路用于:检测到所述第一输出端口OUT1的第一输出电压Vo1为零或接收到报警信号时,确定标定电压值与当前第一输出电压Vo1的第一差值,其中,所述标定电压值为所述第一输出电压Vo1的设定值;生成用于指示所述第一差值的第二电压补偿信号,通过所述第一通信端口向所述第二电源模块200发送所述第二电压补偿信号,所述第二电压补偿信号用于指示用于确定均压补偿的第二电压数值,所述均压补偿是指所述第二电源模块200中每个所述电源模块进行电压补偿的调整量相同。
示例的,所述第一电源模块100可以不预先计算补偿值,只计算出所述第一差值,直接将所述第一差值生成第二电压补偿信号发送至所述第二电源模块200中,由所述第二电源模块200中的各个电源模块自行从所述第二电压补偿信号中解析出所述第一差值,并将所述第一差值与所述电源模块数量进行除法运算,得到每个电源模块自身所要补偿的第二电压数值,最后通过所述第二电压数值提升所述第二输出电压Vo2的设定值。
进一步的,在接收到第二电源模块200的第四电压补偿信号时,根据所述第四电压补偿信号解析出所述第四电压数值,并根据所述第四电压数值根据所述电源模块个数得到所述第三电压数值,在所述第一输出电压Vo1的设定值的基础上增加所述第三电压数值,其中,所述第三电压数值用于进行电压补偿。
示例的,当所述第一电源模块100未发生故障,且接收到其他故障电源模块的第四电压补偿信号时,所述第一电源模块100同样能够根据所述第四电源补偿信号解析出所述第四电压数值。可选的,所述第四电压数值与所述第一差 值相同,因此,所述第一电源模块100需要基于所述第四电压值以及除故障电源模块之外的电源模块数量进行计算,得到所述第三电压数值,然后在所述第一输出电压Vo1的设定值的基础上增加所述第三电压数值,以提高所述第一输出电压Vo1的输出值。
更进一步的,在一个可能的实例中,所述电源管理电路还用于:当更换所述第一电源模块100并重新上电时,分段增加所述第一输出电压Vo1,并在增加所述第一输出电压Vo1时,根据所增加的所述第一输出电压Vo1的第一增值,确定用于生成用于指示所述第一增值的第六电压补偿信号,通过所述第一通信端口向所述第二电源模块200发送所述第六电压补偿信号,所述第六电压补偿信号用于指示用于确定反向均压补偿的第五电压数值,所述反向均压补偿是指所述第二电源模块200中每个电源模块的第二输出电压Vo2的设定值下调量相同。
示例的,可直接根据所述第一增值生成六电压补偿信号,再向所述第二电源模块200发送所述第六电压补偿信号,由所述第二电源模块200中的每个电源模块自行根据所述第六电压补偿信号计算出第五电压数值,再通过所述第五电压数值对上述电源模块的第二输出电压Vo2的设定值进行下调。
在一个可能的实例中,请参阅图5,所述电源管理电路包括检测单元110和控制单元120。检测单元110,连接所述第一输出端口OUT1,用于检测所述第一输出电压Vo1是否为零,或者检测故障生成所述报警信号。所述检测单元110可以是任意的检测电路或检测器件,例如电压检测电路、电压表等,具体根据实际的电源模块类型和电源模块设计来选择,只需要满足各种检测需求即可,在此不做展开。
控制单元120,连接检测单元110和第一通信端口,用于确定所述第一电压数值或所述第二电压数值,并向第二电源模块200中的电源模块发送所述第一电压数值或者第二电压数值。所述控制单元120可以包括多个处理器,该多个处理器可以分别用于执行不同算法以实现本申请中所公开的相应功能,所述处理器可以是中央处理单元(CPU)或其他处理核心,所述多个处理器可以是异构处理器,即不同类型处理器,关于处理器的具体实现方案本实施例不做展开。
在一个可能的实例中,所述控制单元120具体用于:根据所述第一输出电压Vo1或所述报警信号识别故障类型,其中,所述故障类型用于指示故障位置和/或故障具体问题;若所述故障类型不影响冗余功能,则判断所述第一电源模块100是否满足冗余要求;当所述第一电源模块100满足冗余要求时,则确定所述第一差值。
示例的,所述第一输出电压Vo1为零时,指示所述第一电源模块100无法参与供电;所述报警信号则指示其他具体问题,例如,所述第一电源模块100的风扇是否正常工作,所述第一电源模块100是否产生负压,所述电源管理电路中的控制单元120、检测单元110等是否正常工作,所述第一电源模块100中的具体器件是否正常工作,所述第一电源模块100中的各个回路是否通路等,可根据具体情况进行相应的设置,在此不做唯一性限定。具体的,由于电源模块实现冗余功能是由预设要求的,若无法满足相应的要求,则无法实现冗余功能,因此,需要根据所述第一输出电压Vo1和所述报警信号判断此时的故障是否影响到冗余功能,若不影响,则继续判断当前所述第一电源模块100是否满足冗余要求,只有在所述第一电源模块100满足冗余要求时,才确定所述第一差值。
在一个可能的实例中,所述第一电源模块100还包括外部保护二极管(如图4中的Do0、Doi和Don,以下统称Do),所述外部保护二极管Do的输出端和输入端分别连接所述第一输出端口OUT1和第二端口;所述外部保护二极管Do用于当所述第一电源模块100处于串联系统中且发生故障时,确保所述第二电源模块200于负载RL之间的串联回路通路。所述外部保护二极管Do可以是任意具有单向导通功能的二极管,在此不做唯一性限定。本实施例中,在所述第一电源故障时,通过所述外部保护二极管Do保证整个串联系统的串联回路通路,以保证所述第一电源模块100故障后,串联系统仍然能够工作,实现冗余功能。
在一个可能的实例中,所述控制单元120还用于:判断出所述第一电源模块100满足一级冗余条件时,则所述第一电源模块100满足冗余要求,其中,所述一级冗余条件包括存在外部保护二极管Do。
示例的,若所述第一电源模块100中设置有所述外部保护二极管Do,则在所述第一电源模块100故障时,自动由上述外部保护二极管Do连通串联回路, 无需通过所述电源管理电路再进行相应的冗余控制即可实现冗余功能,因此,若判断除上述第一电源模块100满足以及冗余条件时,则证明所述第一电源模块100满足冗余要求。
进一步的,所述控制单元120还用于:判断出所述第一电源模块100不满足所述一级冗余条件时,则所述第一电源模块100是否满足二级冗余条件;判断出所述第一电源模块100满足所述二级冗余条件时,则所述第一电源模块100满足冗余要求。
示例的,若所述第一电源模块100未设置由上述外部保护二极管Do,则需要进一步确认所述第一电源模块100是否满足二级冗余条件,所述二级冗余条件包括所述第一输出电压Vo1不为负压,所述第一电源模块100的风扇正常工作,所述第一通信端口正常工作。具体的,所述第一输出电压Vo1不为负压,说明所述第一电源模块100仍存在用于防止电压反冲的二极管,所述风扇正常工作,说明能够起到散热作用,保证所述第一电源模块100不过热,所述第一通信端口正常工作,说明能够向第二电源模块200发送电压补偿信号。若所述第一电源模块100满足二级冗余条件,也能够满足冗余要求。
在一个可能的实例中,所述控制单元120还用于:当判断出所述第一电源模块100满足所述冗余要求时,所述第一电源模块100进入冗余工作状态。
示例的,检测到故障后,在判断出所述第一电源模块100满足冗余要求时,所述第一电源模块100直接进入冗余工作状态,所述冗余工作状态包括停止所述第一电源模块100的电压输出,将所述风扇调节到二极管散热模式,向所述第二电源模块200中的电源模块发送冗余状态指示信息。停止所述第一电源模块100的电压输出,能够使得所述第一电源模块100彻底排除在串联系统之外,以免所述第一电源模块100工作在故障环境下发生危险。将所述风扇调节到二极管散热模式,使得所述风扇以较低的散热功率进行工作,低压工作风险较小,且使得所述第一电源模块100能够保持较低温度,避免所述第一电源模块100过热。向所述第二电源模块200发送冗余状态指示信息,使得所述第二电源模块200中的每个电源模块均得知所述第一电源模块100处于故障状态,有利于维护人员得知故障信息。
进一步的,所述控制单元120还用于:当判断出所述第一电源模块100不满足所述冗余要求时,所述第一电源模块100停止工作,并生成故障信息;向所述第二电源模块200发送所述故障信息。示例的,若所述第一电源模块100仍不满足冗余要求,则说明所述第一电源模块100无法实现冗余功能,因此所述第一电源模块100先向所述第二电源模块200发送故障信息,再掉电;其中,所述故障信息用于指示第二电源模块200进行掉电。所述第二电源模块200接收到所述故障信息后,也进行掉电,使得整个串联系统掉电,进入等待检修状态。本示例所述第一电源模块100在无法实现冗余功能时,使得整个系统掉电,进一步避免发生可靠性问题。
在一个可能的实例中,请参阅图2,本申请还提供了一种均压装置,上述均压装置包括:
如上文所述的第一电源模块100,被配置有第一输出端口OUT1、第二输出端口OUT2以及第一通信端口,所述第一输出端口OUT1用于连接负载RL的第一端,所述第二输出端口OUT2用于连接第二电源模块200的所述第三输出端口OUT3;所述第一通信端口用于连接所述第二电源模块200的第二通信端口;所述第二电源模块200,包括单个或者多个输出端串联的电源模块,所述第二电源模块200的所述第四输出端口OUT4连接所述负载RL的第二端。
示例的,所述第一电源模块100和所述第二电源模块200串联构成电源模块串联系统,且所述第一电源模块100和所述第二电源模块200中的一个或多个电源模块的结构和功能均相同。
在一个可能的实例中,请参阅图3,在所述第二电源模块200中包括单个电源模块时,所述第三输出端口OUT3为所述单个电源模块的一输出端口;所述第四输出端口OUT4为所述单个电源模块的另一输出端口,即整个均压装置中只包括两个电源模块。
在一个可能的实例中,请参阅图4,所述第二电源模块200包括N个输出端串联的电源模块,N为大于1的整数;此时所述电源模块串联系统中则包括N+1个电源模块。所述第三输出端口OUT3为所述N个输出端串联的电源模块中第一个电源模块的一输出端口;所述第一个电源模块的另一输出端口和其他N-1 个电源模块的输出端口串联;所述第四输出端口OUT4为所述N个输出端串联的电源模块中第N个电源模块的另一输出端口。例如,图4中的电源模块i#(201)为所述第二电源模块200中的第一个电源模块,所述第三输出端口OUT3为该电源模块i#(201)的正极输出端口,该电源模块i#(201)的负极输出端口与下一个电源模块的正极连接,图4中的电源模块N#(202)为所述第二电源模块200中最后一个电源模块,所述第四输出端口OUT4为该电源模块N#(202)的负极输出端口,所述电源模块N#(202)的正极输出端口与第N-1个电源模块的负极输出端口连接。具体的,所述电源模块i#(201)的输出电压为Voi(即图4中的Voi+和Voi-),所述电源模块N#(202)的输出电压为Von(即图4中的Von+和Von-),其中,正常工作时,Voi和Von以及两者之间的电源模块的输出电压的设定值相同。
具体的,所述N-1个电源模块均包括第三通信端口,N个电源模块之间通过所述第三通信端口进行串联,构成CAN总线结构进行通信。由于所述电源模块已在上文进行了详细描述,在此不再赘述。
在一个可能的实例中,本申请还提高了一种电子设备,包括:如上文所述的均压装置,连接负载RL,用于为所述负载RL提供预设电压值;所述负载RL,用于在所述均压装置供电时工作。
示例的,所述均压装置的内部在本示例中为一种电源模块串联系统,通过与所述负载RL连接,为所述负载RL提供相应的电压,实现相应的供电需求。具体的,所述均压装置中供电电源模块能够实现相应的冗余功能,并且在单一电源模块故障时,能够防止电压反冲,避免电源的可靠性问题。由于所述均压装置以在上文进行了详细描述,在此不在赘述。
在一个可能的实例中,本申请还提供一种电压控制方法,应用于均压装置,所述均压装置包括输出端串联的多个电源模块,且所述多个电源模块第一个电源模块的一输出端口连接负载的一端,所述多个电源模块最后一个电源模块的一输出端口连接负载的另一端;所述方法包括:
步骤101、检测到第一电源模块的供电电压为零或接收到报警信号时,确定标定电压值与当前第一输出电压Vo1的第一差值,其中,所述标定电压值为 所述第一输出电压Vo1的设定值;根据所述第一差值和所述多个电源模块的数量确定用于均压补偿的第一电压数值,生成用于指示所述第一电压数值的第一电压补偿信号,向所述第二电源模块发送所述第一电压补偿信号;所述第二电源模块根据所述第一电压补偿信号调整第二电压输出值,并向下一个串联的电源模块发送所述第一电压补偿信号,重复上述信号发送和电压调整过程直至最后一个电源模块调整第二电压输出值,所述均压补偿是指每个进行电压补偿的电源模块的电压调整量相同。
示例的,在检测到所述第一输出电压Vo1发生变化后,获取当前第一输出电压Vo1,通过初始的标定电压值与所述第一输出电压Vo1计算得到所述第一电源模块下降的电压数值,即第一差值。此时,由于上述串联系统是均压系统,因此每个电源模块的输出电压理论上相同(即输出电压的设定值相同),所以要将所述第一差值按照所述第二电源模块中的电源模块数量进行等分,得到第一电压数值,根据所述第一电压数值生成第一电压补偿信号,通过所述第一通信端口发送至第二电源模块中,使得所述第二电源模块中每个电源模块的第二输出电压Vo2的设定值增加相同的第一电压数值,维持整个串联系统的总输出电压Vout不变,同时由于是所述电源模块主动提升第二输出电压Vo2,因此,不存在电压反冲,避免了电压反冲的风险。
在一个可能的实例中,所述方法包括:
步骤102、检测到第一电源模块的供电电压为零或接收到报警信号时,确定标定电压值与当前第一输出电压Vo1的第一差值,其中,所述标定电压值为所述第一输出电压Vo1的设定值;生成用于指示所述第一差值的第二电压补偿信号,向所述第二电源模块发送所述第二电压补偿信号;所述第二电源模块根据所述第二电压补偿信号及所述电源模块的个数得到第二电压数值,再根据所述第二电压数值调整第二电压输出值,并向下一个串联的电源模块发送所述第二电压补偿信号,重复上述信号发送和电压调整过程直至最后一个电源模块调整第二电压输出值,所述均压补偿是指每个进行电压补偿的电源模块的电压调整量相同。
示例的,所述第一电源模块可以不预先计算补偿值,只计算出所述第一差 值,直接将所述第一差值生成第二电压补偿信号发送至所述第二电源模块中,由所述第二电源模块中的各个电源模块自行从所述第二电压补偿信号中解析出所述第一差值,并将所述第一差值与所述电源模块数量进行除法运算,得到每个电源模块自身所要补偿的第二电压数值,最后通过所述第二电压数值提升所述第二输出电压Vo2的设定值。
本申请还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现上述实施例所述的一种基于遥感云平台的水航线探测方法中的步骤。
本申请还提供了一种终端设备,如图6所示,其包括至少一个处理器(processor)20;显示屏21;以及存储器(memory)22,还可以包括通信接口(Communications Interface)23和总线24。其中,处理器20、显示屏21、存储器22和通信接口23可以通过总线24完成相互间的通信。显示屏21设置为显示初始设置模式中预设的用户引导界面。通信接口23可以传输信息。处理器20可以调用存储器22中的逻辑指令,以执行上述实施例中的方法。
此外,上述的存储器22中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器22作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令或模块。处理器20通过运行存储在存储器22中的软件程序、指令或模块,从而执行功能应用以及数据处理,即实现上述实施例中的方法。
存储器22可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器22可以包括高速随机存取存储器,还可以包括非易失性存储器。例如,U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。
此外,上述存储介质以及移动终端中的多条指令处理器加载并执行的具体过程在上述方法中已经详细说明,在这里就不再一一陈述。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。
Claims (12)
- 一种电源模块,其特征在于,所述电源模块为第一电源模块,所述第一电源模块被配置有第一输入端口、第二输入端口、第一输出端口、第二输出端口以及第一通信端口,所述第一输入端口和所述第二输入端口用于连接电源;所述第一输出端口用于连接负载的第一端,所述第二输出端口用于连接第二电源模块的第三输出端口,第二电源模块的第四输出端口连接所述负载的第二端,所述第二电源模块包括单个或者多个输出端串联的电源模块;所述第一通信端口用于连接所述第二电源模块的第二通信端口;所述第一电源模块包括:电源管理电路,连接所述第一输入端口、所述第二输入端口、所述第一输出端口、所述第二输出端口,用于:检测到所述第一输出端口的第一输出电压为零或接收到报警信号时,确定标定电压值与当前第一输出电压的第一差值,其中,所述标定电压值为所述第一输出电压的设定值;根据所述第一差值和所述第二电源模块中电源模块的数量确定用于均压补偿的第一电压数值,生成用于指示所述第一电压数值的第一电压补偿信号,通过所述第一通信端口向所述第二电源模块发送所述第一电压补偿信号,所述均压补偿是指所述第二电源模块中每个所述电源模块进行电压补偿的调整量相同;或者,检测到所述第一输出端口的第一输出电压为零或接收到报警信号时,确定标定电压值与当前第一输出电压的第一差值,其中,所述标定电压值为所述第一输出电压的设定值;生成用于指示所述第一差值的第二电压补偿信号,通过所述第一通信端口向所述第二电源模块发送所述第二电压补偿信号,所述第二电压补偿信号用于指示用于确定均压补偿的第二电压数值,所述均压补偿是指所述第二电源模块中每个所述电源模块进行电压补偿的调整量相同;所述电源管理电路还用于:在接收到所述第二电源模块的第三电压补偿信号时,根据所述第三电压补偿信号解析出第三电压数值,在所述第一输出电压的设定值的基础上增加所述第三电压数值,其中,所述第三电压数值用于进行电压补偿;或者,在接收到第二电源模块的第四电压补偿信号时,根据所述第四电压补偿信号解析出第四电压数值,并由所述第四电压数值根据所述第二电源模块中的所述电源模块个数得到所述第三电压数值,在所述第一输出电压的设定值的基础上增加所述第三电压数值,其中,所述第三电压数值用于进行电压补偿。
- 根据权利要求1所述的电源模块,其特征在于,所述电源管理电路包括:检测单元,连接所述第一输出端口,用于检测所述第一输出电压是否为零,或者检测故障生成所述报警信号;控制单元,连接检测单元和第一通信端口,用于确定所述第一电压数值或所述第二电压数值,并向第二电源模块中的电源模块发送所述第一电压数值或者第二电压数值。
- 根据权利要求2所述的电源模块,其特征在于,所述控制单元具体用于:根据所述第一输出电压或所述报警信号识别故障类型,其中,所述故障类型用于指示故障位置和/或故障具体问题;若所述故障类型不影响冗余功能,则判断所述第一电源模块是否满足冗余要求;当所述第一电源模块满足冗余要求时,则确定所述第一差值。
- 根据权利要求1所述的电源模块,其特征在于,所述第一电源模块还包括外部保护二极管,所述外部保护二极管的输出端和输入端分别连接所述第一输出端口和第二输出端口;所述外部保护二极管用于当所述第一电源模块处于串联系统中且发生故障时,确保所述第二电源模块与负载之间的串联回路通路。
- 根据权利要求2所述的电源模块,其特征在于,所述控制单元还用于:判断出所述第一电源模块满足一级冗余条件时,则所述第一电源模块满足冗余要求,其中,所述一级冗余条件包括存在外部保护二极管;判断出所述第一电源模块不满足所述一级冗余条件时,则所述第一电源模块是否满足二级冗余条件;判断出所述第一电源模块满足所述二级冗余条件时,则所述第一电源模块满足冗余要求,其中,所述二级冗余条件包括所述第一输出电压不为负压,所述第一电源模块的风扇正常工作,所述第一通信端口正常工作。
- 根据权利要求3所述的电源模块,其特征在于,所述控制单元还用于:当判断出所述第一电源模块满足所述冗余要求时,所述第一电源模块进入冗余工作状态,其中,所述冗余工作状态包括停止所述第一电源模块的输出,将风扇调节到二极管散热模式,向所述第二电源模块中的电源模块发送冗余状态指示信息;当判断出所述第一电源模块不满足所述冗余要求时,所述第一电源模块停止工作,并生成故障信息,其中所述故障信息用于指示第二电源模块进行掉电;向所述第二电源模块发送所述故障信息。
- 根据权利要求1所述的电源模块,其特征在于,所述电源管理电路还用于:当更换所述第一电源模块并重新上电时,分段增加所述第一输出电压,并在增加所述第一输出电压时,根据所增加的所述第一输出电压的第一增值与所述第二电源模块中所述电源模块的个数,确定用于反向均压补偿的第五电压数值,生成用于指示所述第五电压数值的第五电压补偿信号,通过所述第一通信端口向所述第二电源模块发送所述第五电压补偿信号,所述反向均压补偿是指所述第二电源模块中每个所述电源模块的第二输出电压Vo2的设定值下调量相同;或者,当更换所述第一电源模块并重新上电时,分段增加所述第一输出电压,并在增加所述第一输出电压时,根据所增加的所述第一输出电压的第一增值,确定用于生成用于指示所述第一增值的第六电压补偿信号,通过所述第一通信端口向所述第二电源模块发送所述第六电压补偿信号,所述第六电压补偿信号用于指示用于确定反向均压补偿的第五电压数值,所述反向均压补偿是指所述第二电源模块中每个电源模块的第二输出电压Vo2的设定值下调量相同。
- 一种均压装置,其特征在于,包括:如权利要求1-7任一项所述的第一电源模块,被配置有第一输出端口、第二输出端口以及第一通信端口,所述第一输出端口用于连接负载的第一端,所述第二输出端口用于连接第二电源模块的所述第三输出端口;所述第一通信端口用于连接所述第二电源模块的第二通信端口;所述第二电源模块,包括单个或者多个输出端串联的电源模块,所述第二电源模块的所述第四输出端口连接所述负载的第二端。
- 根据权利要求8所述的装置,其特征在于,所述第二电源模块包括单个电源模块;所述第三输出端口为所述单个电源模块的一输出端口;所述第四输出端口为所述单个电源模块的另一输出端口。
- 根据权利要求8所述的装置,其特征在于,所述第二电源模块包括N个输出端串联的电源模块,N为大于1的整数;所述第三输出端口为所述N个输出端串联的电源模块中第一个电源模块的一输出端口;所述第一个电源模块的另一输出端口和其他N-1个电源模块的输出端口串联;所述第四输出端口为所述N个输出端串联的电源模块中第N个电源模块的另一输出端口。
- 一种电子设备,其特征在于,包括:如权利要求9或10所述的均压装置,连接负载,用于为所述负载提供预设电压值;所述负载,用于在所述均压装置供电时工作。
- 一种电压控制方法,其特征在于,应用于均压装置,所述均压装置包括输出端串联的多个电源模块,且所述多个电源模块第一个电源模块的一输出端口连接负载的一端,所述多个电源模块最后一个电源模块的一输出端口连接负载的另一端;所述方法包括:检测到第一电源模块的供电电压为零或接收到报警信号时,确定标定电压值与当前第一输出电压的第一差值,其中,所述标定电压值为所述第一输出电压的设定值;根据所述第一差值和第二电源模块中的多个电源模块的数量确定用于均压补偿的第一电压数值,生成用于指示所述第一电压数值的第一电压补偿信号,向所述第二电源模块发送所述第一电压补偿信号;所述第二电源模块根据所述第一电压补偿信号调整第二电压输出值,并向下一个串联的电源模块 发送所述第一电压补偿信号,重复上述信号发送和电压调整过程直至最后一个电源模块调整第二电压输出值,所述均压补偿是指每个进行电压补偿的电源模块的电压调整量相同;或者,检测到第一电源模块的供电电压为零或接收到报警信号时,确定标定电压值与当前第一输出电压的第一差值,其中,所述标定电压值为所述第一输出电压的设定值;生成用于指示所述第一差值的第二电压补偿信号,向所述第二电源模块发送所述第二电压补偿信号;所述第二电源模块根据所述第二电压补偿信号及所述第二电源模块中的多个电源模块的个数得到第二电压数值,再根据所述第二电压数值调整第二电压输出值,并向下一个串联的电源模块发送所述第二电压补偿信号,重复上述信号发送和电压调整过程直至最后一个电源模块调整第二电压输出值,所述均压补偿是指每个进行电压补偿的电源模块的电压调整量相同;在接收到所述第二电源模块的第三电压补偿信号时,根据所述第三电压补偿信号解析出第三电压数值,在所述第一输出电压的设定值的基础上增加所述第三电压数值,其中,所述第三电压数值用于进行电压补偿;或者,在接收到第二电源模块的第四电压补偿信号时,根据所述第四电压补偿信号解析出第四电压数值,并由所述第四电压数值根据所述第二电源模块中的所述电源模块个数得到所述第三电压数值,在所述第一输出电压的设定值的基础上增加所述第三电压数值,其中,所述第三电压数值用于进行电压补偿。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110688717.XA CN113258763B (zh) | 2021-06-22 | 2021-06-22 | 一种电源模块、均压装置及电子设备 |
CN202110688717.X | 2021-06-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022267393A1 true WO2022267393A1 (zh) | 2022-12-29 |
Family
ID=77189006
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/139342 WO2022267393A1 (zh) | 2021-06-22 | 2021-12-17 | 一种电源模块、均压装置及电子设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113258763B (zh) |
WO (1) | WO2022267393A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113258763B (zh) * | 2021-06-22 | 2021-10-01 | 深圳市永联科技股份有限公司 | 一种电源模块、均压装置及电子设备 |
CN114070012B (zh) * | 2021-10-28 | 2024-06-18 | 科华数据股份有限公司 | 母线防反灌控制方法、装置、控制设备及电源系统 |
CN116232465B (zh) * | 2023-05-04 | 2023-07-25 | 艾乐德电子(南京)有限公司 | 光纤环形通讯实现多机并机冗余系统及方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101699732A (zh) * | 2009-10-30 | 2010-04-28 | 艾默生网络能源有限公司 | 一种变流器的故障控制方法 |
CN106026702A (zh) * | 2016-05-23 | 2016-10-12 | 安徽省金屹电源科技有限公司 | 一种大功率直流等离子体电源 |
CN107579660A (zh) * | 2017-09-19 | 2018-01-12 | 南方电网科学研究院有限责任公司 | 直流变换器的输出控制方法及装置 |
US20190229625A1 (en) * | 2016-09-16 | 2019-07-25 | Mitsubishi Electric Corporation | Power conversion device |
CN113258763A (zh) * | 2021-06-22 | 2021-08-13 | 深圳市永联科技股份有限公司 | 一种电源模块、均压装置及电子设备 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2387820B1 (de) * | 2008-12-18 | 2012-10-24 | ABB Research Ltd. | Wandlervorrichtung und verfahren zum steuern einer wandlervorrichtung |
CN105610325A (zh) * | 2016-01-28 | 2016-05-25 | 中国电力科学研究院 | 大功率钠硫电池中高压直流并网的模块化多电平变换器 |
JP6486578B2 (ja) * | 2016-12-19 | 2019-03-20 | 三菱電機株式会社 | 電力変換装置および電気推進システム |
CN109301813B (zh) * | 2018-11-30 | 2022-07-12 | 阳光电源(上海)有限公司 | 一种故障控制方法、控制器以及中高压能量变换系统 |
-
2021
- 2021-06-22 CN CN202110688717.XA patent/CN113258763B/zh active Active
- 2021-12-17 WO PCT/CN2021/139342 patent/WO2022267393A1/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101699732A (zh) * | 2009-10-30 | 2010-04-28 | 艾默生网络能源有限公司 | 一种变流器的故障控制方法 |
CN106026702A (zh) * | 2016-05-23 | 2016-10-12 | 安徽省金屹电源科技有限公司 | 一种大功率直流等离子体电源 |
US20190229625A1 (en) * | 2016-09-16 | 2019-07-25 | Mitsubishi Electric Corporation | Power conversion device |
CN107579660A (zh) * | 2017-09-19 | 2018-01-12 | 南方电网科学研究院有限责任公司 | 直流变换器的输出控制方法及装置 |
CN113258763A (zh) * | 2021-06-22 | 2021-08-13 | 深圳市永联科技股份有限公司 | 一种电源模块、均压装置及电子设备 |
Non-Patent Citations (1)
Title |
---|
ZHANG YING, JING LONG, WU XUEZHI, WU WEN, WEI MENGHANG, JIANG JIUCHUN: "Adaptive Voltage Sharing Control Strategy for Input-Series Output-Series Connected DC/DC Converter", POWER SYSTEM TECHNOLOGY, SHUILI-DIANLIBU DIANLI KEXUE YANJIUYUAN, BEIJING, CN, vol. 42, no. 9, 5 September 2018 (2018-09-05), CN , pages 2900 - 2907, XP093017507, ISSN: 1000-3673, DOI: 10.13335/j.1000-3673.pst.2017.2932 * |
Also Published As
Publication number | Publication date |
---|---|
CN113258763A (zh) | 2021-08-13 |
CN113258763B (zh) | 2021-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022267393A1 (zh) | 一种电源模块、均压装置及电子设备 | |
US7305573B2 (en) | Determining whether characteristics of a local area network node allow it to receive power over communication cabling | |
US7327743B2 (en) | Structure cabling system | |
US9223394B2 (en) | Rack and power control method thereof | |
US10003194B2 (en) | Parallel battery system | |
EP3264550B1 (en) | Access control method for parallel direct current power supplies and device thereof | |
EP3041109B1 (en) | Distributed power supply system and power conditioner | |
WO2020124973A1 (zh) | 功率优化方法及其装置、光伏设备和光伏系统 | |
WO2022206576A1 (zh) | 光伏系统 | |
US11733762B2 (en) | Method to allow for higher usable power capacity in a redundant power configuration | |
US9837819B2 (en) | Power network system, power control method, power router, control apparatus, and storage medium | |
JP7275386B2 (ja) | 電源システム | |
JP6471372B2 (ja) | 無効電力補償装置の制御装置及びその制御方法 | |
KR20160080026A (ko) | 이중화 제어기의 운전방법 | |
US11387643B2 (en) | Method, device and system for protecting parallel-connected topology units | |
CN104914908A (zh) | 一种基于can总线通信的自主均流数字控制方法 | |
US20240120729A1 (en) | Fault handling system of solid-state transformer | |
US20240022072A1 (en) | Bipolar power supply system and control method | |
WO2014071557A1 (en) | Vdcol control method for series mtdc system and vdcol synthesizer thereof | |
TWI750092B (zh) | 備援式乙太網路供電設備及其備援方法 | |
US12124305B2 (en) | Power priority adjustment in power over ethernet system based on availability of alternative power source | |
JP6154329B2 (ja) | 風力発電機管理装置および管理方法 | |
KR102381475B1 (ko) | 핫-스왑/플러그 시 발생하는 부하편향이 제거된 직류전원공급장치 | |
CN109814697B (zh) | 用于计算机系统的电力供应方法 | |
CN107276129B (zh) | 一种供电系统的均流方法、装置和供电系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21946867 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08.05.2024) |