WO2022267278A1 - 直线驱动装置及直线驱动装置系统误差的校正方法 - Google Patents

直线驱动装置及直线驱动装置系统误差的校正方法 Download PDF

Info

Publication number
WO2022267278A1
WO2022267278A1 PCT/CN2021/125669 CN2021125669W WO2022267278A1 WO 2022267278 A1 WO2022267278 A1 WO 2022267278A1 CN 2021125669 W CN2021125669 W CN 2021125669W WO 2022267278 A1 WO2022267278 A1 WO 2022267278A1
Authority
WO
WIPO (PCT)
Prior art keywords
force sensor
fixed
linear drive
assembly
drive device
Prior art date
Application number
PCT/CN2021/125669
Other languages
English (en)
French (fr)
Inventor
陈庆盈
杨桂林
王冲冲
戴俊杰
张驰
Original Assignee
中国科学院宁波材料技术与工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院宁波材料技术与工程研究所 filed Critical 中国科学院宁波材料技术与工程研究所
Publication of WO2022267278A1 publication Critical patent/WO2022267278A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/09Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by piezoelectric pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0061Force sensors associated with industrial machines or actuators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/12Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/14Estimation or adaptation of motor parameters, e.g. rotor time constant, flux, speed, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/20Controlling the acceleration or deceleration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors

Definitions

  • the present application relates to the field of drive devices, in particular to a linear drive device and a method for correcting system errors of the linear drive device.
  • Linear drives are widely used in precision machine tools, textile machinery, and packaging machinery.
  • the present application provides a linear drive device, which includes a fixed assembly, a moving assembly, a first force sensor and a second force sensor.
  • the moving assembly is movably connected to one end of the fixed assembly, and the moving assembly can move toward or away from the fixed assembly.
  • the first force sensor is arranged at an end of the fixed component away from the moving component, for detecting the force acting on the first force sensor from the fixed component towards the moving component.
  • the second force sensor is arranged at the end of the moving component away from the fixed component, for detecting the force acting on the second force sensor from the moving component towards the fixed component.
  • the fixed assembly includes a motor stator
  • the moving assembly includes a motor mover
  • the motor mover is movably connected to the motor stator
  • the motor stator can drive the motor mover to move.
  • the first force sensor is arranged at the end of the motor stator away from the motor mover
  • the second force sensor is arranged at the end of the motor mover far away from the motor stator.
  • the motor stator can drive the motor mover to move linearly in the direction close to or away from the motor stator, and the coordination precision of the motor stator and the motor mover is high and the response speed is fast, which is conducive to improving the movement accuracy and response speed of the linear drive device .
  • the moving assembly further includes a moving platform, the moving platform is fixed on the end of the motor mover away from the motor stator, and the second force sensor is installed on the side of the moving platform away from the motor stator.
  • the fixed assembly also includes a fixed platform and a support frame, the support frame is fixed at the end of the motor stator away from the motor mover, the fixed platform is set at the end of the support frame away from the motor stator, and the first force sensor is sandwiched between the fixed platform and the support frame between. In this way, the motor mover and the second force sensor are respectively installed on both sides of the moving platform, which can reduce the difficulty of assembling the moving assembly, thereby improving the structural compactness of the moving assembly.
  • the stator of the motor and the first force sensor can be respectively installed at both ends of the support frame, so as to reduce the difficulty of assembling the fixed assembly and improve the structural compactness of the fixed assembly.
  • the fixed platform is arranged between the fixed object and the first force sensor, so as to prevent the fixed object from directly pressing the first force sensor and causing damage to the first force sensor.
  • the support frame is fixed with a first sliding part
  • the moving platform is fixed with a second sliding part
  • the first sliding part is slidably matched with the second sliding part.
  • the first sliding part is a slider
  • the second sliding part is a slide rail that movably cooperates with the slider.
  • One end of the slide rail is fixedly connected to the moving platform, and the other end passes through the support frame and faces the first force.
  • the sensor is extended, and the linear drive device further includes an air bag, and the air bag is sandwiched between the slide rail and the supporting frame.
  • the structure of the slide rail and the slider is relatively simple, which is beneficial to simplify the structure of the linear drive device and reduce the processing difficulty of the linear drive device.
  • the air bag is arranged between the slide rail and the support frame, which can cause the air bag to have a certain buffering effect on the slide rail, reduce the vibration generated when the moving component moves toward the fixed component, and help the linear drive device to maintain stability during operation.
  • a tension spring is also included, one end of the tension spring is connected to the moving platform, and the other end is connected to the supporting frame.
  • the tension spring can tighten the fixed assembly and the moving assembly toward the opposite direction, which is conducive to improving the system stiffness of the linear drive device, so that the load force received by the linear drive device can be quickly transmitted to the first force sensor and the second force sensor
  • the sensor is beneficial to improve the response accuracy of the linear drive device.
  • the support frame is equipped with a scale grating
  • the moving platform is equipped with a grating reading head corresponding to the scale grating; or, the moving platform is equipped with a scale grating, and the support frame is equipped with a grating reading head corresponding to the scale grating.
  • the first force sensor is a strain sensor, a capacitive force sensor, a piezoelectric force sensor or a piezoresistive force sensor.
  • the strain gauge force sensor has high sensitivity and stability. Capacitive force sensors are characterized by high dynamic response and can detect force changes quickly and accurately.
  • the piezoelectric force sensor has a simple structure and a high signal-to-noise ratio. The lower price of the piezoresistive force sensor is conducive to reducing the manufacturing cost of the linear drive device.
  • the second force sensor is a strain sensor, a capacitive force sensor, a piezoelectric force sensor or a piezoresistive force sensor.
  • the strain gauge force sensor has high sensitivity and stability. Capacitive force sensors are characterized by high dynamic response and can detect force changes quickly and accurately.
  • the piezoelectric force sensor has a simple structure and a high signal-to-noise ratio. The lower price of the piezoresistive force sensor is conducive to reducing the manufacturing cost of the linear drive device.
  • the present application also provides a method for correcting the system error of the linear drive device, which is used to correct the system error of the linear drive device described in any one of the above embodiments.
  • the method for correcting the system error of the linear drive device includes the following steps: the load acts on the first
  • the second force sensor makes the moving component move towards the fixed component, and the fixed component is against a fixed object
  • the force F 2 of the load acting on the second force sensor is measured by the second force sensor
  • the fixed component is measured by the first force sensor
  • M is the total mass of the moving component and the second force sensor
  • a is the moving acceleration of the component and the second force sensor.
  • the fixed component is pressed against the fixed object, the load acts on the second force sensor and the moving component moves toward the fixed component, and the load acts on the second force sensor
  • the force is decomposed into two parts, one part of the force causes the second sensor and the moving component to generate acceleration a, and the other part of the force is transmitted to the fixed component and then to the fixed object through the fixed component.
  • the force F 2 of the load acting on the second force sensor can be directly measured by the second force sensor, and the first force sensor can measure the reaction force F 1 of the fixed component on the fixed object.
  • the magnitude of the force that causes the second sensor and the moving assembly to generate acceleration a can be calculated.
  • the force F2 that the load acts on the second force sensor is used as the force for the power assembly to generate the acceleration a
  • the force F2 that the load acts on the second force sensor is not the same as the actual force that causes the power assembly to generate the acceleration a
  • F1 is detected by setting the first force sensor, so that the actual magnitude of the force that causes the second sensor and the moving assembly to generate the acceleration a can be calculated, thereby eliminating the system error.
  • the linear drive device provided by the present application eliminates the systematic error existing in the dynamic response process of the linear drive device, thereby facilitating the precise control of the motion process of the linear drive device.
  • FIG. 1 is a schematic structural diagram of a linear drive device according to an embodiment of the present application.
  • a component when a component is said to be “mounted on” another component, it may be directly mounted on another component or there may be an intervening component.
  • a component When a component is said to be “set on” another component, it may be set directly on the other component or there may be an intervening component at the same time.
  • a component When a component is said to be “fixed” to another component, it may be directly fixed to the other component or there may be an intervening component at the same time.
  • the present application provides a linear drive device, which includes a fixed assembly 1 , a moving assembly 2 , a first force sensor 3 and a second force sensor 4 .
  • the fixed assembly 1 leans against a fixed object
  • the fixed object can be an object that does not move after being subjected to an external force, such as a wall, a ground, or a fixed bracket.
  • the moving assembly 2 is movably connected to one end of the fixed assembly 1 , and the moving assembly 2 can move toward or away from the fixed assembly 1 .
  • the moving assembly 2 can move toward or away from the fixed assembly 1 driven by the fixed assembly 1 , or the moving assembly 2 can move toward or away from the fixed assembly 1 under the action of a load.
  • the first force sensor 3 is set at the end of the fixed assembly 1 away from the moving assembly 2, so as to detect the force acting on the first force sensor 3 from the fixed assembly 1 towards the moving assembly 2, and the direction of the force is from the fixed assembly 1 towards the moving assembly 2 , and the acting force acts on the first force sensor 3 and can be measured by the first force sensor 3 .
  • the second force sensor 4 is arranged on the end of the moving assembly 2 away from the fixed assembly 1, so as to detect the force acting on the second force sensor 4 from the moving assembly 2 toward the fixed assembly 1, and the direction of the acting force is from the moving assembly 2 towards the direction of the fixed assembly 1 , and the acting force acts on the second force sensor 4 and can be measured by the second force sensor 4 .
  • the load acts on the second force sensor 4 and makes the moving assembly 2 move toward the fixed assembly 1, and the force acting on the second force sensor 4 by the load is decomposed into two parts, and a part of the force causes the second sensor and the moving assembly 2 to generate Acceleration a, another part of the force is transmitted to the fixed assembly 1 and then to the fixed object through the fixed assembly 1.
  • the force F 2 of the load acting on the second force sensor 4 can be directly measured by the second force sensor 4
  • the first force sensor 3 can measure the reaction force F 1 of the fixed component 1 subjected to the fixed object.
  • the force F2 that the load acts on the second force sensor 4 is used as the force that the power assembly produces the acceleration a, however, the force F2 that the load acts on the second force sensor 4 is different from the actual force that causes the power assembly to produce the acceleration a
  • the force is not consistent, resulting in systematic error.
  • F1 is detected by setting the first force sensor 3 , so that the actual magnitude of the force that causes the second sensor and the moving assembly 2 to generate the acceleration a can be calculated, thereby eliminating the system error.
  • the linear drive device provided by the present application eliminates the systematic error existing in the dynamic response process of the linear drive device, thereby facilitating the precise control of the motion process of the linear drive device.
  • the fixed assembly 1 includes a motor stator 11, the moving assembly 2 includes a motor stator 21, and the motor stator 21 is movably connected to the motor stator 11, and the motor stator 11 can drive the motor Child 21 moves.
  • the first force sensor 3 is set at the end of the motor stator 11 away from the motor mover 21
  • the second force sensor 4 is set at the end of the motor mover 21 away from the motor stator 11 .
  • the motor stator 11 can drive the motor mover 21 to move linearly in a direction close to or away from the motor stator 11, and the matching precision between the motor stator 11 and the motor mover 21 is high and the response speed is fast, which is conducive to improving the performance of the linear drive device. Movement precision and responsiveness.
  • the moving assembly 2 also includes a moving platform 22, the moving platform 22 is fixed on the end of the motor mover 21 away from the motor stator 11, and the second force sensor 4 is installed on the moving platform 22 away from the motor stator 11. side.
  • the motor mover 21 and the second force sensor 4 are respectively installed on both sides of the moving platform 22 , which can reduce the difficulty of assembling the moving assembly 2 , thereby improving the structural compactness of the moving assembly 2 .
  • the fixed assembly 1 also includes a fixed platform 12 and a support frame 13, the support frame 13 is fixed on the end of the motor stator 11 away from the motor rotor 21, the fixed platform 12 is located on the end of the support frame 13 away from the motor stator 11, and the first force sensor 3 sandwiched between the fixed platform 12 and the support frame 13.
  • the motor stator 11 and the first force sensor 3 can be respectively installed at both ends of the support frame 13 , so as to reduce the assembly difficulty of the fixed assembly 1 and improve the structural compactness of the fixed assembly 1 .
  • the fixed platform 12 is arranged between the fixed object and the first force sensor 3 to prevent the fixed object from directly pressing the first force sensor 3 and causing damage to the first force sensor 3 .
  • the moving platform 22 is disc-shaped, and the motor mover 21 and the second force sensor 4 are detachably connected to both sides of the moving platform 22 through fasteners.
  • the moving assembly 2 is improved.
  • the flexibility of assembly facilitates the disassembly and assembly of linear drive devices.
  • the inside of the support frame 13 is hollowed out to form a hollow structure, which is beneficial to reduce the weight of the linear drive device and reduce the manufacturing cost of the linear drive device.
  • the motor stator 11 and the first force sensor 3 are detachably connected to both sides of the support frame 13 through fasteners, thus improving the flexibility of assembling the stator assembly 1 and facilitating the disassembly and assembly of the linear drive device.
  • the first force sensor 3 is sandwiched between the fixed platform 12 and the support frame 13
  • the first force sensor 3 is arranged between the fixed platform 12 and the support frame 13, and the first force sensor 3
  • the two ends of each are in contact with the fixed platform 12 and the support frame 13 respectively. Therefore, the fixed platform 12 and the supporting frame 13 do not directly contact each other, and neither the fixed platform 12 nor the supporting frame 13 exerts a pressing effect on the first force sensor 3 , that is, the force on the first force sensor 3 is zero.
  • the first force sensor 3 can be calibrated so that the linear drive device does not When subjected to a load, the magnitude of the force displayed by the first force sensor 3 is zero.
  • the support frame 13 is fixed with a first sliding member 14
  • the moving platform 22 is fixed with a second sliding member 23
  • the first sliding member 14 and the second sliding member 23 are slidably matched.
  • the first sliding member 14 is a slider
  • the second sliding member 23 is a slide rail that movably cooperates with the slider.
  • One end of the slide rail is fixedly connected to the moving platform 22, and the other end passes through the support frame 13 and faces the first force sensor 3. extend.
  • the linear drive device also includes an air bag, which is sandwiched between the slide rail and the support frame 13 .
  • the structure of the slide rail and the slider is relatively simple, which is beneficial to simplify the structure of the linear drive device and reduce the processing difficulty of the linear drive device.
  • the air bag is arranged between the slide rail and the support frame 13, which can make the air bag produce a certain buffering effect on the slide rail, reduce the vibration generated when the moving assembly 2 moves toward the fixed assembly 1, and help the linear drive device to maintain stability during operation.
  • the first sliding member 14 may also be a sliding rail
  • the second sliding member 23 is a sliding block that movably cooperates with the sliding rail.
  • the moving platform 22 is in the shape of a circular plate, and there are multiple slide rails, and the plurality of slide rails are evenly distributed along the circumference of the moving platform 22 . Likewise, a plurality of sliders are evenly distributed along the circumference of the support frame 13 . In this way, it is beneficial to further enhance the guiding effect of the first sliding member 14 and the second sliding member 23 .
  • the linear drive device further includes a tension spring 5 , one end of the tension spring 5 is connected to the moving platform 22 , and the other end is connected to the support frame 13 .
  • the tension spring 5 can tighten the fixed assembly 1 and the moving assembly 2 towards the opposite direction, which is beneficial to improve the system stiffness of the linear drive device, so that the load force received by the linear drive device can be quickly transmitted to the first force sensor 3 and the second force sensor 4 are beneficial to improve the response accuracy of the linear drive device.
  • the moving platform 22 is in the shape of a circular plate, and there are multiple tension springs 5 , and the plurality of tension springs 5 are evenly distributed along the circumference of the moving platform 22 . In this way, the tensile force of the extension spring 5 received by the linear drive device as a whole can be made more uniform, preventing the linear drive device from being deformed due to uneven force and affecting the use of the linear drive device.
  • the support frame 13 is equipped with a scale grating 15
  • the moving platform 22 is provided with a grating reading head 24 corresponding to the scale grating 15 .
  • F k is the elastic force of the extension spring 5
  • K is the extension spring 5 elastic modulus.
  • the change of the elastic force of the extension spring 5 is beneficial for the linear drive device to adjust the extension spring 5 according to the change of the elastic force of the extension spring 5 .
  • the moving platform 22 is equipped with a scale grating 15
  • the support frame 13 is provided with a grating reading head 24 corresponding to the scale grating 15 .
  • the first force sensor 3 may be a strain gauge force sensor, a capacitive force sensor, a piezoelectric force sensor or a piezoresistive force sensor.
  • the second force sensor 4 may be a strain gauge force sensor, a capacitive force sensor, a piezoelectric force sensor or a piezoresistive force sensor. Both the first force sensor 3 and the second force sensor 4 have the characteristic of high dynamic response.
  • the strain gauge force sensor has high sensitivity and stability. Capacitive force sensors are characterized by high dynamic response and can detect force changes quickly and accurately.
  • the piezoelectric force sensor has a simple structure and a high signal-to-noise ratio. The lower price of the piezoresistive force sensor is conducive to reducing the manufacturing cost of the linear drive device.
  • the present application also provides a method for correcting the system error of the linear drive device, which is used for correcting the system error of the linear drive device described in any one of the above embodiments.
  • the method for correcting the system error of the linear drive device includes the following steps: the load acts on the second force sensor 4 and causes the moving assembly 2 to move toward the fixed assembly 1, and the fixed assembly 1 leans against a fixed object, through the second force sensor 4 The force F 2 of the load acting on the second force sensor 4 is measured, and the reaction force F 1 of the fixed component 1 subjected to the fixed object is measured through the first force sensor 3 .
  • M is the total mass of the moving assembly 2 and the second force sensor 4
  • a is the acceleration of the moving assembly 2 and the second force sensor 4
  • the difference between F 2 -F 1 is the magnitude of the actual force that causes the second sensor and the moving assembly 2 to generate acceleration a.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Analytical Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)

Abstract

一种直线驱动装置及直线驱动装置系统误差的校正方法,该直线驱动装置包括定组件(1)、动组件(2)、第一力传感器(3)和第二力传感器(4)。动组件(2)可活动地连接于定组件(1)的一端,且动组件(2)能够沿靠近或远离定组件(1)的方向移动。第一力传感器(3)设于定组件(1)远离动组件(2)的一端,以用于检测由定组件(1)朝向动组件(2)作用于第一力传感器(3)的作用力。第二力传感器(4)设于动组件(2)远离定组件(1)的一端,以用于检测由动组件(2)朝向定组件(1)作用于第二力传感器(4)的作用力。该直线驱动装置通过第一力传感器(3)检测得到定组件(1)受到固定物的反作用力,从而可以计算出使得第二力传感器(4)和动组件(2)产生加速度的实际的力的大小,从而消除了系统误差。

Description

直线驱动装置及直线驱动装置系统误差的校正方法
相关申请
本申请要求2021年6月25日申请的,申请号为202110714156.6,发明名称为“直线驱动装置及直线驱动装置系统误差的校正方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及驱动装置领域,特别是涉及一种直线驱动装置及直线驱动装置系统误差的校正方法。
背景技术
直线驱动装置在精密机床、纺织机械以及包装机械等领域具有广泛应用。但是,由于直线驱动装置在驱动过程中存在阻滞力,且阻滞力容易造成直线驱动装置的动态响应过程存在误差,进而难以精确控制直线驱动装置的运动过程。
发明内容
有鉴于此,有必要提供一种直线驱动装置及直线驱动装置系统误差的校正方法,能够校正直线驱动装置在动态响应过程中存在的误差。
本申请提供一种直线驱动装置,该直线驱动装置包括定组件、动组件、第一力传感器和第二力传感器。动组件可活动地连接于定组件的一端,且动组件能够沿靠近或远离定组件的方向移动。第一力传感器设于定组件远离动 组件的一端,以用于检测由定组件朝向动组件作用于第一力传感器的作用力。第二力传感器设于动组件远离定组件的一端,以用于检测由动组件朝向定组件作用于第二力传感器的作用力。
于本申请的一个实施例中,定组件包括电机定子,动组件包括电机动子,电机动子可活动地连接于电机定子,且电机定子能够驱动电机动子移动。第一力传感器设于电机定子远离电机动子的一端,第二力传感器设于电机动子远离电机定子的一端。电机定子可以驱动电机动子沿靠近或者远离电机定子的方向做直线运动,并且电机定子和电机动子的配合精度较高且响应速度较快,从而有利于提高直线驱动装置的移动精度和响应速度。
于本申请的一个实施例中,动组件还包括动平台,动平台固设于电机动子远离电机定子的一端,第二力传感器装设于动平台背离电机定子的一侧。定组件还包括定平台和支撑架,支撑架固设于电机定子远离电机动子的一端,定平台设于支撑架远离电机定子的一端,且第一力传感器夹设于定平台与支撑架之间。如此,电机动子和第二力传感器分别装设于动平台的两侧,能够降低动组件的装配难度,从而提高动组件的结构紧凑性。通过设置支撑架,电机定子和第一力传感器可分别装设于支撑架的两端,以能够降低定组件的装配难度,并提高定组件的结构紧凑性。定平台设置在固定物和第一力传感器之间,避免固定物直接挤压第一力传感器造成第一力传感器发生损坏。
于本申请的一个实施例中,支撑架固设有第一滑动件,动平台固设有第二滑动件,第一滑动件与第二滑动件滑动配合。如此,动组件沿着靠近或远离定组件的方向移动时,第一滑动件和第二滑动件能够为动组件提供较好的导向作用,避免动组件的移动方向发生偏离。
于本申请的一个实施例中,第一滑动件为滑块,第二滑动件为与滑块活 动配合的滑轨,滑轨一端固定连接动平台,另一端穿过支撑架并朝向第一力传感器延伸,直线驱动装置还包括气囊,气囊夹设于滑轨与支撑架之间。滑轨与滑块的结构较为简单,如此,有利于简化直线驱动装置的结构,降低直线驱动装置的加工难度。而在滑轨与支撑架之间设置气囊,可使气囊对滑轨产生一定的缓冲作用,减小动组件朝向定组件移动时产生的震动,有利于直线驱动装置运行时保持稳定。
于本申请的一个实施例中,还包括拉伸弹簧,拉伸弹簧一端连接动平台,另一端连接支撑架。拉伸弹簧能够朝向相对的方向拉紧定组件和动组件,如此,有利于提高直线驱动装置的系统刚度,从而使得直线驱动装置受到的负载作用力能够快速传递至第一力传感器和第二力传感器,有利于提高直线驱动装置的响应精度。
于本申请的一个实施例中,支撑架装设有标尺光栅,动平台对应标尺光栅设有光栅读数头;或者,动平台装设有标尺光栅,支撑架对应标尺光栅设有光栅读数头。
于本申请的一个实施例中,第一力传感器为应变式力传感器、电容式力传感器、压电式力传感器或者压阻式力传感器。应变式力传感器具有较高的灵敏度和稳定性。电容式力传感器具有高动态响应的特性,能够快速且精确地检测出力的变化。压电式力传感器结构简单且信噪比较高。压阻式力传感器的价格较低,有利于降低直线驱动装置的制造成本。
于本申请的一个实施例中,第二力传感器为应变式力传感器、电容式力传感器、压电式力传感器或者压阻式力传感器。应变式力传感器具有较高的灵敏度和稳定性。电容式力传感器具有高动态响应的特性,能够快速且精确地检测出力的变化。压电式力传感器结构简单且信噪比较高。压阻式力传感 器的价格较低,有利于降低直线驱动装置的制造成本。
本申请还提供一种直线驱动装置系统误差的校正方法,用于校正以上任意一个实施例所述的直线驱动装置的系统误差,该直线驱动装置系统误差的校正方法包括以下步骤:负载作用于第二力传感器并使得动组件朝向定组件移动,且定组件抵靠在一个固定物上,通过第二力传感器测出负载作用在第二力传感器的力F 2,通过第一力传感器测出定组件受到固定物的反作用力F 1;通过公式:F 2-F 1=M*a,校正直线驱动装置的系统误差上述公式中,M是动组件和第二力传感器的总质量,a是动组件和第二力传感器的加速度。
本申请提供的直线驱动装置及直线驱动装置系统误差的校正方法,定组件抵靠于固定物,负载作用于第二力传感器并使得动组件朝向定组件移动,并且,负载作用于第二力传感器的力分解为两部分,一部分力使得第二传感器和动组件产生加速度a,另一部分力传递至定组件并通过定组件传递至固定物。负载作用在第二力传感器的力F 2可通过第二力传感器直接被测出,而第一力传感器可测出定组件受到固定物的反作用力F 1。通过公式:F 2-F 1=M*a,其中,M是动组件和第二力传感器的总质量,即可计算得出使得第二传感器和动组件产生加速度a的力的大小。现有技术中,以负载作用在第二力传感器的力F 2作为动力组件产生加速度a的力,然而,负载作用在第二力传感器的力F 2与使动力组件产生加速度a实际的力并不一致,导致存在系统误差。而本申请通过设置第一力传感器检测得到F1,从而可以计算出使得第二传感器和动组件产生加速度a的实际的力的大小,从而消除了系统 误差。综上可知,本申请提供的直线驱动装置消除了直线驱动装置在动态响应过程中存在的系统误差,从而有利于直线驱动装置运动过程的精确控制。
附图说明
图1为本申请一实施例的直线驱动装置的结构示意图。
附图标记:1、定组件;11、电机定子;12、定平台;13、支撑架;14、第一滑动件;15、标尺光栅;2、动组件;21、电机动子;22、动平台;23、第二滑动件;24、光栅读数头;3、第一力传感器;4、第二力传感器;5、拉伸弹簧。
具体实施方式
下面将结合本申请实施方式中的附图,对本申请实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式仅仅是本申请一部分实施方式,而不是全部的实施方式。基于本申请中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本申请保护的范围。
需要说明的是,当组件被称为“装设于”另一个组件,它可以直接装设在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“设置于”另一个组件,它可以是直接设置在另一个组件上或者可能同时存在居中组件。当一个组件被认为是“固定于”另一个组件,它可以是直接固定在另一个组件上或者可能同时存在居中组件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本申请。本文 所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
请参阅图1,本申请提供一种直线驱动装置,该直线驱动装置包括定组件1、动组件2、第一力传感器3和第二力传感器4。通常在测定系统误差时,定组件1抵靠在一个固定物上,固定物可以是墙体、地面或者固定支架等受到外力之后不会发生移动的物体。动组件2可活动地连接于定组件1的一端,且动组件2能够沿靠近或远离定组件1的方向移动。具体地,动组件2可在定组件1的驱动下沿靠近或远离定组件1的方向移动,或者,动组件2可在负载的作用下沿靠近或远离定组件1的方向移动。
第一力传感器3设于定组件1远离动组件2的一端,以用于检测由定组件1朝向动组件2作用于第一力传感器3的作用力,该作用力的方向为由定组件1朝向动组件2的方向,且该作用力作用于第一力传感器3并能够被第一力传感器3测得。
第二力传感器4设于动组件2远离定组件1的一端,以用于检测由动组件2朝向定组件1作用于第二力传感器4的作用力,该作用力的方向为由动组件2朝向定组件1的方向,且该作用力作用于第二力传感器4并能够被第二力传感器4测得。
具体地,负载作用于第二力传感器4并使得动组件2朝向定组件1移动,并且,负载作用于第二力传感器4的力分解为两部分,一部分力使得第二传感器和动组件2产生加速度a,另一部分力传递至定组件1并通过定组件1传递至固定物。负载作用在第二力传感器4的力F 2可通过第二力传感器4直接被测出,而第一力传感器3可测出定组件1受到固定物的反作用力F 1。通 过公式:F 2-F 1=M*a,其中,M是动组件2和第二力传感器4的总质量,即可计算得出使得第二传感器和动组件2产生加速度a的力的大小。
现有技术中,以负载作用在第二力传感器4的力F 2作为动力组件产生加速度a的力,然而,负载作用在第二力传感器4的力F 2与使动力组件产生加速度a实际的力并不一致,导致存在系统误差。
而本申请通过设置第一力传感器3检测得到F1,从而可以计算出使得第二传感器和动组件2产生加速度a的实际的力的大小,从而消除了系统误差。
综上可知,本申请提供的直线驱动装置消除了直线驱动装置在动态响应过程中存在的系统误差,从而有利于直线驱动装置运动过程的精确控制。
在一个实施例中,如图1所示,定组件1包括电机定子11,动组件2包括电机动子21,电机动子21可活动地连接于电机定子11,且电机定子11能够驱动电机动子21移动。第一力传感器3设于电机定子11远离电机动子21的一端,第二力传感器4设于电机动子21远离电机定子11的一端。电机定子11可以驱动电机动子21沿靠近或者远离电机定子11的方向做直线运动,并且电机定子11和电机动子21的配合精度较高且响应速度较快,从而有利于提高直线驱动装置的移动精度和响应速度。
进一步地,如图1所示,动组件2还包括动平台22,动平台22固设于电机动子21远离电机定子11的一端,第二力传感器4装设于动平台22背离电机定子11的一侧。如此,电机动子21和第二力传感器4分别装设于动平台22的两侧,能够降低动组件2的装配难度,从而提高动组件2的结构紧凑性。定组件1还包括定平台12和支撑架13,支撑架13固设于电机定子11远离电机动子21的一端,定平台12设于支撑架13远离电机定子11的一端, 且第一力传感器3夹设于定平台12与支撑架13之间。同样地,通过设置支撑架13,电机定子11和第一力传感器3可分别装设于支撑架13的两端,以能够降低定组件1的装配难度,并提高定组件1的结构紧凑性。定平台12设置在固定物和第一力传感器3之间,避免固定物直接挤压第一力传感器3造成第一力传感器3发生损坏。
具体地,如图1所示,动平台22呈圆盘状,电机动子21和第二力传感器4均通过紧固件可拆卸连接于动平台22的两侧,如此,提高了动组件2装配的灵活性,便于直线驱动装置的拆装。支撑架13内部镂空形成镂空结构,如此,有利于降低直线驱动装置的重量,降低直线驱动装置的制造成本。并且,电机定子11和第一力传感器3均通过紧固件可拆卸连接于支撑架13的两侧,如此,提高了定组件1装配的灵活性,便于直线驱动装置的拆装。
可以理解的是,“第一力传感器3夹设于定平台12与支撑架13之间”指的是第一力传感器3设置在定平台12与支撑架13之间,且第一力传感器3的两端分别与定平台12以及支撑架13接触。从而定平台12与支撑架13不发生直接接触,且定平台12与支撑架13均不对第一力传感器3产生挤压作用,也就是第一力传感器3受力为零。在定组件1的实际装配过程中,如果定平台12与支撑架13对第一力传感器3产生了轻微的挤压作用,此时,可对第一力传感器3进行校准,使得直线驱动装置不受负载的作用时,第一力传感器3显示的受力大小为零。
在一个实施例中,如图1所示,支撑架13固设有第一滑动件14,动平台22固设有第二滑动件23,第一滑动件14与第二滑动件23滑动配合。如此,动组件2沿着靠近或远离定组件1的方向移动时,第一滑动件14和第二滑动件23能够为动组件2提供较好的导向作用,避免动组件2的移动方向发 生偏离。具体地,第一滑动件14为滑块,第二滑动件23为与滑块活动配合的滑轨,滑轨一端固定连接动平台22,另一端穿过支撑架13并朝向第一力传感器3延伸。直线驱动装置还包括气囊,气囊夹设于滑轨与支撑架13之间。滑轨与滑块的结构较为简单,如此,有利于简化直线驱动装置的结构,降低直线驱动装置的加工难度。而在滑轨与支撑架13之间设置气囊,可使气囊对滑轨产生一定的缓冲作用,减小动组件2朝向定组件1移动时产生的震动,有利于直线驱动装置运行时保持稳定。但不限于此,第一滑动件14还可以是滑轨,第二滑动件23为与滑轨活动配合的滑块。
进一步地,如图1所示,动平台22呈圆形板状,滑轨的数量为多个,且多个滑轨沿着动平台22的周向均匀分布。同样地,多个滑块沿着支撑架13的周向均匀分布。如此,有利于进一步增强第一滑动件14和第二滑动件23的导向作用。
在一个实施例中,如图1所示,直线驱动装置还包括拉伸弹簧5,拉伸弹簧5一端连接动平台22,另一端连接支撑架13。拉伸弹簧5能够朝向相对的方向拉紧定组件1和动组件2,如此,有利于提高直线驱动装置的系统刚度,从而使得直线驱动装置受到的负载作用力能够快速传递至第一力传感器3和第二力传感器4,有利于提高直线驱动装置的响应精度。进一步地,动平台22呈圆形板状,拉伸弹簧5的数量为多根,且多根拉伸弹簧5沿着动平台22的周向均匀分布。如此,可使直线驱动装置整体受到的拉伸弹簧5的拉力更加均匀,防止直线驱动装置受力不均产生形变而影响直线驱动装置的使用。
在一个实施例中,如图1所示,支撑架13装设有标尺光栅15,动平台22对应标尺光栅15设有光栅读数头24。如此,可精确测出动组件2相对定组件1移动的距离d,而根据胡克定律可知,F k=K*d,其中,F k为拉伸弹簧 5的弹力作用,K为拉伸弹簧5的弹性系数。从上述公式可知拉伸弹簧5的弹力变化,有利于直线驱动装置根据拉伸弹簧5的弹力变化对拉伸弹簧5进行调节。但不限于此,在另一实施例中,动平台22装设有标尺光栅15,支撑架13对应标尺光栅15设有光栅读数头24。
第一力传感器3可以是应变式力传感器、电容式力传感器、压电式力传感器或者压阻式力传感器。同样地,第二力传感器4可以是应变式力传感器、电容式力传感器、压电式力传感器或者压阻式力传感器。第一力传感器3和第二力传感器4均具有高动态响应的特性。应变式力传感器具有较高的灵敏度和稳定性。电容式力传感器具有高动态响应的特性,能够快速且精确地检测出力的变化。压电式力传感器结构简单且信噪比较高。压阻式力传感器的价格较低,有利于降低直线驱动装置的制造成本。
本申请还提供一种直线驱动装置系统误差的校正方法,用于校正以上任意一个实施例所述的直线驱动装置的系统误差。该直线驱动装置系统误差的校正方法包括以下步骤:负载作用于第二力传感器4并使得动组件2朝向定组件1移动,且定组件1抵靠在一个固定物上,通过第二力传感器4测出负载作用在第二力传感器4的力F 2,通过第一力传感器3测出定组件1受到固定物的反作用力F 1。通常,会将F 1和F 2输入至处理器(一般是电脑)内,处理器通过公式:F 2-F 1=M*a,得到准确的惯性力为F 2-F 1,从而得以校正直线驱动装置的系统误差,上述公式中,M是动组件2和第二力传感器4的总质量,a是动组件2和第二力传感器4的加速度。F 2-F 1的差值即为使得第二传感器和动组件2产生加速度a的实际的力的大小。
以上所述实施方式的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施方式中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
本技术领域的普通技术人员应当认识到,以上的实施方式仅是用来说明本申请,而并非用作为对本申请的限定,只要在本申请的实质精神范围内,对以上实施方式所作的适当改变和变化都落在本申请要求保护的范围内。

Claims (10)

  1. 一种直线驱动装置,其特征在于,包括:
    定组件;
    动组件,可活动地连接于所述定组件的一端,且所述动组件能够沿靠近或远离所述定组件的方向移动;
    第一力传感器,设于所述定组件远离所述动组件的一端,以用于检测由所述定组件朝向所述动组件作用于所述第一力传感器的作用力;
    第二力传感器,设于所述动组件远离所述定组件的一端,以用于检测由所述动组件朝向所述定组件作用于所述第二力传感器的作用力。
  2. 根据权利要求1所述的直线驱动装置,其中,所述定组件包括电机定子,所述动组件包括电机动子,所述电机动子可活动地连接于所述电机定子,且所述电机定子能够驱动所述电机动子移动;
    所述第一力传感器设于所述电机定子远离所述电机动子的一端,第二力传感器设于所述电机动子远离所述电机定子的一端。
  3. 根据权利要求2所述的直线驱动装置,其中,所述动组件还包括动平台,所述动平台固设于所述电机动子远离所述电机定子的一端,所述第二力传感器装设于所述动平台背离所述电机定子的一侧;
    所述定组件还包括定平台和支撑架,所述支撑架固设于所述电机定子远离所述电机动子的一端,所述定平台设于所述支撑架远离所述电机定子的一端,且所述第一力传感器夹设于所述定平台与所述支撑架之间。
  4. 根据权利要求3所述的直线驱动装置,其中,所述支撑架固设有第一滑动件,所述动平台固设有第二滑动件,所述第一滑动件与所述第二滑动件滑动配合。
  5. 根据权利要求4所述的直线驱动装置,其中,所述第一滑动件为滑块,所述第二滑动件为与所述滑块活动配合的滑轨,所述滑轨一端固定连接所述动平台,另一端穿过所述支撑架并朝向所述第一力传感器延伸,所述直线驱动装置还包括气囊,所述气囊夹设于所述滑轨与所述支撑架之间。
  6. 根据权利要求3所述的直线驱动装置,其中,还包括拉伸弹簧,所述拉伸弹簧一端连接所述动平台,另一端连接所述支撑架。
  7. 根据权利要求3所述的直线驱动装置,其中,所述支撑架装设有标尺光栅,所述动平台对应所述标尺光栅设有光栅读数头;或者,所述动平台装设有标尺光栅,所述支撑架对应所述标尺光栅设有光栅读数头。
  8. 根据权利要求1所述的直线驱动装置,其中,所述第一力传感器为应变式力传感器、电容式力传感器、压电式力传感器或者压阻式力传感器。
  9. 根据权利要求1所述的直线驱动装置,其中,所述第二力传感器为应变式力传感器、电容式力传感器、压电式力传感器或者压阻式力传感器。
  10. 一种直线驱动装置系统误差的校正方法,用于校正如权利要求1-9任意一项所述的直线驱动装置的系统误差,其特征在于,包括以下步骤:
    负载作用于所述第二力传感器并使得所述动组件朝向所述定组件移动,且所述定组件抵靠在一固定物上,通过所述第二力传感器测出负载作用在所述第二力传感器的力F 2,通过所述第一力传感器测出所述定组件受到固定物的反作用力F 1
    通过公式:F 2-F 1=M*a,校正直线驱动装置的系统误差,上述公式中,M是所述动组件和所述第二力传感器的总质量,a是所述动组件和所述第二力传感器的加速度。
PCT/CN2021/125669 2021-06-25 2021-10-22 直线驱动装置及直线驱动装置系统误差的校正方法 WO2022267278A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110714156.6A CN113484540B (zh) 2021-06-25 2021-06-25 直线驱动装置及直线驱动装置系统误差的校正方法
CN202110714156.6 2021-06-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/542,609 Continuation US20240136966A1 (en) 2021-06-25 2023-12-16 Linear drive, and method for correcting systematic error of linear drive

Publications (1)

Publication Number Publication Date
WO2022267278A1 true WO2022267278A1 (zh) 2022-12-29

Family

ID=77935994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125669 WO2022267278A1 (zh) 2021-06-25 2021-10-22 直线驱动装置及直线驱动装置系统误差的校正方法

Country Status (2)

Country Link
CN (1) CN113484540B (zh)
WO (1) WO2022267278A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113484540B (zh) * 2021-06-25 2024-04-16 中国科学院宁波材料技术与工程研究所 直线驱动装置及直线驱动装置系统误差的校正方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5250880A (en) * 1992-10-22 1993-10-05 Ford Motor Company Linear motor control system and method
JP2000077503A (ja) * 1998-08-28 2000-03-14 Nikon Corp ステージ装置及び露光装置
US20140197706A1 (en) * 2012-11-29 2014-07-17 Foundation Of Soongsil University-Industry Cooperation Reaction force compensation device
CN104678711A (zh) * 2013-11-26 2015-06-03 上海微电子装备有限公司 运动台反力抵消装置
CN110160696A (zh) * 2019-06-10 2019-08-23 珠海格力电器股份有限公司 直线电机推力测试装置及其测试方法
CN111044196A (zh) * 2019-12-30 2020-04-21 中国科学院宁波材料技术与工程研究所 一种直线电机推力测量装置及测量方法
CN113484540A (zh) * 2021-06-25 2021-10-08 中国科学院宁波材料技术与工程研究所 直线驱动装置及直线驱动装置系统误差的校正方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203133252U (zh) * 2013-03-25 2013-08-14 北京经纬恒润科技有限公司 一种直线步进电机测试设备
TWI628898B (zh) * 2016-12-29 2018-07-01 財團法人工業技術研究院 交互作用力偵測裝置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5250880A (en) * 1992-10-22 1993-10-05 Ford Motor Company Linear motor control system and method
JP2000077503A (ja) * 1998-08-28 2000-03-14 Nikon Corp ステージ装置及び露光装置
US20140197706A1 (en) * 2012-11-29 2014-07-17 Foundation Of Soongsil University-Industry Cooperation Reaction force compensation device
CN104678711A (zh) * 2013-11-26 2015-06-03 上海微电子装备有限公司 运动台反力抵消装置
CN110160696A (zh) * 2019-06-10 2019-08-23 珠海格力电器股份有限公司 直线电机推力测试装置及其测试方法
CN111044196A (zh) * 2019-12-30 2020-04-21 中国科学院宁波材料技术与工程研究所 一种直线电机推力测量装置及测量方法
CN113484540A (zh) * 2021-06-25 2021-10-08 中国科学院宁波材料技术与工程研究所 直线驱动装置及直线驱动装置系统误差的校正方法

Also Published As

Publication number Publication date
CN113484540B (zh) 2024-04-16
CN113484540A (zh) 2021-10-08

Similar Documents

Publication Publication Date Title
CN103926077B (zh) 一种滚珠丝杠静动刚度综合测量装置
CN102472615B (zh) 坐标测量机(cmm)和补偿坐标测量机误差的方法
US9205560B1 (en) System and method for failure detection of a robot actuator
JP5770359B2 (ja) 座標測定機
WO2022267278A1 (zh) 直线驱动装置及直线驱动装置系统误差的校正方法
CN100410625C (zh) 开口凸轮的轮廓曲线测量装置
JP2014512529A5 (zh)
US7838781B2 (en) System for determining the mass of an item in motion
CN102647896A (zh) 贴装装置的加压控制头
CN109129479B (zh) 一种基于扰动力补偿的刚柔耦合运动平台控制方法
US9110458B2 (en) Positioning control apparatus and machine tool provided therewith
JP6041474B2 (ja) ねじり試験機
CN102269636A (zh) 一种飞机驾驶盘多维力及位移测量装置及其测量方法
US11331871B2 (en) Press load measuring apparatus and method for press machine
US20240136966A1 (en) Linear drive, and method for correcting systematic error of linear drive
JP5009564B2 (ja) 表面追従型測定器
US11590722B2 (en) Press load measuring apparatus and method for press machine
CN105157661A (zh) 一种大行程亚微米级平面精度测量系统
CN111044196A (zh) 一种直线电机推力测量装置及测量方法
CN216523784U (zh) 一种双通道直线测量传感器
JP5769587B2 (ja) 圧電特性計測システム
CN216955122U (zh) 一种疲劳测试装置
US20240027291A1 (en) Systems and methods for measuring tension distribution in webs of roll-to-roll processes
JP2012098099A (ja) 圧電特性計測システムおよび圧電特性計測方法
CN106061638B (zh) 弯扳机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21946760

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE