WO2022267220A1 - 一种电机控制器的电源供电电路及电机控制器 - Google Patents
一种电机控制器的电源供电电路及电机控制器 Download PDFInfo
- Publication number
- WO2022267220A1 WO2022267220A1 PCT/CN2021/115563 CN2021115563W WO2022267220A1 WO 2022267220 A1 WO2022267220 A1 WO 2022267220A1 CN 2021115563 W CN2021115563 W CN 2021115563W WO 2022267220 A1 WO2022267220 A1 WO 2022267220A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- circuit
- phase
- power supply
- capacitor
- motor controller
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 claims abstract description 64
- 102100028680 Protein patched homolog 1 Human genes 0.000 claims description 10
- 101710161390 Protein patched homolog 1 Proteins 0.000 claims description 10
- 101100540153 Arabidopsis thaliana VAR3 gene Proteins 0.000 claims description 6
- 101100013558 Arabidopsis thaliana FTSH2 gene Proteins 0.000 claims description 3
- 101100503482 Arabidopsis thaliana FTSH5 gene Proteins 0.000 claims description 3
- 101150082136 VAR1 gene Proteins 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 4
- 238000001914 filtration Methods 0.000 description 3
- 230000036039 immunity Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H9/00—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
- H02H9/04—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/12—Arrangements for reducing harmonics from ac input or output
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/44—Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/5387—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
Definitions
- the utility model relates to a power supply circuit of a motor controller and a motor controller.
- the problem of electromagnetic compatibility has increasingly become an important issue in electronic equipment or systems, and electromagnetic compatibility is also an important technical index of electronic and electrical equipment or systems.
- the surge immunity test is particularly critical. In the impact immunity test of the motor controller in the 6KV surge, the electronic components were damaged, the controller failed, and the stability and reliability were poor.
- This utility model is to provide a power supply circuit of a motor controller and a motor controller, which can solve the serious electromagnetic interference of the motor controller in the prior art under high voltage.
- 6KV surge Damaged electronic components, controller failure, technical problems of poor stability and reliability.
- a power supply circuit for a motor controller characterized in that it includes a three-phase filter circuit, a three-phase surge protection circuit, a three-phase rectifier circuit, a reactor L1 and an electrolytic capacitor, three-phase AC input U, V , W enters the input end of the three-phase rectification circuit after passing through the filter processing of the three-phase filter circuit and the three-phase surge protection circuit, and the output end of the three-phase rectification circuit charges the electrolytic capacitor after adjusting the power factor through the reactor L1 and forms a DC Bus voltage Vbus output.
- the position sequence of the three-phase filter circuit and the three-phase surge protection circuit mentioned above can be exchanged, that is, the three-phase AC input U, V, W of the mains first passes through the three-phase surge protection circuit, and then passes through the three-phase filter circuit. After filtering, it enters the input end of the three-phase rectification circuit.
- the above-mentioned positive temperature coefficient resistor PTC1 is connected in series between the reactor L1 and the electrolytic capacitor, and the relay switch RY is connected in parallel at both ends of the positive temperature coefficient resistor PTC1.
- the relay switch RY is in the off state, and the three-phase The current at the output end of the rectifier circuit charges the electrolytic capacitor through the reactor L1 and the positive temperature coefficient resistor PTC1; after a certain time delay, the relay switch RY is in the closed state, and the current at the output end of the three-phase rectifier circuit passes through the reactor L1 to directly charge the electrolytic capacitor. Capacitor charging.
- the above-mentioned relay switch RY is driven by a delay circuit and a drive circuit, and the delay circuit starts to work at the initial stage of turning on the power supply.
- the relay switch RY changes from an open state to a closed state. state.
- the RCD voltage clamping circuit is connected in parallel at both ends of the above-mentioned reactor L1.
- the RCD voltage clamping circuit includes a resistor R0, a capacitor C0 and a diode D0.
- the resistor R0 and the capacitor C0 are connected in parallel and then the diode D0 is connected in series.
- a piezoresistor VAR1 is also connected in parallel to both ends of the above-mentioned reactor L1.
- the above-mentioned electrolytic capacitor is composed of a capacitor C5 and a capacitor C4 connected in series, and after the capacitor C5 and the capacitor C4 are connected in series, a varistor VAR2 is connected in parallel at both ends.
- the above-mentioned capacitor C5 is discharged by the resistor R1 and the resistor R2, and the resistor R1 and the resistor R2 are connected in parallel at both ends of the capacitor C5 in series; the capacitor C4 is discharged by the resistor R3 and the resistor R4, and the resistor R3 and the resistor R4 are connected in parallel at both ends of the capacitor C4.
- the above-mentioned three-phase surge protection circuit includes varistor VAR3, varistor VAR4, varistor VAR5, varistor VAR6 and discharge tube T, and varistor VAR3, varistor VAR4 and varistor VAR5 are respectively connected to Between any two phases of the three-phase AC input U, V, W of the mains; after the varistor VAR6 and the discharge tube T are connected in series, one end is grounded, and the other end is connected to any of the three-phase AC inputs U, V, W of the mains. one phase.
- the above-mentioned three-phase filter circuit is an LC filter circuit, and the LC filter circuit includes a three-phase inductor L0 and a capacitor C1, a capacitor C2, and a capacitor C3.
- a motor controller including a power supply circuit, a motor microprocessor and an inverter circuit, wherein the output end of the power supply circuit supplies power to the motor microprocessor and the inverter circuit, and the motor microprocessor outputs control signals to control the operation of the inverter circuit , is characterized in that: the power supply circuit is a power supply circuit of the motor controller described above.
- the power supply circuit of a motor controller of the present utility model includes a three-phase filter circuit, a three-phase surge protection circuit, a three-phase rectifier circuit, a reactor L1 and an electrolytic capacitor, and the three-phase AC input U, V of the commercial power , W enters the input end of the three-phase rectification circuit after passing through the filter processing of the three-phase filter circuit and the three-phase surge protection circuit, and the output end of the three-phase rectification circuit charges the electrolytic capacitor after adjusting the power factor through the reactor L1, and forms
- the DC bus voltage Vbus output can effectively resist the impact of 6KV surge, has strong anti-interference ability, protects electronic components from damage, improves the stability and reliability of the motor controller, and significantly improves the power factor.
- Fig. 1 is a schematic diagram of a part of the circuit provided by Embodiment 1 of the present invention.
- Fig. 2 is a schematic diagram of another part of the circuit provided by the first embodiment of the utility model
- Fig. 3 is the circuit diagram corresponding to the delay driving part of the relay in the first embodiment of the utility model
- Fig. 4 is a schematic diagram provided by the second embodiment of the utility model.
- a power supply circuit for a motor controller which is characterized in that it includes a three-phase filter circuit, a three-phase surge protection circuit, and a three-phase rectifier circuit , reactor L1 and electrolytic capacitor, the three-phase AC input U, V, W of the mains enters the input terminal of the three-phase rectification circuit after the filtering process of the three-phase filter circuit and the three-phase surge protection circuit, and the three-phase rectification circuit After the power factor is adjusted by the reactor L1 at the output end, the electrolytic capacitor is charged to form a DC bus voltage Vbus output.
- the three-phase AC input U, V, W of the mains enters the input end of the three-phase rectifier circuit after passing through the filter processing of the three-phase filter circuit and the three-phase surge protection circuit, which can effectively resist the impact of 6KV surge and has strong anti-interference ability , protect electronic components from damage, improve the stability and reliability of the motor controller, and the power factor is significantly improved.
- the position sequence of the three-phase filter circuit and the three-phase surge protection circuit mentioned above can be exchanged, that is, the three-phase AC input U, V, W of the mains first passes through the three-phase surge protection circuit, and then passes through the three-phase filter circuit. After filtering, it enters the input end of the three-phase rectification circuit.
- the above-mentioned positive temperature coefficient resistor PTC1 is connected in series between the reactor L1 and the electrolytic capacitor, and the relay switch RY is connected in parallel at both ends of the positive temperature coefficient resistor PTC1.
- the relay switch RY At the initial stage of turning on the power supply, the relay switch RY is in the off state, and the three-phase The current at the output end of the rectifier circuit charges the electrolytic capacitor through the reactor L1 and the positive temperature coefficient resistor PTC1; after a certain time delay, the relay switch RY is in the closed state, and the current at the output end of the three-phase rectifier circuit passes through the reactor L1 to directly charge the electrolytic capacitor. Capacitor charging. As the current increases, the positive temperature coefficient resistor PTC1 will generate more self-heating, and its resistance value will also increase sharply. It can suppress excessive current at the initial stage of power-on and effectively protect components.
- the above-mentioned relay switch RY is driven by a delay circuit and a drive circuit, and the delay circuit starts to work at the initial stage of turning on the power supply.
- the relay switch RY changes from an open state to a closed state. state.
- the circuit structure is simple and easy to implement.
- the delay circuit includes a resistor R9, a capacitor C6, a capacitor C7 and a Zener diode D14;
- the drive circuit is a push-pull drive circuit, including a triode Q1, a triode Q2, a resistor R6, a resistor R7 and a resistor R8.
- the RCD voltage clamping circuit is connected in parallel at both ends of the above-mentioned reactor L1.
- the RCD voltage clamping circuit includes a resistor R0, a capacitor C0 and a diode D0.
- the resistor R0 and the capacitor C0 are connected in parallel and then the diode D0 is connected in series. It can effectively clamp the voltage at both ends of the reactor L1, and can effectively resist the impact of 6KV surge at the DC end.
- a piezoresistor VAR1 is also connected in parallel to both ends of the above-mentioned reactor L1, which can absorb the overvoltage at both ends of the reactor L1, and more effectively resist the impact of the 6KV surge at the DC end.
- the above-mentioned electrolytic capacitor is composed of capacitor C5 and capacitor C4 connected in series, and a varistor VAR2 is connected in parallel at both ends of capacitor C5 and capacitor C4 after being connected in series, so as to prevent excessive voltage at both ends of capacitor C5 and capacitor C4 after being connected in series, effectively protecting components.
- the above-mentioned capacitor C5 is discharged by the resistor R1 and the resistor R2, and the resistor R1 and the resistor R2 are connected in parallel at both ends of the capacitor C5 in series; the capacitor C4 is discharged by the resistor R3 and the resistor R4, and the resistor R3 and the resistor R4 are connected in parallel at both ends of the capacitor C4.
- the above-mentioned three-phase surge protection circuit includes varistor VAR3, varistor VAR4, varistor VAR5, varistor VAR6 and discharge tube T, and varistor VAR3, varistor VAR4 and varistor VAR5 are respectively connected to Between any two phases of the three-phase AC input U, V, W of the mains; after the varistor VAR6 and the discharge tube T are connected in series, one end is grounded, and the other end is connected to any of the three-phase AC inputs U, V, W of the mains.
- the circuit structure is simple and reliable.
- the above-mentioned three-phase filter circuit is an LC filter circuit, and the LC filter circuit includes a three-phase inductor L0 and capacitors C1, C2, and C3, and has a simple structure and strong anti-interference ability.
- this embodiment provides a motor controller, including a power supply circuit, a motor microprocessor and an inverter circuit, wherein the output end of the power supply circuit supplies power to the motor microprocessor and the inverter circuit, and the motor microprocessor
- the processor outputs a control signal to control the operation of the inverter circuit
- the power supply circuit is a power supply circuit of a motor controller described in Embodiment 1. It can effectively resist the impact of 6KV surge, has strong anti-interference ability, protects electronic components from damage, improves the stability and reliability of the motor controller, and significantly improves the power factor.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Emergency Protection Circuit Devices (AREA)
Abstract
本实用新型公开了一种电机控制器的电源供电电路及电机控制器,包括三相滤波电路、三相浪涌保护电路、三相整流电路、电抗器L1和电解电容,市电的三相交流输入U、V、W通过三相滤波电路的滤波处理和三相浪涌保护电路后进入三相整流电路的输入端,三相整流电路的输出端经过电抗器L1调节功率因数后对电解电容进行充电并形成直流母线电压Vbus输出,有效能够抵抗6KV浪涌的冲击,抗干扰能力强,保护电子元器件不易损坏,提高电机控制器的稳定性和可靠性。
Description
本实用新型涉及一种电机控制器的电源供电电路及电机控制器。
电磁兼容问题越来越成为电子设备或者系统中的一个重要问题,电磁兼容也是电子、电气设备或者系统的一种重要的技术指标。尤其浪涌的冲击抗扰度试验尤为关键。电机控制器在6KV浪涌的冲击抗扰度试验中,电子元器件损坏,控制器失效,稳定性和可靠性差。
发明内容:
本实用新型的目的是提供一种电机控制器的电源供电电路及电机控制器,能解决现有技术中电机控制器,在高压下电磁干扰严重,在6KV浪涌的冲击抗扰度试验中,电子元器件损坏,控制器失效,稳定性和可靠性差的技术问题。
本实用新型的目的是通过下述技术方案予以实现的。
一种电机控制器的电源供电电路,其特征在于:它包括三相滤波电路、三相浪涌保护电路、三相整流电路、电抗器L1和电解电容,市电的三相交流输入U、V、W通过三相滤波电路的滤波处理和三相浪涌保护电路后进入三相整流电路的输入端,三相整流电路的输出端经过电抗器L1调节功率因数后对电解电容进行充电并形成直流母线电压Vbus输出。
上述的三相滤波电路和三相浪涌保护电路的位置顺序是可调换的,即市电的三相交流输入U、V、W先通过三相浪涌保护电路,然后经过三相滤波电路的滤波处理后进入三相整流电路的输入端。
上述的在电抗器L1和电解电容之间串联正温度系数电阻PTC1,在正温度系数电阻PTC1的两端并联继电器开关RY,在接通电源的初期时,继电器开关RY处于断开状态,三相整流电路的输出端的电流经过电抗器L1、正温度系数电阻PTC1对电解电容充电;在延时一定时间后,继电器开关RY处于闭合状态,三相整流电路的输出端的电流经过电抗器L1直接对电解电容充电。
上述的继电器开关RY由延时电路和驱动电路驱动,在接通电源的初期时延时电路开始工作,当延时电路有输出信号带动驱动电路工作,使继电器开关RY由断开状态变为闭合状态。
上述的电抗器L1的两端并联一个RCD电压钳位电路,RCD电压钳位电路包括电阻R0、电容C0和二级管D0,电阻R0和电容C0并联后再串联二级管D0。
上述的电抗器L1的两端还并联一个压敏电阻VAR1。
上述的电解电容由电容C5和电容C4串联而成,电容C5和电容C4串联后两端并联一个压敏电阻VAR2。
上述的电容C5由电阻R1、电阻R2放电,电阻R1、电阻R2串联后并联在电容C5两端;电容C4由电阻R3、电阻R4放电,电阻R3、电阻R4串联后并联在电容C4两端。
上述的三相浪涌保护电路包括压敏电阻VAR3、压敏电阻VAR4、压敏电阻VAR5、压敏电阻VAR6和放电管T,压敏电阻VAR3、压敏电阻VAR4和压敏电阻VAR5分别连接在市电的三相交流输入U、V、W的任意两相之间;压敏电阻VAR6和放电管T串联后一端接地,另一端连接在市电的三相交流输入U、V、W的任意一相。
上述的三相滤波电路是LC滤波电路,LC滤波电路包括三相电感L0和电容C1、电容C2、电容C3。
一种电机控制器,包括电源供电电路、电机微处理器和逆变电路,其中电源供电电路的输出端为电机微处理器和逆变电路供电,电机微处理器输出控制信号控制逆变电路工作,其特征在于:电源供电电路是上述所述的一种电机控制器的电源供电电路。
本实用新型与现有技术相比,具有如下效果:
1)本实用新型的一电机控制器的电源供电电路,包括三相滤波电路、三相浪涌保护电路、三相整流电路、电抗器L1和电解电容,市电的三相交流输入U、V、W通过三相滤波电路的滤波处理和三相浪涌保护电路后进入三相整流电路的 输入端,三相整流电路的输出端经过电抗器L1调节功率因数后对电解电容进行充电,并形成直流母线电压Vbus输出,能够有效抵抗6KV浪涌的冲击,抗干扰能力强,保护电子元器件不易损坏,提高电机控制器的稳定性和可靠性,且功率因数明显提高。
2)本实用新型的其它优点在实施例部分展开详细描述。
图1是本实用新型实施例一提供的一部分电路原理图;
图2是本实用新型实施例一提供的另一部分电路原理图;
图3是本实用新型实施例一中继电器延时驱动部分对应的电路图;
图4是本实用新型实施例二提供的原理图。
下面通过具体实施例并结合附图对本实用新型作进一步详细的描述。
实施例一:
如图1、图2、图3所示,本实施例提供的是一种电机控制器的电源供电电路,其特征在于:它包括三相滤波电路、三相浪涌保护电路、三相整流电路、电抗器L1和电解电容,市电的三相交流输入U、V、W通过三相滤波电路的滤波处理和三相浪涌保护电路后进入三相整流电路的输入端,三相整流电路的输出端经过电抗器L1调节功率因数后对电解电容进行充电并形成直流母线电压Vbus输出。市电的三相交流输入U、V、W通过三相滤波电路的滤波处理和三相浪涌保护电路后进入三相整流电路的输入端,能够有效抵抗6KV浪涌的冲击,抗干扰能力强,保护电子元器件不易损坏,提高电机控制器的稳定性和可靠性,且功率因数明显提高。
上述的三相滤波电路和三相浪涌保护电路的位置顺序是可调换的,即市电的三相交流输入U、V、W先通过三相浪涌保护电路,然后经过三相滤波电路的滤波处理后进入三相整流电路的输入端。
上述的在电抗器L1和电解电容之间串联正温度系数电阻PTC1,在正温度系 数电阻PTC1的两端并联继电器开关RY,在接通电源的初期时,继电器开关RY处于断开状态,三相整流电路的输出端的电流经过电抗器L1、正温度系数电阻PTC1对电解电容充电;在延时一定时间后,继电器开关RY处于闭合状态,三相整流电路的输出端的电流经过电抗器L1直接对电解电容充电。正温度系数电阻PTC1随着电流增大,自身发热增加,阻值也急剧增加,在上电初期可以抑制电流过大,有效保护元器件。
上述的继电器开关RY由延时电路和驱动电路驱动,在接通电源的初期时延时电路开始工作,当延时电路有输出信号带动驱动电路工作,使继电器开关RY由断开状态变为闭合状态。电路结构简单,容易实施。图3中,延时电路包括电阻R9、电容C6、电容C7和稳压二极管D14;驱动电路是一种推挽式驱动电路,包括三极管Q1、三极管Q2、电阻R6、电阻R7和电阻R8.
上述的电抗器L1的两端并联一个RCD电压钳位电路,RCD电压钳位电路包括电阻R0、电容C0和二级管D0,电阻R0和电容C0并联后再串联二级管D0。可以有效钳住电抗器L1的两端电压,在直流端就可以有效抵抗6KV浪涌的冲击。
上述的电抗器L1的两端还并联一个压敏电阻VAR1,可以吸收电抗器L1的两端的过压,更加有效在直流端抵抗6KV浪涌的冲击。
上述的电解电容由电容C5和电容C4串联而成,电容C5和电容C4串联后两端并联一个压敏电阻VAR2,防止电容C5和电容C4串联后两端的电压过大,有效保护元器件。
上述的电容C5由电阻R1、电阻R2放电,电阻R1、电阻R2串联后并联在电容C5两端;电容C4由电阻R3、电阻R4放电,电阻R3、电阻R4串联后并联在电容C4两端。
上述的三相浪涌保护电路包括压敏电阻VAR3、压敏电阻VAR4、压敏电阻VAR5、压敏电阻VAR6和放电管T,压敏电阻VAR3、压敏电阻VAR4和压敏电阻VAR5分别连接在市电的三相交流输入U、V、W的任意两相之间;压敏电阻VAR6和放电管T串联后一端接地,另一端连接在市电的三相交流输入U、V、W的任 意一相,电路结构简单可靠。
上述的三相滤波电路是LC滤波电路,LC滤波电路包括三相电感L0和电容C1、电容C2、电容C3,结构简单,抗干扰能力强。
实施例二:
如图4所示,本实施例提供一种电机控制器,包括电源供电电路、电机微处理器和逆变电路,其中电源供电电路的输出端为电机微处理器和逆变电路供电,电机微处理器输出控制信号控制逆变电路工作,其特征在于:电源供电电路是实施例一所述的一种电机控制器的电源供电电路。它能够有效抵抗6KV浪涌的冲击,抗干扰能力强,保护电子元器件不易损坏,提高电机控制器的稳定性和可靠性,且功率因数明显提高。
以上实施例为本实用新型的较佳实施方式,但本实用新型的实施方式不限于此,其他任何未背离本实用新型的精神实质与原理下所作的改变、修饰、替代、组合、简化,均为等效的置换方式,都包含在本实用新型的保护范围之内。
Claims (11)
- 一种电机控制器的电源供电电路,其特征在于:它包括三相滤波电路、三相浪涌保护电路、三相整流电路、电抗器L1和电解电容,市电的三相交流输入U、V、W通过三相滤波电路的滤波处理和三相浪涌保护电路后进入三相整流电路的输入端,三相整流电路的输出端经过电抗器L1调节功率因数后对电解电容进行充电并形成直流母线电压Vbus输出。
- 根据权利要求1所述的一种电机控制器的电源供电电路,其特征在于:三相滤波电路和三相浪涌保护电路的位置顺序是可调换的,即市电的三相交流输入U、V、W先通过三相浪涌保护电路,然后经过三相滤波电路的滤波处理后进入三相整流电路的输入端。
- 根据权利要求1所述的一种电机控制器的电源供电电路,其特征在于:在电抗器L1和电解电容之间串联正温度系数电阻PTC1,在正温度系数电阻PTC1的两端并联继电器开关RY,在接通电源的初期时,继电器开关RY处于断开状态,三相整流电路的输出端的电流经过电抗器L1、正温度系数电阻PTC1对电解电容充电;在延时一定时间后,继电器开关RY处于闭合状态,三相整流电路的输出端的电流经过电抗器L1直接对电解电容充电。
- 根据权利要求3所述的一种电机控制器的电源供电电路,其特征在于:继电器开关RY由延时电路和驱动电路驱动,在接通电源的初期时延时电路开始工作,当延时电路有输出信号带动驱动电路工作,使继电器开关RY由断开状态变为闭合状态。
- 根据权利要求1或2或3或4所述的一种电机控制器的电源供电电路,其特征在于:电抗器L1的两端并联一个RCD电压钳位电路,RCD电压钳位电路包括电阻R0、电容C0和二级管D0,电阻R0和电容C0并联后再串联二级管D0。
- 根据权利要求5所述的一种电机控制器的电源供电电路,其特征在于:电抗器L1的两端还并联一个压敏电阻VAR1。
- 根据权利要求1或2或3或4所述的一种电机控制器的电源供电电路, 其特征在于:电解电容由电容C5和电容C4串联而成,电容C5和电容C4串联后两端并联一个压敏电阻VAR2。
- 根据权利要求7所述的一种电机控制器的电源供电电路,其特征在于:电容C5由电阻R1、电阻R2放电,电阻R1、电阻R2串联后并联在电容C5两端;电容C4由电阻R3、电阻R4放电,电阻R3、电阻R4串联后并联在电容C4两端。
- 根据权利要求6所述的一种电机控制器的电源供电电路,其特征在于:三相浪涌保护电路包括压敏电阻VAR3、压敏电阻VAR4、压敏电阻VAR5、压敏电阻VAR6和放电管T,压敏电阻VAR3、压敏电阻VAR4和压敏电阻VAR5分别连接在市电的三相交流输入U、V、W的任意两相之间;压敏电阻VAR6和放电管T串联后一端接地,另一端连接在市电的三相交流输入U、V、W的任意一相.
- 根据权利要求9所述的一种电机控制器的电源供电电路,其特征在于:三相滤波电路是LC滤波电路,LC滤波电路包括三相电感L0和电容C1、电容C2、电容C3。
- 一种电机控制器,包括电源供电电路、电机微处理器和逆变电路,其中电源供电电路的输出端为电机微处理器和逆变电路供电,电机微处理器输出控制信号控制逆变电路工作,其特征在于:电源供电电路是权利要求1至10任意一项所述的一种电机控制器的电源供电电路。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202121381477.0U CN214850963U (zh) | 2021-06-22 | 2021-06-22 | 一种电机控制器的电源供电电路及电机控制器 |
CN202121381477.0 | 2021-06-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022267220A1 true WO2022267220A1 (zh) | 2022-12-29 |
Family
ID=78808790
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/115563 WO2022267220A1 (zh) | 2021-06-22 | 2021-08-31 | 一种电机控制器的电源供电电路及电机控制器 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN214850963U (zh) |
WO (1) | WO2022267220A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114400907A (zh) * | 2021-12-09 | 2022-04-26 | 华荣科技股份有限公司 | 一种耐辐照三相二极管串联双重保护整流电路 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4573113A (en) * | 1984-01-26 | 1986-02-25 | Borg-Warner Corporation | Surge protection system for a d-c power supply during power-up |
CN201315484Y (zh) * | 2008-11-25 | 2009-09-23 | 海信(山东)空调有限公司 | 浪涌电压抑制电路及具有所述电路的空调器 |
CN203840210U (zh) * | 2014-03-24 | 2014-09-17 | 浙江商业职业技术学院 | 交流逆变电路 |
CN209627225U (zh) * | 2019-01-16 | 2019-11-12 | 广东美的制冷设备有限公司 | 驱动控制电路、空调控制器和空调器 |
-
2021
- 2021-06-22 CN CN202121381477.0U patent/CN214850963U/zh active Active
- 2021-08-31 WO PCT/CN2021/115563 patent/WO2022267220A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4573113A (en) * | 1984-01-26 | 1986-02-25 | Borg-Warner Corporation | Surge protection system for a d-c power supply during power-up |
CN201315484Y (zh) * | 2008-11-25 | 2009-09-23 | 海信(山东)空调有限公司 | 浪涌电压抑制电路及具有所述电路的空调器 |
CN203840210U (zh) * | 2014-03-24 | 2014-09-17 | 浙江商业职业技术学院 | 交流逆变电路 |
CN209627225U (zh) * | 2019-01-16 | 2019-11-12 | 广东美的制冷设备有限公司 | 驱动控制电路、空调控制器和空调器 |
Also Published As
Publication number | Publication date |
---|---|
CN214850963U (zh) | 2021-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101548455B (zh) | 用于提高电子驱动设备的安全性的电路装置和方法 | |
WO2010066096A1 (zh) | 电磁炉用电压和电流浪涌保护方法及其电路 | |
CN111404367B (zh) | Pfc电路、线路板及空调器 | |
WO2013159557A1 (zh) | 一种新型的针对三相交流电机运行方向控制的固态继电器及方法 | |
EP2522068A2 (en) | Improvements relating to rectifier circuits | |
WO2022267220A1 (zh) | 一种电机控制器的电源供电电路及电机控制器 | |
CN108809197A (zh) | 交错式pfc控制电路及电机驱动电路 | |
WO2017114646A1 (en) | Driver circuit, lamp and dc grid system | |
CN109915946A (zh) | 电控装置、室外机和空调器 | |
CN103592511B (zh) | 一种检测交流电源频率的电路 | |
CN109217273B (zh) | 一种关闭电源开关无延迟的防浪涌电路 | |
CN111343759A (zh) | Led驱动电路、灯管和照明装置 | |
CN103051206A (zh) | 保鲜机电源控制电路、装置及其控制方法 | |
CN112448600A (zh) | 一种综合电源 | |
CN107453360A (zh) | 一种供电质量优化装置及方法 | |
CN2757003Y (zh) | 变频空调用功率因数校正模块 | |
CN109066636A (zh) | 一种防浪涌的电路 | |
CN206743110U (zh) | 反激式开关电源 | |
CN209748404U (zh) | 一种带输入浪涌电流抑制功能的三相整流保护电路 | |
CN106411160A (zh) | 一种开关电源 | |
CN208094443U (zh) | 一种抑制电磁干扰技术的开关电源电路 | |
CN111550912A (zh) | 一种空调滤波电路、空调控制器和空调器 | |
CN206259865U (zh) | 一种开关电源 | |
CN110323719A (zh) | 一种开关电源输出热拔插与反接短路保护电路 | |
CN215498271U (zh) | 一种直流供电电源的控制装置和空调 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21946704 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21946704 Country of ref document: EP Kind code of ref document: A1 |