WO2013159557A1 - 一种新型的针对三相交流电机运行方向控制的固态继电器及方法 - Google Patents

一种新型的针对三相交流电机运行方向控制的固态继电器及方法 Download PDF

Info

Publication number
WO2013159557A1
WO2013159557A1 PCT/CN2013/000075 CN2013000075W WO2013159557A1 WO 2013159557 A1 WO2013159557 A1 WO 2013159557A1 CN 2013000075 W CN2013000075 W CN 2013000075W WO 2013159557 A1 WO2013159557 A1 WO 2013159557A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
resistor
diode
output
subunit
Prior art date
Application number
PCT/CN2013/000075
Other languages
English (en)
French (fr)
Inventor
杨建涛
曾志铭
陈方增
Original Assignee
库顿电子科技(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 库顿电子科技(上海)有限公司 filed Critical 库顿电子科技(上海)有限公司
Priority to US14/396,675 priority Critical patent/US9559625B2/en
Publication of WO2013159557A1 publication Critical patent/WO2013159557A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/24Controlling the direction, e.g. clockwise or counterclockwise
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • H02H7/0833Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors for electric motors with control arrangements
    • H02H7/0838Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors for electric motors with control arrangements with H-bridge circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • H02H7/09Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors against over-voltage; against reduction of voltage; against phase interruption
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/122Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters
    • H02H7/1222Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters responsive to abnormalities in the input circuit, e.g. transients in the DC input
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/122Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters
    • H02H7/1225Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters responsive to internal faults, e.g. shoot-through

Definitions

  • the present invention relates to a solid state relay, and more particularly to a solid state relay and method for controlling the running direction of a three-phase alternating current motor.
  • Three-phase solid state relays function as switches in the application of three-phase AC motors.
  • three-phase solid state relays have two sets of power components for forward/reverse switching of three-phase AC power and three-phase AC motors.
  • phase sequence of the three-phase AC motor changes due to wiring, maintenance, etc., the motor will work in the opposite direction, affecting its normal operation, and sometimes even damage the external mechanical parts of the motor;
  • the current in the motor will increase sharply due to lack of phase. If the motor is working in a phase loss state for a long time, the motor will burn out and the solid state relay will be damaged due to excessive current.
  • FIG. 1 shows the main block diagram of a prior art three-phase solid state relay (SSR) 50 implemented with discrete components.
  • the three-phase solid state relay (SSR) 50 includes a driving module 51 and a power component module 52 connected to the driving module 51; wherein the input terminals II, 12 of the driving module 51 are connected to the control signal CS, and the control signal CS is at the input terminal II. Or 12 input DC control signals; the input terminals L1, L2, L3 of the power module 52 are connected to the three-phase power, and the output terminals U, V, W are connected to the load LOAD.
  • LOAD is mainly composed of a motor.
  • the working principle is as follows: When II is valid, the output terminal U is connected to the input terminal L1, the output terminal V is connected to the input terminal L2, the output terminal W is connected to the input terminal L3; when 12 is valid, the output terminal U is input The terminal L1 is turned on, the output terminal V is connected to the input terminal L3, and the output terminal W is connected to the input terminal L2. Therefore, the phase sequence of the three-phase electric current applied to the load end can be changed by controlling II and 12 to achieve the purpose of controlling the running direction of the motor.
  • the power device used by the power module 52 is usually a thyristor, and the driving module 51 is generally composed of a triode, a resistor, a capacitor, and a photocoupler.
  • the constant current circuit composed of a triode, a resistor, and a capacitor receives the input terminal II or 12.
  • the control signal causes the LEDs in the optocoupler to illuminate, causing the output of the optocoupler to be in an on state to trigger the corresponding thyristor to conduct.
  • the load current must be completely turned off when the load current is less than a certain degree. Therefore, the two sets of power components of the solid state relay may be too short during the switching, and the power components in the set are still Unconfirmed In the case of full cut-off, another set of power components has been turned on, resulting in a phase-to-phase short circuit between the three-phase solid state relays, causing equipment damage.
  • an external device phase sequence protector, controller MCU
  • the external device gives a solid state relay control signal to control the power component guide. Turn the time off and off to solve the above problem.
  • the present invention discloses a solid state relay and method for controlling the running direction of a three-phase AC motor, which has a concentrated structure, is safe and reliable, and is low in cost.
  • a novel solid state relay for three-phase alternating current motor running direction control comprising a driving module, a power component module, a phase sequence detecting module, a phase loss detecting module, an automatic phase correction and a phase loss protection logic module; the driving module and the power The component modules are connected; the power component modules are respectively connected to the three-phase power source and the three-phase load;
  • phase sequence detection module the input end is connected with the three-phase power source, and the output end is connected with the automatic phase correction and the phase loss protection logic module; for detecting the phase sequence of the three-phase power supply, and providing the phase sequence signal to the automatic Phase correction and phase loss protection logic module;
  • phase loss detection module the input end is connected with the three-phase power supply, and the output end is connected with the automatic phase correction and the phase loss protection logic module; and is used for detecting whether the three-phase power supply is short Phase, and provide a phase loss signal to the automatic phase correction and phase loss protection logic module;
  • the automatic phase correction and phase loss protection logic module further includes:
  • the signal conversion unit receives the control signal and performs level conversion on the control signal;
  • the signal processing unit is connected to the signal conversion unit, and is also respectively connected to the output end of the phase sequence detection module, the output end of the phase loss detection module, and
  • the driving module is connected to: processing the phase sequence signal, the phase loss signal, and the level-converted control signal, and outputting the processed control result to the driving module.
  • the signal processing unit further includes: Phase loss protection subunit, automatic phase correction subunit, interlock subunit, delay subunit, first input terminal, second input terminal, third input terminal, fourth input terminal, first output terminal, second output Terminal
  • the first input terminal and the second input terminal are respectively connected to the output end of the signal conversion unit;
  • the third input terminal is connected to the output end of the phase loss detecting module
  • the fourth input terminal is connected to the output end of the phase sequence detecting module
  • the first output terminal and the second output terminal are respectively connected to the output end of the signal processing unit
  • the first input terminal to the third input terminal are respectively connected to the phase loss protection subunit, the fourth input terminal is connected to the automatic phase correction subunit, and the first output terminal and the second output terminal are connected to the delay subunit;
  • phase loss protection subunit, the automatic phase correction subunit, the interlock subunit, and the delay subunit are sequentially connected; or the automatic phase correction subunit, the phase loss protection subunit, the interlock subunit, and the delay subunit are connected in sequence;
  • the phase loss protection sub-unit is used for the phase loss signal output according to the phase loss detection module.
  • the output result is directly locked, so that the output result is invalid;
  • the automatic phase-correcting sub-unit is configured to detect the phase sequence signal output by the module according to the phase sequence, and when the three-phase electrical phase sequence is changed, the input control signal is passed through the automatic phase-correcting sub-unit, and the output is reversed;
  • the interlocking sub-unit when the signals output by the current primary unit to the interlocking sub-unit are the same, the output result is locked, and the output result is invalid;
  • the delay subunit is configured to delay the control signal outputted to the driving module, so that the control signal is output to the driving module after the power component of the power component module is turned off.
  • phase loss protection subunit further comprises:
  • a first resistor is coupled to the anode of the first diode, an anode of the first diode is coupled to the first input terminal, and an anode of the first diode serves as a first output of the phase loss protection subunit ;
  • a second resistor is coupled to the anode of the second diode, an anode of the second diode is coupled to the second input terminal, and an anode of the second diode is used as a second output of the phase loss protection subunit
  • the cathode of the first diode is connected to the cathode of the second diode and is then connected to the third input terminal.
  • the automatic phase correction subunit further comprises: a first exclusive OR logic device, a second exclusive OR logic device; any one input of the first exclusive OR logic device is connected to any input of the second exclusive OR logic device , the first mentioned above An input of the exclusive OR logic device is coupled to the fourth input terminal;
  • the other input of the first XOR logic device is coupled to the first output of the phase loss protection subunit
  • the other input of the second exclusive OR logic device is coupled to the second output of the phase loss protection subunit.
  • the interlocking subunit further includes: a third resistor, a first capacitor, a third exclusive OR logic device, a fourth exclusive OR logic device, a first AND logic device, a second AND logic device;
  • One end of the third resistor is connected to the working power source, and the other end is respectively connected to any input end of the third exclusive OR logic device, any input end of the fourth exclusive OR logic device, and any end of the first capacitor;
  • the other end of the first capacitor is connected to the working ground
  • the other input terminal of the third exclusive OR logic device is respectively connected to the output end of the first exclusive OR logic device, and the second input terminal of the logic device;
  • An output of the third exclusive OR logic device is coupled to any one of the first and logic devices
  • the other input of the fourth exclusive OR logic device is coupled to the output of the second exclusive OR logic device, the other input of the first AND logic device, respectively;
  • the output of the fourth exclusive OR logic device is coupled to the other input of the second AND logic device.
  • the delay subunit further comprises:
  • the third diode is connected in parallel with the fourth resistor, the cathode of the third diode is connected to the output end of the first logic device, and the anode of the third diode is respectively connected to any end of the eighth resistor, and the third and the logic device are free.
  • the fourth diode is connected in parallel with the fifth resistor, the cathode of the fourth diode is connected to the output end of the second logic device, and the anode of the fourth diode is respectively connected to any end of the seventh resistor, and the fourth and the logic device are free.
  • the other end of the seventh resistor is connected to the anode of the second capacitor, and the cathode of the second capacitor is connected to the working ground;
  • the other end of the eighth resistor is connected to the anode of the third capacitor, and the cathode of the third capacitor is connected to the working ground;
  • One end of the sixth resistor is respectively connected to the other input end of the third and logic device, the other end of the fourth and logic device, and the other end of the sixth resistor is connected to the working power source;
  • the third and the output of the logic device are connected to the first output terminal
  • the phase sequence detecting module further includes a fourteenth resistor, a fifteenth resistor, a sixteenth resistor, a seventeenth resistor, an eighteenth resistor, a nineteenth resistor, a twentieth resistor, and a first a fifth capacitor, a sixth capacitor, a seventh capacitor, an eighth capacitor, an eleventh diode, a twelfth diode, a thirteenth diode, a fourteenth diode, a first photocoupler;
  • the first phase of the three-phase power supply is respectively connected to any one end of the fifteenth resistor and any one end of the sixth capacitor;
  • the other end of the fifteenth resistor is respectively connected to any one end of the fourteenth resistor, any one of the eighteenth resistor, the anode of the eleventh diode, and the cathode of the twelfth diode;
  • the other end of the sixth capacitor is connected to either end of the sixteenth resistor
  • the other end of the sixteenth resistor is respectively connected to the other end of the eighteenth resistor, any one of the seventeenth resistor, the anode of the thirteenth diode, and the cathode of the fourteenth diode;
  • the second phase of the three-phase power supply is connected to either end of the fifth capacitor
  • the other end of the fifth capacitor is connected to the other end of the fourteenth resistor
  • the third phase of the three-phase power supply is connected to the other end of the seventeenth resistor
  • the anode of the first photocoupler input end light emitting diode is respectively connected to the cathode of the eleventh diode, the cathode of the thirteenth diode, or the seventh end of the seventh capacitor, and the cathode is connected to any end of the nineteenth resistor;
  • the other end of the nineteenth resistor is respectively connected to the other end of the seventh capacitor, the anode of the twelfth diode, and the anode of the fourteenth diode;
  • the collector of the output terminal of the first photocoupler is connected to the working power source, and the emitter is respectively connected to any end of the twentieth resistor, any end of the eighth capacitor, and the fourth input end;
  • the other end of the twentieth resistor and the other end of the eighth capacitor are respectively connected to the working ground.
  • the phase loss detecting module further includes: a ninth resistor, a tenth resistor, an eleventh resistor, a twelfth resistor, a thirteenth resistor, a fourth capacitor, a fifth diode, and a sixth a pole tube, a seventh diode, an eighth diode, a ninth diode, a tenth diode, a second photocoupler, a first triode, and a second triode;
  • the first phase of the three-phase power source is connected to any one end of the ninth resistor; the other end of the ninth resistor is respectively connected to the anode of the fifth diode and the cathode of the eighth diode;
  • the second phase of the three-phase power source is connected to any one end of the tenth resistor; the other end of the tenth resistor is respectively connected to the anode of the sixth diode and the cathode of the ninth diode;
  • the third phase of the three-phase power source is connected to any one end of the eleventh resistor; the other end of the eleventh resistor is respectively connected to the anode of the seventh diode and the cathode of the tenth diode;
  • the anode of the second photocoupler input terminal light emitting diode is respectively connected to the cathode of the fifth diode, the cathode of the sixth diode, the cathode of the seventh diode, and the cathode of the light emitting diode is respectively connected to the eighth diode
  • the collector of the second photocoupler is connected to the working power supply, and the emitter of the output transistor is connected to any one end of the twelfth resistor and the base of the first triode;
  • the first triode collector is connected to the working power source, and the emitter is connected to any end of the fourth capacitor and any one end of the thirteenth resistor; the other end of the fourth capacitor is connected to the working ground;
  • the base of the second triode is connected to the other end of the thirteenth resistor, the collector is connected to the third input end, and the emitter is connected to the working ground.
  • the method for controlling the running direction of a three-phase AC motor according to the above solid state relay includes the following steps:
  • the three-phase power supply is connected to the phase sequence detection module, and the phase sequence detection module detects the phase sequence of the three-phase power supply, and provides a phase sequence signal to the signal processing unit of the automatic phase correction and phase loss protection logic module.
  • the three-phase power supply is connected to the phase loss detection module.
  • the phase loss detection module detects whether there is a phase loss in the three-phase power supply, and provides a phase loss signal to the signal processing unit of the automatic phase correction and phase loss protection logic module.
  • Control signal CS input signal conversion unit the signal conversion unit processes the control signal CS and outputs it to the signal processing unit.
  • the signal processing unit processes the signal transmitted by the signal conversion unit and the signal input by the phase sequence detection module and the phase loss detection module, and outputs the processed control result to the driving module.
  • the drive module controls the phase sequence of the three-phase motor by controlling the power component module.
  • the step S4 further includes:
  • phase loss protection subunit detects according to the phase loss.
  • the phase loss signal output by the module locks the output result, invalidating the control signal output;
  • S42 the output signal of the phase loss protection subunit and the phase sequence signal of the phase sequence detection module are outputted to the automatic phase correction subunit.
  • the automatic phase correction subunit outputs according to the phase sequence detection unit.
  • the phase sequence signal causes the control signal output through the automatic phase correction sub-unit to be reversed, and finally the phase sequence of the three-phase power supply loaded into the load is unchanged;
  • S43 The output signal of the automatic phase-correcting sub-unit is input to the interlocking sub-unit, and when the signals outputted by the automatic phase-correcting sub-unit to the interlocking sub-unit are the same, the interlocking sub-unit will lock the output result, so that the control signal output is invalid;
  • the beneficial effects of the present invention are as follows - First, the solid state relay structure of the present invention is concentrated in function, and the self-phase correction and phase loss protection of the power supply of the three-phase motor can be realized by itself, and the external device does not need to be connected. .
  • the structure for realizing automatic phase correction and phase loss protection in the solid state relay of the present invention is completely realized by discrete components, that is, hardware circuits.
  • the controller MCU/DSP that may be used by external devices is eliminated, which saves costs, that is, the same function is realized at a low price.
  • the two control input signals of the forward rotation and the reverse rotation are interlocked and delayed for a period of time to be supplied to the control logic, thereby solving the phase-to-phase short circuit caused by the thyristor turn-off characteristic.
  • the solid state relay operates in a strong electric environment, and requires the working device to have strong anti-interference ability.
  • the structure of the solid relay of the present invention is realized by a discrete component, that is, a hardware circuit, so that it has a powerful Anti-interference ability.
  • the structure of the solid state relay of the present invention is realized by a discrete component, that is, a hardware circuit, which is superior to the circuit implemented by the MCU/DSP, and there is no crash phenomenon, and there is no device caused by software operation errors. Damage, or a bigger accident may be.
  • the implementation circuit of the present invention is simple, safe and reliable.
  • the present invention can enable the three-phase AC motor to detect the occurrence of phase loss in real time when the three-phase power source is out of phase, and cut off the input signal path to turn off the power component to prevent the motor from being burnt due to phase loss operation.
  • the present invention monitors the input three-phase electrical phase sequence in real time.
  • the internal control logic issues a corresponding control command to keep the phase sequence added to the motor unchanged, thereby avoiding phase sequence change.
  • the direction of motor running is inconsistent with the desired direction.
  • FIG. 1 is a schematic structural view of a prior art solid state relay
  • FIG. 2 is a schematic view showing the structure of a solid state relay for controlling the running direction of a three-phase AC motor according to an embodiment of the present invention
  • 3 is a schematic structural diagram of a signal processing unit according to an embodiment of the present invention
  • 4a is a schematic diagram of a preferred circuit of a phase loss protection subunit according to an embodiment of the present invention
  • 4b is a schematic diagram of a first alternative circuit of a phase loss protection subunit according to an embodiment of the present invention.
  • 4c is a schematic diagram of a second alternative circuit of the phase loss protection subunit according to an embodiment of the present invention.
  • 5a is a schematic diagram of a preferred circuit of an automatic phase correction subunit according to an embodiment of the present invention.
  • 5b is a schematic diagram of a first alternative circuit of an automatic phase correction subunit according to an embodiment of the present invention.
  • 6a is a schematic diagram of a preferred circuit of an interlocking subunit according to an embodiment of the present invention.
  • 6b is a schematic diagram of a first alternative circuit of an interlocking subunit according to an embodiment of the present invention.
  • 6c is a schematic diagram of a second alternative circuit of an interlocking subunit according to an embodiment of the present invention.
  • FIG. 7 is a schematic circuit diagram of a delay subunit according to an embodiment of the present invention.
  • FIG. 8a is a schematic circuit diagram of a phase sequence detecting module according to an embodiment of the present invention.
  • FIG. 8b is a schematic diagram of a first alternative circuit of the phase sequence detecting module according to an embodiment of the present invention.
  • FIG. 8c is a schematic diagram of a second alternative circuit of the phase sequence detecting module according to an embodiment of the present invention.
  • 9a is a schematic circuit diagram of a phase loss detecting module according to an embodiment of the present invention.
  • Figure 1 is a schematic diagram of a first alternative circuit of a phase loss detection module according to a specific embodiment of the present invention
  • FIG. 10 is a flow chart of a method for controlling a running direction of a three-phase AC motor by a solid state relay according to an embodiment of the present invention.
  • a novel solid state relay 10 for three-phase AC motor running direction control includes a driving module 14, a power component module 15, a phase sequence detecting module 122, a phase loss detecting module 121, automatic phase correction and phase loss protection.
  • Logic module 13 power module 11.
  • the drive module 14 is connected to the power component module 15; the power component module 15 is connected to the three-phase power supply 60 and the three-phase load 80, respectively.
  • the power module 11 directly takes power from the control signal CS and provides a 5V power supply for the phase sequence detection module 122, the phase loss detection module 121, the automatic phase correction and phase loss protection logic module.
  • the power supply connection relationship between the power module 11 and the phase sequence detection module 122, the phase loss detection module 121, the automatic phase correction and the phase loss protection logic module 13 is not shown.
  • the phase sequence detecting module 122 the input end is connected to the three-phase power source 60, and the output end 14 is automatically phase-corrected and lacks phase protection.
  • the protection logic module 13 is connected; is used for detecting the phase sequence of the three-phase power supply 60, and provides a phase sequence signal to the automatic phase correction and phase loss protection logic module 13.
  • the phase loss detecting module 121 the input end is connected to the three-phase power source 60, and the output end 13 is connected with the automatic phase correction and phase loss protection logic module 13; for detecting whether a phase loss occurs when the three-phase power source is supplied, and providing a phase loss signal
  • the automatic phase correction and phase loss protection logic module 13 is provided.
  • the automatic phase correction and phase loss protection logic module 13 further includes:
  • the signal conversion unit 131 has an input terminal receiving the control signal CS, and its output terminals II and 12 are respectively connected to the input end of the signal processing unit 132; for level-converting the received control signal CS; that is, a wide range of control signals Converted to high and low level signals.
  • a general conversion circuit can be used here.
  • the signal processing unit 132 has its input terminals connected to the output terminals II and 12 of the signal conversion unit 131, the output terminal 14 of the phase sequence detection module 122, and the output terminal 13 of the phase loss detection module 121, respectively, and the output terminals 01 and 02 thereof are respectively.
  • the input terminal of the driving module 14 is connected; for processing the signal transmitted by the signal converting unit 131 and the signal transmitted by the phase sequence detecting module 122 and the phase loss detecting module 121, and outputting the processed control result to the driving module 14.
  • Phase loss alarm output unit 133 Connected to the signal processing unit 132 for alarming when there is a phase loss in the three-phase power supply.
  • the phase loss alarm output unit 133 may not be included in the automatic phase correction and phase loss protection logic module 13. That is, it is not the core unit of the module, so the invention is not limited herein.
  • the signal processing unit 132 further includes:
  • Phase loss protection subunit 21 automatic phase correction subunit 22, interlock subunit 23, delay subunit 24, first input terminal 110, second input terminal 120, third input terminal 130, fourth input terminal 140, The first output terminal 010 and the second output terminal 020.
  • the first input terminal 110 and the second input terminal 120 are connected to the output terminals II and 12 of the signal conversion unit 131, respectively.
  • the third input terminal 130 is connected to the output 13 of the phase loss detecting module 121.
  • the fourth input terminal 140 is coupled to the output 14 of the phase sequence detection module.
  • the first output terminal O10 and the second output terminal O20 are connected to the output terminals 01 and 02 of the signal processing unit, respectively.
  • the first input terminal 110 to the third input terminal 130 are respectively connected to the phase loss protection subunit 21, the fourth input terminal 140 is connected to the automatic phase correction subunit 22, and the first output terminal O10 and the second output terminal O20 are extended.
  • phase loss protection subunit 21, the automatic phase correction subunit 22, the interlock subunit 23, and the delay subunit 24 Connect in order.
  • sequence of the phase loss protection subunit 21 and the automatic phase correction subunit 22 may be interchanged, that is, the automatic phase correction subunit 22, the phase loss protection subunit 21, the interlock subunit 23, and the delay subunit 24 are sequentially connection.
  • the invention is not limited thereto.
  • Phase loss protection sub-unit 21 When the three-phase power supply supplies power to the power component module, and at least one phase power supply connection is disconnected, the sub-unit directly locks the output result according to the phase loss signal output by the phase loss detection module, so that the output is output. The control signal to the drive module 14 is invalid.
  • the automatic phase-correcting sub-unit 22 when the three-phase power supply supplies power to the power component module, and any two of them are connected to each other, the input phase sequence of the three-phase power will be changed. At this time, the automatic phase-correcting sub-unit 22 will be based on the phase sequence.
  • the phase sequence signal output by the detecting module 121 is opposite to the input control signal, that is, if the input control signal is high/low level, the output of the automatic phase correction sub-unit 22 is low/high level, and finally the three-phase is finally made.
  • the phase sequence of the power supply loaded into the load does not change.
  • Interlocking subunit 23 When the signal outputted by the first stage unit to the interlocking subunit 23 is the same, the subunit will lock the output result, that is, when the interlocking subunit receives two high/low level signals simultaneously, the subunit The unit output is either full low or full high.
  • Delay subunit 24 The thyristor in the power component module 15 is turned off, and the load current in the thyristor needs to be less than a certain value. At this time, if the power component driving signal is likely to cause a phase short circuit between the solid state relays, that is, in a When the group power components are not completely turned off, another group of power components are turned on, thereby causing phase-to-phase short circuit, and the delay sub-unit 24 delays the control signal outputted to the driving module 14 to the power component module 15. The power component is turned off and then output to the drive module 14.
  • the phase loss protection subunit 21 further includes:
  • the first resistor R1 is connected to the anode of the first diode D1, and the anode of the first diode D1 is also connected to the first input terminal 110, and the anode of the first diode D1 is the first phase of the phase loss protection subunit 21.
  • An output terminal 0311 is connected to the anode of the first diode D1 and the anode of the first diode D1 is also connected to the first input terminal 110, and the anode of the first diode D1 is the first phase of the phase loss protection subunit 21.
  • An output terminal 0311 is connected to the anode of the first diode D1, and the anode of the first diode D1 is also connected to the first input terminal 110, and the anode of the first diode D1 is the first phase of the phase loss protection subunit 21.
  • the second resistor R2 is connected to the anode of the second diode D2, and the anode of the second diode D2 is also connected to the second input terminal 120, and the anode of the second diode D2 is the first phase of the phase loss protection subunit 21.
  • the cathode of the first diode D1 is connected to the cathode of the second diode D2 and is connected to the third input terminal 130.
  • the phase loss protection sub-unit 21 outputs the same two control signals.
  • the invention does not limit the specific circuit form.
  • the automatic phase correction sub-unit 22 further includes: a first exclusive OR logic device IC11, a second exclusive OR logic device IC12.
  • Any one input of the first exclusive OR logic device IC11 is connected to any one of the input terminals of the second exclusive OR logic device IC12, and the input terminal of the first exclusive OR logic device IC11 is connected to the fourth input terminal 140.
  • the other input of the first exclusive OR logic device IC11 is coupled to the first output terminal 0311 of the phase loss protection subunit, and the output of the first exclusive OR logic device IC11 is referred to as the output terminal 0313.
  • the other input of the second exclusive OR logic device IC12 is coupled to the second sub-output 0312, and the output of the second exclusive OR logic device IC12 is designated as output 0314.
  • the above circuit is only a preferred embodiment of the automatic phase correction sub-unit. In the specific implementation, there are many alternatives. As shown in FIG. 5b, it is composed of two identical or logic devices. When the phase sequence signal is changed, the automatic phase correction sub-unit 22 The output signal will change. The invention does not limit the specific circuit form.
  • the interlocking subunit 23 further includes: a third resistor R3, a first capacitor C1, a third exclusive OR logic device IC13, a fourth exclusive OR logic device IC14, a first AND logic device IC21, a second logic Device IC22.
  • One end of the third resistor R3 is connected to the working power supply, and the other end is connected to any input end of the third exclusive OR logic device IC13, any input end of the fourth exclusive OR logic device IC14, and any end of the first capacitor C1; The other end of the first capacitor C1 is connected to the working ground.
  • the other input terminal of the third exclusive OR logic device IC13 is connected to an output terminal 0313 of the first exclusive OR logic device, and an input terminal of the second AND logic device IC22, respectively.
  • the output of the third exclusive OR logic device IC13 is coupled to any one of the first AND logic device IC21.
  • the other input of the fourth exclusive OR logic device IC14 is coupled to the output 0314 of the second exclusive OR logic device, and the other input of the first AND logic device IC21, respectively.
  • the output of the fourth exclusive OR logic device IC14 is coupled to the other input of the second AND logic device IC22.
  • the output of the first and logic device IC21 is recorded as the output terminal 0315;
  • the output of the second and logic device IC22 is denoted as output 0316.
  • the above circuit is only a preferred embodiment of the interlocking subunit.
  • two identical or logic devices, two NAND devices, one resistor, and one capacitor are formed.
  • 6c consists of two reverse logic devices, two logic devices. When there are two identical signal inputs, the signal through the reverse logic device is reversed. The signal entering into the logic device is two different signals, and the output is at the full low level; when two different signals are input to the interlocking subunit, the signal through the reverse logic device is reversed. The signal input to one of the logic devices is a full high level, and the signal input to the other logic device is a full low level. At this time, the signals output from the two logic devices are a high level and a low level. In this way, the control signal output from the interlocking subunit to the drive module is not valid at the same time.
  • the invention does not limit the specific circuit form.
  • the delay sub-unit 23 further includes:
  • Fourth resistor R4 fifth resistor R5, sixth resistor R6, seventh resistor R7, eighth resistor R8, second capacitor C2, third capacitor C3, third diode D3, fourth diode D4, Three with logic device IC23, fourth and logic device IC24.
  • the third diode D3 is connected in parallel with the fourth resistor R4, the cathode of the third diode D3 is connected to the output terminal 0315 of the first AND logic device, and the anode of the third diode D3 is respectively connected to any end of the eighth resistor R8.
  • the third is connected to any input of the logic device IC23.
  • the fourth diode D4 is connected in parallel with the fifth resistor R5, the cathode of the fourth diode D4 is connected to the output terminal 0316 of the second logic device, and the anode of the fourth diode D4 and the seventh resistor R7 are respectively connected to one end, The fourth is connected to any input of the logic device IC24.
  • the other end of the seventh resistor R7 is connected to the anode of the second capacitor C2, and the cathode of the second capacitor C2 is connected to the working ground.
  • the other end of the eighth resistor R8 is connected to the anode of the third capacitor C3, and the cathode of the third capacitor C3 is connected to the working ground.
  • Either end of the sixth resistor R6 is connected to the other input terminal of the third and logic device IC23, and the other input terminal of the fourth and logic device IC24, and the other end of the sixth resistor R6 is connected to the operating power source.
  • the output of the third and logic device IC23 is coupled to the first output terminal 010.
  • the output of the fourth and logic device IC24 is coupled to the second output terminal 020.
  • the phase sequence detection module 122 further includes:
  • the first phase L1 of the three-phase power supply is respectively connected to any one of the fifteenth resistor R15 and any one of the sixth capacitor C6.
  • the other end of the fifteenth resistor R15 is connected to any one of the fourteenth resistor R14, one end of the eighteenth resistor R18, the anode of the eleventh diode D11, and the cathode of the twelfth diode D12.
  • the other end of the sixth capacitor C6 is connected to either end of the sixteenth resistor R16.
  • the other end of the sixteenth resistor R16 is connected to the other end of the eighteenth resistor R18, the seventeenth resistor R17, the anode of the thirteenth diode D13, and the cathode of the fourteenth diode D14.
  • the second phase L2 of the three-phase power supply is connected to either end of the fifth capacitor C5.
  • the other end of the fifth capacitor C5 is connected to the other end of the fourteenth resistor R14.
  • the third phase of the three-phase power supply L3 is connected to the other end of the seventeenth resistor R17.
  • the anode of the first photocoupler IC31 is connected to the cathode of the eleventh diode D11, the cathode of the thirteenth diode D13, and the seventh end of the seventh capacitor C7, and the cathode is connected to the nineteenth resistor R19. One end.
  • the other end of the nineteenth resistor R19 is connected to the other end of the seventh capacitor C7, the anode of the twelfth diode D12, and the anode of the fourteenth diode D14;
  • the collector of the output terminal of the first photocoupler IC31 is connected to the working power source, and the emitter is respectively connected to any end of the twentieth resistor R20, any end of the eighth capacitor C8, and the fourth input terminal 140.
  • the other end of the twentieth resistor R20 and the other end of the eighth capacitor C8 are respectively connected to the working ground.
  • phase sequence detecting module is only a preferred embodiment of the phase sequence detecting module.
  • phase sequence detecting module there are many alternatives, as shown in Figure 8b, consisting of nine resistors, three diodes, three optocouplers, four NAND devices, and two A triode, a capacitor.
  • the input terminals of the three optocouplers and the diode form a three-phase rectifier bridge, and the three resistors are used to define the current in the rectifier bridge.
  • the three optocouplers will output six groups of signals, and the six groups of signals pass through four
  • the non-logic device outputs a duty cycle signal of the same period as the three-phase power, or is a high-level 100% duty signal, and the ⁇ level signal turns off the PNP transistor, and finally outputs a high-level signal as the phase sequence state at this time.
  • a high-level 5/6 duty cycle signal that causes the PNP transistor to be turned on for 1/6 cycles to charge the subsequent capacitor and turn the NPN transistor on, and another 5/6 cycle by capacitor
  • the discharge keeps the NPN transistor turned on, and finally outputs a low level as the phase sequence state at this time;
  • Figure 8c The circuit changes the circuit of the output end of the photocoupler device based on Fig. 8a, and outputs the phase sequence signal opposite to that of Fig. 8a. Different phase sequence states.
  • the present invention does not limit the specific circuit form.
  • the phase loss detecting module 121 further includes:
  • the first phase L1 of the three-phase power supply is connected to either end of the ninth resistor R9; the other end of the ninth resistor R9 is connected to the fifth two The anode of the pole tube D5, the cathode of the eighth diode D8;
  • the second phase L2 of the three-phase power supply is connected to any one end of the tenth resistor R10; the other end of the tenth resistor R10 is connected to the anode of the sixth diode D6 and the cathode of the ninth diode D9, respectively;
  • the third phase of the three-phase power supply L3 is connected to any one end of the eleventh resistor R11; the other end of the eleventh resistor R11 is respectively connected to the anode of the seventh diode D7 and the cathode of the tenth diode D10;
  • the anode of the second photocoupler IC 32 is connected to the cathode of the fifth diode D5, the cathode of the sixth diode D6, the cathode of the seventh diode D7, and the cathodes of the LEDs are respectively connected.
  • the collector of the output transistor of the second photocoupler IC32 is connected to the working power supply, and the emitter of the output transistor is connected to any end of the twelfth resistor R12 and the base of the first transistor Q1.
  • the other end of the twelfth resistor R12 is connected to the working place;
  • the collector of the first transistor Q1 is connected to the working power source, and the emitter is connected to either end of the fourth capacitor C4 and any end of the thirteenth resistor R13; the other end of the fourth capacitor C4 is connected to the working ground.
  • the base of the second transistor Q2 is connected to the other end of the thirteenth resistor R13, and its collector is connected to the third input terminal 130, and the emitter is connected to the working ground.
  • phase loss detecting module is only a preferred embodiment of the phase loss detecting module.
  • the schematic diagram is based on the phase loss detecting circuit of FIG. 9a, and an inverse is added to the output end of the phase loss signal.
  • the phase loss signal opposite to that output in Figure 9a is used to indicate the phase loss state at this time.
  • the invention does not limit the specific circuit form.
  • the three-phase power is connected to the phase sequence detecting module 122.
  • the phase sequence detecting module 122 detects the phase sequence of the three-phase power supply, and provides a phase sequence signal to the signal processing unit 132 of the automatic phase correction and phase loss protection logic module 13.
  • phase loss detecting module 121 detects whether there is a phase loss of the three-phase power supply, and provides a phase loss signal to the signal processing unit of the automatic phase correction and phase loss protection logic module 13.
  • Control signal CS input signal conversion unit 131 processes the control signal CS and outputs it to the signal processing unit 132.
  • the signal processing unit 132 processes the signal transmitted by the signal conversion unit 131 and the signals input by the phase sequence detecting module 122 and the phase loss detecting module 121, and outputs the processed control result to the driving module 14.
  • S5 The drive module 14 controls the phase sequence of the three-phase motor by controlling the power component module 15.
  • steps S1 to S5 are sequentially connected.
  • steps Sl, S2, and S3 are not sequentially performed, and the three may be performed simultaneously or in different order.
  • the present invention does not limit the order of steps S1, S2, S3.
  • the step S1 further includes:
  • the high/low level is set to the forward phase sequence of the three-phase power source, and the low/high level is the reverse phase sequence of the three-phase power source.
  • the phase sequence detecting module 122 outputs a phase sequence state according to the current input phase of the three-phase power source.
  • Corresponding high/low level signals are sent to signal processing unit 132.
  • Step S2 further comprising:
  • the high/low level is set to phase loss of the three-phase power supply, and the low/high level is no phase loss for the three-phase power supply.
  • the phase loss detection module 121 outputs a corresponding according to the currently input phase loss state of the three-phase power supply. High/low level signal to signal processing unit
  • Step S4 further includes:
  • phase loss protection subunit 21 The signal of the signal conversion unit 131 and the phase loss signal are input to the phase loss protection subunit 21.
  • the sub-unit directly locks the output result according to the phase loss signal output by the phase loss detecting module 121, even if outputted to the driving module 14 The control signal is invalid.
  • the output signal of the phase loss protection subunit 21 and the phase sequence signal are input to the automatic phase correction subunit 22.
  • the automatic phase-correcting sub-unit 22 will output the phase according to the phase-sequence detecting unit 122.
  • the sequence signal makes the input control signal output the opposite, that is, the input control signal is high/low level, and the output of the automatic phase correction sub-unit is low/high level, and finally the phase sequence of the three-phase power supply to the load is not change.
  • S43 The output signal of the automatic phase-correcting sub-unit 22 is supplied to the interlocking sub-unit 23.
  • the interlocking sub-unit 23 receives a pair of (two) identical signals, the sub-unit will output a pair (two) of low power. level.
  • step S2 the order of the phase loss protection subunit 21 and the automatic phase correction subunit 22 may be interchanged.
  • the present invention does not limit the order of the above steps.
  • the solid state relay structure of the present invention has a concentrated function, and itself can realize automatic phase correction and phase loss protection of the power supply of the three-phase motor, and it is not necessary to connect external devices.
  • the structure for realizing automatic phase correction and phase loss protection in the solid state relay of the present invention is completely realized by discrete components, that is, hardware circuits.
  • the controller MCU/DSP that may be used by external devices is eliminated, which saves costs, that is, the same function is realized at a low price.
  • the two control input signals of the forward rotation and the reverse rotation are interlocked and delayed for a period of time to be supplied to the control logic, thereby solving the phase-to-phase short circuit caused by the thyristor turn-off characteristic.
  • the solid state relay operates in a strong electric environment, and requires the working device to have strong anti-interference ability.
  • the structure of the solid relay of the present invention is realized by a discrete component, that is, a hardware circuit, so that it has a powerful Anti-interference ability.
  • the structure of the solid state relay of the present invention is realized by discrete components, that is, hardware circuits, which is superior to the circuit implemented by the MCU/DSP, and there is no crash phenomenon, and there is no device caused by software operation errors. Damage, or a bigger accident may be.
  • the implementation circuit of the present invention is simple, safe and reliable.
  • the invention can detect the occurrence of phase loss in real time, so that the three-phase alternating current motor disables the control signal input when the three-phase power source is out of phase, and turns off the power component to prevent the motor from being damaged due to phase loss operation.
  • the present invention monitors the phase sequence of the three-phase electric input in real time.
  • the internal control logic issues a corresponding control command to keep the phase sequence added to the motor unchanged, thereby avoiding the phase sequence change.
  • the direction of motor running is inconsistent with the desired direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

一种针对三相交流电机运行方向控制的固态继电器(10)及方法,该继电器(10)包括驱动模块(14)、功率组件模块(15)、相序检测模块(122)、缺相检测模块(121)、自动纠相与缺相保护逻辑模块(13)。相序检测模块(122)输入端与三相电源(60)连接,其输出端与自动纠相与缺相保护逻辑模块(13)连接;用于检测三相电源(60)供电的相序,并提供相序信号给自动纠相与缺相保护逻辑模块(13)。缺相检测模块(121)输入端与三相电源(60)连接,其输出端与自动纠相与缺相保护逻辑模块(13)连接,用于检测三相电源(60)供电时是否出现缺相,并提供缺相信号给自动纠相与缺相保护逻辑模块(13)。该继电器运行可靠,成本低廉。

Description

一种新型的针对三相交流电机运行方向控制的固态继电器及方法 技术领域
本发明涉及固态继电器, 特别涉及一种针对三相交流电机运行方向控制的固态继电器及 方法。
背景技术
三相固态继电器在三相交流电机的应用中起开关作用。 一般, 三相固态继电器中有两组 功率组件, 用于三相交流电源与三相交流电机的正 /反向切换。
在使用过程中, 由于三相交流电机的供电出现问题会引起以下严重的后果:
如三相交流电机因接线、 维修等导致的相序改变, 将使电机反方向工作, 影响其正常运 行, 有时甚至会损坏电机外部机械部件;
或者如三相交流电机因接线、 维修、 振动导致的三相电源缺相, 将使电机中的电流因缺 相而剧增。 若电机长期工作在缺相状态, 将使电机烧毁, 同时固态继电器也将因电流过高而 损坏。
图 1表示的是在现有技术的三相固态继电器 (SSR) 50中, 用分立元件来实现的主要结构 图。 三相固态继电器 (SSR) 50包括驱动模块 51以及与所述驱动模块 51相连的功率组件模块 52; 其中, 驱动模块 51的输入端子 II、 12与控制信号 CS相连, 控制信号 CS在输入端子 II或者 12输入直流控制信号; 功率组件模块 52的输入端子 Ll、 L2、 L3连接三相电,其输出端子 U、 V、 W连接负载 LOAD。 LOAD主要由电机构成。 其工作原理是: 当 II有效时, 输出端 U与输入端 L1接通, 输出端 V与输入端 L2接通, 输出端 W与输入端 L3接通; 当 12有效时, 输出端 U与输入 端 L1接通, 输出端 V与输入端 L3接通, 输出端 W与输入端 L2接通。 从而可以通过控制 II和 12 来改变加在负载端的三相电的相序, 以达到控制电机运行方向的目的。
功率组件模块 52使用的功率器件通常是可控硅, 而驱动模块 51—般由三极管、 电阻、 电 容、 光电耦合器构成, 由三极管、 电阻、 电容组成的恒流电路接受来自输入端子 II或者 12的 控制信号, 从而使光电耦合器中的发光二极管发光, 使光电耦合器的输出端成为导通状态而 触发对应的可控硅导通。
由于可控硅的关断特性比较特殊, 一定要负载电流小于一定程度的时候才能完全关断, 因此固态继电器本身的两组功率组件在切换的时候可能因时间过短, 在一组功率组件还未完 确认本 全截止的情况下, 另一组功率组件已经导通, 从而导致三相固态继电器内部相间短路, 使设 备损坏。
目前有用外接设备(相序保护器、控制器 MCU)来检测三相电相序以及缺相状态的技术, 根据检测到的电源状态, 由外接设备给予固态继电器控制信号, 从而控制功率组件的导通与 关断时间, 以解决上述问题。
虽然外接设备的使用解决了三相固态继电器在三相交流电机使用中的一些问题, 但是这 些外接设备本身就体积比较大, 系统比较复杂 (比如为处理信号的逻辑关系, 需要中央处理 器) , 价格较高, 还存在兼容能力等问题, 缺点比较明显。 所以我们必须拥有一种结构功能 集中、 安全可靠、 而又成本低廉的三相固态继电器来解决上述问题。
发明内容
为了克服现有技术的缺陷, 本发明公开了一种针对三相交流电机运行方向控制的固态继 电器及方法, 其结构功能集中、 安全可靠、 而又成本低廉。
本发明的技术方案如下:
一种新型的针对三相交流电机运行方向控制的固态继电器, 包括驱动模块、 功率组件模 块、 相序检测模块、 缺相检测模块、 自动纠相与缺相保护逻辑模块; 所述驱动模块与功率组 件模块连接; 所述功率组件模块分别连接三相电源和三相负载;
其中- 所述相序检测模块: 输入端与三相电源连接, 其输出端与自动纠相与缺相保护逻辑模块 连接; 用于检测三相电源供电的相序, 并提供相序信号给自动纠相与缺相保护逻辑模块; 所述缺相检测模块: 输入端与三相电源连接, 其输出端与自动纠相与缺相保护逻辑模块 连接; 用于检测三相电源供电时是否出现缺相, 并提供缺相信号给自动纠相与缺相保护逻辑 模块;
所述自动纠相与缺相保护逻辑模块, 进一步包括:
信号转换单元: 接收控制信号, 并对控制信号进行电平转换; 信号处理单元: 与所述信号转换单元连接, 并且其还分别与相序检测模块的输出端、 缺 相检测模块的输出端以及驱动模块连接; 用于对所述相序信号、 所述缺相信号、 以及所述进 行电平转换后的控制信号进行处理, 并将处理后的控制结果输出到驱动模块。
较佳地, 所述信号处理单元, 进一步包括: 缺相保护子单元、 自动纠相子单元、 互锁子单元、 延时子单元、 第一输入端子、 第二输 入端子、 第三输入端子、 第四输入端子、 第一输出端子、 第二输出端子;
第一输入端子和第二输入端子分别与信号转换单元的输出端连接;
第三输入端子与缺相检测模块的输出端连接;
第四输入端子与相序检测模块的输出端连接;
第一输出端子和第二输出端子分别与信号处理单元的输出端连接;
其中, 第一输入端子至第三输入端子分别与缺相保护子单元连接, 第四输入端子与自动 纠相子单元相连, 第一输出端子和第二输出端子与延时子单元相连接;
缺相保护子单元、 自动纠相子单元、 互锁子单元、 延时子单元依次连接; 或者自动纠相 子单元、 缺相保护子单元、 互锁子单元、 延时子单元依次连接;
其中:
缺相保护子单元, 用于根据缺相检测模块输出的缺相信号, 当三相电有缺相时, 直接锁 定输出结果, 使输出结果无效;
自动纠相子单元, 用于根据相序检测模块输出的相序信号, 当三相电相序改变时,使输入 的控制信号通过自动纠相子单元后,输出相反;
互锁子单元, 用于当前一级单元输出到互锁子单元的信号相同时, 进行输出结果的锁定, 使输出结果无效;
延时子单元, 用于将输出到驱动模块的控制信号进行延时, 使控制信号在功率组件模块 的功率组件关断之后再输出到驱动模块。
较佳地, 所述缺相保护子单元进一步包括:
第一电阻、 第二电阻、 第一二极管、 第二二极管;
第一电阻与第一二极管的阳极连接, 第一二极管的阳极连接到第一输入端子, 并且所述 第一二极管的阳极作为所述缺相保护子单元的第一输出端;
第二电阻与第二二极管的阳极连接, 第二二极管的阳极连接到第二输入端子, 并且所述 第二二极管的阳极作为所述缺相保护子单元的第二输出端; 第一二极管的阴极与第二二极管的阴极连接, 再连接到第三输入端子。
较佳地, 自动纠相子单元进一步包括: 第一异或逻辑器件、 第二异或逻辑器件; 第一异或逻辑器件的任意一输入端与第二异或逻辑器件的任意一输入端连接, 上述第一 异或逻辑器件的输入端连接到第四输入端;
第一异或逻辑器件的另一输入端连接到缺相保护子单元的第一输出端;
第二异或逻辑器件的另一输入端连接到缺相保护子单元的第二输出端。
较佳地, 互锁子单元, 进一步包括: 第三电阻、 第一电容、 第三异或逻辑器件、 第四异 或逻辑器件、 第一与逻辑器件、 第二与逻辑器件;
第三电阻的一端连接到工作电源,另一端分别连接到第三异或逻辑器件的任意一输入端、 第四异或逻辑器件的任意一输入端、 第一电容的任意端;
第一电容的另一端与工作地连接;
第三异或逻辑器件的另一输入端分别连接到第一异或逻辑器件的输出端、 第二与逻辑器 件的任意一输入端;
第三异或逻辑器件的输出端与第一与逻辑器件的任意一输入端连接;
第四异或逻辑器件的另一输入端分别连接到第二异或逻辑器件的输出端、 第一与逻辑器 件的另一输入端;
第四异或逻辑器件的输出端与第二与逻辑器件的另一输入端连接。
较佳地, 延时子单元, 进一步包括:
第四电阻、 第五电阻、 第六电阻、 第七电阻、 第八电阻、 第二电容、 第三电容、 第三二 极管、 第四二极管、 第三与逻辑器件、 第四与逻辑器件;
第三二极管与第四电阻并联, 第三二极管的阴极与第一与逻辑器件的输出端连接, 第三 二极管的阳极分别与第八电阻任意一端、 第三与逻辑器件任意一输入端连接;
第四二极管与第五电阻并联, 第四二极管的阴极与第二与逻辑器件的输出端连接, 第四 二极管的阳极分别与第七电阻任意一端、 第四与逻辑器件任意一输入端连接;
第七电阻另一端与第二电容的正极连接, 第二电容的负极与工作地连接;
第八电阻另一端与第三电容的正极连接, 第三电容的负极与工作地连接;
第六电阻的任意一端分别连接到第三与逻辑器件的另一输入端、 第四与逻辑器件的另一 输入端, 第六电阻的另一端连接到工作电源;
第三与逻辑器件的输出端连接到第一输出端子;
第四与逻辑器件的输出端连接到第二输出端子。 较佳地, 所述相序检测模块, 进一步包括- 第十四电阻、 第十五电阻、 第十六电阻、 第十七电阻、 第十八电阻、 第十九电阻、 第二 十电阻、 第五电容、 第六电容、 第七电容、 第八电容、 第十一二极管、 第十二二极管、 第十 三二极管、 第十四二极管、 第一光电耦合器;
三相电源的第一相分别连接第十五电阻任意一端、 第六电容任意一端;
第十五电阻另一端分别连接第十四电阻任意一端、 第十八电阻任意一端、 第十一二极管 的阳极、 第十二二极管的阴极;
第六电容另一端连接第十六电阻任意一端;
第十六电阻另一端分别连接第十八电阻另一端、 第十七电阻任意一端、 第十三二极管的 阳极、 第十四二极管的阴极;
三相电源的第二相连接第五电容任意一端;
第五电容另一端连接到第十四电阻另一端;
三相电源的第三相连接第十七电阻另一端;
第一光电耦合器输入端发光二极管的阳极分别连接第十一二极管的阴极、 第十三二极管 的阴极、 第七电容任意一端, 阴极连接第十九电阻任意一端;
第十九电阻另一端分别连接第七电容另一端、 第十二二极管的阳极、 第十四二极管的阳 极;
第一光电耦合器输出端三极管的集电极连接工作电源, 其发射极分别连接第二十电阻任 意一端、 第八电容任意一端、 第四输入端;
第二十电阻另一端、 第八电容另一端分别连接工作地。
较佳地, 所述缺相检测模块, 进一步包括- 第九电阻、 第十电阻、 第十一电阻、 第十二电阻、 第十三电阻、 第四电容、 第五二极管、 第六二极管、 第七二极管、 第八二极管、 第九二极管、 第十二极管、 第二光电耦合器、 第一 三极管、 第二三极管;
三相电源的第一相连接第九电阻任意一端;第九电阻另一端分别连接第五二极管的阳极、 第八二极管的阴极;
三相电源的第二相连接第十电阻任意一端;第十电阻另一端分别连接第六二极管的阳极、 第九二极管的阴极; 5 三相电源的第三相连接第十一电阻任意一端; 第十一电阻另一端分别连接第七二极管的 阳极、 第十二极管的阴极;
第二光电耦合器输入端发光二极管的阳极分别连接第五二极管的阴极、 第六二极管的阴 极、 第七二极管的阴极, 且所述发光二极管的阴极分别连接第八二极管的阳极、 第九二极管 的阳极、 第十二极管的阳极;
第二光电耦合器输出端三极管集电极连接工作电源, 所述输出端三极管的发射极连接第 十二电阻任意一端、 第一三极管基极;
第十二电阻另一端连接工作地;
第一三极管集电极连接工作电源, 发射极连接第四电容任意一端、第十三电阻任意一端; 第四电容另一端连接工作地;
第二三极管基极连接第十三电阻另一端, 集电极连接第三输入端, 发射极连接工作地。 根据上述固态继电器进行三相交流电机运行方向控制的方法, 包括下列步骤:
S 1 : 三相电源接入相序检测模块, 相序检测模块检测三相电源供电的相序, 并提供相序 信号给自动纠相与缺相保护逻辑模块的信号处理单元。
S2 : 三相电源接入缺相检测模块, 缺相检测模块检测三相电源供电是否存在缺相, 并提 供缺相信号给自动纠相与缺相保护逻辑模块的信号处理单元。
S3: 控制信号 CS输入信号转换单元, 信号转换单元对该控制信号 CS进行处理后输出给 信号处理单元。
S4: 信号处理单元处理信号转换单元传输的信号以及相序检测模块和缺相检测模块输入 的信号, 并将处理后的控制结果输出到驱动模块。
S5 : 驱动模块通过控制功率组件模块控制三相电机的相序。
较佳地, 所述步骤 S4, 进一步包括:
S41 :信号转换单元进行电平转换后的控制信号以及缺相检测模块的缺相信号输出到缺相 保护子单元中, 当三相电源有缺相时, 缺相保护子单元会根据缺相检测模块输出的缺相信号 锁定输出结果, 使控制信号输出无效;
S42 : 缺相保护子单元的输出信号以及相序检测模块的相序信号输出到自动纠相子单元 中, 当三相电相序改变的时候, 自动纠相子单元根据相序检测单元输出的相序信号, 使通过 自动纠相子单元的控制信号输出相反, 最终使三相电源加载到负载的相序不变; S43 : 自动纠相子单元的输出信号输入给互锁子单元, 当自动纠相子单元输出到互锁子单 元的信号相同时, 互锁子单元将锁定输出结果, 使控制信号输出无效;
S44: 互锁子单元的输出信号传输给延时子单元, 延时子单元将输出到驱动模块的控制信 号进行延时, 使控制信号在功率组件模块的功率组件关断之后再输出到驱动模块。
与现有技术相比, 本发明的有益效果如下- 第一, 本发明的固态继电器结构功能集中, 其本身就可以实现三相电机的电源的自动纠 相以及缺相保护, 不必再接外部设备。
第二, 本发明的固体继电器中实现自动纠相和缺相保护的结构完全由分立元件来实现, 即硬件电路来实现。省去了外部设备可能用到的控制器 MCU/DSP, 节省了成本, 即用低廉的 价格实现了相同的功能。
第三, 本发明的固体继电器中正转和反转两个控制输入信号互锁并延迟一段时间再给控 制逻辑, 解决了因可控硅关断特性造成的相间短路。
第四, 固态继电器是在强电的环境下工作, 要求工作器件有极强的抗干扰能力, 本发明 的固体继电器的结构由于都是通过分立元件, 即硬件电路实现的, 故其具有强大的抗干扰工 作能力。
第五, 本发明的固体继电器的结构由于都是通过分立元件, 即硬件电路实现的, 其相比 用 MCU/DSP实现的电路更优, 不存在死机现象, 也不存在因软件运行错误造成器件损坏, 或者更大的事故可能。 而且本发明的实现电路简单, 安全可靠。
第六, 本发明可以使三相交流电动机在三相电源缺相时能实时检测到缺相的发生, 并切 断输入信号通路, 使功率组件关断, 避免电机因缺相运行而烧毁。
第七, 本发明实时监测输入三相电相序, 当输入三相电相序改变时, 内部控制逻辑会发 出相应控制指令而使加在电机的相序不变, 避免因相序改变而造成电机运行方向与期望的方 向不一致现象。
附图说明
图 1为现有技术固态继电器的结构示意图;
图 2为本发明具体实施例新型的针对三相交流电机运行方向控制的固态继电器的结构示 意图;
图 3为本发明具体实施例信号处理单元的结构示意图; 图 4a为本发明具体实施例缺相保护子单元的优选电路示意图;
图 4b为本发明具体实施例缺相保护子单元的第一个替代电路示意图;
图 4c为本发明具体实施例缺相保护子单元的第二个替代电路示意图;
图 5a为本发明具体实施例自动纠相子单元的优选电路示意图;
图 5b为本发明具体实施例自动纠相子单元的第一个替代电路示意图;
图 6a为本发明具体实施例互锁子单元的优选电路示意图;
图 6b为本发明具体实施例互锁子单元的第一个替代电路示意图;
图 6c为本发明具体实施例互锁子单元的第二个替代电路示意图;
图 7为本发明具体实施例延时子单元的优选电路示意图;
图 8a为本发明具体实施例相序检测模块的优选电路示意图;
图 8b为本发明具体实施例相序检测模块的第一个替代电路示意图;
图 8c为本发明具体实施例相序检测模块的第二个替代电路示意图;
图 9a为本发明具体实施例缺相检测模块的优选电路示意图;
图%为本发明具体实施例缺相检测模块的第一个替代电路示意图;
图 10 为本发明具体实施例所述的固态继电器进行三相交流电机运行方向控制的方法的 流程图。
具体实施方式
下方结合附图和具体实施例对本发明做进一步的描述:
如图 2,一种新型的针对三相交流电机运行方向控制的固态继电器 10,包括驱动模块 14、 功率组件模块 15、相序检测模块 122、缺相检测模块 121、 自动纠相与缺相保护逻辑模块 13、 电源模块 11。
驱动模块 14与功率组件模块 15连接; 功率组件模块 15分别连接三相电源 60和三相负 载 80。
电源模块 11直接从控制信号 CS上取电并为相序检测模块 122、缺相检测模块 121、 自动 纠相与缺相保护逻辑模块 Π提供 5V的电源。图中并未画出电源模块 11与相序检测模块 122、 缺相检测模块 121、 自动纠相与缺相保护逻辑模块 13的供电连接关系。
其中, 相序检测模块 122: 输入端与三相电源 60连接, 其输出端 14与自动纠相与缺相保 护逻辑模块 13连接; 用于检测三相电源 60供电的相序, 并提供相序信号给自动纠相与缺相 保护逻辑模块 13。
缺相检测模块 121 : 输入端与三相电源 60连接, 其输出端 13与自动纠相与缺相保护逻辑 模块 13连接; 用于检测三相电源供电时是否出现缺相, 并提供缺相信号给自动纠相与缺相保 护逻辑模块 13。
其中, 自动纠相与缺相保护逻辑模块 13, 进一步包括:
信号转换单元 131 : 其输入端接收控制信号 CS, 其输出端 II和 12分别与信号处理单元 132的输入端连接; 用于对接收到的控制信号 CS进行电平转换; 即将宽范围的控制信号转化 为高低电平信号。 本实施例这里采用一般的转换电路即可。
信号处理单元 132: 其输入端分别与信号转换单元 131的输出端 II和 12、 相序检测模块 122的输出端 14、 缺相检测模块 121的输出端 13连接, 其输出端 01和 02分别与驱动模块 14的输入端连接; 用于处理信号转换单元 131传输的信号以及相序检测模块 122和缺相检测 模块 121传输的信号, 并将处理后的控制结果输出到驱动模块 14。
缺相报警输出单元 133 : 与信号处理单元 132连接, 用于在三相电源供电出现缺相情况 时, 进行报警。 具体实施时, 自动纠相与缺相保护逻辑模块 13中也可不包括所述缺相报警输 出单元 133。 即它不是本模块的核心单元, 故本发明这里对其不做限定。
如图 3, 信号处理单元 132, 进一步包括:
缺相保护子单元 21、 自动纠相子单元 22、 互锁子单元 23、 延时子单元 24、 第一输入端 子 110、 第二输入端子 120、 第三输入端子 130、 第四输入端子 140、 第一输出端子 010、 第二 输出端子 020。
第一输入端子 110和第二输入端子 120分别与信号转换单元 131的输出端 II和 12连接。 第三输入端子 130与缺相检测模块 121的输出端 13连接。
第四输入端子 140与相序检测模块的输出端 14连接。
第一输出端子 O10和第二输出端子 O20分别与信号处理单元的输出端 01和 02连接。 其中, 第一输入端子 110至第三输入端子 130分别与缺相保护子单元 21连接, 第四输入 端子 140与自动纠相子单元 22相连, 第一输出端子 O10和第二输出端子 O20与延时子单元
24相连。
本实施例中, 缺相保护子单元 21、 自动纠相子单元 22、 互锁子单元 23、 延时子单元 24 依次连接。 具体实施时, 缺相保护子单元 21、 自动纠相子单元 22的顺序可以互换, 即自动 纠相子单元 22、 缺相保护子单元 21、 互锁子单元 23、 延时子单元 24依次连接。 本发明不对 此作出限定。
其中:
缺相保护子单元 21 : 当三相电源为功率组件模块供电, 且出现至少有一相电源连接断开 的时候, 该子单元会根据缺相检测模块输出的缺相信号直接锁定输出结果, 使输出到驱动模 块 14的控制信号无效。
自动纠相子单元 22, 当三相电源为功率组件模块供电, 且任意两相互换连接位置时, 将 导致三相电的输入相序改变, 此时, 自动纠相子单元 22将根据相序检测模块 121输出的相序 信号, 使输入的控制信号相反, 即假设输入的控制信号为高 /低电平, 则通过自动纠相子单元 22输出的为低 /高电平, 最终使三相电源加载到负载的相序不变。
互锁子单元 23 : 当前一级单元输出到互锁子单元 23 的信号相同时, 该子单元将锁定输 出结果, 即互锁子单元同时接收到 2个高 /低电平信号时, 该子单元输出结果为全低电平或者 全高电平。
延时子单元 24: 功率组件模块 15 中的可控硅关断, 需要可控硅中的负载电流小于一定 的值, 此时若给功率组件驱动信号容易造成固态继电器内部相间短路, 即在一组功率组件还 未完全截止的情况下, 另一组功率组件巳经导通, 从而造成的相间短路, 延时子单元 24就是 将输出到驱动模块 14的控制信号延时到功率组件模块 15的功率组件关断之后再输出到驱动 模块 14。
如图 4a, 缺相保护子单元 21进一步包括:
第一电阻 Rl、 第二电阻 R2、 第一二极管 Dl、 第二二极管 D2。
第一电阻 R1与第一二极管 D1的阳极连接, 并且第一二极管 D1的阳极还连接到第一输 入端子 110, 第一二极管 D1的阳极作为缺相保护子单元 21的第一输出端 0311。
第二电阻 R2与第二二极管 D2的阳极连接, 并且第二二极管 D2的阳极还连接到第二输 入端子 120, 第二二极管 D2的阳极作为缺相保护子单元 21的第二输出端 0312。
第一二极管 D1的阴极与第二二极管 D2的阴极连接, 再连接到第三输入端子 130。
上述电路仅是缺相保护子单元的较佳实施例, 具体实施时, 还有很多替换方案, 如图 4b 由两个与逻辑器件组成; 图 4c由两个或逻辑器件组成, 此电路用于当缺相信号用高电平表示 缺相时, 使缺相保护子单元 21输出 2个控制信号相同。 本发明不对具体电路形式作出限定。 如图 5a, 自动纠相子单元 22进一歩包括: 第一异或逻辑器件 IC11、 第二异或逻辑器件 IC12。
第一异或逻辑器件 IC11的任意一输入端与第二异或逻辑器件 IC12的任意一输入端连接, 上述第一异或逻辑器件 IC11的输入端连接到第四输入端子 140。
第一异或逻辑器件 IC11 的另一输入端连接到缺相保护子单元的第一输出端 0311, 第一 异或逻辑器件 IC11的输出端记为输出端 0313。
第二异或逻辑器件 IC12的另一输入端连接到第二子输出端 0312,第二异或逻辑器件 IC12 的输出端记为输出端 0314。
上述电路仅是自动纠相子单元的较佳实施例, 具体实施时, 还有很多替换方案, 如图 5b 由两个同或逻辑器件组成, 当相序信号改变时, 自动纠相子单元 22输出的信号将跟着改变。 本发明不对具体电路形式作出限定。
如图 6a, 互锁子单元 23, 进一步包括: 第三电阻 R3、 第一电容 Cl、 第三异或逻辑器件 IC13、 第四异或逻辑器件 IC14、 第一与逻辑器件 IC21、 第二与逻辑器件 IC22。
第三电阻 R3的一端连接到工作电源, 另一端分别连接到第三异或逻辑器件 IC13的任意 一输入端、 第四异或逻辑器件 IC14的任意一输入端、 第一电容 C1 的任意端; 第一电容 C1 的另一端与工作地连接。
第三异或逻辑器件 IC13的另一输入端分别连接到第一异或逻辑器件的输出端 0313、 第 二与逻辑器件 IC22的任意一输入端。
第三异或逻辑器件 IC13的输出端与第一与逻辑器件 IC21的任意一输入端连接。
第四异或逻辑器件 IC14的另一输入端分别连接到第二异或逻辑器件的输出端 0314、 第 一与逻辑器件 IC21的另一输入端。
第四异或逻辑器件 IC14的输出端与第二与逻辑器件 IC22的另一输入端连接。
第一与逻辑器件 IC21的输出端记为输出端 0315;
第二与逻辑器件 IC22的输出端记为输出端 0316。
上述电路仅是互锁子单元的较佳实施例, 具体实施时, 还有很多替换方案, 如图 6b由两 个同或逻辑器件、两个与非逻辑器件、一个电阻、一个电容组成; 图 6c由两个反向逻辑器件、 两个与逻辑器件组成, 当有两个相同的信号输入时, 通过反向逻辑器件的信号反向, 此时输 入到与逻辑器件的信号是 2个不同的信号, 此时输出为全低电平; 当有两个不同的信号输入 到互锁子单元时, 通过反向逻辑器件的信号反向, 此时输入到其中一个与逻辑器件的信号为 全高电平, 输入到另一个与逻辑器件的信号为全低电平, 此时从两个与逻辑器件输出的信号 为一个高电平, 一个低电平, 以此保证从互锁子单元输出到驱动模块的控制信号不会同时有 效。 本发明不对具体电路形式作出限定。
如图 7, 延时子单元 23, 进一步包括:
第四电阻 R4、 第五电阻 R5、 第六电阻 R6、 第七电阻 R7、 第八电阻 R8、 第二电容 C2、 第三电容 C3、第三二极管 D3、第四二极管 D4、第三与逻辑器件 IC23、第四与逻辑器件 IC24。
第三二极管 D3与第四电阻 R4并联, 第三二极管 D3的阴极与第一与逻辑器件的输出端 0315连接, 第三二极管 D3的阳极分别与第八电阻 R8任意一端、 第三与逻辑器件 IC23任意 一输入端连接。
第四二极管 D4与第五电阻 R5并联, 第四二极管 D4的阴极与第二与逻辑器件的输出端 0316连接, 第四二极管 D4的阳极分别与第七电阻 R7任意一端、 第四与逻辑器件 IC24任意 一输入端连接。
第七电阻 R7另一端与第二电容 C2的正极连接, 第二电容 C2的负极与工作地连接。 第八电阻 R8另一端与第三电容 C3的正极连接, 第三电容 C3的负极与工作地连接。 第六电阻 R6的任意一端分别连接到第三与逻辑器件 IC23的另一输入端、 第四与逻辑器 件 IC24的另一输入端, 第六电阻 R6的另一端连接到工作电源。
第三与逻辑器件 IC23的输出端连接到第一输出端子 010。
第四与逻辑器件 IC24的输出端连接到第二输出端子 020。
如图 8, 相序检测模块 122, 进一歩包括:
第十四电阻 R14、第十五电阻 R15、第十六电阻 R16、第十七电阻 R17、第十八电阻 R18、 第十九电阻 R19、第二十电阻 R20、第五电容 C5、第六电容 C6、第七电容 C7、第八电容 C8、 第十一二极管 Dl l、 第十二二极管 D12、 第十三二极管 D13、 第十四二极管 D14、 第一光电 耦合器 IC31。
三相电源的第一相 L1分别连接第十五电阻 R15任意一端、 第六电容 C6任意一端。 第十五电阻 R15另一端分别连接第十四电阻 R14任意一端、 第十八电阻 R18任意一端、 第十一二极管 D11的阳极、 第十二二极管 D12的阴极。 第六电容 C6另一端连接第十六电阻 R16任意一端。
第十六电阻 R16另一端分别连接第十八电阻 R18另 端、第十七电阻 R17任意一端、第 十三二极管 D13的阳极、 第十四二极管 D14的阴极。
三相电源的第二相 L2连接第五电容 C5任意一端。
第五电容 C5另一端连接到第十四电阻 R14另一端。
三相电源的第三相 L3连接第十七电阻 R17另一端。
第一光电耦合器 IC31输入端发光二极管的阳极分别连接第十一二极管 D11的阴极、第十 三二极管 D13的阴极、 第七电容 C7任意一端, 其阴极连接第十九电阻 R19任意一端。
第十九电阻 R19另一端分别连接第七电容 C7另一端、 第十二二极管 D12的阳极、 第十 四二极管 D14的阳极;
第一光电耦合器 IC31输出端三极管的集电极连接工作电源,发射极分别连接第二十电阻 R20任意一端、 第八电容 C8任意一端、 第四输入端 140。
第二十电阻 R20另一端、 第八电容 C8另一端分别连接工作地。
上述电路仅是相序检测模块的较佳实施例, 具体实施时, 还有很多替换方案, 如图 8b由 九个电阻、 三个二极管、 三个光电耦合器、 四个与非逻辑器件、 两个三极管、 一个电容组成。 三个光电耦合器的输入端与二极管组成一个三相整流桥, 用三个电阻限定整流桥中的电流, 此时, 三个光电耦合器将输出六组信号, 该六组信号通过四个与非逻辑器件输出与三相电同 周期的占空比信号, 或为高电平 100%占空比信号, 髙电平信号使 PNP三极管截止, 最终输 出高电平信号作为此时的相序状态;或为高电平 5/6占空比信号,该信号使 PNP三极管有 1/6 个周期处于导通状态给后面的电容充电, 并使 NPN三极管导通, 另外 5/6个周期由电容放电 保持 NPN三极管导通, 最终输出一个低电平作为此时的相序状态; 图 8c该电路在图 8a的基 础上, 改变光电耦合器件输出端的电路, 输出与图 8a相反的相序信号表示不同相序状态。 本 发明不对具体电路形式作出限定。
如图 9a, 缺相检测模块 121, 进一步包括:
第九电阻 R9、 第十电阻 R10、 第十一电阻 Rl l、 第十二电阻 R12、 第十三电阻 R13、 第 四电容 C4、 第五二极管 D5、 第六二极管 D6、 第七二极管 D7、 第八二极管 D8、 第九二极管 D9、 第十二极管 D10、 第二光电耦合器 IC32、 第一三极管 Ql、 第二三极管 Q2。
三相电源的第一相 L1连接第九电阻 R9任意一端; 第九电阻 R9另一端分别连接第五二 极管 D5的阳极、 第八二极管 D8的阴极;
三相电源的第二相 L2连接第十电阻 R10任意一端; 第十电阻 R10另一端分别连接第六 二极管 D6的阳极、 第九二极管 D9的阴极;
三相电源的第三相 L3连接第十一电阻 R11任意一端; 第十一电阻 R11另一端分别连接 第七二极管 D7的阳极、 第十二极管 D10的阴极;
第二光电耦合器 IC32输入端发光二极管的阳极分别连接第五二极管 D5的阴极、 第六二 极管 D6的阴极、 第七二极管 D7的阴极, 且所述发光二极管的阴极分别连接第八二极管 D8 的阳极、 第九二极管 D9的阳极、 第十二极管 D10的阳极;
第二光电耦合器 IC32输出端三极管的集电极连接工作电源,所述输出端三极管的发射极 连接第十二电阻 R12任意一端、 第一三极管 Q1的基极。 第十二电阻 R12另一端分别连接工 作地;
第一三极管 Q1的集电极连接工作电源, 发射极连接第四电容 C4任意一端、 第十三电阻 R13任意一端; 第四电容 C4另一端连接工作地。
第二三极管 Q2的基极连接第十三电阻 R13另一端, 其集电极连接第三输入端 130, 发射极连接工作地。
上述电路仅是缺相检测模块的较佳实施例, 具体实施时, 还有很多替换方案, 如图 9b该 原理图在缺相检测电路图 9a的基础上, 在缺相信号的输出端增加一个反向逻辑器件, 使用与 图 9a中输出的相反的缺相信号,来表示此时的缺相状态。本发明不对具体电路形式作出限定。
如图 10, 结合上述固态继电器的结构, 进一步描述使用上述固态继电器进行三相交流电 机运行方向控制的方法, 包括下列步骤:
S1 : 三相电源接入相序检测模块 122, 相序检测模块 122检测三相电源供电的相序, 并 提供相序信号给自动纠相与缺相保护逻辑模块 13的信号处理单元 132。
S2: 三相电源接入缺相检测模块 121, 缺相检测模块 121检测三相电源供电是否存在缺 相, 并提供缺相信号给自动纠相与缺相保护逻辑模块 13的信号处理单元。
S3: 控制信号 CS输入信号转换单元 131 , 信号转换单元 131对该控制信号 CS进行处理 后输出给信号处理单元 132。
S4: 信号处理单元 132处理信号转换单元 131传输的信号以及相序检测模块 122和缺相 检测模块 121输入的信号, 并将处理后的控制结果输出到驱动模块 14。 S5 : 驱动模块 14通过控制功率组件模块 15控制三相电机的相序。
图 10中, 步骤 S1至 S5顺次连接, 但在具体实施时, 上述步骤 Sl、 S2、 S3并没有先后 的顺序, 三者可以同时进行, 也可以不同先后的顺序进行。 本发明不对步骤 Sl、 S2、 S3 的 顺序进行限定。
其中, 步骤 Sl, 进一步包括:
设定高 /低电平为三相电源正向相序, 低 /高电平为三相电源反向相序, 此时相序检测模块 122会根据当前输入的三相电源相序状态输出一个对应的高 /低电平信号给信号处理单元 132。
步骤 S2, 进一步包括:
设定高 /低电平为三相电源供电缺相, 低 /高电平为三相电源供电未缺相, 此时缺相检测模 块 121 会根据当前输入的三相电源缺相状态输出一个对应的高 /低电平信号给信号处理单元
步骤 S4, 进一歩包括:
S41 : 信号转换单元 131的信号以及缺相信号输入到缺相保护子单元 21中。 当三相电源 为功率组件模块 15供电, 且出现至少有一相电源连接断开的时候, 该子单元会根据缺相检测 模块 121输出的缺相信号直接锁定输出结果, 即使输出到驱动模块 14的控制信号无效。
S42: 缺相保护子单元 21的输出信号以及相序信号输入自动纠相子单元 22中。 当三相电 源为功率组件模块 15供电, 且任意两相互换连接位置时, 将导致三相电的输入相序改变, 此 时, 自动纠相子单元 22将根据相序检测单元 122输出的相序信号, 使输入的控制信号输出相 反, 即输入的控制信号为高 /低电平, 通过自动纠相子单元输出的为低 /高电平, 最终使三相电 源加载到负载的相序不变。
S43 : 自动纠相子单元 22的输出信号给互锁子单元 23, 当互锁子单元 23接收到一对(两 个) 相同的信号时, 该子单元将输出一对 (两个) 低电平。
S44: 互锁子单元 23的输出信号传输给延时子单元 24, 功率组件模块 15中的可控硅关 断, 需要可控硅中的负载电流小于一定的值。 此时若给功率组件驱动信号容易造成固态继电 器内部相间短路,延时子单元 24就是将输出到驱动电路的控制信号延时到功率组件关断之后 再输出到驱动电路。
上述步骤中, 步骤 S2中, 缺相保护子单元 21、 自动纠相子单元 22的顺序可以互换。 本 发明不对上述步骤的顺序作出限定。
与现有技术相比, 本发明的有益效果如下: 第一, 本发明的固态继电器结构功能集中, 其本身就可以实现三相电机的电源的自动纠 相以及缺相保护, 不必再接外部设备。
第二, 本发明的固体继电器中实现自动纠相和缺相保护的结构完全由分立元件来实现, 即硬件电路来实现。省去了外部设备可能用到的控制器 MCU/DSP, 节省了成本, 即用低廉的 价格实现了相同的功能。
第三, 本发明的固体继电器中正转和反转两个控制输入信号互锁并延迟一段时间再给控 制逻辑, 解决了因可控硅关断特性造成的相间短路。
第四, 固态继电器是在强电的环境下工作, 要求工作器件有极强的抗干扰能力, 本发明 的固体继电器的结构由于都是通过分立元件, 即硬件电路实现的, 故其具有强大的抗干扰工 作能力。
第五, 本发明的固态继电器的结构由于都是通过分立元件, 即硬件电路实现的, 其相比 用 MCU/DSP实现的电路更优, 不存在死机现象, 也不存在因软件运行错误造成器件损坏, 或者更大的事故可能。 而且本发明的实现电路简单, 安全可靠。
第六, 本发明能实时检测到缺相的发生, 使三相交流电动机在三相电源缺相时, 使控制 信号输入无效, 关断功率组件避免电机因缺相运行而损毁。
第七, 本发明实时监测三相电输入相序, 当三相电输入相序改变时, 内部控制逻辑会发 出相应控制指令而使加在电机的相序不变, 避免因相序改变而造成电机运行方向与期望的方 向不一致现象。 本发明优选实施例只是用于帮助阐述本发明。 优选实施例并没有详尽叙述所有的细节, 也不限制该发明仅为所述的具体实施方式。 显然, 根据本说明书的内容, 可作很多的修改和 变化。 本说明书选取并具体描述这些实施例, 是为了更好地解释本发明的原理和实际应用, 从而使所属技术领域技术人员能很好地利用本发明。 本发明仅受权利要求书及其全部范围和 等效物的限制。

Claims

WO 2013/159557 权 利 要 求 书 PCT/CN2013/000075 、 一种新型的针对三相交流电机运行方向控制的固态继电器, 包括驱动模块、 功率组件模 块, 所述驱动模块与所述功率组件模块连接; 所述功率组件模块分别连接三相电源和三 相负载; 其特征在于: 还包括相序检测模块、 缺相检测模块、 自动纠相与缺相保护逻辑 模块; 其中- 所述相序检测模块: 输入端与所述三相电源连接, 其输出端与所述自动纠相与缺相保护 逻辑模块连接; 用于检测所述三相电源供电的相序, 并提供相序信号给所述自动纠相与 缺相保护逻辑模块; 所述缺相检测模块: 输入端与所述三相电源连接, 其输出端与所述自动纠相与缺相保护 逻辑模块连接; 用于检测三相电源供电时是否出现缺相, 并提供缺相信号给所述自动纠 相与缺相保护逻辑模块; 所述自动纠相与缺相保护逻辑模块进一步包括: 信号转换单元: 接收控制信号, 并对所述控制信号进行电平转换; 信号处理单元: 与所述信号转换单元连接, 并且其还分别与所述相序检测模块的输出端、 所述缺相检测模块的输出端以及所述驱动模块连接; 用于对所述相序信号、 所述缺相信 号、 以及所述进行电平转换后的控制信号进行处理, 并将处理后的控制结果输出到所述 驱动模块。 、 根据权利要求 1所述的固态继电器, 其特征在于, 所述信号处理单元进一步包括- 缺相保护子单元、 自动纠相子单元、 互锁子单元、 延时子单元、 第一输入端子、 第二输 入端子、 第三输入端子、 第四输入端子、 第一输出端子、 第二输出端子; 所述第一输入端子和所述第二输入端子分别与所述信号转换单元的输出端连接; 所述第三输入端子与所述缺相检测模块的输出端连接; 所述第四输入端子与所述相序检测模块的输出端连接; 所述第一输出端子和所述第二输出端子分别与所述信号处理单元的输出端连接; 其中, 所述第一输入端子至所述第三输入端子分别与所述缺相保护子单元连接, 所述第 四输入端子与所述自动纠相子单元相连, 所述第一输出端子和所述第二输出端子与所述 延时子单元相连接; 所述缺相保护子单元、 自动纠相子单元、 互锁子单元、 延时子单元依次连接; 或者所述 自动纠相子单元、 缺相保护子单元、 互锁子单元、 延时子单元依次连接; 其中:
所述缺相保护子单元, 用于根据所述缺相检测模块输出的缺相信号, 当三相电有缺相时, 直接锁定输出结果, 使输出结果无效;
所述自动纠相子单元, 用于根据所述相序检测模块输出的相序信号, 当三相电相序改变 时, 使输入的控制信号通过所述自动纠相子单元后, 输出相反;
所述互锁子单元, 用于当前一级单元输出到所述互锁子单元的信号相同时, 进行输出结 果的锁定, 使输出结果无效;
所述延时子单元, 用于将输出到所述驱动模块的控制信号进行延时, 使控制信号在功率 组件模块的功率组件关断之后再输出到驱动模块。
根据权利要求 2所述的固态继电器, 其特征在于, 所述缺相保护子单元进一步包括: 第一电阻、 第二电阻、 第一二极管、 第二二极管;
所述第一电阻与所述第一二极管的阳极连接, 所述第一二极管的阳极连接到所述第一输 入端子, 并且所述第一二极管的阳极作为所述缺相保护子单元的第一输出端; 所述第二电阻与所述第二二极管的阳极连接, 所述第二二极管的阳极连接到所述第二输 入端子, 并且所述第二二极管的阳极作为所述缺相保护子单元的第二输出端; 所述第一二极管的阴极与所述第二二极管的阴极连接, 再连接到所述第三输入端子。 根据权利要求 3所述的固态继电器, 其特征在于, 所述自动纠相子单元进一步包括: 第 一异或逻辑器件、 第二异或逻辑器件;
所述第一异或逻辑器件的任意一输入端与所述第二异或逻辑器件的任意一输入端连接, 所述第一异或逻辑器件的输入端连接到所述第四输入端子;
所述第一异或逻辑器件的另一输入端连接到所述缺相保护子单元的第一输出端; 所述第二异或逻辑器件的另一输入端连接到所述缺相保护子单元的第二输出端。
根据权利要求 4所述的固态继电器, 其特征在于, 所述互锁子单元进一步包括: 第三电 阻、 第一电容、 第三异或逻辑器件、 第四异或逻辑器件、 第一与逻辑器件、 第二与逻辑 器件;
所述第三电阻的一端连接到工作电源, 另一端分别连接到所述第三异或逻辑器件的任意 一输入端、 所述第四异或逻辑器件的任意一输入端、 所述第一电容的任意端; 所述第一电容的另一端与工作地连接; 所述第三异或逻辑器件的另一输入端分别连接到所述第一异或逻辑器件的输出端、 所述 第二与逻辑器件的任意一输入端;
所述第三异或逻辑器件的输出端与所述第一与逻辑器件的任意一输入端连接; 所述第四异或逻辑器件的另一输入端分别连接到所述第二异或逻辑器件的输出端、 所述 第一与逻辑器件的另一输入端;
所述第四异或逻辑器件的输出端与所述第二与逻辑器件的另一输入端连接。
、 根据权利要求 5所述的固态继电器, 其特征在于, 所述延时子单元进一步包括- 第四电阻、 第五电阻、 第六电阻、 第七电阻、 第八电阻、 第二电容、 第三电容、 第三二 极管、 第四二极管、 第三与逻辑器件、 第四与逻辑器件;
所述第三二极管与所述第四电阻并联, 所述第三二极管的阴极与所述第一与逻辑器件的 输出端连接, 所述第三二极管的阳极分别与所述第八电阻任意一端、 所述第三与逻辑器 件任意一输入端连接;
所述第四二极管与所述第五电阻并联, 所述第四二极管的阴极与所述第二与逻辑器件的 输出端连接, 所述第四二极管的阳极分别与所述第七电阻任意一端、 所述第四与逻辑器 件任意一输入端连接;
所述第七电阻另一端与所述第二电容的正极连接, 所述电容的负极与工作地连接; 所述第八电阻另一端与所述第三电容的正极连接, 所述第三电容的负极与工作地连接; 所述第六电阻的任意一端分别连接到所述第三与逻辑器件的另一输入端、 所述第四与逻 辑器件的另一输入端, 所述第六电阻的另一端连接到工作电源;
所述第三与逻辑器件的输出端连接到所述第一输出端子;
所述第四与逻辑器件的输出端连接到所述第二输出端子。
、 根据权利要求 1所述的固态继电器, 其特征在于, 所述相序检测模块进一步包括- 第十四电阻、 第十五电阻、 第十六电阻、 第十七电阻、 第十八电阻、 第十九电阻、 第二 十电阻、 第五电容、 第六电容、 第七电容、 第八电容、 第十一二极管、 第十二二极管、 第十三二极管、 第十四二极管、 第一光电耦合器;
三相电源的第一相分别连接所述第十五电阻任意一端、 所述第六电容任意一端; 所述第十五电阻另一端分别连接所述第十四电阻任意一端、 所述第十八电阻任意一端、 所述第十一二极管的阳极、 所述第十二二极管的阴极; 所述第六电容另一端连接所述第十六电阻任意一端;
所述第十六电阻另一端分别连接所述第十八电阻另一端、 所述第十七电阻任意一端、 所 述第十三二极管的阳极、 所述第十四二极管的阴极;
三相电源的第二相连接所述第五电容任意一端;
所述第五电容另一端连接到所述第十四电阻另一端;
三相电源的第三相连接所述第十七电阻另一端;
所述第一光电耦合器输入端发光二极管的阳极分别连接所述第十一二极管的阴极、 所述 第十三二极管的阴极、 所述第七电容任意一端, 其阴极连接所述第十九电阻任意一端; 所述第十九电阻另一端分别连接所述第七电容另一端、 所述第十二二极管的阳极、 所述 第十四二极管的阳极;
所述第一光电耦合器输出端三极管的集电极连接工作电源, 其发射极分别连接所述第二 十电阻任意一端、 所述第八电容任意一端、 所述第四输入端子;
所述第二十电阻另一端、 所述第八电容另一端分别连接工作地。
、 根据权利要求 1所述的固态继电器, 其特征在于, 所述缺相检测模块进一步包括:
第九电阻、 第十电阻、 第十一电阻、 第十二电阻、 第十三电阻、 第四电容、 第五二极管、 第六二极管、 第七二极管、 第八二极管、 第九二极管、 第十二极管、 第二光电耦合器、 第一三极管、 第二三极管;
三相电源的第一相连接所述第九电阻任意一端; 所述第九电阻另一端分别连接所述第五 二极管的阳极、 所述第八二极管的阴极;
三相电源的第二相连接所述第十电阻任意一端; 所述第十电阻另一端分别连接所述第六 二极管的阳极、 第九二极管的阴极;
三相电源的第三相连接所述第十一电阻任意一端; 所述第十一电阻另一端分别连接所述 第七二极管的阳极、 第十二极管的阴极;
所述第二光电耦合器输入端发光二极管的阳极分别连接所述第五二极管的阴极、 所述第 六二极管的阴极、 所述第七二极管的阴极, 且所述发光二极管的阴极分别连接所述第八 二极管的阳极、 所述第九二极管的阳极、 所述第十二极管的阳极;
所述第二光电耦合器输出端三极管的集电极连接工作电源, 所述输出端三极管的发射极 连接所述第十二电阻任意一端、 所述第一三极管基极; 所述第十二电阻另一端连接工作地;
所述第一三极管的集电极连接工作电源, 其发射极连接所述第四电容任意一端、 所述第 十三电阻任意一端;
所述第四电容另一端连接工作地;
所述第二三极管基极连接所述第十三电阻另一端, 其集电极连接所述第三输入端, 其发 射极连接工作地。
、 根据权利要求 1至 7中任意一项所述的固态继电器进行三相交流电机运行方向控制的方 法, 其特征在于, 包括下列步骤:
S1 : 三相电源接入相序检测模块, 相序检测模块检测三相电源供电的相序, 并提供相序 信号给自动纠相与缺相保护逻辑模块的信号处理单元;
S2: 三相电源接入缺相检测模块, 缺相检测模块检测三相电源供电是否存在缺相, 并提 供缺相信号给自动纠相与缺相保护逻辑模块的信号处理单元;
S3: 控制信号 CS输入信号转换单元, 信号转换单元对该控制信号 CS进行处理后输出给 信号处理单元;
S4: 信号处理单元处理信号转换单元传输的信号以及相序检测模块和缺相检测模块输入 的信号, 并将处理后的控制结果输出到驱动模块;
S5 : 驱动模块通过控制功率组件模块控制三相电机的相序。
0、 根据权利要求 9所述的方法, 其特征在于, 所述步骤 S4进一歩包括:
S41 :信号转换单元进行电平转换后的控制信号以及缺相检测模块的缺相信号输出到缺相 保护子单元中, 当三相电源有缺相时, 缺相保护子单元根据缺相检测模块输出的缺相信 号锁定输出结果, 使控制信号输出无效;
S42: 缺相保护子单元的输出信号以及相序检测模块的相序信号输出到自动纠相子单元 中, 当三相电相序改变的时候, 自动纠相子单元根据相序检测单元输出的相序信号, 使 通过自动纠相子单元的控制信号输出相反, 最终使三相电源加载到负载的相序不变;
S43 : 自动纠相子单元的输出信号输入给互锁子单元, 当自动纠相子单元输出到互锁子单 元的信号相同时, 互锁子单元将锁定输出结果, 使控制信号输出无效;
S44: 互锁子单元的输出信号传输给延时子单元, 延时子单元将输出到驱动模块的控制信 号进行延时, 使控制信号在功率组件模块的功率组件关断之后再输出到驱动模块。
PCT/CN2013/000075 2012-04-23 2013-01-25 一种新型的针对三相交流电机运行方向控制的固态继电器及方法 WO2013159557A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/396,675 US9559625B2 (en) 2012-04-23 2013-01-25 Solid-state relay for running direction control of three-phase alternating current motor and method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210119079.0 2012-04-23
CN201210119079.0A CN102664568B (zh) 2012-04-23 2012-04-23 一种新型的针对三相交流电机运行方向控制的固态继电器及方法

Publications (1)

Publication Number Publication Date
WO2013159557A1 true WO2013159557A1 (zh) 2013-10-31

Family

ID=46774003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/000075 WO2013159557A1 (zh) 2012-04-23 2013-01-25 一种新型的针对三相交流电机运行方向控制的固态继电器及方法

Country Status (3)

Country Link
US (1) US9559625B2 (zh)
CN (1) CN102664568B (zh)
WO (1) WO2013159557A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105883363A (zh) * 2015-04-23 2016-08-24 山东华联矿业股份有限公司 防触电风机启动装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102664568B (zh) * 2012-04-23 2014-12-24 库顿电子科技(上海)有限公司 一种新型的针对三相交流电机运行方向控制的固态继电器及方法
CN105991079A (zh) * 2016-07-12 2016-10-05 徐东旭 自动控制转向的异步电动机
CN106546832A (zh) * 2016-12-08 2017-03-29 珠海格力电器股份有限公司 一种三相电源的检测装置及其使用方法
CN109004625B (zh) * 2017-08-11 2024-03-19 上海英奇电气科技有限公司 一种输出回路互锁系统
CN108462418B (zh) * 2018-05-11 2024-03-19 佛山市小奇科技有限公司 一种电机恒功率驱动器
CN109038484B (zh) * 2018-07-25 2023-11-21 天钥光电(湖北)股份有限公司 三相缺电监测装置
CN108953207B (zh) * 2018-07-27 2021-01-22 廊坊市骏成消防技术咨询服务有限公司 一种风机反转保护控制装置
CN109143929B (zh) * 2018-08-22 2024-04-12 北京丰隆科技有限公司 一种开窗拉幕系统控制电路及智能保护装置
CN109507491B (zh) * 2018-10-19 2021-12-28 陕西航空电气有限责任公司 三相逆变器电压相序检测电路、装置及方法
CN110492792B (zh) * 2019-08-06 2024-10-01 广东恒申美达新材料股份公司 一种基于三相固态继电器的电机正反转安全保护电路
CN112067911B (zh) * 2020-08-25 2023-03-10 宁波拓邦智能控制有限公司 一种无刷直流电机的缺相检测方法及装置
CN114629178A (zh) 2020-12-14 2022-06-14 台达电子工业股份有限公司 相序调节系统及相序调节方法
CN113078026B (zh) * 2021-04-16 2022-09-16 上海宏英智能科技股份有限公司 一种继电器端口检测电路
CN118573068A (zh) * 2024-07-31 2024-08-30 西安西驰电气股份有限公司 电机正反转控制电路和软启动器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1350736A1 (ru) * 1986-03-13 1987-11-07 Предприятие П/Я А-1554 Устройство дл контрол чередовани и обрыва фаз трехфазной сети
CN1627627A (zh) * 2003-12-12 2005-06-15 骐成科技股份有限公司 电动机多功能综合控制系统
CN202134896U (zh) * 2011-08-01 2012-02-01 苏州市恒达电子元件厂 三相保护继电器
CN102664568A (zh) * 2012-04-23 2012-09-12 库顿电子科技(上海)有限公司 一种新型的针对三相交流电机运行方向控制的固态继电器及方法
CN202565213U (zh) * 2012-04-23 2012-11-28 库顿电子科技(上海)有限公司 一种新型的针对三相交流电机运行方向控制的固态继电器

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3825768A (en) * 1973-02-15 1974-07-23 Eaton Corp Phase sequence and power loss detector
US5184063A (en) * 1992-02-13 1993-02-02 Carrier Corporation Three phase reversal detection system
JPH09130964A (ja) * 1995-10-30 1997-05-16 Sanyo Electric Co Ltd 極低温冷凍装置
CN1181650A (zh) * 1996-11-05 1998-05-13 长春光学精密机械学院 智能型三相保护固态继电器
DE10237120B3 (de) * 2002-08-13 2004-04-15 Infineon Technologies Ag Phasendetektor
TWI231650B (en) * 2004-06-03 2005-04-21 Amic Technology Corp Digital phase frequency discriminator
CN1866659A (zh) * 2005-05-11 2006-11-22 上海国鼎数码科技有限公司 三相交流电动机电源缺相检测和相序纠正的方法及装置
CN201025671Y (zh) * 2006-10-20 2008-02-20 李建华 电源相序自动转换器
US8736323B2 (en) * 2007-01-11 2014-05-27 International Business Machines Corporation Method and apparatus for on-chip phase error measurement to determine jitter in phase-locked loops
US7511543B2 (en) * 2007-02-08 2009-03-31 International Business Machines Corporation Automatic static phase error and jitter compensation in PLL circuits
JP5360344B2 (ja) * 2007-09-21 2013-12-04 日立工機株式会社 電動工具
EP2212706B1 (en) * 2007-11-13 2018-05-16 Emerson Climate Technologies, Inc. Three-phase detection module
JP5160934B2 (ja) * 2008-03-28 2013-03-13 新電元工業株式会社 バッテリ充電装置、バッテリ充電制御方法
TWI399031B (zh) * 2009-08-19 2013-06-11 Delta Electronics Inc 馬達控制裝置及其方法
CN102025814A (zh) * 2009-09-11 2011-04-20 深圳富泰宏精密工业有限公司 便携式电子装置
CN201533276U (zh) * 2009-11-10 2010-07-21 天津市津达执行器有限公司 智能三相电机驱动控制模块
CN103069704B (zh) * 2010-08-16 2015-06-10 英派尔科技开发有限公司 转换器和转换器控制方法
JP2012189506A (ja) * 2011-03-11 2012-10-04 Aisin Aw Co Ltd 電流検出装置
JP5293978B2 (ja) * 2011-04-18 2013-09-18 株式会社デンソー 車両用発電機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1350736A1 (ru) * 1986-03-13 1987-11-07 Предприятие П/Я А-1554 Устройство дл контрол чередовани и обрыва фаз трехфазной сети
CN1627627A (zh) * 2003-12-12 2005-06-15 骐成科技股份有限公司 电动机多功能综合控制系统
CN202134896U (zh) * 2011-08-01 2012-02-01 苏州市恒达电子元件厂 三相保护继电器
CN102664568A (zh) * 2012-04-23 2012-09-12 库顿电子科技(上海)有限公司 一种新型的针对三相交流电机运行方向控制的固态继电器及方法
CN202565213U (zh) * 2012-04-23 2012-11-28 库顿电子科技(上海)有限公司 一种新型的针对三相交流电机运行方向控制的固态继电器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105883363A (zh) * 2015-04-23 2016-08-24 山东华联矿业股份有限公司 防触电风机启动装置

Also Published As

Publication number Publication date
CN102664568B (zh) 2014-12-24
US20150130393A1 (en) 2015-05-14
CN102664568A (zh) 2012-09-12
US9559625B2 (en) 2017-01-31

Similar Documents

Publication Publication Date Title
WO2013159557A1 (zh) 一种新型的针对三相交流电机运行方向控制的固态继电器及方法
CN108777573B (zh) 一种交流固态继电器
CN108011355A (zh) 在开关模块中使用的通信系统
WO2008122189A1 (fr) Circuit de protection de sortie pour convertisseur d'alimentation
CN108809197B (zh) 交错式pfc控制电路及电机驱动电路
CN111404367B (zh) Pfc电路、线路板及空调器
CN110829575A (zh) 缓启母线电路、方法和不间断电源
CN101496270A (zh) 具有针对线感应瞬态的瞬态电压抑制设备的开关模式电源以及用于抑制驱动器级中的多余振荡的机制
CN115792419A (zh) 一种三相电源缺相检测电路及bldc电机控制器
CN115657643A (zh) 电机抱闸控制系统自检电路、自检方法及电机抱闸系统
CN113839546B (zh) 一种中点钳位电路、控制设备及控制方法
CN113364249B (zh) 一种igbt驱动板的保护装置、方法和变频器
CN202285347U (zh) 一种自动转换开关常/备用执行开关的状态检测电路
CN203434917U (zh) 一种故障自修复的电机容错驱动控制系统
CN116317660B (zh) 一种可控逆变器电路
CN112103922A (zh) 一种电源保护装置、方法和驱动器
CN108183634B (zh) 具有旁路开关故障保护的软起动器
CN109217273B (zh) 一种关闭电源开关无延迟的防浪涌电路
CN213243549U (zh) 一种新型施工升降梯变频器抱闸供电系统
CN112187242A (zh) 一种三相正反转组合型固态继电器
CN210167993U (zh) 一种具有故障监测功能的无触点起重机电机控制器
CN210201483U (zh) 变流器直流母线保护装置
CN208691214U (zh) 一种交流固态继电器
CN202565213U (zh) 一种新型的针对三相交流电机运行方向控制的固态继电器
CN111478286A (zh) 一种pfc过流保护电路、空调控制器及空调

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13781288

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14396675

Country of ref document: US

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10-03-2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13781288

Country of ref document: EP

Kind code of ref document: A1