WO2022266983A1 - 一种显示屏及显示装置 - Google Patents

一种显示屏及显示装置 Download PDF

Info

Publication number
WO2022266983A1
WO2022266983A1 PCT/CN2021/102271 CN2021102271W WO2022266983A1 WO 2022266983 A1 WO2022266983 A1 WO 2022266983A1 CN 2021102271 W CN2021102271 W CN 2021102271W WO 2022266983 A1 WO2022266983 A1 WO 2022266983A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
data
display
liquid crystal
display screen
Prior art date
Application number
PCT/CN2021/102271
Other languages
English (en)
French (fr)
Inventor
王晶
李鹏
蔡杨杨
张春兵
李响
王伯长
王贺陶
布占场
张宇
栗首
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to DE112021005089.3T priority Critical patent/DE112021005089T5/de
Priority to US17/788,038 priority patent/US20240168337A1/en
Priority to CN202180001609.9A priority patent/CN115735152A/zh
Priority to PCT/CN2021/102271 priority patent/WO2022266983A1/zh
Publication of WO2022266983A1 publication Critical patent/WO2022266983A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133626Illuminating devices providing two modes of illumination, e.g. day-night
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • G02F1/133555Transflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133531Polarisers characterised by the arrangement of polariser or analyser axes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133536Reflective polarizers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2092Details of a display terminals using a flat panel, the details relating to the control arrangement of the display terminal and to the interfaces thereto
    • G09G3/2096Details of the interface to the display terminal specific for a flat panel
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/38Anti-reflection arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/58Arrangements comprising a monitoring photodetector
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/28Adhesive materials or arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/03Function characteristic scattering
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/09Function characteristic transflective
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0297Special arrangements with multiplexing or demultiplexing of display data in the drivers for data electrodes, in a pre-processing circuitry delivering display data to said drivers or in the matrix panel, e.g. multiplexing plural data signals to one D/A converter or demultiplexing the D/A converter output to multiple columns
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/144Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light being ambient light
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/16Calculation or use of calculated indices related to luminance levels in display data

Definitions

  • the present disclosure relates to the field of display technology, in particular to a display screen and a display device.
  • the human-computer interaction function is the primary condition for realizing the smart Internet of Things, and the display screen, as an important medium of human-computer interaction, appears in every corner of the city.
  • a transflective liquid crystal display is applied to an outdoor display scene.
  • the transflective liquid crystal display in the related art has the following problems: complex process, high development cost, long development cycle, and the transmittance or reflectance of the display panel is obviously reduced, and the display brightness is low.
  • Embodiments of the present disclosure provide a display screen and a display device, which can improve display brightness and have a simple process.
  • the embodiments of the present disclosure provide a display screen, including:
  • a transmissive liquid crystal panel includes a display side and a non-display side arranged opposite to each other;
  • the first polarizer is arranged on the display side of the transmissive liquid crystal panel
  • the second polarizer is arranged on the non-display side of the transmissive liquid crystal panel, and the transmission axis direction of the first polarizer is perpendicular to the second polarizer;
  • the scattering layer is arranged between the first polarizer and the transmissive liquid crystal panel, and/or is arranged between the second polarizer and the transmissive liquid crystal panel;
  • a reflective polarizer is arranged between the transmissive liquid crystal panel and the second polarizer.
  • the scattering layer includes a scattering film.
  • the scattering layer includes a high-haze optical adhesive coating.
  • the reflective polarizer is located between the scattering film and the second polarizer.
  • the direction of the diffusion axis of the scattering film, the direction of the transmission axis of the reflective polarizer, and the direction of the transmission axis of the second polarizer are consistent.
  • the scattering film, the reflective polarizer and the second polarizer form an external composite film, which is fully attached to the transmissive liquid crystal panel.
  • the first polarizer is disposed on the transmissive liquid crystal panel in a fully bonded manner.
  • the display screen further includes an anti-reflection film disposed on a side of the first polarizer away from the transmissive liquid crystal panel.
  • the liquid crystal panel is at least one of a twisted nematic liquid crystal panel, a vertical alignment liquid crystal panel, an in-plane switching liquid crystal panel, a fringe field switching liquid crystal panel, and a dye liquid crystal panel.
  • the reflective polarizer includes: a core layer composed of multiple layers of birefringent material layers and multiple layers of non-birefringent material layers alternately stacked, and the refractive index of the birefringent material layer is higher than that of the non-birefringent material layer the refractive index.
  • An embodiment of the present disclosure also provides a display device, including:
  • the display screen provided by the embodiment of the present disclosure.
  • a backlight module for providing a light source for the display screen
  • a video signal processing unit used to control the video display signal of the display screen
  • the micro control unit is connected with the light detection unit and the video signal processing unit, and is used to generate a mode switching signal according to the ambient light data collected by the light detection unit, and control the backlight module and the video signal processing unit. the working state of the display unit, so that the display device is switched between a transmissive mode and a reflective mode,
  • the backlight module is turned on, and the video signal processing unit sends a first image display signal to the display screen;
  • the backlight module is turned off, the video signal processing unit sends a second image display signal to the display screen, and the image grayscale of the first image display signal and the second image display signal complementary.
  • the light detection unit includes: a light collector, the light collector is arranged around the display screen, and is used to collect ambient light data;
  • the microcontroller unit includes:
  • a data analyzer connected to the light collector, for processing and analyzing the light signal collected by the light collector, so as to obtain the ambient light parameter L;
  • a signal generator configured to send a first signal to the backlight module and the video signal processing unit when the ambient light parameter L is greater than a first critical value, so that the display device switches to a reflective mode,
  • a second signal is sent to the backlight module and the video signal processing unit, so that the display The device switches to transmissive mode.
  • the light collector includes m main sensors and n auxiliary sensors, both m and n are positive integers greater than or equal to 2, and the main sensor is arranged on the top of the display screen when it is in use position, the auxiliary sensor is set at the bottom position of the display screen when it is in use;
  • the data analyzer specifically includes:
  • the first determiner is used to determine the number m' of the main sensors that have collected light data, where m' is 0 or a positive integer less than or equal to m;
  • the first comparator connected to the first judger, is used to compare whether the light data difference collected by the m' main sensors is at the first predetermined threshold when m' is a positive integer less than or equal to m Inside;
  • the second determiner is used to determine the number n' of the auxiliary sensors that have collected light data, and n' is 0 or a positive integer less than or equal to n;
  • a second comparator the second comparator is connected to the second judger, and is used to compare the light data difference collected by n' auxiliary sensors when n' is a positive integer less than or equal to n is within a second predetermined threshold;
  • the second data calculator is used to calculate the light data collected by the remaining (nx) auxiliary sensors when the difference in light data collected by x auxiliary sensors among the n' auxiliary sensors is within a second predetermined threshold.
  • calculate the average value of the light data of the x main sensors to obtain the second data L S1 , L S1 (S 1 +S 2 ... S x )/x, Wherein S x is the light data of the xth auxiliary sensor, and X is a positive integer less than or equal to n;
  • the third comparator is connected with the first comparator and the second data calculator, and is used when the light data difference collected by the m' main sensors exceeds the first predetermined threshold, and the n' light data collected by the main sensors If the light data difference collected by the auxiliary sensor is within the second predetermined threshold, compare whether the difference between the light data collected by each of the main sensors among the m' main sensors and the third data LS is within the third threshold. within a predetermined threshold;
  • the fourth comparator is connected with the first comparator and the second comparator, and is used for when the light data difference collected by the n' auxiliary sensors exceeds the second predetermined threshold, and the m' all When the light data difference collected by the main sensor exceeds the first predetermined threshold, compare whether the difference between the light data collected by the m' main sensors and the n' auxiliary sensors and the pre-stored light data is within the fourth predetermined threshold. within the threshold;
  • the third determiner is connected with the first determiner and the second determiner, and is used to determine that the light collector is damaged when the m' is 0 and n' is 0, and generates the signal to the The device sends the damage signal of the light collector;
  • the fourth judging unit is connected to the fourth comparator, and is used when the difference of the light data collected by the n' auxiliary sensors exceeds the second predetermined threshold, and the light data collected by the m' main sensors When the difference exceeds the first predetermined threshold, and the difference between the light data collected by the m' main sensors and the n' auxiliary sensors and the pre-stored light data exceeds the fourth predetermined threshold, it is determined that the light collector is damaged , and send the light collector damage signal to the signal generator.
  • the video signal processing unit specifically includes:
  • the video signal is directly output in a point-to-point mode, so that the display screen performs normal grayscale display
  • the video signal is output after inverse color processing, so that the display screen can display normal grayscale.
  • the video signal processing unit specifically includes:
  • Display drive unit connected with the display screen
  • T-con circuit connected with the micro control unit, for receiving the mode switching signal of the micro control unit
  • a first gamma chip and a second gamma chip integrated on the T-con circuit the first gamma chip is used to generate grayscale information in transmission mode, and the second gamma chip is used to generate Grayscale information in reflective mode;
  • a multi-way selection switch circuit is connected between the T-con circuit and the display driving unit, and is used to output corresponding gray scale information to the display driving unit according to the received mode switching signal.
  • micro control unit also includes:
  • the first timer is used to start timing when the ambient light parameter L collected by the light detection unit is greater than or equal to a first critical value
  • the first determiner is used to determine whether the ambient light parameter L is always greater than or equal to the first critical value within a predetermined period of time starting from the timing, and if so, determine that the display device needs to be switched to a reflective mode; if No, it is determined that the display device does not need to be switched to reflective mode.
  • micro control unit is also specifically used for:
  • a first signal generator configured to generate a mode switching signal to control the display device to switch to transmission when the ambient light parameter L is greater than a first critical value and in a declining state, and drops to the first critical value.
  • the second signal generator is used to control the backlight brightness Lbl value of the backlight module to remain constant when the ambient light parameter L is less than the first critical value and is in a declining state, and is greater than the second critical value. Change;
  • the third signal generator is configured to start timing when the ambient light parameter L reaches a second critical value, and judge whether the ambient light parameter L is always kept smaller than the first threshold within a predetermined duration from the timing. Two critical values, if so, control the backlight brightness of the backlight module to be reduced to Lbl/z, where z is a positive integer greater than 1;
  • the fourth signal generator is used to start timing when the ambient light parameter L rises from below the second critical value to above the second critical value, and judge whether the ambient environment Whether the light parameter L remains greater than the second critical value all the time, if so, control the backlight brightness of the backlight module to increase the Lbl value;
  • the fifth signal generator is configured to generate a mode switching signal when the ambient light parameter L rises to a first critical value, to control the display device to switch to the transmissive mode, and to control the backlight module to turn off.
  • the display screen and display device provided by the embodiments of the present disclosure solve the problems of complex process, high development cost, and long development cycle of the transflective display device in the related art.
  • the display screen provided by the embodiment of the present disclosure is a transmissive , Reflective dual-purpose display screen, with high reflectivity and transmittance, can meet the outdoor use under different illuminance, and realize the environmental protection effect of energy saving and emission reduction. And the process is simple, and the product stability is high. Through matching circuit design, it can automatically switch between transmissive and anti-display modes according to ambient light, and can be applied to liquid crystal display products of all sizes with strong applicability.
  • FIG. 1 is a schematic diagram of a three-dimensional structure of a display screen provided by some embodiments of the present disclosure
  • FIG. 2 is a schematic diagram of a three-dimensional structure of a display screen provided by other embodiments of the present disclosure
  • Fig. 3 is a schematic diagram of the roll-to-roll composite process of a scattering film, a reflective polarizer and a second polarizer;
  • Fig. 4 is the schematic diagram of the composite film whose diffusion axis of the scattering film is 0°;
  • Fig. 5 is the schematic diagram of the composite film whose diffusion axis of the scattering film is 90°;
  • FIG. 6 is a schematic diagram of a bonding method for an external composite film material of an ADS mode display screen provided by an embodiment of the present disclosure
  • Fig. 7 is a schematic diagram of another lamination method of an external composite film material of an ADS mode display screen provided by an embodiment of the present disclosure
  • Fig. 8 is a schematic diagram of the light path of the display screen in the black state in the transmission mode provided by some embodiments of the present disclosure
  • FIG. 9 is a schematic diagram of a white light path of a display screen in a transmissive mode provided by some embodiments of the present disclosure.
  • FIG. 10 is a schematic diagram of light paths of a display screen in a black state in reflective mode provided by some embodiments of the present disclosure.
  • Fig. 11 is a schematic diagram of light paths of a display screen in a black state in reflective mode provided by some embodiments of the present disclosure
  • Figure 12 is a schematic structural view of a reflective polarizer
  • Fig. 13 is a light path diagram in a birefringent material layer and a non-birefringent material layer of a reflective polarizer
  • FIG. 14 is a schematic diagram of a display device provided by the present disclosure that uses video signal real-time processing to convert a display signal
  • FIG. 15 is a schematic diagram of a display device provided by the present disclosure processing a display signal in a display gray scale inversion manner
  • FIG. 16 is a schematic diagram of a partial mode of the light collector in the display device provided by the present disclosure.
  • FIG. 17 is a schematic diagram of a gray scale display of a display device provided in an embodiment of the present disclosure under two modes of transmission mode and reflection mode;
  • FIG. 18 is a schematic diagram of specific signal timing correspondence and waveform changes for processing and adjusting the backlight after the backlight module in the display device receives the BL_ON signal and the PWM signal from the micro control unit according to the embodiment of the disclosure.
  • a transflective liquid crystal display is applied in an outdoor display scene.
  • the semi-transmissive and semi-reflective liquid crystal displays in the related art all make the transmissive area and the reflective area on the thin film transistor array substrate at the same time, so that the 1/n area of the sub-pixel has a transmissive function, and the other (n-1)/n area has a reflective function. Function.
  • the sub-pixel structure needs to be precisely designed, and the reflective layer material and the transmissive layer material are respectively deposited on the thin film transistor array substrate.
  • the optical paths of reflective display and transmissive display are different, it is also necessary to design a set of double switching devices in the pixel to drive the liquid crystal display device. Function.
  • the transflective display in the related art divides the sub-pixel into two parts, the transmissive area and the reflective area, or uses the BM area to make the reflective layer, the transmittance or reflectance of the display panel will be significantly reduced, resulting in the display The brightness is reduced.
  • an embodiment of the present disclosure provides a display screen and a display device, which can solve the complex process, high development cost, Long development cycle and other problems, and has high reflectivity and transmittance, can meet the use of outdoor under different ambient light, and truly achieve the environmental protection effect of energy saving and emission reduction.
  • Figure 1 and Figure 2 are schematic diagrams of the three-dimensional structure of the display screen provided by some embodiments of the present disclosure
  • Figure 8 is a schematic diagram of the light path of the display screen in the black state in the transmission mode provided by some embodiments of the present disclosure
  • 9 is a schematic diagram of the light path of the display screen in the white state in the transmissive mode provided by some embodiments of the present disclosure
  • FIG. 10 is a schematic diagram of the light path of the display screen in the black state of the reflective mode provided by some embodiments of the present disclosure
  • FIG. 11 is a schematic diagram of the light path of the display screen in the black state in the reflective mode provided by some embodiments of the present disclosure.
  • the display screen provided by the embodiment of the present disclosure includes:
  • a transmissive liquid crystal panel 100 includes a display side and a non-display side arranged opposite to each other;
  • the first polarizer 200 is arranged on the display side of the transmissive liquid crystal panel 100;
  • the second polarizer 300 is disposed on the non-display side of the transmissive liquid crystal panel 100, and the first polarizer 200 is perpendicular to the transmission axis direction of the second polarizer 300;
  • the scattering layer 400 is arranged between the first polarizer 200 and the transmissive liquid crystal panel 100 , and/or is arranged between the second polarizer 300 and the transmissive liquid crystal panel 100 ;
  • a reflective polarizer 500 , the reflective polarizer 500 is disposed between the transmissive liquid crystal panel and the second polarizer 300 .
  • the display screen provided by the embodiments of the present disclosure is improved on the basis of the transmissive liquid crystal panel 100.
  • the transmissive liquid crystal panel 100 can be a twisted nematic liquid crystal panel, a vertical alignment liquid crystal panel, an in-plane switching liquid crystal panel, or a fringe field switching
  • ADS in-plane switching liquid crystal
  • the display screen provided by the embodiment of the present disclosure uses a transmissive liquid crystal panel 100, and a reflective polarizer 500 is provided on the non-display side of the transmissive liquid crystal panel 100, so that when the backlight of the backlight module 700 is turned on, a transmissive mode display can be realized. , when the backlight of the backlight module 700 is turned off, the ambient light is reflected by the reflective polarizer 500 , so that reflective mode display can be realized. That is to say, the display screen provided by the embodiments of the present disclosure is a dual-purpose display screen for transmission and reflection.
  • the transmittance of the panel in the transmissive mode and the reflectivity in the reflective mode will both increase, and the display brightness will increase; and, for high-resolution display products, compared with the transflective liquid crystal display in the related art, the manufacturing difficulty is reduced
  • the invention solves the problems of complex process, high development cost, long development cycle and the like existing in the transflective display in the related art.
  • FIG. 8 is a schematic diagram of the light path of the display screen in the black state in the transmission mode provided by some embodiments of the present disclosure
  • FIG. 9 is a schematic diagram of the light path of the display screen in the white state of the transmission mode provided by some embodiments of the present disclosure.
  • Schematic diagram FIG. 10 is a schematic diagram of the light path of the display screen in the black state in the reflective mode provided by some embodiments of the present disclosure
  • FIG. 11 is a black state of the display screen provided in some embodiments of the present disclosure in the reflective mode Timeline diagram. As shown in FIG. 8 and FIG.
  • the backlight of the backlight module 700 in the transmissive mode, the backlight of the backlight module 700 is turned on, the working state of the liquid crystal in the liquid crystal panel is a white state, and the state when the liquid crystal is turned off is a black state; as shown in FIG. 10 and FIG. 11, In the reflective mode, the backlight of the backlight module 700 is turned off, the liquid crystal is in a white state when it is off, and the liquid crystal is in a black state when it is working.
  • the display screen may further include an anti-reflection film disposed on the side of the first polarizer 200 away from the transmissive liquid crystal panel 100 600.
  • the scattering layer 400 can be selected from a scattering film that can be placed outside the transmissive liquid crystal panel 100, and the scattering film can maintain the original polarization state of the light for The light acts as a scatterer.
  • the specific material selection of the scattering film is not limited, as long as the original polarization state of the light can be maintained and the optical film material that scatters the light can be applied here.
  • the scattering film can be arranged between the second polarizer 300 and the transmissive liquid crystal panel 100, and the reflective polarizer 500 is located in the Between the scattering film and the second polarizer 300 .
  • the scattering film can also be disposed between the first polarizer 200 and the transmissive liquid crystal panel 100 .
  • the scattering film is arranged between the second polarizer 300 and the transmissive liquid crystal panel 100 , compared with the scattering film arranged on the first Between the polarizer 200 and the transmissive liquid crystal panel 100 , the effect of the display screen is better in a black state.
  • the scattering layer 400 is not limited to use an external scattering film, for example, in some embodiments, the scattering layer 400 can also use a high-haze optical adhesive coating (OCA), as shown in Figures 1 and 2 Shown are the structural schematic diagrams of two embodiments of the display screen using the high-haze optical adhesive coating.
  • OCA high-haze optical adhesive coating
  • the high-haze optical glue coating can be arranged between the first polarizer 200 and the transmissive liquid crystal panel 100, or, as shown in FIG. 2, the high-haze optical glue The coating can also be disposed between the transmissive liquid crystal panel 100 and the reflective polarizer 500 .
  • the high haze of the high haze optical adhesive coating here means that it can scatter light, and the specific value of the haze is not limited, and can be used in practical applications Among them, choose reasonably according to the actual needs of display products.
  • the scattering layer 400 may also include both the scattering film and the high-haze optical adhesive coating; in other embodiments, the The scattering layer 400 may also be disposed on both the display side of the transmissive liquid crystal panel 100 and the non-display side of the transmissive liquid crystal panel 100 .
  • the display screen of the embodiment of the present disclosure will be described in more detail below:
  • the first polarizer 200 is fully bonded to the transmissive liquid crystal panel 100 , and the transmission axis of the first polarizer 200 is aligned with the upper surface of the transmissive liquid crystal panel 100 .
  • the alignment of the liquid crystals of the substrate is parallel (E-mode) or vertical (O-mode).
  • O-mode means that the absorption axis of the second polarizer 300 located on the non-display side of the liquid crystal panel is parallel to the liquid crystal alignment direction on the lower substrate (for example, TFT substrate) of the liquid crystal panel, and the first polarizer The absorption axes of the sheet 200 and the second polarizer 300 are perpendicular to each other;
  • E-mode refers to that the absorption axis of the second polarizer 300 positioned on the non-display side of the liquid crystal panel is perpendicular to the bottom substrate (for example, TFT substrate) of the liquid crystal panel.
  • the absorption axes of the first polarizer 200 and the second polarizer 300 are perpendicular to each other.
  • the scattering film, the reflective polarizer 500 and the second polarizer 300 form an external composite film, which is fully attached to the transmissive liquid crystal panel. 100 on. In this way, the full lamination process of the external membrane material is simple, and the product stability is high.
  • FIG. 3 is a schematic diagram of the roll-to-roll lamination process of the scattering film, the reflective polarizer 500 and the second polarizer 300 .
  • the direction of the diffusion axis of the scattering film is preferably parallel to the propagation direction of the light source. Therefore, according to product use scenarios, such as horizontal and vertical screen requirements, indoor or outdoor requirements, Adjust the direction of the scattering film to 0° (as shown in FIG. 4 ) or 90° (as shown in FIG. 5 ), that is, it is composed of the scattering film, the reflective polarizer 500 and the second polarizer 300
  • the angle of the external composite membrane material can be adjusted to 0° or 90°, and correspondingly, the display mode can be adjusted to E-mode or O-mode.
  • the transmission axis of the first polarizer 200 is perpendicular to the transmission axis of the second polarizer 300 .
  • the direction of the diffusion axis of the scattering film and the direction of the transmission axis of the reflective polarizer 500 are not limited thereto.
  • Fig. 6 and Fig. 7 are two bonding methods of the external composite film material of the display screen in ADS mode provided by the embodiment of the present disclosure, and the angles shown in the figure are respectively the transmission axis of the polarizer, the The direction of the diffusion axis of the scattering film and the transmission axis of the reflective polarizer 500 .
  • the reflective polarizer 500 includes: a core layer composed of multiple layers of birefringent material layers 510 and multiple layers of non-birefringent material layers 520 stacked alternately,
  • the refractive index of the birefringent material layer 510 is greater than the refractive index of the non-birefringent material layer 520 .
  • the refractive index of the birefringent material layer 510 is significantly higher than that of the non-birefringent material layer 520 .
  • a beam of natural light will undergo directional total reflection at the interface between the birefringent material layer 510 and the non-birefringent material layer 520, wherein the light vibrating parallel to the x direction will be reflected, while the light vibrating parallel to the y direction will be reflected.
  • a beam of natural light is decomposed into two beams of polarized light with vertical vibration directions, of which the polarized light vibrating parallel to the x direction is reflected, and the polarized light vibrating parallel to the y direction is transmitted.
  • the linearly polarized light whose vibration direction is parallel to the x direction is incident on the surface of the reflective polarizer 500, most of the linearly polarized light will keep its original vibration direction and be reflected, and when the linearly polarized light whose vibration direction is perpendicular to the x direction is incident on the core
  • the layer surface most of the linearly polarized light will keep its original vibration direction transmitted.
  • the surface of the reflective polarizer 500 is not treated with any coating.
  • the polarization state of the backlight or ambient light in the transmission mode and the reflection mode after passing through each layer of optical film materials is illustrated as follows.
  • Table 1 shows the polarization state of the display screen in the embodiment shown in the figure after the backlight or ambient light passes through each layer of optical film in the transmission mode:
  • Table 2 shows the polarization state of the display screen in the embodiment shown in the figure after the backlight or ambient light passes through each layer of optical film in reflective mode:
  • the display screen in the embodiment of the present disclosure has two display modes: transmission mode and reflection mode, which can respectively correspond to outdoor strong light environment and low light environment. Indoor and outdoor environments.
  • the above is an explanation of the structure of the display screen that can realize both transmission and reflection modes.
  • To realize the transmission mode and reflection mode of the display screen also needs a matching circuit design to automatically switch the transmission mode and reflection mode according to the ambient illuminance.
  • an embodiment of the present disclosure also provides a display device, including:
  • the display screen 10 provided by the embodiment of the present disclosure.
  • a backlight module 700 configured to provide a light source for the display screen 10
  • a video signal processing unit 800 connected to the display screen 10, for controlling the video display signal of the display screen 10;
  • a light detection unit 900 configured to collect ambient light data
  • the micro control unit 20 is connected with the light detection unit 900, the video signal processing unit 800 and the backlight module 700, and is used to generate a mode switching signal according to the ambient light data collected by the light detection unit 900 , controlling the working states of the backlight module 700 and the video display unit, so that the display device switches between a transmissive mode and a reflective mode,
  • the backlight module 700 in the transmission mode, the backlight module 700 is turned on, and the video signal processing unit 800 sends a first image display signal to the display screen 10; in the reflection mode, the backlight module 700 is turned off, The video signal processing unit 800 sends a second image display signal to the display screen 10 , and the image gray scale of the first image display signal is complementary to that of the second image display signal.
  • the display screen 10 cooperates with the circuit control system to realize the transmission mode and the reflection mode.
  • the circuit control system includes the video signal processing unit 800, the light detection unit 900, the The micro control unit 20, the video signal processing unit 800 is used for the conversion and gray scale processing of the two display mode video signals of the transmission mode and the reflection mode, and the conversion of these two display modes is mainly based on the micro control unit 20 (MCU)
  • the mode switching signal is carried out;
  • the light sensor is used to collect the light signal of the surrounding environment, and transmits the light signal data collected to the micro control unit 20;
  • Ambient ambient light data determine the display mode, and notify the video processing unit and the backlight module 700 to switch modes; the backlight module 700 is used to turn off in reflection mode, turn on in transmission mode, and In this mode, the backlight brightness is adjusted according to the backlight brightness information provided by the micro control unit 20 , that is, when switching to the transmissive mode, the backlight module 700 can adjust the backlight brightness according to the specific ambient light brightness
  • the display device provided by the embodiments of the present disclosure will be described in more detail below.
  • the switching of the display mode of the display device mainly depends on the ambient light.
  • the display device is switched to the transmissive mode, the backlight is turned on, the video signal processing unit 800 outputs the first image signal, and the display screen 10 displays a normal grayscale image;
  • the display system needs to be switched to reflective mode, the backlight is turned off, the video signal processing unit 800 outputs the second image signal, and the display screen 10 displays an image that is complementary (ie, reversed) to the grayscale of the normal grayscale image. Therefore, the acquisition accuracy of ambient light data is very important.
  • the light detection unit 900 may adopt a light collector, and the light collector is arranged around the display screen 10 for collecting ambient light data.
  • multiple light sensors can be provided, for example, m main sensors 910 and n auxiliary sensors 920, where m and n are both A positive integer greater than or equal to 2, wherein the main sensor 910 is set at the top position of the display screen 10 when it is in use, and the auxiliary sensor 920 is set at the bottom position of the display screen 10 when it is in use .
  • the number of light sensors need to be set, as shown in the figure, five light sensors can be set, and two sensors are set on the top of the display screen 10 to better collect light data and avoid The bottom or side shading of the display screen 10 affects the function, while the top is more difficult to be shaded. 3 sensors can be set on the bottom and side.
  • the number and arrangement positions of the light sensors are not limited thereto, and the number of light sensors can be appropriately increased or decreased according to the size of the display screen 10 .
  • the micro-control unit 20 includes: a data analyzer connected to the light collector for processing and analyzing the light signal collected by the light collector to obtain the ambient light parameter L; a signal generator , for sending a first signal to the backlight module 700 and the video signal processing unit 800 when the ambient light parameter L is greater than a first critical value, so that the display device switches to a reflective mode, when When the ambient light parameter L is less than the first critical value, or when the damage signal of the light collector is received, a second signal is sent to the backlight module 700 and the video signal processing unit 800, so that the The display device switches to transmissive mode.
  • the data analyzer specifically includes:
  • the first determiner is used to determine the number m' of the main sensor 910 that has collected light data, where m' is 0 or a positive integer less than or equal to m;
  • the first comparator connected to the first judger, is used to compare whether the light data difference collected by m' main sensors 910 is within the first predetermined value when m' is a positive integer less than or equal to m. within the threshold;
  • the first data calculator connected to the first comparator, is used to calculate the m' main sensors 910 when the light data difference collected by the m' main sensors 910 is within the first predetermined threshold
  • the average value of light data to obtain the first data L M1 , L M1 (M 1 +M 2 ...M m' )/m', where M m' is the light data of the m'th main sensor 910 ;
  • the second determiner is used to determine the number n' of the auxiliary sensors 920 that have collected light data, and n' is 0 or a positive integer less than or equal to n;
  • the second comparator the second comparator is connected with the second judger, and is used to compare the light data difference collected by n' auxiliary sensors 920 when n' is a positive integer less than or equal to n whether the value is within a second predetermined threshold;
  • the second data calculator is used to calculate the remaining (nx) auxiliary sensors 920 when the light data difference collected by x auxiliary sensors 920 among the n' auxiliary sensors 920 is within a second predetermined threshold.
  • calculate the average value of the light data of x auxiliary sensors 920 to obtain the second data L S1 , L S1 (S 1 +S 2 ... S x )/ x, wherein S x is the light data of the xth auxiliary sensor 920, and X is a positive integer less than or equal to n;
  • the third comparator connected with the first comparator and the second data calculator, is used when the light data difference collected by m' main sensors 910 exceeds the first predetermined threshold, and n' The light data difference collected by the auxiliary sensor 920 is within a second predetermined threshold, and the difference between the light data collected by each of the main sensors 910 among the m' main sensors 910 and the third data LS is compared is within a third predetermined threshold;
  • the fourth comparator connected to the first comparator and the second comparator, is used when the light data difference collected by the n' auxiliary sensors 920 exceeds the second predetermined threshold, and the m' When the light data difference collected by the main sensor 910 exceeds the first predetermined threshold, compare whether the difference between the light data collected by the m' main sensors 910 and the n' auxiliary sensors 920 and the pre-stored light data is within a fourth predetermined threshold;
  • the sixth data calculator connected to the fourth comparator, is used for the y' masters whose difference between the light data collected in the m' master sensors 910 and the pre-stored light data is within the fourth predetermined threshold.
  • the sensor 910, and the light data of the x' auxiliary sensors 920 whose difference between the light data collected by the n' auxiliary sensors 920 and the pre-stored light data is within the fourth predetermined threshold, L L M3 +
  • the third determiner is connected with the first determiner and the second determiner, and is used to determine that the light collector is damaged when the m' is 0 and n' is 0, and generates the signal to the The device sends the damage signal of the light collector;
  • the fourth judging unit is connected with the fourth comparator, and is used when the light data difference collected by the n' auxiliary sensors 920 exceeds the second predetermined threshold, and the light data collected by the m' main sensors 910 When the light data difference exceeds the first predetermined threshold, and the difference between the light data collected by the m' main sensors 910 and the n' auxiliary sensors 920 and the pre-stored light data exceeds the fourth predetermined threshold, it is determined that the The light collector is damaged, and the light collector damage signal is sent to the signal generator.
  • two light sensors are set on the top of the display screen 10 as main sensors 910, respectively m1 and m2, and one auxiliary sensor is set on the left, right and bottom of the display screen 10 respectively.
  • Sensors 920 respectively s1, s2 and s3.
  • m1 and m2 are the main light data sources, and the data of s1, s2 and s3 are used as adjustment parameters. Only when abnormal data occurs, the data of the auxiliary sensor 920 is used as the main basis for judgment.
  • Step S02. When m' is a positive integer less than or equal to m, compare whether the light data collected by the m' main sensors 910 is within a first predetermined threshold, which may be a preset allowable The error value, that is to say, compare whether the light data of m' main sensors 910 are close; if yes, execute step S03, if not, execute step S08;
  • Step S05 when n' is a positive integer less than or equal to n, compare whether the light data difference collected by n' auxiliary sensors 920 is within a second predetermined threshold, which may be preset A good allowable error value, that is, compare whether the light data of n' auxiliary sensors 920 are close; if yes, perform step S06; if not, perform step S08;
  • L S1 (S 1 +S 2 +S 3 )/3
  • S1 is the light data of the auxiliary sensor s1.
  • S2 is the light data of the auxiliary sensor s2
  • S3 is the light data of the auxiliary sensor s3;
  • the light data of any sensor in the main sensor 910 or the auxiliary sensor 920 deviates obviously, then the light data of the sensor can be read in again, if the data still deviates for a predetermined number of times, then it is determined that the data is abnormal, and discarded. For the abnormal data of the auxiliary sensor 920, no calculation is performed.
  • step S05 is performed to compare the data of the three auxiliary sensors 920, whether it is within the error range If yes, execute step S06, and after obtaining the second data LS1, execute step S09; if not, execute step S010;
  • Step S010 when the light data difference collected by the n' auxiliary sensors 920 exceeds the second predetermined threshold, and when the light data difference collected by the m' main sensors 910 exceeds the first predetermined threshold, compare Whether the difference between the light data collected by the m' main sensors 910 and the n' auxiliary sensors 920 and the pre-stored light data is within the fourth predetermined threshold; if yes, execute step S011; if not, execute step
  • Step S011 according to the difference between the light data collected by the m' main sensors 910 and the pre-stored light data within the fourth predetermined threshold, the y' main sensors 910 and the n' auxiliary sensors 920
  • L L M3 +
  • L M3 (M 1 +M 2 ...M y' )/y'
  • M y' is the light data of the y'th main sensor 910
  • L s3 (S 1 +S 2 ...S x' )/x', wherein S x' is the light data of the x'th auxiliary sensor 920, and both y' and x' are positive integers less than or equal to n;
  • both the main sensor 910m1 and the main sensor 910m2 have data, but the data gap exceeds the error range.
  • n' is a positive integer less than or equal to n
  • Step S013 When the m' is 0 and n' is 0, it is judged that the light collector is damaged, and a signal of the damage of the light collector is sent to the signal generator;
  • Step S014 when the light data difference collected by n' auxiliary sensors 920 exceeds the second predetermined threshold, and the light data difference collected by m' main sensors 910 exceeds the first predetermined threshold, and m'
  • the difference between the light data collected by the main sensors 910 and the n′ auxiliary sensors 920 and the pre-stored light data exceeds the fourth predetermined threshold, it is judged that the light collector is damaged, and sends a signal to the signal generator The light collector corrupts the signal.
  • step S012, step S013 and step S014 are described as follows:
  • micro control unit 20 analyzes light data to determine whether to switch modes.
  • micro control unit 20 and the video signal processing unit 800 control the display images in different display modes.
  • the display device provided by the embodiments of the present disclosure can display complementary grayscale transformations in the signal in the transmission mode and the reflection mode.
  • the following explains the color display principle of the display device in the two modes:
  • the signal format can be converted according to the requirements of the display terminal, and the normal output is sufficient; for the reflective display mode, the inverse color can be used for processing and then output.
  • the original image display screen is white, with colored circular patterns.
  • the gray scale of the colored circular patterns numbered 1 to 6 remains unchanged , the background color is still white, and the corresponding gray scale of the colored circular pattern is shown in Table 3 below:
  • the video signal processing unit 800 specifically includes:
  • the video signal is directly output in a point-to-point mode, so that the display screen 10 performs normal grayscale display
  • the video signal is output after inverse color processing, so that the display screen 10 performs normal grayscale display.
  • the above solution adopts the method of real-time video signal processing and conversion, and requires the video signal processing unit 800 to perform image processing in real time in addition to conventional video processing functions, for example, the reflection
  • the mode is marked as Mode1
  • the transmission mode is marked as Mode2
  • the display mode is mode1
  • the program of the first memory 801 is called through the video signal processing unit 800
  • the ACC module inside the video signal processing unit 800 is used to perform complementary processing on the gray scale, and the processing is completed After that, it is output to the buffer memory, and the display screen 10 displays according to the grayscale information
  • the video processing unit calls the program in the second memory, adopts the point-to-point mode for the video information, does not perform any processing, and directly outputs to In the cache, the display screen 10 displays according to the grayscale information.
  • the video signal processing unit 800 specifically includes:
  • T-con circuit 803 connected with the micro control unit 20, for receiving the mode switching signal of the micro control unit 20;
  • a multi-way selection switch 806 is connected between the T-con circuit 803 and the display driving unit, and is used to output corresponding gray scale information to the display driving unit according to the mode switching signal received. unit.
  • the display grayscale inversion method is adopted, and the video processing unit uses the point-to-point mode to output the display signal in both the transmission mode and the reflection mode, and the micro-control unit 20 directly provides the mode conversion signal to the In the mode switching circuit shown in 15, two P-GAMMA chips are integrated in the T-con circuit 803 to generate two sets of different grayscale information, P-GAMMA1 generates grayscale information in transmission mode, and P-GAMMA2 generates reflection In grayscale mode, the generated Gamma voltage is provided to the driver IC through the multiplexer 806 .
  • the multi-way selection switch 806 determines which gamma voltage can be input according to the mode switching signal of the MCU 20 .
  • MOS transistors in order to improve the driving capability and stability, can be used to form a driving switch circuit to realize stable and reliable switch driving.
  • the display device provided by the embodiments of the present disclosure can realize two display modes: transmissive mode and reflective mode. Power consumption, to achieve the effect of saving energy and reducing consumption. This will be described in detail below.
  • the micro control unit 20 also includes:
  • the first timer is used to start timing when the ambient light parameter L collected by the light detection unit 900 is greater than or equal to a first critical value
  • the first determiner is used to determine whether the ambient light parameter L is always greater than or equal to the first critical value within a predetermined period of time starting from the timing, and if so, determine that the display device needs to be switched to a reflective mode; if No, it is determined that the display device does not need to be switched to reflective mode.
  • micro control unit 20 is also used for:
  • a first signal generator configured to generate a mode switching signal to control the display device to switch to transmission when the ambient light parameter L is greater than a first critical value and in a declining state, and drops to the first critical value.
  • the second signal generator is used to control the backlight brightness Lbl value of the backlight module 700 when the ambient light parameter L is less than the first critical value, is in a non-decreasing state, and is greater than the second critical value.
  • the third signal generator is configured to start timing when the ambient light parameter L reaches a second critical value, and judge whether the ambient light parameter L is always kept smaller than the first threshold within a predetermined duration from the timing. Two critical values, if yes, control the backlight brightness of the backlight module 700 to be reduced to Lbl/z, where z is a positive integer greater than 1;
  • the fourth signal generator is used to start timing when the ambient light parameter L rises from below the second critical value to above the second critical value, and judge whether the ambient environment Whether the light parameter L always remains greater than the second critical value, if so, control the backlight brightness of the backlight module 700 to increase the Lbl value;
  • the fifth signal generator is configured to generate a mode switching signal when the ambient light parameter L rises to a first critical value, to control the display device to switch to the transmissive mode, and to control the backlight module 700 to turn off.
  • the first critical value and the second critical value can be preset in the system or set by the user, and the specific data of the first critical value and the second critical value are not limited.
  • the first critical value is 5000 lx and the second critical value is 500 lx as an example for illustration.
  • Step 1 According to the setting conditions, take the first critical value 5000lx as the switching point, when the brightness of the ambient light is higher than 5000lx, the display mode is switched to the reflective mode; when the brightness of the ambient light is lower than 5000lx, the display mode is switched in transmission mode.
  • Step II in order to prevent misjudgment, a first timer T1 is set inside the micro-control unit 20 to determine whether the mode needs to be switched at present, for example, the first timer T1 sets the timing, for example 5 minutes, when the ambient light If the brightness of the light exceeds the first critical value and lasts for more than 5 minutes, the display mode will be switched to reflective mode; otherwise, it will be judged as an abnormal situation (illumination by vehicle lights in a dark environment or occlusion by objects in a bright environment), and no switching action will be performed.
  • the first timer T1 sets the timing, for example 5 minutes, when the ambient light If the brightness of the light exceeds the first critical value and lasts for more than 5 minutes, the display mode will be switched to reflective mode; otherwise, it will be judged as an abnormal situation (illumination by vehicle lights in a dark environment or occlusion by objects in a bright environment), and no switching action will be performed.
  • Step III When the brightness of the ambient light is in a declining state, and the brightness of the ambient light drops to about 5000, as the ambient light changes, the display device can be switched to the transmission mode.
  • the surface brightness of the display screen 10 Lts Lbl* ⁇ , ⁇ is the transmittance of the liquid crystal screen, and the backlight brightness Lbl value in the current mode is obtained (for example, the backlight brightness Lbl value is above 10000 nit).
  • Step V when the ambient light continues to decrease, the backlight brightness Lbl value can remain unchanged, and when the light brightness of the ambient light drops below the second critical value 500 lx, it is judged again whether the display device enters the standby mode, and the micro control unit
  • Step VI when the ambient light exceeds the second critical value of 500lx again, the second timer T2 starts counting, for example, when T2>1 minute, it is judged that the display device has returned to the normal working mode, and the brightness of the backlight is restored to the normal value Lbl value, Until the light brightness of the ambient light reaches the first critical value of 5000 lx, the display device is switched to the reflective mode again. Repeat steps I-VI above.
  • the main sensor 910 and the auxiliary sensor 920 in the light sensor collect the ambient light data in real time, and send all the ambient light data to the micro control unit 20;
  • the micro-control unit 20 divides the received ambient light data into main sensor 910 data and auxiliary sensor 920 data, and performs data judgment to obtain accurate ambient light parameter L (if only the main sensor 910 is used, the judgment process only needs two Group data comparison, and comparison with historical data, according to the comparison results to decide whether to use the current data);
  • the micro-control unit 20 determines whether to maintain the current display mode according to the ambient light parameter L, and when the switching mode condition is met, sends a mode switching signal to the video signal processing unit 800 to switch the display mode;
  • the ambient light parameter L determines whether to turn on the backlight and the brightness value of the backlight;
  • the video signal processing unit 800 receives a mode switching signal, and switches to a corresponding display mode according to the mode switching signal;
  • the backlight module 700 receives the BL_ON signal and the PWM signal from the micro-control unit 20, and processes and adjusts the backlight. See FIG. 18 for a specific signal timing relationship and a schematic diagram of waveform changes.
  • Table 5 shows the specific design parameters of the display device provided by the embodiment of the present disclosure applied to a 19-inch ADS liquid crystal black display device, a 19-inch ADS liquid crystal color liquid crystal display device, a 46-inch ADS liquid crystal color display device, and a 43-inch ADS liquid crystal color display device.
  • Table 6 shows that the display device provided by the embodiment of the present disclosure is applied to a 19-inch ADS liquid crystal black display device, a 19-inch ADS liquid crystal color liquid crystal display device, a 46-inch ADS liquid crystal color display device, and a 43-inch ADS liquid crystal color display device in transmissive and Optical test data in reflective display mode.
  • the display device of the embodiment of the present disclosure has excellent optical performance when applied to black-and-white display devices and color display devices. 100:1; the reflectivity in the reflective state is as high as 38%, and the viewing angle is >70°.
  • the panel transmittance of the color display device in the transmissive state is as high as 9.2%, the contrast ratio is 120:1, and the color gamut is 36%; in the reflective state, the reflectance is 8.2%, and the color gamut is 35.4%.
  • the excellent optical performance and the intelligent switching function of the transflective state of the display device of the embodiment of the present disclosure can meet the display requirements of customers in different scenarios.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

本公开提供一种显示屏及显示装置,包括:透射式液晶面板,所述透射式液晶面板包括相背设置的显示侧和非显示侧;第一偏光片,设置于所述透射式液晶面板的显示侧;第二偏光片,设置于所述透射式液晶面板的非显示侧,所述第一偏光片与所述第二偏光片的透过轴方向垂直;散射层,设置于所述第一偏光片与所述透射式液晶面板之间,和/或,设置于所述第二偏光片与所述透射式液晶面板之间;反射式偏光片,所述反射式偏光片设置于所述透射液晶面板与所述第二偏光片之间。本公开提供的显示屏及显示装置,具有较高反射率及透过率,可满足户外不同照度下的使用,实现节能减排的环保效果。

Description

一种显示屏及显示装置 技术领域
本公开涉及显示技术领域,尤其涉及一种显示屏及显示装置。
背景技术
随着科学技术的发展,智慧物联网逐渐渗透到交通、医疗、教育、环境保护、公共安全、智慧家居等多个领域。人机交互功能是实现智慧物联网的首要条件,而显示屏作为人机交互的重要媒介出现在城市的各个角落。
暴露在自然条件下的户外显示器,若利用高亮的环境光充当显示屏的光源,而关掉背光,可明显降低产品的温度,不仅节能环保,而且有利于延长户外显示屏的使用寿命。因此,在相关技术中半透半反式液晶显示器被应用于户外显示器场景中。
但是相关技术中半透半反式液晶显示器存在如下问题:工艺复杂、开发成本高、开发周期长,且显示面板的透过率或反射率明显降低,显示亮度低。
发明内容
本公开实施例提供了一种显示屏及显示装置,能够提高显示亮度,工艺简单。
本公开实施例所提供的技术方案如下:本公开实施例提供了一种显示屏,包括:
透射式液晶面板,所述透射式液晶面板包括相背设置的显示侧和非显示侧;
第一偏光片,设置于所述透射式液晶面板的显示侧;
第二偏光片,设置于所述透射式液晶面板的非显示侧,所述第一偏光片与所述第二偏光片的透过轴方向垂直;
散射层,设置于所述第一偏光片与所述透射式液晶面板之间,和/或,设置于所述第二偏光片与所述透射式液晶面板之间;
反射式偏光片,所述反射式偏光片设置于所述透射液晶面板与所述第二 偏光片之间。
示例性的,所述散射层包括散射膜片。
示例性的,所述散射层包括高雾度光学胶涂层。
示例性的,所述散射膜片设置于所述第二偏光片与所述透射式液晶面板之间时,所述反射式偏光片位于所述散射膜片与所述第二偏光片之间。
示例性的,所述散射膜片的扩散轴方向、所述反射式偏光片的透过轴方向以及所述第二偏光片的透过轴方向一致。
示例性的,所述散射膜片、所述反射式偏光片与所述第二偏光片组成外置复合膜材,以全贴合方式设置于所述透射式液晶面板上。
示例性的,所述第一偏光片以全贴合方式设置于所述透射式液晶面板上。
示例性的,所述显示屏还包括设置于所述第一偏光片的远离所述透射式液晶面板的一侧的减反射薄膜。
示例性的,所述液晶面板为扭曲向列相液晶面板、垂直取向液晶面板、面内转换液晶面板、边缘场转换液晶面板、染料液晶面板中的至少一种。
示例性的,所述反射式偏光片包括:多层双折射材料层和多层非双折射材料层交替叠加组成的核心层,所述双折射材料层的折射率大于所述非双折射材料层的折射率。
本公开实施例还提供一种显示装置,包括:
本公开实施例提供的显示屏;
背光模组,用于为所述显示屏提供光源;
视频信号处理单元,用于控制所述显示屏的视频显示信号;
光线检测单元,用于采集周围环境光线数据;
微控制单元,与所述光线检测单元及所述视频信号处理单元连接,用于根据所述光线检测单元所采集的周围环境光线数据,生成模式切换信号,控制所述背光模组及所述视频显示单元的工作状态,以使所述显示装置在透射模式和反射模式之间切换,
其中,
在所述透射模式,所述背光模组开启,所述视频信号处理单元向所述显示屏发送第一图像显示信号;
在所述反射模式,所述背光模组关闭,所述视频信号处理单元向所述显示屏发送第二图像显示信号,所述第一图像显示信号与所述第二图像显示信号的图像灰阶互补。
示例性的,所述光线检测单元包括:光线采集器,所述光线采集器设置于所述显示屏的四周,用于采集周围环境光线数据;
所述微控制单元包括:
数据分析器,与所述光线采集器连接,用于对所述光线采集器所采集的光线信号进行处理分析,以得到所述周围环境光线参数L;
信号生成器,用于当所述周围环境光线参数L大于第一临界值时,发送第一信号至所述背光模组及所述视频信号处理单元,以使所述显示装置切换至反射模式,当所述周围环境光线参数L小于第一临界值时、或者接收到所述光线采集器损坏信号时,发送第二信号至所述背光模组及所述视频信号处理单元,以使所述显示装置切换至透射模式。
示例性的,所述光线采集器包括m个主传感器和n个辅助传感器,m和n均为大于或等于2的正整数,所述主传感器设置于处于使用状态时的所述显示屏的顶部位置,所述辅助传感器设置于处于使用状态时的所述显示屏的底部位置;
所述数据分析器具体包括:
第一判断器,用于判断采集到光线数据的所述主传感器的数目m’,m’为0或小于或等于m的正整数;
第一比较器,与所述第一判断器连接,用于当m’为小于或等于m的正整数时,比较m’个所述主传感器所采集的光线数据差值是否在第一预定阈值内;
第一数据计算器,与所述第一比较器连接,用于当m’个所述主传感器所采集的光线数据差值在第一预定阈值内时,计算m’个所述主传感器的光线数据平均值,得到第一数据L M1,L M1=(M 1+M 2……M m’)/m’,其中M m’为第m’个所述主传感器的光线数据;
第二判断器,用于判断采集到光线数据的所述辅助传感器的数目n’,且n’为0或小于或等于n的正整数;
第二比较器,所述第二比较器与所述第二判断器连接,用于当n’为小于或等于n的正整数时,比较n’个所述辅助传感器所采集的光线数据差值是否在第二预定阈值内;
第二数据计算器,用于当n’个所述辅助传感器中x个所述辅助传感器所采集的光线数据差值在第二预定阈值内时,剩余(n-x)个所述辅助传感器所采集的光线数据差值超出第二预定阈值时,计算所述x个所述主传感器的光线数据平均值,得到第二数据L S1,L S1=(S 1+S 2……S x)/x,其中S x为第x个所述辅助传感器的光线数据,X为小于或等于n的正整数;
第三数据计算器,与所述第一数据计算器和所述第二数据计算器连接,用于根据所述第一数据L M1和第二数据L S1得到所述周围环境光线参数L=L M1+|L s1-L M1|/(m’+x);
第三比较器,与所述第一比较器和所述第二数据计算器连接,用于当m’个所述主传感器所采集的光线数据差值超出第一预定阈值,且n’个所述辅助传感器所采集的光线数据差值在第二预定阈值内,比较m’个所述主传感器中各所述主传感器所采集的光线数据与所述第三数据LS的差值是否在第三预定阈值内;
第四数据计算器,与所述第三比较器连接,用于当m’个所述主传感器中y个所述主传感器所采集的光线数据与所述第二数据L S1的差值在第三预定阈值内,剩余(m’-y)个所述主传感器所采集的光线数据差值超出第三预定阈值时,计算所述y个所述主传感器的光线数据平均值,得到第四数据L M2,L M2=(M 1+M 2……M y)/y,其中M y即为第y个所述主传感器的光线数据,y为小于或等于m’的正整数;
第五数据计算器,与所述第四数据计算器和所述第二数据计算器连接,用于根据所述第四数据L M2和第二数据L S1得到所述周围环境光线参数L=L M2+|L S1-L M2|/(y+x);
第四比较器,与所述第一比较器和所述第二比较器连接,用于当n’个所述辅助传感器所采集的光线数据差值超出第二预定阈值时,且m’个所述主传感器所采集的光线数据差值超出第一预定阈值时,比较m’个所述主传感器、n’个所述辅助传感器所采集的光线数据与预存光线数据的差值是否在 第四预定阈值内;
第六数据计算器,与所述第四比较器连接,用于根据m’个所述主传感器中采集的光线数据与预存光线数据差值在第四预定阈值内的y’个所述主传感器、和n’个所述辅助传感器中所采集的光线数据与预存光线数据差值在第四预定阈值内的x’个所述辅助传感器的光线数据,得到L=L M3+|L s3-L M3|/(y’+x’),其中,L M3=(M 1+M 2……M y’)/y’,其中M y’即为第y’个所述主传感器的光线数据;L s3=(S 1+S 2……S x’)/x’,其中S x’即为第x’个所述辅助传感器的光线数据,y’、x’均为小于或等于n的正整数;
第七数据计算器,与所述第一判断器、第二判断器和所述第二数据计算器连接,用于当所述m’为0,且n’为小于或等于n的正整数时,计算所述周围环境光线参数L=L S1
第三判断器,与所述第一判断器、第二判断器连接,用于当所述m’为0,且n’为0时,判断所述光线采集器损坏,并向所述信号生成器发送所述光线采集器损坏信号;
第四判断器,与所述第四比较器连接,用于当n’个所述辅助传感器所采集的光线数据差值超出第二预定阈值,且m’个所述主传感器所采集的光线数据差值超出第一预定阈值,且m’个所述主传感器、n’个所述辅助传感器所采集的光线数据与预存光线数据的差值超出第四预定阈值时,判断所述光线采集器损坏,并向所述信号生成器发送所述光线采集器损坏信号。
示例性的,所述视频信号处理单元具体包括:
当接收到将显示装置切换为透射模式的第一信号时,对视频信号以点对点模式直接输出,以使显示屏进行正常灰阶显示;
当接收到将显示装置切换为反射模式的第二信号时,对视频信号进行反色处理后输出,以使显示屏进行正常灰阶显示。
示例性的,所述视频信号处理单元具体包括:
显示驱动单元,与显示屏连接;
T-con电路,与所述微控制单元连接,用于接收所述微控制单元的模式切换信号;
集成于所述T-con电路上的第一伽马芯片和第二伽马芯片,所述第一伽 马芯片用于生成透射模式下的灰阶信息,所述第二伽马芯片用于生成反射模式下的灰阶信息;
多路选择开关电路,连接在所述T-con电路与所述显示驱动单元之间,用于根据所接收到所述模式切换信号时,输出对应的灰阶信息至所述显示驱动单元。
示例性的,所述微控制单元还包括:
第一计时器,用于当所述光线检测单元所采集的周围环境光线参数L大于或等于第一临界值时,开始计时;
第一判定器,用于判断从计时开始的预定持续时间段内,所述周围环境光线参数L是否始终保持大于或等于第一临界值,若是,判定所述显示装置需要切换为反射模式;若否,判定所述显示装置不需要切换为反射模式。
示例性的,所述微控制单元具体还用于:
第一信号生成器,用于当所述周围环境光线参数L在大于第一临界值且呈下降状态,下降至所述第一临界值时,生成模式切换信号,控制所述显示装置切换至透射模式,并根据液晶面板表面亮度Lts=Lbl*β,β为液晶面板的透过率,得到所述背光模组的背光亮度Lbl值,根据所述背光亮度Lbl值控制所述背光模组的工作状态;
第二信号生成器,用于当所述周围环境光线参数L在小于所述第一临界值,呈下降状态,且大于第二临界值时,控制所述背光模组的背光亮度Lbl值保持不变;
第三信号生成器,用于当所述周围环境光线参数L达到第二临界值时,开始计时,并判断从计时开始的预定持续时间段内,所述周围环境光线参数L是否始终保持小于第二临界值,若是,控制所述背光模组的背光亮度降低至Lbl/z,z为大于1的正整数;
第四信号生成器,用于当所述周围环境光线参数L从第二临界值以下上升至第二临界值以上时,开始计时,并判断从计时开始的预定持续时间段内,所述周围环境光线参数L是否始终保持大于第二临界值,若是,控制所述背光模组的背光亮度增大Lbl值;
第五信号生成器,用于当所述周围环境光线参数L上升至第一临界值时, 生成模式切换信号,控制所述显示装置切换至透射模式,控制所述背光模组关闭。
本公开实施例所带来的有益效果如下:
本公开实施例所提供的显示屏及显示装置,解决相关技术中半透半反显示装置所存在的工艺复杂、开发成本高、开发周期长等问题,本公开实施例提供的显示屏为透射式、反射式两用显示屏,具有较高反射率及透过率,可满足户外不同照度下的使用,实现节能减排的环保效果。且工艺简单,产品稳定性较高。通过相匹配的电路设计,可根据环境光线自动切换透、反显示模式,可应用于所有尺寸的液晶显示产品,适用性强。
附图说明
图1为本公开一些实施例所提供的显示屏的立体结构示意图;
图2为本公开另一些实施例所提供的显示屏的立体结构示意图;
图3为散射膜片、反射式偏光片和第二偏光片的卷对卷复合工艺示意图;
图4为散射膜片的扩散轴为0°的复合膜材示意图;
图5为散射膜片的扩散轴为90°的复合膜材示意图;
图6为本公开实施例提供的ADS模式的显示屏的外置复合膜材一种贴合方式示意图;
图7为本公开实施例提供的ADS模式的显示屏的外置复合膜材另一种贴合方式示意图;
图8为本公开一些实施例所提供的显示屏在透射模式下的黑态时光路示意图;
图9为本公开一些实施例所提供的显示屏在透射模式下的白态时光路示意图;
图10为本公开一些实施例所提供的显示屏在反射模式下的黑态时光路示意图;
图11为本公开一些实施例所提供的显示屏在反射模式下的黑态时光路示意图;
图12为反射式偏光片的一种结构示意图;
图13为反射式偏光片的双折射材料层与非双折射材料层中的光路图;
图14为本公开提供的显示装置采用视频信号实时处理转换显示信号方式的示意图;
图15为本公开提供的显示装置采用显示灰阶反转方式处理显示信号的示意图;
图16为本公开提供的显示装置中光线采集器的一种局部方式示意图;
图17为本公开实施例提供的显示装置在透射模式和反射模式两种模式下的灰阶显示示意图;
图18为本公开实施例提供的显示装置中背光模组接收到微控制单元发来的BL_ON信号和PWM信号,对背光进行处理和调整的具体的信号时序对应关系及波形变化示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
在对本公开实施例所提供的显示屏及显示装置进行详细说明之前,有必 要对相关技术进行以下说明:
在相关技术中,半透射半反射式的液晶显示器被应用于户外显示器场景中。相关技术中的半透射半反射式液晶显示器均是在薄膜晶体管阵列基板上同时制作透射区和反射区,使子像素的1/n面积具有透射功能,另(n-1)/n面积具有反射功能。为了实现半透射半反射功能,需要对子像素结构进行精确的设计,在薄膜晶体管阵列基板上分别沉积反射层材料和透射层材料。同时,由于反射式显示与透射式显示时的光路不同,还需要设计一套像素内的双切换装置来驱动液晶显示装置,该显示装置由双TFT元件构成,兼具存储图像数据及显示图像的功能。
但是,由于户外显示器使用场景复杂,具有横竖兼容、尺寸多变的需求。反射层和透射层位于液晶盒内的设计,需要针对不同的产品尺寸需求,新开发不同尺寸的掩膜板(Mask),而大尺寸Mask成本高达百万元人民币,同时精度要求极高,这必然会增加产品的开发成本及开发周期。并且,随着全高清面板的逐渐普及,子像素尺寸越来越小,增加了半透射半反射式制作的难度。同时,由于相关技术中的半透射半反射式显示器将子像素分成透射区和反射区两部分,或使用BM区等制作反射层,导致显示面板的透过率或反射率都会明显降低,导致显示亮度降低。
为了解决上述问题,本公开实施例提供了一种显示屏及显示装置,能够在实现透射模式和反射模式的同时,解决相关技术中半透射半反射式显示器所存在的工艺复杂、开发成本高、开发周期长等问题,且具有较高反射率及透过率,可满足户外不同环境光下的使用,真正实现节能减排的环保效果。
图1和图2所示为本公开一些实施例所提供的显示屏的立体结构示意图;图8所示为本公开一些实施例所提供的显示屏在透射模式下的黑态时光路示意图;图9所示为本公开一些实施例所提供的显示屏在透射模式下的白态时光路示意图;图10所示为本公开一些实施例所提供的显示屏在反射模式下的黑态时光路示意图;图11所示为本公开一些实施例所提供的显示屏在反射模式下的黑态时光路示意图。
如图1和图2所示,本公开实施例所提供的显示屏,包括:
透射式液晶面板100,所述透射式液晶面板100包括相背设置的显示侧 和非显示侧;
第一偏光片200,设置于所述透射式液晶面板100的显示侧;
第二偏光片300,设置于所述透射式液晶面板100的非显示侧,所述第一偏光片200与所述第二偏光片300的透过轴方向垂直;
散射层400,设置于所述第一偏光片200与所述透射式液晶面板100之间,和/或,设置于所述第二偏光片300与所述透射式液晶面板100之间;
反射式偏光片500,所述反射式偏光片500设置于所述透射液晶面板与所述第二偏光片300之间。
本公开实施例提供的显示屏,是在透射式液晶面板100基础上进行改进,该透射式液晶面板100可以是扭曲向列相液晶面板、垂直取向液晶面板、面内转换液晶面板、边缘场转换液晶面板、染料液晶面板等各种类型的显示屏,以下本公开实施例中是以面内转换液晶(ADS)显示屏为例来进行说明。
本公开实施例所提供的显示屏,选用透射式液晶面板100,在透射式液晶面板100的非显示侧设置反射式偏光片500,这样,背光模组700的背光开启时,可实现透射模式显示,在背光模组700的背光关闭时,外界环境光被反射式偏光片500反射,可实现反射模式显示。也就是说,本公开实施例所提供的显示屏是透射、反射两用显示屏,与相关技术中的半透半反液晶显示器相比,由于无需将子像素分为透射区和反射区,显示面板在透射模式下透射率以及在反射模式下的反射率均会提升,显示亮度提高;并且,对于高分辨率显示产品来说,相较于相关技术中半透半反液晶显示器,制作难度降低,解决相关技术中半透射半反射式显示器所存在的工艺复杂、开发成本高、开发周期长等问题。
具体的,对本公开实施例所提供的显示屏在透射模式和反射模式下的光路进行详细说明。图8所示为本公开一些实施例所提供的显示屏在透射模式下的黑态时光路示意图;图9所示为本公开一些实施例所提供的显示屏在透射模式下的白态时光路示意图;图10所示为本公开一些实施例所提供的显示屏在反射模式下的黑态时光路示意图;图11所示为本公开一些实施例所提供的显示屏在反射模式下的黑态时光路示意图。如图8和图9所示,在透射模式下,背光模组700的背光开启,液晶面板中液晶工作的状态为白态,液晶 关闭的状态为黑态;如图10和图11所示,反射模式下,背光模组700的背光关闭,液晶关闭的状态为白态,液晶工作的状态为黑态。
本公开所提供的实施例中,如图1和图2所示,所述显示屏还可以包括设置于所述第一偏光片200的远离所述透射式液晶面板100的一侧的减反射薄膜600。
在本公开提供的一些实施例中,所述散射层400可选用能够外置于所述透射式液晶面板100外的散射膜片,该散射膜片能够在保持光线的原有偏振状态下,对光线起到散射作用。对于所述散射膜片的具体选材不进行限定,只要能够实现保持光线原有偏振状态,且对光线散射的光学膜材均可应用于此。
如图1所示,在一些具体的实施例中,所述散射膜片可设置于所述第二偏光片300与所述透射式液晶面板100之间,所述反射式偏光片500位于所述散射膜片与所述第二偏光片300之间。在另一些实施例中,如图2所示,所述散射膜片还可以设置于所述第一偏光片200与所述透射式液晶面板100之间。
需要说明的是,上述两种实施例中,将散射膜片设置于所述第二偏光片300与所述透射式液晶面板100之间,相较于所述散射膜片设置于所述第一偏光片200与所述透射式液晶面板100之间,显示屏在黑态状态下效果更好。
此外,所述散射层400可不限于选用外置的散射膜片,例如,在一些实施例中,所述散射层400还可以选用高雾度光学胶涂层(OCA),图1和图2所示为采用所述高雾度光学胶涂层的显示屏的两种实施例的结构示意图。如图1所示,该高雾度光学胶涂层可以是设置于第一偏光片200与所述透射式液晶面板100之间,或者,如图2所示,所述高雾度的光学胶涂层也可以是设置于所述透射式液晶面板100与所述反射式偏光片500之间。
这里需要说明的是,所述高雾度光学胶涂层这里的高雾度,所指的是,能够对光线起到散射作用即可,对于其雾度具体值并不限定,可在实际应用中,根据显示屏产品的实际需求来合理选择。
此外,还需要说明的是,在另一些实施例中,所述散射层400还可以既包括所述散射膜片,又包括所述高雾度光学胶涂层;在另一些实施例中,所 述散射层400还可以是既设置于所述透射式液晶面板100的显示侧,又设置于所述透射式液晶面板100的非显示侧。
以下以所述散射层400选用散射膜片为例,来对本公开实施例的显示屏进行更为详细的说明:
在一些实施例中,所述第一偏光片200以全贴合方式设置在所述透射式液晶面板100上,所述第一偏光片200的透过轴与所述透射式液晶面板100的上基板(例如,彩膜基板)的液晶取向平行(E-mode)或垂直(O-mode)。
这里需要说明的是,O-mode是指,位于液晶面板的非显示侧的第二偏光片300的吸收轴平行于液晶面板的下基板(例如,TFT基板)上的液晶取向方向,第一偏光片200和第二偏光片300吸收轴正交;E-mode是指,位于液晶面板的非显示侧的第二偏光片300的吸收轴垂直于液晶面板的下基板(例如,TFT基板)上的液晶取向方向,第一偏光片200和第二偏光片300吸收轴正交。
此外,在本公开实施例中,所述散射膜片、所述反射式偏光片500与所述第二偏光片300组成外置复合膜材,以全贴合方式设置于所述透射式液晶面板100上。这样,外置膜材全贴合工艺简单,产品稳定性较高。
此外,所述散射膜片的扩散轴方向与所述反射式偏光片500的透过轴的方向平行,并与所述第二偏光片300的透过轴方向一致,这样设计是为了实现散射膜、反射式偏光片500、第二偏光片300复合膜材的卷对卷复合,从而降低工艺难度,提高膜材的使用效率,降低产品成本。图3所示即为散射膜片、反射式偏光片500和第二偏光片300的卷对卷复合工艺示意图。
此外,为了提高散射膜片的效率,在实际应用中,所述散射膜片的扩散轴方向最好平行于光源传播方向,因此,根据产品使用场景,例如横竖屏需求、室内或室外需求,可调整散射膜片的方向为0°(图4所示)或90°(图5所示),即,由所述散射膜片、所述反射式偏光片500与所述第二偏光片300组成的外置复合膜材的角度可调整为0°或90°,相应的,显示模式可调整为E-mode或O-mode。图4和图5分别对应散射膜片400的扩散轴为0°和90°的复合膜材示意图。第一偏光片200的透过轴与第二偏光片300的透过轴垂直。
可以理解的是,以上仅是示例性的方案,在其他实施例中,对于所述散射膜片的扩散轴方向和所述反射式偏光片500的透过轴的方向不以此为限。
还需要说明的是,图6和图7为本公开实施例提供的ADS模式的显示屏的外置复合膜材的两种贴合方式,图中所示角度分别为偏光片的透过轴、散射膜的扩散轴、反射式偏光片500的透过轴方向。
此外,本公开实施例提供的显示屏中,如图12所示,所述反射式偏光片500包括:多层双折射材料层510和多层非双折射材料层520交替叠加组成的核心层,所述双折射材料层510的折射率大于所述非双折射材料层520的折射率。
如图13所示,在x方向上,双折射材料层510的折射率明显高于非双折射材料层520的折射率。一束自然光在双折射材料层510和非双折射材料层520这两种材料界面会出现方向性的全反射现象,其中平行于x方向振动的光会被反射,而平行于y方向振动的光会被透射,经多层界面后,一束自然光被分解为两束振动方向垂直的偏振光,其中平行于x方向振动的偏振光被反射,平行于y方向振动的偏振光被透射。同样,当振动方向平行于x方向的线偏光入射到反射式偏光片500表面时,大部分线偏光会保持其原有的振动方向被反射,而当振动方向垂直x方向的线偏光入射到核心层表面时,大部分线偏光会保持其原有的振动方向透射。
需要说明的是,本公开实施例所提供的显示屏中,所述反射式偏光片500的表面不做任何涂层处理。
为了更为详细说明本公开实施例的显示屏,对透射模式和反射模式下的背光或环境光经各层光学膜材后的偏振状态进行以下举例说明。
表1为图所示实施例中的显示屏在透射模式下背光或环境光经各层光学膜材后的偏振状态:
表1
Figure PCTCN2021102271-appb-000001
Figure PCTCN2021102271-appb-000002
表2为图所示实施例中的显示屏在反射模式下背光或环境光经各层光学膜材后的偏振状态:
表2
Figure PCTCN2021102271-appb-000003
本公开实施例中的显示屏具有透射模式和反射模式两种显示模式,可分 别对应室外强光环境和弱光环境,弱光环境类似室内光照环境,也可以认为透射反射两用显示系统可适应室内、室外两种环境。
以上是对于能够实现透射、反射模式两用的显示屏的结构进行的说明,实现显示屏的透射模式和反射模式还需要相匹配的电路设计,以根据环境照度自动切换透射模式和反射模式。
如图1和图14所示,本公开实施例中还提供了一种显示装置,包括:
本公开实施例所提供的显示屏10;
背光模组700,用于为所述显示屏10提供光源;
视频信号处理单元800,与所述显示屏10连接,用于控制所述显示屏10的视频显示信号;
光线检测单元900,用于采集周围环境光线数据;
微控制单元20,与所述光线检测单元900、所述视频信号处理单元800和所述背光模组700连接,用于根据所述光线检测单元900所采集的周围环境光线数据,生成模式切换信号,控制所述背光模组700及所述视频显示单元的工作状态,以使所述显示装置在透射模式和反射模式之间切换,
其中,在所述透射模式,所述背光模组700开启,所述视频信号处理单元800向所述显示屏10发送第一图像显示信号;在所述反射模式,所述背光模组700关闭,所述视频信号处理单元800向所述显示屏10发送第二图像显示信号,所述第一图像显示信号与所述第二图像显示信号的图像灰阶互补。
本公开所提供的显示装置,其显示屏10与电路控制系统配合,可实现透射模式和反射模式,具体的,电路控制系统包括所述视频信号处理单元800、所述光线检测单元900、所述微控制单元20,所述视频信号处理单元800用于透射模式和反射模式两种显示模式视频信号的转换和灰阶处理,这两种显示模式的转换主要是依据微控制单元20(MCU)的模式切换信号进行;所述光线传感器用于进行周围环境光信号的采集,并将采集到的光信号数据传输给微控制单元20;微控制单元20用于根据所述光线检测单元900信息采集的周围环境光线数据,判定显示模式,并通知所述视频处理单元和所述背光模组700进行模式切换;所述背光模组700用于在反射模式下关闭,在透射模式下开启,并在透射模式下根据微控制单元20提供的背光亮度信息进行背 光亮度的调整,即,当切换为透射模式时,背光模组700可根据具体的周围环境光亮度进行背光亮度的调整。
以下对本公开实施例所提供的显示装置进行更为详细的说明。
首先,需要说明的是,本公开实施例提供的显示装置的显示模式切换主要是取决于周围环境光,例如,在室外弱光环境下,例如,环境照度在第一临界值(例如,5000lx)以下时,显示装置切换为透射模式,背光点亮,视频信号处理单元800输出第一图像信号,显示屏10显示正常灰阶图像;室外强光环境下,例如,环境照度在第一临界值(例如,5000lx)以上时,需要将显示系统切换为反射模式,背光关闭,视频信号处理单元800输出第二图像信号,显示屏10显示与正常灰阶图像灰阶互补(即反色)的图像。因此,对于周围环境光线数据的采集准确性十分重要。
在本公开一些实施例中,所述光线检测单元900可采用光线采集器,所述光线采集器设置于所述显示屏10的四周,用于采集周围环境光线数据。
为了提高所述光线采集器的采集信号准确性,避免局部遮挡或个别损坏影响整体功能,可以设置有多个光线传感器,例如,m个主传感器910和n个辅助传感器920,m和n均为大于或等于2的正整数,其中所述主传感器910设置于处于使用状态时的所述显示屏10的顶部位置,所述辅助传感器920设置于处于使用状态时的所述显示屏10的底部位置。
例如,根据产品尺寸不同,需要设置不同数量的光线传感器,以图所示伪劣,可设置5个光线传感器,其中,在显示屏10的顶部设置2个传感器,以更好的采集光线数据,避免显示屏10的底部或侧面遮挡影响功能,而顶部较难被遮挡。底部和侧面可设置3个传感器。
应当理解的是,在实际应用中,所述光线传感器的数量以及布置位置并不限于此,根据显示屏10的尺寸,可适当增减光线传感器数量。
所述微控制单元20包括:数据分析器,与所述光线采集器连接,用于对所述光线采集器所采集的光线信号进行处理分析,以得到所述周围环境光线参数L;信号生成器,用于当所述周围环境光线参数L大于第一临界值时,发送第一信号至所述背光模组700及所述视频信号处理单元800,以使所述显示装置切换至反射模式,当所述周围环境光线参数L小于第一临界值时、 或者接收到所述光线采集器损坏信号时,发送第二信号至所述背光模组700及所述视频信号处理单元800,以使所述显示装置切换至透射模式。
其中,所述数据分析器具体包括:
第一判断器,用于判断采集到光线数据的所述主传感器910的数目m’,m’为0或小于或等于m的正整数;
第一比较器,与所述第一判断器连接,用于当m’为小于或等于m的正整数时,比较m’个所述主传感器910所采集的光线数据差值是否在第一预定阈值内;
第一数据计算器,与所述第一比较器连接,用于当m’个所述主传感器910所采集的光线数据差值在第一预定阈值内时,计算m’个所述主传感器910的光线数据平均值,得到第一数据L M1,L M1=(M 1+M 2……M m’)/m’,其中M m’即为第m’个所述主传感器910的光线数据;
第二判断器,用于判断采集到光线数据的所述辅助传感器920的数目n’,且n’为0或小于或等于n的正整数;
第二比较器,所述第二比较器与所述第二判断器连接,用于当n’为小于或等于n的正整数时,比较n’个所述辅助传感器920所采集的光线数据差值是否在第二预定阈值内;
第二数据计算器,用于当n’个所述辅助传感器920中x个所述辅助传感器920所采集的光线数据差值在第二预定阈值内时,剩余(n-x)个所述辅助传感器920所采集的光线数据差值超出第二预定阈值时,计算x个所述辅助传感器920的光线数据平均值,得到第二数据L S1,L S1=(S 1+S 2……S x)/x,其中S x即为第x个所述辅助传感器920的光线数据,X为小于或等于n的正整数;
第三数据计算器,与所述第一数据计算器和所述第二数据计算器连接,用于根据所述第一数据L M1和第二数据L S1得到所述周围环境光线参数L=L M1+|L s1-L M1|/(m’+x);
第三比较器,与所述第一比较器和所述第二数据计算器连接,用于当m’个所述主传感器910所采集的光线数据差值超出第一预定阈值,且n’个所述辅助传感器920所采集的光线数据差值在第二预定阈值内,比较m’个所 述主传感器910中各所述主传感器910所采集的光线数据与所述第三数据LS的差值是否在第三预定阈值内;
第四数据计算器,与所述第三比较器连接,用于当m’个所述主传感器910中y个所述主传感器910所采集的光线数据与所述第二数据L S1的差值在第三预定阈值内,剩余(m’-y)个所述主传感器910所采集的光线数据差值超出第三预定阈值时,计算y个所述主传感器910的光线数据平均值,得到第四数据L M2,L M2=(M 1+M 2……M y)/y,其中M y即为第y个所述主传感器910的光线数据;
第五数据计算器,与所述第四数据计算器和所述第二数据计算器连接,用于根据所述第四数据L M2和第二数据L S1得到所述周围环境光线参数L=L M2+|L S1-L M2|/(y+x);
第四比较器,与所述第一比较器和所述第二比较器连接,用于当n’个所述辅助传感器920所采集的光线数据差值超出第二预定阈值时,且m’个所述主传感器910所采集的光线数据差值超出第一预定阈值时,比较m’个所述主传感器910、n’个所述辅助传感器920所采集的光线数据与预存光线数据的差值是否在第四预定阈值内;
第六数据计算器,与所述第四比较器连接,用于根据m’个所述主传感器910中采集的光线数据与预存光线数据差值在第四预定阈值内的y’个所述主传感器910、和n’个所述辅助传感器920中所采集的光线数据与预存光线数据差值在第四预定阈值内的x’个所述辅助传感器920的光线数据,得到L=L M3+|L s3-L M3|/(y’+x’),其中,L M3=(M 1+M 2……M y’)/y’,其中My’即为第y’个所述主传感器910的光线数据;L s3=(S 1+S 2……S x’)/x’,其中S x’即为第x’个所述辅助传感器920的光线数据,y’、x’均为小于或等于n的正整数;
第七数据计算器,与所述第一判断器、第二判断器和所述第二数据计算器连接,用于当所述m’为0,且n’为小于或等于n的正整数时,计算所述周围环境光线参数L=L S1
第三判断器,与所述第一判断器、第二判断器连接,用于当所述m’为0,且n’为0时,判断所述光线采集器损坏,并向所述信号生成器发送所述 光线采集器损坏信号;
第四判断器,与所述第四比较器连接,用于当n’个所述辅助传感器920所采集的光线数据差值超出第二预定阈值,且m’个所述主传感器910所采集的光线数据差值超出第一预定阈值,且m’个所述主传感器910、n’个所述辅助传感器920所采集的光线数据与预存光线数据的差值超出第四预定阈值时,判断所述光线采集器损坏,并向所述信号生成器发送所述光线采集器损坏信号。
为了便于理解,以下针对具体实施例,来对以上微处理器对光线信号数据处理分析过程进行详细说明。
以图16所示的光线传感器的分布方式为例,显示屏10的顶部设置2个光线传感器为主传感器910,分别为m1和m2,显示屏10的左侧、右侧及底部分别设置一个辅助传感器920,分别为s1、s2和s3。
在环境光采集和判断过程中,m1和m2为主要光线数据来源,s1、s2和s3的数据作为调整参数。只有在发生数据异常时,才将辅助传感器920数据作为主要判断依据。
具体的数据分析过程如下:
步骤S01、判断采集到光线数据的主传感器910的数目m’,若m’为大于或等于0的正整数,则执行步骤S02;若m’=0,则执行步骤S012或步骤S013;
步骤S02、当m’为小于或等于m的正整数时,比较m’个主传感器910所采集到的光线数据是否在第一预定阈值内,该第一预定阈值可以是预先设定好的允许的误差值,也就是说,比较m’个主传感器910的光线数据是否接近;若是,执行步骤S03,若否,执行步骤S08;
例如,例如,m’=2时,也就是,m1和m2均有采集到光线数据发送至数据分析器,此时,比较2个主传感器910的光线数据是否接近;
步骤S03、当m’个主传感器910的光线数据接近时,则计算m’个主传感器910的光线数据的平均值,得到第一数据L M1,L M1=(M 1+M 2……M m’)/m’,其中M m’为第m’个所述主传感器910的光线数据;
例如,图16所示的实施例为例,m’=2时,L M1=(M 1+M 2)/2,M 1即为主传感器910m1采集的光线数据,M 2即为主传感器910m2采集的光线数据;
步骤S04、判断采集到光线数据的所述辅助传感器920的数目n’;若n’为大于或等于0的正整数,则执行步骤S05;若n’=0,则执行步骤S013;
步骤S05、当n’为小于或等于n的正整数时,比较n’个所述辅助传感器920所采集的光线数据差值是否在第二预定阈值内,该第二预定阈值可以是预先设定好的允许的误差值,也就是说,比较n’个辅助传感器920的光线数据是否接近;若是,执行步骤S06;若否,执行步骤S08;
步骤S06、当n’个所述辅助传感器920中x个辅助传感器920所采集的光线数据差值在第二预定阈值内时,剩余(n-x)个所述辅助传感器920所采集的光线数据差值超出第二预定阈值时,计算x个所述主传感器910的光线数据平均值,得到第二数据L S1,L S1=(S 1+S 2……S x)/x,其中S x为第x个所述辅助传感器920的光线数据,X为小于或等于n的正整数;
例如,图16所示实施例中,3个辅助传感器920的光线数据均在第二预定阈值内时,L S1=(S 1+S 2+S 3)/3,S1即为辅助传感器s1的光线数据,S2即为辅助传感器s2的光线数据,S3即为辅助传感器s3的光线数据;
需要说明的是,若主传感器910或辅助传感器920中任一传感器的光线数据明显偏离,则可再次读入该传感器的光线数据,若连续预定次数,数据仍偏离,则判定该数据异常,舍去该辅助传感器920的异常数据,不进行计算。
例如:当3个辅助传感器920中,x个辅助传感器920的光线数据差值在第二预定阈值内,而剩余3-x个所述辅助传感器920所采集的光线数据差值超出第二预定阈值时,此时,仅计算x个所述辅助传感器920的光线数据平均值,得到第二数据L S1,L S1=(S 1+S 2……S x)/x,例如,x=2,此时,L S1=(S 1+S 2)/2;又例如,x=1,此时,L S1=S 1,L=L M1+|L s1-L M1|/3。
步骤S07、根据所述第一数据L M1和第二数据L S1得到所述周围环境光线参数L=L M1+|L s1-L M1|/(m’+x);
例如,当3个主传感器910的光线数据在允许误差内,且2个辅助传感器920的光线数据在允许误差内,此时,m’=2,x=3时,L=L M1+|L s1-L M1|/5;
又例如:当3个辅助传感器920中,2个辅助传感器920的光线数据差值在第二预定阈值内,而剩余1个所述辅助传感器920所采集的光线数据差 值超出第二预定阈值时,此时,x=2,则L S1=(S 1+S 2)/2,L=L M1+|L s1-L M1|/(m’+x),即,L=L M1+|L s1-L M1|/4;
又例如,x=1,此时,L S1=S 1,L=L M1+|L s1-L M1|/3。
步骤S08、当m’个所述主传感器910中y个所述主传感器910所采集的光线数据与所述第二数据L S1的差值在第三预定阈值内,剩余(m’-y)个所述主传感器910所采集的光线数据差值超出第三预定阈值时,计算所述y个所述主传感器910的光线数据平均值,得到第四数据L M2,L M2=(M 1+M 2……M y)/y,其中M y即为第y个所述主传感器910的光线数据,y为小于或等于m’的正整数;
例如,以图16所示实施例为例,主传感器910m1和主传感器910m2均有数据,但是数据差距超出误差范围,此时,执行步骤S05,比较3个辅助传感器920的数据,是否在误差范围内,若是,执行步骤S06,得到第二数据LS1后,执行步骤S09;若否,执行步骤S010;
步骤S09、将第二数据L S1与主传感器910m1、主传感器910m2比较,舍弃主传感器910m1、主传感器910m2中偏离较大的数据,此时,得到第四数据L M1=M 1或L M1=M 2;然后,执行步骤S07,得到L=L M1+|L s1-L M1|/4;
步骤S010、当n’个所述辅助传感器920所采集的光线数据差值超出第二预定阈值时,且m’个所述主传感器910所采集的光线数据差值超出第一预定阈值时,比较m’个所述主传感器910、n’个所述辅助传感器920所采集的光线数据与预存光线数据的差值是否在第四预定阈值内;若是,执行步骤S011;若否,执行步骤
步骤S011、根据m’个所述主传感器910中采集的光线数据与预存光线数据差值在第四预定阈值内的y’个所述主传感器910、和n’个所述辅助传感器920中所采集的光线数据与预存光线数据差值在第四预定阈值内的x’个所述辅助传感器920的光线数据,得到L=L M3+|L s3-L M3|/(y’+x’),其中,L M3=(M 1+M 2……M y’)/y’,其中M y’即为第y’个所述主传感器910的光线数据;L s3=(S 1+S 2……S x’)/x’,其中S x’即为第x’个所述辅助传感器920的光线数据,y’、x’均为小于或等于n的正整数;
上述步骤S10、步骤S011举例说明如下:
以图16所示实施例为例,主传感器910m1和主传感器910m2均有数据,但是数据差距超出误差范围,此时,比较3个辅助传感器920的数据,若3个辅助传感器920同样出现数据偏离,则存在两种情况,部分传感器受到了强光照射或者存在部分遮挡。此时,需要与前一数组数据进行比较分析,将偏离较大组数据剔除,保留剩余数据进行平均。
步骤S012、当所述m’为0,且n’为小于或等于n的正整数时,计算所述周围环境光线参数L=L S1
步骤S013、当所述m’为0,且n’为0时,判断所述光线采集器损坏,并向所述信号生成器发送所述光线采集器损坏信号;
步骤S014、当n’个所述辅助传感器920所采集的光线数据差值超出第二预定阈值,且m’个所述主传感器910所采集的光线数据差值超出第一预定阈值,且m’个所述主传感器910、n’个所述辅助传感器920所采集的光线数据与预存光线数据的差值超出第四预定阈值时,判断所述光线采集器损坏,并向所述信号生成器发送所述光线采集器损坏信号。
上述步骤S012、步骤S013和步骤S014说明如下:
若主传感器910数值存在与辅助传感器920偏离较大的情况,或者各个主传感器910均失效,则直接判断辅助传感器920当前状态是否正常,正常则计算L=Ls/3,异常则切换为透射式模式,打开背光,并上报损坏情况,等待维修。
以上是针对微控制单元20如何对光线数据分析,以确定是否需要切换模式进行的说明,以下就微控制单元20与视频信号处理单元800如何在不同显示模式下控制显示画面,来进行说明。
本公开实施例所提供的显示装置在透射模式和反射模式下,显示信号中灰阶互补变换。以下说明显示装置在两种模式下的颜色显示原理:
对于透射模式,可以根据显示端需求进行信号格式转换,进行正常输出即可;而对于反射式显示模式,可采用反色方式进行处理后,再输出。
即,当原图像某像素点的颜色设定为Greyx(Rx,Gx,Bx),对于常规显示屏10,灰阶分布为0~255,则透射模式和显示模式两种模式下,显示灰阶应当遵循以下公式:
透射式:
Figure PCTCN2021102271-appb-000004
反射式:
Figure PCTCN2021102271-appb-000005
以图17中(a)所示,原图显示画面为白色,彩色圆形图案,在透射模式下,如图17中(b)所示,序号1~6彩色圆形图案的灰阶不变,底色仍为白底,彩色圆形图案对应灰阶如下表3所示:
表3
  1 2 3 4 5 6
R 239 0 149 255 156 0
G 45 132 248 190 35 0
B 36 200 14 14 146 0
那么,当显示模式为反射式,显示图像进行了灰阶互补式处理,处理后图像如图17中(c)所示,灰阶值见表4。
表4
  1 2 3 4 5 6
R 16 255 106 0 99 255
G 210 123 7 65 220 255
B 219 55 241 241 109 255
以上灰阶处理方式有两种实现方式,分别为视频处理单元进行实时转换和显示灰阶反转。
以下对这两种方式进行详细说明:
第一种方式:
所述视频信号处理单元800具体包括:
当接收到将显示装置切换为透射模式的第一信号时,使视频信号以点对点模式直接输出,以使显示屏10进行正常灰阶显示;
当接收到将显示装置切换为反射模式的第二信号时,对视频信号进行反 色处理后输出,以使显示屏10进行正常灰阶显示。
上述方案,如图14所示,这种方式采用的是视频信号实时处理转换的方式,要求所述视频信号处理单元800除常规视频处理功能之外,还可以实时进行图像处理,例如,将反射模式标记为Mode1,透射模式标记为Mode2;当显示模式为mode1,通过视频信号处理单元800调用第一存储器801的程序,利用视频信号处理单元800内部的ACC模块对灰阶进行互补处理,处理完成后,再输出至缓存中,显示屏10根据该灰阶信息显示;当显示模式为mode2,视频处理单元调用第二存储器中的程序,对视频信息采用点对点模式,不进行任何处理,直接输出至缓存中,显示屏10根据灰阶信息显示。
第一种方式:
所述视频信号处理单元800具体包括:
显示驱动单元;
T-con电路803,与所述微控制单元20连接,用于接收所述微控制单元20的模式切换信号;
集成于所述T-con电路803上的第一伽马芯片804和第二伽马芯片805,所述第一伽马芯片804用于生成透射模式下的灰阶信息,生成相应的伽马电压,所述第二伽马芯片805用于生成反射模式下的灰阶信息,生成相应的伽马电压;
及,多路选择开关806,连接在所述T-con电路803与所述显示驱动单元之间,所用于根据所接收到所述模式切换信号时,输出对应的灰阶信息至所述显示驱动单元。
上述方案中,如图15所示,采用显示灰阶反转的方式,视频处理单元在透射模式和反射模式下均采用点对点模式输出显示信号,微控制单元20将模式转换信号直接提供到如图15所示的模式切换电路,在T-con电路803中集成有两颗P-GAMMA芯片用于生成两组不同的灰阶信息,P-GAMMA1生成透射模式下灰阶信息,P-GAMMA2生成反射模式下灰阶信息,生成的Gamma电压通过多路选择开关806,提供给驱动IC。多路选择开关806会根据微控制单元20的模式切换信号,决定哪一路gamma电压可以输入。
在一些实施例中,为了提升驱动能力和稳定性,可利用MOS管组成驱动 开关电路,实现稳定可靠的开关驱动。
本公开实施例提供的显示装置,可以实现透射模式和反射模式两种显示模式,这两种显示模式是根据环境光强度对背光亮度进行切换,以维持整体显示效果,还可以在夜间降低整机功耗,达到节能降耗的效果。以下对此进行详细说明。
所述微控制单元20还包括:
第一计时器,用于当所述光线检测单元900所采集的周围环境光线参数L大于或等于第一临界值时,开始计时;
第一判定器,用于判断从计时开始的预定持续时间段内,所述周围环境光线参数L是否始终保持大于或等于第一临界值,若是,判定所述显示装置需要切换为反射模式;若否,判定所述显示装置不需要切换为反射模式。
具体的,所述微控制单元20还用于:
第一信号生成器,用于当所述周围环境光线参数L在大于第一临界值且呈下降状态,下降至所述第一临界值时,生成模式切换信号,控制所述显示装置切换至透射模式,并根据液晶面板表面亮度Lts=Lbl*β,β为液晶面板的透过率,得到所述背光模组700的背光亮度Lbl值,根据所述背光亮度Lbl值控制所述背光模组700的工作状态;
第二信号生成器,用于当所述周围环境光线参数L在小于所述第一临界值,呈未下降状态,且大于第二临界值时,控制所述背光模组700的背光亮度Lbl值保持不变;
第三信号生成器,用于当所述周围环境光线参数L达到第二临界值时,开始计时,并判断从计时开始的预定持续时间段内,所述周围环境光线参数L是否始终保持小于第二临界值,若是,控制所述背光模组700的背光亮度降低至Lbl/z,z为大于1的正整数;
第四信号生成器,用于当所述周围环境光线参数L从第二临界值以下上升至第二临界值以上时,开始计时,并判断从计时开始的预定持续时间段内,所述周围环境光线参数L是否始终保持大于第二临界值,若是,控制所述背光模组700的背光亮度增大Lbl值;
第五信号生成器,用于当所述周围环境光线参数L上升至第一临界值时, 生成模式切换信号,控制所述显示装置切换至透射模式,控制所述背光模组700关闭。
需要说明的是,上述方案中,第一临界值和第二临界值可由系统内预先设定或由用户设定,第一临界值和第二临界值的具体数据不限定。为了便于理解上述方案,以第一临界值为5000lx,第二临界值为500lx为例,来进行说明。
步骤I、根据设定条件,以第一临界值5000lx为切换点,周围环境光的光线亮度高于5000lx时,显示模式切换为反射模式;周围环境光的光线亮度低于5000lx时,显示模式切换为透射模式。
步骤II、为防止误判,在微控制单元20的内部设置第一计时器T1,用于判定当前是否需要切换模式,例如,第一计时器T1设定计时,例如5分钟,当周围环境光的光线亮度超过第一临界值,且持续时间超过5分钟,则切换显示模式为反射模式,否则,判定为异常情况(暗环境车灯照射或亮环境物体遮挡),不做切换动作。
步骤III、当周围环境光的光线亮度处于下降状态,且周围环境光的光线亮度下降为5000左右时,随着周围环境光的变化,显示装置可切换为透射模式,根据显示屏10的表面亮度Lts=Lbl*β,β为液晶屏透过率,得出当前模式下的背光亮度Lbl值(例如,背光亮度Lbl值为10000nit以上)。
步骤V、当周围环境光继续降低,则背光亮度Lbl值可维持不变,当周围环境光的光线亮度降到第二临界值500lx以下时,则再次判断显示装置是否进入待机模式,微控制单元20的内部针对待机模式设置第二计时器T2,第二计时器开始计时,例如计时T2>1分钟,则确认处于深夜状态,将背光亮度可调整为1/z*Lbl,例如,z=2时,背光亮度可调整为1/2*Lbl(例如,背光亮度1/2*Lbl值为5000nit)。
步骤VI、当环境光再次超过第二临界值500lx,第二计时器T2开始计时,例如计时T2>1分钟,则判断显示装置已恢复到正常工作模式,将背光亮度恢复至正常值Lbl值,直到周围环境光的光线亮度达到第一临界值5000lx,再次将显示装置切换为反射模式。重复上述步骤I~VI。
以下对本公开实施例提供的显示装置的具体工作过程说明如下:
所述光线传感器中的主传感器910和辅助传感器920实时采集周围环境光线数据,并将周围环境光线数据全部发送至微控制单元20;
微控制单元20将接收到的周围环境光线数据分成主传感器910数据和辅助传感器920数据,进行数据判断,得到准确的周围环境光参数L(若仅采用主传感器910,则其判断过程只进行两组数据比对,以及与历史数据的比对,根据比对结果决定是否采用当前数据);
微控制单元20根据所述周围环境光参数L判定是否维持当前显示模式,符合切换模式条件时,发送模式转换信号给视频信号处理单元800,切换显示模式;同时,微控制单元20根据所述周围环境光参数L决定是否开启背光以及背光亮度值;
所述视频信号处理单元800接收到模式切换信号,根据模式切换信号切换至对应的显示模式;
所述背光模组700接收到微控制单元20发来的BL_ON信号和PWM信号,对背光进行处理和调整,具体的信号时序对应关系及波形变化示意图见图18。
表5
Figure PCTCN2021102271-appb-000006
Figure PCTCN2021102271-appb-000007
表5为本公开实施例提供的显示装置应用于19寸ADS液晶黑显示装置、19寸ADS液晶彩色液晶显示装置、46寸ADS液晶彩色显示装置、43寸ADS液晶彩色显示装置的具体设计参数。
表6
Figure PCTCN2021102271-appb-000008
表6为本公开实施例提供的显示装置应用于19寸ADS液晶黑显示装置、19寸ADS液晶彩色液晶显示装置、46寸ADS液晶彩色显示装置、43寸ADS液晶彩色显示装置分别在透射式和反射式显示模式下的光学测试数据。
由表5和表6可知,本公开实施例的显示装置应用于黑白显示装置和彩色显示装置均具有优异的光学性能,其中,黑白显示装置在透射状态下的面板透过率高达14.2%,对比度100:1;在反射状态下的反射率高达38%,视角>70°。彩色显示装置在透射状态下的面板透过率高达9.2%,对比度120:1,色域为36%;在反射状态下的反射率为8.2%,色域为35.4%。本公开实施例的显示装置优异的光学性能以及透反状态智能切换功能可满足客户在不同场景下的显示需求。
有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”或者可以存在中间元件。
(3)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,本公开的保护范围应以权利要求的保护范围为准。

Claims (17)

  1. 一种显示屏,其特征在于,包括:
    透射式液晶面板,所述透射式液晶面板包括相背设置的显示侧和非显示侧;
    第一偏光片,设置于所述透射式液晶面板的显示侧;
    第二偏光片,设置于所述透射式液晶面板的非显示侧,所述第一偏光片与所述第二偏光片的透过轴方向垂直;
    散射层,设置于所述第一偏光片与所述透射式液晶面板之间,和/或,设置于所述第二偏光片与所述透射式液晶面板之间;
    反射式偏光片,所述反射式偏光片设置于所述透射液晶面板与所述第二偏光片之间。
  2. 根据权利要求1所述的显示屏,其特征在于,
    所述散射层包括散射膜片。
  3. 根据权利要求1所述的显示屏,其特征在于,
    所述散射层包括高雾度光学胶涂层。
  4. 根据权利要求2所述的显示屏,其特征在于,
    所述散射膜片设置于所述第二偏光片与所述透射式液晶面板之间时,所述反射式偏光片位于所述散射膜片与所述第二偏光片之间。
  5. 根据权利要求4所述的显示屏,其特征在于,
    所述散射膜片的扩散轴方向、所述反射式偏光片的透过轴方向以及所述第二偏光片的透过轴方向一致。
  6. 根据权利要求5所述的显示屏,其特征在于,
    所述散射膜片、所述反射式偏光片与所述第二偏光片组成外置复合膜材,以全贴合方式设置于所述透射式液晶面板上。
  7. 根据权利要求1所述的显示屏,其特征在于,
    所述第一偏光片以全贴合方式设置于所述透射式液晶面板上。
  8. 根据权利要求1所述的显示屏,其特征在于,
    所述显示屏还包括设置于所述第一偏光片的远离所述透射式液晶面板的 一侧的减反射薄膜。
  9. 根据权利要求1所述的显示屏,其特征在于,
    所述液晶面板为扭曲向列相液晶面板、垂直取向液晶面板、面内转换液晶面板、边缘场转换液晶面板、染料液晶面板中的至少一种。
  10. 根据权利要求1所述的显示屏,其特征在于,
    所述反射式偏光片包括:多层双折射材料层和多层非双折射材料层交替叠加组成的核心层,所述双折射材料层的折射率大于所述非双折射材料层的折射率。
  11. 一种显示装置,其特征在于,包括:
    如权利要求1至10任一项所述的显示屏;
    背光模组,用于为所述显示屏提供光源;
    视频信号处理单元,用于控制所述显示屏的视频显示信号;
    光线检测单元,用于采集周围环境光线数据;
    微控制单元,与所述光线检测单元及所述视频信号处理单元连接,用于根据所述光线检测单元所采集的周围环境光线数据,生成模式切换信号,控制所述背光模组及所述视频显示单元的工作状态,以使所述显示装置在透射模式和反射模式之间切换,
    其中,
    在所述透射模式,所述背光模组开启,所述视频信号处理单元向所述显示屏发送第一图像显示信号;
    在所述反射模式,所述背光模组关闭,所述视频信号处理单元向所述显示屏发送第二图像显示信号,所述第一图像显示信号与所述第二图像显示信号的图像灰阶互补。
  12. 根据权利要求11所述的显示装置,其特征在于,
    所述光线检测单元包括:光线采集器,所述光线采集器设置于所述显示屏的四周,用于采集周围环境光线数据;
    所述微控制单元包括:
    数据分析器,与所述光线采集器连接,用于对所述光线采集器所采集的光线信号进行处理分析,以得到所述周围环境光线参数L;
    信号生成器,用于当所述周围环境光线参数L大于第一临界值时,发送第一信号至所述背光模组及所述视频信号处理单元,以使所述显示装置切换至反射模式,当所述周围环境光线参数L小于第一临界值时、或者接收到所述光线采集器损坏信号时,发送第二信号至所述背光模组及所述视频信号处理单元,以使所述显示装置切换至透射模式。
  13. 根据权利要求12所述的显示装置,其特征在于,
    所述光线采集器包括m个主传感器和n个辅助传感器,m和n均为大于或等于2的正整数,所述主传感器设置于处于使用状态时的所述显示屏的顶部位置,所述辅助传感器设置于处于使用状态时的所述显示屏的底部位置;
    所述数据分析器具体包括:
    第一判断器,用于判断采集到光线数据的所述主传感器的数目m’,m’为0或小于或等于m的正整数;
    第一比较器,与所述第一判断器连接,用于当m’为小于或等于m的正整数时,比较m’个所述主传感器所采集的光线数据差值是否在第一预定阈值内;
    第一数据计算器,与所述第一比较器连接,用于当m’个所述主传感器所采集的光线数据差值在第一预定阈值内时,计算m’个所述主传感器的光线数据平均值,得到第一数据L M1,L M1=(M 1+M 2……M m’)/m’,其中M m’为第m’个所述主传感器的光线数据;
    第二判断器,用于判断采集到光线数据的所述辅助传感器的数目n’,且n’为0或小于或等于n的正整数;
    第二比较器,所述第二比较器与所述第二判断器连接,用于当n’为小于或等于n的正整数时,比较n’个所述辅助传感器所采集的光线数据差值是否在第二预定阈值内;
    第二数据计算器,用于当n’个所述辅助传感器中x个所述辅助传感器所采集的光线数据差值在第二预定阈值内时,剩余(n-x)个所述辅助传感器所采集的光线数据差值超出第二预定阈值时,计算所述x个所述主传感器的光线数据平均值,得到第二数据L S1,L S1=(S 1+S 2……S x)/x,其中S x为第x个所述辅助传感器的光线数据,X为小于或等于n的正整数;
    第三数据计算器,与所述第一数据计算器和所述第二数据计算器连接,用于根据所述第一数据L M1和第二数据L S1得到所述周围环境光线参数L=L M1+|L s1-L M1|/(m’+x);
    第三比较器,与所述第一比较器和所述第二数据计算器连接,用于当m’个所述主传感器所采集的光线数据差值超出第一预定阈值,且n’个所述辅助传感器所采集的光线数据差值在第二预定阈值内,比较m’个所述主传感器中各所述主传感器所采集的光线数据与所述第三数据LS的差值是否在第三预定阈值内;
    第四数据计算器,与所述第三比较器连接,用于当m’个所述主传感器中y个所述主传感器所采集的光线数据与所述第二数据LS1的差值在第三预定阈值内,剩余(m’-y)个所述主传感器所采集的光线数据差值超出第三预定阈值时,计算所述y个所述主传感器的光线数据平均值,得到第四数据LM2,L M2=(M 1+M 2……M y)/y,其中M y即为第y个所述主传感器的光线数据,y为小于或等于m’的正整数;
    第五数据计算器,与所述第四数据计算器和所述第二数据计算器连接,用于根据所述第四数据L M2和第二数据L S1得到所述周围环境光线参数L=L M2+|L S1-L M2|/(y+x);
    第四比较器,与所述第一比较器和所述第二比较器连接,用于当n’个所述辅助传感器所采集的光线数据差值超出第二预定阈值时,且m’个所述主传感器所采集的光线数据差值超出第一预定阈值时,比较m’个所述主传感器、n’个所述辅助传感器所采集的光线数据与预存光线数据的差值是否在第四预定阈值内;
    第六数据计算器,与所述第四比较器连接,用于根据m’个所述主传感器中采集的光线数据与预存光线数据差值在第四预定阈值内的y’个所述主传感器、和n’个所述辅助传感器中所采集的光线数据与预存光线数据差值在第四预定阈值内的x’个所述辅助传感器的光线数据,得到L=LM3+|L s3-L M3|/(y’+x’),其中,L M3=(M 1+M 2……M y’)/y’,其中M y’即为第y’个所述主传感器的光线数据;L s3=(S 1+S 2……S x’)/x’,其中S x’即为第x’个所述辅助传感器的光线数据,y’、x’均为小于或等于n的正整数;
    第七数据计算器,与所述第一判断器、第二判断器和所述第二数据计算器连接,用于当所述m’为0,且n’为小于或等于n的正整数时,计算所述周围环境光线参数L=L S1
    第三判断器,与所述第一判断器、第二判断器连接,用于当所述m’为0,且n’为0时,判断所述光线采集器损坏,并向所述信号生成器发送所述光线采集器损坏信号;
    第四判断器,与所述第四比较器连接,用于当n’个所述辅助传感器所采集的光线数据差值超出第二预定阈值,且m’个所述主传感器所采集的光线数据差值超出第一预定阈值,且m’个所述主传感器、n’个所述辅助传感器所采集的光线数据与预存光线数据的差值超出第四预定阈值时,判断所述光线采集器损坏,并向所述信号生成器发送所述光线采集器损坏信号。
  14. 根据权利要求11所述的显示装置,其特征在于,
    所述视频信号处理单元具体包括:
    当接收到将显示装置切换为透射模式的第一信号时,对视频信号以点对点模式直接输出,以使显示屏进行正常灰阶显示;
    当接收到将显示装置切换为反射模式的第二信号时,对视频信号进行反色处理后输出,以使显示屏进行正常灰阶显示。
  15. 根据权利要求11所述的显示装置,其特征在于,
    所述视频信号处理单元具体包括:
    显示驱动单元,与显示屏连接;
    T-con电路,与所述微控制单元连接,用于接收所述微控制单元的模式切换信号;
    集成于所述T-con电路上的第一伽马芯片和第二伽马芯片,所述第一伽马芯片用于生成透射模式下的灰阶信息,所述第二伽马芯片用于生成反射模式下的灰阶信息;
    多路选择开关电路,连接在所述T-con电路与所述显示驱动单元之间,用于根据所接收到所述模式切换信号时,输出对应的灰阶信息至所述显示驱动单元。
  16. 根据权利要求11所述的显示装置,其特征在于,
    所述微控制单元还包括:
    第一计时器,用于当所述光线检测单元所采集的周围环境光线参数L大于或等于第一临界值时,开始计时;
    第一判定器,用于判断从计时开始的预定持续时间段内,所述周围环境光线参数L是否始终保持大于或等于第一临界值,若是,判定所述显示装置需要切换为反射模式;若否,判定所述显示装置不需要切换为反射模式。
  17. 根据权利要求11所述的显示装置,其特征在于,
    所述微控制单元具体还用于:
    第一信号生成器,用于当所述周围环境光线参数L在大于第一临界值且呈下降状态,下降至所述第一临界值时,生成模式切换信号,控制所述显示装置切换至透射模式,并根据液晶面板表面亮度Lts=Lbl*β,β为液晶面板的透过率,得到所述背光模组的背光亮度Lbl值,根据所述背光亮度Lbl值控制所述背光模组的工作状态;
    第二信号生成器,用于当所述周围环境光线参数L在小于所述第一临界值,呈下降状态,且大于第二临界值时,控制所述背光模组的背光亮度Lbl值保持不变;
    第三信号生成器,用于当所述周围环境光线参数L达到第二临界值时,开始计时,并判断从计时开始的预定持续时间段内,所述周围环境光线参数L是否始终保持小于第二临界值,若是,控制所述背光模组的背光亮度降低至Lbl/z,z为大于1的正整数;
    第四信号生成器,用于当所述周围环境光线参数L从第二临界值以下上升至第二临界值以上时,开始计时,并判断从计时开始的预定持续时间段内,所述周围环境光线参数L是否始终保持大于第二临界值,若是,控制所述背光模组的背光亮度增大Lbl值;
    第五信号生成器,用于当所述周围环境光线参数L上升至第一临界值时,生成模式切换信号,控制所述显示装置切换至透射模式,控制所述背光模组关闭。
PCT/CN2021/102271 2021-06-25 2021-06-25 一种显示屏及显示装置 WO2022266983A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112021005089.3T DE112021005089T5 (de) 2021-06-25 2021-06-25 Anzeigebildschirm und anzeigevorrichtung
US17/788,038 US20240168337A1 (en) 2021-06-25 2021-06-25 Display screen and display apparatus
CN202180001609.9A CN115735152A (zh) 2021-06-25 2021-06-25 一种显示屏及显示装置
PCT/CN2021/102271 WO2022266983A1 (zh) 2021-06-25 2021-06-25 一种显示屏及显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/102271 WO2022266983A1 (zh) 2021-06-25 2021-06-25 一种显示屏及显示装置

Publications (1)

Publication Number Publication Date
WO2022266983A1 true WO2022266983A1 (zh) 2022-12-29

Family

ID=84543983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/102271 WO2022266983A1 (zh) 2021-06-25 2021-06-25 一种显示屏及显示装置

Country Status (4)

Country Link
US (1) US20240168337A1 (zh)
CN (1) CN115735152A (zh)
DE (1) DE112021005089T5 (zh)
WO (1) WO2022266983A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187753A (ja) * 2006-01-11 2007-07-26 Sharp Corp 液晶表示装置
CN103278975A (zh) * 2013-05-27 2013-09-04 京东方科技集团股份有限公司 半透半反式液晶面板、阵列基板、彩膜基板及制作方法
CN104965371A (zh) * 2015-07-09 2015-10-07 京东方科技集团股份有限公司 显示面板及其制造方法、驱动方法、显示装置
CN105208191A (zh) * 2015-08-13 2015-12-30 小米科技有限责任公司 模式切换方法及装置
CN105974697A (zh) * 2016-07-20 2016-09-28 京东方科技集团股份有限公司 显示面板及显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187753A (ja) * 2006-01-11 2007-07-26 Sharp Corp 液晶表示装置
CN103278975A (zh) * 2013-05-27 2013-09-04 京东方科技集团股份有限公司 半透半反式液晶面板、阵列基板、彩膜基板及制作方法
CN104965371A (zh) * 2015-07-09 2015-10-07 京东方科技集团股份有限公司 显示面板及其制造方法、驱动方法、显示装置
CN105208191A (zh) * 2015-08-13 2015-12-30 小米科技有限责任公司 模式切换方法及装置
CN105974697A (zh) * 2016-07-20 2016-09-28 京东方科技集团股份有限公司 显示面板及显示装置

Also Published As

Publication number Publication date
DE112021005089T5 (de) 2023-09-07
US20240168337A1 (en) 2024-05-23
CN115735152A (zh) 2023-03-03

Similar Documents

Publication Publication Date Title
US9612374B2 (en) Color filter, display panel and display device
EP2730969B1 (en) Transflective display panel and display device comprising same
CN208689323U (zh) 一种液晶显示模组及显示装置
JP4122808B2 (ja) 液晶表示装置および電子機器
US20200089052A1 (en) Liquid crystal module and liquid crystal display device
CN203909438U (zh) 一种显示面板和显示装置
KR20110068210A (ko) 투명표시소자
CN102809843B (zh) 液晶面板以及透反式液晶显示器
CN212623464U (zh) 显示面板及显示装置
CN105700233A (zh) 背光模组及液晶显示装置
CN202229028U (zh) 一种背光模组和液晶显示器
US20160041427A1 (en) Transflective liquid crystal display panel, manufacturing method thereof, and display device
US20180180953A1 (en) Transflective display panel and transflective display device
US20210033933A1 (en) Display device and driving method thereof
WO2015078026A1 (zh) 彩色液晶显示面板
WO2020133838A1 (zh) 一种显示装置
CN111025795B (zh) 一种液晶显示装置
WO2018120301A1 (zh) 一种透明液晶显示面板及包含其的显示器
CN104280811B (zh) 偏光片、液晶面板以及液晶显示器
CN105259708A (zh) 透明显示器
CN101533177B (zh) 可携式电子装置及其双面式液晶显示装置
US10969634B2 (en) Liquid crystal display panel, liquid crystal display device and method of controlling gray scale of liquid crystal display device
CN204790249U (zh) 一种阳光下可视的显示装置
CN104391405A (zh) 显示模组及液晶显示装置
WO2022266983A1 (zh) 一种显示屏及显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17788038

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21946478

Country of ref document: EP

Kind code of ref document: A1