WO2022266900A1 - 天线的控制装置、方法、天线系统与计算控制装置 - Google Patents

天线的控制装置、方法、天线系统与计算控制装置 Download PDF

Info

Publication number
WO2022266900A1
WO2022266900A1 PCT/CN2021/101894 CN2021101894W WO2022266900A1 WO 2022266900 A1 WO2022266900 A1 WO 2022266900A1 CN 2021101894 W CN2021101894 W CN 2021101894W WO 2022266900 A1 WO2022266900 A1 WO 2022266900A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
position information
temperature
control device
satellite
Prior art date
Application number
PCT/CN2021/101894
Other languages
English (en)
French (fr)
Inventor
范西超
刘宗民
李伟
郭俊伟
曲峰
李必奇
王亚丽
Original Assignee
京东方科技集团股份有限公司
北京京东方技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方技术开发有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/780,019 priority Critical patent/US20220416418A1/en
Priority to CN202180001604.6A priority patent/CN115715445A/zh
Priority to PCT/CN2021/101894 priority patent/WO2022266900A1/zh
Publication of WO2022266900A1 publication Critical patent/WO2022266900A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/267Phased-array testing or checking devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0864Measuring electromagnetic field characteristics characterised by constructional or functional features
    • G01R29/0871Complete apparatus or systems; circuits, e.g. receivers or amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18517Transmission equipment in earth stations

Definitions

  • Embodiments of the present disclosure relate to but are not limited to the field of display technology, especially an antenna control device, method, antenna system and calculation control device.
  • the phased array antenna is an antenna that changes the shape of the pattern by controlling the feeding phase of the radiating elements in the array antenna. Controlling the phase can change the direction of the maximum value of the antenna pattern to achieve the purpose of beam scanning.
  • the application range of the phased array antenna is extremely wide, for example, it can be applied to the communication between vehicles and satellites, the array radar for unmanned driving or the array radar for safety protection, etc.
  • liquid crystal phased array antennas have problems such as high price, high profile, and difficulty in heat dissipation.
  • liquid crystal phased array antennas are introduced.
  • the liquid crystal phased array antenna has the characteristics of high operating frequency, good heat dissipation, light and thin, small size, breakdown resistance, and low cost.
  • the liquid crystal phased array antenna system also has the problems of serious loss, poor anti-vibration ability, and poor adaptability to low temperature.
  • An embodiment of the present disclosure provides a control device for an antenna, the antenna includes a plurality of antenna elements and a plurality of phase shifters for phase calibration of the plurality of antenna elements, the control device includes a temperature sensor, a positioning unit and a calculation control unit, wherein: the temperature sensor is configured to obtain the temperature information of the antenna and output it to the calculation control unit; the positioning unit is configured to obtain the position information of the antenna and output it to the The calculation and control unit; the calculation and control unit is configured to receive the position information and temperature information of the antenna, determine the position information of the satellite, and determine the position information of the satellite according to the position information and temperature information of the antenna, the position information of the satellite and the preset
  • the stored calibration data is used to control the phase shifter to adjust the phases of the plurality of antenna elements.
  • control device further includes a coupler and a signal processing unit; the coupler is configured to output a signal received by the antenna to the signal processing unit; the signal processing unit is configured to Perform signal processing on the signal received by the antenna to obtain an intermediate signal; the calculation control unit is further configured to calculate the gain of the intermediate signal, and determine whether the gain of the intermediate signal is less than or equal to a first gain threshold, if less than or equal to the first gain threshold, controlling the phase shifter to fine-tune the phases of the multiple antenna elements.
  • the coupler is a power splitter or a microstrip line coupled with a receiving link, the receiving link connects the antenna and an external receiving terminal, and one end of the microstrip line is connected to A ground resistor, the other end of the microstrip line is connected to the signal processing unit.
  • the microstrip line is a periodic cosine or sinusoidal structure.
  • the signal processing unit includes a filter, a mixer, and an analog-to-digital converter; the filter is configured to filter a signal received by the antenna; the mixer is configured In order to mix the output signal of the filter and the signal provided by the local oscillator; the analog-to-digital converter is configured to perform analog-to-digital conversion on the output signal of the mixer to generate the intermediate signal.
  • control device further includes at least one of a heating module and a cooling module;
  • the calculation control unit is further configured to determine the calibration temperature of the antenna according to the temperature of the antenna, when the When the temperature of the antenna is not a certain calibration temperature, at least one of the heating module and the refrigeration module is controlled to adjust the temperature of the antenna to a certain calibration temperature;
  • the heating module is configured to be in the calculation control unit Under control, the antenna is heated;
  • the cooling module is configured to cool the antenna under the control of the computing control unit.
  • the pre-stored calibration data includes: multiple sets of test data, each set of test data includes a set of correspondences between the position of the radiation source, the temperature of the antenna, and the phase calibration value of the antenna .
  • the phase shifter is controlled to adjust the phases of the plurality of antenna elements according to the position information and temperature information of the antenna, the position information of the satellite, and pre-stored calibration data
  • the method includes: determining the position of the corresponding emission source in the calibration data according to the position information of the antenna and the position information of the satellite; determining a corresponding set of test data according to the position of the corresponding emission source and the temperature information of the antenna; Corresponding to the test data, the phase shifter is controlled to adjust the phases of the plurality of antenna elements.
  • the satellite is located at position C
  • the antenna is located at position B2
  • determining the position of the corresponding emission source in the calibration data according to the position information of the antenna and the position information of the satellite includes: starting from position C For the first straight line segment in the longitudinal direction, make the second straight line segment horizontally from the position B2, and the first straight line segment and the second straight line segment intersect at the position A2; on the straight line CA2, determine the position A1 whose distance from the position C is the height of the calibration plane, so The height of the above-mentioned calibration plane is equal to the distance between the plane where multiple emission sources are located and the antenna position during calibration; make a horizontal third straight line segment from the position A1, and the third straight line segment intersects the straight line CB2 at the position B1, then the position B1 is The location of the corresponding emission source in the calibration data.
  • the computing control unit is a field programmable gate array FPGA chip.
  • An embodiment of the present disclosure also provides an antenna system, including an antenna and the antenna control device according to any one of the preceding items.
  • An embodiment of the present disclosure also provides a control method for an antenna, the antenna includes a plurality of antenna elements and a plurality of phase shifters for phase calibration of the plurality of antenna elements, the control method includes: receiving the antenna The position information and temperature information of the satellite are determined to determine the position information of the satellite; according to the position information and temperature information of the antenna, the position information of the satellite and the calibration data stored in advance, the phases of multiple antenna elements are adjusted.
  • An embodiment of the present disclosure also provides a computing control device, including a memory and a processor, the memory is configured to store program instructions and calibration data; the processor is configured to call the program instructions stored in the memory, and obtain The program performs the following steps: receiving the position information and temperature information of the antenna, and determining the position information of the satellite; according to the position information and temperature information of the antenna, the position information of the satellite and the calibration data stored in advance, adjust multiple antenna arrays element phase.
  • the embodiment of the present disclosure also provides a computer-readable storage medium, which stores program instructions and calibration data.
  • the program instructions When executed, the following steps can be realized: receiving the position information and temperature information of the antenna, and determining the position information of the satellite ; adjusting the phases of multiple antenna array elements according to the position information and temperature information of the antenna, the position information of the satellite and the pre-stored calibration data.
  • FIG. 1a, FIG. 1b and FIG. 1c are structural schematic diagrams of control devices for three antennas according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of another antenna control device according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic structural diagram of a coupler according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a microstrip line according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of a signal processing flow in an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a temperature control principle of an antenna according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of an antenna calibration process according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of a calibration principle of an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of the receiving direction of the antenna when the ground receiving station moves according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of a mapping method of a ground receiving station according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of an antenna phase control process according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram of a mapping method of a set of calibration data corresponding to multiple satellites according to an embodiment of the present disclosure
  • Fig. 13 is a schematic structural diagram of another antenna control device according to an embodiment of the present disclosure.
  • connection should be interpreted in a broad sense.
  • it may be a fixed connection, or a detachable connection, or an integral connection; it may be a mechanical connection, or a connection; it may be a direct connection, or an indirect connection through an intermediate piece, or an internal communication between two elements.
  • an embodiment of the present disclosure provides a control device for an antenna, the antenna includes a plurality of antenna elements and a plurality of phase shifters for phase calibration of the plurality of antenna elements, the control device includes a temperature Sensor 101, positioning unit 102 and calculation control unit 103, wherein:
  • the temperature sensor 101 is configured to obtain the temperature information of the antenna and output it to the calculation control unit 103;
  • the positioning unit 102 is configured to obtain the position information of the antenna, and output it to the calculation control unit 103;
  • the calculation control unit 103 is configured to receive the position information and temperature information of the antenna, determine the position information of the satellite, and control the phase shifter to adjust the multiple antennas according to the position information and temperature information of the antenna, the position information of the satellite and the calibration data stored in advance The phase of the array element.
  • the current antennas generally use external receiving terminals as the control system. However, when most antenna manufacturers produce antennas, they will not produce external receiving terminals at the same time. For antenna manufacturers, external receiving terminals must be combined to control the antenna.
  • the phase is controlled, and generally when the external receiving terminal controls the phase of the antenna, it needs to modulate and demodulate the satellite data first, so this phase control scheme is inconvenient to use and needs to occupy the resources of the external receiving terminal.
  • the control device provided by the embodiment of the present disclosure not only solves the phase alignment problem of the liquid crystal phased array antenna to the geosynchronous satellite, but also can make the phased array antenna consistent, so that the receiving gain is greatly increased, and the signal-to-noise ratio of the signal is improved, thereby The signal quality becomes better, and the liquid crystal will move directionally after applying voltage, which has a better anti-vibration effect.
  • the control device of the antenna in the embodiment of the present disclosure can form a negative feedback subsystem, so that the antenna manufacturer does not need to use an external
  • the receiving terminal can control the phase of the antenna autonomously.
  • control device may further include a coupler 104 and a signal processing unit 105;
  • the coupler 104 is configured to output the signal received by the antenna to the signal processing unit 105;
  • the signal processing unit 105 is configured to perform signal processing on the received signal to obtain an intermediate signal
  • the calculation control unit 103 is further configured to calculate the gain of the intermediate signal, judge whether the gain of the intermediate signal is less than or equal to the first gain threshold, and fine-tune the phases of the multiple antenna elements if it is less than or equal to the first gain threshold.
  • the calculation control unit 103 can obtain the gain of the intermediate signal by calculating the measurement integral.
  • the coupler 104 is further configured to output the signal received by the antenna to an external receiving terminal.
  • the external receiving terminal may include a transmitting subsystem, a receiving subsystem and an information processing module, which are not limited in the present disclosure and can be set arbitrarily.
  • the positioning unit 102 may include a Global Positioning System (Global Positioning System, GPS), an accelerometer, a gyroscope, etc.
  • Global Positioning System Global Positioning System, GPS
  • GPS Global Positioning System
  • the computing control unit 103 may determine the position information of the satellite according to the position information of the antenna or the pre-stored position information of the satellite.
  • a signal amplifier may be provided between the antenna and the receiving link, and the signal amplifier is configured to amplify and output a signal received by the antenna.
  • the signal amplifier may be a low noise amplifier (Low Noise Amplifier, LNA) or may be a low noise down converter (Low Noise Block, LNB).
  • the low-noise amplifier is a high-sensitivity preamplifier, which is usually connected to the feed horn of the antenna of the ground station to reduce the noise temperature of the receiving system and increase its overall gain; the function of the low-noise down-converter is to transmit
  • the satellite signal is amplified and down-converted, and the Ku/KA or C-band signal is converted into an L-band signal, which is transmitted to the satellite receiver through a coaxial cable.
  • KA band usually a satellite communication band with a frequency of 17.7 to 20.2 GHz downlink and a frequency of 27.5 to 30.0 GHz uplink, is often referred to as the 20/30 GHz band.
  • Ku band a satellite communication band that usually goes down at a frequency of 10.7 to 13.25 GHz and goes up at a frequency of 14.0 to 14.5 GHz, is often called the 12/14 GHz band.
  • the C-band is a frequency band with a frequency from 4.0-8.0 GHz, which is used as a frequency band for downlink transmission signals of communication satellites.
  • the L-band signal refers to the satellite signal output after the downlink signal of the satellite (Ku/KA or C-band signal) is processed by the low-frequency head (LNB), and its frequency is 950MHz ⁇ 2150MHz, which is characterized by high frequency and wide frequency .
  • the coupler 104 may be a 3dB coupler, and the amplitudes of the output signals of the two output ports of the 3dB coupler are equal. In other exemplary embodiments, the signal amplitudes of the two output ports of the coupler are You can also wait.
  • the coupler 104 may be a power divider (Power Divider).
  • the power divider is a device that divides the energy of one input signal into two or more outputs with equal or unequal energy.
  • the function of the power divider is to divide one input satellite IF signal into several outputs equally, usually with two functions points, four points, six points and so on.
  • the coupler 104 can be a microstrip line coupled with the receiving link, the receiving link connects the antenna (or signal amplifier) and the external receiving terminal, and one end of the microstrip line is connected to the ground resistance (Exemplarily, the resistance value of the resistance to ground may be 50 ohms), and the other end of the microstrip line is connected to the signal processing unit.
  • the directional coupler is a common microwave/millimeter wave component in microwave measurement and other microwave systems, which can be used for signal isolation, separation and mixing, such as power monitoring, source output power stabilization, signal source isolation, transmission And reflected frequency sweep test, etc. It is a directional microwave power divider, and it is an indispensable part in modern frequency sweep reflectometers. It usually has several types such as waveguide, coaxial line, strip line and microstrip line. As shown in Figure 3, a directional coupler usually has four ports and two transmission lines. The four ports are: input end, through end, coupling end and isolation end. The two transmission lines include main transmission line 1-2 and auxiliary transmission line 3 -4.
  • Coupling includes electric field coupling and magnetic field coupling.
  • the current coupled to the sub-transmission line through the electric field is transmitted to the coupling end and the isolation end respectively, while the current coupled to the sub-transmission line through the magnetic field is only transmitted to the coupling end.
  • the microstrip line may be a periodic cosine or sinusoidal structure.
  • the microstrip line is a microwave transmission line composed of a single conductor strip supported on a dielectric substrate.
  • a grounded metal plate is made on the other side of the substrate.
  • the two transmission lines of the microstrip line and the receiving link are placed close enough to each other. The position is so that the signal on the receiving link can be coupled to the microstrip line.
  • One end of the microstrip line can be connected to a 50 ohm resistance to ground, and the other end can be connected to a filter.
  • the signal processing unit 105 may include a filter, a mixer, and an analog-to-digital converter;
  • a filter configured to filter signals received by the antenna
  • a mixer configured to mix the output signal of the filter and the signal provided by the local oscillator
  • An analog-to-digital converter configured to perform analog-to-digital conversion on the output signal of the mixer to generate an intermediate signal.
  • the radio frequency signal received by the antenna is coupled by a coupler, and enters the filter in the receiving terminal and the signal processing unit respectively, and the processing of the signal by the receiving terminal is not within the scope of this disclosure.
  • the filter suppresses the signals outside the KA band or KU band, and sends the signals in the KA or KU band to the mixer.
  • the signal is reduced to a suitable intermediate frequency and output to the modulus Converter (Analog to Digital Converter, ADC), the ADC including the zero-IF receiving system can convert the analog signal into a digital signal, and then output the digital signal to the calculation control unit, and the calculation control unit performs Fourier (Fast Fourier) on the digital signal Transform, FFT) transform, convert the digital signal into a frequency domain signal, and then calculate the power general density (Power Spectral Density, PSD) of the frequency domain signal, so as to obtain the power of the received signal.
  • the power spectral density of a signal refers to the power carried by the wave per unit frequency obtained when the power spectral density of the wave is multiplied by an appropriate coefficient.
  • the computing control unit 103 may be a Field Programmable Gate Array (Field Programmable Gate Array, FPGA) chip.
  • FPGA device is a kind of semi-custom circuit in application-specific integrated circuit, which is a programmable logic array, which can effectively solve the problem that the number of gate circuits of the original device is small.
  • FPGA emerged as a semi-custom circuit in the field of Application Specific Integrated Circuit (ASIC), which not only solves the shortcomings of custom circuits, but also overcomes the shortcomings of the limited number of original programmable device gates.
  • ASIC Application Specific Integrated Circuit
  • the antenna may be a liquid crystal phased array antenna, and the liquid crystal phased array antenna includes several antenna elements and a liquid crystal phase shifter for phase calibration of each antenna element.
  • Liquid crystal is a material whose dielectric constant can be controlled by applying voltage. With the difference of applied bias voltage, the dielectric constant can be continuously changed, and then continuous phase shift adjustment can be realized.
  • Liquid crystal phase shifter is currently being researched by researchers at home and abroad. A new type of phase shifter studied has broad application prospects in the microwave and millimeter wave bands.
  • the antenna array element is used for receiving/transmitting radio frequency signals
  • the antenna array element may include a radiation unit and a receiving unit, wherein the radiation unit is used for transmitting radio frequency signals, and the receiving unit is used for receiving radio frequency signals.
  • the liquid crystal phased array antenna also includes a liquid crystal phase shifter for phase alignment of each antenna element.
  • the liquid crystal molecules in the liquid crystal layer of the liquid crystal phase shifter are anisotropic and present in the long axis direction and the short axis direction. different dielectric constants.
  • the phase shift of the radio frequency signal can be achieved by controlling the deflection of the liquid crystal molecules in the liquid crystal layer, and said deflection can in turn be achieved by controlling the modulation voltage applied to the electrode structure.
  • control device may further include at least one of a heating module and a cooling module;
  • the calculation control unit 103 can also be configured to determine the calibration temperature of the antenna according to the temperature of the antenna, and when the temperature of the antenna is not a certain calibration temperature, control the heating module or the cooling module to adjust the temperature of the antenna to the certain calibration temperature;
  • a heating module configured to heat the antenna under the control of the computing control unit
  • the cooling module is configured to cool the antenna under the control of the computing control unit.
  • the control device may further include a refrigeration module configured to reduce heating power to stabilize the liquid crystal to an appropriate temperature when the temperature of the liquid crystal is too high.
  • the control device of the embodiment of the present disclosure can set the entire antenna in a constant temperature environment through the heating module and the cooling module, which can effectively avoid the influence of temperature on the liquid crystal state, thereby solving the problem of poor low temperature adaptability of the liquid crystal phased array antenna system .
  • the fluidity of the liquid crystal is affected by thermal stress and electrical stress, and the phase control is more accurate, reaching a standard of 1 degree, which plays an important role in the phase alignment of the antenna.
  • the number of antenna elements may be 64 or any other number.
  • the pre-stored calibration data may include: multiple sets of test data, each set of test data includes a set of correspondences between the position of the radiation source, the temperature of the antenna, and the phase calibration value of the antenna.
  • the pre-stored calibration data can be obtained in the following manner:
  • C12 (C121, C122,... ..., C1264)
  • C121, C122, ..., C1264 respectively correspond to the phases tested by 64 antenna array elements when the temperature is T1 and the transmitting source is at the position A2
  • ..., C1n (C1n1, C1n2, ..., C1n64)
  • C1n1, C1n2, ..., C1n64 respectively correspond to the tested phases of 64 antenna elements when the temperature is T1 and the emission source is at the position An, wherein n is a natural number.
  • C1i can use C1i1 as a reference, and can also use other arbitrary phase values as a reference, for example, use 0 as a reference, and i is 1 to n The natural number between), perform difference operation on all the tested phases, and store the difference result as calibration data.
  • m is a natural number.
  • the value range of T1 to Tm may be between -20 degrees Celsius and 60 degrees Celsius, with a step value of 10 degrees Celsius.
  • enough emitter positions and enough temperature values can be set.
  • the phase shifter is controlled to adjust the phases of multiple antenna elements, including:
  • the position information of the antenna and the position information of the satellite determine the position of the corresponding emission source in the calibration data
  • the phase shifter is controlled to adjust the phases of the multiple antenna elements.
  • the calibrated transmitting source can be regarded as the ground receiving station, and the ground receiving station It can be regarded as a satellite, so when the ground receiving station moves, the satellite does not move, and the position of the ground receiving station is obtained through the positioning unit.
  • the position of the geosynchronous satellite is fixed, so the azimuth map of the ground receiving station and the geosynchronous satellite is also fixed , there is a one-to-one correspondence with the position of the near-field calibration.
  • j is a natural number between 1 and m
  • i is a natural number between 1 and n
  • the set of calibration data Cji will align the phases of the phased array antennas.
  • the method of determining the position of the corresponding transmitter in the calibration data is as follows: as shown in Figure 10, since the satellite is a ground synchronous receiving satellite, the position C of the satellite is certain, and the position B2 of the antenna is obtained by positioning the positioning unit, and because CA2 and B2A2 Vertical, therefore, the position of A2 can be determined accordingly, the length of CA1 is equal to the distance between the calibration plane (that is, the plane where the preset positions A1 to An of different orientations are located) from the antenna during calibration, and a ray is drawn from point A1 perpendicular to CA2, and then connect CB2, we know that CB2 intersects the ray from point A1 at point B1, and point B1 is the corresponding emission source position in the determined calibration data, which can be realized by calling the calibration data corresponding to point B1 and the current antenna temperature Phase alignment of multiple antenna elements.
  • the control device in this embodiment is designed to control the phase of the antenna in m temperature modes, the purpose is to reduce unnecessary heat loss.
  • the antenna of the embodiment of the present disclosure can operate at -50 degrees Celsius to 105 work in Celsius. Since the condensation temperature of liquid crystal is generally -20 degrees Celsius, the liquid crystal will not work below this temperature.
  • the temperature sensor reads that the antenna temperature is lower than -20 degrees Celsius, the antenna can be heated to -20 degrees Celsius through the heating module, that is, The temperature of the antenna temperature sensor is -20 degrees Celsius. Since the temperature of the environment is constantly changing, the temperature of the liquid crystal is continuously read through the temperature sensor, and the heating power of the heating module is constantly changed to stabilize the temperature at -20 degrees Celsius.
  • the position of the antenna is located by the positioning unit, and a set of calibration data is invoked according to the position of the antenna and the temperature of the antenna to control the phase of the antenna to maximize the gain of the antenna.
  • the temperature of the liquid crystal when the temperature of the antenna is lower than -20 degrees Celsius, the temperature of the liquid crystal can be increased to -20 degrees Celsius; when the temperature of the antenna is greater than -20 degrees Celsius and less than -10 degrees Celsius, the temperature of the liquid crystal can be raised to Raise to -10 degrees Celsius; when the temperature of the antenna is greater than -10 degrees Celsius and less than 0 degrees Celsius, the temperature of the liquid crystal can be raised to 0 degrees Celsius; when the temperature of the antenna is between 0 degrees Celsius and 60 degrees Celsius, the temperature of the liquid crystal can be raised to The temperature is controlled at the nearest integer value between 10 degrees Celsius and 60 degrees Celsius. When the temperature of the antenna is higher than 60 degrees Celsius, the temperature of the antenna is reduced to 60 degrees Celsius through the cooling module, which can prevent excessive temperature and damage Circuitry for phase control.
  • the antenna When using the control device of the embodiment of the present disclosure, the antenna is placed on a plane, and there is no need to perform alignment and star-seeking operations. As shown in FIG. Adjust the temperature of the antenna through the heating module or cooling module, obtain the position of the antenna through the positioning unit, and then determine a corresponding set of calibration data according to the position information and temperature information of the antenna and the position information of the satellite; according to the corresponding calibration data, The phase of the antenna is adjusted, the signal processing unit performs signal processing on the signal received by the antenna to obtain an intermediate signal, the control device calculates the gain of the intermediate signal, and judges whether the gain of the intermediate signal is greater than or equal to the first gain threshold, if not, then the The phase of the antenna is dynamically fine-tuned, for example, the phases of multiple antenna elements are adjusted up and down one degree or two degrees until the gain of the intermediate signal is greater than or equal to the first gain threshold.
  • the control device in the embodiment of the present disclosure can automatically adjust the phase of the antenna according to the position of the antenna and the
  • the antenna can call the calibration data corresponding to the position of the currently used satellite according to the positions of the multiple satellites, so that the phases of the multiple antenna elements are consistent.
  • the control device of the embodiment of the present disclosure can also use the open-loop mode to control the antenna.
  • the control device first reads the position and temperature of the antenna, and can locate the antenna through GPS.
  • the position of the antenna is read by the temperature sensor, the acceleration at that time is read by the accelerometer, the azimuth, level, position, speed and acceleration are read by the gyroscope, and a more accurate result is obtained by comparing the data of the gyroscope and the accelerometer.
  • the numerical value, the calculation control unit judges the position and direction, and adjusts the phase of the antenna through an open loop method, so that the phase tracking speed of the antenna is faster, but the gain of the antenna is not necessarily the maximum gain because it has not been fine-tuned.
  • An embodiment of the present disclosure further provides an antenna system, including an antenna and the antenna control device according to any one of the preceding items.
  • An embodiment of the present disclosure also provides a method for controlling an antenna, including:
  • the phases of multiple antenna array elements are adjusted according to the position information and temperature information of the antenna, the position information of the satellite and the calibration data stored in advance.
  • control method also includes:
  • the pre-stored calibration data includes: multiple sets of test data, each set of test data includes a set of correspondences between the position of the radiation source, the temperature of the antenna, and the phase calibration value of the antenna .
  • the adjusting the phases of the multiple antenna array elements according to the position information and temperature information of the antenna, the position information of the satellite and the pre-stored calibration data includes:
  • the satellite is located at position C, and the antenna is located at position B2.
  • determining the position of the corresponding emission source in the calibration data includes:
  • a third straight line segment is made transversely from the position A1, and the third straight line segment intersects the straight line CB2 at the position B1, and the position B1 is the corresponding emission source position in the calibration data.
  • the computing control unit is a field programmable gate array FPGA chip.
  • An embodiment of the present disclosure also provides a computing control device, including a memory and a processor, the memory is configured to store program instructions and calibration data; the processor is configured to call the program instructions stored in the memory, and perform the following steps according to the obtained program: Receive the position information and temperature information of the antenna, determine the position information of the satellite; adjust the phases of multiple antenna array elements according to the position information and temperature information of the antenna, the position information of the satellite and the calibration data stored in advance.
  • the memory can store computer programs and data, which can include high-speed random access memory, and can also include non-volatile memory, such as disk storage devices, flash memory devices, etc., and can also be read-only memory (read-only memory, ROM) or memory Other types of static storage devices that store static information and instructions, random access memory (random access memory, RAM) or other types of dynamic storage devices that can store information and instructions, or one-time programmable memory (One Time Programmable, OTP), electrically erasable programmable read-only memory (electrically erasable programmable read-only memory, EEPROM), disk storage medium or other magnetic storage devices, or can be used to carry or store program codes in the form of instructions or data structures and can Any other medium accessed by a computer, but not limited to.
  • the memory may exist independently and be connected to the processor through a communication line. Memory can also be integrated with the processor.
  • the embodiment of the present disclosure also provides a computer-readable storage medium, which stores program instructions and calibration data.
  • program instructions When the program instructions are executed, the following steps can be realized: receiving the position information and temperature information of the antenna, and determining the position information of the satellite; according to The position information and temperature information of the antenna, the position information of the satellite and the calibration data stored in advance adjust the phases of multiple antenna array elements.
  • the above-mentioned computer-readable storage medium may include, but is not limited to: a magnetic storage device (for example, a hard disk, a floppy disk, or a magnetic tape, etc.), an optical disk (for example, a CD (Compact Disk, a compact disk), a DVD (Digital Versatile Disk, Digital Versatile Disk), etc.), smart cards and flash memory devices (for example, EPROM (Erasable Programmable Read-Only Memory, Erasable Programmable Read-Only Memory), card, stick or key drive, etc.).
  • Various computer-readable storage media described in this disclosure can represent one or more devices and/or other machine-readable storage media for storing information.
  • the term "machine-readable storage medium" may include, but is not limited to, wireless channels and various other media capable of storing, containing and/or carrying instructions and/or data.
  • Some embodiments of the present disclosure also provide a computer program product.
  • the computer program product includes computer program instructions. When the computer program instructions are executed on the computer, the computer program instructions cause the computer to execute one or more steps in the method for controlling the antenna as described in the above embodiments.
  • Some embodiments of the present disclosure also provide a computer program.
  • the computer program When the computer program is executed on the computer, the computer program causes the computer to execute one or more steps in the method for controlling the antenna as described in the above-mentioned embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种天线的控制装置、方法、天线系统与计算控制装置,天线包括多个天线阵元以及用于对多个天线阵元进行相位校准的多个移相器,控制装置包括温度传感器、定位单元和计算控制单元,其中:温度传感器配置为获取天线的温度信息,并输出至计算控制单元;定位单元,配置为获取天线的位置信息,并输出至计算控制单元;计算控制单元配置为接收天线的位置信息与温度信息,确定卫星的位置信息,根据天线的位置信息与温度信息、卫星的位置信息以及预先存储的校准数据,控制移相器调整多个天线阵元的相位。

Description

天线的控制装置、方法、天线系统与计算控制装置 技术领域
本公开实施例涉及但不限于显示技术领域,尤指一种天线的控制装置、方法、天线系统与计算控制装置。
背景技术
相控阵天线是通过控制阵列天线中辐射单元的馈电相位来改变方向图形状的天线。控制相位可以改变天线方向图最大值的指向,以达到波束扫描的目的。相控阵天线的应用范围极其广泛,例如,其可以应用于交通工具与卫星间的通讯、无人驾驶用数组雷达或安全防护数组雷达等。
传统的相控阵天线存在价格高,剖面高,散热困难等问题,为了克服这些问题,引入了液晶相控阵天线。液晶相控阵天线具有工作频率高,散热好,轻薄,体积小,耐击穿,成本低等特点。但是,液晶相控阵天线系统,也存在着损耗严重,抗震动能力差,低温适应性差的问题。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本公开实施例提供了一种天线的控制装置,所述天线包括多个天线阵元以及用于对多个天线阵元进行相位校准的多个移相器,所述控制装置包括温度传感器、定位单元和计算控制单元,其中:所述温度传感器,配置为获取所述天线的温度信息,并输出至所述计算控制单元;所述定位单元,配置为获取所述天线的位置信息,并输出至所述计算控制单元;所述计算控制单元,配置为接收所述天线的位置信息与温度信息,确定卫星的位置信息,根据所述天线的位置信息与温度信息、所述卫星的位置信息以及预先存储的校准数据,控制所述移相器调整所述多个天线阵元的相位。
在示例性实施例中,所述控制装置还包括耦合器和信号处理单元;所述 耦合器,配置为将所述天线接收的信号输出至所述信号处理单元;所述信号处理单元,配置为对所述天线接收的信号进行信号处理,得到中间信号;所述计算控制单元,还配置为计算所述中间信号的增益,判断所述中间信号的增益是否小于或等于第一增益阈值,如果小于或等于第一增益阈值,控制所述移相器对所述多个天线阵元的相位进行微调。
在示例性实施例中,所述耦合器为功率分配器或与接收链路耦合的微带线,所述接收链路连接所述天线与外部的接收终端,所述微带线的一端连接对地电阻,所述微带线的另一端连接所述信号处理单元。
在示例性实施例中,所述微带线为周期性的余弦或正弦曲线结构。
在示例性实施例中,所述信号处理单元包括滤波器、混频器和模数转换器;所述滤波器,配置为对所述天线接收的信号进行滤波处理;所述混频器,配置为对所述滤波器的输出信号和本地振荡器所提供的信号进行混频;所述模数转换器,配置为对所述混频器的输出信号进行模数转换,生成所述中间信号。
在示例性实施例中,所述控制装置还包括加热模块和制冷模块中的至少一个;所述计算控制单元,还配置为根据所述天线的温度,确定所述天线的校准温度,当所述天线的温度非确定的校准温度时,控制所述加热模块和所述制冷模块中的至少一个调节所述天线的温度至确定的校准温度;所述加热模块,配置为在所述计算控制单元的控制下,对所述天线进行加热;所述制冷模块,配置为在所述计算控制单元的控制下,对所述天线进行制冷。
在示例性实施例中,所述预先存储的校准数据包括:多组测试数据,每组测试数据包括一组发射源位置、所述天线的温度与所述天线的相位校准值之间的对应关系。
在示例性实施例中,所述根据所述天线的位置信息与温度信息、所述卫星的位置信息以及预先存储的校准数据,控制所述移相器调整所述多个天线阵元的相位,包括:根据所述天线的位置信息与所述卫星的位置信息,确定校准数据中对应的发射源位置;根据所述对应的发射源位置与天线的温度信息,确定对应的一组测试数据;根据对应的测试数据,控制所述移相器对所述多个天线阵元的相位进行调整。
在示例性实施例中,卫星位于C位置,天线位于B2位置,所述根据所述天线的位置信息与所述卫星的位置信息,确定校准数据中对应的发射源位置,包括:从C位置作纵向的第一直线段,从B2位置作横向的第二直线段,第一直线段和第二直线段相交于A2位置;在直线CA2上确定与C位置距离为校准平面高度的A1位置,所述校准平面高度等于校准时多个发射源所在位置的平面与天线位置之间的距离;从A1位置作横向的第三直线段,第三直线段与直线CB2相交于B1位置,则B1位置为所述校准数据中对应的发射源位置。
在示例性实施例中,所述计算控制单元为现场可编程门阵列FPGA芯片。
本公开实施例还提供了一种天线系统,包括天线以及如前任一项所述的天线控制装置。
本公开实施例还提供了一种天线的控制方法,所述天线包括多个天线阵元以及用于对多个天线阵元进行相位校准的多个移相器,所述控制方法包括:接收天线的位置信息与温度信息,确定卫星的位置信息;根据所述天线的位置信息与温度信息、所述卫星的位置信息以及预先存储的校准数据,调整多个天线阵元的相位。
本公开实施例还提供了一种计算控制装置,包括存储器和处理器,所述存储器配置为存储程序指令和校准数据;所述处理器,配置为调用所述存储器中存储的程序指令,按照获得的程序执行如下步骤:接收天线的位置信息与温度信息,确定卫星的位置信息;根据所述天线的位置信息与温度信息、所述卫星的位置信息以及预先存储的校准数据,调整多个天线阵元的相位。
本公开实施例还提供了一种计算机可读存储介质,存储有程序指令和校准数据,当所述程序指令被执行时可实现如下步骤:接收天线的位置信息与温度信息,确定卫星的位置信息;根据所述天线的位置信息与温度信息、所述卫星的位置信息以及预先存储的校准数据,调整多个天线阵元的相位。
在阅读理解了附图和详细描述后,可以明白其他方面。
附图说明
附图用来提供对本公开技术方案的进一步理解,并且构成说明书的一部分,与本公开的实施例一起用于解释本公开的技术方案,并不构成对本公开的技术方案的限制。附图中各部件的形状和大小不反映真实比例,目的只是示意说明本公开内容。
图1a、图1b和图1c为本公开实施例的三种天线的控制装置的结构示意图;
图2为本公开实施例的另一种天线的控制装置的结构示意图;
图3为本公开实施例的一种耦合器的结构示意图;
图4为本公开实施例的一种微带线的结构示意图;
图5为本公开实施例的一种信号处理流程示意图;
图6为本公开实施例的一种天线的温度控制原理示意图;
图7为本公开实施例的一种天线的校准过程示意图;
图8为本公开实施例的校准原理示意图;
图9为本公开实施例的地面接收站移动时,天线的接收方向示意图;
图10为本公开实施例的地面接收站影射方法示意图;
图11为本公开实施例的天线相位控制流程示意图;
图12为本公开实施例的一组校准数据对应多卫星的影射方法示意图;
图13为本公开实施例的又一种天线的控制装置的结构示意图。
具体实施方式
下文中将结合附图对本公开的实施例进行详细说明。注意,实施方式可以以多个不同形式来实施。所属技术领域的普通技术人员可以很容易地理解一个事实,就是方式和内容可以在不脱离本公开的宗旨及其范围的条件下被变换为各种各样的形式。因此,本公开不应该被解释为仅限定在下面的实施方式所记载的内容中。在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互任意组合。
在本说明书中,为了方便起见,使用“中部”、“上”、“下”、“前”、“后”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示方位或位置关系的词句以参照附图说明构成要素的位置关系,仅是为了便于描述本说明书和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。构成要素的位置关系根据描述各构成要素的方向适当地改变。因此,不局限于在说明书中说明的词句,根据情况可以适当地更换。
在本说明书中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解。例如,可以是固定连接,或可拆卸连接,或一体地连接;可以是机械连接,或连接;可以是直接相连,或通过中间件间接相连,或两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本公开中的具体含义。
如图1a所示,本公开实施例提供了一种天线的控制装置,天线包括多个天线阵元以及用于对多个天线阵元进行相位校准的多个移相器,该控制装置包括温度传感器101、定位单元102和计算控制单元103,其中:
温度传感器101,配置为获取天线的温度信息,并输出至计算控制单元103;
定位单元102,配置为获取天线的位置信息,并输出至计算控制单元103;
计算控制单元103,配置为接收天线的位置信息与温度信息,确定卫星的位置信息,根据天线的位置信息与温度信息、卫星的位置信息以及预先存储的校准数据,控制移相器调整多个天线阵元的相位。
当前的天线一般都使用外部的接收终端作为控制系统,但是,绝大多数天线厂商生产天线时,不会同时生产外部的接收终端,对于天线厂商而言,必须结合外部的接收终端才能对天线的相位进行控制,且一般外部的接收终端在对天线的相位进行控制时,还需要先调制解调卫星数据,因此该种相位控制方案使用不便,且需要占用外部的接收终端的资源。
本公开实施例提供的控制装置,不仅解决了液晶相控阵天线对地球同步卫星的相位对齐问题,可以使得相控阵天线相位一致,使接收增益大大增 加,信号的信噪比得以提高,从而信号质量变好,而且液晶加电压后会定向移动,有较好的抗震动效果,此外,利用本公开实施例的天线的控制装置可以组成一个负反馈子系统,可以使天线厂商不需要使用外部的接收终端,就可以自主地对天线的相位进行控制。
在一些示例性实施例中,如图1b所示,该控制装置还可以包括耦合器104和信号处理单元105;
耦合器104,配置为将天线接收的信号输出至信号处理单元105;
信号处理单元105,配置为对接收的信号进行信号处理,得到中间信号;
计算控制单元103,还配置为计算中间信号的增益,判断中间信号的增益是否小于或等于第一增益阈值,如果小于或等于第一增益阈值,对多个天线阵元的相位进行微调。
在示例性实施例中,计算控制单元103可以通过计算测量积分得出中间信号的增益。
在示例性实施方式中,如图1b或图1c所示,耦合器104还配置为将天线接收的信号输出至外部的接收终端。外部的接收终端可以包括发射子系统、接收子系统和信息处理模块,本公开对此不作限制,可以任意设置。
在示例性实施方式中,如图1c所示,该定位单元102可以包括全球定位系统(Global Positioning System,GPS)、加速度计和陀螺仪等,全球定位系统(Global Positioning System,GPS)是一种以人造地球卫星为基础的高精度无线电导航的定位系统,它在全球任何地方以及近地空间都能够提供准确的地理位置、运行速度及精确的时间信息;加速度计和陀螺仪可以根据天线的位置信息实时捕捉天线的运动方向和加速度数据。
在示例性实施方式中,计算控制单元103可以根据天线的位置信息或预先存储的卫星的位置信息,确定卫星的位置信息。
在示例性实施方式中,如图2所示,天线与接收链路之间可以设置有信号放大器,信号放大器配置为对天线接收的信号进行放大输出。
在示例性实施方式中,信号放大器可以为低噪声放大器(Low Noise  Amplifier,LNA)或者可以为低噪声下变频器(Low Noise Block,LNB)。低噪声放大器是一种高灵敏度前置放大器,通常接在地面站天线的馈电喇叭处用以降低接收系统的噪声温度,以及提高其总增益;低噪声下变频器的功能是将由馈源传送的卫星信号经过放大和下变频,把Ku/KA或C波段信号变成L波段,经同轴电缆传送给卫星接收机。
KA波段(Ka-band),通常以17.7到20.2GHz频率下行、并以27.5到30.0GHz频率上行的卫星通信波段,常被称为20/30GHz波段。Ku波段(Ku-band),通常以10.7到13.25GHz频率下行、并以14.0到14.5GHz频率上行的卫星通信波段,常被称为12/14GHz波段。C波段,是频率从4.0-8.0GHz的一段频带,作为通信卫星下行传输信号的频段。L波段信号是指卫星的下行信号(Ku/KA或C波段信号)经过高频头(LNB)的降频处理后输出的卫星信号,其频率为950MHz~2150MHz,其特点是频率高、频带宽。
在示例性实施方式中,该耦合器104可以为3dB耦合器,3dB耦合器的两个输出端口输出信号的幅度相等,在其它示例性实施方式中,该耦合器的两个输出端口的信号幅度也可以不等。
在一种示例性实施方式中,耦合器104可以为功率分配器(Power Divider)。功率分配器是一种将一路输入信号能量分成两路或多路输出相等或不相等能量的器件,功率分配器的功能是将一路输入的卫星中频信号均等的分成几路输出,通常有二功分、四功分、六功分等等。
在另一种示例性实施方式中,耦合器104可以为与接收链路耦合的微带线,接收链路连接天线(或信号放大器)与外部的接收终端,微带线的一端连接对地电阻(示例性的,该对地电阻的阻值可以为50欧姆),微带线的另一端连接信号处理单元。
本实施例中,定向耦合器是微波测量和其它微波系统中常见的微波/毫米波部件,可用于信号的隔离、分离和混合,如功率的监测、源输出功率稳幅、信号源隔离、传输和反射的扫频测试等。它是一种有方向性的微波功率分配器,更是近代扫频反射计中不可缺少的部件,通常有波导、同轴线、带状线及微带线等几种类型。如图3所示,定向耦合器通常具有四个端口和两条传输线,四个端口分别是:输入端、直通端、耦合端和隔离端,两条传输 线包括主传输线1-2以及副传输线3-4,当信号从输入端输入时,一部分信号沿着主传输线1-2传输至直通端,一部分通过小孔、缝隙等方式耦合至副传输线3-4上。耦合包括电场耦合和磁场耦合,通过电场耦合到副传输线上的电流分别向耦合端和隔离端传输,而通过磁场耦合到副传输线上的电流只向耦合端传输。
在示例性实施方式中,如图4所示,该微带线可以为周期性的余弦或正弦曲线结构。
本实施例中,微带线是由支在介质基片上的单一导体带构成的微波传输线,基片的另一面制作有接地金属平板,把微带线和接收链路两根传输线放置在足够近的位置,使得接收链路上的信号可以耦合到微带线上,该微带线的一端可以接50欧姆对地电阻,另一端可以接滤波器。
在示例性实施方式中,如图2所示,信号处理单元105可以包括滤波器、混频器和模数转换器;
滤波器,配置为对天线接收的信号进行滤波处理;
混频器,配置为对滤波器的输出信号和本地振荡器所提供的信号进行混频;
模数转换器,配置为对混频器的输出信号进行模数转换,生成中间信号。
在示例性实施方式中,如图5所示,天线接收到射频信号,经过耦合器耦合,分别进入接收终端和信号处理单元中的滤波器,接收终端对信号的处理不在本公开的讨论范围之内,滤波器将KA波段或者KU波段以外的信号进行抑制,将KA或者KU频段的信号送入混频器,在本地振荡器的作用下,信号被降低至合适的中频,并输出至模数转换器(Analog to Digital Converter,ADC),包含零中频接收系统的ADC能够将模拟信号转化成数字信号,然后将数字信号输出至计算控制单元,计算控制单元对数字信号进行傅里叶(Fast Fourier Transform,FFT)变换,将数字信号转化成频域信号,再对频域信号进行功率普密度(Power Spectral Density,PSD)计算,从而得到接收信号的功率大小。信号的功率谱密度指的是,当波的功率频谱密度乘以一个 适当的系数后得到的每单位频率波携带的功率。
在示例性实施方式中,计算控制单元103可以为现场可编程门阵列(Field Programmable Gate Array,FPGA)芯片。FPGA器件属于专用集成电路中的一种半定制电路,是可编程的逻辑列阵,能够有效的解决原有的器件门电路数较少的问题。FPGA作为专用集成电路(Application Specific Integrated Circuit,ASIC)领域中的一种半定制电路而出现的,既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点。
在示例性实施方式中,该天线可以为液晶相控阵天线,该液晶相控阵天线包括若干天线阵元和用以对各天线阵元进行相位校准的液晶移相器。
液晶是一种介电常数可以通过加电压控制的材料,随着外加偏置电压的不同,介电常数可以连续变化,进而可以实现连续的相移调节,液晶移相器是目前国内外学者正在研究的一种新型的移相器,在微波、毫米波波段有着广阔的应用前景。
本实施例中,天线阵元用于接收/传输射频信号,天线阵元可以包括辐射单元和接收单元,其中,辐射单元用于传输射频信号,接收单元用于接收射频信号。液晶相控阵天线中还包括用以对各天线阵元进行相位校准的液晶移相器,液晶移相器的液晶层中的液晶分子为各向异性并且在长轴方向和短轴方向上呈现不同的介电常数。当射频信号沿着传输线在具有经改变的介电常数的液晶层中传输时,射频信号在一定程度上发生相位偏移。因此,射频信号的相位偏移可以通过控制液晶层中的液晶分子的偏转来实现,并且所述偏转进而可以通过控制施加到电极结构的调制电压来实现。
在示例性实施方式中,如图2所示,该控制装置还可以包括加热模块和制冷模块中的至少一个;
计算控制单元103还可以配置为,根据天线的温度,确定天线的校准温度,当天线的温度非确定的校准温度时,控制加热模块或制冷模块调节天线的温度至确定的校准温度;
加热模块,配置为在计算控制单元的控制下,对天线进行加热;
制冷模块,配置为在计算控制单元的控制下,对天线进行制冷。
由于液晶对温度的敏感性,在低温情况下会被冻结,因此,在一些示例性实施方式中,如图6所示,本公开实施例的控制装置还可以包括加热模块,加热模块配置为当液晶温度过低时对液晶进行加热,将液晶加热到正常使用时的高温状态。在另一些示例性实施方式中,如图6所示,该控制装置还可以包括制冷模块,制冷模块配置为当液晶温度过高时,降低加热的功率使液晶稳定至一合适温度。
本公开实施例的控制装置通过加热模块和制冷模块,可以将整个天线设置在一个恒温环境下,能够有效的避免温度对液晶状态的影响,从而解决了液晶相控阵天线系统低温适应性差的问题。本公开实施例中,液晶的流动性会受到热应力与电应力的作用,相位的控制更加准确,能够达到1度的标准,对天线的相位对齐起到重要的作用。
示例性的,天线阵元的数量可以为64个或其它任意的个数。
在示例性实施方式中,预先存储的校准数据可以包括:多组测试数据,每组测试数据包括一组发射源位置、天线的温度与天线的相位校准值之间的对应关系。
在示例性实施方式中,如图7所示,预先存储的校准数据可以由以下方式获得:
在校准阶段,在微波暗室中,将天线周围的环境温度降低到-20摄氏度以下,并根据天线周围的环境温度将天线加热到合适的温度,将天线的温度记录为T1,例如可以为-20摄氏度,然后开始进行正常的天线校准,所有液晶移相器均不加载电压,将发射源放在A1位置并发射信号,测试出所有天线阵元对应的相位,记录为C11,假设天线有64个天线阵元,那么C11=(C111,C112,……,C1164),其中,C111,C112,……,C1164分别对应64个天线阵元在温度为T1、发射源在A1位置时对应的测试出的相位。然后将发射源依次放在其它n-1个不同方位的预设位置A2至An,以相同的方法测试出所有天线阵元对应的相位,记录为C12至C1n,C12=(C121,C122,……,C1264),其中,C121,C122,……,C1264分别对应64个天线阵元在温度为T1、发射源在A2位置时对应的测试出的相位,……,C1n=(C1n1,C1n2,……,C1n64),其中,C1n1,C1n2,……,C1n64分别对 应64个天线阵元在温度为T1、发射源在An位置时对应的测试出的相位,其中,n为自然数。
对C11至C1n分别执行如下操作:以某一相位值为基准(示例性的,C1i可以以C1i1为基准,也可以以其它任意的相位值为基准,例如以0为基准,i为1至n之间的自然数),对所有测试出的相位进行差值操作,将差值结果作为校准数据进行存储。
示例性的,假设以0为基准,记录的校准数据可以为(A1,T1,-C11),(A1,T1,-C12),……,(A1,T1,-C1n),其中,-C11=(-C111,-C112,……,-C1164),-C12=(-C121,-C122,……,-C1264),……,-C1n=(-C1n1,-C1n2,……,-C1n64),由于原来的相位为C11、C12、…或C1n,那么进入到RX_in的信号的相位将为C11-C11、C12-C12、…或C1n-C1n,也就是0,达到了相位对齐的效果,即(A1,T1,-C11),(A1,T1,-C12),…,(A1,T1,-C1n)分别构成了一组校准数据,可供计算控制单元在使用时调用。
然后用相同的方法分别得出T2至Tm温度时不同发射源位置对应的校准数据并存储,m为自然数。示例性的,T1至Tm的取值范围可以是在-20摄氏度到60摄氏度之间,以10摄氏度为步进值。在校准阶段,可以设置足够多的发射源位置、以及足够多的温度值。
在示例性实施方式中,根据天线的位置信息与温度信息、卫星的位置信息以及预先存储的校准数据,控制移相器调整多个天线阵元的相位,包括:
根据天线的位置信息与卫星的位置信息,确定校准数据中对应的发射源位置;
根据确定出的对应的发射源位置与天线的温度信息,确定对应的一组测试数据;
根据对应的测试数据,控制移相器对多个天线阵元的相位进行调整。
由于接收与发射具有互逆性,接收端与发射端的相对位置变化,不会引起信号相位的变化,如图8和图9所示,校准的发射源可以看成是地面接收站,地面接收站可以看成卫星,那么地面接收站移动时,卫星不动,通过定 位单元获得地面接收站的位置,地球同步卫星位置是固定的,那么地面接收站和地球同步卫星两者的方位图也是固定的,与近场校准的位置存在一一对应关系,当天线的位置和温度一定时就对应一组校准数据Cji,j为1至m之间的自然数,i为1至n之间的自然数,而该组校准数据Cji将会使得相控阵天线的相位对齐。
确定校准数据中对应的发射源位置的方法如下:如图10所示,由于卫星为地面同步接收卫星,卫星的位置C是一定的,天线的位置B2由定位单元定位得到,而由于CA2与B2A2垂直,因此,可以据此确定A2的位置,CA1的长度与校准时,校准平面(即不同方位的预设位置A1至An所在的平面)距离天线的距离相等,从A1点作一条射线垂直于CA2,然后连接CB2,可知CB2与从A1点所作的射线相交于B1点,B1点即为确定的校准数据中对应的发射源位置,调用B1点与当前天线的温度对应的校准数据即可实现多个天线阵元的相位对齐。
本实施例中的控制装置,设计成m种温度模式下进行天线相位的控制,目的是降低不必要的热损耗,在示例性实施例中,本公开实施例的天线可以在-50摄氏度到105摄氏度的环境下工作。由于液晶的凝结温度一般为-20摄氏度,低于这个温度液晶将不会工作,当通过温度传感器读出天线温度低于-20摄氏度时,可以通过加热模块将天线加热到-20摄氏度,也就是使天线温度传感器的温度为-20摄氏度,由于环境的温度是不断变化的,通过温度传感器不停地读取液晶的温度,不停的改变加热模块加热的功率,使温度稳定在-20摄氏度,由定位单元定位出天线的位置,根据天线的位置以及天线的温度,调用一组校准数据,进行天线相位的控制,使天线的增益最大。
在示例性实施例中,当天线的温度低于-20摄氏度时,可以将液晶的温度升高至-20摄氏度;当天线的温度大于-20摄氏度且小于-10摄氏度时,可以将液晶的温度升高至-10摄氏度;当天线的温度大于-10摄氏度且小于0摄氏度时,可以将液晶的温度升高至0摄氏度;当天线的温度在0摄氏度到60摄氏度之间时,可以将液晶的温度控制在10摄氏度到60摄氏度之间的最接近的一个整十数值,当天线的温度高于60摄氏度时,通过制冷模块,使天线的温度降至60摄氏度,这样可以防止温度过高,损坏相位控制的电路系统。
使用本公开实施例的控制装置时,天线平面放置,不需要做对准寻星操作,如图11所示,通过温度传感器获取天线的温度,判断天线的温度是否为校准的温度,如果不是,通过加热模块或制冷模块对天线的温度进行调节,通过定位单元获取天线的位置,然后根据天线的位置信息与温度信息以及卫星的位置信息,确定对应的一组校准数据;根据对应的校准数据,对天线的相位进行调整,信号处理单元对天线接收的信号进行信号处理,得到中间信号,控制装置计算中间信号的增益,判断中间信号的增益是否大于或等于第一增益阈值,如果不是,则对天线的相位进行动态微调,例如,逐一对多个天线阵元的相位进行上下一度或两度的调整,直至中间信号的增益大于或等于第一增益阈值。本公开实施例的控制装置可以根据天线的位置和天线的温度自动调整天线的相位,使天线主瓣方位角对准卫星,增益最大。
如图12所示,当有多个卫星时,天线可以根据多个卫星的位置,调用与当前使用的卫星的位置对应的校准数据,使多个天线阵元的相位达到一致。
如图13所示,本公开实施例的控制装置也可以使用开环模式进行天线的控制,使用开环模式进行天线控制时,控制装置首先读取天线的位置和温度,可以通过GPS定位出天线的位置,通过温度传感器读出天线的温度,通过加速度计读出当时的加速度,通过陀螺仪读出方位、水平、位置、速度和加速度,通过陀螺仪与加速度计的数据对比得出更准确的数值,计算控制单元判断位置与方向,并通过开环方式对天线的相位进行调整,这样跟踪天线的相位速度较快,但是,由于没有经过微调,天线的增益不一定是最大增益。
本公开实施例还提供了一种天线系统,包括天线以及如前任一项所述的天线的控制装置。
本公开实施例还提供了一种天线的控制方法,包括:
接收天线的位置信息与温度信息,确定卫星的位置信息;
根据所述天线的位置信息与温度信息、所述卫星的位置信息以及预先存储的校准数据,调整多个天线阵元的相位。
在示例性实施例中,该控制方法还包括:
计算中间信号的增益,判断所述中间信号的增益是否小于或等于第一增益阈值,如果小于或等于第一增益阈值,对所述多个天线阵元的相位进行微调。
在示例性实施例中,所述预先存储的校准数据包括:多组测试数据,每组测试数据包括一组发射源位置、所述天线的温度与所述天线的相位校准值之间的对应关系。
所述根据所述天线的位置信息与温度信息、所述卫星的位置信息以及预先存储的校准数据,调整所述多个天线阵元的相位,包括:
根据所述天线的位置信息与所述卫星的位置信息,确定校准数据中对应的发射源位置;
根据所述对应的发射源位置与天线的温度信息,确定对应的一组测试数据;
根据对应的测试数据,对所述多个天线阵元的相位进行调整。
在示例性实施例中,卫星位于C位置,天线位于B2位置,所述根据所述天线的位置信息与所述卫星的位置信息,确定校准数据中对应的发射源位置,包括:
从C位置作纵向的第一直线段,从B2位置作横向的第二直线段,第一直线段和第二直线段相交于A2位置;
在直线CA2上确定与C位置距离为校准平面高度的A1位置,所述校准平面高度等于校准时多个发射源所在位置的平面与天线位置之间的距离;
从A1位置作横向的第三直线段,第三直线段与直线CB2相交于B1位置,则B1位置为所述校准数据中对应的发射源位置。
在示例性实施例中,所述计算控制单元为现场可编程门阵列FPGA芯片。
上述方法实施例涉及的各步骤的所有相关内容均可以援引到上述功能模块的功能描述,在此不再赘述。
本公开实施例还提供了一种计算控制装置,包括存储器和处理器,存储器配置为存储程序指令和校准数据;处理器,配置为调用存储器中存储的程序指令,按照获得的程序执行如下步骤:接收天线的位置信息与温度信息,确定卫星的位置信息;根据所述天线的位置信息与温度信息、所述卫星的位置信息以及预先存储的校准数据,调整多个天线阵元的相位。
存储器可存储计算机程序和数据,其可以包括高速随机存取存储器,还可以包括非易失存储器,例如磁盘存储器件、闪存器件等,还可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是一次可编程存储器(One Time Programable,OTP)、电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路与处理器相连接。存储器也可以和处理器集成在一起。
本公开实施例还提供了一种计算机可读存储介质,存储有程序指令和校准数据,当程序指令被执行时可实现如下步骤:接收天线的位置信息与温度信息,确定卫星的位置信息;根据所述天线的位置信息与温度信息、所述卫星的位置信息以及预先存储的校准数据,调整多个天线阵元的相位。
示例性的,上述计算机可读存储介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,CD(Compact Disk,压缩盘)、DVD(Digital Versatile Disk,数字通用盘)等),智能卡和闪存器件(例如,EPROM(Erasable Programmable Read-Only Memory,可擦写可编程只读存储器)、卡、棒或钥匙驱动器等)。本公开描述的各种计算机可读存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读存储介质。术语“机器可读存储介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
本公开的一些实施例还提供了一种计算机程序产品。该计算机程序产品 包括计算机程序指令,在计算机上执行该计算机程序指令时,该计算机程序指令使计算机执行如上述实施例所述的天线的控制方法中的一个或多个步骤。
本公开的一些实施例还提供了一种计算机程序。当该计算机程序在计算机上执行时,该计算机程序使计算机执行如上述实施例所述的天线的控制方法中的一个或多个步骤。
上述计算机可读存储介质、计算机程序产品及计算机程序的有益效果和上述一些实施例所述的天线的控制方法的有益效果相同,此处不再赘述。
本公开中的附图只涉及本公开涉及到的结构,其他结构可参考通常设计。在不冲突的情况下,本公开的实施例即实施例中的特征可以相互组合以得到新的实施例。
本领域的普通技术人员应当理解,可以对本公开的技术方案进行修改或者等同替换,而不脱离本公开技术方案的精神和范围,均应涵盖在本公开的权利要求的范围当中。

Claims (14)

  1. 一种天线的控制装置,所述天线包括多个天线阵元以及用于对多个天线阵元进行相位校准的多个移相器,所述控制装置包括温度传感器、定位单元和计算控制单元,其中:
    所述温度传感器,配置为获取所述天线的温度信息,并输出至所述计算控制单元;
    所述定位单元,配置为获取所述天线的位置信息,并输出至所述计算控制单元;
    所述计算控制单元,配置为接收所述天线的位置信息与温度信息,确定卫星的位置信息,根据所述天线的位置信息与温度信息、所述卫星的位置信息以及预先存储的校准数据,控制所述移相器调整所述多个天线阵元的相位。
  2. 根据权利要求1所述的控制装置,还包括耦合器和信号处理单元;
    所述耦合器,配置为将所述天线接收的信号输出至所述信号处理单元;
    所述信号处理单元,配置为对所述天线接收的信号进行信号处理,得到中间信号;
    所述计算控制单元,还配置为计算所述中间信号的增益,判断所述中间信号的增益是否小于或等于第一增益阈值,如果小于或等于第一增益阈值,控制所述移相器对所述多个天线阵元的相位进行微调。
  3. 根据权利要求2所述的控制装置,其中,所述耦合器为功率分配器或与接收链路耦合的微带线,所述接收链路连接所述天线与外部的接收终端,所述微带线的一端连接对地电阻,所述微带线的另一端连接所述信号处理单元。
  4. 根据权利要求3所述的控制装置,其中,所述微带线为周期性的余弦或正弦曲线结构。
  5. 根据权利要求2所述的控制装置,其中,所述信号处理单元包括滤波器、混频器和模数转换器;
    所述滤波器,配置为对所述天线接收的信号进行滤波处理;
    所述混频器,配置为对所述滤波器的输出信号和本地振荡器所提供的信号进行混频;
    所述模数转换器,配置为对所述混频器的输出信号进行模数转换,生成所述中间信号。
  6. 根据权利要求1所述的控制装置,还包括加热模块和制冷模块中的至少一个;
    所述计算控制单元,还配置为根据所述天线的温度,确定所述天线的校准温度,当所述天线的温度非确定的校准温度时,控制所述加热模块和所述制冷模块中的至少一个调节所述天线的温度至确定的校准温度;
    所述加热模块,配置为在所述计算控制单元的控制下,对所述天线进行加热;
    所述制冷模块,配置为在所述计算控制单元的控制下,对所述天线进行制冷。
  7. 根据权利要求1所述的控制装置,其中,所述预先存储的校准数据包括:多组测试数据,每组测试数据包括一组发射源位置、所述天线的温度与所述天线的相位校准值之间的对应关系。
  8. 根据权利要求7所述的控制装置,其中,所述根据所述天线的位置信息与温度信息、所述卫星的位置信息以及预先存储的校准数据,控制所述移相器调整所述多个天线阵元的相位,包括:
    根据所述天线的位置信息与所述卫星的位置信息,确定校准数据中对应的发射源位置;
    根据所述对应的发射源位置与天线的温度信息,确定对应的一组测试数据;
    根据对应的测试数据,控制所述移相器对所述多个天线阵元的相位进行调整。
  9. 根据权利要求8所述的控制装置,其中,卫星位于C位置,天线位于B2位置,所述根据所述天线的位置信息与所述卫星的位置信息,确定校准数据中对应的发射源位置,包括:
    从C位置作纵向的第一直线段,从B2位置作横向的第二直线段,第一直线段和第二直线段相交于A2位置;
    在直线CA2上确定与C位置距离为校准平面高度的A1位置,所述校准平面高度等于校准时多个发射源所在位置的平面与天线位置之间的距离;
    从A1位置作横向的第三直线段,第三直线段与直线CB2相交于B1位置,则B1位置为所述校准数据中对应的发射源位置。
  10. 根据权利要求1所述的控制装置,其中,所述计算控制单元为现场可编程门阵列FPGA芯片。
  11. 一种天线系统,包括天线以及如权利要求1至权利要求10任一项所述的天线控制装置。
  12. 一种天线的控制方法,所述天线包括多个天线阵元以及用于对多个天线阵元进行相位校准的多个移相器,所述控制方法包括:
    接收天线的位置信息与温度信息,确定卫星的位置信息;
    根据所述天线的位置信息与温度信息、所述卫星的位置信息以及预先存储的校准数据,调整多个天线阵元的相位。
  13. 一种计算控制装置,包括存储器和处理器,所述存储器配置为存储程序指令和校准数据;所述处理器,配置为调用所述存储器中存储的程序指令,按照获得的程序执行如下步骤:接收天线的位置信息与温度信息,确定卫星的位置信息;根据所述天线的位置信息与温度信息、所述卫星的位置信息以及预先存储的校准数据,调整多个天线阵元的相位。
  14. 一种计算机可读存储介质,存储有程序指令和校准数据,当所述程序指令被执行时可实现如下步骤:接收天线的位置信息与温度信息,确定卫星的位置信息;根据所述天线的位置信息与温度信息、所述卫星的位置信息 以及预先存储的校准数据,调整多个天线阵元的相位。
PCT/CN2021/101894 2021-06-23 2021-06-23 天线的控制装置、方法、天线系统与计算控制装置 WO2022266900A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/780,019 US20220416418A1 (en) 2021-06-23 2021-06-23 Control Device for Antenna, Control Method for Antenna, Antenna System and Computing Control Device
CN202180001604.6A CN115715445A (zh) 2021-06-23 2021-06-23 天线的控制装置、方法、天线系统与计算控制装置
PCT/CN2021/101894 WO2022266900A1 (zh) 2021-06-23 2021-06-23 天线的控制装置、方法、天线系统与计算控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/101894 WO2022266900A1 (zh) 2021-06-23 2021-06-23 天线的控制装置、方法、天线系统与计算控制装置

Publications (1)

Publication Number Publication Date
WO2022266900A1 true WO2022266900A1 (zh) 2022-12-29

Family

ID=84542676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/101894 WO2022266900A1 (zh) 2021-06-23 2021-06-23 天线的控制装置、方法、天线系统与计算控制装置

Country Status (3)

Country Link
US (1) US20220416418A1 (zh)
CN (1) CN115715445A (zh)
WO (1) WO2022266900A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118732326A (zh) * 2024-09-04 2024-10-01 深圳大学 一种基于半导体技术的恒温液晶相控阵及其温度调控方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11909124B2 (en) * 2021-04-30 2024-02-20 Apple Inc. Method and apparatus for temperature-based antenna selection

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6023242A (en) * 1998-07-07 2000-02-08 Northern Telecom Limited Establishing communication with a satellite
US6640085B1 (en) * 1999-09-01 2003-10-28 Xm Satellite Radio Inc. Electronically steerable antenna array using user-specified location data for maximum signal reception based on elevation angle
CN111130627A (zh) * 2019-12-26 2020-05-08 中国科学院国家空间科学中心 一种海上相控阵卫星通信终端
CN112886995A (zh) * 2021-01-19 2021-06-01 京东方科技集团股份有限公司 控制装置、天线的控制方法、接收机
CN112909552A (zh) * 2021-02-23 2021-06-04 北京京东方技术开发有限公司 一种相控阵天线的控制方法、系统和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7768453B2 (en) * 2008-08-08 2010-08-03 Raytheon Company Dynamically correcting the calibration of a phased array antenna system in real time to compensate for changes of array temperature
FR3014250B1 (fr) * 2013-11-29 2015-11-13 Thales Sa Procede d'orientation du faisceau d'une antenne a balayage electronique et systeme d'emission/reception mettant en oeuvre un tel procede
JP7222738B2 (ja) * 2019-02-06 2023-02-15 株式会社ジャパンディスプレイ フェーズドアレイアンテナ装置
CN110176965B (zh) * 2019-05-23 2021-07-06 中国科学院国家天文台 一种对天线阵列进行校准的系统及方法
CN117289503A (zh) * 2022-06-16 2023-12-26 京东方科技集团股份有限公司 一种液晶移相器及其移相方法、设备、介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6023242A (en) * 1998-07-07 2000-02-08 Northern Telecom Limited Establishing communication with a satellite
US6640085B1 (en) * 1999-09-01 2003-10-28 Xm Satellite Radio Inc. Electronically steerable antenna array using user-specified location data for maximum signal reception based on elevation angle
CN111130627A (zh) * 2019-12-26 2020-05-08 中国科学院国家空间科学中心 一种海上相控阵卫星通信终端
CN112886995A (zh) * 2021-01-19 2021-06-01 京东方科技集团股份有限公司 控制装置、天线的控制方法、接收机
CN112909552A (zh) * 2021-02-23 2021-06-04 北京京东方技术开发有限公司 一种相控阵天线的控制方法、系统和装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118732326A (zh) * 2024-09-04 2024-10-01 深圳大学 一种基于半导体技术的恒温液晶相控阵及其温度调控方法

Also Published As

Publication number Publication date
CN115715445A (zh) 2023-02-24
US20220416418A1 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
WO2022266900A1 (zh) 天线的控制装置、方法、天线系统与计算控制装置
US6100841A (en) Radio frequency receiving circuit
CN111684730B (zh) 用于收发器的射频环回
US20120326781A1 (en) Transmission module and phased array antenna apparatus
US20040263406A1 (en) Integrated spiral and top-loaded monopole antenna
JP2004506207A (ja) 受動モノパルスコンパレータを備えた無線周波数受信回路
US7103385B2 (en) Mobile satellite communication system
Copeland et al. Antennafier arrays
CN101252227B (zh) 毫米波一体化多通道有源发射天线及其相位补偿方法
Hejselbaek et al. Channel sounding system for mm-wave bands and characterization of indoor propagation at 28 GHz
CN115986422A (zh) 一种相控阵天线的线极化跟踪实现方法
Müller et al. A H-band vector modulator MMIC for phase-shifting applications
KR102235152B1 (ko) Rf 밀리미터파 대역의 신호 크기 및 위상을 캘리브레이션하기 위한 다중 안테나 시스템
Anderson et al. Adaption of a low power 122 GHz radar transceiver for long range communications
US10763913B1 (en) Linear-in-dB log-amp with calibration for power detection
Lenz et al. TerraSAR-X active radar ground calibrator system
US6181277B1 (en) Microstrip antenna
Li et al. Development of Active Radar Calibrator for L-, C-, X-, and Ka-band SAR
JP5345644B2 (ja) 衛星管制システム
Liang et al. Design of Ku-band T/R module based on SIP package
CN216563474U (zh) 一种毫米波铁氧体波导环行耦合组件
CN219959424U (zh) 一种高精度全球导航卫星天线装置
CN214124086U (zh) 小型化相控阵模组
Zhang et al. Development of a miniaturized Ku-band dual polarization array transmitting module
JP2000216617A (ja) 衛星搭載用追尾系センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21946400

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 13/02/2024)