WO2022265006A1 - Plasma generation unit, plasma generation device, and sterilization system - Google Patents

Plasma generation unit, plasma generation device, and sterilization system Download PDF

Info

Publication number
WO2022265006A1
WO2022265006A1 PCT/JP2022/023784 JP2022023784W WO2022265006A1 WO 2022265006 A1 WO2022265006 A1 WO 2022265006A1 JP 2022023784 W JP2022023784 W JP 2022023784W WO 2022265006 A1 WO2022265006 A1 WO 2022265006A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
plasma generation
generation unit
electrode
electrodes
Prior art date
Application number
PCT/JP2022/023784
Other languages
French (fr)
Japanese (ja)
Inventor
英孝 宮▲崎▼
Original Assignee
日本未来科学研究所合同会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本未来科学研究所合同会社 filed Critical 日本未来科学研究所合同会社
Publication of WO2022265006A1 publication Critical patent/WO2022265006A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma

Definitions

  • the present invention relates to a plasma generation unit, a plasma generator and a sterilization system.
  • Patent Literature 1 relates to an air cleaning device using plasma, and states, "In a housing provided with an air inlet and an outlet for plasma treatment, the air flow is made into a turbulent state and a dielectric barrier discharge narrow gap plasma is generated. A large number of electrodes are arranged in a matrix (matrix), and the plasma generated by the electrodes and the air containing viruses, pathogens, mycotoxins, etc. are efficiently contacted and mixed” (abstract). doing.
  • the present invention has been made to solve the above and other problems, and is a plasma generation unit that takes in ambient air and makes it possible to sterilize the taken-in ambient air efficiently and effectively. , to provide a plasma generator and a sterilization system.
  • a plate-like first electrode and a plate-like second electrode having substantially the same planar shape as the first electrode are provided.
  • Plasma generating parts are provided so that their flat surfaces face each other with a gap of , and two or more of the plasma generating parts are stacked in a thickness direction with a predetermined interval from each other.
  • Each of the plasma generating units has a spacing member configured to support both sides of the plasma generating unit, and a predetermined AC voltage is applied between the first and second electrodes of each of the plasma generating units.
  • a plasma generation device is configured to apply a predetermined AC voltage between the plasma generation unit and first and second electrodes of each of the plasma generation units provided in the plasma generation unit. and a plasma power supply.
  • the plasma power supply section may supply an AC voltage to the first and second electrodes that is adjusted according to the state of plasma generated in the plasma generation section.
  • the sterilization system is arranged so as to face the gap formed between the first and second electrodes in the plasma generator and the plasma generating section of the plasma generator.
  • a blower unit and an ozone decomposition filter disposed between the gap and the blower unit.
  • Plasma generation units, plasma generators and sterilization systems are provided that are capable of performing.
  • FIG. 1 is a perspective view of a plasma generation unit according to one embodiment of the present invention.
  • 2 is a partial cross-sectional view of the plasma generation unit of FIG. 1;
  • FIG. FIG. 3 is a plan view of a plasma generation unit according to one embodiment of the present invention.
  • FIG. 4 is a diagram showing a circuit configuration example of a plasma generator according to one embodiment of the present invention.
  • FIG. 5 is a diagram showing a configuration example of a sterilization system using the plasma generator of FIG. 6 is a diagram showing a configuration example of a control circuit included in the sterilization system illustrated in FIG. 5.
  • FIG. 1 is a perspective view of a plasma generation unit 10 according to one embodiment of the present invention
  • FIG. 2 is a partial cross-sectional view of the plasma generation unit 10 of FIG. 1
  • FIG. 3 is a plan view of the plasma generation unit 10 of FIG. 4A and 4B are diagrams showing a configuration example of a plasma generation circuit for operating the plasma generation unit 10.
  • FIG. 1 is a perspective view of a plasma generation unit 10 according to one embodiment of the present invention
  • FIG. 2 is a partial cross-sectional view of the plasma generation unit 10 of FIG. 1
  • FIG. 3 is a plan view of the plasma generation unit 10 of FIG. 4A and 4B are diagrams showing a configuration example of a plasma generation circuit for operating the plasma generation unit 10.
  • FIG. 1 is a perspective view of a plasma generation unit 10 according to one embodiment of the present invention
  • FIG. 2 is a partial cross-sectional view of the plasma generation unit 10 of FIG. 1
  • FIG. 3 is a plan view of the plasma generation unit 10 of FIG.
  • the plasma generation unit 10 of this embodiment is formed in a rectangular parallelepiped shape having a rectangular plane as a whole.
  • ambient air is drawn in from the front of the plasma generation unit 10 on the front side of the page, passes through multiple flow paths in the plasma generation unit 10, and is exhausted from the back on the opposite side. be.
  • the air flow paths formed in the plasma generation unit 10 are flat slit-shaped. Each channel is called a plasma generation gap G here.
  • One gap G is formed between the first electrode 16a and the second electrode 16b for plasma generation.
  • the first electrode 16a and the second electrode 16b are rectangular flat metal plates, and in this embodiment, they are aluminum plates, but other conductive materials such as stainless steel plates may also be used.
  • Dielectric layers 14 are provided on the surfaces of the first electrode 16a and the second electrode 16b facing each other, and the dielectric layers 14 are separated from each other by separators 12, which are spacing members, and supported so as to be parallel to each other. doing.
  • Dielectric layer 14 may be formed, for example, as a layer of glass. Although the dielectric layer 14 is provided on both surfaces of the first electrode 16a and the second electrode 16b facing each other in this embodiment, it may be provided only on the surface of one of the electrodes.
  • each plasma generation gap G is set to 2 mm, and the thickness of each of the first electrode 16a and the second electrode 16b is set to 2 mm.
  • An appropriate number (for example, about 30 to 40 steps) of gaps G are provided in the height direction.
  • the separator 12 is made of an electrically insulating resin material or the like, and is 6 mm thick in this embodiment considering the thickness of each electrode is 2 mm.
  • the width of each gap G is preferably set to about 200 mm, and the depth of the gap G along the flow direction is preferably set to about 300 mm. It can be determined according to the required air flow rate.
  • an atmospheric pressure cold plasma is generated between the electrodes and acts on the air, water vapor in the gap G to produce, as is known, singlet oxygen ( 1 O 2 ), ozone (O 3 ), for example. , hydroxyl radicals (OH), superoxide anion radicals (O 2 ⁇ ), hydroperoxy radicals (HO 2 ), hydrogen peroxide (H 2 O 2 ).
  • the air passing through each gap G of the plasma generating unit 10 flows in contact with the plasma that is continuously spread in each gap G and is generated.
  • Microorganisms such as viruses and bacteria contained in the ambient air sucked into each gap G are destroyed in a very short time on the order of microseconds by contacting the plasma in the gap G, and the active oxygen Inactivation of viruses and sterilization of microorganisms are performed by mixing with multi-plasma gas containing seeds.
  • FIG. 4 shows a configuration example of a plasma generation circuit applied to the plasma generation unit 10 of this embodiment.
  • the plasma generation circuit includes a plasma power supply unit 20 having a booster unit 24 connected to each electrode pair consisting of a first electrode 16a and a second electrode 16b, and an inverter 22 for supplying alternating current to the booster unit 24.
  • a general neon transformer used for lighting a neon tube can be adopted as the plasma power supply unit 20 .
  • the inverter 22 of the plasma power supply unit 20 receives DC 12V from an external power supply.
  • the inverter 22 outputs an AC voltage controlled according to the input DC voltage and supplies the voltage to the booster 24 .
  • the control method, the type of switching element, and the like may be appropriately selected.
  • the function of the inverter 22 is to output an AC voltage corresponding to the input DC voltage.
  • the output voltage is controlled by parameters such as the distance between the electrodes, the material of the electrodes, the planar dimension, and the thickness. Note that the AC frequency may be appropriately determined.
  • the plasma generation unit 10 uses barrier discharge, but if the voltage between the electrodes is low, the discharge will not occur. It leads to electrode breakage due to reduction in generation efficiency and concentration of discharge at a specific location.
  • stable barrier discharge is maintained by controlling the AC voltage applied between the electrodes. Also, by controlling the AC voltage applied between the electrodes, it is configured to efficiently generate multi-plasma gas containing active oxygen species while suppressing generation of harmful ozone (O 3 ).
  • FIG. 5 schematically shows an exploded perspective view of a sterilization system 100 configured using the plasma generation unit 10 described so far.
  • the sterilization system 100 is configured by providing an ozone decomposition filter 30, a plasma generation unit 10, an ozone decomposition filter 30, an ozone sensor 40, and an electric fan 50 in order from the intake side for sucking ambient air.
  • FIG. 5 shows these components simply arranged along the flow path of the ambient air, but these components can be housed in, for example, a cylindrical housing to provide a sterilization system 100. can be realized.
  • the plasma generation unit 10 can have, for example, a configuration as described with reference to FIGS. 1-4.
  • the ozone decomposition filters 30, which are arranged upstream and downstream of the plasma generation unit 10, remove ozone (O3), which is harmful to the human body and has a unique odor, among various active species generated by the plasma of the plasma generation unit 10. 3 ) is provided for the purpose of preventing leakage to the outside of the system 100.
  • FIG. 1 As the ozone decomposition filter 30, a general-purpose ozone decomposition filter used in copiers and the like can be appropriately selected and employed. The shape and size of the ozone decomposition filter 30 may also be determined according to the specifications of the sterilization system 100 to be applied.
  • the reason why the ozone decomposition filter 30 is also provided on the upstream side of the plasma generation unit 10 is to prevent ozone from flowing out of the plasma generation unit 10 by flowing back through the flow path. If there is no problem with this point, the ozone decomposition filter 30 on the upstream side may be omitted.
  • the ozone sensor 40 is a sensor device that measures the concentration of ozone contained in the exhaust downstream of the ozone decomposition filter 30 in the rear stage of the plasma generation unit 10 .
  • a highly sensitive semiconductor gas sensor can be preferably used. Recommendation (FY 2020)" Journal of Occupational Hygiene, 2020; 62(5): 198-230).
  • the electric fan 50 as a blower unit functions as an exhaust fan for the sterilization system 100.
  • ambient air is introduced into the sterilization system 100 and sterilized by the plasma as it passes through the plasma generation unit 10 .
  • FIG. 6 shows a configuration example of a control circuit in the sterilization system 100 of FIG.
  • the control circuit includes a DC power supply section 60, a plasma power supply section 20, a control section 70, and an input/output section 80.
  • the control circuit includes a DC power supply section 60, a plasma power supply section 20, a control section 70, and an input/output section 80.
  • a 100 V AC, 50/60 Hz commercial power supply is supplied to the sterilization system 100 .
  • the DC power supply section 60 generates 24 V DC and 5 V DC, which are power supplies for the control circuit, and 12 V DC, which is the operating power supply for the plasma generation unit 10 .
  • the control unit 70 is a functional unit that manages operation control of the entire sterilization system 100, and can be configured using a microprocessor module, for example.
  • the input/output unit 80 can include input devices such as operation buttons and touch pads, and output devices such as LED lamps and liquid crystal displays.
  • control unit 70 ⁇ ON/OFF control of the plasma power supply unit 20 based on the input signal from the input/output unit 80 ⁇ ON/OFF control of the plasma power supply unit 20 based on the concentration signal from the ozone sensor 40 ⁇ Output voltage control of the plasma power supply unit 20 based on detection of the plasma current value
  • the atmospheric pressure low-temperature plasma generated by the plasma generation unit 10 can efficiently sterilize the surrounding air. Moreover, since the output voltage of the plasma power supply unit 20 is controlled according to the state of the generated plasma, it is possible to continuously generate stable atmospheric pressure low temperature plasma.
  • Plasma generation unit 12 Separator 14 Dielectric layer 16a First electrode 16b Second electrode 20
  • Plasma power supply unit 22 Inverter 24 Boosting unit 30
  • Ozone decomposition filter 40 Ozone sensor 50
  • Electric fan 60 DC power supply unit 70
  • Control unit 80 Input/output unit 100 Sterilization System G Plasma generation gap

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Toxicology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Plasma Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

The present invention makes it possible to draw in ambient air and efficiently and effectively carry out a sterilization treatment of the drawn-in ambient air. This plasma generation unit includes: plasma generation sections in which a flat plate-shaped first electrode and a flat plate-shaped second electrode, which has substantially the same planar shape as the first electrode, are provided such that surfaces thereof face each other at a predetermined spacing; and a spacing member configured to support both end portions of two or more of the plasma generation sections such that the plasma generation sections are layered with a predetermined spacing therebetween in the thickness direction. When a predetermined AC voltage is applied between the first and second electrodes of each of the plasma generation sections, an atmospheric pressure low-temperature plasma is generated between the first and second electrodes of each of the plasma generation section.

Description

プラズマ発生ユニット、プラズマ発生装置及び殺菌システムPlasma generation unit, plasma generator and sterilization system
 本発明は、プラズマ発生ユニット、プラズマ発生装置及び殺菌システムに関する。 The present invention relates to a plasma generation unit, a plasma generator and a sterilization system.
 新型コロナウイルスの世界的な感染拡大に伴って、ウイルスの不活化を含む様々な殺菌処理に対するニーズが高まっている。特に新型コロナウイルスでは飛沫感染、エアロゾル感染が主要な感染ルートの一つと考えられており、環境空気中に浮遊するウイルスを効果的に不活化する技術が求められている。従来、プラズマガスを処理対象物の表面に照射することによって殺菌処理を実現する技術が知られている。またプラズマガスに周囲空気を接触させることで空気中のウイルスを不活化したり細菌を死滅させたりする環境殺菌処理も提案されている。  With the global spread of the new coronavirus, the need for various sterilization treatments, including virus inactivation, is increasing. In particular, droplet infection and aerosol infection are considered to be one of the main infection routes for the new coronavirus, and there is a need for a technology that effectively inactivates viruses floating in the environmental air. Conventionally, there has been known a technique for achieving sterilization by irradiating the surface of an object to be treated with plasma gas. An environmental sterilization treatment has also been proposed in which ambient air is brought into contact with plasma gas to inactivate airborne viruses or kill bacteria.
 例えば特許文献1はプラズマを用いた空気清浄装置に関し、「プラズマ処理対象の空気入口と吹き出し口を備えた筐体に、空気流れを乱流状態にし、かつ、誘電体バリア放電ナローギャッププラズマを発生する多数の電極をマトリクス(行列)状に配置し、該電極が生成するプラズマと、ウイルス、病原菌、カビ毒等を含む空気と、を効率よく、接触、混合させる」(要約書)構成を提案している。 For example, Patent Literature 1 relates to an air cleaning device using plasma, and states, "In a housing provided with an air inlet and an outlet for plasma treatment, the air flow is made into a turbulent state and a dielectric barrier discharge narrow gap plasma is generated. A large number of electrodes are arranged in a matrix (matrix), and the plasma generated by the electrodes and the air containing viruses, pathogens, mycotoxins, etc. are efficiently contacted and mixed” (abstract). doing.
特開2020-171777号公報JP 2020-171777 A
 しかしながら、特許文献1に記載されている装置では、棒状の電極周囲にプラズマを発生させて周囲空気との混合を図るため、依然としてプラズマガスと電極周囲を流れる空気との接触・混合が不十分であり、プラズマ処理がなされていない空気が装置下流に排出されてしまうおそれがあるという問題が考えられる。 However, in the apparatus described in Patent Document 1, since plasma is generated around the rod-shaped electrode and mixed with the surrounding air, contact and mixing between the plasma gas and the air flowing around the electrode is still insufficient. There is a possibility that the air that has not been plasma-treated may be discharged downstream of the apparatus.
 本発明は、上記の及び他の課題を解決するためになされたもので、周囲空気を取り込んで、取り込んだ周囲空気を効率的に、かつ効果的に殺菌処理することを可能とするプラズマ発生ユニット、プラズマ発生装置及び殺菌システムを提供することを一つの目的としている。 SUMMARY OF THE INVENTION The present invention has been made to solve the above and other problems, and is a plasma generation unit that takes in ambient air and makes it possible to sterilize the taken-in ambient air efficiently and effectively. , to provide a plasma generator and a sterilization system.
 上記の及び他の目的を達成するための、本発明の一態様は、平板状の第1電極と、前記第1電極と実質的に同一の平面形状を有する平板状の第2電極とが所定の間隙を隔てて平面同士が対向するように設けられてなるプラズマ生成部を備え、2以上の前記プラズマ生成部がその厚さ方向に互いに所定の間隔を置いて積層配置されるように各前記プラズマ生成部の両側部を支持するように構成された間隔部材を有し、各前記プラズマ生成部の第1及び第2電極の間に所定の交流電圧を印加することにより、各前記プラズマ生成部の第1及び第2電極の間に大気圧低温プラズマを生成させるプラズマ発生ユニットである。 In order to achieve the above and other objects, according to one aspect of the present invention, a plate-like first electrode and a plate-like second electrode having substantially the same planar shape as the first electrode are provided. Plasma generating parts are provided so that their flat surfaces face each other with a gap of , and two or more of the plasma generating parts are stacked in a thickness direction with a predetermined interval from each other. Each of the plasma generating units has a spacing member configured to support both sides of the plasma generating unit, and a predetermined AC voltage is applied between the first and second electrodes of each of the plasma generating units. is a plasma generation unit for generating an atmospheric pressure low temperature plasma between the first and second electrodes of the.
 本発明の一態様によるプラズマ発生装置は、前記プラズマ発生ユニットと、前記プラズマ発生ユニットが備える各前記プラズマ生成部の第1及び第2電極間に所定の交流電圧を印加するように構成されているプラズマ電源部とを備えている。 A plasma generation device according to an aspect of the present invention is configured to apply a predetermined AC voltage between the plasma generation unit and first and second electrodes of each of the plasma generation units provided in the plasma generation unit. and a plasma power supply.
 前記プラズマ電源部は、前記プラズマ生成部において生成されているプラズマの状態に応じて調整される交流電圧を第1及び第2電極に供給するものとすることができる。 The plasma power supply section may supply an AC voltage to the first and second electrodes that is adjusted according to the state of plasma generated in the plasma generation section.
 また本発明の一態様による殺菌システムは、前記プラズマ発生装置と、前記プラズマ発生装置の前記プラズマ生成部に前記第1及び第2電極の間に形成されている間隙に対向するように配置された送風ユニットと、前記間隙と前記送風ユニットとの間に配置されたオゾン分解フィルターとを備えている。 Further, the sterilization system according to one aspect of the present invention is arranged so as to face the gap formed between the first and second electrodes in the plasma generator and the plasma generating section of the plasma generator. A blower unit and an ozone decomposition filter disposed between the gap and the blower unit.
 本発明によれば、周囲空気を取り込んで、それぞれが扁平な、複数のプラズマ生成空間を通過させることにより、取り込んだ周囲空気がプラズマ生成空間内で効率的にプラズマと接触してその殺菌処理を行うことが可能となるプラズマ発生ユニット、プラズマ発生装置及び殺菌システムが提供される。 According to the present invention, by taking in ambient air and passing it through a plurality of plasma generating spaces, each of which is flat, the ambient air being taken in efficiently comes into contact with the plasma in the plasma generating spaces and sterilizes it. Plasma generation units, plasma generators and sterilization systems are provided that are capable of performing.
図1は、本発明の一実施形態に係るプラズマ発生ユニットの斜視図である。FIG. 1 is a perspective view of a plasma generation unit according to one embodiment of the present invention. 図2は、図1のプラズマ発生ユニットの部分横断面図である。2 is a partial cross-sectional view of the plasma generation unit of FIG. 1; FIG. 図3は、本発明の一実施形態に係るプラズマ発生ユニットの平面図である。FIG. 3 is a plan view of a plasma generation unit according to one embodiment of the present invention. 図4は、本発明の一実施形態に係るプラズマ発生装置の回路構成例を示す図である。FIG. 4 is a diagram showing a circuit configuration example of a plasma generator according to one embodiment of the present invention. 図5は、図4のプラズマ発生装置を用いた殺菌システムの構成例を示す図である。FIG. 5 is a diagram showing a configuration example of a sterilization system using the plasma generator of FIG. 図6は、図5に例示する殺菌システムが備える制御回路の構成例を示す図である。6 is a diagram showing a configuration example of a control circuit included in the sterilization system illustrated in FIG. 5. FIG.
 以下、本発明につき、その実施形態に即して図面を用いて説明する。 Hereinafter, the present invention will be described with reference to the drawings in line with its embodiments.
 図1~図4に、一実施形態に係るプラズマ発生ユニット10の構成例を示している。図1は、本発明の一実施形態に係るプラズマ発生ユニット10の斜視図、図2は、図1のプラズマ発生ユニット10の部分横断面図、図3は、図1のプラズマ発生ユニット10の平面図、図4は、プラズマ発生ユニット10を動作させるためのプラズマ発生回路の構成例を示す図である。 1 to 4 show configuration examples of the plasma generation unit 10 according to one embodiment. 1 is a perspective view of a plasma generation unit 10 according to one embodiment of the present invention, FIG. 2 is a partial cross-sectional view of the plasma generation unit 10 of FIG. 1, and FIG. 3 is a plan view of the plasma generation unit 10 of FIG. 4A and 4B are diagrams showing a configuration example of a plasma generation circuit for operating the plasma generation unit 10. FIG.
 図1に示すように、本実施形態のプラズマ発生ユニット10は全体として矩形平面を有する直方体状に形成されている。図1に白抜き矢印で示しているように、プラズマ発生ユニット10の紙面手前側正面から周囲空気が吸気され、プラズマ発生ユニット10内の複数の流路を通過して反対側の背面から排気される。 As shown in FIG. 1, the plasma generation unit 10 of this embodiment is formed in a rectangular parallelepiped shape having a rectangular plane as a whole. As indicated by the white arrows in FIG. 1, ambient air is drawn in from the front of the plasma generation unit 10 on the front side of the page, passes through multiple flow paths in the plasma generation unit 10, and is exhausted from the back on the opposite side. be.
 図2に示すように、プラズマ発生ユニット10内に形成されている空気流路はそれぞれ扁平なスリット状を呈している。ここでは各流路をプラズマ生成ギャップGと呼ぶ。一つのギャップGはプラズマ生成用の第1電極16aと第2電極16bとの間に形成されている。第1電極16aと第2電極16bとは、それぞれ矩形平板状の金属板で、本実施形態ではアルミニウム板であるが、ステンレス板等の他の導電性材料でもよい。第1電極16aと第2電極16bの互いに対向する表面にはそれぞれ誘電体層14が設けられており、各誘電体層14を間隔部材であるセパレータ12によって離隔させつつ互いに平行となるように支持している。誘電体層14は、例えばガラスの層として形成することができる。本実施形態では対向する第1電極16a、第2電極16b両方の表面に誘電体層14を設けているが、いずれか一方の電極表面にだけ設けてもよい。 As shown in FIG. 2, the air flow paths formed in the plasma generation unit 10 are flat slit-shaped. Each channel is called a plasma generation gap G here. One gap G is formed between the first electrode 16a and the second electrode 16b for plasma generation. The first electrode 16a and the second electrode 16b are rectangular flat metal plates, and in this embodiment, they are aluminum plates, but other conductive materials such as stainless steel plates may also be used. Dielectric layers 14 are provided on the surfaces of the first electrode 16a and the second electrode 16b facing each other, and the dielectric layers 14 are separated from each other by separators 12, which are spacing members, and supported so as to be parallel to each other. doing. Dielectric layer 14 may be formed, for example, as a layer of glass. Although the dielectric layer 14 is provided on both surfaces of the first electrode 16a and the second electrode 16b facing each other in this embodiment, it may be provided only on the surface of one of the electrodes.
 本実施形態の場合、各プラズマ生成ギャップGの高さは2mm、第1電極16a、第2電極16bの厚さは各2mmに設定され、図1に模式的に示すように、プラズマ発生ユニット10の高さ方向に適宜の数(例えば30~40段程度)のギャップGが設けられる。セパレータ12は、電気絶縁性の樹脂材料等で形成し、各電極厚さ2mmを考慮して、本実施形態では各6mm厚とされている。また各ギャップGの幅は約200mm、ギャップGの流れ方向に沿った奥行きは約300mmに好適に設定されるが、ギャップGの数、寸法はこれに制約されることなく設計上の要請、例えば所要の空気流量に応じて定めることができる。 In this embodiment, the height of each plasma generation gap G is set to 2 mm, and the thickness of each of the first electrode 16a and the second electrode 16b is set to 2 mm. An appropriate number (for example, about 30 to 40 steps) of gaps G are provided in the height direction. The separator 12 is made of an electrically insulating resin material or the like, and is 6 mm thick in this embodiment considering the thickness of each electrode is 2 mm. The width of each gap G is preferably set to about 200 mm, and the depth of the gap G along the flow direction is preferably set to about 300 mm. It can be determined according to the required air flow rate.
 後述するように、第1電極16aと第2電極16bとの間に所定の交流電圧を印加することにより、第1電極16aと第2電極16bとの間のプラズマ生成ギャップGにおいて誘起される誘電体バリア放電に基づいて、電極間に大気圧低温プラズマが発生し、ギャップG内の空気、水蒸気に作用して、公知のように、例えば一重項酸素()、オゾン(O)、ヒドロキシラジカル(OH)、スーパーオキシドアニオンラジカル(O )、ヒドロペルオキシラジカル(HO)、過酸化水素(H)のような種々のラジカルを含む活性酸素種が生成される。プラズマ発生ユニット10の各ギャップGを通過する空気は各ギャップG内で連続的に面状に広がって発生するプラズマに接触しながら流れる。各ギャップGに吸入される周囲空気に含まれているウイルス、細菌等の微生物は、ギャップG内でプラズマと接触することで、マイクロ秒オーダーのごく短時間で構造が破壊され、また前記活性酸素種を含むマルチプラズマガスと混合されることでウイルスの不活化、微生物の殺菌が行われる。 As will be described later, by applying a predetermined alternating voltage between the first electrode 16a and the second electrode 16b, dielectric Based on the body barrier discharge, an atmospheric pressure cold plasma is generated between the electrodes and acts on the air, water vapor in the gap G to produce, as is known, singlet oxygen ( 1 O 2 ), ozone (O 3 ), for example. , hydroxyl radicals (OH), superoxide anion radicals (O 2 ), hydroperoxy radicals (HO 2 ), hydrogen peroxide (H 2 O 2 ). The air passing through each gap G of the plasma generating unit 10 flows in contact with the plasma that is continuously spread in each gap G and is generated. Microorganisms such as viruses and bacteria contained in the ambient air sucked into each gap G are destroyed in a very short time on the order of microseconds by contacting the plasma in the gap G, and the active oxygen Inactivation of viruses and sterilization of microorganisms are performed by mixing with multi-plasma gas containing seeds.
 図4に本実施形態のプラズマ発生ユニット10に適用されるプラズマ発生回路の構成例を示している。プラズマ発生回路は、第1電極16aと第2電極16bとからなる各電極対に接続された昇圧部24と、昇圧部24に交流電流を供給するインバータ22とを有するプラズマ電源部20を備える。プラズマ電源部20としては、ネオン管の点灯に用いられる一般的なネオントランスを採用することができる。 FIG. 4 shows a configuration example of a plasma generation circuit applied to the plasma generation unit 10 of this embodiment. The plasma generation circuit includes a plasma power supply unit 20 having a booster unit 24 connected to each electrode pair consisting of a first electrode 16a and a second electrode 16b, and an inverter 22 for supplying alternating current to the booster unit 24. A general neon transformer used for lighting a neon tube can be adopted as the plasma power supply unit 20 .
 プラズマ電源部20のインバータ22には、外部電源からDC12Vが入力される。インバータ22は、入力直流電圧に応じて制御された交流電圧を出力して昇圧部24に供給する。インバータ22は、制御すべき電力に見合った容量が確保されていれば、制御方式、スイッチング素子の形式等は適宜選択すればよい。本実施形態では、インバータ22の機能として、入力直流電圧に応じた交流電圧を出力するものとし、例えばDC1V印加時にAC1kV、DC9V印加時にAC9kVを出力すると言ったように、入力電圧に比例した交流電圧を出力するように構成することができる。具体的には、電極間距離、電極の材質、平面寸法、厚さ等のパラメータによって出力電圧を制御するように構成する。なお、交流周波数は適宜決定すればよい。 The inverter 22 of the plasma power supply unit 20 receives DC 12V from an external power supply. The inverter 22 outputs an AC voltage controlled according to the input DC voltage and supplies the voltage to the booster 24 . As long as the inverter 22 has a capacity suitable for the power to be controlled, the control method, the type of switching element, and the like may be appropriately selected. In this embodiment, the function of the inverter 22 is to output an AC voltage corresponding to the input DC voltage. can be configured to output Specifically, the output voltage is controlled by parameters such as the distance between the electrodes, the material of the electrodes, the planar dimension, and the thickness. Note that the AC frequency may be appropriately determined.
 本プラズマ発生ユニット10ではバリア放電を使用しているが、電極間電圧が低いと放電が発生せず、また電極間電圧が高いと火花放電やアーク放電に移行してしまい、プラズマによる活性種の生成効率低下、放電が特定箇所に集中することによる電極の破損につながる。本実施形態では、電極間に印加する交流電圧を制御することで安定したバリア放電を維持するようにしている。また、電極間に印加する交流電圧を制御することで、有害なオゾン(O)の生成を抑制しながら活性酸素種を含むマルチプラズマガスを効率的に生成するように構成している。 The plasma generation unit 10 uses barrier discharge, but if the voltage between the electrodes is low, the discharge will not occur. It leads to electrode breakage due to reduction in generation efficiency and concentration of discharge at a specific location. In this embodiment, stable barrier discharge is maintained by controlling the AC voltage applied between the electrodes. Also, by controlling the AC voltage applied between the electrodes, it is configured to efficiently generate multi-plasma gas containing active oxygen species while suppressing generation of harmful ozone (O 3 ).
 次に、プラズマ発生ユニット10を用いた殺菌システムについて説明する。図5に、ここまで説明したプラズマ発生ユニット10を用いて構成した殺菌システム100の分解斜視図を模式的に示している。 Next, a sterilization system using the plasma generation unit 10 will be described. FIG. 5 schematically shows an exploded perspective view of a sterilization system 100 configured using the plasma generation unit 10 described so far.
 殺菌システム100は、周囲空気を吸入する吸気側から順に、オゾン分解フィルター30、プラズマ発生ユニット10、オゾン分解フィルター30、オゾンセンサ40、及び電動ファン50を設けて構成されている。図5には、これらの構成要素を周囲空気の流路に沿って配置した状態を簡易的に示しているが、これらの構成要素を、例えば筒状のハウジングに収装することにより殺菌システム100を実現することができるものである。 The sterilization system 100 is configured by providing an ozone decomposition filter 30, a plasma generation unit 10, an ozone decomposition filter 30, an ozone sensor 40, and an electric fan 50 in order from the intake side for sucking ambient air. FIG. 5 shows these components simply arranged along the flow path of the ambient air, but these components can be housed in, for example, a cylindrical housing to provide a sterilization system 100. can be realized.
 プラズマ発生ユニット10は例えば図1~図4によって説明したような構成を備えることができる。プラズマ発生ユニット10の上流側、下流側にそれぞれ配置されるオゾン分解フィルター30は、プラズマ発生ユニット10のプラズマによって生成される様々な活性種のうち、人体に有害で独特の臭気を伴うオゾン(O)がシステム100の外部に流出することを防止する目的で設けられる。オゾン分解フィルター30としては、コピー機などに利用されている汎用のオゾン分解フィルターから適宜選択して採用することができる。オゾン分解フィルター30の形状寸法も、適用する殺菌システム100の仕様に応じて定めればよい。なお、プラズマ発生ユニット10の上流側にもオゾン分解フィルター30を設けているのは、プラズマ発生ユニット10から流路を逆流してオゾンが外部に出ないようにするためである。この点で問題がなければ上流側のオゾン分解フィルター30は省略してもよい。 The plasma generation unit 10 can have, for example, a configuration as described with reference to FIGS. 1-4. The ozone decomposition filters 30, which are arranged upstream and downstream of the plasma generation unit 10, remove ozone (O3), which is harmful to the human body and has a unique odor, among various active species generated by the plasma of the plasma generation unit 10. 3 ) is provided for the purpose of preventing leakage to the outside of the system 100. FIG. As the ozone decomposition filter 30, a general-purpose ozone decomposition filter used in copiers and the like can be appropriately selected and employed. The shape and size of the ozone decomposition filter 30 may also be determined according to the specifications of the sterilization system 100 to be applied. The reason why the ozone decomposition filter 30 is also provided on the upstream side of the plasma generation unit 10 is to prevent ozone from flowing out of the plasma generation unit 10 by flowing back through the flow path. If there is no problem with this point, the ozone decomposition filter 30 on the upstream side may be omitted.
 オゾンセンサ40は、プラズマ発生ユニット10の後段にあるオゾン分解フィルター30の下流側において排気に含まれるオゾン濃度を測定するセンサデバイスである。オゾンセンサ40としては、高感度の半導体式ガスセンサを好適に採用することができ、その出力をモニタすることによって、作業環境における許容濃度である0.1ppm以下(日本産業衛生学会「許容濃度等の勧告(2020年度)」産業衛生学雑誌、2020; 62(5): 198-230)となるようにプラズマ発生ユニット10の運転・停止を制御するように構成することができる。 The ozone sensor 40 is a sensor device that measures the concentration of ozone contained in the exhaust downstream of the ozone decomposition filter 30 in the rear stage of the plasma generation unit 10 . As the ozone sensor 40, a highly sensitive semiconductor gas sensor can be preferably used. Recommendation (FY 2020)" Journal of Occupational Hygiene, 2020; 62(5): 198-230).
 送風ユニットとしての電動ファン50は、殺菌システム100の排気ファンとして機能する。電動ファン50を排気方向に動作させることにより、殺菌システム100内に周囲空気が導入されてプラズマ発生ユニット10を通過するときにプラズマにより殺菌される。 The electric fan 50 as a blower unit functions as an exhaust fan for the sterilization system 100. By operating the electric fan 50 in the exhaust direction, ambient air is introduced into the sterilization system 100 and sterilized by the plasma as it passes through the plasma generation unit 10 .
 図6には、図5の殺菌システム100における制御回路の構成例を示している。図6に示すように、制御回路には、DC電源部60、プラズマ電源部20、制御部70、入出力部80が設けられている。 FIG. 6 shows a configuration example of a control circuit in the sterilization system 100 of FIG. As shown in FIG. 6, the control circuit includes a DC power supply section 60, a plasma power supply section 20, a control section 70, and an input/output section 80. As shown in FIG.
 殺菌システム100にはAC100V、50/60Hzの商用電源が供給され、まずDC電源部60によって制御回路用電源であるDC24V、DC5V、プラズマ発生ユニット10の動作電源であるDC12Vが生成される。制御部70は殺菌システム100全体の動作制御を管理する機能部であり、例えばマイクロプロセッサモジュールを用いて構成することができる。入出力部80は操作ボタン、タッチパッド等の入力デバイスと、LEDランプ、液晶ディスプレイ等の出力デバイスとを含むことができる。 A 100 V AC, 50/60 Hz commercial power supply is supplied to the sterilization system 100 . First, the DC power supply section 60 generates 24 V DC and 5 V DC, which are power supplies for the control circuit, and 12 V DC, which is the operating power supply for the plasma generation unit 10 . The control unit 70 is a functional unit that manages operation control of the entire sterilization system 100, and can be configured using a microprocessor module, for example. The input/output unit 80 can include input devices such as operation buttons and touch pads, and output devices such as LED lamps and liquid crystal displays.
 制御部70による制御内容としては、次のような事項が考えられる。
・入出力部80からの入力信号によるプラズマ電源部20のオンオフ制御
・オゾンセンサ40からの濃度信号に基づくプラズマ電源部20のオンオフ制御
・プラズマ電流値検出に基づくプラズマ電源部20の出力電圧制御
The following items can be considered as the contents of control by the control unit 70 .
・ON/OFF control of the plasma power supply unit 20 based on the input signal from the input/output unit 80 ・ON/OFF control of the plasma power supply unit 20 based on the concentration signal from the ozone sensor 40 ・Output voltage control of the plasma power supply unit 20 based on detection of the plasma current value
 もちろん上記以外の制御を実行するように構成してもよい。 Of course, it may be configured to execute control other than the above.
 以上説明した実施形態の殺菌システム100によれば、プラズマ発生ユニット10が生成する大気圧低温プラズマにより周囲空気を効率的に殺菌することができる。また、生成されるプラズマの状態に応じてプラズマ電源部20の出力電圧が制御されるので、安定した大気圧低温プラズマを継続して生成することができる。 According to the sterilization system 100 of the embodiment described above, the atmospheric pressure low-temperature plasma generated by the plasma generation unit 10 can efficiently sterilize the surrounding air. Moreover, since the output voltage of the plasma power supply unit 20 is controlled according to the state of the generated plasma, it is possible to continuously generate stable atmospheric pressure low temperature plasma.
 なお、本発明の技術的範囲は上記の実施形態に限定されることはなく、他の変形例、応用例等も、特許請求の範囲に記載した事項の範囲内に含まれるものである。 The technical scope of the present invention is not limited to the above embodiments, and other modifications, applications, etc. are also included within the scope of the matters described in the claims.
10 プラズマ発生ユニット
12 セパレータ
14 誘電体層
16a 第1電極
16b 第2電極
20 プラズマ電源部
22 インバータ
24 昇圧部
30 オゾン分解フィルター
40 オゾンセンサ
50 電動ファン
60 DC電源部
70 制御部
80 入出力部
100 殺菌システム
G プラズマ生成ギャップ
10 Plasma generation unit 12 Separator 14 Dielectric layer 16a First electrode 16b Second electrode 20 Plasma power supply unit 22 Inverter 24 Boosting unit 30 Ozone decomposition filter 40 Ozone sensor 50 Electric fan 60 DC power supply unit 70 Control unit 80 Input/output unit 100 Sterilization System G Plasma generation gap

Claims (4)

  1.  平板状の第1電極と、前記第1電極と実質的に同一の平面形状を有する平板状の第2電極とが所定の間隙を隔てて平面同士が対向するように設けられてなるプラズマ生成部を備え、
     2以上の前記プラズマ生成部がその厚さ方向に互いに所定の間隔を置いて積層配置されるように各前記プラズマ生成部の両側部を支持するように構成された間隔部材を有し、
     各前記プラズマ生成部の第1及び第2電極の間に所定の交流電圧を印加することにより、各前記プラズマ生成部の第1及び第2電極の間に大気圧低温プラズマを生成させる、
    プラズマ発生ユニット。
    Plasma generation unit comprising a flat plate-shaped first electrode and a flat plate-shaped second electrode having substantially the same planar shape as the first electrode, provided with a predetermined gap so that the flat surfaces face each other. with
    a spacing member configured to support both sides of each of the plasma generating units so that two or more of the plasma generating units are stacked with a predetermined spacing from each other in the thickness direction;
    Atmospheric pressure low-temperature plasma is generated between the first and second electrodes of each plasma generation unit by applying a predetermined alternating voltage between the first and second electrodes of each plasma generation unit;
    Plasma generation unit.
  2.  請求項1に記載のプラズマ発生ユニットと、
     前記プラズマ発生ユニットが備える各前記プラズマ生成部の第1及び第2電極間に所定の交流電圧を印加するように構成されているプラズマ電源部と
    を備えているプラズマ発生装置。
    A plasma generation unit according to claim 1;
    and a plasma power supply unit configured to apply a predetermined AC voltage between the first and second electrodes of each of the plasma generation units provided in the plasma generation unit.
  3.  前記プラズマ電源部は、前記プラズマ生成部において生成されているプラズマの状態に応じて調整される交流電圧を第1及び第2電極に供給する、
    請求項2に記載のプラズマ発生装置。
    The plasma power supply unit supplies the first and second electrodes with an AC voltage that is adjusted according to the state of the plasma generated in the plasma generation unit,
    The plasma generator according to claim 2.
  4.  請求項2又は3に記載のプラズマ発生装置と、
     前記プラズマ発生装置の前記プラズマ生成部にある間隙に対向するように配置された送風ユニットと、
     前記間隙と前記送風ユニットとの間に配置されたオゾン分解フィルターと
    を備えている殺菌システム。
    A plasma generator according to claim 2 or 3;
    a blower unit arranged to face the gap in the plasma generating section of the plasma generator;
    A sterilization system comprising an ozonolysis filter positioned between said gap and said blower unit.
PCT/JP2022/023784 2021-06-14 2022-06-14 Plasma generation unit, plasma generation device, and sterilization system WO2022265006A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021098812A JP2022190472A (en) 2021-06-14 2021-06-14 Plasma generation unit, plasma generation apparatus, and sterilization system
JP2021-098812 2021-06-14

Publications (1)

Publication Number Publication Date
WO2022265006A1 true WO2022265006A1 (en) 2022-12-22

Family

ID=84526505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023784 WO2022265006A1 (en) 2021-06-14 2022-06-14 Plasma generation unit, plasma generation device, and sterilization system

Country Status (2)

Country Link
JP (1) JP2022190472A (en)
WO (1) WO2022265006A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230042251A1 (en) * 2021-08-09 2023-02-09 TellaPure, LLC Methods and apparatus for generating atmospheric pressure, low temperature plasma background

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000252098A (en) * 1999-03-02 2000-09-14 Kitamura Masahiro Non-equilibrium plasma generator
KR20060017191A (en) * 2004-08-20 2006-02-23 연세대학교 산학협력단 An air cleaner
JP2018130208A (en) * 2017-02-14 2018-08-23 日本特殊陶業株式会社 air purifier
JP2019155006A (en) * 2018-03-16 2019-09-19 株式会社東芝 Gas treatment equipment
US20200396819A1 (en) * 2019-06-14 2020-12-17 NanoGuard Technologies, LLC Electrode assembly, dielectric barrier discharge system and use thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000252098A (en) * 1999-03-02 2000-09-14 Kitamura Masahiro Non-equilibrium plasma generator
KR20060017191A (en) * 2004-08-20 2006-02-23 연세대학교 산학협력단 An air cleaner
JP2018130208A (en) * 2017-02-14 2018-08-23 日本特殊陶業株式会社 air purifier
JP2019155006A (en) * 2018-03-16 2019-09-19 株式会社東芝 Gas treatment equipment
US20200396819A1 (en) * 2019-06-14 2020-12-17 NanoGuard Technologies, LLC Electrode assembly, dielectric barrier discharge system and use thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230042251A1 (en) * 2021-08-09 2023-02-09 TellaPure, LLC Methods and apparatus for generating atmospheric pressure, low temperature plasma background

Also Published As

Publication number Publication date
JP2022190472A (en) 2022-12-26

Similar Documents

Publication Publication Date Title
KR101632158B1 (en) Sterilizer for vehicle or room with plasma
GB2529173A (en) Flexible electrode assembly for plasma generation and air ducting system including the electrode assembly
US10925144B2 (en) Electrode assembly, dielectric barrier discharge system and use thereof
JP2006034957A (en) Sterilizing method, sterilizing apparatus, and ion generator, electric equipment and air purification device using the same
WO2022265006A1 (en) Plasma generation unit, plasma generation device, and sterilization system
JP2008289801A (en) Gas purification device
KR100518387B1 (en) Negative ion operating device for ac
JP2018130208A (en) air purifier
US11821655B2 (en) Air treatment system, method and apparatus
KR102045122B1 (en) Plasma Emitting Diode Devices
KR102015884B1 (en) humidifier comprising plasma generator
US20230292427A1 (en) Methods and apparatus for generating atmospheric pressure, low temperature plasma
KR20220099702A (en) Air cleaning device using atmospheric-pressure plasma
KR200494795Y1 (en) Plasma Virus-Cleaner
WO2023282089A1 (en) Carbon dioxide treatment system and carbon dioxide treatment method
KR101647480B1 (en) Atomospheric pressure plasma processing apparatus for removing high concentrated hydrogen peroxide
KR20220056216A (en) Device and method for ozone free separation of components in corona discharge zone
WO2022265007A1 (en) Plasma generation unit, plasma generation device, and sterilization system
CA2502382A1 (en) Apparatus and method for the treatment of odor and volatile organic compound contaminants in air emissions
JP2005319346A (en) Purifying method and purifier
KR20190128127A (en) Plasma Emitting Diode Devices
RU2398598C2 (en) Application of non-equilibrium low-temperature plasma jet for sterilisation of thermolabile materials
US20230414811A1 (en) Liquid processing apparatus with atmospheric, low-temperature plasma activation
KR20110004357U (en) Sterilizing device with wall outlet direct-connecting type plug
US20220125971A1 (en) Gliding arc discharge sterilization of surfaces, objects, and ambient air

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22824994

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22824994

Country of ref document: EP

Kind code of ref document: A1