WO2022264919A1 - Compound, molded object, and cured compound - Google Patents

Compound, molded object, and cured compound Download PDF

Info

Publication number
WO2022264919A1
WO2022264919A1 PCT/JP2022/023310 JP2022023310W WO2022264919A1 WO 2022264919 A1 WO2022264919 A1 WO 2022264919A1 JP 2022023310 W JP2022023310 W JP 2022023310W WO 2022264919 A1 WO2022264919 A1 WO 2022264919A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
magnetic powder
resin composition
resin
curing
Prior art date
Application number
PCT/JP2022/023310
Other languages
French (fr)
Japanese (ja)
Inventor
貴一 稲葉
翔平 山口
大樹 園川
由則 遠藤
Original Assignee
昭和電工マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社 filed Critical 昭和電工マテリアルズ株式会社
Priority to JP2023529833A priority Critical patent/JPWO2022264919A1/ja
Priority to CN202280024658.9A priority patent/CN117121134A/en
Publication of WO2022264919A1 publication Critical patent/WO2022264919A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/28Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder dispersed or suspended in a bonding agent

Definitions

  • the present invention relates to a compound, a molded article, and a cured product of the compound.
  • Compounds containing metal powders and resin compositions are used as raw materials for various industrial products, depending on the physical properties of the metal powders.
  • compounds are used as raw materials for inductors, sealing materials, electromagnetic wave shields (EMI shields), bond magnets, and the like (see Patent Document 1 below).
  • a compact is produced by bringing the compound and metal members into close contact and curing the compound.
  • the molded body is required to have excellent mechanical properties (strength at high temperature, strength after humidity resistance test) from the viewpoint of improving reliability.
  • a compound when used as a sealing material, it may be required to reduce the warpage of a compact formed from the compound.
  • An object of the present invention is to provide a compound capable of forming a molded article having excellent mechanical properties and reduced warpage, a molded article using the compound, and a cured product of the compound.
  • a compound according to one aspect of the present invention includes a resin composition containing an epoxy resin and a curing agent, a non-magnetic powder, and a magnetic powder. It is 98% by mass and has a minimum melt viscosity of 10 to 220 Pa ⁇ s at 175°C.
  • a molded article according to one aspect of the present invention includes the above compound.
  • a cured product according to one aspect of the present invention is a cured product of the above compound.
  • a compound capable of forming a molded article having excellent mechanical properties and reduced warpage, a molded article using the compound, and a cured product of the compound.
  • a numerical range indicated using "-" indicates a range that includes the numerical values before and after "-" as the minimum and maximum values, respectively.
  • the upper limit value or lower limit value of the numerical range at one step may be replaced with the upper limit value or lower limit value of the numerical range at another step.
  • the upper and lower limits of the numerical ranges may be replaced with the values shown in the examples.
  • One aspect of the present disclosure relates to the following compound, molded article, and cured product of the compound.
  • the compound according to this embodiment includes a resin composition, non-magnetic powder, and magnetic powder.
  • the resin composition contains at least an epoxy resin and a curing agent. In the compound, non-magnetic powder, magnetic powder and resin composition are mixed.
  • the resin composition may further contain coupling agents, curing accelerators, release agents, additives, etc. as other components.
  • the resin composition is a component that can include an epoxy resin, a curing agent, a coupling agent, a curing accelerator, a release agent, and additives, and the remaining components excluding the organic solvent and the non-magnetic and magnetic powders. (non-volatile component).
  • Additives are components of the resin composition other than the resin, release agent, curing agent, curing accelerator, and coupling agent. Additives are, for example, flame retardants, lubricants, and the like.
  • the compound may be a powder (compound powder).
  • the compound may comprise nonmagnetic powder, magnetic powder, and a resin composition adhered to the surface of each magnetic particle that constitutes the magnetic powder.
  • the resin composition may cover the entire surface of the magnetic particles, or may cover only a portion of the surfaces of the magnetic particles.
  • the compound may comprise an uncured resin composition, non-magnetic powder and magnetic powder.
  • the compound may comprise a semi-cured resin composition (for example, a B-stage resin composition), a non-magnetic powder, and a magnetic powder.
  • the compound may comprise both an uncured resin composition and a semi-cured resin composition.
  • the compound may consist of non-magnetic powder, magnetic powder, and a resin composition.
  • the compound according to this embodiment has a minimum melt viscosity of 10 to 220 Pa ⁇ s at 175°C.
  • the minimum melt viscosity of the compound may be 15 Pa s or more, 20 Pa s or more, or 25 Pa s or more from the viewpoint of reducing burrs in the molded product, and 210 Pa s from the viewpoint of improving fluidity during molding. ⁇ s or less, 200 Pa ⁇ s or less, or 190 Pa ⁇ s or less.
  • the content of the magnetic powder in the compound is 94-98% by mass based on the total amount of the compound.
  • the content of the magnetic powder in the compound is preferably 94.5% by mass or more, more preferably 94.8% by mass or more, and even more preferably 95.0% by mass or more.
  • the upper limit of the magnetic powder content may be 97.8% by mass or less, 97.5% by mass or less, or 97.0% by mass or less from the viewpoint of the fluidity of the compound.
  • Magnetic powder is magnetic particles with magnetism.
  • the magnetic powder may contain, for example, at least one selected from the group consisting of simple metals, alloys and metal compounds.
  • the magnetic powder may consist of, for example, at least one selected from the group consisting of simple metals, alloys and metal compounds.
  • the alloy may contain at least one selected from the group consisting of solid solutions, eutectics and intermetallic compounds.
  • the alloy may be, for example, stainless steel (Fe--Cr alloy, Fe--Ni--Cr alloy, etc.).
  • the metal compound may be, for example, an oxide such as ferrite.
  • the magnetic powder may contain one type of metal element or multiple types of metal elements.
  • the metal elements contained in the magnetic powder may be, for example, base metal elements, noble metal elements, transition metal elements, or rare earth elements.
  • the compound may contain one type of magnetic powder, or may contain multiple types of magnetic powders with different compositions.
  • Metal elements contained in the magnetic powder include, for example, iron (Fe), copper (Cu), titanium (Ti), manganese (Mn), cobalt (Co), nickel (Ni), zinc (Zn), and aluminum (Al). , Tin (Sn), Chromium (Cr), Niobium (Nb), Barium (Ba), Strontium (Sr), Lead (Pb), Silver (Ag), Praseodymium (Pr), Neodymium (Nd), Samarium (Sm) , and dysprosium (Dy).
  • the magnetic powder may further contain elements other than metal elements. Magnetic powders may include, for example, carbon (C), oxygen (O), beryllium (Be), phosphorus (P), sulfur (S), boron (B), or silicon (Si).
  • the magnetic powder may be a soft magnetic alloy or a ferromagnetic alloy.
  • Magnetic powders include, for example, Fe—Si alloys, Fe—Si—Al alloys (sendust), Fe—Ni alloys (permalloy), Fe—Cu—Ni alloys (permalloy), Fe—Co alloys (permalloy). Mendur), Fe-Cr-Si alloy (electromagnetic stainless steel), Nd-Fe-B alloy (rare earth magnet), Sm-Fe-N alloy (rare earth magnet), Al-Ni-Co alloy (alnico magnet), and at least one selected from the group consisting of ferrite.
  • Ferrites may be, for example, spinel ferrites, hexagonal ferrites, or garnet ferrites.
  • the magnetic powder may be a Cu--Sn alloy, a Cu--Sn--P alloy, a Cu--Ni alloy, or a copper alloy such as a Cu--Be alloy.
  • the magnetic powder may be Fe alone.
  • the magnetic powder may be an alloy containing iron (Fe-based alloy).
  • the Fe-based alloy may be, for example, an Fe--Si--Cr-based alloy or an Nd--Fe--B based alloy.
  • the magnetic powder may be at least one of amorphous iron powder and carbonyl iron powder. When the magnetic powder contains at least one of elemental Fe and an Fe-based alloy, it is easy to produce a compact having a high space factor and excellent magnetic properties from the compound.
  • the magnetic powder may be Fe amorphous alloy.
  • Fe amorphous alloy powders include, for example, AW2-08, KUAMET 6B2, KUAMET 9A4-II (the above are trade names manufactured by Epson Atmix Corporation), DAP MS3, DAP MS7, DAP MSA10, DAP PB, and DAP. Consists of PC, DAP MKV49, DAP 410L, DAP 430L, DAP HYB series (all product names manufactured by Daido Steel Co., Ltd.), MH45D, MH28D, MH25D, and MH20D (product names manufactured by Kobe Steel, Ltd.) At least one selected from the group may be used.
  • the iron content in the iron-containing magnetic powder may be 80% by mass or more, 83 to 99% by mass, or 84 to 97% by mass. %, 85-95% by weight, or 87-93% by weight.
  • the compound can be more suitably used as a raw material for inductors, sealing materials, electromagnetic wave shields (EMI shields), bond magnets, and the like.
  • the shape of the individual metal particles that make up the magnetic powder is not limited, but may be spherical, flat, prismatic, or acicular, for example.
  • the average particle size of the magnetic powder is not particularly limited, but may be, for example, 0.1 ⁇ m or more, 0.5 ⁇ m or more, or 1.0 ⁇ m or more, and may be 100 ⁇ m or less, 80 ⁇ m or less, or 50 ⁇ m or less.
  • the average particle size can be measured, for example, with a particle size distribution meter.
  • the compound may comprise multiple types of magnetic powders with different average particle sizes.
  • the magnetic powder may contain first magnetic powder having an average particle size of 11 to 45 ⁇ m and second magnetic powder having an average particle size of 0.1 to 9 ⁇ m. preferable.
  • the average particle size of the first magnetic powder may be 15-40 ⁇ m, 18-35 ⁇ m, or 20-30 ⁇ m.
  • the average particle size of the second magnetic powder may be 0.5-6 ⁇ m, 0.8-5 ⁇ m, or 1.0-4 ⁇ m.
  • Non-magnetic powders are non-magnetic particles that do not have magnetism.
  • the addition of non-magnetic powder makes it difficult for the magnetic powder and the resin component to separate, thereby improving the moldability of the compound.
  • the non-magnetic powder may contain metallic elements or may contain no metallic elements.
  • Non-magnetic powder Materials constituting the non-magnetic powder include, for example, oxide-based ceramic materials such as silica, alumina, zirconia, titania, magnesia, and calcia; nitride-based ceramic materials such as silicon nitride and aluminum nitride; and silicon carbide, boron carbide, and the like. of carbide-based ceramic materials.
  • oxide-based ceramic materials such as silica, alumina, zirconia, titania, magnesia, and calcia
  • nitride-based ceramic materials such as silicon nitride and aluminum nitride
  • silicon carbide boron carbide, and the like.
  • the non-magnetic powder preferably contains silica from the viewpoint of reducing warpage of the compact.
  • the average particle diameter of the non-magnetic powder according to the present embodiment is preferably 0.3 to 20 ⁇ m, more preferably 0.4 to 15 ⁇ m, more preferably 0.5 ⁇ m, from the viewpoint of reducing warpage of the compact. It is even more preferred to be ⁇ 12 ⁇ m.
  • the average particle size of the non-magnetic powder may be 10 ⁇ m or less, 8 ⁇ m or less, or 4 ⁇ m or less from the viewpoint of reducing burrs.
  • the content of the non-magnetic powder is preferably 0.10 to 1.50% by mass based on the total amount of the compound from the viewpoint of reducing the thermal expansion coefficient of the molded body, and from the viewpoint of reducing warpage of the molded body. , 0.12% by mass or more, 0.14% by mass or more, or 0.20% by mass or more, and from the viewpoint of improving the fluidity of the compound, 1.40% by mass or less, 1.20% by mass or less, or 1.10% by mass or less.
  • the resin composition functions as a binding material (binder) for the magnetic particles that make up the magnetic powder, and imparts mechanical strength to the compact formed from the compound.
  • the resin composition contained in the compound is filled between the magnetic particles and binds the particles together when the compound is molded at high pressure using a mold. By curing the resin composition in the molded article, the cured resin composition more strongly binds the magnetic particles together, improving the mechanical strength of the molded article.
  • the resin composition according to this embodiment can improve the fluidity of the compound by containing an epoxy resin as a thermosetting resin.
  • the epoxy resin may be, for example, a resin having two or more epoxy groups in one molecule.
  • the type of epoxy resin is not particularly limited, and can be selected according to the desired properties of the resin composition.
  • epoxy resins examples include biphenyl-type epoxy resins, stilbene-type epoxy resins, diphenylmethane-type epoxy resins, sulfur atom-containing epoxy resins, novolak-type epoxy resins, dicyclopentadiene-type epoxy resins, salicylaldehyde-type epoxy resins, naphthols and phenols.
  • Copolymerized epoxy resins epoxidized aralkyl-type phenolic resins, bisphenol-type epoxy resins, epoxy resins containing a bisphenol skeleton, glycidyl ether-type epoxy resins of alcohols, glycidyl ethers of para-xylylene and/or meta-xylylene-modified phenolic resins type epoxy resin, terpene-modified phenol resin glycidyl ether type epoxy resin, cyclopentadiene type epoxy resin, polycyclic aromatic ring-modified phenol resin glycidyl ether type epoxy resin, naphthalene ring-containing phenol resin glycidyl ether type epoxy resin, glycidyl ester type Epoxy resins, glycidyl-type or methylglycidyl-type epoxy resins, alicyclic-type epoxy resins, halogenated phenol novolac-type epoxy resins, ortho-cresol novolak-type epoxy
  • epoxy resins include biphenyl-type epoxy resins, ortho-cresol novolac-type epoxy resins, phenol novolac-type epoxy resins, bisphenol-type epoxy resins, epoxy resins having a bisphenol skeleton, salicylaldehyde novolac-type epoxy resins, and naphthol novolak-type epoxy resins. It may contain at least one selected from the group consisting of type epoxy resins.
  • the epoxy resin may contain at least one selected from the group consisting of biphenylene aralkyl-type epoxy resins and ortho-cresol novolac-type epoxy resins.
  • the epoxy resin may be a crystalline epoxy resin. Although the molecular weight of the crystalline epoxy resin is relatively low, the crystalline epoxy resin has a relatively high melting point and excellent fluidity.
  • the crystalline epoxy resin (highly crystalline epoxy resin) may contain, for example, at least one selected from the group consisting of hydroquinone-type epoxy resins, bisphenol-type epoxy resins, thioether-type epoxy resins, and biphenyl-type epoxy resins. .
  • crystalline epoxy resins include, for example, Epiclon 860, Epiclon 1050, Epiclon 1055, Epiclon 2050, Epiclon 3050, Epiclon 4050, Epiclon 7050, Epiclon HM-091, Epiclon HM-101, Epiclon N-730A, and Epiclon.
  • N-740 Epiclon N-770, Epiclon N-775, Epiclon N-865, Epiclon HP-4032D, Epiclon HP-7200L, Epiclon HP-7200, Epiclon HP-7200H, Epiclon HP-7200HH, Epiclon HP-7200HHH, Epiclon HP-4700, Epiclon HP-4710, Epiclon HP-4770, Epiclon HP-5000, Epiclon HP-6000, N500P-2, and N500P-10 (these are trade names manufactured by DIC Corporation); NC-3000, NC- 3000-L, NC-3000-H, NC-3100, CER-3000-L, NC-2000-L, XD-1000, NC-7000-L, NC-7300-L, EPPN-501H, EPPN-501HY, EPPN-502H, EOCN-1020, EOCN-102S, EOCN-103S, EOCN-104S, CER-1020, EPPN-201, BREN-S, and BREN-10S (trade names manufactured by Nippon Kay
  • the resin composition may contain one of the above epoxy resins.
  • the resin composition may contain more than one of the above epoxy resins.
  • the resin composition may contain an epoxy resin containing a biphenyl skeleton, an ortho-cresol novolak-type epoxy resin, or a polyfunctional epoxy resin containing two or more epoxy groups.
  • Curing agents are classified into curing agents that cure epoxy resins in the range from low temperature to room temperature, and heat curing type curing agents that cure epoxy resins when heated.
  • Curing agents that cure epoxy resins in the low to room temperature range include, for example, aliphatic polyamines, polyaminoamides, and polymercaptans.
  • Heat-curable curing agents include, for example, aromatic polyamines, acid anhydrides, phenol novolac resins, and dicyandiamide (DICY).
  • the type of curing agent is not particularly limited, and can be selected depending on the desired properties of the composition.
  • the curing agent may preferably be a heat-curable curing agent, more preferably a phenol resin, and still more preferably a phenol novolak resin.
  • a phenol novolac resin as a curing agent, it is easy to obtain a cured product of an epoxy resin having a high glass transition point. As a result, it becomes easier to improve the heat resistance and mechanical strength of the molded article.
  • Phenolic resins include, for example, aralkyl-type phenol resins, dicyclopentadiene-type phenol resins, salicylaldehyde-type phenol resins, novolac-type phenol resins, copolymer-type phenol resins of benzaldehyde-type phenol and aralkyl-type phenol, para-xylylene and/or meta-xylylene-modified from the group consisting of phenolic resins, melamine-modified phenolic resins, terpene-modified phenolic resins, dicyclopentadiene-type naphthol resins, cyclopentadiene-modified phenolic resins, polycyclic aromatic ring-modified phenolic resins, biphenyl-type phenolic resins, and triphenylmethane-type phenolic resins At least one selected may be included.
  • the phenolic resin may be a copolymer composed of two or more of the above.
  • examples of commercially available phenolic resins include Tamanol 758 manufactured by Arakawa Chemical Industries, Ltd., HP-850N manufactured by Showa Denko Materials Co., Ltd., and the like.
  • the phenol novolak resin may be a resin obtained by, for example, condensation or co-condensation of phenols and/or naphthols and aldehydes in the presence of an acidic catalyst.
  • Phenols constituting the phenolic novolak resin may include, for example, at least one selected from the group consisting of phenol, cresol, xylenol, resorcinol, catechol, bisphenol A, bisphenol F, phenylphenol, and aminophenol.
  • the naphthols constituting the phenol novolak resin may contain, for example, at least one selected from the group consisting of ⁇ -naphthol, ⁇ -naphthol and dihydroxynaphthalene.
  • the aldehydes constituting the phenol novolak resin may contain at least one selected from the group consisting of formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde, and salicylaldehyde, for example.
  • the curing agent may be, for example, a compound having two phenolic hydroxyl groups in one molecule.
  • the compound having two phenolic hydroxyl groups in one molecule may contain, for example, at least one selected from the group consisting of resorcin, catechol, bisphenol A, bisphenol F, and substituted or unsubstituted biphenol.
  • the resin composition may contain one of the above phenolic resins.
  • the resin composition may comprise a plurality of types of phenolic resins among the above.
  • the resin composition may contain one of the curing agents described above.
  • the resin composition may contain a plurality of types of curing agents among those described above.
  • the ratio of the active group (phenolic OH group) in the curing agent that reacts with the epoxy group in the epoxy resin is preferably 0.5 to 1.5 equivalents, or more, with respect to 1 equivalent of epoxy groups in the epoxy resin. It may be preferably 0.6 to 1.4 equivalents, more preferably 0.7 to 1.2 equivalents. If the ratio of active groups in the curing agent is less than 0.5 equivalents, it is difficult to obtain a cured product with a sufficient elastic modulus. On the other hand, if the ratio of the active groups in the curing agent exceeds 1.5 equivalents, the molded article formed from the compound tends to have reduced mechanical strength after curing. However, even if the ratio of active groups in the curing agent is outside the above range, the effects of the present invention can be obtained.
  • the resin composition may further contain a curing accelerator (catalyst) in order to improve moldability and releasability of the compound.
  • a curing accelerator catalyst
  • the curing accelerator is not particularly limited as long as it is a composition that reacts with the epoxy resin to accelerate curing of the epoxy resin.
  • the curing accelerator may be, for example, a phosphorus curing accelerator, an imidazole curing accelerator, or a urea curing accelerator.
  • Phosphorus-based curing accelerators include, for example, phosphine compounds and phosphonium salt compounds.
  • imidazole curing accelerators include, for example, 2MZ-H, C11Z, C17Z, 1,2DMZ, 2E4MZ, 2PZ-PW, 2P4MZ, 1B2MZ, 1B2PZ, 2MZ-CN, C11Z-CN, 2E4MZ-CN, 2PZ -CN, C11Z-CNS, 2P4MHZ, TPZ, and SFZ (the above are trade names manufactured by Shikoku Kasei Co., Ltd.).
  • the urea-based curing accelerator is not particularly limited as long as it is a curing accelerator having a urea group, but from the viewpoint of improving storage stability, it is preferably an alkylurea-based curing accelerator having an alkylurea group.
  • Alkyl urea-based curing accelerators having an alkyl urea group include, for example, aromatic alkyl ureas and aliphatic alkyl ureas.
  • Commercially available alkyl urea curing accelerators include, for example, U-CAT3512T (trade name, manufactured by San-Apro Co., Ltd., aromatic dimethyl urea) and U-CAT3513N (trade name, manufactured by San-Apro Co., Ltd., aliphatic dimethyl urea). mentioned.
  • aromatic alkyl ureas are preferred because they have a moderately low cleavage temperature and facilitate efficient curing of compounds.
  • the amount of the curing accelerator is not particularly limited as long as the curing acceleration effect is obtained. From the viewpoint of improving the curability and fluidity of the resin composition when it absorbs moisture, the amount of the curing accelerator is 0.1 parts by mass or more and 20 parts by mass or less and 1 part by mass with respect to 100 parts by mass of the epoxy resin. 15 parts by mass or less, or 2 parts by mass or more and 10 parts by mass or less. When the amount of the curing accelerator is 0.1 parts by mass or more, a sufficient curing acceleration effect is likely to be obtained. When the amount of the curing accelerator is 20 parts by mass or less, the storage stability of the compound is less likely to deteriorate.
  • the resin composition may further contain a coupling agent.
  • the coupling agent improves the adhesion between the resin composition and the metal element-containing particles that make up the magnetic powder, and improves the flexibility and mechanical strength of the compact (inductor, etc.) formed from the compound. can be done.
  • the coupling agent may be, for example, at least one selected from the group consisting of silane-based compounds (silane coupling agents), titanium-based compounds, aluminum compounds (aluminum chelates), and aluminum/zirconium-based compounds.
  • the silane coupling agent is, for example, selected from the group consisting of epoxysilane compounds, mercaptosilane compounds, aminosilane compounds, alkylsilane compounds, acrylsilane compounds, methacrylsilane compounds, ureidosilane compounds, acid anhydride-based silane compounds, and vinylsilane compounds. may be at least one of the The compound may comprise one of the above coupling agents, or may comprise more than one of the above coupling agents.
  • the content of the coupling agent in the compound according to the present embodiment is preferably 0.05 to 0.70% by mass, more preferably 0.10 to 0.60% by mass, and still more preferably, based on the total mass of the compound. may be 0.12 to 0.50 mass %.
  • the content of the coupling agent is at least the above lower limit, the flexibility and mechanical strength of the molded article are likely to be improved.
  • the content of the coupling agent is equal to or less than the above upper limit, blocking of the compound is less likely to occur. However, even if the content of the coupling agent is outside the above range, the effects of the present invention can be obtained.
  • the resin composition may contain a compound having a siloxane bond (siloxane compound) as an additive because the mold shrinkage rate of the compound is easily reduced and the heat resistance and voltage resistance of the molded product are easily improved.
  • siloxane bond is a bond containing two silicon atoms (Si) and one oxygen atom (O) and may be represented by -Si-O-Si-.
  • a compound having a siloxane bond may be a polysiloxane compound.
  • the resin composition may contain wax.
  • Wax enhances the fluidity of the compound in compound molding (for example, transfer molding) and functions as a release agent.
  • the wax may be at least one of fatty acids such as higher fatty acids and fatty acid esters.
  • Waxes include fatty acids such as montanic acid, stearic acid, 12-oxystearic acid and lauric acid, or esters thereof; zinc stearate, calcium stearate, barium stearate, aluminum stearate, magnesium stearate, calcium laurate, Fatty acid salts such as zinc linoleate, calcium ricinoleate, and zinc 2-ethylhexoate; Acid amide, ethylenebisstearic acid amide, ethylenebislauric acid amide, distearyl adipic acid amide, ethylene bis oleic acid amide, dioleyl adipic acid amide, N-stearyl stearic acid amide, N-oleyl stearic acid amide, N-stearyl Fatty acid amides such as erucic acid amide, methylol stearic acid amide and methylol behenic acid amide; fatty acid esters such as butyl stearate; alcohols
  • the compound may contain a flame retardant for the environmental safety, recyclability, moldability, and low cost of the compound.
  • Flame retardants are selected from the group consisting of, for example, brominated flame retardants, phosphorus flame retardants, hydrated metal compound flame retardants, silicone flame retardants, nitrogen-containing compounds, hindered amine compounds, organometallic compounds, and aromatic engineering plastics. At least one type may be used.
  • the resin composition may contain one flame retardant among the above, and may contain a plurality of flame retardants among the above.
  • the non-magnetic powder, magnetic powder, and resin composition are mixed while being heated.
  • the nonmagnetic powder, the magnetic powder, and the resin composition may be kneaded with a kneader, rolls, stirrer, or the like while being heated.
  • the resin composition adheres to a part or the entire surface of the metal element-containing particles constituting the magnetic powder, coating the metal element-containing particles, and forming the resin composition.
  • Part or all of the epoxy resin in the product becomes a semi-cured product.
  • a compound may be obtained by further adding wax to the powder obtained by heating and mixing the non-magnetic powder, the magnetic powder and the resin composition.
  • the resin composition and wax may be mixed in advance.
  • non-magnetic powder, magnetic powder, epoxy resin, curing agent, curing accelerator, and coupling agent may be kneaded in a tank.
  • the non-magnetic powder, the magnetic powder and the coupling agent are put into the tank and mixed, the epoxy resin, the curing agent and the curing accelerator may be put into the tank and the raw materials in the tank are kneaded.
  • the curing accelerator may be put in the tank and the raw materials in the tank may be further kneaded.
  • Mixed powder (resin mixed powder) of epoxy resin, curing agent, and curing accelerator is prepared in advance, non-magnetic powder, magnetic powder and coupling agent are kneaded to prepare metal mixed powder, followed by metal mixing.
  • the powder and resin mixed powder may be kneaded.
  • the kneading time depends on the type of kneading machine, the volume of the kneading machine, and the production amount of the compound, but for example, it is preferably 1 minute or more, more preferably 2 minutes or more, and 3 minutes or more. is more preferred.
  • the kneading time is preferably 20 minutes or less, more preferably 15 minutes or less, and even more preferably 10 minutes or less. If the kneading time is less than 1 minute, the kneading is insufficient, the moldability of the compound is impaired, and the degree of cure of the compound varies. If the kneading time exceeds 20 minutes, for example, the curing of the resin composition (for example, epoxy resin and phenol resin) proceeds in the tank, and the fluidity and moldability of the compound are likely to be impaired.
  • the resin composition for example, epoxy resin and phenol resin
  • the heating temperature is, for example, such that a semi-cured epoxy resin (B-stage epoxy resin) is produced and a cured epoxy resin (C-stage epoxy resin) is produced. Any temperature can be used as long as the temperature suppresses the generation of
  • the heating temperature may be a temperature lower than the activation temperature of the curing accelerator.
  • the heating temperature is, for example, preferably 50° C. or higher, more preferably 60° C. or higher, and even more preferably 70° C. or higher.
  • the heating temperature is preferably 150° C. or lower, more preferably 120° C. or lower, and even more preferably 110° C. or lower.
  • the resin composition in the tank softens and easily coats the surface of the metal element-containing particles that constitute the magnetic powder, and the semi-cured epoxy resin is likely to form, and during kneading complete hardening of the epoxy resin is likely to be inhibited.
  • the molded article according to this embodiment can contain the compound described above.
  • a molded article according to the embodiment may contain a cured product of the above compound.
  • the molded article is at least one selected from the group consisting of an uncured resin composition, a semi-cured resin composition (B-stage resin composition), and a cured resin composition (C-stage resin composition).
  • B-stage resin composition semi-cured resin composition
  • C-stage resin composition cured resin composition
  • the molded article according to this embodiment may be used as a sealing material for electronic components or electronic circuit boards. According to the present embodiment, it is possible to suppress cracks in the molded body due to the difference in coefficient of thermal expansion between the metal member included in the electronic component or electronic circuit board and the molded body (sealing material).
  • the cured product of the compound is a cured product of non-magnetic powder, magnetic powder, and resin composition.
  • the bending strength at 250° C. of the cured product may be 5.0 MPa or higher, 5.5 MPa or higher, or 5.8 MPa or higher from the viewpoint of increasing the strength of the cured product.
  • the upper limit of bending strength at 250° C. is about 10 MPa.
  • the bending strength of the cured product at room temperature may be 90 MPa or higher, 95 MPa or higher, or 100 MPa or higher.
  • the upper limit of bending strength at room temperature is about 200 MPa.
  • the cured product of the compound according to this embodiment has excellent mechanical properties even after absorbing moisture in a high-temperature and high-humidity environment.
  • the flexural strength at room temperature of the cured product after treatment in an environment of 121° C. and 100% (saturation) for 20 hours may be 48 MPa or higher, 50 MPa or higher, or 52 MPa or higher.
  • the method for manufacturing a molded body according to this embodiment may include a step of pressing the compound in a mold.
  • the method of manufacturing a molded body may include a step of pressing a compound covering part or all of the surface of the metal member in a mold.
  • the method for producing a molded article may include only the step of pressing the compound in the mold, or may include other steps in addition to this step.
  • the method for manufacturing a molded article may comprise a first step, a second step and a third step. Details of each step are described below.
  • a compound is made by the above method.
  • the compound is pressurized in a mold to obtain a molded body (B-stage molded body).
  • a molded body (B-stage molded body) may be obtained by pressing a compound covering part or all of the surface of the metal member in a mold.
  • the resin composition is filled between individual metal element-containing particles that constitute the magnetic powder.
  • the resin composition functions as a binding material (binder) and binds the magnetic particles together.
  • compound transfer molding may be performed.
  • the compound may be pressurized at 5 MPa or more and 50 MPa or less.
  • the molding pressure is preferably 8 MPa or more and 20 MPa or less.
  • the density of the compact formed by transfer molding may be preferably 75% or more and 86% or less, more preferably 80% or more and 86% or less, relative to the true density of the compound.
  • the density of the molded body is 75% or more and 86% or less, it is easy to obtain a molded body having excellent mechanical strength.
  • Transfer molding WHEREIN You may implement a 2nd process and a 3rd process collectively.
  • the heat treatment temperature may be any temperature at which the resin composition in the molded article is sufficiently cured.
  • the temperature of the heat treatment may be preferably 100° C. or higher and 300° C. or lower, more preferably 110° C. or higher and 250° C. or lower.
  • the heat treatment temperature it is preferable to perform the heat treatment in an inert atmosphere. If the heat treatment temperature exceeds 300° C., the trace amount of oxygen inevitably contained in the heat treatment atmosphere may oxidize the magnetic powder or deteriorate the cured resin.
  • the holding time at the heat treatment temperature is preferably several minutes to 10 hours, more preferably 3 minutes or more. It can be less than an hour.
  • Second epoxy resin polyfunctional epoxy resin, trade name manufactured by Printec Co., Ltd.: TECHMORE VG-3101L, epoxy equivalent: 215 g/eq
  • Curing agent phenol novolak resin, product name manufactured by Meiwa Kasei Co., Ltd.: HF-3M
  • Curing accelerator aromatic dimethyl urea, product name manufactured by San-Apro Co., Ltd.: U-CAT3512T
  • Coupling agent methacryloxyoctyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd., trade name: KBM-5803
  • Release agent partially saponified montan acid ester wax, product name: LICOWAX-OP manufactured by Clariant Chemicals Co., Ltd.
  • Non-magnetic powder Non-magnetic powder 1 (silica, product name: SO-25R manufactured by Admax Co., Ltd., average particle size: 0.6 ⁇ m)
  • Non-magnetic powder 2 (silica, product name: SE-2200SEJ manufactured by Admax Co., Ltd., average particle size: 0.6 ⁇ m)
  • Non-magnetic powder 3 (silica, product name: SO-27R manufactured by Admax Co., Ltd., average particle size: 0.7 ⁇ m)
  • Non-magnetic powder 5 (silica, product name: FB-5SDX manufactured by Denka Co., Ltd., average particle size: 5 ⁇ m)
  • Non-magnetic powder 6 (silica, product name: FB-304 manufactured by Denka Co., Ltd., average particle size: 10 ⁇ m)
  • Non-magnetic powder 7 (silica
  • First magnetic powder amorphous iron powder, trade name: 9A4-II manufactured by Epson Atmix Corporation, average particle size: 24 ⁇ m
  • Second magnetic powder FeSiCr alloy powder, Sintokogyo Co., Ltd., average particle size: 2.1 ⁇ m
  • Non-magnetic powder and magnetic powder in the compounding amounts (unit: g) shown in Table 1 were mixed for 5 minutes in a pressurized twin-screw kneader (manufactured by Nihon Spindle Mfg. Co., Ltd., capacity 5 L), and then the coupling agent shown in Table 1 was mixed. was added into a twin screw kneader. Subsequently, the contents of the twin-screw kneader were heated to 90° C., and the contents of the twin-screw kneader were mixed for 10 minutes while maintaining the temperature.
  • a pressurized twin-screw kneader manufactured by Nihon Spindle Mfg. Co., Ltd., capacity 5 L
  • the above resin mixture was added to the contents of the twin-screw kneader, and the contents were melted and kneaded for 15 minutes while maintaining the temperature of the contents at 120°C.
  • the kneaded material was pulverized with a hammer until the kneaded material had a predetermined particle size.
  • the above-mentioned "melting” means melting of at least a part of the resin composition in the contents of the twin-screw kneader.
  • the non-magnetic and magnetic powders in the compound do not melt during the compound preparation process.
  • Table 1 shows the content of the magnetic powder and the content of the non-magnetic powder based on the total amount of the compound.
  • Comparative Examples 1 and 2 A compound of Comparative Example was prepared in the same manner as in Example except that the type and blending amount of each component were changed as shown in Table 2.
  • melt viscosity As a measuring device, CFT-100 (flow tester) manufactured by Shimadzu Corporation was used. As a measurement sample, a cylindrical tablet with a diameter of 10 mm was produced from 7 g of the compound. Using a tablet, the minimum melt viscosity of the compound at 175°C was measured under the conditions of 175°C, preheating for 10 seconds, and a load of 10 kg.
  • the compound was molded using a mold having a plurality of 5 ⁇ m slits under conditions of molding temperature of 175° C., molding pressure of 6.9 MPa, and curing time of 120 seconds.
  • the maximum distance (mm) over which the compound flowed into each slit was measured as the burr length.
  • the compound was transfer molded under the conditions of a molding temperature of 175 ° C., a molding pressure of 13.5 MPa, and a curing time of 360 seconds. A specimen was obtained.
  • Bending strength ⁇ (unit: MPa) was calculated based on the following formula (A).
  • P is the load (unit: N) when the test piece is destroyed
  • Lv is the distance between the two fulcrums (unit: mm)
  • W is It is the width (unit: mm) of the test piece
  • t is the thickness (unit: mm) of the test piece.
  • a moisture resistance test was performed by treating the test piece for 20 hours in an environment with a temperature of 121°C and a humidity of 100% (saturation). Using the test piece after the moisture resistance test, the same bending test as above was performed to measure the bending strength at room temperature.
  • thermo expansion coefficient The compound was transfer molded under the conditions of a molding temperature of 175 ° C., a molding pressure of 13.5 MPa, and a curing time of 360 seconds. A specimen was obtained.
  • the coefficient of thermal expansion of the test piece was measured using a thermomechanical analyzer manufactured by Rigaku Denki Co., Ltd. (trade name: TMA8140). The measurement was performed at a heating rate of 5° C./min in the range of 25 to 250° C., and the coefficient of thermal expansion before and after the glass transition temperature was determined. The coefficient of thermal expansion (CTE2) above the glass transition temperature is shown in the table.
  • the compound was molded on a lead frame of 58 mm ⁇ 48 mm into a shape of length 36 mm ⁇ width 52 mm ⁇ thickness 2 mm under conditions of molding temperature of 175° C., molding pressure of 12 MPa, and curing time of 180 seconds. After molding, the molded product was post-cured at 175° C. for 5.5 hours to obtain a molded product in which a cured product of the compound was formed on the lead frame. Curvature was measured by placing the molded article compound on a table with the surface on which the cured product was formed facing upward, and measuring the height of the end of the molded article from the table.
  • the relative magnetic permeability ⁇ S of the compact was measured.
  • a BH analyzer (SY-8218) manufactured by Iwasaki Tsushinki Co., Ltd. was used to measure the relative permeability ⁇ S.
  • the frequency at which the relative magnetic permeability was measured was 1 MHz.
  • the molded body was heat-treated at 150° C. for 1000 hours, and the relative magnetic permeability ⁇ S′ was measured.
  • the value of ⁇ S′/ ⁇ S represents the retention rate of relative magnetic permeability after heat treatment, and was used as an index of heat resistance. Table 3 shows the results.

Abstract

The compound according to one aspect of the present invention comprises a resin composition comprising an epoxy resin and a hardener, a nonmagnetic powder, and a magnetic powder, and has a content of the magnetic powder of 94-98 mass% with respect to the whole compound and a minimum melt viscosity at 175°C of 10-220 Pa·s.

Description

コンパウンド、成形体、及びコンパウンドの硬化物Compounds, moldings, and cured products of compounds
 本発明は、コンパウンド、成形体、及びコンパウンドの硬化物に関する。 The present invention relates to a compound, a molded article, and a cured product of the compound.
 金属粉末及び樹脂組成物を含むコンパウンドは、金属粉末の諸物性に応じて、多様な工業製品の原材料として利用される。例えば、コンパウンドは、インダクタ、封止材、電磁波シールド(EMIシールド)、又はボンド磁石等の原材料として利用される(下記特許文献1参照。)。  Compounds containing metal powders and resin compositions are used as raw materials for various industrial products, depending on the physical properties of the metal powders. For example, compounds are used as raw materials for inductors, sealing materials, electromagnetic wave shields (EMI shields), bond magnets, and the like (see Patent Document 1 below).
特開2014-13803号公報Japanese Unexamined Patent Application Publication No. 2014-13803
 コンパウンドから工業製品が製造される場合、コンパウンドと金属部材とを密着させ、かつコンパウンドを硬化することにより成形体を作製する。成形体には、信頼性を向上する観点から、優れた機械特性(高温下での強度、耐湿試験後の強度)を有することが求められる。また、コンパウンドを封止材として用いる場合、コンパウンドから形成される成形体の反りを小さくすること要求される場合がある。 When an industrial product is manufactured from a compound, a compact is produced by bringing the compound and metal members into close contact and curing the compound. The molded body is required to have excellent mechanical properties (strength at high temperature, strength after humidity resistance test) from the viewpoint of improving reliability. Moreover, when a compound is used as a sealing material, it may be required to reduce the warpage of a compact formed from the compound.
 本発明は、機械特性に優れると共に、反りを低減した成形体を形成することができるコンパウンド、該コンパウンドを用いた成形体、及びコンパウンドの硬化物を提供することを目的とする。 An object of the present invention is to provide a compound capable of forming a molded article having excellent mechanical properties and reduced warpage, a molded article using the compound, and a cured product of the compound.
 本発明の一側面に係るコンパウンドは、エポキシ樹脂及び硬化剤を含有する樹脂組成物と、非磁性粉と、磁性粉と、を含み、磁性粉の含有量が、コンパウンドの総量を基準として94~98質量%であり、175℃での最低溶融粘度が10~220Pa・sである。 A compound according to one aspect of the present invention includes a resin composition containing an epoxy resin and a curing agent, a non-magnetic powder, and a magnetic powder. It is 98% by mass and has a minimum melt viscosity of 10 to 220 Pa·s at 175°C.
 本発明の一側面に係る成形体は、上記コンパウンドを含む。本発明の一側面に係る硬化物は、上記コンパウンドの硬化物である。 A molded article according to one aspect of the present invention includes the above compound. A cured product according to one aspect of the present invention is a cured product of the above compound.
 本発明によれば、機械特性に優れると共に、反りを低減した成形体を形成することができるコンパウンド、該コンパウンドを用いた成形体、及びコンパウンドの硬化物が提供される。 According to the present invention, there are provided a compound capable of forming a molded article having excellent mechanical properties and reduced warpage, a molded article using the compound, and a cured product of the compound.
 以下、本開示の好適な実施形態について説明する。ただし、本発明は以下の実施形態に何ら限定されるものではない。 Preferred embodiments of the present disclosure will be described below. However, the present invention is by no means limited to the following embodiments.
 本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書中に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。本明細書において組成物中の各成分の量について言及する場合、組成物中に各成分に該当する物質が複数存在する場合には、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。 In this specification, a numerical range indicated using "-" indicates a range that includes the numerical values before and after "-" as the minimum and maximum values, respectively. In the numerical ranges described stepwise in this specification, the upper limit value or lower limit value of the numerical range at one step may be replaced with the upper limit value or lower limit value of the numerical range at another step. Moreover, in the numerical ranges described in this specification, the upper and lower limits of the numerical ranges may be replaced with the values shown in the examples. When referring to the amount of each component in the composition herein, when there are multiple substances corresponding to each component in the composition, unless otherwise specified, the multiple substances present in the composition means the total amount of
 本開示の一態様は、以下のコンパウンド、成形体、及びコンパウンドの硬化物に関する。
[1]エポキシ樹脂及び硬化剤を含有する樹脂組成物と、非磁性粉と、磁性粉と、を含むコンパウンドであり、前記磁性粉の含有量が、前記コンパウンドの総量を基準として94~98質量%であり、175℃での最低溶融粘度が10~220Pa・sである、コンパウンド。
[2]前記非磁性粉の含有量が、前記コンパウンドの総量を基準として0.10~1.50質量%である、上記[1]に記載のコンパウンド。
[3]前記非磁性粉の平均粒径が0.3~20μmである、上記[1]又は[2]に記載のコンパウンド。
[4]前記非磁性粉が、シリカを含む、上記[1]~[3]のいずれかに記載のコンパウンド。
[5]前記磁性粉が、平均粒径が11~45μmの磁性粉と、平均粒径が0.1~9μmの磁性粉と、を含む、上記[1]~[4]のいずれかに記載のコンパウンド。
[6]上記[1]~[5]のいずれかに記載のコンパウンドを含む、成形体。
[7]上記[1]~[5]のいずれかに記載のコンパウンドの硬化物。
One aspect of the present disclosure relates to the following compound, molded article, and cured product of the compound.
[1] A compound containing a resin composition containing an epoxy resin and a curing agent, a nonmagnetic powder, and a magnetic powder, wherein the content of the magnetic powder is 94 to 98 masses based on the total amount of the compound. % and a minimum melt viscosity at 175° C. of 10 to 220 Pa·s.
[2] The compound according to [1] above, wherein the content of the non-magnetic powder is 0.10 to 1.50% by mass based on the total amount of the compound.
[3] The compound according to [1] or [2] above, wherein the non-magnetic powder has an average particle size of 0.3 to 20 μm.
[4] The compound according to any one of [1] to [3] above, wherein the non-magnetic powder contains silica.
[5] Any one of [1] to [4] above, wherein the magnetic powder includes magnetic powder having an average particle size of 11 to 45 μm and magnetic powder having an average particle size of 0.1 to 9 μm. compound.
[6] A molded article containing the compound according to any one of [1] to [5] above.
[7] A cured product of the compound according to any one of [1] to [5] above.
[コンパウンド]
 本実施形態に係るコンパウンドは、樹脂組成物と、非磁性粉と、磁性粉と、を含む。樹脂組成物は、少なくともエポキシ樹脂及び硬化剤を含有する。コンパウンドにおいて、非磁性粉、磁性粉、及び樹脂組成物は混合されている。樹脂組成物は、他の成分としてカップリング剤、硬化促進剤、離型剤、添加剤等を更に含有してよい。樹脂組成物は、エポキシ樹脂、硬化剤、カップリング剤、硬化促進剤、離型剤、及び添加剤を包含し得る成分であって、有機溶媒と非磁性粉及び磁性粉とを除く残りの成分(不揮発性成分)であってよい。添加剤とは、樹脂組成物のうち、樹脂、離型剤、硬化剤、硬化促進剤、及びカップリング剤を除く残部の成分である。添加剤は、例えば、難燃剤、潤滑剤等である。コンパウンドは、粉末(コンパウンド粉)であってよい。
[compound]
The compound according to this embodiment includes a resin composition, non-magnetic powder, and magnetic powder. The resin composition contains at least an epoxy resin and a curing agent. In the compound, non-magnetic powder, magnetic powder and resin composition are mixed. The resin composition may further contain coupling agents, curing accelerators, release agents, additives, etc. as other components. The resin composition is a component that can include an epoxy resin, a curing agent, a coupling agent, a curing accelerator, a release agent, and additives, and the remaining components excluding the organic solvent and the non-magnetic and magnetic powders. (non-volatile component). Additives are components of the resin composition other than the resin, release agent, curing agent, curing accelerator, and coupling agent. Additives are, for example, flame retardants, lubricants, and the like. The compound may be a powder (compound powder).
 コンパウンドは、非磁性粉と、磁性粉と、当該磁性粉を構成する個々の磁性粒子の表面に付着した樹脂組成物と、を備えてよい。樹脂組成物は、磁性粒子の表面の全体を覆っていてもよく、磁性粒子の表面の一部のみを覆っていてもよい。コンパウンドは、未硬化の樹脂組成物と、非磁性粉と、磁性粉とを備えてよい。コンパウンドは、樹脂組成物の半硬化物(例えばBステージの樹脂組成物)と、非磁性粉と、磁性粉とを備えてもよい。コンパウンドは、未硬化の樹脂組成物、及び樹脂組成物の半硬化物の両方を備えてもよい。コンパウンドは、非磁性粉、磁性粉、及び樹脂組成物からなっていてよい。 The compound may comprise nonmagnetic powder, magnetic powder, and a resin composition adhered to the surface of each magnetic particle that constitutes the magnetic powder. The resin composition may cover the entire surface of the magnetic particles, or may cover only a portion of the surfaces of the magnetic particles. The compound may comprise an uncured resin composition, non-magnetic powder and magnetic powder. The compound may comprise a semi-cured resin composition (for example, a B-stage resin composition), a non-magnetic powder, and a magnetic powder. The compound may comprise both an uncured resin composition and a semi-cured resin composition. The compound may consist of non-magnetic powder, magnetic powder, and a resin composition.
 本実施形態に係るコンパウンドは、175℃での最低溶融粘度が10~220Pa・sである。コンパウンドの最低溶融粘度は、成形体のバリを低減する観点から、15Pa・s以上、20Pa・s以上、又は25Pa・s以上であってもよく、成形時の流動性を向上する観点から、210Pa・s以下、200Pa・s以下、又は190Pa・s以下であってもよい。 The compound according to this embodiment has a minimum melt viscosity of 10 to 220 Pa·s at 175°C. The minimum melt viscosity of the compound may be 15 Pa s or more, 20 Pa s or more, or 25 Pa s or more from the viewpoint of reducing burrs in the molded product, and 210 Pa s from the viewpoint of improving fluidity during molding. · s or less, 200 Pa·s or less, or 190 Pa·s or less.
(磁性粉)
 コンパウンドにおける磁性粉の含有量は、コンパウンドの総量を基準として、94~98質量%である。磁性粉の含有量が多くなると、成形体の離型性が担保し難く、作業性に劣る傾向がある。成形体の磁気特性の観点から、コンパウンドにおける磁性粉の含有量は、94.5質量%以上が好ましく、94.8質量%以上がより好ましく、95.0質量%以上が更に好ましい。磁性粉の含有量の上限値は、コンパウンドの流動性の観点から、97.8質量%以下、97.5質量%以下、又は97.0質量%以下であってよい。
(Magnetic powder)
The content of the magnetic powder in the compound is 94-98% by mass based on the total amount of the compound. When the content of the magnetic powder increases, it becomes difficult to ensure the releasability of the compact, and workability tends to be poor. From the viewpoint of the magnetic properties of the compact, the content of the magnetic powder in the compound is preferably 94.5% by mass or more, more preferably 94.8% by mass or more, and even more preferably 95.0% by mass or more. The upper limit of the magnetic powder content may be 97.8% by mass or less, 97.5% by mass or less, or 97.0% by mass or less from the viewpoint of the fluidity of the compound.
 磁性粉は、磁性を有する磁性体粒子である。磁性粉は、例えば、金属単体、合金及び金属化合物からなる群より選ばれる少なくとも一種を含有してよい。磁性粉は、例えば、金属単体、合金及び金属化合物からなる群より選ばれる少なくとも一種からなっていてよい。合金は、固溶体、共晶及び金属間化合物からなる群より選ばれる少なくとも一種を含んでよい。合金とは、例えば、ステンレス鋼(Fe-Cr系合金、Fe-Ni-Cr系合金等)であってよい。金属化合物とは、例えば、フェライト等の酸化物であってよい。磁性粉は、一種の金属元素又は複数種の金属元素を含んでよい。磁性粉に含まれる金属元素は、例えば、卑金属元素、貴金属元素、遷移金属元素、又は希土類元素であってよい。コンパウンドは、一種の磁性粉を含んでよく、組成が異なる複数種の磁性粉を含んでもよい。 Magnetic powder is magnetic particles with magnetism. The magnetic powder may contain, for example, at least one selected from the group consisting of simple metals, alloys and metal compounds. The magnetic powder may consist of, for example, at least one selected from the group consisting of simple metals, alloys and metal compounds. The alloy may contain at least one selected from the group consisting of solid solutions, eutectics and intermetallic compounds. The alloy may be, for example, stainless steel (Fe--Cr alloy, Fe--Ni--Cr alloy, etc.). The metal compound may be, for example, an oxide such as ferrite. The magnetic powder may contain one type of metal element or multiple types of metal elements. The metal elements contained in the magnetic powder may be, for example, base metal elements, noble metal elements, transition metal elements, or rare earth elements. The compound may contain one type of magnetic powder, or may contain multiple types of magnetic powders with different compositions.
 磁性粉に含まれる金属元素は、例えば、鉄(Fe)、銅(Cu)、チタン(Ti)、マンガン(Mn)、コバルト(Co)、ニッケル(Ni)、亜鉛(Zn)、アルミニウム(Al)、スズ(Sn)、クロム(Cr)、ニオブ(Nb)、バリウム(Ba)、ストロンチウム(Sr)、鉛(Pb)、銀(Ag)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、及びジスプロシウム(Dy)からなる群より選ばれる少なくとも一種であってよい。磁性粉は、金属元素以外の元素を更に含んでもよい。磁性粉は、例えば、炭素(C)、酸素(О)、ベリリウム(Be)、リン(P)、硫黄(S)、ホウ素(B)、又はケイ素(Si)を含んでもよい。 Metal elements contained in the magnetic powder include, for example, iron (Fe), copper (Cu), titanium (Ti), manganese (Mn), cobalt (Co), nickel (Ni), zinc (Zn), and aluminum (Al). , Tin (Sn), Chromium (Cr), Niobium (Nb), Barium (Ba), Strontium (Sr), Lead (Pb), Silver (Ag), Praseodymium (Pr), Neodymium (Nd), Samarium (Sm) , and dysprosium (Dy). The magnetic powder may further contain elements other than metal elements. Magnetic powders may include, for example, carbon (C), oxygen (O), beryllium (Be), phosphorus (P), sulfur (S), boron (B), or silicon (Si).
 磁性粉は、軟磁性合金、又は強磁性合金であってよい。磁性粉は、例えば、Fe-Si系合金、Fe-Si-Al系合金(センダスト)、Fe-Ni系合金(パーマロイ)、Fe-Cu-Ni系合金(パーマロイ)、Fe-Co系合金(パーメンジュール)、Fe-Cr-Si系合金(電磁ステンレス鋼)、Nd-Fe-B系合金(希土類磁石)、Sm-Fe-N系合金(希土類磁石)、Al-Ni-Co系合金(アルニコ磁石)、及びフェライトからなる群より選ばれる少なくとも一種からなる磁性粉であってよい。フェライトは、例えば、スピネルフェライト、六方晶フェライト、又はガーネットフェライトであってよい。磁性粉は、Cu-Sn系合金、Cu-Sn-P系合金、Cu-Ni系合金、又はCu-Be系合金等の銅合金であってもよい。 The magnetic powder may be a soft magnetic alloy or a ferromagnetic alloy. Magnetic powders include, for example, Fe—Si alloys, Fe—Si—Al alloys (sendust), Fe—Ni alloys (permalloy), Fe—Cu—Ni alloys (permalloy), Fe—Co alloys (permalloy). Mendur), Fe-Cr-Si alloy (electromagnetic stainless steel), Nd-Fe-B alloy (rare earth magnet), Sm-Fe-N alloy (rare earth magnet), Al-Ni-Co alloy (alnico magnet), and at least one selected from the group consisting of ferrite. Ferrites may be, for example, spinel ferrites, hexagonal ferrites, or garnet ferrites. The magnetic powder may be a Cu--Sn alloy, a Cu--Sn--P alloy, a Cu--Ni alloy, or a copper alloy such as a Cu--Be alloy.
 磁性粉は、Fe単体であってもよい。磁性粉は、鉄を含む合金(Fe系合金)であってもよい。Fe系合金は、例えば、Fe-Si-Cr系合金又はNd-Fe-B系合金であってよい。磁性粉は、アモルファス系鉄粉及びカルボニル鉄粉のうちの少なくともいずれかであってもよい。磁性粉がFe単体及びFe系合金のうちの少なくともいずれかを含む場合、高い占積率を有し、且つ磁気特性に優れる成形体をコンパウンドから作製し易い。磁性粉は、Feアモルファス合金であってもよい。 The magnetic powder may be Fe alone. The magnetic powder may be an alloy containing iron (Fe-based alloy). The Fe-based alloy may be, for example, an Fe--Si--Cr-based alloy or an Nd--Fe--B based alloy. The magnetic powder may be at least one of amorphous iron powder and carbonyl iron powder. When the magnetic powder contains at least one of elemental Fe and an Fe-based alloy, it is easy to produce a compact having a high space factor and excellent magnetic properties from the compound. The magnetic powder may be Fe amorphous alloy.
 Feアモルファス合金粉の市販品としては、例えば、AW2-08、KUAMET 6B2、KUAMET 9A4-II(以上、エプソンアトミックス株式会社製の商品名)、DAP MS3、DAP MS7、DAP MSA10、DAP PB、DAP PC、DAP MKV49、DAP 410L、DAP 430L、DAP HYBシリーズ(以上、大同特殊鋼株式会社製の商品名)、MH45D、MH28D、MH25D、及びMH20D(以上、神戸製鋼株式会社製の商品名)からなる群より選ばれる少なくとも一種が用いられてよい。 Commercially available Fe amorphous alloy powders include, for example, AW2-08, KUAMET 6B2, KUAMET 9A4-II (the above are trade names manufactured by Epson Atmix Corporation), DAP MS3, DAP MS7, DAP MSA10, DAP PB, and DAP. Consists of PC, DAP MKV49, DAP 410L, DAP 430L, DAP HYB series (all product names manufactured by Daido Steel Co., Ltd.), MH45D, MH28D, MH25D, and MH20D (product names manufactured by Kobe Steel, Ltd.) At least one selected from the group may be used.
 磁性粉として鉄を含む磁性粉(鉄含有磁性粉)を用いる場合、鉄含有磁性粉中の鉄の含有率は、80質量%以上であってもよく、83~99質量%、84~97質量%、85~95質量%、又は87~93質量%であってもよい。鉄の含有率が上記範囲内である鉄含有磁性粉を用いることで、コンパウンドは、インダクタ、封止材、電磁波シールド(EMIシールド)、又はボンド磁石等の原材料としてより好適に使用できる。 When magnetic powder containing iron (iron-containing magnetic powder) is used as the magnetic powder, the iron content in the iron-containing magnetic powder may be 80% by mass or more, 83 to 99% by mass, or 84 to 97% by mass. %, 85-95% by weight, or 87-93% by weight. By using an iron-containing magnetic powder having an iron content within the above range, the compound can be more suitably used as a raw material for inductors, sealing materials, electromagnetic wave shields (EMI shields), bond magnets, and the like.
 磁性粉を構成する個々の金属粒子の形状は限定されないが、例えば、球状、扁平形状、角柱状、又は針状であってよい。磁性粉の平均粒径は、特に限定されないが、例えば、0.1μm以上、0.5μm以上、又は1.0μm以上であってよく、100μm以下、80μm以下、又は50μm以下であってよい。平均粒径は、例えば粒度分布計によって測定することができる。コンパウンドは、平均粒径が異なる複数種の磁性粉を備えてよい。磁性粉は、流動性及び磁気特性を向上する観点から、平均粒径が11~45μmの第1の磁性粉と、平均粒径が0.1~9μmの第2の磁性粉とを含むことが好ましい。第1の磁性粉の平均粒径は、15~40μm、18~35μm、又は20~30μmであってもよい。第2の磁性粉の平均粒径は、0.5~6μm、0.8~5μm、又は1.0~4μmであってもよい。 The shape of the individual metal particles that make up the magnetic powder is not limited, but may be spherical, flat, prismatic, or acicular, for example. The average particle size of the magnetic powder is not particularly limited, but may be, for example, 0.1 μm or more, 0.5 μm or more, or 1.0 μm or more, and may be 100 μm or less, 80 μm or less, or 50 μm or less. The average particle size can be measured, for example, with a particle size distribution meter. The compound may comprise multiple types of magnetic powders with different average particle sizes. From the viewpoint of improving fluidity and magnetic properties, the magnetic powder may contain first magnetic powder having an average particle size of 11 to 45 μm and second magnetic powder having an average particle size of 0.1 to 9 μm. preferable. The average particle size of the first magnetic powder may be 15-40 μm, 18-35 μm, or 20-30 μm. The average particle size of the second magnetic powder may be 0.5-6 μm, 0.8-5 μm, or 1.0-4 μm.
(非磁性粉)
 非磁性粉は、磁性を有しない非磁性体粒子である。非磁性粉を添加することで、磁性粉と樹脂成分とが分離し難くなり、コンパウンドの成形性を向上することができる。非磁性粉は、金属元素を含むものであってもよく、金属元素を含まないものであってもよい。
(non-magnetic powder)
Non-magnetic powders are non-magnetic particles that do not have magnetism. The addition of non-magnetic powder makes it difficult for the magnetic powder and the resin component to separate, thereby improving the moldability of the compound. The non-magnetic powder may contain metallic elements or may contain no metallic elements.
 非磁性粉の構成材料としては、例えば、シリカ、アルミナ、ジルコニア、チタニア、マグネシア、カルシア等の酸化物系セラミックス材料;窒化ケイ素、窒化アルミニウム等の窒化物系セラミックス材料;及び炭化ケイ素、炭化ホウ素等の炭化物系セラミックス材料が挙げられる。非磁性粉は、成形体の反りを低減する観点から、シリカを含むことが好ましい。 Materials constituting the non-magnetic powder include, for example, oxide-based ceramic materials such as silica, alumina, zirconia, titania, magnesia, and calcia; nitride-based ceramic materials such as silicon nitride and aluminum nitride; and silicon carbide, boron carbide, and the like. of carbide-based ceramic materials. The non-magnetic powder preferably contains silica from the viewpoint of reducing warpage of the compact.
 本実施形態に係る非磁性粉の平均粒径は、成形体の反りを低減する観点から、0.3~20μmであることが好ましく、0.4~15μmであることがより好ましく、0.5~12μmであることが更に好ましい。非磁性粉の平均粒径は、バリを低減する観点から、10μm以下、8μm以下、又は4μm以下であってもよい。 The average particle diameter of the non-magnetic powder according to the present embodiment is preferably 0.3 to 20 μm, more preferably 0.4 to 15 μm, more preferably 0.5 μm, from the viewpoint of reducing warpage of the compact. It is even more preferred to be ~12 μm. The average particle size of the non-magnetic powder may be 10 μm or less, 8 μm or less, or 4 μm or less from the viewpoint of reducing burrs.
 非磁性粉の含有量は、成形体の熱膨張率を低減する観点から、コンパウンドの総量を基準として0.10~1.50質量%であることが好ましく、成形体の反りを低減する観点から、0.12質量%以上、0.14質量%以上、又は0.20質量%以上であってもよく、コンパウンドの流動性を向上する観点から、1.40質量%以下、1.20質量%以下、又は1.10質量%以下であってもよい。 The content of the non-magnetic powder is preferably 0.10 to 1.50% by mass based on the total amount of the compound from the viewpoint of reducing the thermal expansion coefficient of the molded body, and from the viewpoint of reducing warpage of the molded body. , 0.12% by mass or more, 0.14% by mass or more, or 0.20% by mass or more, and from the viewpoint of improving the fluidity of the compound, 1.40% by mass or less, 1.20% by mass or less, or 1.10% by mass or less.
(樹脂組成物)
 樹脂組成物は、磁性粉を構成する磁性粒子の結合材(バインダ)としての機能を有し、コンパウンドから形成される成形体に機械的強度を付与する。例えば、コンパウンドに含まれる樹脂組成物は、金型を用いてコンパウンドが高圧で成形される際に、磁性粒子の間に充填され、当該粒子を互いに結着する。成形体中の樹脂組成物を硬化させることにより、樹脂組成物の硬化物が磁性粒子同士をより強固に結着して、成形体の機械的強度が向上する。
(resin composition)
The resin composition functions as a binding material (binder) for the magnetic particles that make up the magnetic powder, and imparts mechanical strength to the compact formed from the compound. For example, the resin composition contained in the compound is filled between the magnetic particles and binds the particles together when the compound is molded at high pressure using a mold. By curing the resin composition in the molded article, the cured resin composition more strongly binds the magnetic particles together, improving the mechanical strength of the molded article.
 本実施形態に係る樹脂組成物は、熱硬化性樹脂としてエポキシ樹脂を含有することにより、コンパウンドの流動性を向上することができる。エポキシ樹脂は、例えば、1分子中に2個以上のエポキシ基を有する樹脂であってよい。エポキシ樹脂の種類は特に制限されず、樹脂組成物の所望の特性等に応じて選択できる。 The resin composition according to this embodiment can improve the fluidity of the compound by containing an epoxy resin as a thermosetting resin. The epoxy resin may be, for example, a resin having two or more epoxy groups in one molecule. The type of epoxy resin is not particularly limited, and can be selected according to the desired properties of the resin composition.
 エポキシ樹脂として、例えば、ビフェニル型エポキシ樹脂、スチルベン型エポキシ樹脂、ジフェニルメタン型エポキシ樹脂、硫黄原子含有型エポキシ樹脂、ノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、サリチルアルデヒド型エポキシ樹脂、ナフトール類とフェノール類との共重合型エポキシ樹脂、アラルキル型フェノール樹脂のエポキシ化物、ビスフェノール型エポキシ樹脂、ビスフェノール骨格を含有するエポキシ樹脂、アルコール類のグリシジルエーテル型エポキシ樹脂、パラキシリレン及び/又はメタキシリレン変性フェノール樹脂のグリシジルエーテル型エポキシ樹脂、テルペン変性フェノール樹脂のグリシジルエーテル型エポキシ樹脂、シクロペンタジエン型エポキシ樹脂、多環芳香環変性フェノール樹脂のグリシジルエーテル型エポキシ樹脂、ナフタレン環含有フェノール樹脂のグリシジルエーテル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジル型又はメチルグリシジル型のエポキシ樹脂、脂環型エポキシ樹脂、ハロゲン化フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、ハイドロキノン型エポキシ樹脂、トリメチロールプロパン型エポキシ樹脂、並びにオレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族エポキシ樹脂が挙げられる。 Examples of epoxy resins include biphenyl-type epoxy resins, stilbene-type epoxy resins, diphenylmethane-type epoxy resins, sulfur atom-containing epoxy resins, novolak-type epoxy resins, dicyclopentadiene-type epoxy resins, salicylaldehyde-type epoxy resins, naphthols and phenols. Copolymerized epoxy resins, epoxidized aralkyl-type phenolic resins, bisphenol-type epoxy resins, epoxy resins containing a bisphenol skeleton, glycidyl ether-type epoxy resins of alcohols, glycidyl ethers of para-xylylene and/or meta-xylylene-modified phenolic resins type epoxy resin, terpene-modified phenol resin glycidyl ether type epoxy resin, cyclopentadiene type epoxy resin, polycyclic aromatic ring-modified phenol resin glycidyl ether type epoxy resin, naphthalene ring-containing phenol resin glycidyl ether type epoxy resin, glycidyl ester type Epoxy resins, glycidyl-type or methylglycidyl-type epoxy resins, alicyclic-type epoxy resins, halogenated phenol novolac-type epoxy resins, ortho-cresol novolak-type epoxy resins, hydroquinone-type epoxy resins, trimethylolpropane-type epoxy resins, and olefin bonds. Examples include linear aliphatic epoxy resins obtained by oxidation with peracids such as peracetic acid.
 流動性の観点において、エポキシ樹脂は、ビフェニル型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、ビスフェノール骨格を有するエポキシ樹脂、サリチルアルデヒドノボラック型エポキシ樹脂、及びナフトールノボラック型エポキシ樹脂からなる群より選ばれる少なくとも一種を含んでいてよい。 From the viewpoint of fluidity, epoxy resins include biphenyl-type epoxy resins, ortho-cresol novolac-type epoxy resins, phenol novolac-type epoxy resins, bisphenol-type epoxy resins, epoxy resins having a bisphenol skeleton, salicylaldehyde novolac-type epoxy resins, and naphthol novolak-type epoxy resins. It may contain at least one selected from the group consisting of type epoxy resins.
 機械強度の観点において、エポキシ樹脂は、ビフェニレンアラルキル型エポキシ樹脂及びオルソクレゾールノボラック型エポキシ樹脂からなる群より選ばれる少なくとも一種を含んでいてよい。 From the viewpoint of mechanical strength, the epoxy resin may contain at least one selected from the group consisting of biphenylene aralkyl-type epoxy resins and ortho-cresol novolac-type epoxy resins.
 エポキシ樹脂は、結晶性のエポキシ樹脂であってもよい。結晶性のエポキシ樹脂の分子量は比較的低いにもかかわらず、結晶性のエポキシ樹脂は比較的高い融点を有し、且つ流動性に優れる。結晶性のエポキシ樹脂(結晶性の高いエポキシ樹脂)は、例えば、ハイドロキノン型エポキシ樹脂、ビスフェノール型エポキシ樹脂、チオエーテル型エポキシ樹脂、及びビフェニル型エポキシ樹脂からなる群より選ばれる少なくとも一種を含んでいてよい。 The epoxy resin may be a crystalline epoxy resin. Although the molecular weight of the crystalline epoxy resin is relatively low, the crystalline epoxy resin has a relatively high melting point and excellent fluidity. The crystalline epoxy resin (highly crystalline epoxy resin) may contain, for example, at least one selected from the group consisting of hydroquinone-type epoxy resins, bisphenol-type epoxy resins, thioether-type epoxy resins, and biphenyl-type epoxy resins. .
 結晶性のエポキシ樹脂の市販品としては、例えば、エピクロン860、エピクロン1050、エピクロン1055、エピクロン2050、エピクロン3050、エピクロン4050、エピクロン7050、エピクロンHM-091、エピクロンHM-101、エピクロンN-730A、エピクロンN-740、エピクロンN-770、エピクロンN-775、エピクロンN-865、エピクロンHP-4032D、エピクロンHP-7200L、エピクロンHP-7200、エピクロンHP-7200H、エピクロンHP-7200HH、エピクロンHP-7200HHH、エピクロンHP-4700、エピクロンHP-4710、エピクロンHP-4770、エピクロンHP-5000、エピクロンHP-6000、N500P-2、及びN500P-10(以上、DIC株式会社製の商品名);NC-3000、NC-3000-L、NC-3000-H、NC-3100、CER-3000-L、NC-2000-L、XD-1000、NC-7000-L、NC-7300-L、EPPN-501H、EPPN-501HY、EPPN-502H、EOCN-1020、EOCN-102S、EOCN-103S、EOCN-104S、CER-1020、EPPN-201、BREN-S、及びBREN-10S(以上、日本化薬株式会社製の商品名);YX-4000、YX-4000H、YL4121H、及びYX-8800(以上、三菱ケミカル株式会社製の商品名)が挙げられる。 Commercially available crystalline epoxy resins include, for example, Epiclon 860, Epiclon 1050, Epiclon 1055, Epiclon 2050, Epiclon 3050, Epiclon 4050, Epiclon 7050, Epiclon HM-091, Epiclon HM-101, Epiclon N-730A, and Epiclon. N-740, Epiclon N-770, Epiclon N-775, Epiclon N-865, Epiclon HP-4032D, Epiclon HP-7200L, Epiclon HP-7200, Epiclon HP-7200H, Epiclon HP-7200HH, Epiclon HP-7200HHH, Epiclon HP-4700, Epiclon HP-4710, Epiclon HP-4770, Epiclon HP-5000, Epiclon HP-6000, N500P-2, and N500P-10 (these are trade names manufactured by DIC Corporation); NC-3000, NC- 3000-L, NC-3000-H, NC-3100, CER-3000-L, NC-2000-L, XD-1000, NC-7000-L, NC-7300-L, EPPN-501H, EPPN-501HY, EPPN-502H, EOCN-1020, EOCN-102S, EOCN-103S, EOCN-104S, CER-1020, EPPN-201, BREN-S, and BREN-10S (trade names manufactured by Nippon Kayaku Co., Ltd.); YX-4000, YX-4000H, YL4121H, and YX-8800 (these are trade names manufactured by Mitsubishi Chemical Corporation).
 樹脂組成物は、上記のうち一種のエポキシ樹脂を含有してよい。樹脂組成物は、上記のうち複数種のエポキシ樹脂を含有してもよい。樹脂組成物は、上記のエポキシ樹脂の中でも、ビフェニル骨格を含むエポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、又は2個以上のエポキシ基を含む多官能型エポキシ樹脂を含有してよい。 The resin composition may contain one of the above epoxy resins. The resin composition may contain more than one of the above epoxy resins. Among the above epoxy resins, the resin composition may contain an epoxy resin containing a biphenyl skeleton, an ortho-cresol novolak-type epoxy resin, or a polyfunctional epoxy resin containing two or more epoxy groups.
 硬化剤は、低温から室温の範囲でエポキシ樹脂を硬化させる硬化剤と、加熱に伴ってエポキシ樹脂を硬化させる加熱硬化型の硬化剤と、に分類される。低温から室温の範囲でエポキシ樹脂を硬化させる硬化剤としては、例えば、脂肪族ポリアミン、ポリアミノアミド、及びポリメルカプタンが挙げられる。加熱硬化型の硬化剤としては、例えば、芳香族ポリアミン、酸無水物、フェノールノボラック樹脂、及びジシアンジアミド(DICY)が挙げられる。硬化剤の種類は特に制限されず、組成物の所望の特性等に応じて選択できる。 Curing agents are classified into curing agents that cure epoxy resins in the range from low temperature to room temperature, and heat curing type curing agents that cure epoxy resins when heated. Curing agents that cure epoxy resins in the low to room temperature range include, for example, aliphatic polyamines, polyaminoamides, and polymercaptans. Heat-curable curing agents include, for example, aromatic polyamines, acid anhydrides, phenol novolac resins, and dicyandiamide (DICY). The type of curing agent is not particularly limited, and can be selected depending on the desired properties of the composition.
 低温から室温の範囲でエポキシ樹脂を硬化させる硬化剤を用いた場合、エポキシ樹脂の硬化物のガラス転移点は低く、エポキシ樹脂の硬化物は軟らかい傾向がある。その結果、コンパウンドから形成された成形体も軟らかくなり易い。一方、成形体の耐熱性を向上させる観点から、硬化剤は、好ましくは加熱硬化型の硬化剤、より好ましくはフェノール樹脂、更に好ましくはフェノールノボラック樹脂であってよい。特に硬化剤としてフェノールノボラック樹脂を用いることで、ガラス転移点が高いエポキシ樹脂の硬化物が得られ易い。その結果、成形体の耐熱性及び機械的強度を向上し易くなる。 When using a curing agent that cures the epoxy resin in the range from low temperature to room temperature, the glass transition point of the cured epoxy resin is low and the cured epoxy resin tends to be soft. As a result, the molded article formed from the compound tends to become soft. On the other hand, from the viewpoint of improving the heat resistance of the molded article, the curing agent may preferably be a heat-curable curing agent, more preferably a phenol resin, and still more preferably a phenol novolak resin. In particular, by using a phenol novolac resin as a curing agent, it is easy to obtain a cured product of an epoxy resin having a high glass transition point. As a result, it becomes easier to improve the heat resistance and mechanical strength of the molded article.
 フェノール樹脂は、例えば、アラルキル型フェノール樹脂、ジシクロペンタジエン型フェノール樹脂、サリチルアルデヒド型フェノール樹脂、ノボラック型フェノール樹脂、ベンズアルデヒド型フェノールとアラルキル型フェノールとの共重合型フェノール樹脂、パラキシリレン及び/又はメタキシリレン変性フェノール樹脂、メラミン変性フェノール樹脂、テルペン変性フェノール樹脂、ジシクロペンタジエン型ナフトール樹脂、シクロペンタジエン変性フェノール樹脂、多環芳香環変性フェノール樹脂、ビフェニル型フェノール樹脂、及びトリフェニルメタン型フェノール樹脂からなる群より選ばれる少なくとも一種を含んでいてよい。フェノール樹脂は、上記のうちの二種以上から構成される共重合体であってもよい。フェノール樹脂の市販品としては、例えば、荒川化学工業株式会社製のタマノル758、昭和電工マテリアルズ株式会社製のHP-850N等を用いてもよい。 Phenolic resins include, for example, aralkyl-type phenol resins, dicyclopentadiene-type phenol resins, salicylaldehyde-type phenol resins, novolac-type phenol resins, copolymer-type phenol resins of benzaldehyde-type phenol and aralkyl-type phenol, para-xylylene and/or meta-xylylene-modified from the group consisting of phenolic resins, melamine-modified phenolic resins, terpene-modified phenolic resins, dicyclopentadiene-type naphthol resins, cyclopentadiene-modified phenolic resins, polycyclic aromatic ring-modified phenolic resins, biphenyl-type phenolic resins, and triphenylmethane-type phenolic resins At least one selected may be included. The phenolic resin may be a copolymer composed of two or more of the above. Examples of commercially available phenolic resins include Tamanol 758 manufactured by Arakawa Chemical Industries, Ltd., HP-850N manufactured by Showa Denko Materials Co., Ltd., and the like.
 フェノールノボラック樹脂は、例えば、フェノール類及び/又はナフトール類と、アルデヒド類と、を酸性触媒下で縮合又は共縮合させて得られる樹脂であってよい。フェノールノボラック樹脂を構成するフェノール類は、例えば、フェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、フェニルフェノール、及びアミノフェノールからなる群より選ばれる少なくとも一種を含んでいてよい。フェノールノボラック樹脂を構成するナフトール類は、例えば、α-ナフトール、β-ナフトール、及びジヒドロキシナフタレンからなる群より選ばれる少なくとも一種を含んでいてよい。フェノールノボラック樹脂を構成するアルデヒド類は、例えば、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ベンズアルデヒド、及びサリチルアルデヒドからなる群より選ばれる少なくとも一種を含んでいてよい。 The phenol novolak resin may be a resin obtained by, for example, condensation or co-condensation of phenols and/or naphthols and aldehydes in the presence of an acidic catalyst. Phenols constituting the phenolic novolak resin may include, for example, at least one selected from the group consisting of phenol, cresol, xylenol, resorcinol, catechol, bisphenol A, bisphenol F, phenylphenol, and aminophenol. The naphthols constituting the phenol novolak resin may contain, for example, at least one selected from the group consisting of α-naphthol, β-naphthol and dihydroxynaphthalene. The aldehydes constituting the phenol novolak resin may contain at least one selected from the group consisting of formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde, and salicylaldehyde, for example.
 硬化剤は、例えば、1分子中に2個のフェノール性水酸基を有する化合物であってもよい。1分子中に2個のフェノール性水酸基を有する化合物は、例えば、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、及び置換又は非置換のビフェノールからなる群より選ばれる少なくとも一種を含んでいてよい。 The curing agent may be, for example, a compound having two phenolic hydroxyl groups in one molecule. The compound having two phenolic hydroxyl groups in one molecule may contain, for example, at least one selected from the group consisting of resorcin, catechol, bisphenol A, bisphenol F, and substituted or unsubstituted biphenol.
 樹脂組成物は、上記のうち一種のフェノール樹脂を含有してよい。樹脂組成物は、上記のうち複数種のフェノール樹脂を備えてもよい。樹脂組成物は、上記のうち一種の硬化剤を含有してよい。樹脂組成物は、上記のうち複数種の硬化剤を含有してもよい。 The resin composition may contain one of the above phenolic resins. The resin composition may comprise a plurality of types of phenolic resins among the above. The resin composition may contain one of the curing agents described above. The resin composition may contain a plurality of types of curing agents among those described above.
 エポキシ樹脂中のエポキシ基と反応する硬化剤中の活性基(フェノール性OH基)の比率は、エポキシ樹脂中のエポキシ基が1当量に対して、好ましくは0.5~1.5当量、より好ましくは0.6~1.4当量、更に好ましくは0.7~1.2当量であってよい。硬化剤中の活性基の比率が0.5当量未満である場合、得られる硬化物の充分な弾性率が得られ難い。一方、硬化剤中の活性基の比率が1.5当量を超える場合、コンパウンドから形成された成形体の硬化後の機械的強度が低下する傾向がある。ただし、硬化剤中の活性基の比率が上記範囲外である場合であっても、本発明に係る効果は得られる。 The ratio of the active group (phenolic OH group) in the curing agent that reacts with the epoxy group in the epoxy resin is preferably 0.5 to 1.5 equivalents, or more, with respect to 1 equivalent of epoxy groups in the epoxy resin. It may be preferably 0.6 to 1.4 equivalents, more preferably 0.7 to 1.2 equivalents. If the ratio of active groups in the curing agent is less than 0.5 equivalents, it is difficult to obtain a cured product with a sufficient elastic modulus. On the other hand, if the ratio of the active groups in the curing agent exceeds 1.5 equivalents, the molded article formed from the compound tends to have reduced mechanical strength after curing. However, even if the ratio of active groups in the curing agent is outside the above range, the effects of the present invention can be obtained.
 樹脂組成物は、コンパウンドの成形性及び離型性を向上するために、硬化促進剤(触媒)を更に含有してもよい。樹脂組成物が硬化促進剤を含有することにより、コンパウンドを用いて製造された成形体(例えば、電子部品)の機械的強度が向上したり、高温・高湿な環境下におけるコンパウンドの保存安定性が向上したりする。硬化促進剤は、例えば、エポキシ樹脂と反応してエポキシ樹脂の硬化を促進させる組成物であれば限定されない。硬化促進剤は、例えば、リン系硬化促進剤、イミダゾール系硬化促進剤、又はウレア系硬化促進剤であってよい。 The resin composition may further contain a curing accelerator (catalyst) in order to improve moldability and releasability of the compound. By containing a curing accelerator in the resin composition, the mechanical strength of the molded article (e.g., electronic component) produced using the compound is improved, and the storage stability of the compound in a high-temperature and high-humidity environment. is improved. The curing accelerator is not particularly limited as long as it is a composition that reacts with the epoxy resin to accelerate curing of the epoxy resin. The curing accelerator may be, for example, a phosphorus curing accelerator, an imidazole curing accelerator, or a urea curing accelerator.
 リン系硬化促進剤としては、例えば、ホスフィン化合物及びホスホニウム塩化合物が挙げられる。 Phosphorus-based curing accelerators include, for example, phosphine compounds and phosphonium salt compounds.
 イミダゾール系硬化促進剤の市販品としては、例えば、2MZ-H、C11Z、C17Z、1,2DMZ、2E4MZ、2PZ-PW、2P4MZ、1B2MZ、1B2PZ、2MZ-CN、C11Z-CN、2E4MZ-CN、2PZ-CN、C11Z-CNS、2P4MHZ、TPZ、及びSFZ(以上、四国化成工業株式会社製の商品名)が挙げられる。 Commercially available imidazole curing accelerators include, for example, 2MZ-H, C11Z, C17Z, 1,2DMZ, 2E4MZ, 2PZ-PW, 2P4MZ, 1B2MZ, 1B2PZ, 2MZ-CN, C11Z-CN, 2E4MZ-CN, 2PZ -CN, C11Z-CNS, 2P4MHZ, TPZ, and SFZ (the above are trade names manufactured by Shikoku Kasei Co., Ltd.).
 ウレア系硬化促進剤としては、ウレア基を有する硬化促進剤であれば特に限定されないが、保存安定性の向上の観点から、アルキルウレア基を有するアルキルウレア系硬化促進剤であることが好ましい。アルキルウレア基を有するアルキルウレア系硬化促進剤としては、例えば、芳香族アルキルウレア及び脂肪族アルキルウレアが挙げられる。アルキルウレア系硬化促進剤の市販品としては、例えば、U-CAT3512T(商品名、サンアプロ株式会社製、芳香族ジメチルウレア)及びU-CAT3513N(商品名、サンアプロ株式会社製、脂肪族ジメチルウレア)が挙げられる。これらの中でも、開裂温度が適度に低く、コンパウンドを効率的に硬化させ易いことから、芳香族アルキルウレアが好ましい。 The urea-based curing accelerator is not particularly limited as long as it is a curing accelerator having a urea group, but from the viewpoint of improving storage stability, it is preferably an alkylurea-based curing accelerator having an alkylurea group. Alkyl urea-based curing accelerators having an alkyl urea group include, for example, aromatic alkyl ureas and aliphatic alkyl ureas. Commercially available alkyl urea curing accelerators include, for example, U-CAT3512T (trade name, manufactured by San-Apro Co., Ltd., aromatic dimethyl urea) and U-CAT3513N (trade name, manufactured by San-Apro Co., Ltd., aliphatic dimethyl urea). mentioned. Among these, aromatic alkyl ureas are preferred because they have a moderately low cleavage temperature and facilitate efficient curing of compounds.
 硬化促進剤の配合量は、硬化促進効果が得られる量であればよく、特に限定されない。樹脂組成物の吸湿時の硬化性及び流動性を改善する観点から、硬化促進剤の配合量は、エポキシ樹脂の100質量部に対して、0.1質量部以上20質量部以下、1質量部以上15質量部以下、又は2質量部以上10質量部以下であってよい。硬化促進剤の配合量が0.1質量部以上である場合、十分な硬化促進効果が得られ易い。硬化促進剤の配合量が20質量部以下であると、コンパウンドの保存安定性が低下し難い。 The amount of the curing accelerator is not particularly limited as long as the curing acceleration effect is obtained. From the viewpoint of improving the curability and fluidity of the resin composition when it absorbs moisture, the amount of the curing accelerator is 0.1 parts by mass or more and 20 parts by mass or less and 1 part by mass with respect to 100 parts by mass of the epoxy resin. 15 parts by mass or less, or 2 parts by mass or more and 10 parts by mass or less. When the amount of the curing accelerator is 0.1 parts by mass or more, a sufficient curing acceleration effect is likely to be obtained. When the amount of the curing accelerator is 20 parts by mass or less, the storage stability of the compound is less likely to deteriorate.
 樹脂組成物は、カップリング剤を更に含有してもよい。カップリング剤は、樹脂組成物と、磁性粉を構成する金属元素含有粒子との密着性を向上させ、コンパウンドから形成される成形体(インダクタ等)の可撓性及び機械的強度を向上させることができる。カップリング剤は、例えば、シラン系化合物(シランカップリング剤)、チタン系化合物、アルミニウム化合物(アルミニウムキレート類)、及びアルミニウム/ジルコニウム系化合物からなる群より選ばれる少なくとも一種であってよい。シランカップリング剤は、例えば、エポキシシラン化合物、メルカプトシラン化合物、アミノシラン化合物、アルキルシラン化合物、アクリルシラン化合物、メタクリルシラン化合物、ウレイドシラン化合物、酸無水物系シラン化合物、及びビニルシラン化合物からなる群より選ばれる少なくとも一種であってよい。コンパウンドは、上記のうち一種のカップリング剤を備えてよく、上記のうち複数種のカップリング剤を備えてもよい。 The resin composition may further contain a coupling agent. The coupling agent improves the adhesion between the resin composition and the metal element-containing particles that make up the magnetic powder, and improves the flexibility and mechanical strength of the compact (inductor, etc.) formed from the compound. can be done. The coupling agent may be, for example, at least one selected from the group consisting of silane-based compounds (silane coupling agents), titanium-based compounds, aluminum compounds (aluminum chelates), and aluminum/zirconium-based compounds. The silane coupling agent is, for example, selected from the group consisting of epoxysilane compounds, mercaptosilane compounds, aminosilane compounds, alkylsilane compounds, acrylsilane compounds, methacrylsilane compounds, ureidosilane compounds, acid anhydride-based silane compounds, and vinylsilane compounds. may be at least one of the The compound may comprise one of the above coupling agents, or may comprise more than one of the above coupling agents.
 本実施形態に係るコンパウンドにおけるカップリング剤の含有量は、コンパウンドの全質量を基準として、好ましくは0.05~0.70質量%、より好ましくは0.10~0.60質量%、更に好ましくは0.12~0.50質量%であってよい。カップリング剤の含有量が上記下限値以上である場合、成形体の可撓性及び機械的強度がより向上し易い。カップリング剤の含有量が上記上限値以下である場合、コンパウンドのブロッキングを起こし難い。ただし、カップリング剤の含有量が上記範囲外である場合であっても、本発明に係る効果は得られる。 The content of the coupling agent in the compound according to the present embodiment is preferably 0.05 to 0.70% by mass, more preferably 0.10 to 0.60% by mass, and still more preferably, based on the total mass of the compound. may be 0.12 to 0.50 mass %. When the content of the coupling agent is at least the above lower limit, the flexibility and mechanical strength of the molded article are likely to be improved. When the content of the coupling agent is equal to or less than the above upper limit, blocking of the compound is less likely to occur. However, even if the content of the coupling agent is outside the above range, the effects of the present invention can be obtained.
 コンパウンドの成形収縮率が低減され易く、成形体の耐熱性及び耐電圧性が向上し易いことから、樹脂組成物は、添加剤としてシロキサン結合を有する化合物(シロキサン化合物)を含有してもよい。シロキサン結合は、2つのケイ素原子(Si)と1つの酸素原子(O)とを含む結合であり、-Si-O-Si-で表されてよい。シロキサン結合を有する化合物はポリシロキサン化合物であってよい。 The resin composition may contain a compound having a siloxane bond (siloxane compound) as an additive because the mold shrinkage rate of the compound is easily reduced and the heat resistance and voltage resistance of the molded product are easily improved. A siloxane bond is a bond containing two silicon atoms (Si) and one oxygen atom (O) and may be represented by -Si-O-Si-. A compound having a siloxane bond may be a polysiloxane compound.
 金型を用いてコンパウンドから成形体を形成する場合、樹脂組成物は、ワックスを含有してよい。ワックスは、コンパウンドの成形(例えばトランスファー成形)におけるコンパウンドの流動性を高めると共に、離型剤として機能する。ワックスは、高級脂肪酸等の脂肪酸、及び脂肪酸エステルのうち少なくともいずれか一つであってよい。 When forming a molded body from a compound using a mold, the resin composition may contain wax. Wax enhances the fluidity of the compound in compound molding (for example, transfer molding) and functions as a release agent. The wax may be at least one of fatty acids such as higher fatty acids and fatty acid esters.
 ワックスは、例えば、モンタン酸、ステアリン酸、12-オキシステアリン酸、ラウリン酸等の脂肪酸類又はこれらのエステル;ステアリン酸亜鉛、ステアリン酸カルシウム、ステアエン酸バリウム、ステアリン酸アルミニウム、ステアリン酸マグネシウム、ラウリン酸カルシウム、リノール酸亜鉛、リシノール酸カルシウム、2-エチルヘキソイン酸亜鉛等の脂肪酸塩;ステアリン酸アミド、オレイン酸アミド、エルカ酸アミド、ベヘン酸アミド、パルミチン酸アミド、ラウリン酸アミド、ヒドロキシステアリン酸アミド、メチレンビスステアリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスラウリン酸アミド、ジステアリルアジピン酸アミド、エチレンビスオレイン酸アミド、ジオレイルアジピン酸アミド、N-ステアリルステアリン酸アミド、N-オレイルステアリン酸アミド、N-ステアリルエルカ酸アミド、メチロールステアリン酸アミド、メチロールベヘン酸アミド等の脂肪酸アミド;ステアリン酸ブチル等の脂肪酸エステル;エチレングリコール、ステアリルアルコール等のアルコール類;ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール及びこれらの変性物からなるポリエーテル類;シリコーンオイル、シリコングリース等のポリシロキサン類;フッ素系オイル、フッ素系グリース、含フッ素樹脂粉末等のフッ素化合物;並びに、パラフィンワックス、ポリエチレンワックス、アマイドワックス、ポリプロピレンワックス、エステルワックス、カルナウバ、マイクロワックス等のワックス類;からなる群より選ばれる少なくとも一種であってよい。 Waxes include fatty acids such as montanic acid, stearic acid, 12-oxystearic acid and lauric acid, or esters thereof; zinc stearate, calcium stearate, barium stearate, aluminum stearate, magnesium stearate, calcium laurate, Fatty acid salts such as zinc linoleate, calcium ricinoleate, and zinc 2-ethylhexoate; Acid amide, ethylenebisstearic acid amide, ethylenebislauric acid amide, distearyl adipic acid amide, ethylene bis oleic acid amide, dioleyl adipic acid amide, N-stearyl stearic acid amide, N-oleyl stearic acid amide, N-stearyl Fatty acid amides such as erucic acid amide, methylol stearic acid amide and methylol behenic acid amide; fatty acid esters such as butyl stearate; alcohols such as ethylene glycol and stearyl alcohol; polyethylene glycol, polypropylene glycol, polytetramethylene glycol and modifications thereof Polyethers composed of substances; Polysiloxanes such as silicone oil and silicone grease; Fluorine compounds such as fluorine oil, fluorine grease, and fluorine-containing resin powder; Paraffin wax, polyethylene wax, amide wax, polypropylene wax, ester Waxes such as wax, carnauba, and microwax; may be at least one selected from the group consisting of.
 コンパウンドの環境安全性、リサイクル性、成形加工性、及び低コストのために、コンパウンドは難燃剤を含んでよい。難燃剤は、例えば、臭素系難燃剤、リン系難燃剤、水和金属化合物系難燃剤、シリコーン系難燃剤、窒素含有化合物、ヒンダードアミン化合物、有機金属化合物、及び芳香族エンプラからなる群より選ばれる少なくとも一種であってよい。樹脂組成物は、上記のうち一種の難燃剤を含有してよく、上記のうち複数種の難燃剤を含有してもよい。 The compound may contain a flame retardant for the environmental safety, recyclability, moldability, and low cost of the compound. Flame retardants are selected from the group consisting of, for example, brominated flame retardants, phosphorus flame retardants, hydrated metal compound flame retardants, silicone flame retardants, nitrogen-containing compounds, hindered amine compounds, organometallic compounds, and aromatic engineering plastics. At least one type may be used. The resin composition may contain one flame retardant among the above, and may contain a plurality of flame retardants among the above.
 コンパウンドを作製する際には、非磁性粉と磁性粉と樹脂組成物(樹脂組成物を構成する各成分)とを加熱しながら混合する。例えば、非磁性粉と磁性粉と樹脂組成物とを加熱しながらニーダー、ロール、攪拌機などで混練してよい。非磁性粉、磁性粉及び樹脂組成物の加熱及び混合により、樹脂組成物が磁性粉を構成する金属元素含有粒子の表面の一部又は全体に付着して金属元素含有粒子を被覆し、樹脂組成物中のエポキシ樹脂の一部又は全部が半硬化物になる。その結果、コンパウンドが得られる。非磁性粉、磁性粉及び樹脂組成物の加熱及び混合によって得られた粉末に、更にワックスを加えることによって、コンパウンドを得てもよい。予め樹脂組成物とワックスとが混合されていてもよい。 When making a compound, the non-magnetic powder, magnetic powder, and resin composition (the components that make up the resin composition) are mixed while being heated. For example, the nonmagnetic powder, the magnetic powder, and the resin composition may be kneaded with a kneader, rolls, stirrer, or the like while being heated. By heating and mixing the non-magnetic powder, the magnetic powder, and the resin composition, the resin composition adheres to a part or the entire surface of the metal element-containing particles constituting the magnetic powder, coating the metal element-containing particles, and forming the resin composition. Part or all of the epoxy resin in the product becomes a semi-cured product. The result is a compound. A compound may be obtained by further adding wax to the powder obtained by heating and mixing the non-magnetic powder, the magnetic powder and the resin composition. The resin composition and wax may be mixed in advance.
 混練では、非磁性粉、磁性粉、エポキシ樹脂、硬化剤、硬化促進剤、及びカップリング剤を槽内で混練してよい。非磁性粉、磁性粉及びカップリング剤を槽内に投入して混合した後、エポキシ樹脂、硬化剤、及び硬化促進剤を槽内へ投入して、槽内の原料を混練してもよい。エポキシ樹脂、硬化剤、及びカップリング剤を槽内で混練した後、硬化促進剤を槽内に入れて、更に槽内の原料を混練してもよい。予めエポキシ樹脂、硬化剤、及び硬化促進剤の混合粉(樹脂混合粉)を作製し、非磁性粉と磁性粉とカップリング剤とを混練して金属混合粉を作製し、続いて、金属混合粉と樹脂混合粉とを混練してもよい。 In kneading, non-magnetic powder, magnetic powder, epoxy resin, curing agent, curing accelerator, and coupling agent may be kneaded in a tank. After the non-magnetic powder, the magnetic powder and the coupling agent are put into the tank and mixed, the epoxy resin, the curing agent and the curing accelerator may be put into the tank and the raw materials in the tank are kneaded. After kneading the epoxy resin, the curing agent and the coupling agent in the tank, the curing accelerator may be put in the tank and the raw materials in the tank may be further kneaded. Mixed powder (resin mixed powder) of epoxy resin, curing agent, and curing accelerator is prepared in advance, non-magnetic powder, magnetic powder and coupling agent are kneaded to prepare metal mixed powder, followed by metal mixing. The powder and resin mixed powder may be kneaded.
 混練時間は、混練機械の種類、混練機械の容積、コンパウンドの製造量にもよるが、例えば、1分以上であることが好ましく、2分以上であることがより好ましく、3分以上であることが更に好ましい。混練時間は、20分以下であることが好ましく、15分以下であることがより好ましく、10分以下であることが更に好ましい。混練時間が1分未満である場合、混練が不十分であり、コンパウンドの成形性が損なわれ、コンパウンドの硬化度にばらつきが生じる。混練時間が20分を超える場合、例えば、槽内で樹脂組成物(例えば、エポキシ樹脂及びフェノール樹脂)の硬化が進み、コンパウンドの流動性及び成形性が損なわれ易い。 The kneading time depends on the type of kneading machine, the volume of the kneading machine, and the production amount of the compound, but for example, it is preferably 1 minute or more, more preferably 2 minutes or more, and 3 minutes or more. is more preferred. The kneading time is preferably 20 minutes or less, more preferably 15 minutes or less, and even more preferably 10 minutes or less. If the kneading time is less than 1 minute, the kneading is insufficient, the moldability of the compound is impaired, and the degree of cure of the compound varies. If the kneading time exceeds 20 minutes, for example, the curing of the resin composition (for example, epoxy resin and phenol resin) proceeds in the tank, and the fluidity and moldability of the compound are likely to be impaired.
 槽内の原料を加熱しながらニーダーで混練する場合、加熱温度は、例えば、エポキシ樹脂の半硬化物(Bステージのエポキシ樹脂)が生成し、且つエポキシ樹脂の硬化物(Cステージのエポキシ樹脂)の生成が抑制される温度であればよい。加熱温度は、硬化促進剤の活性化温度よりも低い温度であってよい。加熱温度は、例えば、50℃以上であることが好ましく、60℃以上であることがより好ましく、70℃以上であることが更に好ましい。加熱温度は、150℃以下であることが好ましく、120℃以下であることがより好ましく、110℃以下であることが更に好ましい。加熱温度が上記の範囲内である場合、槽内の樹脂組成物が軟化して磁性粉を構成する金属元素含有粒子の表面を被覆し易く、エポキシ樹脂の半硬化物が生成し易く、混練中のエポキシ樹脂の完全な硬化が抑制され易い。 When the raw material in the tank is kneaded with a kneader while being heated, the heating temperature is, for example, such that a semi-cured epoxy resin (B-stage epoxy resin) is produced and a cured epoxy resin (C-stage epoxy resin) is produced. Any temperature can be used as long as the temperature suppresses the generation of The heating temperature may be a temperature lower than the activation temperature of the curing accelerator. The heating temperature is, for example, preferably 50° C. or higher, more preferably 60° C. or higher, and even more preferably 70° C. or higher. The heating temperature is preferably 150° C. or lower, more preferably 120° C. or lower, and even more preferably 110° C. or lower. When the heating temperature is within the above range, the resin composition in the tank softens and easily coats the surface of the metal element-containing particles that constitute the magnetic powder, and the semi-cured epoxy resin is likely to form, and during kneading complete hardening of the epoxy resin is likely to be inhibited.
[成形体]
 本実施形態に係る成形体は、上記のコンパウンドを含むことができる。実施形態に係る成形体は、上記のコンパウンドの硬化物を含んでもよい。成形体は、未硬化の樹脂組成物、樹脂組成物の半硬化物(Bステージの樹脂組成物)、及び樹脂組成物の硬化物(Cステージの樹脂組成物)からなる群より選ばれる少なくとも一種を含んでいてよい。本実施形態に係る成形体は、電子部品又は電子回路基板用の封止材として用いられてよい。本実施形態によれば、電子部品又は電子回路基板が備える金属部材と、成形体(封止材)との熱膨張率差に起因する成形体のクラックを抑制することができる。
[Molded body]
The molded article according to this embodiment can contain the compound described above. A molded article according to the embodiment may contain a cured product of the above compound. The molded article is at least one selected from the group consisting of an uncured resin composition, a semi-cured resin composition (B-stage resin composition), and a cured resin composition (C-stage resin composition). may contain The molded article according to this embodiment may be used as a sealing material for electronic components or electronic circuit boards. According to the present embodiment, it is possible to suppress cracks in the molded body due to the difference in coefficient of thermal expansion between the metal member included in the electronic component or electronic circuit board and the molded body (sealing material).
 コンパウンドの硬化物は、非磁性粉と磁性粉と樹脂組成物との硬化物である。硬化物の250℃における曲げ強度は、硬化物の強度を高める観点から、5.0MPa以上、5.5MPa以上、又は5.8MPa以上であってよい。250℃における曲げ強度の上限値は、10MPa程度である。硬化物の室温における曲げ強度は、90MPa以上、95MPa以上、又は100MPa以上であってよい。室温における曲げ強度の上限値は、200MPa程度である。本実施形態に係るコンパウンドの硬化物は、高温高湿環境下で吸湿した後も優れた機械特性を有している。例えば、121℃、100%(飽和)の環境下で20時間処理した後の硬化物の室温における曲げ強度は、48MPa以上、50MPa以上、又は52MPa以上であってよい。 The cured product of the compound is a cured product of non-magnetic powder, magnetic powder, and resin composition. The bending strength at 250° C. of the cured product may be 5.0 MPa or higher, 5.5 MPa or higher, or 5.8 MPa or higher from the viewpoint of increasing the strength of the cured product. The upper limit of bending strength at 250° C. is about 10 MPa. The bending strength of the cured product at room temperature may be 90 MPa or higher, 95 MPa or higher, or 100 MPa or higher. The upper limit of bending strength at room temperature is about 200 MPa. The cured product of the compound according to this embodiment has excellent mechanical properties even after absorbing moisture in a high-temperature and high-humidity environment. For example, the flexural strength at room temperature of the cured product after treatment in an environment of 121° C. and 100% (saturation) for 20 hours may be 48 MPa or higher, 50 MPa or higher, or 52 MPa or higher.
 本実施形態に係る成形体の製造方法は、コンパウンドを金型中で加圧する工程を備えてよい。成形体の製造方法は、金属部材の表面の一部又は全体を覆うコンパウンドを金型中で加圧する工程を備えてよい。成形体の製造方法は、コンパウンドを金型中で加圧する工程のみを備えてよく、当該工程に加えてその他の工程を備えてもよい。成形体の製造方法は、第一工程、第二工程及び第三工程を備えてもよい。以下では、各工程の詳細を説明する。 The method for manufacturing a molded body according to this embodiment may include a step of pressing the compound in a mold. The method of manufacturing a molded body may include a step of pressing a compound covering part or all of the surface of the metal member in a mold. The method for producing a molded article may include only the step of pressing the compound in the mold, or may include other steps in addition to this step. The method for manufacturing a molded article may comprise a first step, a second step and a third step. Details of each step are described below.
 第一工程では、上記の方法でコンパウンドを作製する。 In the first step, a compound is made by the above method.
 第二工程では、コンパウンドを金型中で加圧することにより、成形体(Bステージの成形体)を得る。第二工程では、金属部材の表面の一部又は全体を覆うコンパウンドを金型中で加圧することにより、成形体(Bステージの成形体)を得てよい。第二工程において、樹脂組成物が、磁性粉を構成する個々の金属元素含有粒子間に充填される。そして樹脂組成物は、結合材(バインダ)として機能し、磁性粉同士を互いに結着する。 In the second step, the compound is pressurized in a mold to obtain a molded body (B-stage molded body). In the second step, a molded body (B-stage molded body) may be obtained by pressing a compound covering part or all of the surface of the metal member in a mold. In the second step, the resin composition is filled between individual metal element-containing particles that constitute the magnetic powder. The resin composition functions as a binding material (binder) and binds the magnetic particles together.
 第二工程として、コンパウンドのトランスファー成形を実施してもよい。トランスファー成形では、コンパウンドを5MPa以上50MPa以下で加圧してよい。成形圧力が高いほど、機械的強度に優れた成形体が得られ易い傾向がある。成形体の量産性及び金型の寿命を考慮した場合、成形圧力は8MPa以上20MPa以下であることが好ましい。トランスファー成形によって形成される成形体の密度は、コンパウンドの真密度に対して、好ましくは75%以上86%以下、より好ましくは80%以上86%以下であってよい。成形体の密度が75%以上86%以下である場合、機械的強度に優れた成形体が得られ易い。トランスファー成形において、第二工程と第三工程とを一括して実施してもよい。 As the second step, compound transfer molding may be performed. In transfer molding, the compound may be pressurized at 5 MPa or more and 50 MPa or less. There is a tendency that the higher the molding pressure, the easier it is to obtain a molded article having excellent mechanical strength. Considering the mass productivity of the molded product and the life of the mold, the molding pressure is preferably 8 MPa or more and 20 MPa or less. The density of the compact formed by transfer molding may be preferably 75% or more and 86% or less, more preferably 80% or more and 86% or less, relative to the true density of the compound. When the density of the molded body is 75% or more and 86% or less, it is easy to obtain a molded body having excellent mechanical strength. Transfer molding WHEREIN: You may implement a 2nd process and a 3rd process collectively.
 第三工程では、成形体を熱処理によって硬化させ、Cステージの成形体を得る。熱処理の温度は、成形体中の樹脂組成物が十分に硬化する温度であればよい。熱処理の温度は、好ましくは100℃以上300℃以下、より好ましくは110℃以上250℃以下であってよい。成形体中の磁性粉の酸化を抑制するために、熱処理を不活性雰囲気下で行うことが好ましい。熱処理温度が300℃を超える場合、熱処理の雰囲気に不可避的に含まれる微量の酸素によって磁性粉が酸化されたり、樹脂硬化物が劣化したりする。磁性粉の酸化、及び樹脂硬化物の劣化を抑制しながら樹脂組成物を十分に硬化させるためには、熱処理温度の保持時間は、好ましくは数分以上10時間以下、より好ましくは3分以上8時間以下であってよい。 In the third step, the compact is hardened by heat treatment to obtain a C-stage compact. The heat treatment temperature may be any temperature at which the resin composition in the molded article is sufficiently cured. The temperature of the heat treatment may be preferably 100° C. or higher and 300° C. or lower, more preferably 110° C. or higher and 250° C. or lower. In order to suppress oxidation of the magnetic powder in the compact, it is preferable to perform the heat treatment in an inert atmosphere. If the heat treatment temperature exceeds 300° C., the trace amount of oxygen inevitably contained in the heat treatment atmosphere may oxidize the magnetic powder or deteriorate the cured resin. In order to sufficiently cure the resin composition while suppressing oxidation of the magnetic powder and deterioration of the cured resin product, the holding time at the heat treatment temperature is preferably several minutes to 10 hours, more preferably 3 minutes or more. It can be less than an hour.
 本実施形態に係るコンパウンドを用いることで、機械特性に優れると共に、反りを低減した成形体を作製することができる。 By using the compound according to the present embodiment, it is possible to produce a compact with excellent mechanical properties and reduced warpage.
 以下では実施例により本開示を更に詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。 Although the present disclosure will be described in more detail below with reference to examples, the present invention is not limited by these examples.
 実施例及び比較例のコンパウンドの調製に使用した各成分の詳細を以下に示す。 The details of each component used to prepare the compounds of Examples and Comparative Examples are shown below.
(樹脂組成物)
第1のエポキシ樹脂(ビフェニレンアラルキル型エポキシ樹脂、日本化薬株式会社製の商品名:NC-3000、エポキシ当量:275g/eq)
第2のエポキシ樹脂(多官能型エポキシ樹脂、株式会社プリンテック製の商品名:TECHMORE VG-3101L、エポキシ当量:215g/eq)
硬化剤(フェノールノボラック樹脂、明和化成株式会社製の商品名:HF-3M)
硬化促進剤(芳香族ジメチルウレア、サンアプロ株式会社製の商品名:U-CAT3512T)
カップリング剤(メタクリロキシオクチルトリメトキシシラン、信越化学工業株式会社製の商品名:KBM-5803)
離型剤(部分ケン化モンタン酸エステルワックス、クラリアントケミカルズ株式会社製の商品名:LICOWAX-OP)
(resin composition)
First epoxy resin (biphenylene aralkyl type epoxy resin, Nippon Kayaku Co., Ltd. trade name: NC-3000, epoxy equivalent: 275 g / eq)
Second epoxy resin (polyfunctional epoxy resin, trade name manufactured by Printec Co., Ltd.: TECHMORE VG-3101L, epoxy equivalent: 215 g/eq)
Curing agent (phenol novolak resin, product name manufactured by Meiwa Kasei Co., Ltd.: HF-3M)
Curing accelerator (aromatic dimethyl urea, product name manufactured by San-Apro Co., Ltd.: U-CAT3512T)
Coupling agent (methacryloxyoctyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd., trade name: KBM-5803)
Release agent (partially saponified montan acid ester wax, product name: LICOWAX-OP manufactured by Clariant Chemicals Co., Ltd.)
(非磁性粉)
非磁性粉1(シリカ、株式会社アドマックス製の商品名:SO-25R、平均粒径:0.6μm)
非磁性粉2(シリカ、株式会社アドマックス製の商品名:SE-2200SEJ、平均粒径:0.6μm)
非磁性粉3(シリカ、株式会社アドマックス製の商品名:SO-27R、平均粒径:0.7μm)
非磁性粉4(シリカ、株式会社アドマックス製の商品名:SO-32R、平均粒径:1.4μm)
非磁性粉5(シリカ、デンカ株式会社製の商品名:FB-5SDX、平均粒径:5μm)
非磁性粉6(シリカ、デンカ株式会社製の商品名:FB-304、平均粒径:10μm)
非磁性粉7(シリカ、日本アエロジル株式会社製の商品名:AEROSIL R972CF、平均粒径:0.2μm)
(non-magnetic powder)
Non-magnetic powder 1 (silica, product name: SO-25R manufactured by Admax Co., Ltd., average particle size: 0.6 μm)
Non-magnetic powder 2 (silica, product name: SE-2200SEJ manufactured by Admax Co., Ltd., average particle size: 0.6 μm)
Non-magnetic powder 3 (silica, product name: SO-27R manufactured by Admax Co., Ltd., average particle size: 0.7 μm)
Non-magnetic powder 4 (silica, product name: SO-32R manufactured by Admax Co., Ltd., average particle size: 1.4 μm)
Non-magnetic powder 5 (silica, product name: FB-5SDX manufactured by Denka Co., Ltd., average particle size: 5 μm)
Non-magnetic powder 6 (silica, product name: FB-304 manufactured by Denka Co., Ltd., average particle size: 10 μm)
Non-magnetic powder 7 (silica, trade name: AEROSIL R972CF manufactured by Nippon Aerosil Co., Ltd., average particle size: 0.2 µm)
(磁性粉)
第1の磁性粉(アモルファス系鉄粉、エプソンアトミックス株式会社製の商品名:9A4-II、平均粒径:24μm)
第2の磁性粉(FeSiCr合金粉末、新東工業株式会社製、平均粒径:2.1μm)
(Magnetic powder)
First magnetic powder (amorphous iron powder, trade name: 9A4-II manufactured by Epson Atmix Corporation, average particle size: 24 μm)
Second magnetic powder (FeSiCr alloy powder, Sintokogyo Co., Ltd., average particle size: 2.1 μm)
[コンパウンドの調製]
(実施例1~9)
 表1に示す配合量(単位:g)のエポキシ樹脂、硬化剤、硬化促進剤、及び離型剤を、ポリ容器に投入した。これらの材料をポリ容器内で10分間混合することにより、樹脂混合物を調製した。樹脂混合物とは、樹脂組成物のうち、カップリング剤を除く他の全成分に相当する。
[Preparation of compound]
(Examples 1 to 9)
The epoxy resin, the curing agent, the curing accelerator, and the releasing agent in the compounding amounts (unit: g) shown in Table 1 were put into a plastic container. A resin mixture was prepared by mixing these materials in a plastic container for 10 minutes. The resin mixture corresponds to all components other than the coupling agent in the resin composition.
 表1に示す配合量(単位:g)の非磁性粉及び磁性粉を、加圧式2軸ニーダー(日本スピンドル製造株式会社製、容量5L)で5分間混合した後、表1に示すカップリング剤を2軸ニーダー内へ添加した。続いて、2軸ニーダーの内容物を90℃になるまで加熱し、その温度を保持しながら、2軸ニーダーの内容物を10分間混合した。続いて、上記の樹脂混合物を2軸ニーダーの内容物へ添加して、内容物の温度を120℃に保持しながら、内容物を15分間溶融・混練した。以上の溶融・混練によって得られた混練物を室温まで冷却した後、混練物が所定の粒度を有するようになるまで混練物をハンマーで粉砕した。なお、上記の「溶融」とは、2軸ニーダーの内容物のうち樹脂組成物の少なくとも一部の溶融を意味する。コンパウンド中の非磁性粉及び磁性粉は、コンパウンドの調製過程において溶融しない。以上の方法により、実施例のコンパウンドを調製した。コンパウンドの総量を基準とする磁性粉の含有量及び非磁性粉の含有量を表1に示す。 Non-magnetic powder and magnetic powder in the compounding amounts (unit: g) shown in Table 1 were mixed for 5 minutes in a pressurized twin-screw kneader (manufactured by Nihon Spindle Mfg. Co., Ltd., capacity 5 L), and then the coupling agent shown in Table 1 was mixed. was added into a twin screw kneader. Subsequently, the contents of the twin-screw kneader were heated to 90° C., and the contents of the twin-screw kneader were mixed for 10 minutes while maintaining the temperature. Subsequently, the above resin mixture was added to the contents of the twin-screw kneader, and the contents were melted and kneaded for 15 minutes while maintaining the temperature of the contents at 120°C. After cooling the kneaded material obtained by the above melting and kneading to room temperature, the kneaded material was pulverized with a hammer until the kneaded material had a predetermined particle size. In addition, the above-mentioned "melting" means melting of at least a part of the resin composition in the contents of the twin-screw kneader. The non-magnetic and magnetic powders in the compound do not melt during the compound preparation process. Compounds of Examples were prepared by the above method. Table 1 shows the content of the magnetic powder and the content of the non-magnetic powder based on the total amount of the compound.
(比較例1~2)
 各成分の種類及び配合量を表2に示すように変更したこと以外は実施例と同様に操作して、比較例のコンパウンドを調製した。
(Comparative Examples 1 and 2)
A compound of Comparative Example was prepared in the same manner as in Example except that the type and blending amount of each component were changed as shown in Table 2.
[コンパウンドの評価]
 実施例及び比較例で得られたコンパウンドについて、以下の評価を行った。結果を表1~3に示す。
[Compound evaluation]
The compounds obtained in Examples and Comparative Examples were evaluated as follows. The results are shown in Tables 1-3.
(溶融粘度)
 測定装置として、株式会社島津製作所製のCFT-100(フローテスター)を用いた。測定試料として、7gのコンパウンドから直径が10mmの円柱状のタブレットを作製した。タブレットを用い、175℃、10秒の余熱、10kgの荷重の条件下で、175℃におけるコンパウンドの最低溶融粘度を測定した。
(melt viscosity)
As a measuring device, CFT-100 (flow tester) manufactured by Shimadzu Corporation was used. As a measurement sample, a cylindrical tablet with a diameter of 10 mm was produced from 7 g of the compound. Using a tablet, the minimum melt viscosity of the compound at 175°C was measured under the conditions of 175°C, preheating for 10 seconds, and a load of 10 kg.
(バリ)
 コンパウンドを、5μmのスリットを複数有する金型を使用して、成形温度175℃、成形圧力6.9MPa、硬化時間120秒の条件で成形した。各スリットにコンパウンドが流出した距離(mm)の最大値をバリの長さとして測定した。
(Bari)
The compound was molded using a mold having a plurality of 5 μm slits under conditions of molding temperature of 175° C., molding pressure of 6.9 MPa, and curing time of 120 seconds. The maximum distance (mm) over which the compound flowed into each slit was measured as the burr length.
(曲げ試験)
 コンパウンドを、成形温度175℃、成形圧力13.5MPa、硬化時間360秒の条件でトランスファー成形した後、175℃で5.5時間ポストキュアすることによって、縦幅80mm×横幅10mm×厚さ3mmの試験片を得た。
(bending test)
The compound was transfer molded under the conditions of a molding temperature of 175 ° C., a molding pressure of 13.5 MPa, and a curing time of 360 seconds. A specimen was obtained.
 恒温槽付きオートグラフを用いて、試験片に対して3点支持型の曲げ試験を室温及び250℃で実施した。オートグラフとしては、株式会社島津製作所製のAGS-500Aを用いた。曲げ試験では、2つの支点により試験片の一方の面を支持した。試験片の他方の面における2つの支点間の中央の位置に荷重を加えた。試験片が破壊されたときの荷重を測定した。曲げ試験の測定条件は、2つの支点間の距離Lv:64.0±0.5mm、ヘッドスピード:2.0±0.2mm/分、チャートスピード:100mm/分、チャートフルスケール:490N(50kgf)であった。 Using an autograph with a constant temperature bath, a three-point support bending test was performed on the test piece at room temperature and 250°C. As the autograph, AGS-500A manufactured by Shimadzu Corporation was used. In the bending test, one side of the specimen was supported by two fulcrums. A load was applied to the other side of the specimen at a central location between the two fulcrums. The load was measured when the specimen broke. The measurement conditions for the bending test were: distance Lv between two fulcrums: 64.0±0.5 mm, head speed: 2.0±0.2 mm/min, chart speed: 100 mm/min, chart full scale: 490 N (50 kgf )Met.
 下記式(A)に基づいて、曲げ強度σ(単位:MPa)を算出した。下記式において、「P」は、試験片が破壊されたときの荷重(単位:N)であり、「Lv」は、2つの支点間の距離(単位:mm)であり、「W」は、試験片の横幅(単位:mm)であり、「t」は、試験片の厚さ(単位:mm)である。
 σ=(3×P×Lv)/(2×W×t)  (A)
Bending strength σ (unit: MPa) was calculated based on the following formula (A). In the following formula, "P" is the load (unit: N) when the test piece is destroyed, "Lv" is the distance between the two fulcrums (unit: mm), and "W" is It is the width (unit: mm) of the test piece, and "t" is the thickness (unit: mm) of the test piece.
σ=(3×P×Lv)/(2×W×t 2 ) (A)
 試験片を温度121℃、湿度100%(飽和)の環境下で20時間処理して耐湿試験を行った。耐湿試験後の試験片を用いて、上記と同様の曲げ試験を行い、室温での曲げ強度を測定した。 A moisture resistance test was performed by treating the test piece for 20 hours in an environment with a temperature of 121°C and a humidity of 100% (saturation). Using the test piece after the moisture resistance test, the same bending test as above was performed to measure the bending strength at room temperature.
(熱膨張率)
 コンパウンドを、成形温度175℃、成形圧力13.5MPa、硬化時間360秒の条件でトランスファー成形した後、175℃で5.5時間ポストキュアすることによって、縦幅19mm×横幅3mm×厚さ3mmの試験片を得た。
(thermal expansion coefficient)
The compound was transfer molded under the conditions of a molding temperature of 175 ° C., a molding pressure of 13.5 MPa, and a curing time of 360 seconds. A specimen was obtained.
 試験片の熱膨張率を理学電気株式会社製の熱機械分析装置(商品名:TMA8140)を用いて測定した。測定は、昇温速度5℃/分、25~250℃の範囲で行い、ガラス転移温度の前後での熱膨張率を求めた。ガラス転移温度以上の熱膨張率(CTE2)を表に示す。 The coefficient of thermal expansion of the test piece was measured using a thermomechanical analyzer manufactured by Rigaku Denki Co., Ltd. (trade name: TMA8140). The measurement was performed at a heating rate of 5° C./min in the range of 25 to 250° C., and the coefficient of thermal expansion before and after the glass transition temperature was determined. The coefficient of thermal expansion (CTE2) above the glass transition temperature is shown in the table.
(反り)
 58mm×48mmのリードフレーム上に、コンパウンドを、成形温度175℃、成形圧力12MPa、硬化時間180秒の条件で、縦幅36mm×横幅52mm×厚さ2mmの形状に成形した。成形後、175℃で5.5時間ポストキュアすることによって、コンパウンドの硬化物がリードフレーム上に形成された成形品を得た。成形品コンパウンドの硬化物が形成されている面を上向きにしてテーブルの上に置き、成形品の端部のテーブルからの高さを測定することで、反りを測定した。
(warp)
The compound was molded on a lead frame of 58 mm×48 mm into a shape of length 36 mm×width 52 mm×thickness 2 mm under conditions of molding temperature of 175° C., molding pressure of 12 MPa, and curing time of 180 seconds. After molding, the molded product was post-cured at 175° C. for 5.5 hours to obtain a molded product in which a cured product of the compound was formed on the lead frame. Curvature was measured by placing the molded article compound on a table with the surface on which the cured product was formed facing upward, and measuring the height of the end of the molded article from the table.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(耐熱性)
 実施例1及び2のコンパウンドと、比較例1のコンパウンドについて、トロイダル形状を得られる金型を用いて、成形温度175℃、成形圧力13.5MPa、硬化時間360秒の条件でトランスファー成形した後、175℃で5.5時間ポストキュアすることによって、外径20mm、内径12mm、厚み2mmのサイズを有する成形体を作製した。
(Heat-resistant)
For the compounds of Examples 1 and 2 and the compound of Comparative Example 1, using a mold that can obtain a toroidal shape, transfer molding was performed under the conditions of a molding temperature of 175 ° C., a molding pressure of 13.5 MPa, and a curing time of 360 seconds. A compact having an outer diameter of 20 mm, an inner diameter of 12 mm, and a thickness of 2 mm was produced by post-curing at 175° C. for 5.5 hours.
 一次側巻線を成形体に5ターン巻回し、二次側巻線を成形体に5ターン巻回した後、成形体の比透磁率μSを測定した。比透磁率μSの測定には、岩崎通信機株式会社製のB-Hアナライザ(SY-8218)を用いた。比透磁率の測定時の周波数は1MHzであった。次いで、成形体を150℃、1000時間熱処理を行った後の比透磁率μS’を測定した。μS’/μSの値が熱処理後の比透磁率の保持率を表し、これを耐熱性の指標とした。結果を表3に示す。 After the primary winding was wound around the compact for 5 turns and the secondary winding was wound around the compact for 5 turns, the relative magnetic permeability μS of the compact was measured. A BH analyzer (SY-8218) manufactured by Iwasaki Tsushinki Co., Ltd. was used to measure the relative permeability μS. The frequency at which the relative magnetic permeability was measured was 1 MHz. Next, the molded body was heat-treated at 150° C. for 1000 hours, and the relative magnetic permeability μS′ was measured. The value of μS′/μS represents the retention rate of relative magnetic permeability after heat treatment, and was used as an index of heat resistance. Table 3 shows the results.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

Claims (7)

  1.  エポキシ樹脂及び硬化剤を含有する樹脂組成物と、非磁性粉と、磁性粉と、を含むコンパウンドであり、
     前記磁性粉の含有量が、前記コンパウンドの総量を基準として94~98質量%であり、
     175℃での最低溶融粘度が10~220Pa・sである、コンパウンド。
    A compound containing a resin composition containing an epoxy resin and a curing agent, a non-magnetic powder, and a magnetic powder,
    The content of the magnetic powder is 94 to 98% by mass based on the total amount of the compound,
    A compound having a minimum melt viscosity of 10 to 220 Pa·s at 175°C.
  2.  前記非磁性粉の含有量が、前記コンパウンドの総量を基準として0.10~1.50質量%である、請求項1に記載のコンパウンド。 The compound according to claim 1, wherein the content of said non-magnetic powder is 0.10 to 1.50% by mass based on the total amount of said compound.
  3.  前記非磁性粉の平均粒径が0.3~20μmである、請求項1に記載のコンパウンド。 The compound according to claim 1, wherein the non-magnetic powder has an average particle size of 0.3 to 20 µm.
  4.  前記非磁性粉が、シリカを含む、請求項1に記載のコンパウンド。 The compound according to claim 1, wherein the non-magnetic powder contains silica.
  5.  前記磁性粉が、平均粒径が11~45μmの磁性粉と、平均粒径が0.1~9μmの磁性粉と、を含む、請求項1に記載のコンパウンド。 The compound according to claim 1, wherein the magnetic powder includes magnetic powder with an average particle size of 11 to 45 µm and magnetic powder with an average particle size of 0.1 to 9 µm.
  6.  請求項1~5のいずれか一項に記載のコンパウンドを含む、成形体。 A molded article containing the compound according to any one of claims 1 to 5.
  7.  請求項1~5のいずれか一項に記載のコンパウンドの硬化物。 A cured product of the compound according to any one of claims 1 to 5.
PCT/JP2022/023310 2021-06-14 2022-06-09 Compound, molded object, and cured compound WO2022264919A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023529833A JPWO2022264919A1 (en) 2021-06-14 2022-06-09
CN202280024658.9A CN117121134A (en) 2021-06-14 2022-06-09 Composite, molded article, and cured product of composite

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021098479 2021-06-14
JP2021-098479 2021-06-14

Publications (1)

Publication Number Publication Date
WO2022264919A1 true WO2022264919A1 (en) 2022-12-22

Family

ID=84527510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023310 WO2022264919A1 (en) 2021-06-14 2022-06-09 Compound, molded object, and cured compound

Country Status (4)

Country Link
JP (1) JPWO2022264919A1 (en)
CN (1) CN117121134A (en)
TW (1) TW202307064A (en)
WO (1) WO2022264919A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019102782A (en) * 2017-11-28 2019-06-24 住友ベークライト株式会社 Thermosetting resin composition, coil having magnetic core and/or outer package member, and method for manufacturing molded product

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019102782A (en) * 2017-11-28 2019-06-24 住友ベークライト株式会社 Thermosetting resin composition, coil having magnetic core and/or outer package member, and method for manufacturing molded product

Also Published As

Publication number Publication date
JPWO2022264919A1 (en) 2022-12-22
CN117121134A (en) 2023-11-24
TW202307064A (en) 2023-02-16

Similar Documents

Publication Publication Date Title
JP7416124B2 (en) Compounds and tablets
KR102587422B1 (en) Compounds and molded bodies
TWI804603B (en) Compounds and shaped bodies
JP2023047606A (en) Compound, molding, and cured product of compound
KR20230061411A (en) Compounds, moldings, and cured products of compounds
JP7120304B2 (en) Compounds, compacts, and electronic parts
KR20220111255A (en) compound and molded body
WO2022264919A1 (en) Compound, molded object, and cured compound
JP2021172685A (en) Compound, molding, and cured product of compound
JP2022167046A (en) Compound and molding
JP7231017B2 (en) Compound manufacturing method
WO2021241513A1 (en) Compound, molded object, and cured object
WO2021153688A1 (en) Compound, molded article, and cured product of compound
JP2021120432A (en) Compound, molded body and cured product of compound
JP2022149538A (en) Compound, molding, and cured product of compound
JP2023049648A (en) Molded body manufacturing method and semiconductor device manufacturing method
JP2021165334A (en) Compound, molding, and cured product of compound
WO2021153691A1 (en) Compound material, molded body, and cured product of compound material
JP2022042696A (en) Compound, molded body, and cured product of compound
JP2021172686A (en) Method for producing compound, master batch for compound, compound, molding, and cured product of compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22824909

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023529833

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE