WO2022264518A1 - 鉄道保守データ分析支援方法及び鉄道保守データ分析支援システム - Google Patents

鉄道保守データ分析支援方法及び鉄道保守データ分析支援システム Download PDF

Info

Publication number
WO2022264518A1
WO2022264518A1 PCT/JP2022/006615 JP2022006615W WO2022264518A1 WO 2022264518 A1 WO2022264518 A1 WO 2022264518A1 JP 2022006615 W JP2022006615 W JP 2022006615W WO 2022264518 A1 WO2022264518 A1 WO 2022264518A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
run curve
vehicle equipment
correction
run
Prior art date
Application number
PCT/JP2022/006615
Other languages
English (en)
French (fr)
Inventor
浩仁 矢野
崇 若宮
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2022264518A1 publication Critical patent/WO2022264518A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • B61L25/04Indicating or recording train identities
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/08Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time

Definitions

  • the present invention relates to a railway maintenance data analysis support method and a railway maintenance data analysis support system.
  • run curve One of the data formats handled in the railway field is called a run curve.
  • a run curve There are several ways to express a run curve, but a typical example is one in which the horizontal axis is the time, the vertical axis is the speed, and the running condition of the train is plotted along the horizontal and vertical axes.
  • An analysis technique using this run curve is proposed in Patent Document 1, for example.
  • Patent Document 1 compares planned operation curve data and actual operation curve data for each point with the aim of performing accurate train operation by monitoring the actual train operation state with the planned operation curve.
  • a driving accident prevention system equipped with a notification device that notifies a driver when the deviation between the planned driving curve data and the actual driving curve data as a result of the comparison is equal to or greater than a predetermined threshold for each of the points is disclosed. .
  • Patent Document 1 is a technology intended for drivers, and compares one actual run curve obtained based on the driver's actual train operation and the planned run curve.
  • the technique of Patent Document 1 does not match the purpose of analyzing a plurality of actual run curves to read trends and abnormalities in data indicating the operational status of vehicle equipment, and to improve maintenance efficiency.
  • the viewpoint of eliminating the effects of factors such as train delays and early departures on the actual run curve is not presented.
  • the same situation means a situation at the same time and at the same speed on the run curve, such as 10 seconds after a certain train departs from a specific station.
  • the present invention has been made to solve the above-mentioned problems, and one of the objects thereof is to correct a plurality of actual run curves obtained by train operation so as to obtain a correspondence relationship with each other, and to correspond to each other. It is to realize improvement of maintenance accuracy and maintenance efficiency based on the statistical analysis of vehicle equipment operating conditions at the time of collection.
  • one aspect of the present invention provides an information processing device having a processor and a memory, which stores a plurality of run curve data, which are data groups indicating the relationship between time and speed during running of a train. , railway maintenance data analysis support for comparing the extracted run curve data with each other and correcting any of the run curve data so that each run curve data is approximated and falls within a predetermined allowable error range The method.
  • the information processing device stores environmental information indicating the environment around the train running and attributes unique to the line section in association with the run curve data, and the vehicles constituting the train in which the run curve data are recorded.
  • vehicle equipment data indicating the operation status of the vehicle equipment is stored in association with each run curve data, and based on the run curve data, the vehicle equipment data associated therewith, and the environment information,
  • a relational expression representing each of the vehicle equipment data may be generated and stored using the other vehicle equipment data and the environment information as variables.
  • a plurality of actual run curves obtained by train operation are corrected so as to obtain mutual correspondence, and vehicle equipment operating conditions at corresponding points in time can be collected, based on their statistical analysis. Maintenance accuracy and maintenance efficiency can be improved.
  • FIG. 1 is a diagram showing a configuration example of a railway maintenance data analysis support system according to one embodiment of the present invention.
  • FIG. 2 is a flowchart showing an example of run curve correction processing by the railway maintenance data analysis support system of FIG.
  • FIG. 3 is a flow chart showing an example of run curve time correction processing for correcting the run curve in the direction of the time axis.
  • FIG. 4 is a flow chart showing an example of run curve speed correction processing for correcting the run curve in the direction of the speed axis.
  • FIG. 5 is a diagram showing an example data structure of a run curve.
  • FIG. 6 is a diagram showing an example data structure of a correction run curve.
  • FIG. 7 is a diagram showing an example of a data correspondence table before and after run curve correction.
  • FIG. 1 is a diagram showing a configuration example of a railway maintenance data analysis support system according to one embodiment of the present invention.
  • FIG. 2 is a flowchart showing an example of run curve correction processing by the railway maintenance data analysis support
  • FIG. 8 is a diagram showing an example of measurement of vehicle equipment data.
  • FIG. 9 is a diagram showing an example of measurement of environment information data.
  • FIG. 10 is a diagram showing a setting example of environment information data.
  • FIG. 11 is a flowchart showing an example of run curve-vehicle device data relational expression extraction processing.
  • FIG. 12 is a diagram showing an example of connection between run curve and vehicle equipment data.
  • FIG. 13 is a diagram exemplifying a run curve-vehicle device data relational expression and an allowable error for the vehicle device data.
  • FIG. 14 is a diagram illustrating corrected vehicle device data.
  • FIG. 15 is a flowchart showing an example of data item correction processing.
  • FIG. 16 is a diagram showing a display example of a corrected run curve.
  • FIG. 17 is a diagram showing a display example of vehicle device data after correction.
  • FIG. 18 is a diagram graphically illustrating the run curve correction process.
  • FIG. 19 is a diagram graphically illustrating the run curve correction process.
  • FIG. 20 is a flow chart showing an example of correction relational expression function processing.
  • FIG. 21 is a schematic diagram showing an example of relationship analysis of run curve-vehicle equipment data.
  • FIG. 22 is a schematic diagram showing an example of vehicle device operation abnormality detection processing.
  • FIG. 23 is a schematic diagram showing an example of run curve-vehicle device data correction relational expression extraction processing.
  • FIG. 1 shows a configuration example of a railroad maintenance data analysis support system 100 of this embodiment.
  • the railway maintenance data analysis support system 100 illustrated in FIG. 1 is for facilitating analysis of vehicle equipment operating conditions during train operation by correcting actual run curves obtained from actual train operations.
  • the railway maintenance data analysis support system 100 has a configuration as a general computer equipped with a communication function with a communication network, and includes a processor 20 such as a CPU and MPU, storage devices such as RAM and ROM, and a hard disk drive (HDD ), a storage device 10 composed of a storage drive such as a semiconductor drive (SSD), an input/output device 30 having input devices such as a keyboard, mouse, touch panel, and microphone, and output devices such as a monitor display and a speaker, and a network interface. It includes a communication device 40 such as a card (NIC), a wireless module, etc., and an internal bus or the like that connects these components so as to be able to communicate with each other.
  • NIC card
  • wireless module etc.
  • the functions of the railway maintenance data analysis support system 100 are realized by software programs stored in the storage device 10.
  • the software programs are the application layer 110, the UI layer 120, and the management program 130 in the example of FIG. Data used by these software programs are stored in the storage device 10 as the data layer 140 .
  • the processor 20 functions as an arithmetic execution unit that executes data processing as the railway maintenance data analysis support system 100 according to each function of the application layer 110 and UI layer 120 and the management program 130 stored in the storage device 10 .
  • the bus not only interconnects the processor 20, the input/output device 30, and the storage device 10, but can also exchange information with other systems and devices via the communication device 40 and a communication network (not shown). is. It is also possible to realize part of the functions of the railway maintenance data analysis support system 100 as hardware.
  • the application layer 110 includes a run curve correction function 111, an equipment operation history data correction function 112, a relational expression extraction function 113, and a correction relational expression extraction function, which are the main functions of this embodiment. 114. These functions will be described later.
  • the UI layer 120 is composed of a display function 121 and an operation function 122, and a user of the railway maintenance data analysis support system 100 who is in charge of railway maintenance work confirms and operates through the input/output device 30.
  • the functions of the application layer 110 can be controlled, and various data of the data layer 140 can be captured and displayed.
  • the management program 130 manages execution control of each function of the application layer 110 and the UI layer 120.
  • the management program 130 refers to the data layer 140, records data in the data layer 140, outputs data to the UI layer 120, and executes each function according to input from the UI layer 120, as necessary, according to each function described above. I do.
  • the data layer 140 consists of input data 141 and output data 146 .
  • the input data 141 includes run curve data 142 , vehicle equipment data 143 , route information master 144 and environmental information data 145 .
  • the output data 146 is composed of corrected run curve data 147 , corrected vehicle equipment data 148 , and relational expressions 149 . The contents of each data will be described later.
  • FIG. 2 is a flowchart showing a specific execution procedure example of run curve correction by the railway maintenance data analysis support system 100 according to this embodiment.
  • the run curve to be corrected is the actual run curve obtained when the train actually runs, but the planned run curve theoretically obtained from the train operation plan may also be included in the target. In FIG. 2, both are collectively called a run curve.
  • the run curve correction function 111 of the application layer 110 executes this run curve correction processing by the operation function 122 of the UI layer 120 via the input/output device 30 of the data analysis support system 100 .
  • This is actually data processing by the processor 20 executing a program that provides the function of the run curve correction function 111, but for the sake of simplification, the program of the run curve correction function 111 etc. will be described as the main body of operation.
  • the runcurve correction function 111 selects two runcurves R0 and R1 from the runcurve data 142 of the data layer 140 as analysis targets (S201).
  • FIG. 5 shows an example of the data structure of the run curve data 142.
  • item number 501 indicates a key or index in the database storing the run curve data 142, and can be associated with the vehicle equipment data corresponding to the same time.
  • the run curve ID 502 indicates the identification code of each run curve stored, and is assigned to each run curve.
  • a group of data assigned the same run curve ID indicates one run curve.
  • the date/time 503 indicates the corresponding date and time of the point on the run curve, and the acceleration 504, velocity 505, and position 506 indicate the acceleration, velocity, and position of the vehicle at the point on the run curve.
  • f r0i that satisfies the velocity extraction function.
  • k points including such a point.
  • the value of k is the same for the point sets R0 and R1 representing the run curves, but different values may be used for each run curve (for example, k1 for R0 and k2 for R1).
  • the run curve correction function 111 sets r0 s and r1 s as the start points of run curves R0 and R1, respectively (S203), and selects sections (r0s, r0 i ) and (r1s, r1 j ) (S204).
  • i and j denote points next to each start point.
  • the run curve correction function 111 performs correction run curve creation processing (time correction) (S205).
  • Fig. 3 shows an example of the processing flow of the correction run curve creation processing (time correction).
  • the correction process is also illustrated graphically in FIG.
  • the two upper and lower curves included in each box in FIG. 18 each represent a run curve, with the horizontal axis representing time and the vertical axis representing velocity.
  • box 1801 the lower run curve is shifted to the right. This expresses that the train corresponding to the lower run curve departed later than the train indicated by the upper run curve. Therefore, it is necessary to correct the time difference between these two run curves.
  • the run curve correction function 111 determines whether or not the error amount D has been calculated for all sections of the run curve to be processed (S304).
  • the error amount D is output and the correction process ends (S305). If it is determined that there is a section in which the error amount D has not been calculated (S304, No), j is updated by 1 increment and the process continues ( S306) Box 1803 in Fig. 18 shows how the time correction of the run curves is sequentially performed.By the above, the section (r1 jmin-1 , r1 jmin ) is obtained, and the process returns to the process flow of FIG.
  • S206 it is determined whether or not the minimum error amount D at that time is sufficiently corrected for jmin obtained by the run curve correction processing (time correction) in S205 (S206).
  • the minimum error amount D is conceivable.
  • the cumulative error between two run curves is , a method can be adopted in which it is determined whether the cumulative error amount sigmaD is equal to or less than a threshold given in advance, and if it is equal to or less than the threshold, it is determined that the correction is sufficient.
  • the run curve correction function 111 determines whether either the section (r0s, r0 i ) or the section (r1 j-1 , r1 j ) is the end of the run curve. (S207). If neither is determined to be the end (S207, No), the run curve correction function 111 updates r0s or r1s (S208), and returns to step S204. When it is determined that one of them is the end (S207, Yes), the run curve correction function 111 calculates the error amount after correction of the run curves R0 and R1 again, and calculates the allowable error based on it (S212). .
  • the deviation ⁇ for the error amount diff (r0 l ,r1 l ), l 1, 2, ..., n obtained for each section is determined, and the difference from the run curve to be compared is within 2 ⁇ .
  • the run curve correction function 111 outputs the final corrected run curve and the allowable error, and ends the process (S213).
  • the run curve correction function 111 executes run curve correction processing (speed correction) (S209).
  • FIG. 4 shows a processing flow example of run curve correction processing (speed correction), and FIG. 19 shows a graphical representation example of this correction processing.
  • the sections of the two run curves are RD0 and RD1, respectively, where RD0 is the reference run curve and RD1 is the run curve to be corrected.
  • T0 the required time for the run curve section RD0 is calculated and set as T0 (S401).
  • the required time means the total time required for a train to travel from the start point to the end point of the corresponding section.
  • the run curve correction function 111 calculates the fastest run curve in the section RD0 (S402).
  • the fastest run curve means the run curve obtained when the train runs at the fastest speed within the maximum acceleration, maximum deceleration, and set speed limits of the cars that make up the train. .
  • the required time Tfast is obtained under the limitation of the speed Vfast.
  • a run curve on which the train can actually run can be obtained by performing a correction calculation so as not to exceed this fastest run curve.
  • the run curve correction function 111 calculates the required time T1 of the target run curve section RD1, the required time Tmin of the fastest run curve, and the required time Tmax when the entire section is traveled at a speed of 1 km/h (Vslow in FIG. 19). is used to search for a time range that includes the time T0, and the allowable maximum speed Vreq is calculated (S403). For example, if Tmin ⁇ T0 ⁇ T1 holds true, it can be determined that the train that recorded the run curve was able to run faster. Let the average value of the maximum speed and the maximum speed when traveling with be the allowable maximum speed Vreq again. Next, a run curve for accelerating up to the allowable maximum speed Vreq is created and defined as Rreq (S404).
  • the run curve correction function 111 outputs the Rreq as the corrected run curve section and also outputs the error amount at that time (S406). If it is determined in S405 that the error amount exceeds the specified threshold value, the run curve correction function 111 sets Rreq at that time to RD1 and returns to the processing of S403.
  • the run curve correction function 111 proceeds to step S210 as shown in FIG. It is determined whether the run curve is sufficiently corrected with respect to the reference run curve. This correction determination is made based on whether the amount of error output in S209 is equal to or less than a specified threshold value. If it is determined that the correction has been made sufficiently, the run curve correction function 111 executes the processes after S207. If it is determined that the correction is not sufficient, the run curve correction function 111 selects the corrected run curve generated in S205 with only the time correction (S211), and proceeds to the processing after S207.
  • Fig. 6 shows the data structure of the corrected run curve for the run curve shown in Fig. 5. An example is shown. Item number 601 and run curve ID 602 are the same as corresponding items in FIG. By matching this item number 601 with the pre-correction run curve in FIG. 5, the pre-correction and post-correction information can be associated with each other. Corrected date and time 603, corrected acceleration 604, and corrected speed 605 correspond to date and time 503, acceleration 504, speed 505, and position 506 in FIG. 5, respectively. The data stored in each item is data corrected based on the run curve correction procedure shown in FIG.
  • FIG. 7 shows a correspondence table of data items before and after correction for run curves and vehicle equipment data.
  • a column 701 indicates the data items of the pre-correction run curve
  • a column 702 indicates the data items of the post-correction run curve. From this correspondence table, the system 100 can acquire the correspondence relationship between the data items before correction and the data items after correction.
  • column 703 shows a correspondence table of data items before and after correction of vehicle equipment data. By using this table, the system 100 can acquire the correspondence between data items before and after correction of vehicle device data, which will be described later.
  • FIG. 8 shows an example of vehicle equipment data to be processed by this system 100 .
  • the vehicle equipment data in FIG. 8 indicates the vehicle equipment data 143 which is the input data 141 in FIG.
  • An item number 801 indicates a data key, and by using the same key as the corresponding run curve (item number 501 in the run curve data 142 in FIG. 5), the run curve can be associated with the vehicle equipment data.
  • a vehicle equipment ID 802 indicates a unique identification code given to the vehicle equipment to be monitored, and is numbered for each equipment.
  • the date and time 803 indicates the date and time of acquisition of the corresponding data.
  • Columns 804 and subsequent columns store different data items for each type of vehicle equipment. For example, if the vehicle equipment is an inverter device for driving a motor, as shown in FIG. 8, data items such as torque 804 and rotational speed 805 of the motor to be controlled are stored.
  • FIG. 9 shows an example of environment information (environment information data 145 in FIG. 1) used in this system 100.
  • Environmental information is data used as an explanatory variable in analyzing vehicle equipment data, as will be described later.
  • the date and time of measurement are recorded in the date and time 901, so that the date and time 901 can be associated with other data.
  • Columns 902 and subsequent columns are specific data item examples of environmental information, and in this example, temperature 902 and humidity 903 are recorded.
  • Fig. 10 shows another example of environmental information.
  • the environment information in FIG. 10 is associated with other run curve data using a position 1001 indicating the running position of the train as a data key.
  • Columns 1002 and subsequent columns are specific data item examples of environmental information, and in this example, a gradient 1002 and a curve radius 1003 are recorded.
  • the environment information in FIG. 10 corresponds to the route information master 144 in FIG.
  • FIG. 11 is a flow chart showing an example of data processing for extracting the relational expression between the run curve and vehicle equipment data.
  • the data processing illustrated in FIG. 11 is executed by the relational expression extraction function 113 in the application layer 110 of the data analysis support system 100 .
  • the relational expression extraction function 113 acquires the run curve data 142 and vehicle equipment data 143 from the input data 141 (S1101).
  • the relational expression extraction function 113 creates a combined runcurve-vehicle device data set, which is an integrated data set in which the runcurve data 142 and the vehicle device data 143 are integrated (S1102).
  • FIG. 12 shows a configuration example of this run curve-vehicle device data binding data set, where item number 1201 is a data key, column group 1202 is run curve data corresponding to item number 1201, and column group 1203 is item number 1201.
  • a data group 1204 indicates environmental information corresponding to the relevant vehicle equipment data.
  • FIG. 12 shows a case where there is one corresponding vehicle equipment, the same applies when there is a plurality of vehicle equipment corresponding to one run curve, such as when a plurality of inverter devices are provided in one train. Then, the data items for the vehicle equipment should be increased and combined.
  • the relational expression extraction function 113 stores the relational expression with the data item y as the objective variable and the allowable error in the output data 146 of the data layer 140 as the relational expression 149 (S1104).
  • FIG. 13 shows an example data structure of the relational expression and allowable error in FIG. 11 stored in the output data 142 of the data layer 140.
  • a target device and data item 1302 and an environment information and data item 1303 respectively indicate the item of the vehicle device data to be analyzed and the item related to the environment information.
  • a permissible error 1305 indicates the permissible error for the objective variable, and indicates the permissible numerical range of the data item which is the objective variable.
  • FIG. 14 is a configuration example of corrected vehicle equipment data 148 (see FIG. 1) showing the result of correcting the vehicle equipment data using the relational expression shown in FIG.
  • item number 1401 and vehicle equipment ID 1402 respectively correspond to item number 801 and vehicle equipment ID 802 in vehicle equipment data 143 illustrated in FIG.
  • Column 1403 and subsequent columns are data items determined for each vehicle device. It corresponds to date and time 803, torque 804, and rotation speed 805.
  • FIG. 1401 and vehicle equipment ID 1402 respectively correspond to item number 801 and vehicle equipment ID 802 in vehicle equipment data 143 illustrated in FIG.
  • Column 1403 and subsequent columns are data items determined for each vehicle device. It corresponds to date and time 803, torque 804, and rotation speed 805.
  • FIG. 15 shows a processing flow example of the correction processing for each data item of the vehicle equipment explained in FIG. This data item correction process is executed by the history data correction function 112 of the application layer 110 illustrated in FIG.
  • the history data correction function 112 acquires a corrected run curve for the run curve acquired in S1502 using item number 801, which is a data key (S1503), and from the relational expression, the data item of the corrected run curve, and the data item of the target device , the predicted value of the data item that matches the objective variable y is calculated (S1504). Then, the history data correction function 112 records the calculated predicted value as the corrected vehicle equipment data 148 (S1505). After correcting the run curve by the above data item correction processing, it is possible to create data in which the operation amount of the device is corrected according to the corrected run curve, and statistical processing of vehicle device data based on the corrected data. becomes possible.
  • FIG. 16 shows a display example of a run curve utilizing the functions of the data analysis support system 100 according to this embodiment.
  • the run curve can be output to the display device or the like of the input/output device 30 by the display function 121 of the UI layer 120 .
  • the horizontal axis in FIG. 16 indicates time, and the vertical axis indicates speed.
  • a thick line 1601 indicates a reference run curve, and a thin line 1602 indicates a comparison target run curve.
  • the run curve to be compared indicates the corrected run curve resulting from using the run curve correction process illustrated in FIG.
  • the actual run curve will deviate along the time axis due to late departures and early arrivals of trains, and deviate along the time axis and speed axis due to the driver's driving habits.
  • the run curve correction processing of the present embodiment it is possible to present a plurality of run curves having different profiles in a grouped state with relatively little variation.
  • a range 1603 sandwiched by dashed lines indicates an allowable error for the target run curve, for example, presents a setting range determined in advance as an allowable deviation from the reference run curve.
  • a run curve to be compared that falls within this allowable error range will be used for vehicle equipment data analysis, which will be described later.
  • a group of runcurves 1604 that lie far outside of the tolerance range represent a set of runcurves that were deemed to have been recorded based on completely different driving patterns relative to the reference runcurves.
  • run curves are classified into a plurality of different patterns in this manner. For example, a run curve by a train that stops at each station and a run curve by an express train can be regarded as different patterns in the vicinity of a station through which the express train passes.
  • a rectangular window 1605 graphically shows the analysis range specified by the user. By narrowing down the analysis range of the vehicle equipment data in this manner, detailed analysis becomes possible.
  • FIG. 17 shows a display example of corrected vehicle device data obtained using the vehicle device data correction processing function in the data analysis support system 100 of this embodiment.
  • the corrected vehicle equipment data can be output to the display device of the input/output device 30 by the display function 121 of the UI layer 120, like the run curve.
  • the horizontal axis in FIG. 17 indicates time, and the vertical axis indicates the amount of motion acquired from the vehicle device.
  • the operation amount is a data item predetermined for each vehicle device, such as a corrected torque 1404 and a corrected rotation speed 1405, for example.
  • Bold line 1702 shows the result of vehicle equipment operation for the reference run curve.
  • the thin line 1703 shows the results of the vehicle equipment operation for the run curves to be compared.
  • a range 1701 enclosed by dashed lines indicates the allowable error for the device operation amount stored in the allowable error 1305 for vehicle device data in FIG.
  • a group 1705 having a pattern different from the vehicle device operation amount for the comparison target run curve is the vehicle device operation amount of a different pattern (when the driving type is different, such as an express train) shown in the run curve group 1604 in FIG. 1704 shows an example of the operating amount of the vehicle equipment that deviates from the allowable error 1701 .
  • run curves recorded by trains have differences in driving patterns due to late arrivals and early departures of trains, and the habits of driving operations of drivers. Anomaly detection based on the vehicle equipment data that is used has not been easy. However, by correcting the run curve and predicting the corresponding vehicle device operation amount as in the present invention, it is possible to more easily detect an abnormality.
  • the correction relational expression extraction processing is a process for correcting the run curve-vehicle device data relational expression in FIG.
  • FIG. 20 shows a processing flow example of the correction relational expression extraction processing by the correction relational expression extraction function 114 .
  • the correction relational expression extraction function 114 designates the target time range and the target run curve (S2001). As this designation method, for example, the run curve group and the target time period can be designated by using the designation function of the window 1605 in FIG. Next, the correction relational expression extraction function 114 acquires the allowable error in the target run curve (S2002). As the allowable error, it is conceivable to set a preset value or, if the target run curve is a corrected run curve, the error range obtained during the run curve correction process (S212 in the processing flow example of FIG. 2).
  • the correction relational expression extraction function 114 extracts the run curve included in the allowable error and the time period (S2003), and uses the key associated with the run curve to extract the related vehicle equipment data (without correction, with correction). , related run curves (without correction, with correction), and environment information are obtained (S2004).
  • the keys are item number 501 (run curve data) in FIG. 5, item number 601 (correction run curve data) in FIG. 6, item number 801 (vehicle equipment data) in FIG. equipment data). These are used to associate run curves (with or without correction) and vehicle equipment data (with or without correction). 9 or the position 1001 in FIG. 10, and the correction relational expression extraction function 114 acquires the environment information corresponding to the run curve data and the vehicle equipment data.
  • the correction relational expression extraction function 114 internally connects the run curve, the vehicle equipment data, and the environment information using the keys described above to construct one data table (S2005).
  • the configuration of this data table is similar to that of the combined data set illustrated in FIG.
  • the correction relational expression extraction function 114 extracts the relational expression using the data table, and outputs the allowable error at that time (S2006).
  • the relational expression at this time is also estimated using, for example, a generalized linear regression analysis method in the same manner as in the explanation regarding FIG.
  • the correction relational expression extraction function 114 refers to the relation between the columns in the data table before and after correction, and determines whether there is a column selected at the same time before and after correction (S2007).
  • the variables included in the obtained relational expression f are referred to, and the list of data items before and after correction in FIG. Get the variable set containing If such a variable group does not exist (S2007, No), the relational expression is consistent in the sense that the pre-correction and post-correction variables are not selected at the same time, so the extracted relational expression and the allowable error are output.
  • the correction relational expression extraction process ends (S2008).
  • the correction relational expression extraction function 114 removes one variable from the simultaneously selected data items and removes the unselected data items by one.
  • the variable with the smallest allowable error is selected (S2009).
  • the correction relational expression extraction function 114 first deletes both variables (without correction, with correction) indicating the data items selected at the same time, and calculates the regression formula f0 and the allowable error Th0.
  • the aforementioned generalized linear regression method can be used.
  • the corrected relational expression extraction function 114 selects one unselected data item as a new explanatory variable candidate (at this time, one of the previously deleted variables may be adopted), and this explanatory variable candidate and f 0 , a new generalized linear regression formula is used to estimate the regression formula f 1 and the allowable error Th 1 . This is applied to each of the other unselected variables to extract the variable with the smallest allowable error, f update at that time, and allowable error Th update . Then, the process returns to the determination step of S2007 and continues until there are no data item groups selected at the same time.
  • the relational expression when each vehicle device data is used as an objective variable is obtained with higher accuracy based on the run curve before and after the correction, the vehicle device data before and after the correction, and the corresponding environmental information. It is also possible to improve the detection accuracy of vehicle equipment abnormalities based on equipment data.
  • FIG. 21 shows an example of finding and analyzing new relationships from run curves and vehicle equipment data using the railway maintenance data analysis support system according to the embodiment of the present invention.
  • the UI layer, application layer, and management program in the drawing correspond to the UI layer 120, application layer 110, and management program 130 illustrated in FIG.
  • the user is assumed to be in charge of maintenance data analysis at a railway company, etc.
  • the user makes a clustering request for the actual run curve, and the management program clusters the actual run curve.
  • clustering use of, for example, the k-means method can be considered. Specifically, if the target runcurve group (the number is m) and the target range are n steps in time, m n-dimensional vectors can be extracted by extracting each runcurve as an n-dimensional vector. From these m n-dimensional vectors, k representative vectors with initial values are selected, and it is calculated whether k clusters are formed. After k clusters are formed, it is determined whether the variation within the clusters is within a preset value, and if it is within the range, the clusters are output as appropriate clusters. It is also possible to determine whether k is outputting the cluster showing the minimum variation, or k is varied to obtain the minimum variation.
  • the user selects the target cluster and requests correction of the actual run curve.
  • the management program receives the correction request, it executes the run curve correction function and then executes the relational expression extraction function.
  • the relational expression extraction function may be executed in advance to derive the relational expression in advance.
  • the history data correction function is executed to correct the vehicle equipment data. This result is sent to the UI layer and displayed as the run curve correction result and vehicle device data correction result described in FIGS. 16 and 17 .
  • a relational expression is output.
  • the user can visually confirm that there is little variation in the correction results of the run curve and the correction results of the vehicle equipment data, and can be convinced that the obtained relational expression is reliable.
  • By scrutinizing the objective variable and the explanatory variable of this relational expression it is possible to know what causes the change in the amount of operation of the vehicle equipment. can be used to create rules and standards for
  • FIG. 22 shows an example of detecting operational anomalies in vehicle equipment from run curves and vehicle equipment data using the railway maintenance data analysis support system according to the embodiment of the present invention.
  • a relational expression that matches the data item of the target equipment is obtained from the table of FIG.
  • the manager uses the matching equations to calculate model predictions.
  • This model predicted value is stored in the corrected vehicle equipment data 148 of FIG. 14, and is also output to the input/output device 30 by the display function 121 as the run curve correction result shown in FIGS. 16 and 17 and the vehicle equipment data correction result.
  • the management program compares with the allowable error 1305 in FIG.
  • the allowable error for the objective variable y exceeds the setting, it notifies the user that the device is malfunctioning.
  • Periodic execution of this process makes it easier to detect an abnormality in the device.
  • the user's processing request is the starting point, but the model prediction value calculation in the management program, the comparison with the allowable error, and the processing of the result output can be automatically started on the system at regular intervals. may In that case, the system can automatically execute the abnormality determination and notify the user when it is determined that there is an abnormality.
  • FIG. 23 utilizes the railway maintenance data analysis support system according to the embodiment of the present invention to analyze and extract a new relational expression (correction relational expression) from the corrected run curve and the corrected vehicle equipment data group.
  • a new relational expression correction relational expression
  • the management program 130 executes a correction relational expression extraction function.
  • the correction relational expression extraction function retrieves and extracts the correction relational expression from the target run curve and the target device. Specifically, using the target run curve and the data item 1301 in FIG. 13, a correction relational expression (group) including the target run curve is extracted.
  • a correction relational expression (group) including the target device is extracted from the correction relational expression (group) extracted above.
  • the management program 130 receives the extraction result and outputs it to the user from the input/output device 30 as a correction relational expression list.
  • a user who has newly received the corrected relational expression can discover the relationship between the device operation and other data, which he was not aware of until then. By finding a new relationship, if it is determined that the device operation can be easily estimated from other data, the check cycle of the device operation can be extended to reduce the inspection load.
  • a user who has received two or more correction relational expressions (group) can guess whether the behavior of the target device has deteriorated over time by observing changes in the correction relational expressions. If aging deterioration is recognized, it is possible to prevent vehicle malfunctions by repairing and replacing in advance.
  • each of the above configurations, functions, processing units, processing means, etc. may be implemented in hardware by designing, for example, integrated circuits in part or in whole.
  • each of the above configurations, functions, and the like may be realized by software by having an arithmetic unit (processor) interpret and execute a program for realizing each function.
  • Information such as programs, tables, files, etc. that realize each function is stored in storage devices such as non-volatile semiconductor memories, hard disk drives, SSDs (Solid State Drives), or computer-readable non-readable devices such as IC cards, SD cards, and DVDs. It can be stored on a temporary data storage medium.
  • control lines and information lines indicate what is considered necessary for explanation, and not all control lines and information lines are necessarily indicated on the product. In fact, it may be considered that almost all configurations are interconnected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

列車の運行によって得られる複数の実績ランカーブを、互いに対応関係が得られるように補正を行い、対応する時点における車両機器動作状況を収集可能としてそれらの統計的な解析に基づく保守精度、保守効率向上を実現すること。プロセッサとメモリとを備えた情報処理装置が、列車走行時の時間と速度との関係を示すデータ群であるランカーブデータを複数記憶し、抽出した前記ランカーブデータ同士を互いに比較して、それぞれのランカーブデータが近似されて所定の許容誤差範囲内に収められるように、いずれかの前記ランカーブデータを補正する鉄道保守データ分析支援方法である。

Description

鉄道保守データ分析支援方法及び鉄道保守データ分析支援システム
 本発明は、鉄道保守データ分析支援方法及び鉄道保守データ分析支援システムに関する。
===参照による取り込み===
 本出願は、2021年6月18日に出願された日本特許出願第2021-101724号の優先権を主張し、その内容を参照することにより、本出願に取り込む。
 従来鉄道分野では、車両が車両基地に入ったときに、検査員が所定の検査項目に従って検査を行っていた。しかし、近年鉄道分野においても、IoT(Internet of Things)を活用した車両の遠隔監視システムの導入が始まっている。車両の遠隔監視システムにより走行中の車両の各部の状況を示すデータが車両保守部門にリアルタイムに届けられ、このようなデータに基づいて、検査項目に対する異常の有無を随時判定することができるようになってきている。一方で、IoTの進展への期待から、従来の検査項目に捉われず、より保守精度が高い検査方法への改革も求められるようになりつつある。このような検査方法の改良のため、車両走行データを解析して車両搭載機器の異常と車両走行データとの間の関係性を分析することなどが行われるようになってきている。
 鉄道分野で扱うデータ形式の1つにランカーブ(運転曲線)と呼ばれるものがある。ランカーブの表現方法はいくつかあるが、典型的には、横軸を時刻、縦軸を速度として、列車の走行状況をこの横軸、縦軸に合わせてプロットしたものが挙げられる。このランカーブを利用した解析技術は、例えば特許文献1に提案されている。
 特許文献1は、実際の列車運行状態を計画運転曲線で監視することにより、的確な列車の運行を行うことを目的として、計画運転曲線データと実際の運転曲線データを地点毎に比較し、その比較の結果、計画運転曲線データと実際の運転曲線データとの偏差が前記地点毎に所定の閾値以上である場合に、運転士に報知する報知装置を具備する運転事故防止システムを開示している。
特開2008-247091号公報
 しかし特許文献1は、運転士を対象とした技術であり、運転士の実際の列車運行に基づき得られた1つの実績ランカーブと、計画ランカーブとを比較している。特許文献1の技術は、複数の実績ランカーブを解析して車両機器の動作状況を示すデータにおける傾向や異常を読み取り、保守の効率化に繋げる目的とは合致していない。また鉄道車両保守業務において複数の実績ランカーブを比較する際には、同じ状況で取得されたデータ同士で比較することが望ましいが、特許文献1では、この同じ状況でのデータ同士を比較するに当たり、列車遅延や早発などの要因が実績ランカーブに与える影響を除去するという観点が提示されていない。ここで、同じ状況とは、例えばある列車が特定の駅を発車してから10秒経過後といった、ランカーブ上において同一時刻、同一速度を示す時点である状況を意味している。鉄道の列車は設定された列車ダイヤ通りに運行することを目標としているが、実際は定時運行といえども秒単位での運転時分の差異は存在する。特に都市圏の列車運行は通勤ラッシュ時に遅れることが多く、特許文献1の手法を鉄道保守のデータ解析に活用しようとしても、ランカーブ上の同じ状況のデータを収集することが困難であるという問題がある。また特許文献1が示す通り、実績ランカーブは運転士の技能やクセによって互いに多少異なるため、仮に同じ駅間の実績ランカーブで車両機器動作を解析しようとしても、類似といえるランカーブが少なく、解析は容易ではないという問題もある。
 本発明は、前記の課題を解決するためになされたもので、その目的の一つは、列車の運行によって得られる複数の実績ランカーブを、互いに対応関係が得られるように補正を行い、対応する時点における車両機器動作状況を収集可能としてそれらの統計的な解析に基づく保守精度、保守効率向上を実現することである。
 上記課題を解決するために、本発明の一態様は、プロセッサとメモリとを備えた情報処理装置が、列車走行時の時間と速度との関係を示すデータ群であるランカーブデータを複数記憶し、抽出した前記ランカーブデータ同士を互いに比較して、それぞれのランカーブデータが近似されて所定の許容誤差範囲内に収められるように、いずれかの前記ランカーブデータを補正する鉄道保守データ分析支援方法である。
 前記情報処理装置は、前記ランカーブデータに対応づけて、列車が走行する周囲の環境及び走行線区固有の属性を示す環境情報を記憶し、前記各ランカーブデータを記録した列車を構成する車両の車両機器の動作状況を示すデータである車両機器データを各ランカーブデータに対応づけて記憶し、前記ランカーブデータとそれに対応づけられている前記車両機器データ、及び前記環境情報に基づいて、各前記車両機器データを表す関係式を、他の前記車両機器データ及び前記環境情報を変数として生成して記憶するようにしてもよい。
 本発明によれば、列車の運行によって得られる複数の実績ランカーブを、互いに対応関係が得られるように補正を行い、対応する時点における車両機器動作状況を収集可能としてそれらの統計的な解析に基づく保守精度、保守効率向上を実現することができる。
図1は、本発明の一実施形態に係る鉄道保守データ分析支援システムの構成例を示す図である。 図2は、図1の鉄道保守データ分析支援システムによるランカーブ補正処理の一例を示すフロー図である。 図3は、ランカーブを時間軸方向に補正するランカーブ時刻補正処理の一例を示すフロー図である。 図4は、ランカーブを速度軸方向に補正するランカーブ速度補正処理の一例を示すフロー図である。 図5は、ランカーブのデータ構造例を示す図である。 図6は、補正ランカーブのデータ構造例を示す図である。 図7は、ランカーブ補正前後のデータ対応表の一例を示す図である。 図8は、車両機器データの測定例を示す図である。 図9は、環境情報データの測定例を示す図である。 図10は、環境情報データの設定例を示す図である。 図11は、ランカーブ-車両機器データ関係式抽出処理の一例を示すフロー図である。 図12は、ランカーブ-車両機器データの結合例を示す図である。 図13は、ランカーブ-車両機器データ関係式と車両機器データに対する許容誤差を例示する図である。 図14は、補正後の車両機器データを例示する図である。 図15は、データ項目補正処理の一例を示すフロー図である。 図16は、補正されたランカーブの表示例を示す図である。 図17は、補正後の車両機器データの表示例を示す図である。 図18は、ランカーブ補正処理をグラフィックに例示する図である。 図19は、ランカーブ補正処理をグラフィックに例示する図である。 図20は、補正関係式機能処理の一例を示すフロー図である。 図21は、ランカーブ-車両機器データの関係分析例を示す模式図である。 図22は、車両機器動作異常検出処理例を示す模式図である。 図23は、ランカーブ-車両機器データ補正関係式抽出処理例を示す模式図である。
 以下、本発明に係る鉄道保守データ分析支援方法と、その分析支援方法を実現するための鉄道保守データ分析支援システムについて、図面を参照しつつその一実施形態に即して説明する。図中、同一の符号を付した部分は同一の要素を表し、その基本的な構成および動作は互いに同様であるものとする。
鉄道保守データ分析支援システム
 図1に、本実施形態の鉄道保守データ分析支援システム100の構成例を示している。図1に例示する鉄道保守データ分析支援システム100は、実際の列車運行から得られる実績ランカーブの補正を行うことで、列車走行中の車両機器動作状況の解析を容易化するためのものである。
 鉄道保守データ分析支援システム100は、通信ネットワークとの通信機能を備えた一般的なコンピュータとしての構成を有し、CPU,MPU等のプロセッサ20、RAM,ROM等の記憶デバイス、及びハードディスクドライブ(HDD),半導体ドライブ(SSD)等の記憶ドライブから構成されている記憶装置10、キーボード、マウス、タッチパネル、マイク等の入力デバイスと、モニタディスプレイ、スピーカ等の出力デバイスを有する入出力装置30、ネットワークインタフェースカード(NIC)、無線モジュール等の通信装置40、及びそれらの構成要素を相互に通信可能に接続する内部バス等を備えている。
 鉄道保守データ分析支援システム100の機能は、記憶装置10に格納されているソフトウェアプログラムによって実現されている。このソフトウェアプログラムは、図1の例では、アプリケーション層110、UI層120、管理プログラム130である。これらのソフトウェアプログラムが利用するデータは、データ層140として記憶装置10に格納されている。
 プロセッサ20は、記憶装置10に格納されたアプリケーション層110、UI層120の各機能や管理プログラム130に従って鉄道保守データ分析支援システム100としてのデータ処理を実行する演算実行部として機能する。プロセッサ20では管理プログラム130に従い適宜アプリケーション層110,UI層120の機能を呼び出して実行することで、各部に付加されたプログラムの機能を発揮させることができる。なお、バスは上記プロセッサ20、入出力装置30、記憶装置10を相互に接続するだけでなく、通信装置40及び図外の通信ネットワークを介して他のシステムや機器との情報交換することも可能である。なおまた、鉄道保守データ分析支援システム100の機能の一部をハードウェアとして実現することも可能である。
 図1に例示しているように、アプリケーション層110は、本実施形態の主要な機能であるランカーブ補正機能111、機器動作の履歴データ補正機能112、関係式抽出機能113、及び補正関係式抽出機能114で構成されている。これらの機能については後述する。
 UI層120は、表示機能121、操作機能122で構成されており、鉄道保守業務を担当している鉄道保守データ分析支援システム100の利用者が入出力装置30を介して確認し、操作を行うことで、アプリケーション層110の機能の制御や、データ層140の各種データの取り込み、表示が行えるようになっている。
 管理プログラム130は、アプリケーション層110、UI層120の各機能の実行制御を管理している。管理プログラム130は、前述の各機能によって必要に応じてデータ層140の参照やデータ層140への記録、あるいはUI層120への出力や、UI層120からの入力に応じた各機能の実行などを行う。
 データ層140は、入力データ141と、出力データ146とから構成されている。入力データ141は、ランカーブデータ142、車両機器データ143、路線情報マスタ144、及び環境情報データ145から構成される。出力データ146は、補正ランカーブデータ147、補正車両機器データ148、及び関係式149から構成されている。各データの内容については後述する。
ランカーブ補正処理
 次に、車両機器の動作状況の比較対照を適正に実施するための、ランカーブ補正処理について説明する。図2は、本実施形態に係る鉄道保守データ分析支援システム100によるランカーブ補正の具体的な実行手順例を示すフロー図である。この処理フロー例で補正処理対象とするランカーブは、実際に列車が走行したときに得られる実績ランカーブであるが、列車運転計画から理論的に求まる計画ランカーブを対象に含めてもよい。図2では両者を総称してランカーブと呼ぶ。
 データ分析支援システム100の入出力装置30を介してUI層120の操作機能122により、アプリケーション層110のランカーブ補正機能111が本ランカーブ補正処理を実行する。これは、実際にはプロセッサ20がランカーブ補正機能111の機能を提供するプログラムを実行することによるデータ処理であるが、以降、簡単のため、ランカーブ補正機能111等のプログラムを動作主体として記述する。
 最初にランカーブ補正機能111は、分析対象としてデータ層140のランカーブデータ142から、2つのランカーブR0とR1を選択する(S201)。図5にランカーブデータ142のデータ構造の一例を示している。図5において、項番501はランカーブデータ142を格納するデータベースにおけるキーあるいはインデックスを示しており、同じ時刻に対応する車両機器データと対応づけることができる。ランカーブID502は格納されている各ランカーブの識別符号を示しており、ランカーブごとに付与される。ランカーブデータ142において、同一のランカーブIDが付与されている一群のデータが一つのランカーブを示している。日時刻(date/time)503はランカーブ上の点の対応する年月日時刻を示しており、加速度504、速度505、位置506はランカーブ上の点での車両の加速度、速度、位置を示している。
 次にランカーブ補正機能111は、それぞれのランカーブの点の中から、k個の点を選択する(S202)。これは処理速度を向上させるためにランカーブの中から一部の点を代表点として抽出して処理を行うためである。この選択点を選ぶ際には、列車の出発の時点、あるいは停車の時点に対応するランカーブ上の点を含めておく。具体的には、ランカーブが点集合R0={r01,r02,r03,...,r0n}(r0iはランカーブ上の1つの点を表すベクトル)であった時、出発の時点は、
f(r0i)=0 かつ f(r0i+1)>0,f : 速度を抽出する関数
を満たすr0iとなる。同様に停車の時点は、
f(r0i-1)>0 かつ f(r0i)=0,f :速度を抽出する関数
を満たすr0iとなる。このような点を含んだk個の点を選択しておく。なお説明上kの数値はランカーブを示す点集合R0, R1で同じ値としているが、それぞれのランカーブについて異なった値(例えばR0についてはk1、R1についてはk2)としても構わない。
 次にランカーブ補正機能111は、ランカーブR0, R1の始端点をそれぞれr0s,r1sとし(S203)、区間(r0s,r0i),(r1s,r1j)を選択する(S204)。ここでi,jはそれぞれの始端点の隣の点を示すものとする。次にランカーブ補正機能111は、補正ランカーブ作成処理(時刻補正)を行う(S205)。
 図3に、補正ランカーブ作成処理(時刻補正)の処理フロー例を示している。また補正処理を図18にグラフィックに図示している。図18の各ボックスに含まれる上下2つの曲線はそれぞれランカーブを示しており、横軸方向が時間、縦軸方向が速度を表している。ボックス1801を参照すると、下側のランカーブが右にずれている。これは、下側のランカーブに対応する列車が上側ランカーブが示す列車よりも遅れて出発したことを表現している。したがって、この2つのランカーブの持つ時間差を修正する必要がある。
 図3を参照すると、まずランカーブ補正機能111は、2つのランカーブの区間(r0s,r0i)と、区間(r1j-1,r1j)に対し、出発時点の時刻差ΔT を算出する(S301)。次に補正対象の区間の所要時間をすべてΔTで補正したと仮定する(S302)。ボックス1802の下側ランカーブで点線で示している部分が時刻差ΔT分補正されたランカーブの区間になる。次にランカーブ補正機能111は、補正後の区間の誤差量を求める(S303)。この誤差量Dは、
D=diff(r0l,r1l),diff :2つのベクトルの距離を算出する関数
によって求めることができる。
 ランカーブ補正機能111は、処理対象であるランカーブのすべての区間について誤差量Dを計算したか判定し(S304)、計算したと判定すれば(S304,Yes、最小の誤差量を与えるjminと対応する誤差量Dを出力して補正処理を終了する(S305)。誤差量Dを計算していない区間があると判定した場合(S304,No)、jを1インクリメントする更新を行い処理を続行する(S306)。図18のボックス1803に、ランカーブの時刻補正を順次実施していく模様が図示されている。以上により、2つのランカーブR0, R1の間で、最も誤差が小さい区間(r1jmin-1,r1jmin)が求められる。そして処理は図2の処理フローに戻る。
 S206で、S205のランカーブ補正処理(時刻補正)によって得られたjm inについて、その時の最小の誤差量Dが十分な補正になっているかを判定する(S206)。最小誤差量Dの判定方法はいくつか考えられる。例えば2つのランカーブの間の累積誤差量を
Figure JPOXMLDOC01-appb-I000001
とし、累積誤差量sigmaDが事前に与えられた閾値以下かを判定し、閾値以下であれば補正は十分と判定する方法を採用することができる。
 S206で補正が十分であると判定された場合(S206,Yes)、ランカーブ補正機能111は、区間(r0s,r0i)と、区間(r1j-1,r1j)のどちらかがランカーブの終端であるかを判定する(S207)。いずれも終端でないと判定した場合(S207,No)、ランカーブ補正機能111はr0s、あるいはr1sの更新を行い(S208)、S204のステップに戻る。いずれかが終端であると判定した場合(S207,Yes)、ランカーブ補正機能111は、改めてランカーブR0, R1の補正後の誤差量を計算し、それをもとに許容誤差を算出する(S212)。許容誤差は、例えば各区間について求めた誤差量diff(r0l,r1l),l=1,2,...,nについての偏差σを求め、比較対象のランカーブとの差分が2σ以内と規定することができる。
 次いでランカーブ補正機能111は、最終的な補正ランカーブと許容誤差とを出力して処理を終了する(S213)。
 一方、S206において補正が不十分である判定された場合、ランカーブ補正機能111は、ランカーブ補正処理(速度補正)(S209)を実行する。
 図4に、ランカーブ補正処理(速度補正)の処理フロー例を、図19にこの補正処理のグラフィックな表現例を示している。ここでは説明の便宜上、2つのランカーブの区間をそれぞれRD0, RD1とし、RD0は基準となるランカーブ、RD1は補正対象のランカーブであるとする。最初にランカーブ区間RD0,RD1について、ランカーブ区間RD0の所要時間を求めT0とする(S401)。所要時間とは、該当区間の始端点から終端点まで列車が走行した時に要する合計時間を意味する。次にランカーブ補正機能111は、区間RD0における最速ランカーブを計算する(S402)。最速ランカーブとは、走行する列車を構成する車両の最大加速度、最大減速度、設定されている速度制限の範囲内で、列車が最速で走行した時の走行結果として得られるランカーブを意味している。図19においては速度Vfastの制限の元で所要時間Tfastが得られている。この最速ランカーブを上回らないように補正計算することにより、実際に列車が走行し得るランカーブが得られる。
 次にランカーブ補正機能111は、対象のランカーブ区間RD1の所要時間T1と、最速ランカーブの所要時間Tminと、全区間を速度1km/h(図19のVslow)で走行した時の所要時間Tmaxとを用いて、時間T0が含まれる時間範囲を探索し、許容最高速度Vreqを計算する(S403)。例えばTmin<T0<T1が成立した場合、該当ランカーブを記録した列車はより速く走行することができたと判定することができるため、ランカーブ区間RD1については、Tminで走行した時の最高速度と、T1で走行した時の最高速度との平均値を、改めて許容最高速度Vreqとする。次に許容最高速度Vreqまで加速して走行するランカーブを作成し、それをRreqとする(S404)。次にRreqとRD0との誤差量を計算し、規定のしきい値以下であるかを判定する(S405)。誤差量が規定値以下であると判定した場合(S405,Yes)、ランカーブ補正機能111は、Rreqを補正したランカーブ区間として出力し、あわせてその時の誤差量も出力する(S406)。S405で誤差量が規定のしきい値を超えると判定した場合、ランカーブ補正機能111は、そのときのRreqをRD1としてS403の処理に戻る。
 以上のようにランカーブ補正処理(速度補正)が実行されると、ランカーブ補正機能111は、図2に示すように、S210のステップに移り、S209のランカーブ補正処理(速度補正)によって生成された補正ランカーブが、基準ランカーブに対して十分な補正になっているかを判定する。この補正の判定は、S209にて出力された誤差量が、規定のしきい値以下であるかに基づいて行う。十分に補正出来たと判定した場合、ランカーブ補正機能111は、S207以降の処理を実行する。補正が十分でないと判定した場合、ランカーブ補正機能111は、S205で生成した時刻補正のみの補正ランカーブを選択し(S211)、S207以降の処理に進む。
 以上説明したランカーブ補正処理により、互いに形状が異なる複数の実績ランカーブを、規定の許容誤差の範囲内で互いに類似の形状を有するように補正することができる。それにより、各ランカーブ上の点における車両機器の動作状況を統計的に比較、分析することができるようになる 図6は、図5で示されたランカーブに対して、補正されたランカーブのデータ構造の一例を示したものである。項番601、ランカーブID602は、それぞれ図5の対応する項目と同一である。この項番601を補正前の図5のランカーブと一致させることで、補正前と補正後の情報を互いに対応づけることができる。補正日時刻603、補正加速度604、補正速度605は、それぞれ図5の日時刻503、加速度504、速度505、位置506と対応している。各項目に格納されるデータは、それぞれ図2で示されたランカーブ補正手順に基づいて補正されたデータである。
 本システムでは、補正前後のランカーブと、補正後のランカーブに対応する車両機器の動作状況を示すデータをコンピュータで取り扱うため、ランカーブを表現する補正前後の項目と、補正前後の車両機器動作状況を示すデータ(以下「車両機器データ」)の項目を対応づけて格納している。図7は、ランカーブ、車両機器データについて、補正前と補正後のデータ項目の対応表を示したものである。カラム701は補正前ランカーブのデータ項目を示しており、カラム702は補正後ランカーブのデータ項目を示している。この対応表により、本システム100は補正前のデータ項目と補正後のデータ項目の対応関係を取得することができる。同様にカラム703は車両機器データの補正前と補正後のデータ項目の対応表を示してる。この表を使うことで、本システム100は、後述する車両機器データの補正前と補正後のデータ項目の対応を取得することができる。
 次に、本システム100による処理対象となる車両機器データについて説明する。図8は本システム100の処理対象となる車両機器データの一例を示している。図8の車両機器データは、図2の入力データ141である車両機器データ143を示す。項番801はデータキーを示しており、対応するランカーブと同じキー(図5のランカーブデータ142における項番501)を使うことで、ランカーブと車両機器データとを対応づけることができる。車両機器ID802はモニタ対象となる車両機器に付与された固有識別符号を示しており、機器ごとに採番したものでる。日時刻803は対応するデータ取得の年月日と時刻を示している。カラム804以降は車両機器の種類ごとに異なるデータ項目を格納する。例えば車両機器がモータ駆動用のインバータ装置である場合には、図8に例示するように、トルク804、制御対象であるモータの回転速度805等のデータ項目が格納されることとなる。
 次に、環境情報について説明する。図9は本システム100で使用する環境情報(図1の環境情報データ145)の一例を示している。環境情報は、後述するように、車両機器データの分析において、説明変数として使用されるデータである。図9の例では日時刻901に測定年月日・時刻を記録しており、この日時刻901で他のデータと対応づけられるようにしている。カラム902以降は環境情報の具体的なデータ項目例であり、本例では気温902、湿度903を記録している。
 図10は環境情報の他の例を示している。図10の環境情報は、列車の走行位置を示す位置1001をデータキーとして、他のランカーブデータと対応づけられるようにしている。カラム1002以降は環境情報の具体的なデータ項目例であり、本例では勾配1002、曲線半径1003記録している。図10の環境情報は、図1の路線情報マスタ144に対応する。なお、環境情報としては、図9,図10以外のデータ項目を記録するようにしてもよい。
ランカーブと車両機器データの関係式
 次に、ランカーブと車両機器データとの関係を規定する関係式を抽出する処理について説明する。図11は、ランカーブと車両機器データとの関係式を抽出するためのデータ処理例を示すフロー図である。図11に例示するデータ処理は、データ分析支援システム100のアプリケーション層110にある関係式抽出機能113が実行する。
 最初に関係式抽出機能113は、入力データ141からランカーブデータ142、車両機器データ143を取得する(S1101)。次に関係式抽出機能113は、ランカーブデータ142と車両機器データ143とを統合した統合データセットであるランカーブ-車両機器データ結合データセットを作成する(S1102)。図12はこのランカーブ-車両機器データ結合データセットの構成例を示しており、項番1201はデータキーを、カラム群1202は項番1201に該当するランカーブデータを、カラム群1203は項番1201該当する車両機器データを、データ群1204は対応する環境情報を示している。具体的には、図12のランカーブ-車両機器データ結合データセットは、関係式抽出機能113により、項番1201で示されるデータキーで対応するランカーブと車両機器データとを検索し、得られたランカーブデータ、及び車両機器データのデータ項目を相互に結合することにより作成している。さらにカラム群1202内にある日時刻のデータ、さらには位置のデータを用いて、該当する環境情報を結合している。なお、図12は対応する車両機器が1つの場合を示しているが、一の列車に複数のインバータ装置が設けられている場合等、一のランカーブについて対応する車両機器が複数ある場合は、同様にその車両機器分データ項目を増やして結合すればよい。
 次に、関係式抽出機能113は、図12のデータを使い、各車両機器の各データ項目について、そのデータ項目を目的変数とした関係式を抽出する(S1103)。具体的には、関係式抽出機能113は、特定のデータ項目を目的変数yとし、残りのデータ項目をx=(x1,x2,...,xk)とした一般線化形回帰式により、
y=f(x)
を満たす関数fを推定する。より正確に表現すれば、許容誤差Thも導出するために、
Th=min(|y-f(x)|)
を満足するTh,fを算出する。最後に関係式抽出機能113は、データ項目yを目的変数とした関係式と許容誤差とを、データ層140の出力データ146に、関係式149として格納する(S1104)。
 図13は、データ層140の出力データ142に格納された、図11の関係式及び許容誤差のデータ構造例を示したものである。対象ランカーブとデータ項目1301は、分析対象であるランカーブと使用するデータ項目を示している。本例ではrunc001なるランカーブIDで特定されるランカーブについて、使用するデータ項目をx1=加速度と設定していることを意味している。対象機器とデータ項目1302、環境情報とデータ項目1303は、それぞれ、分析対象の車両機器データの項目、環境情報に関する項目を示している。ここで関係式を抽出するためには、目的変数を1つ定める必要がある。本例では、対象機器とデータ項目1302にてy=回転速度として目的変数を定義している。関係式1304は、y=回転速度以外のデータ項目を説明変数として、目的変数との関係式を表している。本例では特定のランカーブrunc001と機器との関係を定めているが、他のランカーブも含めて共通的に扱える場合を考慮してもよい。例えば全ランカーブで使用可能である場合、*(x1=加速度)としてもよい(*はワイルドカードを示す)。また関係式が複数の車両機器で使用可能である場合、(Ins001,Ins002) (t=日時,y=回転速度)として、車両機器Ins001とIns002で共通的に扱えるとしてもよい。許容誤差1305は目的変数に対する許容誤差を示しており、目的変数であるデータ項目の許容数値範囲を示している。
 図14は車両機器データについて、図13で示した関係式を使い補正をかけた結果を示す補正後車両機器データ148(図1参照)の構成例である。図14の例において、項番1401、車両機器ID1402は、図8に例示した車両機器データ143における項番801、車両機器ID802にそれぞれ対応する。カラム1403以降は車両機器ごとに定められたデータ項目であり、本例では補正日時刻1403、補正トルク1404、補正回転速度1405の各データ項目が格納されており、図8の車両機器データ143における日時刻803、トルク804、回転速度805に対応している。
 次に、あるランカーブについて抽出した関係式を用いて実行される、車両機器データの補正処理について説明する。図15は図14で説明した車両機器の各データ項目に対する補正処理の処理フロー例を示したものである。このデータ項目の補正処理は、図1に例示されているアプリケーション層110の履歴データ補正機能112によって実行される。
 最初に履歴データ補正機能112は、対象車両機器のデータ項目に合致した関係式を取得する(S1501)。具体的には、履歴データ補正機能112は、図13に例示するランカーブ-車両機器データ関係式の表から、該当する車両機器のデータ項目に一致する目的変数yのレコードを取得する。次に履歴データ補正機能112は、その関係式に使われるデータ項目に該当するランカーブを取得する(S1502)。具体的には、履歴データ補正機能112は、説明変数x=(x1,x2,...,xk)に挙げられている各データ項目に合致するランカーブを取得する。
 履歴データ補正機能112は、次にS1502で取得したランカーブに対する補正ランカーブを、データキーである項番801を使って取得し(S1503)、関係式、補正ランカーブのデータ項目、対象機器のデータ項目から、目的変数yに合致するデータ項目の予測値を算出する(S1504)。そして履歴データ補正機能112は、算出した予測値を補正車両機器データ148として記録する(S1505)。以上のデータ項目補正処理により、ランカーブを補正した後、その補正したランカーブに合わせて機器の動作量を補正したデータを作成することができ、補正後のデータに基づいた車両機器データの統計処理等が可能になる。
 図16は、本実施形態によるデータ分析支援システム100の機能を活用したランカーブの表示例を示している。ランカーブは、UI層120の表示機能121により、入出力装置30のディスプレイ装置等に出力させることができる。図16中の横軸は時間を示しており、縦軸は速度を示している。太線1601が基準のランカーブを示しており、細線1602が比較対象のランカーブを示している。ここで比較対象のランカーブは、図2に例示したランカーブ補正処理を使った結果の補正ランカーブを示している。特に実績ランカーブは、列車の遅発や早着により時間軸方向にずれること、運転士の運転操作にまつわるクセにより時間軸方向、速度軸方向にずれることが考えられる。本実施形態のランカーブ補正処理により、これらの互いに異なるプロファイルを有する複数のランカーブについて、比較的ばらつきが少なくまとまった状態で提示することができる。破線で挟まれている範囲1603は対象ランカーブに関する許容誤差を示しており、例えば事前に基準ランカーブからの許容偏差として定めた設定範囲を提示している。この許容誤差の範囲に属する比較対象のランカーブが、後述の車両機器データ分析に使用されることになる。許容誤差の範囲を大きく外れて存在しているランカーブ群1604は、基準ランカーブに対して完全に異なる運転パターンに基づいて記録されたとみなされたランカーブの集合を示している。鉄道の列車が記録するランカーブの場合、この様に複数の異なるパターンにランカーブ群が区別されることは当然考えられる。例えば、各駅停車の列車によるランカーブと急行列車によるランカーブとは、急行列車通過駅付近では異なるパターンとみなすことができる。矩形状のウインドウ1605は、利用者からの分析範囲の指定状況をグラフィックに示している。このように車両機器データの分析範囲の絞り込みを行うことで、詳細な分析が可能となっていく。
 図17は、本実施形態のデータ分析支援システム100における車両機器データ補正処理機能を活用して求めた、補正された車両機器データの表示例を示している。補正後の車両機器データは、ランカーブと同様に、UI層120の表示機能121により、入出力装置30のディスプレイ装置等に出力させることができる。図17中の横軸は時刻を示しており、縦軸は車両機器から取得された動作量を示している。動作量とは図14で示したように、車両機器ごとにあらかじめ定められたデータ項目であり、例えば補正トルク1404、補正回転速度1405などである。太線1702が基準のランカーブに対する車両機器動作の結果を示している。細線1703は比較対象のランカーブに対する車両機器動作の結果を示している。破線で挟まれた範囲1701は、図13の車両機器データに対する許容誤差1305に格納された機器動作量に対する許容誤差を示している。比較対象ランカーブに対する車両機器動作量とはパターンが異なる群1705は、図16のランカーブ群1604で示した別パターン(急行列車のように運転種別が異なる場合)の車両機器の動作量であり、符号1704は、許容誤差1701から逸脱した車両機器の動作量の例を示している。このような許容誤差1701を外れた車両機器データが記録されているランカーブを抽出することで、当該ランカーブを記録した列車の使用車両になんらかの異常があったことを検知することができる。本発明の鉄道保守データ分析支援システム100によらない従来は、列車が記録するランカーブに列車の遅着や早発、運転士の運転操作のクセによる運転パターンの違いがあり、各ランカーブ上で得られる車両機器データに基づく異常検出は容易でなかった。しかし、本発明の様にランカーブに補正をかけて対応する車両機器動作量を予測することにより、より容易に異常検出が可能となる。
 補正関係式抽出処理について説明する。補正関係式抽出処理は、図13のランカーブ-車両機器データ関係式を、補正関係式抽出機能114により補正する処理である。図20は、補正関係式抽出機能114による補正関係式抽出処理の処理フロー例を示したものである。
 最初に補正関係式抽出機能114は、対象とする時間範囲、対象のランカーブを指定する(S2001)。この指定方法としては、例えば図16のウインドウ1605による指定機能を使うことで、ランカーブ群と対象時間帯とを指定可能である。次に補正関係式抽出機能114は、対象ランカーブにおける許容誤差を取得する(S2002)。この許容誤差としては、事前に設定された値か、対象ランカーブが補正ランカーブであれば、ランカーブ補正処理時に得られた誤差範囲(図2の処理フロー例におけるS212)を設定することが考えられる。
 次に補正関係式抽出機能114は、前記許容誤差と前記時間帯に含まれるランカーブを抽出し(S2003)、ランカーブに対応づけられたキーを使い、関連する車両機器データ(補正無し、補正有り)、関連するランカーブ(補正無し、補正有り)、そして環境情報を取得する(S2004)。キーとは、図5の項番501(ランカーブデータ)、図6の項番601(補正ランカーブデータ)、図8の項番801(車両機器データ)、図14の項番1401(補正車両機器データ)にて例示したデータ間の対応づけを行うものである。これらを使いランカーブ(補正あり、補正無し)、車両機器データ(補正あり、補正無し)の対応づけを行う。また環境情報のキーは図9の日時刻901、または図10の位置1001であり、補正関係式抽出機能114は、ランカーブデータや車両機器データに対応する環境情報を取得する。
 次に補正関係式抽出機能114は、前記のキーを用いて、前記ランカーブと前記車両機器データと環境情報とを内部結合し、一つのデータテーブルを構築する(S2005)。このデータテーブルの構成は、図12に例示した結合データセットと同様である。次に補正関係式抽出機能114は、前記データテーブルを用いて関係式を抽出し、その時の許容誤差を出力する(S2006)。この時の関係式の推定も、図13に関する説明と同様に、例えば一般化線形回帰分析手法を用いて、目的変数をyとし、データテーブルの各データ項目を説明変数候補x=(x1,x2,...,xk)として、
y=f(x)
を満足する一般化線形回帰式fを導出する。より正確に表現すれば、許容誤差Thも導出するために、
Th=min(|y-f(x)|)
を満足するTh,fを算出する。
 次に補正関係式抽出機能114は、補正前と補正後のデータテーブルのカラムの関係を参照し、補正前と補正後とで、同時に選ばれているカラムがあるか判定する(S2007)。この確認の際には、得られた関係式fに含まれる変数を参照し、図7の補正前と補正後のデータ項目の一覧を参照して、補正前と補正後において変数が同時に選ばれている変数群を取得する。このような変数群が存在しない場合(S2007,No)、補正前と補正後の変数が同時に選ばれていないという意味で矛盾しない関係式であるため、抽出した関係式と許容誤差を出力して補正関係式抽出処理を終了する(S2008)。
 一方、前記変数群が存在すると判定された場合(S2007,Yes)、補正関係式抽出機能114は、同時に選ばれているデータ項目のどちらか1つの変数を除き、選ばれていないデータ項目を1つ変数として選択したときに、最も許容誤差が小となる変数を選択する(S2009)。具体的には、補正関係式抽出機能114は、まず同時に選ばれているデータ項目を示す変数(補正無し、補正あり)を両方削除して回帰式f0、許容誤差Th0を算出する。この算出方法には前述の一般化線形回帰式の手法を利用することができる。次に補正関係式抽出機能114は、選択されていないあるデータ項目1つを新たな説明変数候補として選び(この時、前述で削除した変数を1つ採用してもよい)、この説明変数候補とf0に含まれる変数群を使って、新たに一般化線形回帰式を用い、回帰式f1、許容誤差Th1を推定する。これをほかの未選択の変数それぞれに適用し、最も許容誤差が小となる変数とその時のfupdate、許容誤差Thupdateを抽出する。そして再びS2007の判定ステップに戻り、同時に選ばれているデータ項目群が無くなるまで処理を続けていく。
 以上の補正関係式抽出処理により、補正前後のランカーブ、補正前後の車両機器データ、及び対応する環境情報に基づいて、各車両機器データを目的変数とした場合の関係式がより精度よく求まり、車両機器データによる車両機器異常の検出精度も高めることができる。
 次に、以上説明した、本実施形態の鉄道保守データ分析支援システム100により抽出された関係式の、車両保守業務への応用例について説明する。図21は、本発明の実施形態に係る鉄道保守データ分析支援システムを活用し、ランカーブと車両機器データから新たな関係性を見出して分析する例を示している。図中のUI層、アプリケーション層、管理プログラムは、図1に例示したUI層120、アプリケーション層110、管理プログラム130に該当している。利用者としては鉄道会社等の保守データ分析担当を想定している。
 最初に利用者が実績ランカーブに対しクラスタリングの要求を行い、管理プログラムが実績ランカーブのクラスタリングを行う。クラスタリングには例えばk-means法などの利用が考えられる。具体的には対象とするランカーブ群(個数m)と、対象範囲は時間にしてnステップ分とすると、個々のランカーブをn次元ベクトルとして抽出することで、m個のn次元ベクトルが抽出できる。このm個のn次元ベクトルから、初期値k個の代表ベクトルを選び、k個のクラスタが構成されるかを計算していく。k個のクラスタが構成されたら、クラスタ内のばらつきが事前に設定された値に収まっているかを判定し、収まっていれば適切なクラスタとして出力する。またkが最小のばらつきを示すクラスタを出力しているか、kを変化させて最小のばらつきとなるkを求めてもよい。
 次に利用者が対象クラスタを選択し、実績ランカーブの補正を要求する。管理プログラムは補正要求を受けたらランカーブ補正機能を実行し、次に関係式抽出機能を実行する。なお、関係式抽出機能を事前に実行し、あらかじめ関係式を導いておいてもよい。次に車両機器データの補正のため、履歴データ補正機能を実行する。この結果はUI層に送られて、図16、図17で説明したランカーブ補正結果、車両機器データの補正結果として表示される。また同時に関係式が出力される。利用者はランカーブの補正結果、車両機器データの補正結果のばらつきが少ないことを目視確認し、得られた関係式が信用できるものとして納得することができる。この関係式の目的変数と説明変数を精査することで、車両機器の動作量変化がどのようなものに起因しているかを知ることができ、例えば点検項目の削減、点検周期の拡大など、保守のルールや基準作りに役立てることができる。
 図22は、本発明の実施形態に係る鉄道保守データ分析支援システムを活用し、ランカーブと車両機器データから車両機器の動作異常を検出する例を示している。この例では、利用者が過去に得られたランカーブと車両機器データをもとに異常判定を要求すると、対象機器のデータ項目に合致する関係式を図13の表から取得する。次に管理プログラムは合致する関係式を用いて、モデル予測値を計算する。このモデル予測値は図14の補正車両機器データ148に格納されるとともに、図16、図17で示したランカーブ補正結果、車両機器データの補正結果として表示機能121により入出力装置30に出力される。また管理プログラムは、図13の許容誤差1305と比較し、目的変数yに対する許容誤差が設定を上回った場合は、機器動作異常として利用者に通知する。本処理を定期的に実行するで機器の異常検知が容易になる。また本例では利用者の処理要求を起点としているが、管理プログラムにおけるモデル予測値計算、許容誤差との比較、及び結果出力の処理をシステム上で一定間隔で自動的に起動させるように構成してもよい。その場合には異常判定を自動的に実行して、異常があると判定した場合には利用者に通知するシステムとすることができる。
 図23は、本発明の実施形態に係る鉄道保守データ分析支援システムを活用し、補正されたランカーブと、補正された車両機器データ群から、新たな関係式(補正関係式)を分析して抽出する例を示している。最初に利用者が対象のランカーブと対象車両機器を指定して補正関係式の抽出を要求すると、管理プログラム130では、補正関係式抽出機能を実行する。補正関係式抽出機能は、対象ランカーブと、対象機器から補正関係式を検索して抽出する。具体的には図13の対象ランカーブとデータ項目1301とを用いて、対象ランカーブが含まれる補正関係式(群)を抽出する。さらに対象機器とデータ項目1302を用いて、上記で抽出した補正関係式(群)の中から、対象機器が含まれる補正関係式(群)を抽出する。管理プログラム130は抽出結果を受け取り、利用者に補正関係式一覧として入出力装置30から出力する。新たに補正関係式を受け取った利用者は、それまで気づかなかった機器動作と他のデータとの関連性を見出すことができる。新たな関係性を見出すことにより、他のデータで容易に機器動作を推定できると判断した場合には、機器動作の確認周期を伸ばして検査負荷を低減することができる。また2つ以上の補正関係式(群)を受け取った利用者は、補正関係式の変化をみることで、対象機器の挙動について経年劣化が起きているのかを、推測することできる。経年劣化が認められた場合には、事前に修理交換を実施することで、車両の不具合を未然に防ぐことが可能となる。
 以上述べた実施手順により、本発明を鉄道保守分野に適用することで、特に実績ランカーブと機器動作の履歴データの解析が容易になる。また解析の結果得られた知見やモデルを使うことで、通常の車両挙動や機器動作と違う現象を早期に検出し修理することができる。このように保守精度を向上させることができる。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明のより良い理解のために詳細に説明したのであり、必ずしも説明の全ての構成を備えるものに限定されるものではない。
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によってハードウェアで実現してもよい。また、上記の各構成、機能等は、演算装置(プロセッサ)がそれぞれの機能を実現するプログラムを解釈し、実行することによってソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、不揮発性半導体メモリ、ハードディスクドライブ、SSD(Solid State Drive)等の記憶デバイス、または、ICカード、SDカード、DVD等の計算機読み取り可能な非一時的データ記憶媒体に格納することができる。
 また、制御線及び情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線及び情報線を示しているとは限らない。実際にはほとんど全ての構成が相互に接続されていると考えてもよい。
100 鉄道保守データ分析支援システム
110 アプリケーション層
111 ランカーブ補正機能
112 履歴データ補正機能
113 関係式抽出機能
114 補正関係式抽出機能
120 UI層
121 表示機能
122 操作機能
140 データ層
141 入力データ141
142 ランカーブデータ
143 車両機器データ
144 路線情報マスタ
145 環境情報データ
146 出力データ
147 補正ランカーブデータ
148 補正車両機器データ
149 関係式
 

Claims (10)

  1.  プロセッサとメモリとを備えた情報処理装置が、
     列車走行時の時間と速度との関係を示すデータ群であるランカーブデータを複数記憶し、
     抽出した前記ランカーブデータ同士を互いに比較して、それぞれのランカーブデータが近似されて所定の許容誤差範囲内に収められるように、いずれかの前記ランカーブデータを補正する、
    鉄道保守データ分析支援方法。
  2.  前記情報処理装置が、
     前記ランカーブデータに対応づけて、列車が走行する周囲の環境及び走行線区固有の属性を示す環境情報を記憶し、
     前記各ランカーブデータを記録した列車を構成する車両の車両機器の動作状況を示すデータである車両機器データを各ランカーブデータに対応づけて記憶し、
     前記ランカーブデータとそれに対応づけられている前記車両機器データ、及び前記環境情報に基づいて、各前記車両機器データを表す関係式を、他の前記車両機器データ及び前記環境情報を変数として生成して記憶する、
    請求項1に記載の鉄道保守データ分析支援方法。
  3.  前記ランカーブデータ同士を複数の区間に分割し、前規格区間の所要時間の差を前記区間全てについて累積して算出し、累積誤差が最小となるようにいずれかの前記ランカーブデータを補正する、
    請求項1に記載の鉄道保守データ分析支援方法。
  4.  前記ランカーブデータ同士を複数の区間に分割し、前規各区間の速度変化が基準とするいずれかのランカーブデータと近似するように、他方のランカーブデータの速度変化を補正する、
    請求項2に記載の鉄道保守データ分析支援方法。
  5.  処理対象である前記車両機器データに関する前記関係式を取得し、
     前記関係式に対応づけられている前記ランカーブデータと、当該ランカーブデータの補正ランカーブデータとを取得し、
     前記関係式、前記補正ランカーブデータ、及び前記ランカーブデータに対応づけられている車両機器データから処理対象である前記車両機器データの予測値を算出して補正車両機器データとして記憶する、
    請求項1に記載の鉄道保守データ分析支援方法。
  6.  各車両機器データを表す前記関係式に当該車両機器データに関する許容範囲が設定されており、前記情報処理装置が、分析対象のランカーブデータに対応づけて記憶されている車両機器データについて、ランカーブ補正に対応する算出された補正車両機器データが前記許容範囲を逸脱していると判定した場合、前記車両機器に前記車両機器データに関連する異常が発生していると判定する、
    請求項1に記載の鉄道保守データ分析支援方法。
  7.  前記補正ランカーブデータ、前記補正車両機器データ、補正前ランカーブデータ、補正前車両機器データ、及び前記環境情報をに基づいて、補正前と補正後のランカーブについて、及び補正前と補正後の車両機器データについて、同時に同じデータ項目が使用されないように前記関係式の変数選択管理を行い、前記関係式に対する補正関係式とその許容誤差とを出力する、
    請求項2に記載の鉄道保守データ分析支援方法。
  8.  プロセッサとメモリとを備え、
     列車走行時の時間と速度との関係を示すデータ群であるランカーブデータを複数記憶し、
     抽出した前記ランカーブデータ同士を互いに比較して、それぞれのランカーブデータが近似されて所定の許容誤差範囲内に収められるように、いずれかの前記ランカーブデータを補正するように構成されている、
    鉄道保守データ分析支援システム。
  9.  前記ランカーブデータに対応づけて、列車が走行する周囲の環境及び走行線区固有の属性を示す環境情報を記憶し、
     前記各ランカーブデータを記録した列車を構成する車両の車両機器の動作状況を示すデータである車両機器データを各ランカーブデータに対応づけて記憶し、
     前記ランカーブデータとそれに対応づけられている前記車両機器データ、及び前記環境情報に基づいて、各前記車両機器データを表す関係式を、他の前記車両機器データ及び前記環境情報を変数として生成して記憶するように構成されている、
    請求項8に記載の鉄道保守データ分析支援システム。
  10.  処理対象である前記車両機器データに関する前記関係式を取得し、
     前記関係式に対応づけられている前記ランカーブデータと、当該ランカーブデータの補正ランカーブデータとを取得し、
     前記関係式、前記補正ランカーブデータ、及び前記ランカーブデータに対応づけられている車両機器データから処理対象である前記車両機器データの予測値を算出して補正車両機器データとして記憶する、
    請求項9に記載の鉄道保守データ分析支援システム。
PCT/JP2022/006615 2021-06-18 2022-02-18 鉄道保守データ分析支援方法及び鉄道保守データ分析支援システム WO2022264518A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-101724 2021-06-18
JP2021101724A JP7458347B2 (ja) 2021-06-18 2021-06-18 鉄道保守データ分析支援方法及び鉄道保守データ分析支援システム

Publications (1)

Publication Number Publication Date
WO2022264518A1 true WO2022264518A1 (ja) 2022-12-22

Family

ID=84526097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006615 WO2022264518A1 (ja) 2021-06-18 2022-02-18 鉄道保守データ分析支援方法及び鉄道保守データ分析支援システム

Country Status (2)

Country Link
JP (1) JP7458347B2 (ja)
WO (1) WO2022264518A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008184052A (ja) * 2007-01-30 2008-08-14 Central Japan Railway Co 運転実績データ解析システム、プログラム、記録媒体
JP2017109650A (ja) * 2015-12-17 2017-06-22 株式会社東芝 異常診断装置及び方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008184052A (ja) * 2007-01-30 2008-08-14 Central Japan Railway Co 運転実績データ解析システム、プログラム、記録媒体
JP2017109650A (ja) * 2015-12-17 2017-06-22 株式会社東芝 異常診断装置及び方法

Also Published As

Publication number Publication date
JP7458347B2 (ja) 2024-03-29
JP2023000735A (ja) 2023-01-04

Similar Documents

Publication Publication Date Title
US10169932B2 (en) Anomality candidate information analysis apparatus and behavior prediction device
CN112449696B (zh) 时序数据诊断装置、追加学习方法及程序
US20190079725A1 (en) Stream-processing data
JP6003689B2 (ja) 診断装置
JP6945297B2 (ja) 機器診断装置、機器診断システム及び機器診断方法
CN104900061B (zh) 路段行程时间监测方法及装置
CN102375452A (zh) 改善故障代码设定和隔离故障的事件驱动的数据挖掘方法
WO2021001219A1 (en) Monitoring, predicting and maintaining the condition of railroad elements with digital twins
WO2010023786A1 (ja) 運転整理支援システムおよびその方法
JP2019511061A (ja) 保守に重点を置いた航空機のデータ記録フレーム構成を決定するためのシステムおよび方法
CN111862586B (zh) 道路区域的异常路段确定方法、装置及存储介质
JP6408484B2 (ja) 鉄道メンテナンス支援方法及び鉄道メンテナンス支援装置
WO2022264518A1 (ja) 鉄道保守データ分析支援方法及び鉄道保守データ分析支援システム
US20230368096A1 (en) Systems for infrastructure degradation modelling and methods of use thereof
CN116562437A (zh) 轨道电路补偿电容故障预测方法和装置
JP5572966B2 (ja) データ類似度計算方法、システム、およびプログラム
JP5673394B2 (ja) データ抽出方法及びデータ抽出装置
JP2021502301A (ja) 軌道ネットワーク内でのナビゲートのためのシステムおよび方法
JP5113405B2 (ja) 移動体情報解析装置および移動体情報解析方法
Ghanim et al. An artificial intelligence approach to estimate travel time along public transportation bus lines
US20240308558A1 (en) Operation plan change assistance device, operation plan change assistance method, and rail traffic management system
Tan et al. Tamping effectiveness prediction using supervised machine learning techniques
US20240035919A1 (en) Mutual alignment of rail geometry measurements
JP2023154681A (ja) 鉄道保守支援システム、鉄道保守支援方法
CN111143752B (zh) 一种电动车辆的安全重要度的计算方法以及电动车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22824518

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22824518

Country of ref document: EP

Kind code of ref document: A1