WO2022264443A1 - Dehumidifier - Google Patents

Dehumidifier Download PDF

Info

Publication number
WO2022264443A1
WO2022264443A1 PCT/JP2021/037675 JP2021037675W WO2022264443A1 WO 2022264443 A1 WO2022264443 A1 WO 2022264443A1 JP 2021037675 W JP2021037675 W JP 2021037675W WO 2022264443 A1 WO2022264443 A1 WO 2022264443A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
opening
degree
air passage
flap
Prior art date
Application number
PCT/JP2021/037675
Other languages
French (fr)
Japanese (ja)
Inventor
直毅 加藤
好孝 明里
優太 ▲高▼橋
元 露木
Original Assignee
三菱電機株式会社
三菱電機ホーム機器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社, 三菱電機ホーム機器株式会社 filed Critical 三菱電機株式会社
Priority to JP2023529442A priority Critical patent/JPWO2022264443A1/ja
Priority to CN202180091872.1A priority patent/CN117412801A/en
Priority to TW111110790A priority patent/TWI801178B/en
Publication of WO2022264443A1 publication Critical patent/WO2022264443A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/80Self-contained air purifiers

Definitions

  • the present disclosure relates to dehumidifiers.
  • the air purifier disclosed in Patent Document 1 below includes a main body case having an internal space, and a blowing unit provided inside the main body case and allowing outside air to flow in from both sides of the main body case via a single blower fan. , an air purifying part that purifies air introduced from one side of the body case; and a dehumidifying part that removes moisture from the air that enters from the other side of the body case by means of a dehumidifying rotor.
  • This air purifier has either a dehumidifying function or an air purifying function by using the first and second opening/closing members to block the inflow of air from one of both side surfaces of the main body case. Either or both are selectively done according to the preference of the user.
  • Patent Document 1 the user must select between the dehumidifying operation and the air cleaning operation, so there is a problem that appropriate operation cannot always be performed.
  • the present disclosure has been made to solve the problems described above, and aims to provide a dehumidifier that can more appropriately perform the dehumidifying operation and the air cleaning operation.
  • a dehumidifier includes a housing having a suction port and a discharge port, an air cleaning filter, dehumidifying means having a dehumidification unit for removing moisture in the air, and generating an airflow from the suction port to the discharge port.
  • indoor humidity detecting means for detecting the relative humidity of the indoor air
  • indoor air pollution level detecting means for detecting the air pollution level of the indoor air
  • the opening degree of the opening and closing means is changed according to the second air passage blown out from the outlet, the opening and closing means for adjusting the opening degree of the second air passage, and the relative humidity and the degree of air pollution. and a control means.
  • FIG. 2 is a rear view of the dehumidifier according to Embodiment 1;
  • FIG. FIG. 2 is a cross-sectional side view of the dehumidifier according to Embodiment 1 taken along line AA in FIG. 1;
  • FIG. 2 is a cross-sectional plan view of the dehumidifier according to Embodiment 1 taken along line BB in FIG. 1;
  • 4 is a flow chart showing processing during dehumidifying air cleaning automatic operation according to Embodiment 1.
  • FIG. It is a graph which shows the relationship between the opening opening degree of a flap, dehumidification capability, and air cleaning capability.
  • FIG. 5 is a graph showing the relationship between the opening degree of the flap, the noise value, the dehumidifying ability, the air cleaning ability, and the number of revolutions of the fan 21.
  • FIG. 9 is a flow chart showing processing during dehumidifying air cleaning automatic operation according to Embodiment 2.
  • FIG. 10 is a flow chart showing processing during dehumidifying air cleaning automatic operation according to Embodiment 3.
  • FIG. It is a graph which shows the relationship between the opening opening degree of a flap, the set value of fan rotation speed, dehumidification ability, and air cleaning ability.
  • FIG. 1 is a rear view of the dehumidifier 1 according to Embodiment 1.
  • FIG. 2 is a cross-sectional side view of the dehumidifier 1 according to Embodiment 1 taken along line AA in FIG.
  • FIG. 3 is a cross-sectional plan view of the dehumidifier 1 according to Embodiment 1 taken along line BB in FIG.
  • the dehumidifier 1 will be described with reference to the state in which the dehumidifier 1 is placed on a horizontal surface.
  • the dehumidifier 1 has a case 10.
  • Case 10 is an example of a housing that forms the outer shell of dehumidifier 1 .
  • the case 10 is formed, for example, in a self-supporting box shape. Wheels 20 for moving the dehumidifier 1 may be provided at the bottom of the case 10 .
  • the case 10 has a front case 10a and a rear case 10b.
  • the front case 10 a is a member that forms the front portion of the case 10 .
  • the rear case 10 b is a member that forms the rear portion of the case 10 .
  • the rear case 10b is fixed to the front case 10a by screws or the like.
  • a suction port 11 and a blowout port 12 are formed in the case 10 .
  • the suction port 11 is an opening for taking in air from the outside of the case 10 to the inside.
  • the air outlet 12 is an opening for blowing air from the inside of the case 10 to the outside.
  • suction port 11 is formed in the rear portion of case 10 .
  • the suction port 11 is formed in the rear case 10b.
  • the blowout port 12 is formed in the upper surface portion of the case 10 .
  • the dehumidifier 1 includes a suction port cover 11a that covers the suction port 11.
  • the suction port cover 11a is formed in a mesh shape, for example.
  • the suction port cover 11 a prevents foreign matter from entering the inside of the case 10 through the suction port 11 .
  • the suction port cover 11a is, for example, detachably formed with respect to the rear case 10b.
  • the dehumidifier 1 has control means for controlling its operation.
  • a board box 16 containing a control board (not shown) corresponding to control means and a power supply board (not shown) is arranged in the rear case 10b.
  • the dehumidifier 1 also includes a louver 13.
  • the louver 13 is configured by a plate-like member.
  • the louver 13 is for adjusting the direction in which the air is sent out from the blower outlet 12 .
  • a louver 13 is arranged near the outlet 12 .
  • the louver 13 is connected to a louver driving motor (not shown). When the louver drive motor operates, the posture of the louver 13 is changed.
  • the control means controls the louver drive motor to adjust the direction in which the air is blown out from the outlet 12 .
  • the dehumidifier 1 also includes an operation display section 15 .
  • the operation display section 15 is for the user to operate the dehumidifier 1 . Further, the operation display unit 15 displays the state of the dehumidifier 1 and the like to the user.
  • the operation display board 15a includes an operation switch for starting/stopping the operation of the dehumidifier 1, an operation mode switching switch for switching the operation mode to any of the dehumidifying operation mode, the air cleaning operation mode, or the dehumidifying air cleaning automatic operation mode, and a liquid crystal display.
  • a display unit and the like are arranged.
  • the dehumidifier 1 is operated via the operation display unit 15, and the state of the dehumidifier 1 and the like are displayed.
  • the operation display board 15a is arranged in the rear case 10b.
  • the dehumidifier 1 also includes a fan 21 as a blowing means for sending air.
  • the fan 21 is a device that draws air into the case 10 and sends the drawn air to the outside of the case 10 .
  • the fan 21 is housed inside the case 10 .
  • the fan 21 is a device that generates an air current from the inlet 11 to the outlet 12 in the air path from the inlet 11 to the outlet 12 .
  • a motor 21a is housed inside the case 10.
  • the motor 21 a is a device that rotates the fan 21 .
  • the fan 21 and the motor 21a are arranged inside the front case 10a. That is, the fan 21 and the motor 21a are arranged on the front side of the dehumidifier 1 .
  • Motor 21a is connected to fan 21 via shaft 21b. Rotational operation of the motor 21a is controlled by the control means.
  • the dehumidifier 1 also includes dehumidifying means.
  • the dehumidifying means has a dehumidifying section that removes moisture contained in the air. Any dehumidifying means may be used as long as it can remove moisture in the air.
  • the dehumidifier 1 in the present embodiment has a heat exchanger including an evaporator 31 that evaporates the refrigerant, a compressor (not shown) that compresses the refrigerant, and a decompression device (not shown) that decompresses the refrigerant.
  • a heat pump type dehumidification means with a circuit is provided.
  • the dehumidifying means is not limited to heat pump type dehumidifying means.
  • the dehumidifying means in the present disclosure may be, for example, a desiccant-type dehumidifying means for condensing moisture in the air removed by an adsorbent provided in the dehumidifying section in a heat exchanger.
  • the heat pump dehumidification means in the present embodiment further includes a condenser 32 as a heat exchanger that condenses the refrigerant.
  • the evaporator 31 and the condenser 32 which are heat exchangers, correspond to the dehumidification section.
  • the evaporator 31 , the condenser 32 , the compressor, and the decompression device are housed in the case 10 .
  • a compressor drive motor of the compressor is controlled by the control means.
  • the evaporator 31 and the condenser 32 are surrounded by the rear case 10b.
  • the evaporator 31, the compressor, the condenser 32, and the decompression device are connected in order via piping (not shown) or the like.
  • Refrigerant flows through a refrigerant circuit formed by the evaporator 31, the compressor, the condenser 32, and the decompression device.
  • the evaporator 31 and the condenser 32 are heat exchangers for exchanging heat between refrigerant and air.
  • the compressor is a device that compresses the low-pressure refrigerant evaporated in the evaporator 31 into a high-pressure refrigerant.
  • the decompression device is a device that decompresses the high-pressure refrigerant that has passed through the condenser 32 into a low-pressure refrigerant.
  • a pressure reducing device is, for example, an expansion valve or a capillary tube.
  • Heat is exchanged between the air passing through the evaporator 31 and the refrigerant flowing through the evaporator 31 .
  • a refrigerant decompressed by a decompression device flows through the evaporator 31 .
  • Refrigerant having a lower temperature than the air taken into the case 10 flows through the evaporator 31 .
  • the refrigerant flowing through the evaporator 31 absorbs heat from the air passing through the evaporator 31 .
  • the air passing through the evaporator 31 loses heat to the refrigerant flowing through the evaporator 31 . That is, air passing through the evaporator 31 is cooled by the refrigerant flowing through the evaporator 31 .
  • the air that has passed through the condenser 32 is in a drier state than the air outside the dehumidifier 1 .
  • This dry air passes through the fan 21 .
  • the air that has passed through the fan 21 is sent upward from the case 10 through the air outlet 12 .
  • the dehumidifier 1 dehumidifies the air.
  • the dehumidifier 1 supplies dry air to the outside.
  • the rear case 10b has a lattice portion 10c.
  • a plurality of openings through which the air flowing into the evaporator 31 passes is formed in the lattice portion 10c.
  • the total open area of the grid portion 10 c is approximately the same as the area of the evaporator 31 .
  • the evaporator 31 and the grid portion 10c are arranged to face each other with a distance C therebetween with the first space 33 therebetween.
  • the dehumidifier 1 also includes an air cleaning filter for cleaning the air.
  • cleaning the air corresponds to, for example, removing at least one of dust, odor, particles, droplets, and aerosols in the air.
  • dust, particles, droplets, and aerosols in the air may be collectively referred to as "dust”.
  • Dehumidifier 1 in the present embodiment includes HEPA filter 41 and activated carbon filter 42 as air cleaning filters.
  • the HEPA filter 41 and activated carbon filter 42 are housed in the case 10 . In this embodiment, the HEPA filter 41 and the activated carbon filter 42 are accommodated in the rear case 10b.
  • the HEPA filter 41 is a filter that collects fine dust in the air.
  • the activated carbon filter 42 is a filter that deodorizes odors in the air.
  • the HEPA filter 41 and the activated carbon filter 42 are provided detachably from the rear case 10b.
  • the activated carbon filter 42 is arranged to face the lattice portion 10c with the second space 34 therebetween and a distance D therebetween.
  • a grid portion 10 c is positioned between the evaporator 31 and the activated carbon filter 42 .
  • an air passage leading from the suction port 11 to the blowout port 12 is formed inside the case 10 .
  • the suction port cover 11a, the HEPA filter 41, the activated carbon filter 42, the evaporator 31, the condenser 32, and the fan 21 are arranged in this order.
  • the air entering from the suction port 11 passes through the HEPA filter 41 and the activated carbon filter 42 corresponding to the air cleaning filter, the evaporator 31 and the condenser 32 which are heat exchangers corresponding to the dehumidifying section, and the air blowing means.
  • the airflow passage that passes through the corresponding fans 21 in this order and is blown out from the outlet 12 is referred to as a "first airflow passage".
  • the air entering from the suction port 11 does not pass through the HEPA filter 41 and the activated carbon filter 42 corresponding to the air cleaning filter, and passes through the evaporator 31 and the condenser 32 which are heat exchangers corresponding to the dehumidifying section.
  • the upstream side and the downstream side are defined by using the airflow flowing through the air path leading from the suction port 11 to the blowout port 12 .
  • the side on which the suction port 11 is located with respect to the heat exchanger is defined as the upstream side.
  • the side of the heat exchanger where the outlet 12 is located is the downstream side.
  • the first air passage includes a filter air passage 44 in which air flows through a HEPA filter 41 and an activated carbon filter 42 corresponding to an air cleaning filter.
  • the second air passage includes a bypass air passage 43 that is an air passage that does not pass through the HEPA filter 41 and activated carbon filter 42 corresponding to the air cleaning filter.
  • the bypass air passage 43 is an air passage through which air flows downstream without passing through the HEPA filter 41 and the activated carbon filter 42 .
  • the bypass air passage 43 is adjacent to the filter air passage 44 in this embodiment.
  • the bypass air passage 43 and the filter air passage 44 may be partitioned by a partition plate, a partition wall, or the like.
  • the dehumidifier 1 includes a bypass air passage 43 adjacent to the left side of the HEPA filter 41 and the activated carbon filter 42, and a bypass air passage 43 adjacent to the right side of the HEPA filter 41 and the activated carbon filter 42.
  • the size of the dehumidifier 1 is reduced, This is more advantageous in achieving both reduction in pressure loss in the second air passage.
  • the filter air passage 44 when the dehumidifier 1 is viewed from the back, that is, when viewed in a direction parallel to the shaft 21b of the fan 21, the filter air passage 44 has a rectangular shape.
  • One bypass air passage 43 is provided along the left side of the rectangle of the filter air passage 44
  • the other bypass air passage 43 is provided along the right side of the rectangle of the filter air passage 44 .
  • the length of the bypass air passage 43 in the vertical direction that is, the length of the bypass air passage 43 in the vertical direction
  • the length of the HEPA filter 41 is set to be approximately the same as that of the HEPA filter 41 of .
  • the airflow flowing through the bypass airway 43 and the airflow flowing through the filter airway 44 join in the space downstream of the activated carbon filter 42 .
  • the airflow flowing through the bypass air passage 43 and the airflow flowing through the filter air passage 44 are divided into a first space 33 having a distance C from the lattice portion 10c and a second space 33 having a distance D from the lattice portion 10c. merges with the space 34 of . That is, the airflow flowing through the bypass airway 43 and the airflow flowing through the filter airway 44 join before the evaporator 31 arranged downstream of the activated carbon filter 42, and then flow through one airway.
  • the dehumidifier 1 has an air guide surface 43a provided in the second air passage.
  • the airflow guide surface 43a guides the airflow of the second airflow path so that the airflow of the second airflow path approaches the center of the windward side surface of the heat exchanger corresponding to the dehumidifying section.
  • the air guide surface 43a guides the airflow that has passed through the bypass air passage 43 toward the center of the windward surface of the heat exchanger.
  • the air guide surface 43a in the present embodiment changes the direction of the airflow passing through the bypass air passage 43 to the lateral direction (azimuth direction).
  • the provision of the air guide surface 43a allows the airflow passing through the bypass air passage 43 to flow into the heat exchanger corresponding to the dehumidifying section more efficiently. Therefore, dehumidification efficiency can be improved.
  • a wind guide surface 43a located on the left side of the grid portion 10c and a wind guide surface 43a located on the right side of the grid portion 10c are provided.
  • the air guide surface 43a may be configured as a plane. By adjusting the normal direction of the plane of the air guide surface 43a, the direction in which the airflow is guided can be adjusted.
  • the wind guide surface 43a may be configured by a curved surface. By adjusting the curvature of the curved surface of the air guide surface 43a, it is possible to adjust the spread of the airflow guided by the air guide surface 43a.
  • the dehumidifier 1 has opening/closing means for adjusting the degree of opening of the second air passage.
  • the flap 51 corresponds to the opening/closing means.
  • the flap 51 corresponds to a shielding plate that can be opened and closed.
  • the flap 51 can be opened and closed so that the opening of the suction port of the bypass air passage 43 is open, closed, or intermediate between open and closed.
  • a suction port of the bypass air passage 43 is part of the suction port 11 .
  • the suction port of the bypass air passage 43 is located outside the left and right outer edges of the windward end face of the HEPA filter 41 .
  • the flap 51 is configured by a plate-like member.
  • the flap 51 is arranged downstream of the suction port cover 11a.
  • the flap 51 is, for example, rotatable around a rotating shaft provided at the end opposite to the HEPA filter 41 side, and is driven by an opening/closing means driving motor (not shown).
  • the flap 51 located on the left side of the HEPA filter 41 rotates around a rotation shaft provided at the left end of the plate-shaped member that constitutes the flap.
  • the flap 51 located on the right side of the HEPA filter 41 rotates around a rotation shaft provided at the right end of the plate-like member that constitutes the flap.
  • the control means can adjust the degree of opening of the flap 51 by controlling the operation of the motor for driving the opening/closing means.
  • FIG. 3 shows the state when the flap 51 is in a position to close the suction port of the bypass air passage 43, that is, when the flap 51 is fully closed.
  • the dehumidifier 1 includes indoor humidity detection means for detecting the relative humidity of indoor air. Relative humidity may be referred to simply as "humidity" in this disclosure.
  • the humidity sensor 61 corresponds to indoor humidity detection means.
  • Humidity sensor 61 is arranged inside case 10 .
  • An opening (not shown) communicating between the outside of the case 10 and the humidity sensor 61 is provided in a portion of the case 10 near the humidity sensor 61 .
  • the control means can measure the indoor humidity by acquiring humidity detection information from the humidity sensor 61 .
  • the humidity detection information acquired by the control means may be transmitted to the operation display board 15a, and the information about the measurement result by the humidity sensor 61 may be displayed on the operation display section 15.
  • the dehumidifier 1 also includes indoor air pollution level detection means for detecting the air pollution level, which is the pollution level of indoor air.
  • the degree of air pollution corresponds to the amount or concentration of at least one of dust, odor, particles, droplets, and aerosols in indoor air.
  • the dust sensor 62 and the gas sensor 63 correspond to indoor air pollution level detection means.
  • the dehumidifier 1 according to the present disclosure may include, for example, only one of the dust sensor 62 and the gas sensor 63 as indoor air pollution level detection means.
  • the dust sensor 62 is arranged inside the case 10 .
  • An opening (not shown) communicating between the outside of the case 10 and the dust sensor 62 is provided in a portion of the case 10 near the dust sensor 62 .
  • the control means can measure the amount and concentration of dust in the room.
  • the dust sensor 62 has the ability to detect particles of 0.1 ⁇ m, for example.
  • the dust detection information acquired by the control means may be transmitted to the operation display board 15a, and the information about the measurement result by the dust sensor 62 may be displayed on the operation display section 15.
  • the gas sensor 63 is arranged inside the case 10 .
  • An opening (not shown) communicating between the outside of the case 10 and the gas sensor 63 is provided in a portion of the case 10 near the gas sensor 63 .
  • the control means can measure the odor of the air in the room.
  • the gas detection information acquired by the control means may be transmitted to the operation display board 15a, and the information about the measurement result of the gas sensor 63 may be displayed on the operation display section 15.
  • the dehumidifier 1 according to Embodiment 1 has an automatic dehumidifying and air cleaning operation in which the dehumidifying operation and the air cleaning operation are automatically performed simultaneously as a control mode.
  • FIG. 4 is a flow chart showing processing during the dehumidifying air cleaning automatic operation according to the first embodiment.
  • the dehumidifier 1 starts the dehumidifying air cleaning automatic operation.
  • the control means controls the louver driving motor so that the louver 13 opens the outlet 12 (step S001).
  • the control means controls the motor for driving the opening/closing means so that the flap 51 opens, and opens the suction port of the bypass air passage 43 (step S002).
  • control means rotates the motor 21a and controls the fan 21 to rotate at a preset number of revolutions (step S003).
  • the "rotational speed” in the present disclosure means the rotational speed per unit time. Therefore, the number of rotations of the fan 21 corresponds to the operating speed of the air blowing means.
  • control means controls to drive the compressor drive motor, and the compressor starts compressing the refrigerant (step S004).
  • the control means starts the operation of detecting the humidity of the air around the humidity sensor 61 with the humidity sensor 61, and determines whether the detected humidity is 50% or higher (step S005).
  • the value of the humidity detected by the humidity sensor 61 indicates a value rounded off to the nearest whole number.
  • the control means controls to stop driving the compressor drive motor, stops the compressor from compressing the refrigerant (step S006), and opens the flap 51.
  • the motor for driving the opening/closing means is controlled so that the opening is closed to 0%, and the suction port of the bypass air passage 43 is closed (step S007). After that, after a certain period of time has passed, the process returns to step S005.
  • the humidity threshold for stopping the dehumidifying operation is set to 50%, but this is an example, and other values may be used as the humidity threshold.
  • step S008 determines whether the humidity detected by the humidity sensor 61 is between 50% and 55%.
  • the control means continues to drive the compressor drive motor, and the dust sensor 62 and the gas sensor 63 detect dust in the air around the respective sensors.
  • the gas detection operation is started, and the degree of air pollution is determined (step S018).
  • the control means compares the particle concentration detected by the dust sensor 62 with a threshold value, and compares the gas concentration detected by the gas sensor 63 with the threshold value, thereby determining the degree of air pollution as "high", “medium” or "low”. Judge in three steps.
  • the control means determines that the degree of air pollution is "high”. You may When the particle concentration detected by the dust sensor 62 is below the low concentration threshold and the gas concentration detected by the gas sensor 63 is below the low concentration threshold, the control means determines that the degree of air pollution is "low”. good too. When the particle concentration detected by the dust sensor 62 is between the low-concentration threshold and the high-concentration threshold, or the gas concentration detected by the gas sensor 63 is between the low-concentration threshold and the high-concentration threshold, The degree of air pollution may be determined as "medium”. However, in the present disclosure, the control means may determine the degree of air pollution in four stages or more, or may determine the degree of air pollution in two stages.
  • step S018 the control means controls the motor for driving the opening/closing means so as to close the flap 51, sets the opening degree of the flap 51 to 50% (step S019), and after a certain period of time, Return to step S005.
  • the control means controls the opening/closing means driving motor to close the flap 51, and the flap 51 is opened.
  • the opening is set to 25% (step S020), and after a certain period of time, the process returns to step S005.
  • the threshold for the humidity detected by the humidity sensor 61 is set to 50% to 55%
  • the opening degree of the flap 51 is set to 25% and 50%. Any value other than
  • step S008 if the humidity detected by the humidity sensor 61 is not between 50% and 55%, the control means proceeds to step S009 to check whether the humidity detected by the humidity sensor 61 is between 56% and 60%. judge.
  • the control means continues driving the compressor drive motor, and the dust sensor 62 and the gas sensor 63 detect dust in the air around the respective sensors.
  • the gas detection operation is started, and the degree of air pollution is determined (step S013).
  • the control means controls the motor for driving the opening/closing means so as to close the flap 51, sets the degree of opening of the flap 51 to 25% (step S014), and after a certain period of time proceeds to step S005. return.
  • step S015 determines whether the degree of air pollution is medium.
  • the control means controls the motor for driving the opening/closing means so as to close the flap 51, sets the opening degree of the flap 51 to 50% (step S016), and after a certain period of time, step S005. back to If the degree of air pollution is not medium in step S015, that is, if the degree of air pollution is small, the control means controls the motor for driving the opening/closing means to close the flap 51, and the degree of opening of the flap 51 is set to 75%. (step S017), and after a certain period of time, the process returns to step S005.
  • the threshold for the humidity detected by the humidity sensor 61 is set to 56% to 60%
  • the opening degree of the flap 51 is set to 25%, 50%, and 75%. Any other value may be used for the degree.
  • step S009 if the humidity detected by the humidity sensor 61 is not between 56% and 60%, that is, if the humidity detected by the humidity sensor 61 is 61% or higher, the control means drives the compressor drive motor. , the dust sensor 62 and the gas sensor 63 start detecting dust and gas in the surrounding air of each sensor, and determine the degree of air pollution (step S010). When the degree of air pollution is not high, that is, when the degree of air pollution is medium or low, the control means controls the motor for driving the opening/closing means so as to close the flap 51, and the degree of opening of the flap 51 is set to 75%. (step S012), and after a certain period of time, the process returns to step S005.
  • the control means controls the motor for driving the opening/closing means so as to close the flap 51, sets the opening degree of the flap 51 to 50% (step S011), and continues for a certain period of time. After that, the process returns to step S005.
  • the threshold for the humidity detected by the humidity sensor 61 is set to 61% or more, and the opening degree of the flap 51 is set to 50% and 75%, but the threshold value and the opening degree are other values. But it's okay.
  • the present embodiment by providing a control means for changing the opening degree of the flap 51 according to the relative humidity and the degree of air pollution, when performing the dehumidifying operation and the air cleaning operation at the same time
  • the ratio between the air volume passing through the first air passage and the air volume passing through the second air passage can be automatically adjusted. Therefore, the dehumidifying operation and the air cleaning operation can be performed automatically and more appropriately.
  • FIG. 5 is a graph showing the relationship between the degree of opening of the flap 51, the dehumidifying capacity, and the air cleaning capacity.
  • the horizontal axis indicates the opening angle of the flap 51
  • the vertical axis indicates the dehumidifying ability and the air cleaning ability. That is, FIG. 5 shows the ratio of the dehumidifying ability and the air cleaning ability at the opening degree of the flap 51.
  • the opening degree of the flap 51 located at the suction port of the second air passage increases, the air volume flowing to the first air passage decreases and the air volume flowing to the second air passage increases.
  • the amount of air passing through the air purifying filter in the first air passage decreases, so the air cleaning ability decreases, and the amount of air flowing to the evaporator 31 in the second air passage increases, so the dehumidifying ability increases.
  • the opening degree of the flap 51 decreases, the amount of air flowing through the first air passage increases and the amount of air flowing through the second air passage decreases.
  • the amount of air passing through the air cleaning filter in the first air passage increases, the air cleaning ability increases, and in the second air passage, the amount of air flowing to the evaporator 31 decreases, so the dehumidification ability decreases.
  • the capacity ratios are set to 50% and 100% when the opening degree of the flap 51 is 0% and 100%, but other values may be used.
  • the opening degree of the flap 51 when the relative humidity is the same, compared to the opening degree of the flap 51 at the first air pollution degree, when the second air pollution degree is higher than the first air pollution degree , the opening degree of the flap 51 is reduced.
  • the humidity is 50% to 55%
  • the opening degree of the flap 51 is set to 50% (step S019 in FIG. 4)
  • the air pollution degree is medium or
  • the opening degree of the flap 51 is set to 25% (step S020).
  • the opening degree of the flap 51 is set to 70% (step S012), and when the air pollution degree is high (second air pollution degree). degree of contamination), the degree of opening of the flap 51 is set to 50% (step S020). In this way, by reducing the opening degree of the flap 51 at the second air pollution degree, which is higher than the first air pollution degree, the air volume of the first air passage passing through the air cleaning filter is reduced. Since the ratio is increased, the air purification capacity is increased, and indoor air can be purified more efficiently.
  • the air pollution degree is the first air pollution degree, which is a small air pollution degree, it is not necessary to increase the air cleaning ability so much, so by increasing the opening degree of the flap 51, the second air pollution filter that does not pass through the air cleaning filter Increase the air volume ratio of the air passage. This reduces the pressure loss, which is advantageous in achieving low power consumption and low noise.
  • the degree of opening of the flap 51 at the first relative humidity is higher than the opening degree of the flap 51 at the second relative humidity, which is higher than the first relative humidity.
  • the opening degree of the flap 51 is increased.
  • the opening degree of the flap 51 is set to 25% when the first relative humidity (humidity is 56% to 60%) (step S014), and the second relative humidity (humidity is 61% above), the opening degree of the flap 51 is set to 50% (step S011).
  • the opening degree of the flap 51 is set to 50% when the first relative humidity (humidity is 50% to 55%) (step S019), and the second relative humidity (humidity is 56%). to 60%), the opening degree of the flap 51 is set to 75% (step S017).
  • the number of revolutions of the fan 21 is the same, the larger the degree of opening of the flap 51, the more the amount of air flowing to the evaporator 31 increases, so the dehumidification capacity increases.
  • the dehumidifying ability is increased by increasing the opening degree of the flap 51 at the second relative humidity when the humidity is high. Therefore, it is possible to quickly lower the indoor humidity.
  • the first relative humidity is low, it is not necessary to increase the dehumidifying ability so much, so by reducing the opening degree of the flap 51, it is possible to increase the air cleaning ability.
  • the control means automatically adjusts the opening degree of the flap 51 according to the relative humidity and the degree of air pollution.
  • the ratio of air volume flowing to the second air passage By changing the ratio of dehumidification capacity and air purification capacity, it is possible to realize an operation mode that satisfies the required values of dehumidification capacity and air purification capacity. becomes.
  • each function of the control means of the dehumidifier 1 may be achieved by a processing circuit.
  • the processing circuitry of the control means may comprise at least one processor and at least one memory.
  • each function of the control means may be achieved by software, firmware or a combination of software and firmware.
  • At least one of software and firmware may be written as a program.
  • Software and/or firmware may be stored in the at least one memory.
  • At least one processor may accomplish each function of the control means by reading and executing a program stored in at least one memory.
  • the at least one memory may include non-volatile or volatile semiconductor memory, magnetic disks, or the like.
  • the processing circuit of the control means may comprise at least one piece of dedicated hardware. If the processing circuit comprises at least one piece of dedicated hardware, the processing circuit may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field- Programmable Gate Array), or a combination thereof.
  • the functions of each part of the control means may be accomplished respectively by processing circuitry. Also, the functions of each section of the control means may be collectively achieved by a processing circuit. For each function of the control means, a part may be achieved by dedicated hardware and another part may be achieved by software or firmware.
  • the processing circuitry may accomplish each function of the control means by means of hardware, software, firmware, or a combination thereof.
  • control means of the dehumidifier 1 may be on a cloud server connected via a network.
  • Embodiment 2 Next, the second embodiment will be described with reference to FIGS. 6 and 7. The description will focus on the differences from the above-described first embodiment, and the common description will be simplified or omitted. Moreover, the same code
  • the dehumidifier 1 according to Embodiment 2 has the same hardware configuration as that of Embodiment 1, and differs from Embodiment 1 in the blower fan rotational speed feedback control in the control method of the dehumidified air cleaning automatic operation.
  • FIG. 6 is a graph showing the relationship between the opening degree of the flap 51, the noise value, the dehumidifying ability, the air cleaning ability, and the number of revolutions of the fan 21.
  • FIG. 7 is a flow chart showing processing during the dehumidifying air cleaning automatic operation according to the second embodiment. In addition, since the process from step S001 to step S020 of FIG. 7 is the same as that of Embodiment 1, description is omitted.
  • the noise value SPL of the dehumidifier 1 increases as the opening degree of the flap 51 increases, and the noise value SPL of the dehumidifier 1 increases as the opening degree of the flap 51 decreases.
  • the noise value SPL of is lowered. This is because the sound insulation rate of the flap 51 decreases as the opening degree of the flap 51 increases, and the sound insulation rate of the flap 51 increases as the opening degree of the flap 51 decreases. Further, if the opening degree of the flap 51 is the same, the higher the rotation speed of the fan 21, the higher the noise value SPL of the dehumidifier 1 and the higher the air cleaning ability and dehumidifying ability. Below, the rotation speed of the fan 21 may be called "fan rotation speed.”
  • the rotational speed feedback control of the fan 21 is performed as follows.
  • the fan rotation speed equal to or lower than the preset noise upper limit value is extracted from the relationship between the opening degree of the flap 51, the noise value, and the rotation speed of the fan 21.
  • FIG. The control means sets the maximum fan rotation speed among the extracted fan rotation speeds, and changes the fan rotation speed in operation to the set rotation speed.
  • the noise upper limit is set to 50 dB
  • the fan rotation speeds are set to 700 rpm, 800 rpm, and 900 rpm, but other values may be used.
  • the fan rotation speed is switched in three steps, but the fan rotation speed may be switched in four steps or more, or the fan rotation speed may be switched in two steps. .
  • step S021 the control means sets the fan rotation speed according to the degree of opening of the flap 51, as shown in the graph of FIG. That is, when the opening degree of the flap 51 is between 0% and ⁇ %, the control means sets the fan speed to 900 rpm. When the opening degree of the flap 51 is between ⁇ % and ⁇ %, the control means sets the fan speed to 800 rpm. When the opening degree of the flap 51 is between ⁇ % and 100%, the control means sets the fan speed to 700 rpm. where 0 ⁇ 50 and 50 ⁇ 100.
  • the control means controls the rotation speed of the fan when the opening degree of the flap 51 is smaller than the first opening degree. Increase the fan rotation speed at double opening.
  • the control means controls the fan rotation speed (700 rpm) when the opening degree of the flap 51 is from ⁇ % to 100% (first opening degree). Increase the fan rotation speed (800 rpm) when the second degree of opening is small ( ⁇ % to ⁇ %).
  • the control means controls the fan rotation speed (800 rpm) when the opening degree of the flap 51 is between ⁇ % and ⁇ % (first opening degree).
  • the fan rotation speed can be increased as long as the noise value of the dehumidifier 1 does not exceed the noise upper limit value, thereby improving the dehumidifying ability and the air cleaning ability.
  • control means rotates the fan as the opening degree of the flap 51 increases so that the noise value SPL during operation of the dehumidifier 1 does not exceed the reference (noise upper limit value). Decrease the number step by step. This makes it possible to exhibit higher dehumidifying ability and air cleaning ability than in the first embodiment while suppressing noise.
  • Embodiment 3 Next, the third embodiment will be described with reference to FIGS. omitted. Moreover, the same code
  • the dehumidifier 1 according to Embodiment 3 has the same hardware configuration as those of Embodiments 1 and 2, and the blower fan rotation speed feedback control in the control method of the dehumidified air cleaning automatic operation is the same as that of Embodiment 2. differ from
  • FIG. 8 is a flow chart showing the processing during the dehumidifying air cleaning automatic operation according to the third embodiment.
  • FIG. 9 is a graph showing the relationship between the opening degree of the flap 51, the set value of the fan rotation speed, the dehumidifying ability, and the air cleaning ability.
  • step S030 determines whether the degree of air pollution is high.
  • the control means changes the opening degree of the flap 51 to 0% (step S031), and changes the fan rotation speed to 1000 rpm by feedback of the rotation speed of the fan 21 (step S031). S035), and returns to step S005 after a certain period of time.
  • step S030 the control means proceeds to step S032 and determines whether the air pollution degree is medium.
  • the control means changes the opening degree of the flap 51 to 50% (step S033), and changes the fan speed to 750 rpm by feedback of the speed of the fan 21 (step S035). ), and after a certain period of time, the process returns to step S005.
  • step S032 If the degree of air pollution is not medium in step S032, that is, if the degree of air pollution is small, the control means changes the opening degree of the flap 51 to 100% (step S034), and the rotation speed feedback of the fan 21 , the fan speed is changed to 500 rpm (step S035), and after a certain period of time, the process returns to step S005.
  • the flap 51 opening degree is set to 0%, 50%, and 100%, and the fan rotation speed is set to 1000 rpm, 750 rpm, and 500 rpm, but other values may be used.
  • the opening degree of the flap 51 and the fan rotation speed are switched in three stages, but the opening opening degree of the flap 51 and the fan rotation speed may be switched in multiple stages such as four stages or more. Alternatively, the degree of opening of the flap 51 and the rotation speed of the fan may be switched in two steps.
  • the control target of the rotation speed feedback of the fan 21 is set to 100% of the dehumidification capacity ratio. This reduces the number of control conditions and simplifies the control by not having a plurality of required dehumidification capacity values and limiting the dehumidification capacity ratio to 100%.
  • the dehumidification capacity is output at the target value regardless of the state of the opening degree of the flap 51, it leads to quality improvement in the market.
  • the target value of the dehumidification capacity ratio is set to 100%, but other values may be used.
  • the control means increases the fan rotation speed so that the dehumidification capacity becomes equal as the opening degree of the flap 51 decreases. As a result, high dehumidification performance can be obtained even when the opening degree of the flap 51 is small.
  • 1 dehumidifier 10 case, 10a front case, 10b rear case, 10c lattice part, 11 suction port, 11a suction port cover, 12 air outlet, 13 louver, 15 operation display unit, 15a operation display board, 16 board box (control Control board equivalent to means is housed inside), 20 wheel, 21 fan, 21a motor, 21b shaft, 31 evaporator, 32 condenser, 33 first space, 34 second space, 41 HEPA filter, 42 activated carbon Filter, 43 Bypass air passage, 43a Wind guide surface, 44 Filter air passage, 51 Flap, 61 Humidity sensor, 62 Dust sensor, 63 Gas sensor

Abstract

This dehumidifier comprises: a housing which has an inlet and an outlet; an air purifying filter; a dehumidifying means having a dehumidifying unit which removes moisture from the air; an air-blowing means which generates air flow from the inlet to the outlet; an indoor humidity detecting means which detects the relative humidity of indoor air; an indoor air pollution detecting means which detects air pollution which is the degree of pollution in the indoor air; a first air passage in which the air which has entered through the inlet passes through the air purifying filter, the dehumidifying unit, and the air-blowing means and is expelled through the outlet; a second air passage in which the air which has entered through the inlet passes through the dehumidifying unit and the air-blowing means and is expelled through the outlet, without passing through the air purifying filter; an opening and closing means which adjusts the openness of the second air passage; and a control means which changes the openness of the opening and closing means according to the relative humidity and the air pollution.

Description

除湿機dehumidifier
 本開示は、除湿機に関する。 The present disclosure relates to dehumidifiers.
 下記特許文献1に開示された空気清浄機は、内部空間を備える本体ケースと、当該本体ケースの内部に設けられ単一の送風ファンを介して当該本体ケースの両側から外気を流入させる送風部と、当該本体ケースの一側から流入される空気を浄化する空気清浄部と、除湿ローターによって当該本体ケースの他側から流入される空気から水分を除去する除湿部とを含む。この空気清浄機は、第1及び第2の開閉部材を用いて、本体ケースの両側面のいずれか一側面からの空気の流入を遮断することにより、除湿機能と、空気清浄機能とのいずれか一方または両方を、使用者の好みに応じて選択的に行う。 The air purifier disclosed in Patent Document 1 below includes a main body case having an internal space, and a blowing unit provided inside the main body case and allowing outside air to flow in from both sides of the main body case via a single blower fan. , an air purifying part that purifies air introduced from one side of the body case; and a dehumidifying part that removes moisture from the air that enters from the other side of the body case by means of a dehumidifying rotor. This air purifier has either a dehumidifying function or an air purifying function by using the first and second opening/closing members to block the inflow of air from one of both side surfaces of the main body case. Either or both are selectively done according to the preference of the user.
国際公開第2010/047550号WO2010/047550
 特許文献1のものでは、除湿運転と空気清浄運転とを使用者が選択しなければならないので、必ずしも、適切な運転ができないという課題がある。 In Patent Document 1, the user must select between the dehumidifying operation and the air cleaning operation, so there is a problem that appropriate operation cannot always be performed.
 本開示は、上述のような課題を解決するためになされたもので、除湿運転と空気清浄運転とをより適切に実行できる除湿機を提供することを目的とする。 The present disclosure has been made to solve the problems described above, and aims to provide a dehumidifier that can more appropriately perform the dehumidifying operation and the air cleaning operation.
 本開示に係る除湿機は、吸込口と吹出口とを有する筐体と、空気清浄フィルタと、空気中の水分を除去する除湿部を有する除湿手段と、吸込口から吹出口へ至る気流を発生する送風手段と、室内空気の相対湿度を検出する室内湿度検出手段と、室内空気の汚染度である空気汚染度を検出する室内空気汚染度検出手段と、吸込口から入った空気が、空気清浄フィルタ、除湿部、及び送風手段を通過して、吹出口から吹き出される第一の風路と、吸込口から入った空気が、空気清浄フィルタを通過せずに、除湿部及び送風手段を通過して、吹出口から吹き出される第二の風路と、第二の風路の開度を調整する開閉手段と、相対湿度と空気汚染度とに応じて、開閉手段の開度を変更する制御手段と、を備えるものである。 A dehumidifier according to the present disclosure includes a housing having a suction port and a discharge port, an air cleaning filter, dehumidifying means having a dehumidification unit for removing moisture in the air, and generating an airflow from the suction port to the discharge port. indoor humidity detecting means for detecting the relative humidity of the indoor air; indoor air pollution level detecting means for detecting the air pollution level of the indoor air; The first air passage that passes through the filter, the dehumidifying part, and the air blowing means and is blown out from the outlet, and the air that enters from the suction opening passes through the dehumidifying part and the air blowing means without passing through the air cleaning filter. Then, the opening degree of the opening and closing means is changed according to the second air passage blown out from the outlet, the opening and closing means for adjusting the opening degree of the second air passage, and the relative humidity and the degree of air pollution. and a control means.
 本開示によれば、除湿運転と空気清浄運転とをより適切に実行できる除湿機を提供することが可能となる。 According to the present disclosure, it is possible to provide a dehumidifier that can more appropriately perform the dehumidifying operation and the air cleaning operation.
実施の形態1による除湿機の背面図である。2 is a rear view of the dehumidifier according to Embodiment 1; FIG. 実施の形態1による除湿機を図1中のA-A線で切断した断面側面図である。FIG. 2 is a cross-sectional side view of the dehumidifier according to Embodiment 1 taken along line AA in FIG. 1; 実施の形態1による除湿機を図1中のB-B線で切断した断面平面図である。FIG. 2 is a cross-sectional plan view of the dehumidifier according to Embodiment 1 taken along line BB in FIG. 1; 実施の形態1による除湿空気清浄自動運転のときの処理を示すフローチャートである。4 is a flow chart showing processing during dehumidifying air cleaning automatic operation according to Embodiment 1. FIG. フラップの開口開度と、除湿能力と、空気清浄能力との関係を示すグラフである。It is a graph which shows the relationship between the opening opening degree of a flap, dehumidification capability, and air cleaning capability. フラップの開口開度と、騒音値と、除湿能力と、空気清浄能力と、ファン21の回転数との関係を示すグラフである。5 is a graph showing the relationship between the opening degree of the flap, the noise value, the dehumidifying ability, the air cleaning ability, and the number of revolutions of the fan 21. FIG. 実施の形態2による除湿空気清浄自動運転のときの処理を示すフローチャートである。9 is a flow chart showing processing during dehumidifying air cleaning automatic operation according to Embodiment 2. FIG. 実施の形態3による除湿空気清浄自動運転のときの処理を示すフローチャートである。10 is a flow chart showing processing during dehumidifying air cleaning automatic operation according to Embodiment 3. FIG. フラップの開口開度と、ファン回転数の設定値と、除湿能力と、空気清浄能力との関係を示すグラフである。It is a graph which shows the relationship between the opening opening degree of a flap, the set value of fan rotation speed, dehumidification ability, and air cleaning ability.
 以下、図面を参照して実施の形態について説明する。各図において共通または対応する要素には、同一の符号を付して、説明を簡略化または省略する。なお、本開示で角度に言及した場合において、和が360°となる優角と劣角とがあるときには原則として劣角の角度を指すものとし、和が180°となる鋭角と鈍角とがある場合には原則として鋭角の角度を指すものとする。 Embodiments will be described below with reference to the drawings. Elements that are common or correspond to each figure are denoted by the same reference numerals, and their explanations are simplified or omitted. In addition, when referring to angles in the present disclosure, when there is a dominant angle and a minor angle whose sum is 360 °, in principle, it refers to a minor angle, and there is an acute angle and an obtuse angle whose sum is 180 °. In principle, it refers to an acute angle.
実施の形態1.
 図1は、実施の形態1による除湿機1の背面図である。図2は、実施の形態1による除湿機1を図1中のA-A線で切断した断面側面図である。図3は、実施の形態1による除湿機1を図1中のB-B線で切断した断面平面図である。本開示では、原則として、除湿機1が水平面に置かれた状態を基準にして、当該除湿機1について説明する。
Embodiment 1.
FIG. 1 is a rear view of the dehumidifier 1 according to Embodiment 1. FIG. FIG. 2 is a cross-sectional side view of the dehumidifier 1 according to Embodiment 1 taken along line AA in FIG. FIG. 3 is a cross-sectional plan view of the dehumidifier 1 according to Embodiment 1 taken along line BB in FIG. In the present disclosure, in principle, the dehumidifier 1 will be described with reference to the state in which the dehumidifier 1 is placed on a horizontal surface.
 除湿機1は、ケース10を備える。ケース10は、除湿機1の外殻を形成する筐体の一例である。ケース10は、例えば、自立可能な箱状に形成される。このケース10の底部には、除湿機1を移動させるための車輪20が設けられてもよい。 The dehumidifier 1 has a case 10. Case 10 is an example of a housing that forms the outer shell of dehumidifier 1 . The case 10 is formed, for example, in a self-supporting box shape. Wheels 20 for moving the dehumidifier 1 may be provided at the bottom of the case 10 .
 実施の形態1において、ケース10は、前ケース10a及び後ケース10bを有する。前ケース10aは、ケース10の正面部分を形成する部材である。後ケース10bは、ケース10の背面部分を形成する部材である。後ケース10bは、例えばネジ等によって前ケース10aに固定されている。 In Embodiment 1, the case 10 has a front case 10a and a rear case 10b. The front case 10 a is a member that forms the front portion of the case 10 . The rear case 10 b is a member that forms the rear portion of the case 10 . The rear case 10b is fixed to the front case 10a by screws or the like.
 ケース10には、吸込口11及び吹出口12が形成される。吸込口11は、ケース10の外部から内部へ空気を取り込むための開口である。吹出口12は、ケース10の内部から外部へ空気を送り出すための開口である。実施の形態1において、吸込口11は、ケース10の背面部分に形成される。吸込口11は後ケース10bに形成されている。また、実施の形態1において、吹出口12は、ケース10の上面部分に形成される。 A suction port 11 and a blowout port 12 are formed in the case 10 . The suction port 11 is an opening for taking in air from the outside of the case 10 to the inside. The air outlet 12 is an opening for blowing air from the inside of the case 10 to the outside. In Embodiment 1, suction port 11 is formed in the rear portion of case 10 . The suction port 11 is formed in the rear case 10b. Further, in Embodiment 1, the blowout port 12 is formed in the upper surface portion of the case 10 .
 除湿機1は、吸込口11を覆う吸込口カバー11aを備える。吸込口カバー11aは、例えば、メッシュ状に形成される。この吸込口カバー11aは、吸込口11を介してケース10の内部へ異物が侵入してしまうことを防止する。吸込口カバー11aは、例えば、後ケース10bに対して着脱自在に形成される。 The dehumidifier 1 includes a suction port cover 11a that covers the suction port 11. The suction port cover 11a is formed in a mesh shape, for example. The suction port cover 11 a prevents foreign matter from entering the inside of the case 10 through the suction port 11 . The suction port cover 11a is, for example, detachably formed with respect to the rear case 10b.
 除湿機1は、その動作を制御する制御手段を備える。図示の例では、制御手段に相当する制御基板(図示省略)と、電源基板(図示省略)とを収納した基板ボックス16が後ケース10bに配置されている。 The dehumidifier 1 has control means for controlling its operation. In the illustrated example, a board box 16 containing a control board (not shown) corresponding to control means and a power supply board (not shown) is arranged in the rear case 10b.
 また、除湿機1は、ルーバー13を備える。ルーバー13は、板状の部材によって構成される。ルーバー13は、吹出口12から空気が送り出される方向を調整するためのものである。ルーバー13は、吹出口12の近くに配置される。ルーバー13は、ルーバー駆動用モータ(図示省略)に連結されている。ルーバー駆動用モータが作動すると、ルーバー13の姿勢が変更される。制御手段がルーバー駆動用モータを制御することで、吹出口12から空気が送り出される方向を調整する。 The dehumidifier 1 also includes a louver 13. The louver 13 is configured by a plate-like member. The louver 13 is for adjusting the direction in which the air is sent out from the blower outlet 12 . A louver 13 is arranged near the outlet 12 . The louver 13 is connected to a louver driving motor (not shown). When the louver drive motor operates, the posture of the louver 13 is changed. The control means controls the louver drive motor to adjust the direction in which the air is blown out from the outlet 12 .
 また、除湿機1は、操作表示部15を備える。操作表示部15は、使用者が除湿機1を操作するためのものである。また、操作表示部15は、除湿機1の状態等を使用者へ表示するものである。操作表示部15に面するケース10の内部には、操作表示部15を制御する操作表示基板15aが配置されている。操作表示基板15aには、除湿機1の運転を開始/停止する運転スイッチ、運転モードを、除湿運転モード、空気清浄運転モードまたは除湿空気清浄自動運転モードのいずれかに切り替える運転モード切替スイッチ、液晶表示部等が配置される。操作表示部15を介して、除湿機1が操作され、除湿機1の状態等が表示される。操作表示基板15aは、後ケース10b内に配置される。 The dehumidifier 1 also includes an operation display section 15 . The operation display section 15 is for the user to operate the dehumidifier 1 . Further, the operation display unit 15 displays the state of the dehumidifier 1 and the like to the user. Inside the case 10 facing the operation display section 15, an operation display board 15a for controlling the operation display section 15 is arranged. The operation display board 15a includes an operation switch for starting/stopping the operation of the dehumidifier 1, an operation mode switching switch for switching the operation mode to any of the dehumidifying operation mode, the air cleaning operation mode, or the dehumidifying air cleaning automatic operation mode, and a liquid crystal display. A display unit and the like are arranged. The dehumidifier 1 is operated via the operation display unit 15, and the state of the dehumidifier 1 and the like are displayed. The operation display board 15a is arranged in the rear case 10b.
 また、除湿機1は、空気を送る送風手段として、ファン21を備える。ファン21は、ケース10の内部に空気を取り込み、取り込んだ空気をケース10の外部へ送る装置である。ファン21は、ケース10の内部に収容される。ファン21は、吸込口11から吹出口12へ至る風路に、吸込口11から吹出口12へと向かう気流を発生させる装置である。 The dehumidifier 1 also includes a fan 21 as a blowing means for sending air. The fan 21 is a device that draws air into the case 10 and sends the drawn air to the outside of the case 10 . The fan 21 is housed inside the case 10 . The fan 21 is a device that generates an air current from the inlet 11 to the outlet 12 in the air path from the inlet 11 to the outlet 12 .
 ケース10の内部には、モータ21aが収容される。モータ21aは、ファン21を回転させる装置である。実施の形態1において、ファン21とモータ21aは、前ケース10a内に配置される。つまり、除湿機1の正面側にファン21とモータ21aが配置される。モータ21aは、軸21bを介し、ファン21に接続される。モータ21aの回転動作は、制御手段により制御される。 A motor 21a is housed inside the case 10. The motor 21 a is a device that rotates the fan 21 . In Embodiment 1, the fan 21 and the motor 21a are arranged inside the front case 10a. That is, the fan 21 and the motor 21a are arranged on the front side of the dehumidifier 1 . Motor 21a is connected to fan 21 via shaft 21b. Rotational operation of the motor 21a is controlled by the control means.
 また、除湿機1は、除湿手段を備える。除湿手段は、空気中に含まれる水分を除去する除湿部を有する。除湿手段は、空気中の水分を除去できるものであれば、いかなるものでも良い。本実施の形態における除湿機1は、冷媒を蒸発させる蒸発器31を含む熱交換器と、冷媒を圧縮する圧縮機(図示省略)と、冷媒を減圧させる減圧装置(図示省略)とを有する冷媒回路を備えたヒートポンプ式の除湿手段を備える。 The dehumidifier 1 also includes dehumidifying means. The dehumidifying means has a dehumidifying section that removes moisture contained in the air. Any dehumidifying means may be used as long as it can remove moisture in the air. The dehumidifier 1 in the present embodiment has a heat exchanger including an evaporator 31 that evaporates the refrigerant, a compressor (not shown) that compresses the refrigerant, and a decompression device (not shown) that decompresses the refrigerant. A heat pump type dehumidification means with a circuit is provided.
 本開示において、除湿手段は、ヒートポンプ式の除湿手段に限定されない。本開示における除湿手段は、例えば、除湿部に設けられた吸着剤によって除去した空気中の水分を熱交換器において凝縮させるデシカント式の除湿手段でもよい。 In the present disclosure, the dehumidifying means is not limited to heat pump type dehumidifying means. The dehumidifying means in the present disclosure may be, for example, a desiccant-type dehumidifying means for condensing moisture in the air removed by an adsorbent provided in the dehumidifying section in a heat exchanger.
 本実施の形態におけるヒートポンプ式除湿手段は、冷媒を凝縮させる熱交換器としての凝縮器32をさらに備える。この除湿手段においては、熱交換器である蒸発器31及び凝縮器32が、除湿部に相当する。蒸発器31、凝縮器32、圧縮機、減圧装置は、ケース10に収容される。圧縮機の圧縮機駆動用モータは、制御手段により制御される。本実施の形態において、蒸発器31と凝縮器32は、後ケース10bに囲われている。 The heat pump dehumidification means in the present embodiment further includes a condenser 32 as a heat exchanger that condenses the refrigerant. In this dehumidification means, the evaporator 31 and the condenser 32, which are heat exchangers, correspond to the dehumidification section. The evaporator 31 , the condenser 32 , the compressor, and the decompression device are housed in the case 10 . A compressor drive motor of the compressor is controlled by the control means. In this embodiment, the evaporator 31 and the condenser 32 are surrounded by the rear case 10b.
 蒸発器31、圧縮機、凝縮器32、及び減圧装置は、配管(図示省略)等を介して順に接続される。蒸発器31、圧縮機、凝縮器32、及び減圧装置より形成された冷媒回路には、冷媒が流れる。蒸発器31及び凝縮器32は、冷媒と空気との間での熱交換を行うための熱交換器である。圧縮機は、蒸発器31で蒸発した低圧の冷媒を圧縮して高圧の冷媒にする装置である。減圧装置は、凝縮器32を通過した高圧冷媒を減圧して低圧冷媒にする装置である。減圧装置は、例えば、膨張弁またはキャピラリーチューブである。 The evaporator 31, the compressor, the condenser 32, and the decompression device are connected in order via piping (not shown) or the like. Refrigerant flows through a refrigerant circuit formed by the evaporator 31, the compressor, the condenser 32, and the decompression device. The evaporator 31 and the condenser 32 are heat exchangers for exchanging heat between refrigerant and air. The compressor is a device that compresses the low-pressure refrigerant evaporated in the evaporator 31 into a high-pressure refrigerant. The decompression device is a device that decompresses the high-pressure refrigerant that has passed through the condenser 32 into a low-pressure refrigerant. A pressure reducing device is, for example, an expansion valve or a capillary tube.
 蒸発器31を通過する空気と、蒸発器31を流れる冷媒との間で、熱が交換される。蒸発器31には、減圧装置によって減圧した冷媒が流れる。蒸発器31には、ケース10の内部へ取り込まれた空気よりも低温の冷媒が流れる。蒸発器31を流れる冷媒は、蒸発器31を通過する空気から熱を吸収する。蒸発器31を通過する空気は、蒸発器31を流れる冷媒に熱を奪われる。すなわち、蒸発器31を通過する空気は、蒸発器31を流れる冷媒によって冷却される。これにより、蒸発器31を通過する空気に含まれる水分が凝縮する。すなわち、結露が発生する。凝縮した空気中の水分は、液体の水として空気から除去される。除去された水は、例えば、ケース10の内部に設けられたタンク14に貯められる。このタンク14は、ケース10から取り外し可能に構成される。蒸発器31を通過した空気は、凝縮器32へ送られる。凝縮器32を通過する空気と、凝縮器32を流れる冷媒との間で、熱が交換される。凝縮器32を流れる冷媒は、凝縮器32を通過する空気によって冷却される。凝縮器32を通過する空気は、凝縮器32を流れる冷媒によって加熱される。凝縮器32を通過した空気は、除湿機1の外部の空気に比べて乾燥した状態である。この乾燥した状態の空気は、ファン21を通過する。ファン21を通過した空気は、吹出口12から、ケース10の上方へ送り出される。このようにして、除湿機1は、空気を除湿する。また、除湿機1は、乾燥した状態の空気を外部へ供給する。 Heat is exchanged between the air passing through the evaporator 31 and the refrigerant flowing through the evaporator 31 . A refrigerant decompressed by a decompression device flows through the evaporator 31 . Refrigerant having a lower temperature than the air taken into the case 10 flows through the evaporator 31 . The refrigerant flowing through the evaporator 31 absorbs heat from the air passing through the evaporator 31 . The air passing through the evaporator 31 loses heat to the refrigerant flowing through the evaporator 31 . That is, air passing through the evaporator 31 is cooled by the refrigerant flowing through the evaporator 31 . As a result, moisture contained in the air passing through the evaporator 31 is condensed. That is, condensation occurs. Moisture in the condensed air is removed from the air as liquid water. The removed water is stored, for example, in a tank 14 provided inside the case 10 . This tank 14 is configured to be removable from the case 10 . Air that has passed through the evaporator 31 is sent to the condenser 32 . Heat is exchanged between the air passing through the condenser 32 and the refrigerant flowing through the condenser 32 . The refrigerant flowing through condenser 32 is cooled by the air passing through condenser 32 . Air passing through the condenser 32 is heated by the refrigerant flowing through the condenser 32 . The air that has passed through the condenser 32 is in a drier state than the air outside the dehumidifier 1 . This dry air passes through the fan 21 . The air that has passed through the fan 21 is sent upward from the case 10 through the air outlet 12 . Thus, the dehumidifier 1 dehumidifies the air. Also, the dehumidifier 1 supplies dry air to the outside.
 後ケース10bは、格子部10cを有する。格子部10cには、蒸発器31に流入する空気が通過する開口が複数形成されている。ファン21の軸21bに平行な方向から見たときに、格子部10cの総開口面積は、蒸発器31の面積と同程度である。蒸発器31と格子部10cとは、第一の空間33を隔てて、距離Cの間隔を空けて、向かい合うように配置される。 The rear case 10b has a lattice portion 10c. A plurality of openings through which the air flowing into the evaporator 31 passes is formed in the lattice portion 10c. When viewed in a direction parallel to the axis 21 b of the fan 21 , the total open area of the grid portion 10 c is approximately the same as the area of the evaporator 31 . The evaporator 31 and the grid portion 10c are arranged to face each other with a distance C therebetween with the first space 33 therebetween.
 また、除湿機1は、空気を清浄化するための空気清浄フィルタを備える。本開示において、「空気を清浄化する」とは、例えば、空気中の塵埃、臭気、粒子、飛沫、エアロゾルのうちの少なくとも一つを除去することに相当する。以下の説明では、空気中の塵埃、粒子、飛沫、エアロゾルを総称して「塵埃」と呼ぶ場合がある。本実施の形態における除湿機1は、HEPAフィルタ41と活性炭フィルタ42とを空気清浄フィルタとして備える。HEPAフィルタ41及び活性炭フィルタ42は、ケース10に収納される。本実施の形態において、HEPAフィルタ41と活性炭フィルタ42は、後ケース10bに収納される。 The dehumidifier 1 also includes an air cleaning filter for cleaning the air. In the present disclosure, "cleaning the air" corresponds to, for example, removing at least one of dust, odor, particles, droplets, and aerosols in the air. In the following description, dust, particles, droplets, and aerosols in the air may be collectively referred to as "dust". Dehumidifier 1 in the present embodiment includes HEPA filter 41 and activated carbon filter 42 as air cleaning filters. The HEPA filter 41 and activated carbon filter 42 are housed in the case 10 . In this embodiment, the HEPA filter 41 and the activated carbon filter 42 are accommodated in the rear case 10b.
 HEPAフィルタ41は、空気中の細かい塵埃を捕集するフィルタである。活性炭フィルタ42は、空気中の臭気を脱臭するフィルタである。HEPAフィルタ41と活性炭フィルタ42は、後ケース10bより、着脱自在に設けられる。活性炭フィルタ42は、格子部10cに対して、第二の空間34を隔てて、距離Dの間隔を空けて、向かい合うように配置される。蒸発器31と活性炭フィルタ42との間に、格子部10cが位置する。 The HEPA filter 41 is a filter that collects fine dust in the air. The activated carbon filter 42 is a filter that deodorizes odors in the air. The HEPA filter 41 and the activated carbon filter 42 are provided detachably from the rear case 10b. The activated carbon filter 42 is arranged to face the lattice portion 10c with the second space 34 therebetween and a distance D therebetween. A grid portion 10 c is positioned between the evaporator 31 and the activated carbon filter 42 .
 本実施の形態において、ケース10の内部には、吸込口11から吹出口12へと通じる風路が形成されている。該風路には、吸込口11から、吸込口カバー11a、HEPAフィルタ41、活性炭フィルタ42、蒸発器31、凝縮器32、ファン21の順に配置される。 In the present embodiment, an air passage leading from the suction port 11 to the blowout port 12 is formed inside the case 10 . In the air passage, from the suction port 11, the suction port cover 11a, the HEPA filter 41, the activated carbon filter 42, the evaporator 31, the condenser 32, and the fan 21 are arranged in this order.
 本開示では、吸込口11から入った空気が、空気清浄フィルタに相当するHEPAフィルタ41及び活性炭フィルタ42と、除湿部に相当する熱交換器である蒸発器31及び凝縮器32と、送風手段に相当するファン21とをこの順に通過して、吹出口12から吹き出される気流の風路を「第一の風路」と称する。これに対し、吸込口11から入った空気が、空気清浄フィルタに相当するHEPAフィルタ41及び活性炭フィルタ42を通過せずに、除湿部に相当する熱交換器である蒸発器31及び凝縮器32と、送風手段に相当するファン21とをこの順に通過して、吹出口12から吹き出される気流の風路を「第二の風路」と称する。また、本開示では、吸込口11から吹出口12へと通じる風路を流れる気流を用いて、上流側と下流側を定める。例えば、熱交換器に対し吸込口11がある側を上流側とする。また、熱交換器に対し吹出口12がある側を下流側とする。 In the present disclosure, the air entering from the suction port 11 passes through the HEPA filter 41 and the activated carbon filter 42 corresponding to the air cleaning filter, the evaporator 31 and the condenser 32 which are heat exchangers corresponding to the dehumidifying section, and the air blowing means. The airflow passage that passes through the corresponding fans 21 in this order and is blown out from the outlet 12 is referred to as a "first airflow passage". On the other hand, the air entering from the suction port 11 does not pass through the HEPA filter 41 and the activated carbon filter 42 corresponding to the air cleaning filter, and passes through the evaporator 31 and the condenser 32 which are heat exchangers corresponding to the dehumidifying section. , and the fan 21 corresponding to the air blowing means in this order and blowing out from the outlet 12 is referred to as a "second air path". In addition, in the present disclosure, the upstream side and the downstream side are defined by using the airflow flowing through the air path leading from the suction port 11 to the blowout port 12 . For example, the side on which the suction port 11 is located with respect to the heat exchanger is defined as the upstream side. Also, the side of the heat exchanger where the outlet 12 is located is the downstream side.
 第一の風路は、空気清浄フィルタに相当するHEPAフィルタ41及び活性炭フィルタ42を気流が通過する風路であるフィルタ風路44を含む。第二の風路は、空気清浄フィルタに相当するHEPAフィルタ41及び活性炭フィルタ42を通過しない風路であるバイパス風路43を含む。バイパス風路43は、HEPAフィルタ41と活性炭フィルタ42を通過せずに、空気が下流へとながれる風路である。 The first air passage includes a filter air passage 44 in which air flows through a HEPA filter 41 and an activated carbon filter 42 corresponding to an air cleaning filter. The second air passage includes a bypass air passage 43 that is an air passage that does not pass through the HEPA filter 41 and activated carbon filter 42 corresponding to the air cleaning filter. The bypass air passage 43 is an air passage through which air flows downstream without passing through the HEPA filter 41 and the activated carbon filter 42 .
 図3に示すように、本実施の形態において、バイパス風路43は、フィルタ風路44に隣接する。バイパス風路43とフィルタ風路44とを仕切板あるいは仕切壁等で仕切るようにしてもよい。このように、バイパス風路43をフィルタ風路44に隣接して配置することにより、除湿機1の中の風路をコンパクトに構成でき、除湿機1を小型化することが可能となる。 As shown in FIG. 3, the bypass air passage 43 is adjacent to the filter air passage 44 in this embodiment. The bypass air passage 43 and the filter air passage 44 may be partitioned by a partition plate, a partition wall, or the like. By arranging the bypass air passage 43 adjacent to the filter air passage 44 in this way, the air passage in the dehumidifier 1 can be configured compactly, and the dehumidifier 1 can be miniaturized.
 本実施の形態において、除湿機1は、HEPAフィルタ41及び活性炭フィルタ42の左側に隣接するバイパス風路43と、HEPAフィルタ41及び活性炭フィルタ42の右側に隣接するバイパス風路43とを備える。このように、フィルタ風路44の一側に隣接するバイパス風路43と、フィルタ風路44の他側に隣接するバイパス風路43とを設けることで、除湿機1を小型化することと、第二の風路の圧力損失をより小さくすることとを両立する上でより有利になる。 In this embodiment, the dehumidifier 1 includes a bypass air passage 43 adjacent to the left side of the HEPA filter 41 and the activated carbon filter 42, and a bypass air passage 43 adjacent to the right side of the HEPA filter 41 and the activated carbon filter 42. In this way, by providing the bypass air passage 43 adjacent to one side of the filter air passage 44 and the bypass air passage 43 adjacent to the other side of the filter air passage 44, the size of the dehumidifier 1 is reduced, This is more advantageous in achieving both reduction in pressure loss in the second air passage.
 本実施の形態では、除湿機1を背面から見たとき、すなわち、ファン21の軸21bに平行な方向から見たときに、フィルタ風路44は、矩形を呈する。そして、フィルタ風路44の矩形の左側の一辺に沿って一方のバイパス風路43が設けられ、フィルタ風路44の矩形の右側の一辺に沿って他方のバイパス風路43が設けられている。除湿機1を背面から見たときに、バイパス風路43の縦方向の長さ、すなわち上下方向についてのバイパス風路43の長さは、HEPAフィルタ41の縦方向の長さ、すなわち上下方向についてのHEPAフィルタ41の長さと同程度に設定されることが望ましい。 In the present embodiment, when the dehumidifier 1 is viewed from the back, that is, when viewed in a direction parallel to the shaft 21b of the fan 21, the filter air passage 44 has a rectangular shape. One bypass air passage 43 is provided along the left side of the rectangle of the filter air passage 44 , and the other bypass air passage 43 is provided along the right side of the rectangle of the filter air passage 44 . When the dehumidifier 1 is viewed from the back, the length of the bypass air passage 43 in the vertical direction, that is, the length of the bypass air passage 43 in the vertical direction, is equal to the length of the HEPA filter 41 in the vertical direction, that is, in the vertical direction. It is desirable that the length of the HEPA filter 41 is set to be approximately the same as that of the HEPA filter 41 of .
 バイパス風路43に流れる気流と、フィルタ風路44に流れる気流とは、活性炭フィルタ42の下流の空間で合流する。バイパス風路43に流れる気流と、フィルタ風路44に流れる気流とは、格子部10cから距離Cの間隔を有した第一の空間33と、格子部10cから距離Dの間隔を有した第二の空間34とで合流する。つまり、バイパス風路43に流れる気流と、フィルタ風路44に流れる気流とは、活性炭フィルタ42の下流に配置される蒸発器31の手前で合流し、その後は1つの風路の中を流れる。 The airflow flowing through the bypass airway 43 and the airflow flowing through the filter airway 44 join in the space downstream of the activated carbon filter 42 . The airflow flowing through the bypass air passage 43 and the airflow flowing through the filter air passage 44 are divided into a first space 33 having a distance C from the lattice portion 10c and a second space 33 having a distance D from the lattice portion 10c. merges with the space 34 of . That is, the airflow flowing through the bypass airway 43 and the airflow flowing through the filter airway 44 join before the evaporator 31 arranged downstream of the activated carbon filter 42, and then flow through one airway.
 本実施の形態における除湿機1は、第二の風路に設けられた導風面43aを有する。導風面43aは、第二の風路の気流が、除湿部に相当する熱交換器の風上側の面の中心に近づくように、第二の風路の気流を導く。導風面43aは、バイパス風路43を通過してきた気流を、熱交換器の風上側の面の中心方向へ導く。本実施の形態における導風面43aは、バイパス風路43を通過してきた気流の方向を横方向(方位角方向)に変える。本実施の形態であれば、導風面43aを設けたことで、バイパス風路43を通過する気流を、除湿部に相当する熱交換器に、さらに効率良く流入させることができる。それゆえ、除湿効率を改善できる。 The dehumidifier 1 according to the present embodiment has an air guide surface 43a provided in the second air passage. The airflow guide surface 43a guides the airflow of the second airflow path so that the airflow of the second airflow path approaches the center of the windward side surface of the heat exchanger corresponding to the dehumidifying section. The air guide surface 43a guides the airflow that has passed through the bypass air passage 43 toward the center of the windward surface of the heat exchanger. The air guide surface 43a in the present embodiment changes the direction of the airflow passing through the bypass air passage 43 to the lateral direction (azimuth direction). In the present embodiment, the provision of the air guide surface 43a allows the airflow passing through the bypass air passage 43 to flow into the heat exchanger corresponding to the dehumidifying section more efficiently. Therefore, dehumidification efficiency can be improved.
 本実施の形態では、格子部10cの左側に位置する導風面43aと、格子部10cの右側に位置する導風面43aとが設けられている。導風面43aは、平面で構成されていてもよい。導風面43aの平面の法線方向を調整することにより、気流が導かれる方向を調整できる。また、導風面43aは、曲面で構成されていてもよい。導風面43aの曲面の曲率を調整することにより、導風面43aにより導かれた気流の広がりを調整できる。 In the present embodiment, a wind guide surface 43a located on the left side of the grid portion 10c and a wind guide surface 43a located on the right side of the grid portion 10c are provided. The air guide surface 43a may be configured as a plane. By adjusting the normal direction of the plane of the air guide surface 43a, the direction in which the airflow is guided can be adjusted. Moreover, the wind guide surface 43a may be configured by a curved surface. By adjusting the curvature of the curved surface of the air guide surface 43a, it is possible to adjust the spread of the airflow guided by the air guide surface 43a.
 除湿機1は、第二の風路の開度を調整する開閉手段を備える。本実施の形態では、図3に示すように、フラップ51が当該開閉手段に相当する。フラップ51は、開閉動作可能な遮蔽板に相当する。フラップ51は、バイパス風路43の吸込口の開度を、開放にしたり、遮蔽にしたり、開放と遮蔽の中間の状態にしたりするように、開閉動作可能である。バイパス風路43の吸込口は、吸込口11の一部である。バイパス風路43の吸込口は、HEPAフィルタ41の風上側の端面の左右の外縁の外側に位置する部分である。フラップ51は、板状の部材によって構成される。フラップ51は、吸込口カバー11aよりも下流側に配置される。フラップ51は、例えば、HEPAフィルタ41側とは反対側の端部に設けられた回転軸を中心に回動可能になっており、開閉手段駆動用モータ(図示省略)により駆動される。HEPAフィルタ41に対して左側に位置するフラップ51は、当該フラップを構成する板状部材の左端に設けられた回転軸を中心に回動する。HEPAフィルタ41に対して右側に位置するフラップ51は、当該フラップを構成する板状部材の右端に設けられた回転軸を中心に回動する。制御手段は、開閉手段駆動用モータの動作を制御することで、フラップ51の開度を調整可能である。 The dehumidifier 1 has opening/closing means for adjusting the degree of opening of the second air passage. In this embodiment, as shown in FIG. 3, the flap 51 corresponds to the opening/closing means. The flap 51 corresponds to a shielding plate that can be opened and closed. The flap 51 can be opened and closed so that the opening of the suction port of the bypass air passage 43 is open, closed, or intermediate between open and closed. A suction port of the bypass air passage 43 is part of the suction port 11 . The suction port of the bypass air passage 43 is located outside the left and right outer edges of the windward end face of the HEPA filter 41 . The flap 51 is configured by a plate-like member. The flap 51 is arranged downstream of the suction port cover 11a. The flap 51 is, for example, rotatable around a rotating shaft provided at the end opposite to the HEPA filter 41 side, and is driven by an opening/closing means driving motor (not shown). The flap 51 located on the left side of the HEPA filter 41 rotates around a rotation shaft provided at the left end of the plate-shaped member that constitutes the flap. The flap 51 located on the right side of the HEPA filter 41 rotates around a rotation shaft provided at the right end of the plate-like member that constitutes the flap. The control means can adjust the degree of opening of the flap 51 by controlling the operation of the motor for driving the opening/closing means.
 図3は、フラップ51がバイパス風路43の吸込口を閉じる位置にあるとき、すなわちフラップ51が全閉であるときの状態を示す。フラップ51が全閉であるときには、空気がバイパス風路43の吸込口に流入することが阻止されるので、第二の風路を空気が通過することが阻止される。開閉手段駆動用モータが、フラップ51を下流側の方向に回動させると、バイパス風路43が開き、空気がバイパス風路43の吸込口に流入可能になる。以下では、フラップ51の開度の値を、開口開度[%]と称する。フラップ51が全閉であるときの開口開度を0%とし、フラップ51が全開であるときの開口開度を100%とする。 FIG. 3 shows the state when the flap 51 is in a position to close the suction port of the bypass air passage 43, that is, when the flap 51 is fully closed. When the flap 51 is fully closed, air is prevented from flowing into the suction port of the bypass air passage 43, so air is prevented from passing through the second air passage. When the opening/closing means driving motor rotates the flap 51 in the downstream direction, the bypass air passage 43 is opened and air can flow into the suction port of the bypass air passage 43 . Below, the value of the degree of opening of the flap 51 is referred to as opening degree [%]. The degree of opening when the flap 51 is fully closed is assumed to be 0%, and the degree of opening when the flap 51 is fully open is assumed to be 100%.
 除湿機1は、室内空気の相対湿度を検出する室内湿度検出手段を備える。本開示では、相対湿度のことを単に「湿度」と呼ぶ場合がある。図3に示すように、本実施の形態では、湿度センサ61が室内湿度検出手段に相当する。湿度センサ61は、ケース10の内部に配置される。ケース10のうち、湿度センサ61の近傍の部分には、ケース10の外側と、湿度センサ61との間を連通する開口(図示省略)が設けられる。制御手段は、湿度センサ61により湿度検出情報を取得することで、室内の湿度を測定することができる。制御手段が取得した湿度検出情報を操作表示基板15aに送信し、湿度センサ61による測定結果に関する情報を操作表示部15に表示してもよい。 The dehumidifier 1 includes indoor humidity detection means for detecting the relative humidity of indoor air. Relative humidity may be referred to simply as "humidity" in this disclosure. As shown in FIG. 3, in this embodiment, the humidity sensor 61 corresponds to indoor humidity detection means. Humidity sensor 61 is arranged inside case 10 . An opening (not shown) communicating between the outside of the case 10 and the humidity sensor 61 is provided in a portion of the case 10 near the humidity sensor 61 . The control means can measure the indoor humidity by acquiring humidity detection information from the humidity sensor 61 . The humidity detection information acquired by the control means may be transmitted to the operation display board 15a, and the information about the measurement result by the humidity sensor 61 may be displayed on the operation display section 15. FIG.
 また、除湿機1は、室内空気の汚染度である空気汚染度を検出する室内空気汚染度検出手段を備える。空気汚染度は、室内の空気中の塵埃、臭気、粒子、飛沫、エアロゾルのうちの少なくとも一つの量あるいは濃度に相当する。図2に示すように、本実施の形態では、塵埃センサ62及びガスセンサ63が室内空気汚染度検出手段に相当する。この例に限らず、本開示における除湿機1は、例えば、塵埃センサ62及びガスセンサ63のいずれか一方のみを室内空気汚染度検出手段として備えたものでもよい。 The dehumidifier 1 also includes indoor air pollution level detection means for detecting the air pollution level, which is the pollution level of indoor air. The degree of air pollution corresponds to the amount or concentration of at least one of dust, odor, particles, droplets, and aerosols in indoor air. As shown in FIG. 2, in the present embodiment, the dust sensor 62 and the gas sensor 63 correspond to indoor air pollution level detection means. Not limited to this example, the dehumidifier 1 according to the present disclosure may include, for example, only one of the dust sensor 62 and the gas sensor 63 as indoor air pollution level detection means.
 塵埃センサ62は、ケース10の内部に配置される。ケース10のうち、塵埃センサ62の近傍の部分には、ケース10の外側と、塵埃センサ62との間を連通する開口(図示省略)が設けられる。制御手段は、塵埃センサ62により塵埃検出情報を取得することで、室内の塵埃の量と濃度を測定することができる。塵埃センサ62は、例えば、0.1μmの粒子を検出する性能を持つ。制御手段が取得した塵埃検出情報を操作表示基板15aに送信し、塵埃センサ62による測定結果に関する情報を操作表示部15に表示してもよい。 The dust sensor 62 is arranged inside the case 10 . An opening (not shown) communicating between the outside of the case 10 and the dust sensor 62 is provided in a portion of the case 10 near the dust sensor 62 . By obtaining dust detection information from the dust sensor 62, the control means can measure the amount and concentration of dust in the room. The dust sensor 62 has the ability to detect particles of 0.1 μm, for example. The dust detection information acquired by the control means may be transmitted to the operation display board 15a, and the information about the measurement result by the dust sensor 62 may be displayed on the operation display section 15. FIG.
 ガスセンサ63は、ケース10の内部に配置される。ケース10のうち、ガスセンサ63の近傍の部分には、ケース10の外側と、ガスセンサ63との間を連通する開口(図示省略)が設けられる。制御手段は、ガスセンサ63によりガス検出情報を取得することで、室内の空気の臭気を測定することができる。制御手段が取得したガス検出情報を操作表示基板15aに送信し、ガスセンサ63の測定結果に関する情報を操作表示部15に表示してもよい。 The gas sensor 63 is arranged inside the case 10 . An opening (not shown) communicating between the outside of the case 10 and the gas sensor 63 is provided in a portion of the case 10 near the gas sensor 63 . By obtaining gas detection information from the gas sensor 63, the control means can measure the odor of the air in the room. The gas detection information acquired by the control means may be transmitted to the operation display board 15a, and the information about the measurement result of the gas sensor 63 may be displayed on the operation display section 15. FIG.
 次に、実施の形態1による除湿機1の運転について説明する。実施の形態1による除湿機1は、除湿運転と空気清浄運転を自動で同時に行う除湿空気清浄自動運転を制御モードとして備える。図4は、実施の形態1による除湿空気清浄自動運転のときの処理を示すフローチャートである。 Next, operation of the dehumidifier 1 according to Embodiment 1 will be described. The dehumidifier 1 according to Embodiment 1 has an automatic dehumidifying and air cleaning operation in which the dehumidifying operation and the air cleaning operation are automatically performed simultaneously as a control mode. FIG. 4 is a flow chart showing processing during the dehumidifying air cleaning automatic operation according to the first embodiment.
 以下、図4を参照して、実施の形態1による除湿空気清浄自動運転について説明する。例えば、使用者が操作表示部15の運転スイッチをONして、運転モード切替スイッチで除湿空気清浄自動運転モードを選択すると、除湿機1は、除湿空気清浄自動運転を開始する。除湿空気清浄自動運転を開始すると、制御手段は、ルーバー13が吹出口12を開口するようルーバー駆動用モータを制御する(ステップS001)。次に、制御手段は、フラップ51が開くように開閉手段駆動用モータを制御し、バイパス風路43の吸込口を開口する(ステップS002)。続いて、制御手段は、モータ21aを回転駆動し、ファン21が予め設定された回転数で回転するように制御する(ステップS003)。ここで、本開示における「回転数」とは、単位時間当たりの回転数、すなわち回転速度を意味する。したがって、ファン21の回転数は、送風手段の動作速度に相当する。また、制御手段は、圧縮機駆動用モータを駆動するように制御し、圧縮機が冷媒の圧縮動作を開始する(ステップS004)。 The dehumidifying air cleaning automatic operation according to Embodiment 1 will be described below with reference to FIG. For example, when the user turns on the operation switch of the operation display unit 15 and selects the dehumidifying air cleaning automatic operation mode with the operation mode switching switch, the dehumidifier 1 starts the dehumidifying air cleaning automatic operation. When the dehumidified air cleaning automatic operation is started, the control means controls the louver driving motor so that the louver 13 opens the outlet 12 (step S001). Next, the control means controls the motor for driving the opening/closing means so that the flap 51 opens, and opens the suction port of the bypass air passage 43 (step S002). Subsequently, the control means rotates the motor 21a and controls the fan 21 to rotate at a preset number of revolutions (step S003). Here, the "rotational speed" in the present disclosure means the rotational speed per unit time. Therefore, the number of rotations of the fan 21 corresponds to the operating speed of the air blowing means. Further, the control means controls to drive the compressor drive motor, and the compressor starts compressing the refrigerant (step S004).
 次いで、制御手段は、湿度センサ61の周囲の空気の湿度を湿度センサ61により検出する動作を開始し、検出された湿度が50%以上であるかどうかを判定する(ステップS005)。以下では、湿度センサ61の検出湿度の値は、小数点以下を四捨五入した値を示すものとする。湿度センサ61の検出湿度が50%未満の場合は、制御手段は、圧縮機駆動用モータの駆動を停止するよう制御し、圧縮機の冷媒圧縮動作を停止させ(ステップS006)、フラップ51を開口開度0%に閉じるように開閉手段駆動用モータを制御し、バイパス風路43の吸込口を閉鎖する(ステップS007)。その後、一定時間が経過すると、ステップS005に戻る。なお、ステップS005では、除湿運転を停止する湿度の閾値を50%としたが、これは一例であり、湿度の閾値は他の値でも良い。 Next, the control means starts the operation of detecting the humidity of the air around the humidity sensor 61 with the humidity sensor 61, and determines whether the detected humidity is 50% or higher (step S005). Below, the value of the humidity detected by the humidity sensor 61 indicates a value rounded off to the nearest whole number. When the humidity detected by the humidity sensor 61 is less than 50%, the control means controls to stop driving the compressor drive motor, stops the compressor from compressing the refrigerant (step S006), and opens the flap 51. The motor for driving the opening/closing means is controlled so that the opening is closed to 0%, and the suction port of the bypass air passage 43 is closed (step S007). After that, after a certain period of time has passed, the process returns to step S005. In step S005, the humidity threshold for stopping the dehumidifying operation is set to 50%, but this is an example, and other values may be used as the humidity threshold.
 ステップS005で湿度センサ61の検出湿度が50%以上の場合には、制御手段は、ステップS008に進み、湿度センサ61の検出湿度が、50%から55%までに入るかどうかを判定する。湿度センサ61の検出湿度が50%から55%までの場合には、制御手段は、圧縮機駆動用モータの駆動動作を継続し、塵埃センサ62とガスセンサ63がそれぞれのセンサの周囲の空気の塵埃とガスの検出動作を開始し、空気汚染度を判定する(ステップS018)。一例として、制御手段は、塵埃センサ62が検出した粒子濃度を閾値と比較し、ガスセンサ63が検出したガス濃度を閾値と比較することにより、空気汚染度を「大」「中」「小」の三段階に判定する。例えば、制御手段は、塵埃センサ62が検出した粒子濃度が高濃度閾値を超えているか、ガスセンサ63が検出したガス濃度が高濃度閾値を超えているときに、空気汚染度を「大」と判定してもよい。制御手段は、塵埃センサ62が検出した粒子濃度が低濃度閾値を下回り、かつ、ガスセンサ63が検出したガス濃度が低濃度閾値を下回っているときに、空気汚染度を「小」と判定してもよい。制御手段は、塵埃センサ62が検出した粒子濃度が低濃度閾値と高濃度閾値との間にあるか、ガスセンサ63が検出したガス濃度が低濃度閾値と高濃度閾値との間にあるときに、空気汚染度を「中」と判定してもよい。ただし、本開示において、制御手段は、空気汚染度を四段階またはそれ以上の多段階に判定してもよいし、空気汚染度を二段階に判定してもよい。 If the humidity detected by the humidity sensor 61 is 50% or higher in step S005, the control means proceeds to step S008 and determines whether the humidity detected by the humidity sensor 61 is between 50% and 55%. When the humidity detected by the humidity sensor 61 is between 50% and 55%, the control means continues to drive the compressor drive motor, and the dust sensor 62 and the gas sensor 63 detect dust in the air around the respective sensors. , the gas detection operation is started, and the degree of air pollution is determined (step S018). As an example, the control means compares the particle concentration detected by the dust sensor 62 with a threshold value, and compares the gas concentration detected by the gas sensor 63 with the threshold value, thereby determining the degree of air pollution as "high", "medium" or "low". Judge in three steps. For example, when the particle concentration detected by the dust sensor 62 exceeds the high-concentration threshold or the gas concentration detected by the gas sensor 63 exceeds the high-concentration threshold, the control means determines that the degree of air pollution is "high". You may When the particle concentration detected by the dust sensor 62 is below the low concentration threshold and the gas concentration detected by the gas sensor 63 is below the low concentration threshold, the control means determines that the degree of air pollution is "low". good too. When the particle concentration detected by the dust sensor 62 is between the low-concentration threshold and the high-concentration threshold, or the gas concentration detected by the gas sensor 63 is between the low-concentration threshold and the high-concentration threshold, The degree of air pollution may be determined as "medium". However, in the present disclosure, the control means may determine the degree of air pollution in four stages or more, or may determine the degree of air pollution in two stages.
 ステップS018で空気汚染度が小の場合は、制御手段は、フラップ51を閉じるように開閉手段駆動用モータを制御し、フラップ51の開口開度を50%とし(ステップS019)、一定時間後、ステップS005に戻る。これに対し、空気汚染度が小でない場合、つまり、空気汚染度が大または中である場合には、制御手段は、フラップ51を閉じるように開閉手段駆動用モータを制御し、フラップ51の開口開度を25%とし(ステップS020)、一定時間後、ステップS005に戻る。なお、ここでは、動作の一例として、湿度センサ61の検出湿度に対する閾値を50%から55%までとし、フラップ51の開口開度を25%、50%としたが、閾値と開口開度はこれ以外の値でも良い。 When the degree of air contamination is low in step S018, the control means controls the motor for driving the opening/closing means so as to close the flap 51, sets the opening degree of the flap 51 to 50% (step S019), and after a certain period of time, Return to step S005. On the other hand, if the degree of air pollution is not small, that is, if the degree of air pollution is high or medium, the control means controls the opening/closing means driving motor to close the flap 51, and the flap 51 is opened. The opening is set to 25% (step S020), and after a certain period of time, the process returns to step S005. Here, as an example of operation, the threshold for the humidity detected by the humidity sensor 61 is set to 50% to 55%, and the opening degree of the flap 51 is set to 25% and 50%. Any value other than
 ステップS008で、湿度センサ61の検出湿度が50%から55%まででない場合には、制御手段は、ステップS009に進み、湿度センサ61の検出湿度が、56%から60%までに入るかどうかを判定する。湿度センサ61の検出湿度が56%から60%までの場合には、制御手段は、圧縮機駆動用モータの駆動動作を継続し、塵埃センサ62とガスセンサ63がそれぞれのセンサの周囲の空気の塵埃とガスの検出動作を開始し、空気汚染度を判定する(ステップS013)。空気汚染度が大の場合は、制御手段は、フラップ51を閉じるように開閉手段駆動用モータを制御し、フラップ51の開口開度を25%とし(ステップS014)、一定時間後、ステップS005に戻る。ステップS013で空気汚染度が大でない場合には、制御手段は、ステップS015に進み、空気汚染度が中かどうかを判断する。空気汚染度が中の場合には、制御手段は、フラップ51を閉じるように開閉手段駆動用モータを制御し、フラップ51の開口開度を50%とし(ステップS016)、一定時間後、ステップS005に戻る。ステップS015で空気汚染度が中でない場合、すなわち空気汚染度が小の場合には、制御手段は、フラップ51を閉じるように開閉手段駆動用モータを制御し、フラップ51の開口開度を75%とし(ステップS017)、一定時間後、ステップS005に戻る。なお、ここでは、動作の一例として、湿度センサ61の検出湿度に対する閾値を56%から60%までとし、フラップ51の開口開度を25%、50%、75%としたが、閾値と開口開度はこれ以外の値でも良い。 In step S008, if the humidity detected by the humidity sensor 61 is not between 50% and 55%, the control means proceeds to step S009 to check whether the humidity detected by the humidity sensor 61 is between 56% and 60%. judge. When the humidity detected by the humidity sensor 61 is between 56% and 60%, the control means continues driving the compressor drive motor, and the dust sensor 62 and the gas sensor 63 detect dust in the air around the respective sensors. , the gas detection operation is started, and the degree of air pollution is determined (step S013). When the degree of air pollution is high, the control means controls the motor for driving the opening/closing means so as to close the flap 51, sets the degree of opening of the flap 51 to 25% (step S014), and after a certain period of time proceeds to step S005. return. If the degree of air pollution is not high in step S013, the control means proceeds to step S015 and determines whether the degree of air pollution is medium. When the degree of air pollution is medium, the control means controls the motor for driving the opening/closing means so as to close the flap 51, sets the opening degree of the flap 51 to 50% (step S016), and after a certain period of time, step S005. back to If the degree of air pollution is not medium in step S015, that is, if the degree of air pollution is small, the control means controls the motor for driving the opening/closing means to close the flap 51, and the degree of opening of the flap 51 is set to 75%. (step S017), and after a certain period of time, the process returns to step S005. Here, as an example of the operation, the threshold for the humidity detected by the humidity sensor 61 is set to 56% to 60%, and the opening degree of the flap 51 is set to 25%, 50%, and 75%. Any other value may be used for the degree.
 ステップS009で、湿度センサ61の検出湿度が56%から60%まででない場合、すなわち、湿度センサ61の検出湿度が61%以上である場合には、制御手段は、圧縮機駆動用モータの駆動動作を継続し、塵埃センサ62とガスセンサ63がそれぞれのセンサの周囲の空気の塵埃とガスの検出動作を開始し、空気汚染度を判定する(ステップS010)。空気汚染度が大でない場合、つまり空気汚染度が中または小である場合には、制御手段は、フラップ51を閉じるように開閉手段駆動用モータを制御し、フラップ51の開口開度を75%とし(ステップS012)、一定時間後、ステップS005に戻る。これに対し、空気汚染度が大の場合には、制御手段は、フラップ51を閉じるように開閉手段駆動用モータを制御し、フラップ51の開口開度を50%とし(ステップS011)、一定時間後、ステップS005に戻る。なお、ここでは、動作の一例として、湿度センサ61の検出湿度に対する閾値を61%以上とし、フラップ51の開口開度を50%、75%としたが、閾値と開口開度はこれ以外の値でも良い。 In step S009, if the humidity detected by the humidity sensor 61 is not between 56% and 60%, that is, if the humidity detected by the humidity sensor 61 is 61% or higher, the control means drives the compressor drive motor. , the dust sensor 62 and the gas sensor 63 start detecting dust and gas in the surrounding air of each sensor, and determine the degree of air pollution (step S010). When the degree of air pollution is not high, that is, when the degree of air pollution is medium or low, the control means controls the motor for driving the opening/closing means so as to close the flap 51, and the degree of opening of the flap 51 is set to 75%. (step S012), and after a certain period of time, the process returns to step S005. On the other hand, when the degree of air pollution is high, the control means controls the motor for driving the opening/closing means so as to close the flap 51, sets the opening degree of the flap 51 to 50% (step S011), and continues for a certain period of time. After that, the process returns to step S005. Here, as an example of the operation, the threshold for the humidity detected by the humidity sensor 61 is set to 61% or more, and the opening degree of the flap 51 is set to 50% and 75%, but the threshold value and the opening degree are other values. But it's okay.
 このように、本実施の形態であれば、相対湿度と空気汚染度とに応じて、フラップ51の開口開度を変更する制御手段を設けたことで、除湿運転と空気清浄運転を同時に行う際に、第一の風路を通る風量と、第二の風路を通る風量との比率を、自動で調整できる。それゆえ、除湿運転と空気清浄運転とを、自動で、より適切に実行できる。 Thus, according to the present embodiment, by providing a control means for changing the opening degree of the flap 51 according to the relative humidity and the degree of air pollution, when performing the dehumidifying operation and the air cleaning operation at the same time In addition, the ratio between the air volume passing through the first air passage and the air volume passing through the second air passage can be automatically adjusted. Therefore, the dehumidifying operation and the air cleaning operation can be performed automatically and more appropriately.
 図5は、フラップ51の開口開度と、除湿能力と、空気清浄能力との関係を示すグラフである。図5のグラフにおいて、横軸は、フラップ51の開口角度を示し、縦軸は、除湿能力と空気清浄能力を示す。すなわち、図5は、フラップ51の開口開度における、除湿能力と空気清浄能力との比率を表している。第二の風路の吸込口に位置するフラップ51の開口開度が増加すると、第一の風路へ流れる風量が減少し、第二の風路へ流れる風量が増加する。この場合、第一の風路の空気清浄フィルタを通過する風量が減少するため、空気清浄能力が低下し、第二の風路では蒸発器31へ流れる風量が増加するため、除湿能力が上昇する。これに対し、フラップ51の開口開度が低下すると、第一の風路へ流れる風量が増加し、第二の風路へ流れる風量が減少する。この場合、第一の風路の空気清浄フィルタを通過する風量が増加するため、空気清浄能力が増加し、第二の風路では蒸発器31へ流れる風量が減少するため、除湿能力が低下する。以上のことから、図5に示すように、フラップ51の開口開度が増加すると、空気清浄能力が低下し、除湿能力が上昇する。逆に、フラップ51の開口開度が低下すると、空気清浄能力が上昇し、除湿能力が低下する。なお、図5では、一例として、フラップ51の開口開度が0%、100%における能力比率を50%、100%としたが、これ以外の値でも良い。 FIG. 5 is a graph showing the relationship between the degree of opening of the flap 51, the dehumidifying capacity, and the air cleaning capacity. In the graph of FIG. 5, the horizontal axis indicates the opening angle of the flap 51, and the vertical axis indicates the dehumidifying ability and the air cleaning ability. That is, FIG. 5 shows the ratio of the dehumidifying ability and the air cleaning ability at the opening degree of the flap 51. As shown in FIG. When the opening degree of the flap 51 located at the suction port of the second air passage increases, the air volume flowing to the first air passage decreases and the air volume flowing to the second air passage increases. In this case, the amount of air passing through the air purifying filter in the first air passage decreases, so the air cleaning ability decreases, and the amount of air flowing to the evaporator 31 in the second air passage increases, so the dehumidifying ability increases. . On the other hand, when the opening degree of the flap 51 decreases, the amount of air flowing through the first air passage increases and the amount of air flowing through the second air passage decreases. In this case, since the amount of air passing through the air cleaning filter in the first air passage increases, the air cleaning ability increases, and in the second air passage, the amount of air flowing to the evaporator 31 decreases, so the dehumidification ability decreases. . From the above, as shown in FIG. 5, when the opening degree of the flap 51 increases, the air cleaning ability decreases and the dehumidification ability increases. Conversely, when the opening degree of the flap 51 decreases, the air cleaning ability increases and the dehumidifying ability decreases. In FIG. 5, as an example, the capacity ratios are set to 50% and 100% when the opening degree of the flap 51 is 0% and 100%, but other values may be used.
 本実施の形態では、相対湿度が等しい場合に、第一空気汚染度のときのフラップ51の開口開度に比べて、第一空気汚染度よりも空気汚染度が高い第二空気汚染度のときのフラップ51の開口開度を小さくする。例えば、湿度が50%から55%においては、空気汚染度が小(第一空気汚染度)のときにはフラップ51の開口開度を50%とし(図4のステップS019)、空気汚染度が中または大(第二空気汚染度)のときにはフラップ51の開口開度を25%とする(ステップS020)。また、湿度が61%以上においては、空気汚染度が小または中(第一空気汚染度)のときにはフラップ51の開口開度を70%とし(ステップS012)、空気汚染度が大(第二空気汚染度)のときにはフラップ51の開口開度を50%とする(ステップS020)。このように、第一空気汚染度よりも空気汚染度が高い第二空気汚染度のときにフラップ51の開口開度を小さくすることで、空気清浄フィルタを通過する第一の風路の風量の比率が大きくなるので、空気清浄能力が高くなり、室内の空気をより効率良く浄化できる。これに対し、空気汚染度が小さい第一空気汚染度のときには、空気清浄能力をそれほど高くする必要がないので、フラップ51の開口開度を大きくすることで、空気清浄フィルタを通過しない第二の風路の風量の比率を大きくする。これにより、圧力損失が小さくなるので、低消費電力と低騒音を図る上で有利になる。 In the present embodiment, when the relative humidity is the same, compared to the opening degree of the flap 51 at the first air pollution degree, when the second air pollution degree is higher than the first air pollution degree , the opening degree of the flap 51 is reduced. For example, when the humidity is 50% to 55%, when the air pollution degree is small (first air pollution degree), the opening degree of the flap 51 is set to 50% (step S019 in FIG. 4), and the air pollution degree is medium or When it is large (second air pollution degree), the opening degree of the flap 51 is set to 25% (step S020). Further, when the humidity is 61% or higher, when the air pollution degree is low or medium (first air pollution degree), the opening degree of the flap 51 is set to 70% (step S012), and when the air pollution degree is high (second air pollution degree). degree of contamination), the degree of opening of the flap 51 is set to 50% (step S020). In this way, by reducing the opening degree of the flap 51 at the second air pollution degree, which is higher than the first air pollution degree, the air volume of the first air passage passing through the air cleaning filter is reduced. Since the ratio is increased, the air purification capacity is increased, and indoor air can be purified more efficiently. On the other hand, when the air pollution degree is the first air pollution degree, which is a small air pollution degree, it is not necessary to increase the air cleaning ability so much, so by increasing the opening degree of the flap 51, the second air pollution filter that does not pass through the air cleaning filter Increase the air volume ratio of the air passage. This reduces the pressure loss, which is advantageous in achieving low power consumption and low noise.
 また、本実施の形態では、空気汚染度が等しい場合に、第一相対湿度のときのフラップ51の開口開度に比べて、第一相対湿度よりも相対湿度が高い第二相対湿度のときのフラップ51の開口開度を大きくする。例えば、空気汚染度が大の場合、第一相対湿度(湿度が56%から60%)のときのフラップ51の開口開度を25%とし(ステップS014)、第二相対湿度(湿度が61%以上)のときのフラップ51の開口開度を50%とする(ステップS011)。また、空気汚染度が小の場合、第一相対湿度(湿度が50%から55%)のときのフラップ51の開口開度を50%とし(ステップS019)、第二相対湿度(湿度が56%から60%)のときのフラップ51の開口開度を75%とする(ステップS017)。ファン21の回転数が同じ場合、フラップ51の開口開度が大きいほど、蒸発器31へ流れる風量が増加するため、除湿能力が上昇する。本実施の形態であれば、湿度が高い第二相対湿度のときにフラップ51の開口開度を大きくすることで、除湿能力が高くなる。それゆえ、室内の湿度を迅速に低下させることが可能となる。これに対し、湿度が低い第一相対湿度のときには、除湿能力をそれほど高くする必要がないので、フラップ51の開口開度を小さくすることで、空気清浄能力を高くすることが可能となる。 Further, in the present embodiment, when the degree of air pollution is the same, the degree of opening of the flap 51 at the first relative humidity is higher than the opening degree of the flap 51 at the second relative humidity, which is higher than the first relative humidity. The opening degree of the flap 51 is increased. For example, when the degree of air pollution is high, the opening degree of the flap 51 is set to 25% when the first relative humidity (humidity is 56% to 60%) (step S014), and the second relative humidity (humidity is 61% above), the opening degree of the flap 51 is set to 50% (step S011). Further, when the degree of air pollution is small, the opening degree of the flap 51 is set to 50% when the first relative humidity (humidity is 50% to 55%) (step S019), and the second relative humidity (humidity is 56%). to 60%), the opening degree of the flap 51 is set to 75% (step S017). When the number of revolutions of the fan 21 is the same, the larger the degree of opening of the flap 51, the more the amount of air flowing to the evaporator 31 increases, so the dehumidification capacity increases. In the present embodiment, the dehumidifying ability is increased by increasing the opening degree of the flap 51 at the second relative humidity when the humidity is high. Therefore, it is possible to quickly lower the indoor humidity. On the other hand, when the first relative humidity is low, it is not necessary to increase the dehumidifying ability so much, so by reducing the opening degree of the flap 51, it is possible to increase the air cleaning ability.
 以上説明したように、本実施の形態であれば、相対湿度と空気汚染度とに応じて制御手段がフラップ51の開口開度を自動で調整することにより、第一の風路へ流れる風量と第二の風路へ流れる風量の比率を変化させ、除湿能力と空気清浄能力の比率を変更することで、除湿能力の要求値と空気清浄能力の要求値を満たす運転モードを実現することが可能となる。 As described above, according to the present embodiment, the control means automatically adjusts the opening degree of the flap 51 according to the relative humidity and the degree of air pollution. By changing the ratio of air volume flowing to the second air passage and changing the ratio of dehumidification capacity and air purification capacity, it is possible to realize an operation mode that satisfies the required values of dehumidification capacity and air purification capacity. becomes.
 本開示において、除湿機1の制御手段の各機能は、処理回路により達成されてもよい。制御手段の処理回路は、少なくとも1つのプロセッサと少なくとも1つのメモリとを備えてもよい。処理回路が少なくとも1つのプロセッサと少なくとも1つのメモリとを備える場合、制御手段の各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより達成されてもよい。ソフトウェア及びファームウェアの少なくとも一方は、プログラムとして記述されてもよい。ソフトウェア及びファームウェアの少なくとも一方は、少なくとも1つのメモリに格納されてもよい。少なくとも1つのプロセッサは、少なくとも1つのメモリに記憶されたプログラムを読み出して実行することにより、制御手段の各機能を達成してもよい。少なくとも1つのメモリは、不揮発性または揮発性の半導体メモリ、磁気ディスク等を含んでもよい。 In the present disclosure, each function of the control means of the dehumidifier 1 may be achieved by a processing circuit. The processing circuitry of the control means may comprise at least one processor and at least one memory. When the processing circuit comprises at least one processor and at least one memory, each function of the control means may be achieved by software, firmware or a combination of software and firmware. At least one of software and firmware may be written as a program. Software and/or firmware may be stored in the at least one memory. At least one processor may accomplish each function of the control means by reading and executing a program stored in at least one memory. The at least one memory may include non-volatile or volatile semiconductor memory, magnetic disks, or the like.
 制御手段の処理回路は、少なくとも1つの専用のハードウェアを備えてもよい。処理回路が少なくとも1つの専用のハードウェアを備える場合、処理回路は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、またはこれらを組み合わせたものでもよい。制御手段の各部の機能がそれぞれ処理回路で達成されても良い。また、制御手段の各部の機能がまとめて処理回路で達成されても良い。制御手段の各機能について、一部を専用のハードウェアで達成し、他の一部をソフトウェアまたはファームウェアで達成してもよい。処理回路は、ハードウェア、ソフトウェア、ファームウェア、またはこれらの組み合わせによって、制御手段の各機能を達成しても良い。 The processing circuit of the control means may comprise at least one piece of dedicated hardware. If the processing circuit comprises at least one piece of dedicated hardware, the processing circuit may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field- Programmable Gate Array), or a combination thereof. The functions of each part of the control means may be accomplished respectively by processing circuitry. Also, the functions of each section of the control means may be collectively achieved by a processing circuit. For each function of the control means, a part may be achieved by dedicated hardware and another part may be achieved by software or firmware. The processing circuitry may accomplish each function of the control means by means of hardware, software, firmware, or a combination thereof.
 また、除湿機1の制御手段は、ネットワークを介して接続されるクラウドサーバ上にあってもよい。 Also, the control means of the dehumidifier 1 may be on a cloud server connected via a network.
実施の形態2.
 次に、図6及び図7を参照して、実施の形態2について説明するが、前述した実施の形態1との相違点を中心に説明し、共通する説明を簡略化または省略する。また、前述した要素と共通または対応する要素には、同一の符号を付す。
Embodiment 2.
Next, the second embodiment will be described with reference to FIGS. 6 and 7. The description will focus on the differences from the above-described first embodiment, and the common description will be simplified or omitted. Moreover, the same code|symbol is attached|subjected to the element which is common with the element mentioned above, or corresponds.
 実施の形態2による除湿機1は、そのハードウェア構成については実施の形態1と同じであり、除湿空気清浄自動運転の制御方法における送風ファン回転数フィードバック制御が実施の形態1と相違する。 The dehumidifier 1 according to Embodiment 2 has the same hardware configuration as that of Embodiment 1, and differs from Embodiment 1 in the blower fan rotational speed feedback control in the control method of the dehumidified air cleaning automatic operation.
 図6は、フラップ51の開口開度と、騒音値と、除湿能力と、空気清浄能力と、ファン21の回転数との関係を示すグラフである。図7は、実施の形態2による除湿空気清浄自動運転のときの処理を示すフローチャートである。なお、図7のステップS001からステップS020までの処理は、実施の形態1と同様であるため、説明を割愛する。 FIG. 6 is a graph showing the relationship between the opening degree of the flap 51, the noise value, the dehumidifying ability, the air cleaning ability, and the number of revolutions of the fan 21. FIG. 7 is a flow chart showing processing during the dehumidifying air cleaning automatic operation according to the second embodiment. In addition, since the process from step S001 to step S020 of FIG. 7 is the same as that of Embodiment 1, description is omitted.
 図6に示すように、ファン21の回転数が同じである場合、フラップ51の開口開度が大きいほど除湿機1の騒音値SPLが増加し、フラップ51の開口開度が小さいほど除湿機1の騒音値SPLが低下する。これは、フラップ51の開口開度が大きいほどフラップ51による遮音率が低下し、フラップ51の開口開度が小さいほどフラップ51による遮音率が高くなるためである。また、フラップ51の開口開度が同じであれば、ファン21の回転数が高いほど、除湿機1の騒音値SPLが増加し、空気清浄能力及び除湿能力も増加する。以下では、ファン21の回転数を「ファン回転数」と呼ぶ場合がある。 As shown in FIG. 6, when the rotation speed of the fan 21 is the same, the noise value SPL of the dehumidifier 1 increases as the opening degree of the flap 51 increases, and the noise value SPL of the dehumidifier 1 increases as the opening degree of the flap 51 decreases. The noise value SPL of is lowered. This is because the sound insulation rate of the flap 51 decreases as the opening degree of the flap 51 increases, and the sound insulation rate of the flap 51 increases as the opening degree of the flap 51 decreases. Further, if the opening degree of the flap 51 is the same, the higher the rotation speed of the fan 21, the higher the noise value SPL of the dehumidifier 1 and the higher the air cleaning ability and dehumidifying ability. Below, the rotation speed of the fan 21 may be called "fan rotation speed."
 実施の形態2における除湿空気清浄自動運転において、ファン21の回転数フィードバック制御は、以下のように行われる。本実施の形態では、フラップ51の開口開度と騒音値とファン21の回転数との関係から、予め設定された騒音上限値以下となるファン回転数が抽出される。制御手段は、その抽出されたファン回転数の中から最大値となるファン回転数を設定し、運転しているファン回転数を、その設定した回転数へ変更する。本実施の形態では、設定の一例として、騒音上限値を50dBとし、ファン回転数を700rpm、800rpm、900rpmとしたが、これ以外の値でも良い。また、本実施の形態では、ファン回転数を三段階に切り替えているが、ファン回転数を四段階またはそれ以上の多段階に切り替えてもよいし、ファン回転数を二段階に切り替えてもよい。 In the dehumidified air cleaning automatic operation in Embodiment 2, the rotational speed feedback control of the fan 21 is performed as follows. In the present embodiment, the fan rotation speed equal to or lower than the preset noise upper limit value is extracted from the relationship between the opening degree of the flap 51, the noise value, and the rotation speed of the fan 21. FIG. The control means sets the maximum fan rotation speed among the extracted fan rotation speeds, and changes the fan rotation speed in operation to the set rotation speed. In this embodiment, as an example of setting, the noise upper limit is set to 50 dB, and the fan rotation speeds are set to 700 rpm, 800 rpm, and 900 rpm, but other values may be used. Further, in the present embodiment, the fan rotation speed is switched in three steps, but the fan rotation speed may be switched in four steps or more, or the fan rotation speed may be switched in two steps. .
 図7のフローチャートにおいて、ステップS011,S012,S014,S016,S017,S019,またはS020でフラップ51の開口開度が決定されると、制御手段は、ステップS021として、ファン21の回転数をフィードバックさせ、ステップS005に戻る。ステップS021において、制御手段は、フラップ51の開口開度に応じて、図6のグラフのように、ファン回転数を設定する。すなわち、フラップ51の開口開度が0%からα%のときには、制御手段は、ファン回転数を900rpmとする。フラップ51の開口開度がα%からβ%のときには、制御手段は、ファン回転数を800rpmとする。フラップ51の開口開度がβ%から100%のときには、制御手段は、ファン回転数を700rpmとする。ここで、0<α<50、50<β<100である。 In the flowchart of FIG. 7, when the opening degree of the flap 51 is determined in steps S011, S012, S014, S016, S017, S019, or S020, the control means feeds back the rotational speed of the fan 21 in step S021. , the process returns to step S005. In step S021, the control means sets the fan rotation speed according to the degree of opening of the flap 51, as shown in the graph of FIG. That is, when the opening degree of the flap 51 is between 0% and α%, the control means sets the fan speed to 900 rpm. When the opening degree of the flap 51 is between α% and β%, the control means sets the fan speed to 800 rpm. When the opening degree of the flap 51 is between β% and 100%, the control means sets the fan speed to 700 rpm. where 0<α<50 and 50<β<100.
 このように、本実施の形態では、制御手段は、フラップ51の開口開度が第一開度のときのファン回転数に比べて、フラップ51の開口開度が第一開度よりも小さい第二開度のときのファン回転数を高くする。例えば、制御手段は、フラップ51の開口開度がβ%から100%(第一開度)のときのファン回転数(700rpm)に比べて、フラップ51の開口開度が第一開度よりも小さい第二開度(α%からβ%)のときのファン回転数(800rpm)を高くする。また、制御手段は、フラップ51の開口開度がα%からβ%(第一開度)のときのファン回転数(800rpm)に比べて、フラップ51の開口開度が第一開度よりも小さい第二開度(0%からα%)のときのファン回転数(900rpm)を高くする。これにより、除湿機1の騒音値が騒音上限値を超えない範囲においてファン回転数をなるべく高くすることができるので、除湿能力と空気清浄能力が向上する。 As described above, in the present embodiment, the control means controls the rotation speed of the fan when the opening degree of the flap 51 is smaller than the first opening degree. Increase the fan rotation speed at double opening. For example, the control means controls the fan rotation speed (700 rpm) when the opening degree of the flap 51 is from β% to 100% (first opening degree). Increase the fan rotation speed (800 rpm) when the second degree of opening is small (α% to β%). In addition, the control means controls the fan rotation speed (800 rpm) when the opening degree of the flap 51 is between α% and β% (first opening degree). Increase the fan rotation speed (900 rpm) at the second small opening (0% to α%). As a result, the fan rotation speed can be increased as long as the noise value of the dehumidifier 1 does not exceed the noise upper limit value, thereby improving the dehumidifying ability and the air cleaning ability.
 換言すれば、本実施の形態において、制御手段は、除湿機1の作動時の騒音値SPLが基準(騒音上限値)を超えないように、フラップ51の開口開度が大きくなるにつれて、ファン回転数を段階的に低くする。これにより、騒音を抑制しつつ、除湿能力と空気清浄能力を、実施の形態1よりも、さらに高く発揮させることが可能となる。 In other words, in the present embodiment, the control means rotates the fan as the opening degree of the flap 51 increases so that the noise value SPL during operation of the dehumidifier 1 does not exceed the reference (noise upper limit value). Decrease the number step by step. This makes it possible to exhibit higher dehumidifying ability and air cleaning ability than in the first embodiment while suppressing noise.
実施の形態3.
 次に、図8及び図9を参照して、実施の形態3について説明するが、前述した実施の形態1及び実施の形態2との相違点を中心に説明し、共通する説明を簡略化または省略する。また、前述した要素と共通または対応する要素には、同一の符号を付す。
Embodiment 3.
Next, the third embodiment will be described with reference to FIGS. omitted. Moreover, the same code|symbol is attached|subjected to the element which is common with the element mentioned above, or corresponds.
 実施の形態3による除湿機1は、そのハードウェア構成については実施の形態1及び実施の形態2と同じであり、除湿空気清浄自動運転の制御方法における送風ファン回転数フィードバック制御が実施の形態2と相違する。 The dehumidifier 1 according to Embodiment 3 has the same hardware configuration as those of Embodiments 1 and 2, and the blower fan rotation speed feedback control in the control method of the dehumidified air cleaning automatic operation is the same as that of Embodiment 2. differ from
 図8は、実施の形態3による除湿空気清浄自動運転のときの処理を示すフローチャートである。なお、図8のステップS001からステップS007までの処理は、実施の形態1と同様であるため、説明を割愛する。図9は、フラップ51の開口開度と、ファン回転数の設定値と、除湿能力と、空気清浄能力との関係を示すグラフである。 FIG. 8 is a flow chart showing the processing during the dehumidifying air cleaning automatic operation according to the third embodiment. In addition, since the process from step S001 to step S007 of FIG. 8 is the same as that of Embodiment 1, description is omitted. FIG. 9 is a graph showing the relationship between the opening degree of the flap 51, the set value of the fan rotation speed, the dehumidifying ability, and the air cleaning ability.
 図8のステップS005で湿度センサ61の検出湿度が50%以上の場合には、制御手段は、ステップS030に進み、空気汚染度が大であるかどうかを判断する。空気汚染度が大である場合には、制御手段は、フラップ51の開口開度を0%に変更し(ステップS031)、ファン21の回転数フィードバックにより、ファン回転数を1000rpmへ変更し(ステップS035)、一定時間後、ステップS005に戻る。 When the humidity detected by the humidity sensor 61 is 50% or higher in step S005 of FIG. 8, the control means proceeds to step S030 and determines whether the degree of air pollution is high. When the degree of air pollution is high, the control means changes the opening degree of the flap 51 to 0% (step S031), and changes the fan rotation speed to 1000 rpm by feedback of the rotation speed of the fan 21 (step S031). S035), and returns to step S005 after a certain period of time.
 ステップS030で空気汚染度が大でない場合には、制御手段は、ステップS032に進み、空気汚染度が中かどうかを判断する。空気汚染度が中の場合には、制御手段は、フラップ51の開口開度を50%に変更し(ステップS033)、ファン21の回転数フィードバックにより、ファン回転数を750rpmへ変更し(ステップS035)、一定時間後、ステップS005に戻る。 If the air pollution degree is not high in step S030, the control means proceeds to step S032 and determines whether the air pollution degree is medium. When the degree of air pollution is medium, the control means changes the opening degree of the flap 51 to 50% (step S033), and changes the fan speed to 750 rpm by feedback of the speed of the fan 21 (step S035). ), and after a certain period of time, the process returns to step S005.
 ステップS032で空気汚染度が中でない場合、すなわち空気汚染度が小の場合には、制御手段は、フラップ51の開口開度を100%に変更し(ステップS034)、ファン21の回転数フィードバックにより、ファン回転数を500rpmへ変更し(ステップS035)、一定時間後、ステップS005に戻る。 If the degree of air pollution is not medium in step S032, that is, if the degree of air pollution is small, the control means changes the opening degree of the flap 51 to 100% (step S034), and the rotation speed feedback of the fan 21 , the fan speed is changed to 500 rpm (step S035), and after a certain period of time, the process returns to step S005.
 本実施の形態では、設定の一例として、フラップ51の開口開度を0%、50%、100%とし、ファン回転数を1000rpm、750rpm、500rpmとしたが、それ以外の値でも良い。また、本実施の形態では、フラップ51の開口開度及びファン回転数を三段階に切り替えているが、フラップ51の開口開度及びファン回転数を四段階またはそれ以上の多段階に切り替えてもよいし、フラップ51の開口開度及びファン回転数を二段階に切り替えてもよい。 In the present embodiment, as an example of setting, the flap 51 opening degree is set to 0%, 50%, and 100%, and the fan rotation speed is set to 1000 rpm, 750 rpm, and 500 rpm, but other values may be used. In addition, in the present embodiment, the opening degree of the flap 51 and the fan rotation speed are switched in three stages, but the opening opening degree of the flap 51 and the fan rotation speed may be switched in multiple stages such as four stages or more. Alternatively, the degree of opening of the flap 51 and the rotation speed of the fan may be switched in two steps.
 図9に示すように、実施の形態3では、実施の形態2とは異なり、ファン21の回転数フィードバックの制御目標を、除湿能力比率100%としている。これは、除湿能力の要求値を複数持たず、除湿能力比率100%の1つに限定することで制御の条件数を減らし、制御の簡素化に繋がる。また、フラップ51の開口開度の状態に左右されず、どの開度の状態においても除湿能力が目標値にて出力しているため、市場における品質向上に繋がる。ここでは、設定の一例として、除湿能力比率の目標値を100%としたが、それ以外の値でも良い。 As shown in FIG. 9, in the third embodiment, unlike the second embodiment, the control target of the rotation speed feedback of the fan 21 is set to 100% of the dehumidification capacity ratio. This reduces the number of control conditions and simplifies the control by not having a plurality of required dehumidification capacity values and limiting the dehumidification capacity ratio to 100%. In addition, since the dehumidification capacity is output at the target value regardless of the state of the opening degree of the flap 51, it leads to quality improvement in the market. Here, as an example of setting, the target value of the dehumidification capacity ratio is set to 100%, but other values may be used.
 以上説明したように、実施の形態3では、制御手段は、フラップ51の開口開度が小さくなるにつれて、除湿能力が同等になるように、ファン回転数を高くする。これにより、フラップ51の開口開度が小さいときでも、高い除湿能力が得られる。 As described above, in Embodiment 3, the control means increases the fan rotation speed so that the dehumidification capacity becomes equal as the opening degree of the flap 51 decreases. As a result, high dehumidification performance can be obtained even when the opening degree of the flap 51 is small.
1 除湿機、 10 ケース、 10a 前ケース、 10b 後ケース、 10c 格子部、 11 吸込口、 11a 吸込口カバー、 12 吹出口、 13 ルーバー、 15 操作表示部、 15a 操作表示基板、 16 基板ボックス(制御手段に相当する制御基板を内部に収納)、 20 車輪、 21 ファン、 21a モータ、 21b 軸、 31 蒸発器、 32 凝縮器、 33 第一の空間、 34 第二の空間、 41 HEPAフィルタ、 42 活性炭フィルタ、 43 バイパス風路、 43a 導風面、 44 フィルタ風路、 51 フラップ、 61 湿度センサ、 62 塵埃センサ、 63 ガスセンサ 1 dehumidifier, 10 case, 10a front case, 10b rear case, 10c lattice part, 11 suction port, 11a suction port cover, 12 air outlet, 13 louver, 15 operation display unit, 15a operation display board, 16 board box (control Control board equivalent to means is housed inside), 20 wheel, 21 fan, 21a motor, 21b shaft, 31 evaporator, 32 condenser, 33 first space, 34 second space, 41 HEPA filter, 42 activated carbon Filter, 43 Bypass air passage, 43a Wind guide surface, 44 Filter air passage, 51 Flap, 61 Humidity sensor, 62 Dust sensor, 63 Gas sensor

Claims (10)

  1.  吸込口と吹出口とを有する筐体と、
     空気清浄フィルタと、
     空気中の水分を除去する除湿部を有する除湿手段と、
     前記吸込口から前記吹出口へ至る気流を発生する送風手段と、
     室内空気の相対湿度を検出する室内湿度検出手段と、
     室内空気の汚染度である空気汚染度を検出する室内空気汚染度検出手段と、
     前記吸込口から入った空気が、前記空気清浄フィルタ、前記除湿部、及び前記送風手段を通過して、前記吹出口から吹き出される第一の風路と、
     前記吸込口から入った空気が、前記空気清浄フィルタを通過せずに、前記除湿部及び前記送風手段を通過して、前記吹出口から吹き出される第二の風路と、
     前記第二の風路の開度を調整する開閉手段と、
     前記相対湿度と前記空気汚染度とに応じて、前記開閉手段の開度を変更する制御手段と、
     を備える除湿機。
    a housing having an inlet and an outlet;
    an air cleaning filter,
    dehumidifying means having a dehumidifying section for removing moisture in the air;
    a blower that generates an airflow from the suction port to the blowout port;
    indoor humidity detection means for detecting the relative humidity of indoor air;
    Indoor air pollution level detection means for detecting the air pollution level, which is the pollution level of indoor air;
    a first air passage in which the air entering from the suction port passes through the air cleaning filter, the dehumidification unit, and the air blowing means and is blown out from the blowing port;
    a second air passage in which the air entering from the suction port passes through the dehumidifying unit and the air blowing means without passing through the air cleaning filter and is blown out from the blowing port;
    opening and closing means for adjusting the degree of opening of the second air passage;
    a control means for changing the degree of opening of the opening/closing means according to the relative humidity and the degree of air pollution;
    dehumidifier with
  2.  前記第二の風路に設けられた導風面を有し、
     前記導風面は、前記第二の風路の気流が、前記除湿部の風上側の面の中心に近づくように、前記第二の風路の気流を導く請求項1に記載の除湿機。
    Having a wind guide surface provided in the second air passage,
    The dehumidifier according to claim 1, wherein the air guide surface guides the airflow of the second air passage so that the airflow of the second air passage approaches the center of the windward side surface of the dehumidifying section.
  3.  前記第一の風路は、前記空気清浄フィルタを通過する風路であるフィルタ風路を含み、
     前記第二の風路は、前記空気清浄フィルタを通過しない風路であるバイパス風路を含み、
     前記バイパス風路は、前記フィルタ風路に隣接する請求項1または請求項2に記載の除湿機。
    The first air passage includes a filter air passage that passes through the air cleaning filter,
    The second air passage includes a bypass air passage that is an air passage that does not pass through the air cleaning filter,
    The dehumidifier according to claim 1 or 2, wherein the bypass air passage is adjacent to the filter air passage.
  4.  前記フィルタ風路の一側に隣接する前記バイパス風路と、
     前記フィルタ風路の他側に隣接する前記バイパス風路と、
     を備える請求項3に記載の除湿機。
    the bypass air passage adjacent to one side of the filter air passage;
    the bypass air passage adjacent to the other side of the filter air passage;
    A dehumidifier according to claim 3, comprising:
  5.  前記除湿手段は、蒸発器を含む熱交換器と圧縮機と減圧装置とを有する冷媒回路を備えたヒートポンプ式の除湿手段、または、吸着剤によって除去した空気中の水分を熱交換器において凝縮させるデシカント式の除湿手段に相当する請求項1から請求項4のいずれか一項に記載の除湿機。 The dehumidification means is a heat pump type dehumidification means having a refrigerant circuit having a heat exchanger including an evaporator, a compressor, and a decompression device, or condenses moisture in the air removed by the adsorbent in the heat exchanger. 5. The dehumidifier according to any one of claims 1 to 4, which corresponds to desiccant dehumidifying means.
  6.  前記相対湿度が等しい場合に、第一空気汚染度のときの前記開閉手段の開度に比べて、前記第一空気汚染度よりも前記空気汚染度が高い第二空気汚染度のときの前記開閉手段の開度を小さくする請求項1から請求項5のいずれか一項に記載の除湿機。 When the relative humidity is the same, the opening and closing at a second air pollution degree that is higher than the first air pollution degree compared to the opening degree of the opening and closing means at the first air pollution degree 6. The dehumidifier according to any one of claims 1 to 5, wherein the opening degree of the means is reduced.
  7.  前記空気汚染度が等しい場合に、第一相対湿度のときの前記開閉手段の開度に比べて、前記第一相対湿度よりも前記相対湿度が高い第二相対湿度のときの前記開閉手段の開度を大きくする請求項1から請求項6のいずれか一項に記載の除湿機。 When the degree of air pollution is the same, the opening of the opening and closing means when the second relative humidity is higher than the first relative humidity compared to the opening degree of the opening and closing means when the first relative humidity 7. The dehumidifier according to any one of claims 1 to 6, wherein the humidity is increased.
  8.  前記開閉手段の開度が第一開度のときの前記送風手段の動作速度に比べて、前記開閉手段の開度が前記第一開度よりも小さい第二開度のときの前記送風手段の動作速度を高くする請求項1から請求項7のいずれか一項に記載の除湿機。 When the opening degree of the opening/closing means is the second opening degree, which is smaller than the first opening degree, compared with the operation speed of the blowing means when the opening degree of the opening/closing means is the first opening degree, The dehumidifier according to any one of claims 1 to 7, wherein the operating speed is increased.
  9.  前記開閉手段の開度が大きくなるにつれて、前記送風手段の動作速度を段階的に低くする請求項1から請求項8のいずれか一項に記載の除湿機。 The dehumidifier according to any one of claims 1 to 8, wherein the operating speed of the air blowing means is reduced stepwise as the opening degree of the opening/closing means increases.
  10.  前記開閉手段の開度が小さくなるにつれて、前記送風手段の動作速度を高くする請求項1から請求項8のいずれか一項に記載の除湿機。 The dehumidifier according to any one of claims 1 to 8, wherein the operation speed of the air blowing means is increased as the opening degree of the opening/closing means becomes smaller.
PCT/JP2021/037675 2021-06-18 2021-10-12 Dehumidifier WO2022264443A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023529442A JPWO2022264443A1 (en) 2021-06-18 2021-10-12
CN202180091872.1A CN117412801A (en) 2021-06-18 2021-10-12 Dehumidifier
TW111110790A TWI801178B (en) 2021-06-18 2022-03-23 dehumidifier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021101726 2021-06-18
JP2021-101726 2021-06-18

Publications (1)

Publication Number Publication Date
WO2022264443A1 true WO2022264443A1 (en) 2022-12-22

Family

ID=84525994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/037675 WO2022264443A1 (en) 2021-06-18 2021-10-12 Dehumidifier

Country Status (4)

Country Link
JP (1) JPWO2022264443A1 (en)
CN (1) CN117412801A (en)
TW (1) TWI801178B (en)
WO (1) WO2022264443A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000055424A (en) * 1998-08-04 2000-02-25 Sanyo Electric Co Ltd Air cleaner
JP2000234761A (en) * 1999-02-15 2000-08-29 Mitsubishi Electric Corp Dehumidification machine
JP2004150766A (en) * 2002-10-31 2004-05-27 Max Co Ltd Attic space air conditioner
JP2004211913A (en) * 2002-12-26 2004-07-29 Sanyo Electric Co Ltd Dehumidifier

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102661621B (en) * 2005-12-14 2014-04-30 松下电器产业株式会社 Heat exchange type ventilator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000055424A (en) * 1998-08-04 2000-02-25 Sanyo Electric Co Ltd Air cleaner
JP2000234761A (en) * 1999-02-15 2000-08-29 Mitsubishi Electric Corp Dehumidification machine
JP2004150766A (en) * 2002-10-31 2004-05-27 Max Co Ltd Attic space air conditioner
JP2004211913A (en) * 2002-12-26 2004-07-29 Sanyo Electric Co Ltd Dehumidifier

Also Published As

Publication number Publication date
CN117412801A (en) 2024-01-16
TWI801178B (en) 2023-05-01
TW202300828A (en) 2023-01-01
JPWO2022264443A1 (en) 2022-12-22

Similar Documents

Publication Publication Date Title
KR101723460B1 (en) Dehumidification system
JP7464868B2 (en) Air quality control system
JP4455363B2 (en) Dehumidifying / humidifying device and ventilation system
JPH11132506A (en) Dehumidification air conditioner and operation thereof
KR101615168B1 (en) Dehumidification system
KR102216987B1 (en) Apparatus for dehumidification or humidification
CN111365775A (en) Dehumidifying and humidifying device, dehumidifying air cleaner, humidifying air cleaner, and method of operating the same
JP3786090B2 (en) Air conditioner and control method of air conditioner
JP3748046B2 (en) Air conditioner
CN107923635B (en) Dehumidifying and humidifying device
JP2008145090A (en) Indoor unit of air conditioner
WO2022264443A1 (en) Dehumidifier
KR101957240B1 (en) Air conditioner
KR20170086435A (en) Air cleaning apparatus having humidifying function
JP2004211913A (en) Dehumidifier
WO2023032738A1 (en) Air-conditioning device
KR102392267B1 (en) Dehumidifier
CN111886456A (en) Fan blade, air conditioner and dehumidifier
TWI828083B (en) air purifier
KR102448713B1 (en) Air conditioner and the control method thereof
KR101403010B1 (en) Apparatus for humidification and dehumidification
CN110726188A (en) Air treatment equipment and control method, device and equipment thereof
KR102371162B1 (en) Apparatus for dehumidification or humidification
WO2023032397A1 (en) Air conditioner
CN113587239B (en) Control method of air purification device, air purification device and air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21946114

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023529442

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE