WO2022264027A1 - Procédé de fabrication additive, composition de poudre polymere comportant un additif de détection, et objet obtenu par ledit procédé - Google Patents

Procédé de fabrication additive, composition de poudre polymere comportant un additif de détection, et objet obtenu par ledit procédé Download PDF

Info

Publication number
WO2022264027A1
WO2022264027A1 PCT/IB2022/055495 IB2022055495W WO2022264027A1 WO 2022264027 A1 WO2022264027 A1 WO 2022264027A1 IB 2022055495 W IB2022055495 W IB 2022055495W WO 2022264027 A1 WO2022264027 A1 WO 2022264027A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
polyamide
particle size
additive
size distribution
Prior art date
Application number
PCT/IB2022/055495
Other languages
English (en)
Inventor
Olivier COULET
Rita FETEIRA ESCUDEIRO
Arnault COULET
Original Assignee
Fabulous
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fabulous filed Critical Fabulous
Priority to DE22743558.3T priority Critical patent/DE22743558T1/de
Priority to DE212022000027.7U priority patent/DE212022000027U1/de
Priority to EP22743558.3A priority patent/EP4355555A1/fr
Priority to JP2023577928A priority patent/JP2024522793A/ja
Priority to DK22743558.3T priority patent/DK4355555T1/da
Publication of WO2022264027A1 publication Critical patent/WO2022264027A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/357Recycling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/364Conditioning of environment
    • B29C64/371Conditioning of environment using an environment other than air, e.g. inert gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • C08K2003/3009Sulfides

Definitions

  • the present invention relates to the manufacture of parts made of polymer materials and relates to a process for agglomeration, layer by layer, in particular by melting or sintering, of a polymer powder comprising an optical and/or magnetic detection additive.
  • the present invention also relates to such a polymer powder supplied for this process and consumed during the process.
  • the present invention finally relates to an object obtained by the process which has particularly advantageous properties in the field of the safety of food production lines.
  • additive manufacturing or “3D printing” only designate these methods.
  • 3D object will designate an object obtained by such a 3D printing method.
  • the agglomeration of powders by fusion, coalescence, and/or “sintering” is caused by radiation making it possible to melt the material to be agglomerated.
  • selective laser sintering SLS, abbreviated to “Selective Laser Sintering”
  • Any other source of electromagnetic radiation making it possible to melt the powder can also be implemented, for example infrared, visible or UV radiation.
  • Other notable powder bed fusion additive manufacturing methods include laser sintering, Multi Jet Fusion, infrared radiation sintering and high speed sintering in particular.
  • thermoplastics are advantageous in industrial production chains, in particular because such objects can be produced in small series for specific uses or because they have specific structural features.
  • 3D objects made of thermoplastics are difficult to detect by means of detection of foreign bodies usually implemented in the context of on-line quality control, in particular in the food industry. So if a 3D object made of thermoplastics breaks, fragments can end up in the product and represent a risk for food safety.
  • the present invention aims to remedy all or part of these drawbacks.
  • the present invention relates to a method for manufacturing a three-dimensional object, comprising a local rise in the temperature of a polyamide-based powder by electromagnetic radiation in a heated enclosure, causing the melting localized layer of a predetermined thickness to form, after cooling, a solid layer of polyamide, said method being characterized in that said powder comprises, over the total weight of the composition:
  • an optical and/or magnetic detection additive selected from the group formed by: pigments comprising a spinel structure which contains a cation of a transition metal, sulphides of a metal of transition ;
  • the powder has:
  • the powder has:
  • the particle size distribution D 10 is greater than 10 ⁇ m, preferentially greater than 15 ⁇ m, preferentially greater than 17 ⁇ m, preferentially greater than 20 ⁇ m.
  • the particle size distribution D 50 is less than 110 ⁇ m, preferably less than 100 ⁇ m, preferably less than 95 ⁇ m, preferably less than 93 ⁇ m, preferably less than 90 ⁇ m. In embodiments, the particle size distribution D 50 is less than 80 ⁇ m.
  • a mass fraction comprised between 30% and 70% of said powder is fresh polyamide powder
  • a mass fraction comprised between 70% and 30% of said powder is polyamide powder recovered in said enclosure heated to the end of a previous manufacture
  • said fresh polyamide powder has an internal viscosity index measured according to ISO 307:2019 of between 0.9 deciliters per gram and 1.4 deciliters per gram, at 25°C.
  • the electromagnetic radiation causing the localized melting of a layer is laser radiation with an energy density greater than or equal to 25 mJ/mm 2 .
  • the method used in this case is preferably the selective laser sintering method, more often called SLS (abbreviated to “Selective Laser Sintering”).
  • the invention relates to a powder composition for an additive manufacturing process characterized in that it comprises, over the total weight of the composition:
  • a detection additive preferably an optical detection additive and/or a magnetic detection additive, selected from the group formed by: pigments comprising a spinel structure which contains a cation of a transition metal, oxides of a transition metal, sulfides of a transition metal;
  • the powder has:
  • the powder composition of the invention is obtained by dry mixing a natural polyamide powder with a polyamide powder comprising a detection additive.
  • the powder composition that is the subject of the invention comprises:
  • an optical detection additive chosen from pigments comprising a spinel structure which contains a cation of a transition metal and
  • the optical or magnetic detection additive is chosen from sulphides of a transition metal.
  • the powder composition that is the subject of the invention has an internal viscosity index measured according to ISO 307:2019 of between 0.9 deciliters per gram and 1.4 deciliters per gram.
  • the powder composition that is the subject of the invention comprises an optical detection additive and said optical detection additive comprises cobalt blue.
  • the invention relates to a three-dimensional object obtained by additive manufacturing from a composition that is the subject of the invention.
  • the three-dimensional object is colored blue in the mass by an optical detection additive.
  • the optical detection additive allows optical detection in a wavelength range between 0.5 ⁇ m and 12 ⁇ m.
  • the three-dimensional object has a modulus of elasticity greater than or equal to 1700 MPa, a tensile strength greater than or equal to 30 MPa, an elongation at break greater than or equal to 20% according to a first orientation and greater than or equal to 35% on a second orientation perpendicular to the first.
  • FIG 1 represents particle size distribution density curves as a function of the particle size of two powder compositions according to the invention and of a natural polyamide 11 powder,
  • FIG 2 represents cumulative distribution curves as a function of circularity for two powder compositions according to the invention and a natural polyamide 11 powder
  • FIG 3 represents a view captured with a scanning electron microscope of a powder composition according to the invention
  • FIG 4 represents a view obtained by X-ray tomography of a section of a 3D object obtained at the end of the additive manufacturing process from the powder composition illustrated in figure 3,
  • FIG 5 schematically represents a section of a 3D object obtained by sintering the powder composition illustrated in figure 3,
  • FIG 6 represents a view captured under a scanning electron microscope of a powder composition for additive manufacturing
  • FIG 7 represents a view obtained by X-ray tomography of a section of a 3D object obtained at the end of the sintering process of the powder composition illustrated in Figure 6,
  • FIG 8 schematically represents a section of a 3D object obtained by sintering the powder composition illustrated in figure 6,
  • FIG 9 represents a DSC differential scanning calorimetry of a particular powder composition according to the invention.
  • FIG 10 represents a graph of the force in MPa as a function of the elongation along an xy orientation, expressed in %, obtained at the end of an elongation test on a 3D object obtained by sintering a composition of powder A, according to a particular embodiment of the invention
  • FIG 11 represents a graph of the force in MPa as a function of the elongation along an xz orientation, expressed in %, obtained at the end of a test of elongation on a 3D object obtained by sintering a powder composition A, according to a particular embodiment of the invention and
  • FIG 12 represents a graph which shows the volumetric particle size distribution as a function of the particle size of a powder composition according to the invention.
  • the powder composition for additive manufacturing process by sintering according to the invention comprises, over the total weight of the composition:
  • a detection additive which may be an optical detection additive and/or a magnetic detection additive, and which is preferably selected from the group formed by: pigments comprising a structure spinel which contains a cation of a transition metal, the oxides of a transition metal, the sulphides of a transition metal;
  • the powder is said to be “polyamide-based” because it mainly comprises polyamide.
  • sintering powder The characteristics of the powder composition for additive manufacturing process by sintering, hereinafter "sintering powder”, and of its components are detailed below.
  • the shape of the grains of the sintering powder is preferably spherical.
  • said detection additive can be selected so as to allow magnetic detection or optical detection, or one can using two additives, namely a first additive allowing magnetic detection and a second additive allowing optical detection, or else an additive is used allowing both optical detection and magnetic detection.
  • the polyamide can be chosen from any available polyamide, or mixture of polyamides, making it possible to obtain the particle size characteristics of the composition of the invention.
  • the polyamide is chosen from polyamides comprising one of the following monomers: PA6, PA10, PA11, PA12 and mixtures thereof.
  • PA11 can be used for its advantageous characteristics and its biosourced origin.
  • biosourced origin we call “biobased” a product that is entirely or partially made from materials of biological origin.
  • the sintering powder has a working temperature window of between 160°C and 210°C.
  • the working temperature window is the temperature interval delimited by the extrapolated initial temperature of the melting peak (T ei.m or T m,onset in °C) and the extrapolated final temperature of the crystallization peak (T ef,C or T c , onset in °C).
  • T ei.m or T m,onset in °C the extrapolated initial temperature of the melting peak
  • T ef,C or T c the extrapolated final temperature of the crystallization peak
  • the powder composition comprises a detection additive.
  • This additive is advantageously an inorganic compound which is insoluble in water and non-toxic, preferably of the spinel type.
  • the powder composition of the invention comprises, on the total weight of the composition, between 1% and 40% by weight of a detection additive.
  • the detection additive may be an optical detection additive.
  • the powder composition of the invention may comprise, relative to the total weight of the composition, between 0.05% and 5% by weight of an optical detection additive, for example between 0.05% and 0 .5%.
  • the latter is advantageously selected from pigments comprising a spinel structure which contains a cation of a transition metal. This type of pigment has the advantage of not being toxic. In particular, the transition metal cation remains trapped in the spinel structure and cannot be dissolved under normal conditions of contact with food and drink, nor in the event of accidental ingestion through the intestinal transit. Spinels have good thermal stability under the laser beam implemented in the SLS laser sintering process technique. The implementation of these pigments is therefore particularly preferable for the powder compositions intended for this use.
  • the pigment is a blue pigment, preferably cobalt aluminate (CAS No: 1345-16-0), which is available under the trade name PB 28.
  • the detection additive optics used allows optical detection, if necessary by infrared.
  • the optical detection additive used allows optical detection in a wavelength range between 0.5 ⁇ m to 12 ⁇ m.
  • the pigment comprises an olivine structure or a rutile structure.
  • the optical detection additive is present in a substantially homogeneous manner in the powder composition, such that the parts obtained by additive manufacturing from this powder are colored in the mass.
  • the detection additive can be a magnetic detection additive.
  • the powder composition of the invention may comprise, relative to the total weight of the composition, between 1% and 40% by weight of a magnetic detection additive.
  • the magnetic detection additive is preferably chosen from oxides comprising a transition metal.
  • the magnetic detection additive is an iron oxide, such as natural or synthetic magnetite (Fe 3 O 4 ). This spinel-like oxide is insoluble in water and non-toxic. In addition, it is not likely to form metal salts likely to be released by parts obtained by additive manufacturing from this powder. Natural magnetite will be preferred to synthetic magnetite.
  • Magnetic detection additives must of course be selected to have particular magnetic properties that can be easily detected.
  • the powder composition of the invention comprises both between 0.05% and 5% by weight of an optical detection additive chosen from pigments comprising and between 1% and 40% by weight of a magnetic detection additive among the oxides of the transition metals.
  • composition of the invention further comprises a flow agent in sufficient quantity for the composition to flow freely, remain fluid and form a uniform, homogeneous and flat layer during the generative layering process in a PBF powder bed (Powder Bed Fusion) for example called layer by layer sintering of SLS, LS polymers.
  • a flow agent in sufficient quantity for the composition to flow freely, remain fluid and form a uniform, homogeneous and flat layer during the generative layering process in a PBF powder bed (Powder Bed Fusion) for example called layer by layer sintering of SLS, LS polymers.
  • composition of the invention comprises, on the total weight of the composition, between 0% and 5% by weight of a flow agent. A content between 0.1% and 4.5% by weight is preferred.
  • the flow agent is chosen from those commonly used in the field of sintering polymer powders, for example from: silicas, precipitated silicas, silica fumes, hydrated silicas, vitreous silicas, fumed silicas, vitreous phosphates, vitreous oxides.
  • the flow agent has a low contact surface.
  • the powder composition in accordance with the invention is obtained according to a manufacturing method which comprises a first step of mixing a so-called "natural" polyamide powder with a flow agent and at least one one of the following steps:
  • these last two steps of mixing with a composition comprising a detection additive are implemented successively, it is noted that their order can be reversed.
  • a natural polyamide powder is a powder composition comprising between 95% and 100% polyamide, preferably at least 99% by weight of polyamide.
  • the polyamide powder composition comprising an optical detection additive can be obtained by reduction to powder of a homogeneous liquid or solid mass comprising the polyamide and said optical additive or by polycondensation in the solid phase, drying then selective grinding.
  • the composition comprising a magnetic detection additive can either be the magnetic additive in pure form (that is to say comprising at least 95% of magnetic detection additive) or be a composition comprising a polyamide homogenized by dry mixing with a magnetic sensing additive.
  • the mixing steps mentioned above can be carried out by dry blending (known by the English term “dry blend”) or by a compounding process (known by the English term “master batch”).
  • dry blend known by the English term “dry blend”
  • master batch a compounding process
  • Compounding requires a subsequent stage of selective grinding of the mass obtained and adjustment of the viscosity by polycondensation in the solid phase and drying; for this reason dry mixing is preferred.
  • the dispersion of the flow agent requires the application of significant mixing energy to obtain good homogenization. This mixing energy is likely to damage the detection additives. It is therefore preferentially opted for a dry premix of the flow agent with a natural polyamide powder during the first mixing step, prior to at least one step of mixing with a composition comprising a detection additive, of less intensity than the first.
  • the mixing steps are carried out by cryogenic grinding, this method well known to those skilled in the art is not described in detail here.
  • the methods for obtaining a dry mixture of homogeneous and dispersed powder of all the components are adapted according to the initial distributions and the final target distribution, i.e.:
  • the final target particle size distribution of the powder has:
  • the particle size distribution D 10 of the powder composition is greater than 10 ⁇ m, preferentially greater than 15 ⁇ m, preferentially greater than 17 ⁇ m, preferentially greater than 20 ⁇ m.
  • Such a particle size distribution D 10 of the powder composition is advantageous for avoiding the presence of too large a quantity of fine particles or dust liable to volatilize into the air and to present a health risk in the event of inhalation and accumulation, eye irritation and skin contact of these fine dusts.
  • the D 50 particle size distribution of the powder composition is between 35 ⁇ m and 55 ⁇ m.
  • the particle size distribution D 50 of the powder composition is between 38 ⁇ m and 45 ⁇ m, very preferably it is between 38 ⁇ m and 40 ⁇ m. The applicant has observed during its tests that these D 50 particle size distribution ranges make it possible to obtain the best performance in terms of final resolution, geometric definition of the parts obtained as well as better coverage and good fluidity of the powder in temperature for the PBF powder bed process using layers from 80 ⁇ m to 120 ⁇ m.
  • the particle size distribution D 90 of the powder composition is less than 110 ⁇ m, preferably less than 100 ⁇ m, preferably less than 95 ⁇ m, preferably less than 93 ⁇ m, preferably less than 90 ⁇ m. In embodiments, the particle size distribution D 50 is less than 80 ⁇ m.
  • Such a particle size distribution D 90 is advantageous for an implementation of the powder in an additive manufacturing process whose layer thickness is between 80 ⁇ m and 160 ⁇ m, for example for a layer thickness of 100 ⁇ m.
  • the D 90 is chosen to be less than the layer size envisaged for the additive manufacturing process.
  • the powder composition has:
  • particle size distributions D 10 , D 50 , and D 90 are advantageous because, while it is advantageous to have a narrow distribution and of the same morphology for additive manufacturing by sintering, too great a homogeneity of particle size of the powder composition gives rise to “caking” phenomena (that is to say powder agglomeration) because geometric arrangements make the powder more agglomerated.
  • these particle size distributions D 10 , D 50 , and D 90 are advantageous because they make it possible to limit the phenomena of powder agglomeration and make it easier to depowder parts obtained by additive manufacturing by sintering.
  • the particle size distribution values of the powder composition D 10 , D 50 and D 90 mentioned above are determined by the static image analysis method according to standard ISO 13322-1:2014.
  • Figure 1 shows the distribution density curves as a function of particle size (expressed in micrometers, abbreviated as ⁇ m) for three powders:
  • curve 105 illustrates the particle size distribution of a PA11 powder called natural, that is to say comprising at least 99% of PA11,
  • a curve 110 illustrates the particle size distribution of a composition A of powder according to the invention, in which the polyamide is a PA11 and which comprises an optical detection additive,
  • curve 115 illustrates the particle size distribution of a powder composition B according to the invention, in which the polyamide is a polyamide 11 and which comprises both an optical detection additive and a magnetic detection additive.
  • the optical detection additive and/or the magnetic detection additive are selected with a view to obtaining a particle size distribution of the powder composition as detailed above.
  • the particle size distribution of the powder compositions according to the invention, with detection additive remain close to that of the particle size distribution of the distribution of the natural PA11 powder, with a density peak around 50 ⁇ m.
  • the powder composition which is the subject of the invention comprises 90%, more preferentially 99%, of grains whose size is between 10 ⁇ m and 120 ⁇ m, preferentially between 20 ⁇ m and 90 ⁇ m, very preferentially between 20 ⁇ m and 80 ⁇ m .
  • FIG. 12 shows the particle size distribution as a function of the size of the particles of the powder composition A, in which the polyamide is a PA11 and which comprises an optical detection additive.
  • the data illustrated in FIG. 12 come from particle size measurements carried out using a Mastersizer 3000 (registered trademark) particle size analyzer from Malvern Panalytical.
  • the graph presents bars 140 of a histogram illustrating the percentage of particles in the powder composition associated with each size, expressed in ⁇ m.
  • a curve 150 illustrates the cumulative percentage of particles whose size is less than a threshold, expressed in ⁇ m. It can be seen in the graph of FIG. 12 that the powder composition A comprises 90% of grains whose size is between 10 ⁇ m and 120 ⁇ m.
  • Shape factors are dimensionless quantities used in image analysis and microscopy that numerically describe the shape of a particle, independent of its size.
  • the circularity/wax index is a form factor which is calculated as follows: [Math 1] where P is the perimeter and A looks like an image of a grain of powder
  • the cumulative distribution f 10 of the powder composition according to the invention is less than or equal to 0.15.
  • the cumulative distribution fio of the powder composition is less than or equal to 0.10.
  • only 10% of the powder grains have a circularity index less than or equal to 0.15, preferably less than or equal to 0.10.
  • 90% of the grains have a circularity index greater than 0.1, preferably greater than 0.15.
  • the f 50 cumulative distribution of the powder composition is less than or equal to 0.6.
  • the f 50 cumulative distribution of the powder composition is less than or equal to 0.55.
  • only 50% of the powder grains have a circularity index less than or equal to 0.6, preferably less than or equal to 0.55.
  • 50% of the powder grains have a circularity index greater than 0.55, preferably greater than 0.6.
  • the f 90 cumulative distribution of the powder composition is less than or equal to 0.8.
  • the f 90 cumulative distribution of the powder composition is less than or equal to 0.75.
  • 90% of the powder grains have a circularity index less than or equal to 0.8, preferably less than or equal to 0.75.
  • 10% of the powder grains have a circularity index greater than 0.75, preferably greater than 0.8.
  • FIG. 2 shows a graphical representation of the cumulative distribution on the ordinate (expressed as a percentage), as a function of the circularity on the abscissa (index without unit).
  • a curve 205 illustrating the cumulative distribution of a so-called natural PA11 powder, that is to say comprising at least 99% by mass of PA11
  • a curve 210 illustrates the cumulative distribution of a powder composition according to the invention, in which the polyamide is a PA11 and which comprises an optical detection additive
  • curve 215 illustrates the cumulative distribution of a powder composition according to the invention, in which the polyamide is a polyamide 11 and which comprises both an optical detection additive and a magnetic detection additive.
  • the optical detection additive and/or the magnetic detection additive are preferably selected with a view to obtaining a cumulative distribution of the powder composition as detailed above. It can thus be seen in FIG. 2 that the cumulative distribution of the powder compositions according to the invention, with detection additive, remain close to that of the particle size distribution of the distribution of the natural PA11 powder.
  • the morphology of the grains is important for the fluidity of the mixture and for the densification of the powder bed during successive coatings, but also for the residual porosity in the final parts obtained.
  • a good sphericity of the powder combined with a very tight distribution, that is to say a cumulative distribution of the type presented above, make it possible to obtain a natural densification of the powder bed by compaction and by geometric arrangements of layer. This layer is then exposed to laser energy for melting and coalescence promoting the densification of parts with low residual porosity.
  • a very heterogeneous powder with a wider distribution will tend to organize itself in a more chaotic way and will cause less densification of the powder bed, as some of the larger grains may not be melted.
  • FIGS. 3 and 6 show two views captured under a scanning electron microscope of two powders, at the same magnification.
  • FIG. 3 illustrates a powder which has a sphericity comparable to the sphericity of a powder composition which is the subject of the invention, that in FIG. 6 is presented by way of comparison.
  • FIGS. 4 and 7 A schematic representation of the powders 30 and 60 illustrated in FIGS. 3 and 6 and of sections of objects 3D images obtained by sintering these powders are presented in figures 5 and 8.
  • the powder 30 illustrated in FIG. 3 is a powder with a good homogeneity of circularity with a circularity of the grains comprised between 0.4 and 0.8, on average equal to 0.65.
  • the powder 30, placed on a previously solidified layer 505 and subjected to an SLS laser sintering process 550 at an energy density of 34 mJ/mm 2 makes it possible to obtain a low and distributed residual porosity, as illustrated in section 410, in figure 4, obtained by tomography of the 3D object and on the section 510, in figure 5.
  • the porous parts 420 which appear in black in figure 4 are illustrated in the form of white cavities in figure 5. These porous parts are less numerous and better distributed than those observed on the sections of a 3D object obtained by sintering from a powder of less homogeneity of circularity of the grains, represented in figures 7 and 8.
  • the powder 60 illustrated in FIG. 6 has less homogeneity than the homogeneity of the powder 30, with a grain circularity of between 0.1 and 0.8, on average equal to 0.55.
  • the powder 60, placed on a previously solidified layer 805 and subjected to an SLS laser sintering process 550 at an energy density of 34 mJ/mm 2 results in obtaining a 3D object of less good homogeneity and residual porosity larger, presented in section 710 obtained by tomography, in figure 7, and in schematic section 810 in figure 8.
  • the present invention relates more particularly to an additive manufacturing process by powder bed fusion (PBF, abbreviated to Power Bed Fusion), layer by layer, from a polyamide powder in a heated enclosure.
  • PPF powder bed fusion
  • LS Laser Sintering
  • SLS Selective Laser Sintering
  • MJF Multi Jet Fusion
  • HSS high-speed sintering
  • the method of the invention relates to the manufacture of 3D objects in polyamide comprising a detection additive, from a composition of polyamide powder.
  • the method according to the invention takes place in a closed chamber preheated to a setpoint temperature T 1 .
  • the atmosphere inside the enclosure is enriched in nitrogen (or under vacuum) and depleted in oxygen, in order to limit the oxidation of the polymer powder; this oxidation gradually leads to the elongation of the macromolecules constituting the particles of polymer powder and represents the main aging mechanism of said powders. This elongation of the macromolecules tends to increase the internal viscosity of the polymer.
  • the limitation of the temperature oxidation of the powders promotes the recycling of the unused powder, which contributes significantly to the economy of the process according to the invention.
  • the oxygen level is less than 5% by volume, preferably less than 2%, and even more preferably less than 1%.
  • the holding temperature T 1 is advantageously around 20 to 30 degrees around the crystallization temperature Te of the polymer.
  • the preheating temperature T 1 is advantageously between about 140°C and about 160°C, preferably between about 142°C and about 158°C. °C.
  • the heating temperature is equal to the holding temperature.
  • the holding temperature T 1 is preferably between 150 and 185° C.
  • the process which is the subject of the invention comprises the deposition of a uniform layer of a bed of polyamide powder in a preheated chamber.
  • the surface of the powder bed is heated rapidly, typically by infrared radiation, to a temperature T 2 which is selected to be approximately 8% to 14% lower than the T m of the polyamide (i.e. 12 to 26 degrees below the melting temperature T m of the powder).
  • T 2 is selected to be approximately 8% to 14% lower than the T m of the polyamide (i.e. 12 to 26 degrees below the melting temperature T m of the powder).
  • This heating to a temperature T 2 makes it possible to maintain the polyamide powder at a temperature quite close to its melting temperature, without however reaching this melting temperature.
  • the temperature T 2 is between about 183°C and about 204°C.
  • the temperature T 2 is between 168°C and 206°C.
  • the melting of the powder is necessary to obtain a compact part.
  • This melting must be transitory, rapid, localized and controlled, so as to avoid the uncontrolled flow of the liquid polymer; for this reason it must be brief, that is to say that the localized melting must be followed promptly by cooling to a temperature below the melting point T m of the polymer, towards a temperature T R at which the polymer can recrystallize from the molten state.
  • Said temperature TR may be in the vicinity of temperature T 2 , it is between T 1 and T 2 .
  • electromagnetic radiation irradiates targeted zones of the polyamide powder, making it possible to locally increase the temperature and to agglomerate between them the polyamide grains of the targeted zones .
  • the electromagnetic radiation is for example visible, infrared or near infrared laser radiation.
  • the local temperature T L of the melting zone is preferably approximately 8% to 14% higher than the T m of the polyamide (ie 12 to 26 degrees higher than the melting temperature T m of the powder). A transient liquid phase is thus formed, but if T L is too high, the viscosity of the molten polymer becomes too low and there is a risk of running.
  • temperatures T 1 and T 2 implemented during a sintering process according to the invention are collated in table 1 below and compared with the melting point T m and the crystallization temperature T c of the sintering powders A and B according to the invention.
  • - powder A is a powder composition according to the invention, in which the polyamide is a PA11 and which comprises an optical detection additive and
  • - powder B is a powder composition according to the invention, in which the polyamide is a polyamide 11 and which comprises both an optical detection additive and a magnetic detection additive.
  • any interval centered on the melting temperature or the crystallization temperature one will more preferably use an extrapolated initial temperature of the melting peak (T m , onset ) and the extrapolated final temperature of the crystallization peak (T c , onset ), rather than the temperature values corresponding to the melting and crystallization peaks, although the two methods for determining these reference values can be implemented without deviating from the invention.
  • FIG. 9 shows a DSC (Differential Scanning Calorimetry) of a powder composition according to the invention based on PA11.
  • This DSC shows a curve 910 of initial temperature rise and a curve 920 of cooling. Melting and crystallization temperatures are shown in this graph, whether determined by identification of the corresponding peak (T c and T m ) or at the extrapolated initial temperature for the melting peak (T m , onset ) and at the extrapolated final temperature for the crystallization peak (T c.onset ).
  • a new powder bed is deposited and flattened on top of the previous one. It is recalled that the powder is self-supporting, that is to say that it rests on the powder previously deposited during the process. So on, a new powder bed is deposited and the solidification of part of the new powder bed is initiated. The solidified part of each powder bed corresponds to a layer or slice of the 3D object obtained at the end of the process.
  • each slice is typically between about 50 ⁇ m and about 150 ⁇ m, preferably between about 70 ⁇ m and about 120 ⁇ m, and even more preferably between about 80 ⁇ m and about 110 ⁇ m.
  • the deposition of each slice is followed by heating to the temperature T 2 , as described above.
  • the sintering which is the subject of the invention is carried out by SLS and the electromagnetic radiation causing the localized melting of a layer is laser radiation with an energy density greater than or equal to 25 mJ/mm 2 for a working temperature T 2 of between 180°C and 199°C, for example equal to 188°C.
  • the energy density greater than or equal to 25 mJ/mm 2 makes it possible to avoid the delamination of layers, that is to say the separation between two successive layers of solidified polyamide.
  • S is the spacing between scans (Hatch Gap), expressed in millimeters (mm)
  • v is the laser speed, expressed in mm/second r is the laser radius, expressed in mm
  • the operating conditions of sintering processes according to the invention with different SLS systems are collated in Table 2 below. These operating conditions are implemented on a sintering powder composition comprising PA 11 , with a fixed layer thickness of 100 ⁇ m, at a working temperature T 2 approximately equal to 188°C.
  • part of the powder composition for additive manufacturing process by powder bed PBF (Power Bed Fusion) according to the invention introduced into the heating chamber is not solidified.
  • this powder is collected and sieved with a view to its reuse as a mixture with a composition of fresh polyamide powder, that is to say with a powder which has not already been used in a sintering process.
  • the powder composition according to the invention comprises a mass fraction of between 20% and 70% of fresh polyamide powder composition, and a mass fraction of between 80% and 30% of polyamide powder recovered at the end of a previous production. More preferably, the deposited powder bed comprises a mass fraction of between 25% and 55% of fresh polyamide powder composition, and a mass fraction of between 75% and 45% of polyamide powder recovered after a previous production.
  • Adding fresh powder to spent powder adds undamaged (non-thermo-oxidized) polyamide grains, which are not already damaged or deformed by a previous thermo-oxidation-inducing sintering process, and thus maintains viscosity internal mixture within a given range by lowering this viscosity with each cycle as it evolves.
  • the fresh polyamide powder used has an internal viscosity index measured according to ISO 307:2019 of between 0.9 deciliters per gram and 1.4 deciliters per gram.
  • the method for determining the internal viscosity index of plastics and polyamides is based on the determination of the viscosity index of dilute solutions of polyamides in certain solvents specified in the aforementioned standard.
  • This viscosity is involved in the rheology of melting and/or coalescence phenomena: the deposited particles must melt and coalesce to form a dense, non-porous mass, but without creeping in an uncontrolled manner.
  • the internal viscosity influences the mechanical properties of the part, its appearance and the surface finish of the finished product.
  • the powder composition it is advisable not to exceed a number of recycling cycles for the same powder, that is to say not to recycle again a mixture of powder which has undergone a number high thermal cycling in a PBF powder bed process.
  • the collection of the cycled powder and its sieving must precede the mixing with fresh polyamide powder in order to separate the powder grain aggregates.
  • the number of possible cycles depends on the degree of oxidation of the recycled powder, knowing that the internal viscosity increases with the degree of oxidation.
  • the inventors note that on average the same powder can be reused in 8 to 10 recycling cycles, but this mainly depends on the duration of exposure of the powder to a high temperature and on the oxygen level in the enclosure, while throughout the thermal cycle undergone (preheating, manufacture at temperature and cooling) either during the entire manufacture in PBF or during cooling to a temperature below 60°C.
  • Recycling is favored by the fact that the fresh powder has the internal viscosity indicated above. Indeed, to manufacture parts of good quality by the process according to the invention, it is possible to use a powder whose internal viscosity index is located a little outside this zone between 0.9 deciliters per gram and 1.4 deciliters per gram, but so that the fresh powder can be recycled in the PBF process, under advantageous economic conditions and according to the technical conditions indicated above (mixed with fresh powder at a rate of 30% to 60%), it It is preferable to respect, for the fresh powder, a continuous cooling at 50% and the systematic sieving of the already cycled powder.
  • the composition according to the invention is powder A (already described above).
  • Fresh powder A has an internal viscosity index equal to 1.3 deciliters per gram.
  • a new powder composition according to the invention is formed by mixing half fresh powder and half recycled. After one or two cycles, the powder composition has an equal internal viscosity index of the order of 1.7 deciliters per gram. After three to six cycles, the powder composition has an internal viscosity index of the order of 2.05 deciliters per gram.
  • the temperature time can be taken into consideration, i.e. the time during which the powder composition is subjected to heating in the heated enclosure. This approach can be more precise because the manufacturing cycles can be longer or shorter.
  • the temperature times tested to arrive at the values of the internal viscosity index in the table above are also indicated. This temperature time is equal to 0 for a fresh powder, it is greater than 20 hours for a powder having undergone 1 to 2 cycles and greater than 50 hours for a powder having undergone 3 to 6 recycling cycles.
  • an optical or magnetic detection additive in the powder composition of the invention allows the detection of 3D objects obtained by sintering this powder.
  • the 3D objects obtained from a powder comprising a magnetic detection additive are for example detected by electromagnetic induction or according to any other method of detecting a magnetic object. These methods, which are well known to those skilled in the art, are not described here.
  • 3D objects obtained by additive manufacturing of a powder composition are colored in the mass, that is to say that the material constituting the 3D object is colored and that the object does not only present a coloring on its outer surface.
  • This characteristic allows a broken 3D object fragment to present on all its faces the color corresponding to the optical detection additive used.
  • a fragment of a mass-colored object can be detected by optical detection methods, when the object is broken.
  • the 3D object is colored in blue in the mass. Since the color blue is uncommon among food products, it stands out more easily than other colors when it is in the middle of food products.
  • infrared detection by irradiation in a wavelength range between 0.5 ⁇ m and 12 ⁇ m can be implemented. These optical detection methods, even applied to fragments of plastic materials, are well known to those skilled in the art and will not be described here in greater detail.
  • a 3D object obtained by sintering according to the invention has a lowest tensile strength greater than or equal to 40 MPa (megapascals), preferably greater than or equal to 44 MPa.
  • the 4D object preferably has a lowest tensile strength greater than or equal to 30 MPa, very preferably greater than or equal to 35MPa.
  • a 3D object obtained by sintering according to the invention has a lowest modulus of elasticity greater than or equal to 1600 MPa, preferably greater than or equal to 1750 MPa.
  • standardized specimens of 3D objects obtained from a sintering process according to the invention were tested for their tensile strength and their modulus of elasticity, expressed in megapascals (MPa) and for their elongation at the rupture, expressed as a percentage.
  • the 3D object tested is obtained from a sintering powder composition A according to the invention comprising an optical detection additive is in which the polyamide is PA11.
  • the test method implemented complies with the ISO 527-1:2019 standard for determining tensile properties.
  • the 3D objects obtained by the method of the invention have an elongation at break greater than or equal to 20% in a first orientation and greater than or equal to 35% in a second orientation, perpendicular to the first.
  • Figures 10 and 11 show the graphs corresponding to the results of the tests presented above for the elongation at break.
  • Figure 10 the results of the tensile elongation test along an xy orientation
  • Figure 1 1 the results of the tensile elongation test along an xz orientation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Environmental & Geological Engineering (AREA)

Abstract

Un procédé de fabrication d'un objet tridimensionnel, comportant une élévation locale de la température d'une poudre par un rayonnement électromagnétique dans une enceinte chauffée, provoquant la fusion localisée/ coalescence d'une couche d'une épaisseur prédéterminée pour former, après refroidissement, une couche solide de polyamide, ledit procédé étant caractérisée en ce que ladite poudre comporte, sur le poids total de la composition : - entre 60 % et 99 % en poids de polyamide - entre 1 % et 40 % en poids d'un additif de détection optique et/ou magnétique sélectionné dans le groupe formé par : les pigments comprenant une structure spinelle qui renferme un cation d'un métal de transition, les oxydes d'un métal de transition, les sulfures d'un métal de transition - entre 0 % et 5 % en poids d'un agent d'écoulement et en ce que la poudre présente : - une distribution granulométrique D50 comprise entre 35 μm et 55 μm; et - une distribution granulométrique D10 supérieure à 15 μm et - une distribution granulométrique D90 inférieure à 100 μm.

Description

PROCÉDÉ DE FABRICATION ADDITIVE, COMPOSITION DE POUDRE POLYMERE COMPORTANT UN ADDITIF DE DÉTECTION, ET OBJET OBTENU PAR LEDIT PROCÉDÉ
DOMAINE TECHNIQUE DE L’INVENTION
La présente invention concerne la fabrication de pièces en matériaux polymères et vise un procédé d'agglomération, couche par couche, notamment par fusion ou frittage, d'une poudre polymère comportant un additif de détection optique et/ou magnétique. La présente invention vise également une telle poudre polymère approvisionnée pour ce procédé et consommée lors du procédé. La présente invention vise enfin un objet obtenu par le procédé qui présente des propriétés particulièrement avantageuses dans le domaine de la sécurité des chaînes de production alimentaire.
ÉTAT DE LA TECHNIQUE
Parmi la grande diversité de technologies de fabrication additive de pièces en matériaux polymères désormais disponibles, la présente demande s’inscrit dans le cadre des technologies impliquant une agglomération de poudre, couche par couche, en vue d’obtenir un objet tridimensionnel. Ainsi, dans le cadre du présent document, on désigne par les termes « fabrication additive » ou « impression 3D » ces seules méthodes. On désignera par « objet 3D » un objet obtenu par une telle méthode d’impression 3D.
Dans ce contexte, l'agglomération de poudres par fusion, coalescence, et/ou « frittage », est provoquée par un rayonnement permettant de faire fondre le matériau à agglomérer. Par exemple, le frittage sélectif par laser (SLS, abrévié de l’anglais « Selective Laser Sintering ») consiste à densifier localement un matériau présenté sous forme de poudre, en le faisant fondre sous l’action d’un laser. Toute autre source de rayonnement électromagnétique permettant de faire fondre la poudre peut également être mise en œuvre, par exemple un rayonnement infrarouge, visible ou UV. D’autres méthodes notables de fabrication additive par fusion sur lit de poudre incluent en particulier le frittage laser , la Fusion Multi Jet, le frittage par rayonnement infrarouge et le frittage à haute vitesse.
L’utilisation d’objets 3D en thermoplastiques est avantageuse dans les chaînes de production industrielle, notamment car de tels objets peuvent être produits en petite série pour des usages spécifiques ou parce qu’ils présentent des caractéristiques structurelles spécifiques. Toutefois, les objets 3D en thermoplastiques sont difficiles à détecter par les moyens de détection des corps étrangers usuellement mis en œuvre dans le cadre du contrôle qualité en ligne, notamment dans l’industrie alimentaire. De sorte que si un objet 3D en thermoplastiques se casse, des fragments peuvent se retrouver dans le produit et représenter un risque pour la sécurité alimentaire.
Les procédés de fabrication additive connus de l’art antérieur et les poudres qu’ils utilisent ne permettent de produire des objets 3D présente à la fois des propriétés mécaniques satisfaisante pour une utilisation dans l’industrie et une détectabilité forte par les moyens de détection de corps étrangers, par exemple par détection magnétique ou par détection d’une couleur inhabituelle.
DESCRIPTION DÉTAILLÉE DE L’INVENTION
La présente invention vise à remédier à tout ou partie de ces inconvénients.
À cet effet, selon un premier aspect, la présente invention vise un procédé de fabrication d’un objet tridimensionnel, comportant une élévation locale de la température d’une poudre à base de polyamide par un rayonnement électromagnétique dans une enceinte chauffée, provoquant la fusion localisée d’une couche d’une épaisseur prédéterminée pour former, après refroidissement, une couche solide de polyamide, ledit procédé étant caractérisée en ce que ladite poudre comporte, sur le poids total de la composition :
- entre 60 % et 99 % en poids de polyamide ;
- entre 1 % et 40 % en poids d’un additif de détection optique et/ou magnétique sélectionné dans le groupe formé par : les pigments comprenant une structure spinelle qui renferme un cation d’un métal de transition, les sulfures d’un métal de transition ;
- entre 0 % et 5 %, et de préférence entre 0,1 % et 4,5 %, en poids d’un agent d’écoulement ; et en ce que la poudre présente :
- une distribution granulométrique D50 comprise entre 35 μm et 55 μm ; et
- une distribution granulométrique D10 supérieure à 15 μm et
- une distribution granulométrique D90 inférieure à 100 μm.
Dans des modes de réalisation, la poudre présente :
- une distribution granulométrique D50 comprise entre 35 μm et 55 μm,
- une distribution granulométrique D10 comprise entre 15 μm et 25 μm et
- une distribution granulométrique D90 comprise entre 80 μm et 100 μm. Dans des modes de réalisation, la distribution granulométrique D10 est supérieure à 10μm, préférentiellement supérieure à 15 μm, préférentiellement supérieure à 17 μm, préférentiellement supérieure à 20 μm.
Dans des modes de réalisation, la distribution granulométrique D50est inférieure à 110 μm, préférentiellement inférieure à 100 μm, préférentiellement inférieure à 95 μm, préférentiellement inférieure à 93 μm, préférentiellement inférieure à 90 μm. Dans des modes de réalisation, la distribution granulométrique D50 est inférieure à 80μm.
Dans des modes de réalisation, une fraction massique comprise entre 30 % et 70 % de ladite poudre est de la poudre polyamide fraîche, et une fraction massique comprise entre 70 % et 30 % de ladite poudre est une poudre polyamide récupérée dans ladite enceinte chauffée à l’issue d’une fabrication précédente, et ladite poudre polyamide fraîche présente un indice de viscosité interne mesuré selon ISO 307:2019 compris entre 0,9 décilitres par gramme et 1 ,4 décilitres par gramme, à 25 °C.
Dans des modes de réalisation, le rayonnement électromagnétique provoquant la fusion localisée d’une couche est un rayonnement laser d’une densité énergétique supérieure ou égale à 25 mJ/mm2. La méthode utilisée dans ce cas est préférentiellement la méthode de frittage sélectif par laser, plus souvent appelée SLS (abrévié de l’anglais « Selective Laser Sintering »).
Selon un deuxième aspect, l’invention vise une composition de poudre pour procédé de fabrication additive caractérisée en ce qu’elle comporte, sur le poids total de la composition :
- entre 60 % et 99 % en poids de polyamide ;
- entre 1 % et 40 % en poids d’un additif de détection, de préférence un additif de détection optique et/ou un additif de détection magnétique, sélectionné dans le groupe formé par : les pigments comprenant une structure spinelle qui renferme un cation d’un métal de transition, les oxydes d’un métal de transition, les sulfures d’un métal de transition ;
- entre 0 % et 5 %, et de préférence entre 0,1 % et 4,5 %, en poids d’un agent d’écoulement ; et en ce que la poudre présente :
- une distribution granulométrique D50 comprise entre 35 μm et 55 μm ; et
- une distribution granulométrique D10 supérieure à 15 μm et
- une distribution granulométrique D90 inférieure à 100 μm. Dans des modes de réalisation, la composition de poudre de l’invention est obtenue par mélange à sec d’une poudre de polyamide naturelle avec une poudre de polyamide comportant un additif de détection.
Dans des modes de réalisation la composition de poudre objet de l’invention comporte :
- entre 0,05 % et 5% en poids d’un additif de détection optique choisi parmi les pigments comprenant une structure spinelle qui renferme un cation d’un métal de transition et
- entre 1 % et 35 % en poids d’un additif de détection magnétique parmi les oxydes des métaux de transition.
Alternativement, l’additif de détection optique ou magnétique est choisi parmi les sulfures d’un métal de transition.
Dans des modes de réalisation la composition de poudre objet de l’invention présente un indice de viscosité interne mesurée selon ISO 307:2019 compris entre 0,9 décilitres par gramme et 1 ,4 décilitres par gramme.
Dans des modes de réalisation la composition de poudre objet de l’invention présente une valeur ΔT= (Tm-Tc)onset, comprise entre 30°C et 50°C.
Dans des modes de réalisation la composition de poudre objet de l’invention comporte un additif de détection optique et ledit additif de détection optique comporte du bleu de cobalt.
Selon un troisième aspect, l’invention vise un objet tridimensionnel obtenu par fabrication additive à partir d’une composition objet de l’invention.
Dans des modes de réalisation, l’objet tridimensionnel est coloré en bleu dans la masse par un additif de détection optique. Préférentiellement, l’additif de détection optique permet une détection optique dans une gamme de longueur d’onde comprise entre 0,5 μm et 12 μm.
Dans des modes de réalisation, l’objet tridimensionnel présente un module d’élasticité supérieur ou égal à 1700 MPa, une résistance à la traction supérieure ou égale à 30 MPa, un allongement à la rupture supérieur ou égal à 20 % selon une première orientation et supérieure ou égale à 35 % sur une deuxième orientation perpendiculaire à la première.
BRÈVE DESCRIPTION DES FIGURES
D’autres avantages, buts et caractéristiques particulières de l’invention ressortiront de la description non limitative qui suit d’au moins un mode de réalisation particulier du procédé de fabrication additive, de la composition de poudre pour ledit procédé et d’un objet tridimensionnel obtenu par ledit procédé, objets de la présente invention, en regard des dessins annexés, dans lesquels :
[Fig 1] représente des courbes de densité de distribution granulométrique en fonction de la taille des particules de deux compositions de poudre selon l’invention et d’une poudre de polyamide 11 naturelle,
[Fig 2] représente des courbes de distribution cumulative en fonction de la circularité pour deux compositions de poudre selon l’invention et une poudre de polyamide 11 naturelle,
[Fig 3] représente une vue capturée au niicroscope électronique à balayage d’une composition de poudre selon l’invention,
[Fig 4] représente une vue obtenue par tomographie par rayons X d’une coupe d’un d’objet 3D obtenu à l’issu du procédé de fabrication additive à partir de la composition de poudre illustrée en figure 3,
[Fig 5] représente, schématiquement, une coupe d’un objet 3D obtenu par frittage de la composition de poudre illustrée en figure 3,
[Fig 6] représente une vue capturée au microscope électronique à balayage d’une composition de poudre pour fabrication additive,
[Fig 7] représente une vue obtenue par tomographie par rayons X d’une coupe d'un objet 3D obtenus à l’issu du procédé de frittage de la composition de poudre illustrée en figure 6,
[Fig 8] représente, schématiquement, une coupe d’un objet 3D obtenu par frittage de la composition de poudre illustrée en figure 6,
[Fig 9] représente une calorimétrie différentielle à balayage DSC d’une composition particulière de poudre selon l’invention,
[Fig 10] représente un graphique de la force en MPa en fonction de l’allongement selon une orientation xy, exprimé en %, obtenu à l’issu d’un test d’allongement sur un objet 3D obtenu par frittage d’une composition de poudre A, selon un mode de réalisation particulier de l’invention,
[Fig 11] représente un graphique de la force en MPa en fonction de l’allongement selon une orientation xz, exprimé en %, obtenu à l’issu d’un test d’allongement sur un objet 3D obtenu par frittage d’une composition de poudre A, selon un mode de réalisation particulier de l’invention et
[Fig 12] représente un graphique qui montre la distribution granulométrique volumique en fonction de la taille des particules d’une composition de poudre selon l’invention.
DESCRIPTION DE MODES DE RÉALISATION DE L’INVENTION
La présente description est donnée à titre non limitatif, chaque caractéristique d’un mode de réalisation pouvant être combinée à toute autre caractéristique de tout autre mode de réalisation de manière avantageuse.
Les valeurs de l’indice de viscosité interne du polyamide indiquées dans le présent document se réfèrent à la norme ISO 307:2019 et à une température de 25 °C.
La composition de poudre pour procédé de fabrication additive par frittage selon l’invention comporte, sur le poids total de la composition :
- entre 60 % et 99 % en poids de polyamide,
- entre 1 % et 40 % en poids d’un additif de détection, qui peut être un additif de détection optique et/ou un additif de détection magnétique, et qui est de préférence sélectionné dans le groupe formé par : les pigments comprenant une structure spinelle qui renferme un cation d’un métal de transition, les oxydes d’un métal de transition, les sulfures d’un métal de transition ;
- entre 0 % et 5 % et de préférence entre 0,1 % et 4,5 % en poids d’un agent d’écoulement : et en ce que la poudre présente :
- une distribution granulométrique D50 comprise entre 35 μm et 55 μm ; et
- une distribution granulométrique D10 supérieure à 15 μm et
- une distribution granulométrique D90 inférieure à 100 μm.
La poudre est dite « à base de polyamide » car elle comprend majoritairement du polyamide.
Les caractéristiques de la composition de poudre pour procédé de fabrication additive par frittage, ci-après « poudre de frittage », et de ses composants sont détaillées ci-après.
La forme des grains de la poudre de frittage est préférentiellement sphérique.
Selon l’invention, ledit additif de détection peut être sélectionné de manière à permettre une détection magnétique ou une détection optique, ou on peut utiliser deux additifs, à savoir un premier additif permetant la détection magnétique et un deuxième additif permettant la détection optique, ou encore on utilise un additif permettant à la fois une détection optique et une détection magnétique.
Choix du polvamide ou du mélange de polyamides
Le polyamide peut être choisi parmi tout polyamide disponible, ou mélange de polyamides, permettant d'obtenir les caractéristiques granulométriques de la composition de l’invention.
De préférence le polyamide est choisi parmi les polyamides comportant un des monomères suivants : le PA6, le PA10, le PA11, le PA12 et leurs mélanges.
En particulier, le PA11 pourra être utilisé pour ses caractéristiques avantageuses et son origine biosourcée. On appelle « biosourcé » produit ou entièrement ou partiellement fabriqué à partir de matières d’origine biologique.
Caractéristiques de la poudre de frittage et température de travail T2)
Préférentiellement, la poudre de frittage présente une fenêtre de température de travail comprise entre 160 °C et 210 °C. La fenêtre de température de travail est l’intervalle de température délimité par la température initiale extrapolée du pic de fusion (Tei.m ou Tm,onset en °C) et la température finale extrapolée du pic de cristallisation (Tef,C ou Tc,onset en °C). La différence entre ces deux températures est appelée ΔT, elle exprime comme suit ΔT- Tei.m-Tef.c ou ΔT=
(Tm~Tc)onset.
La température initiale extrapolée du pic de fusion Tm,onset et la température finale extrapolée du pic de cristallisation Tc,onset seront mieux comprises à la lecture de l’article Polymers Applicable for Laser Sintering (LS), publié par Schmid M. & Wegener K en 2016 (Additive Manufacturing: Procedia Engineering, 149, 457-464), notamment en regard de la figure 9.
Préférentiellement, ΔT= (Tm~Tc)onset est comprise entre 30 °C et 50 °C. Ce ΔT est avantageux car il permet de définir la température de travail Tg. Plus préférentiellement encore, ΔT= (Tm~Tc)onset est comprise entre 30 °C et 35 °C.
Dans le cas d’une ΔT inférieur à 30 °C le polymère risque de surréagir au changement d’état par l’apport d'énergie.
Pour un ΔT supérieur à 50 °C te risque est de ne pas pouvoir définir fa température de travail T2 stable, et par conséquent d’obtenir une agglomération générale du lit de poudre et des problèmes de recouvrement. De même, il est nécessaire d’adapter l’apport en énergie en fonction de la température de travail T2 choisit dans cette plage ΔT= (Tm -Tc)onset. Un apport d’énergie excessif aurait pour conséquence néfaste la déformation de l’objet imprimé en 3D.
Additif de détection
Selon une caractéristique essentielle de l'invention, la composition de poudre de comporte un additif de détection. Cet additif est avantageusement un composé inorganique insoluble dans l'eau et non toxique, de préférence de type spinelle. La composition de poudre de l’invention comporte, sur le poids total de la composition, entre 1 % et 40 % en poids d’un additif de détection.
L’additif de détection peut être un additif de détection optique. Plus particulièrement, la composition de poudre de l’invention peut comporter, par rapport au poids total de la composition, entre 0,05 % et 5% en poids d’un additif de détection optique, par exemple entre 0,05 % et 0,5%. Ce dernier est avantageusement sélectionné parmi les pigments comprenant une structure spinelle qui renferme un cation d’un métal de transition. Ce type de pigment présente l’avantage de ne pas être toxique. En particulier, le cation du métal de transition reste piégé dans la structure spinelle et ne peut pas être solubilisé dans les conditions normales de contact avec des aliments et boissons, ni en cas d’ingestion accidentelle par le transit intestinal. Les spinelles ont une bonne stabilité thermique sous le faisceau laser mis en œuvre dans la technique de procédé de frittage par laser SLS. La mise en œuvre de ces pigments est donc particulièrement préférable pour les compositions de poudre destinées à cet usage.
Selon un mode de réalisation particulier, le pigment est un pigment bleu, de préférence l’aluminate de cobalt (N° CAS : 1345-16-0), qui est disponible sous la dénomination commerciale PB 28. Préférentiellement, l’additif de détection optique utilisé permet une détection optique, le cas échéant par infrarouge. Par exemple, l’additif de détection optique utilisé permet une détection optique dans une gamme de longueur d’onde comprise entre 0,5 μm à 12 μm.
Selon d’autres modes de réalisation, le pigment comporte une structure olivine ou une structure rutile.
On précise que l’additif de détection optique est présent de manière sensiblement homogène dans la composition de poudre, de sorte que les pièces obtenues par fabrication additive à partir de cette poudre sont colorées dans la masse. L’additif de détection peut être un additif de détection magnétique. Plus particulièrement, la composition de poudre de l'invention peut comporter, par rapport au poids total de la composition, entre 1 % et 40 % en poids d’un additif de détection magnétique.
L’additif de détection magnétique est préférentiellement choisi parmi les oxydes comportant un métal de transition. Par exemple, l’additif de détection magnétique est un oxyde de fer, tel que la magnétite naturelle ou synthétique (Fe3O4). Cet oxyde de type spinelle est insoluble dans l’eau et n’est pas toxique. De plus, il n’est pas susceptible de former des sels métalliques susceptibles d’être libérés par les pièces obtenues par fabrication additive à partir de cette poudre. La magnétite naturelle sera préférée à la magnétite de synthèse.
Que ce soit en tant qu’additif de détection optique ou en tant qu’additif de détection magnétique, on peut également utiliser un oxyde d’un métal de transition qui n’est pas une spinelle, ou bien un sulfure d’un métal de transition. Les additifs de détection magnétiques doivent bien évidemment être sélectionnés pour présenter des propriétés magnétiques particulières, susceptibles d’être aisément détectées.
Dans un mode de réalisation préférentiel, la composition de poudre de l’invention comporte à la fois entre 0,05 % et 5 % en poids d’un additif de détection optique choisi parmi les pigments comprenant et entre 1 % et 40 % en poids d’un additif de détection magnétique parmi les oxydes des métaux de transition.
Choix de l’agent d’écoulement
La composition de l'invention comprend en outre un agent d'écoulement en quantité suffisante pour que la composition s'écoule librement, reste fluide et forme une couche uniforme, homogène et plane lors du procédé génératif de couche en lit de poudre PBF (Powder Bed Fusion) par exemple dit de frittage couche par couche de polymères SLS, LS.
La composition de l'invention comporte, sur le poids total de la composition, entre 0 % et 5 % en poids d’un agent d’écoulement. On préfère une teneur entre 0,1 % et 4,5 % en poids.
L'agent d'écoulement est choisi parmi ceux couramment utilisés dans le domaine du frittage de poudres polymères, par exemple parmi : les silices, les silices précipitées, les fumées de silice, les silices hydratées, les silices vitreuses, les silices pyrogénées, les phosphates vitreux, les oxydes vitreux.
De préférence l’agent d’écoulement présente une faible surface de contact.
Fabrication d'une composition de poudre
Selon un mode de réalisation particulier, la composition de poudre conforme à l'invention est obtenue selon une méthode de fabrication qui comporte une première étape de mélange d’une poudre de polyamide dite « naturelle » avec un agent d'écoulement et au moins une étape parmi les suivantes :
- une étape de mélange de la composition obtenue précédemment avec une composition de poudre de polyamide comportant un additif de détection optique ;
- une étape de mélange de la composition obtenue précédemment avec une composition comportant un additif de détection magnétique.
Dans des modes de réalisation particuliers, ces deux dernières étapes de mélange avec une composition comportant un additif de détection sont mises en œuvre successivement, on note que leur ordre peut être inversé.
Une poudre de polyamide naturelle est une composition de poudre comportant entre 95 % et 100% de polyamide, préférentiellement au moins 99 % en poids de polyamide.
La composition de poudre de polyamide comportant un additif de détection optique peut être obtenue par réduction en poudre d’une masse liquide ou solide homogène comportant le polyamide et ledit additif optique ou par polycondensation en phase solide, séchage puis broyage sélectif.
La composition comportant un additif de détection magnétique peut soit être l’additif magnétique sous forme pure (c'est-à-dire comportant au moins 95 % d’additif de détection magnétique) soit être une composition comportant un polyamide homogénéisé par mélange à sec avec un additif de détection magnétique.
Les étapes de mélanges mentionnés ci-avant peuvent être réalisées par mélange à sec (connu sous le terme anglais « dry blend ») ou par un procédé de compoundage (connu sous le terme anglais « master batch »). Le compoundage nécessite une étape ultérieure de broyage sélectif de la masse obtenue et d’ajustement de la viscosité par polycondensation en phase solide et séchage; pour cette raison on préfère le mélange à sec. La dispersion de l’agent d’écoulement nécessite d’appliquer une énergie de mélange importante pour obtenir une bonne homogénéisation. Cette énergie de mélange est susceptible d’endommager les additifs de détection. On opte donc préférentiellement pour un prémélange à sec de l’agent d’écoulement avec une poudre de polyamide naturelle lors de la première étape de mélange, préalablement à au moins une étape de mélange avec une composition comportant un additif de détection, de moindre intensité que la première.
Dans des modes de réalisation, les étapes de mélange sont réalisées par cryobroyage, cette méthode bien connue de l’homme du métier n’est pas décrite en détail ici.
Dans ces autres modes de réalisation les modalités d’obtention d’un mélange à sec de poudre homogène et dispersé de tous les composants sont adaptées en fonction des distributions initiales et de la distribution cible finale soit :
- une distribution granulométrique D50 comprise entre 35 μm et 55 μm,
- une distribution granulométrique D10 comprise entre 15 μm et 25 μm et
- une distribution granulométrique D90 comprise entre 80 μm et 100 μm.
Selon un mode de réalisation particulier la distribution granulométrique cible finale de la poudre présente :
- une distribution granulométrique D50 comprise entre 35 μm et 55 μm, et
- une distribution granulométrique D10 supérieure à 20 μm et
- une distribution granulométrique D90 inférieure à 80 μm.
Distribution granulométrique de la composition de poudre
La distribution granulométrique D10 de la composition de poudre est supérieure à 10μm, préférentiellement supérieure à 15 μm, préférentiellement supérieure à 17 μm, préférentiellement supérieure à 20 μm.
Une telle distribution granulométrique D10 de la composition de poudre est avantageuse pour éviter la présence en trop grande quantité de particules fines ou poussières susceptibles de se volatiliser dans l’air et de présenter un risque pour la santé en cas d’inhalation et d’accumulation, d’irritation avec les yeux et de contact cutané de ces fines poussières.
La distribution granulométrique D50 de la composition de poudre est comprise entre 35 μm et 55 μm. Préférentiellement la distribution granulométrique D50 de la composition de poudre est comprise entre 38 μm et 45 μm, très préférentiellement elle est comprise entre 38 μm et 40 μm. La demanderesse a constaté au cours de ses tests que ces intervalles de distribution granulométrique D50 permettent d’obtenir les meilleures performances en termes de résolution finale, de définition géométrique des pièces obtenues ainsi qu’un meilleur recouvrement et une bonne fluidité de la poudre en température pour le procédé en lit de poudre PBF en utilisant des couches de 80 μm à 120 μm.
La distribution granulométrique D90 de la composition de poudre est inférieure à 110 μm, préférentiellement inférieure à 100 μm, préférentiellement inférieure à 95 μm, préférentiellement inférieure à 93 μm préférentiellement inférieure à 90 μm. Dans des modes de réalisation, la distribution granulométrique D50 est inférieure à 80μm.
Une telle distribution granulométrique D90 est avantageuse pour une mise en œuvre de la poudre dans un procédé de fabrication additive dont l’épaisseur de couche est comprise entre 80 μm et 160 μm, par exemple pour une épaisseur de couche de 100 μm. Préférentiellement, la D90 est choisie pour être inférieure à la taille de couche envisagée pour le procédé de fabrication additive.
Selon un mode de réalisation particulier la composition de poudre présente :
- une distribution granulométrique D50 comprise entre 35 μm et 55 μm,
- une distribution granulométrique D10 comprise entre 15 μm et 25 μm et
- une distribution granulométrique D90 comprise entre 80 μm et 100 μm.
La demanderesse a constaté que de telles distributions granulométriques D10, D50, et D90 sont avantageuses car, s’il avantageux bon d'avoir une distribution resserrée et de même morphologie pour une fabrication additive par frittage, une trop grande homogénéité de granulométrie de la composition de poudre donne lieu à des phénomènes de «caking» (c’est-à-dire d’agglomération de poudre) car des arrangements géométriques rendent la poudre plus agglomérée. Ainsi, ces distributions granulométriques D10, D50, et D90 sont avantageuses car elles permettent de limiter les phénomènes d’agglomération de poudre et permet un dépoudrage des pièces obtenues par fabrication additive par frittage plus aisé.
Les valeurs de distribution granulométrique de la composition de poudre D10, D50 et D90 mentionnées ci-dessus sont déterminées par la méthode d’analyse d'images statiques selon la norme ISO 13322-1 :2014.
On observe en figure 1 les courbes de densité de distribution en fonction de la taille des particules (exprimée en micromètres, abrévié μm) pour trois poudres :
- une courbe 105 illustre la distribution granulométrique d’une poudre de PA11 dite naturelle, c’est-à-dire comportant au moins 99 % de PA11 ,
- une courbe 110 illustre la distribution granulométrique d’une composition A de poudre de selon l’invention, dans lequel le polyamide est un PA11 et qui comporte un additif de détection optique,
- une courbe 115 illustre la distribution granulométrique d’une composition B de poudre selon l’invention, dans lequel le polyamide est un polyamide 11 et qui comporte à la fois un additif de détection optique et un additif de détection magnétique.
On souligne que l’additif de détection optique et/ou l’additif de détection magnétique sont sélectionnés en vue d’obtenir une distribution granulométrique de la composition de poudre telle que détaillée ci-avant. Ainsi, on constate en figure 1 que la distribution granulométrique des compositions de poudre selon l’invention, avec additif de détection, restent proches de celle de la distribution granulométrique de la distribution de la poudre de PA11 naturelle, avec un pic de densité autour de 50 μm.
Avantageusement, la composition de poudre objet de l’invention comporte 90%, plus préférentiellement 99%, de grains dont la taille est comprise entre 10 μm et 120 μm, préférentiellement entre 20 μm et 90 μm, très préférentiellement entre 20 μm et 80 μm.
On observe en figure 12 un graphique qui montre la distribution granulométrique en fonction de la taille des particules de la composition A de poudre, dans lequel le polyamide est un PA11 et qui comporte un additif de détection optique. Les données illustrées en figure 12 sont issues de mesures granulométriques réalisées au moyen d’un granulomètre Mastersizer 3000 (marque déposée) de la société Malvern Panalytical. Le graphique présente des barres 140 d'un histogramme illustrant le pourcentage de particule dans la composition de poudre associé à chaque taille, exprimée en μm. Une courbe 150 illustre le pourcentage cumulé, de particules dont la taille est inférieure à un seuil, exprimé en μm. On constate sur le graphique de la figure 12 que la composition de poudre A comporte 90% de grains dont la taille est comprise entre 10 μm et 120 μm.
Facteurs de forme de la composition de poudre
Les facteurs de forme sont des quantités sans dimension utilisées en analyse d'image et en microscopie qui décrivent numériquement la forme d'une particule, indépendamment de sa taille.
L’indice de circularité /cire est un facteur de forme qui se calcule comme suit : [Math 1]
Figure imgf000016_0001
où P est le périmètre et A l’air d’une image d’un grain de poudre
Ainsi une sphère qui aura un indice de circularité de 1 alors qu’un mica, de forme parallélépipède aura une circularité proche de 0.
Les règles et la nomenclature pour la description et la représentation quantitative de la forme et de la morphologie des particules spécifiés par la norme ISO 9276-6:2008 sont ici suivies.
Préférentiellement, la distribution cumulative f10 de la composition de poudre selon l’invention est inférieure ou égale à 0,15. Très préférentiellement, la distribution cumulative fio de la composition de poudre est inférieure ou égale à 0,10. En d’autres termes, seul 10 % des grains de poudres présentent un indice de circularité inférieur ou égal à 0,15, préférentiellement inférieur ou égal à 0,10. En d’autres termes, 90 % des grains présentent un indice de circularité supérieur à 0,1 , préférentiellement supérieur à 0,15.
La distribution cumulative f50 de la composition de poudre est inférieure ou égale à 0,6. Préférentiellement, la distribution cumulative f50 de la composition de poudre est inférieure ou égale à 0,55. En d’autres termes, seul 50 % des grains de poudres présentent un indice de circularité inférieur ou égal à 0,6, préférentiellement inférieur ou égal à 0,55. En d’autres termes, 50 % des grains de poudre présentent un indice de circularité supérieur à 0,55, préférentiellement supérieur à 0,6.
La distribution cumulative f90 de la composition de poudre est inférieure ou égale à 0,8. Préférentiellement, la distribution cumulative f90 de la composition de poudre est inférieure ou égale à 0,75. En d’autres termes, 90 % des grains de poudres présentent un indice de circularité inférieur ou égal à 0,8, préférentiellement inférieur ou égal à 0,75. En d’autres termes, 10 % des grains de poudre présentent un indice de circularité supérieur à 0,75, préférentiellement supérieur à 0,8.
On observe en figure 2 une représentation graphique de la distribution cumulative en ordonnée (exprimée en pourcentage), en fonction de la circularité en abscisse (indice sans unité). On observe en figure 2 :
- une courbe 205 illustrant la distribution cumulative d’une poudre de PA11 dite naturelle, c'est-à-dire comportant au moins 99 % en masse de PA11 , - une courbe 210 illustre la distribution cumulative d’une composition de poudre de selon l’invention, dans lequel le polyamide est un PA11 et qui comporte un additif de détection optique,
- une courbe 215 illustre la distribution cumulative d’une composition de poudre selon l’invention, dans lequel le polyamide est un polyamide 11 et qui comporte à la fois un additif de détection optique et un additif de détection magnétique.
L’additif de détection optique et/ou l’additif de détection magnétique sont préférentiellement sélectionnés en vue d’obtenir une distribution cumulative de la composition de poudre telle que détaillée ci-avant. On constate ainsi en figure 2 que la distribution cumulative des compositions de poudre selon l’invention, avec additif de détection, restent proches de celle de la distribution granulométrique de la distribution de la poudre de PA11 naturelle.
La morphologie des grains est importante pour la fluidité du mélange et pour la densification du lit de poudre lors des recouvrements successifs mais aussi pour la porosité résiduelle dans les pièces finales obtenues. Une bonne sphéricité de la poudre conjuguée avec une distribution très resserrée, c’est-à- dire une distribution cumulative du type de celle présentée plus haut, permettent d’obtenir une densification naturelle du lit de poudre par compaction et par des arrangements géométriques de la couche. Cette couche est ensuite exposée à une énergie laser pour fusion et coalescence favorisant la densification des pièces avec une faible porosité résiduelle. A l’inverse une poudre très hétérogène avec une distribution plus large aura tendance à s’organiser de façon plus chaotique et causera une moindre densification du lit de poudre, une partie des grains les plus gros pouvant ne pas être fondus.
Pour illustrer ce propos, on présente en figure 3 et 6, deux vues capturées au microscope électronique à balayage de deux poudres, à un même grossissement. La figure 3 illustre une poudre qui présente une sphéricité comparable à la sphéricité d’une composition de poudre objet de l’invention, celle en figure 6 est présentée à titre de comparaison.
Ces poudres sont soumises à un procédé de frittage par laser SLS à une densité énergétique de 34 mJ/mm2 (550 et 850). Des vues en tomographie par rayon X des coupes d’objets 3D obtenus à l’issu du procédé de frittage sont présentées en figures 4 et 7. Une représentation schématique des poudres 30 et 60 illustrées en figures 3 et 6 et de coupes d’objet 3D obtenus par frittage de ces poudres sont présentées en figures 5 et 8. La poudre 30 illustrée en figure 3 est une poudre avec une bonne homogénéité de circularité avec une circularité des grains comprise entre 0,4 et 0,8, en moyenne égale à 0,65. La poudre 30, disposée sur une couche préalablement solidifiée 505 et soumise à un procédé 550 de frittage par laser SLS à une densité énergétique de 34 mJ/mm2 permet d’obtenir une porosité résiduelle faible et distribuée, comme illustré sur la coupe 410, en figure 4, obtenue par tomographie de l’objet 3D et sur la coupe 510, en figure 5. Les parties poreuses 420 qui apparaissent en noir sur la figure 4 sont illustrée sous forme de cavités blanches en figure 5. Ces parties poreuses sont moins nombreuses et mieux distribuées que celles constatées sur les coupes d’un objet 3D obtenus par frittage à partir d’une poudre de moindre homogénéité de circularité des grains, représentée en figures 7 et 8.
La poudre 60 illustrée en figure 6 présente une homogénéité moindre que l’homogénéité de la poudre 30, avec une circularité des grains comprise entre 0,1 et 0,8, en moyenne égale à 0,55. La poudre 60, disposée sur une couche préalablement solidifiée 805 et soumise à un procédé 550 de frittage par laser SLS à une densité énergétique de 34 mJ/mm2 abouti à l’obtention d’un objet 3D de moins bonne homogénéité et une porosité résiduelle plus grande, présenté en coupe 710 obtenue par tomographie, en figure 7, et en coupe schématique 810 en figure 8.
Procédé de fabrication d’obiet 3D
On rappelle que la présente demande s’inscrit dans le cadre des technologies impliquant un lit de poudre avec une agglomération couche par couche, en vue d'obtenir un objet tridimensionnel. Ainsi, dans le cadre du présent document, on désigne par les termes « fabrication additive » ou « impression 3D » ces seules méthodes. On désignera par « objet 3D » un objet obtenu par une telle méthode d’impression 3D.
La présente invention concerne plus particulièrement un procédé de fabrication additive par fusion sur lit de poudre (PBF, abrévié de l’anglais = Power Bed Fusion), couche par couche, à partir d’une poudre de polyamide dans une enceinte chauffée. Ces méthodes incluent en particulier le frittage laser (LS = Laser Sintering), le frittage sélectif par laser (SLS = Selective Laser Sintering), la Fusion Multi Jet (MJF = Multi Jet Fusion), le frittage par rayonnement infrarouge (IRS = Infrared Sintering) et le frittage à haute vitesse (HSS, de l’anglais « High Speed Sintering »). Quelle que soit la méthode de fabrication additive retenue, le procédé de l’invention a pour objet la fabrication d’objets 3D en polyamide comportant un additif de détection, à partir d’une composition de poudre de polyamide.
Le procédé selon l’invention se déroule dans une enceinte fermée et préchauffée à une température de consigne T1. L’atmosphère à l’intérieur de l’enceinte est enrichie en azote (ou sous vide) et appauvrie en oxygène, afin de limiter l’oxydation de la poudre de polymère ; cette oxydation conduit progressivement à l’allongement des macromolécules constituant les particules de poudre polymère et représente le principal mécanisme de vieillissement desdites poudres. Cet allongement des macromolécules tend à augmenter la viscosité interne du polymère. La limitation de l’oxydation en température des poudres favorise le recyclage de la poudre non utilisée, ce qui contribue de manière significative à l'économie du procédé selon l’invention. De manière préférée, le taux d’oxygène est inférieur à 5 % volumiques, de préférence inférieur à 2 %, et encore plus préférentiellement inférieur à 1 %.
La température de maintien T1 se situe avantageusement à environ 20 à 30 degrés autour de la température de cristallisation Te du polymère. Selon un mode de réalisation avantageux, pour une poudre à base de polyamide PA11 et/ou PA12, la température de préchauffage T1 se situe avantageusement entre environ 140 °C et environ 160 °C, de préférence entre environ 142 °C et environ 158 °C. Selon des modes de réalisation, la température de chauffage est égale à la température de maintien.
Plus généralement, la température de maintien T1 est préférentiellement comprise entre 150 et 185°C
Le procédé objet de l'invention comporte le dépôt d’une couche uniforme d’un lit de poudre de polyamide dans une enceinte préchauffée.
Immédiatement après le dépôt de chaque couche, la surface du lit de poudre est chauffée rapidement, typiquement par rayonnement infrarouge, à une température T2 qui est sélectionnée pour être environ inférieure de 8 % à 14 % à la Tm du polyamide (soit de 12 à 26 degrés inférieure à la température de fusion Tm de la poudre). Ce chauffage à une température T2 permet de maintenir la poudre de polyamide à une température assez proche de sa température de fusion, sans toutefois atteindre cette température de fusion. On parle aussi de température de travail pour les systèmes PBF. Selon un mode de réalisation avantageux, pour une poudre à base de polyamide PA11 et/ou PA6, la température T2 se situe entre environ 183 °C et environ 204 °C.
Plus généralement, la température T2 se situe entre 168 °C et 206 °C.
La fusion de la poudre est nécessaire pour obtenir une pièce compacte. Cette fusion doit être transitoire, rapide, localisée et contrôlée, de manière à éviter l’écoulement incontrôlé du polymère liquide ; pour cette raison elle doit être brève, c’est-à-dire que la fusion localisée doit être suivie promptement d’un refroidissement à température au-dessous du point de fusion Tm du polymère, vers une température TR à laquelle le polymère peut recristalliser à partir de l'état fondu. Ladite température TR peut se situer au voisinage de la température T2 , elle est comprise entre T1 et T2.
Pour obtenir ladite fusion localisée et contrôlée d’une partie sélectionnée du lit de poudre, un rayonnement électromagnétique irradie des zones ciblées de la poudre de polyamide, permettant d’augmenter localement la température et d’agglomérer entre eux les grains de polyamide des zones ciblées. En fonction de la méthode retenue, le rayonnement électromagnétique est par exemple un rayonnement laser visible, infrarouge ou proche infrarouge. La température locale TL de la zone en fusion est de préférence environ 8 % à 14 % supérieure à la Tm du polyamide (soit de 12 à 26 degrés supérieure à la température de fusion Tm de la poudre). Il se forme ainsi une phase liquide transitoire, mais si TL est trop élevée, la viscosité du polymère fondu devient trop faible et il y a un risque de coulure.
A titre d’exemple particuliers, les températures T1 et T2 mise en œuvre au cours d’un procédé de frittage selon l’invention sont rassemblées en table 1 ci- dessous et mise en regard avec le point de fusion Tm et la température de cristallisation Tc des poudres de frittage A et B selon l’invention.
[Table 1]
Figure imgf000020_0001
On précise que :
- la poudre A est une composition de poudre de selon l’invention, dans lequel le polyamide est un PA11 et qui comporte un additif de détection optique et
- la poudre B est une composition de poudre selon l’invention, dans lequel le polyamide est un polyamide 11 et qui comporte à la fois un additif de détection optique et un additif de détection magnétique.
Pour la détermination de tout intervalle centré sur la température de fusion ou la température de cristallisation, on utilisera plus préférentiellement une température initiale extrapolée du pic de fusion (Tm, onset) et la température finale extrapolée du pic de cristallisation (Tc, onset), plutôt que les valeurs de température correspondants aux pics de fusion et de cristallisation, bien que les deux méthodes de détermination de ces valeurs de référence puissent être mis en œuvre sans dévier de l’invention.
Pour illustrer ce propos on observe en figure 9 un DSC (calorimétrie différentielle à balayage, de l’anglais, Differential Scanning Calorimetry) d’une composition de poudre selon l’invention à base de PA11. Ce DSC montre une courbe 910 de montée en température initiale et une courbe 920 de refroidissement. Les températures de fusion et de cristallisation sont illustrées sur ce graphique, qu’elles soient déterminées par identification du pic correspondant (Tc et Tm) ou à la température initiale extrapolée pour le pic de fusion (Tm, onset) et à la température finale extrapolée pour le pic de cristallisation (Tc.onset).
Une fois que l’ensemble des zones ciblées d’une couche de lit de poudre ont été balayées par la source de rayonnement électromagnétique, un nouveau lit de poudre est déposé et aplani par-dessus le précédent. On rappelle que la poudre est autoportante, c’est-à-dire qu’elle repose sur la poudre précédemment déposée au cours du procédé. Ainsi de suite, un nouveau lit de poudre est déposé et la solidification d’une partie du nouveau de lit de poudre est engagée. La partie solidifiée de chaque lit de poudre correspond à une couche ou tranche de l’objet 3D obtenu en fin de procédé.
L’épaisseur de chaque tranche se situe typiquement entre environ 50 μm et environ 150 μm, de préférence entre environ 70 μm et environ 120 μm, et encore plus préférentiellement entre environ 80 μm et environ 110 μm. Le dépôt de chaque tranche est suivi d’un chauffage à la température T2, comme décrit ci-dessus. Selon un mode de réalisation du procédé, le frittage objet de l’invention est réalisé par SLS et le rayonnement électromagnétique provoquant la fusion localisée d’une couche est un rayonnement laser d’une densité énergétique supérieure ou égale à 25 mJ/mm2 pour une température de travail T2 comprise entre 180 °C et 199 °C, par exemple égale à 188°C. La densité énergétique supérieure ou égale à 25 mJ/mm2 permet d’éviter la délamination de couches, c’est-à-dire la désolidarisation entre deux couches successives de polyamide solidifié.
La densité énergétique est calculée en utilisant la formule simplifiée de Morgan, qui s’exprime comme suit :
[Math 2]
Figure imgf000022_0001
où P est la puissance du laser, exprimée en Watts
S est l’espacement entre scans (Écart de hachure), exprimée en millimètres (mm) v est la vitesse du laser, exprimé en mm/seconde r est le rayon du laser, exprimé en mm
A titre d’exemples, les conditions opératoires de procédés de frittage selon l’invention avec différents systèmes SLS sont rassemblées dans le tableau 2 ci- dessous. Ces conditions opératoires sont mises en œuvre sur une composition de poudre de frittage comportant du PA 11 , à épaisseur de couche fixe de 100 μm, à température de travail T2 environ égale à 188°C.
[T able 2]
Figure imgf000022_0002
L’objet 3D en sortie de procédé de frittage est couvert de poudre non agglomérée, cette poudre est enlevée par des moyens mécaniques et/ou chimiques bien connus de l'homme du métier (jet d'air ou d’eau, brossage, sablage, traitement en phase solvant, bain ultrasonique, traitement avec une solution de HF, etc.) qui ne sont pas détaillés ici.
Réutilisation de la composition de poudre de polyamide objet de l’invention
Au cours d’un procédé tel que celui décrit ci-dessus, une partie de la composition de poudre pour procédé de fabrication additive par lit de poudre PBF (Power Bed Fusion) selon l'invention introduite dans l’enceinte chauffante n’est pas solidifiée. Avantageusement, cette poudre est collectée et tamisée en vue de sa réutilisation en mélange avec une composition de poudre polyamide fraîche, c’est-à-dire avec une poudre qui n’a pas déjà été utilisée dans un procédé de frittage.
Préférentiellement, la composition de poudre selon l’invention comporte une fraction massique comprise entre 20 % et 70 % de composition de poudre polyamide fraîche, et une fraction massique comprise entre 80 % et 30 % de poudre polyamide récupérée à l’issue d’une fabrication précédente. De manière plus préférée, le lit de poudre déposé comporte une fraction massique comprise entre 25 % et 55 % de composition de poudre de polyamide fraîche, et une fraction massique comprise entre 75 % et 45 % de poudre polyamide récupérée à l’issue d’une fabrication précédente.
L’ajout de poudre fraîche à la poudre usée ajoute des grains de polyamide en bon état (non thermo-oxydé), qui ne sont pas déjà endommagés ou déformés par un précédent procédé de frittage induisant une thermo-oxydation, et ainsi maintient la viscosité interne du mélange dans une plage donnée en abaissant cette viscosité à chaque cycle au fur et à mesure de son évolution.
Préférentiellement, la poudre de polyamide fraîche utilisée présente un indice de viscosité interne mesuré selon ISO 307:2019 compris entre 0,9 décilitres par gramme et 1 ,4 décilitres par gramme. Un indice de viscosité interne inférieure à 1 ,4 décilitres par gramme, préférentiellement inférieure à 1 ,2 décilitre par gramme permet de conserver suffisamment basse la viscosité interne de la composition de poudre de polyamide, même quand cette composition est obtenue par mélange d’une poudre fraîche avec une poudre déjà cyclée utilisée par un procédé en lit de poudre PBF.
La méthode de détermination de l'indice de viscosité interne des plastiques et polyamides, selon la norme ISO 307:2019 repose sur la détermination de l'indice de viscosité de solutions diluées de polyamides dans certains solvants spécifiés dans la norme précitée.
Cette viscosité intervient dans la rhéologie des phénomènes de fusion et/ou de coalescence : les particules déposées doivent fondre et coalescer pour former une masse dense, non poreuse, mais sans fluer de manière incontrôlée. La viscosité interne influe sur les propriétés mécaniques de la pièce, son aspect et sa finition de surface du produit fini.
Pour une utilisation optimale de la composition de poudre il est conseillé de ne pas dépasser un nombre de cycle de recyclage d’une même poudre, c’est-à- dire de ne pas recycler à nouveau un mélange de poudre qui a subi un nombre élevé de cycles thermique dans un procédé de lit de poudre PBF. La collecte de la poudre cyclée et son tamisage doivent précéder le mélange avec de la poudre de polyamide fraîche afin d’écarter les agrégats de grains de poudre.
Le nombre de cycles possibles dépend du degré d’oxydation de la poudre recyclée, sachant que la viscosité interne augmente avec le degré d’oxydation. Les inventeurs constatent qu’en moyenne on peut réutiliser une même poudre dans 8 à 10 cycles de recyclage, mais cela dépend principalement de la durée d’exposition de la poudre à une température élevée et du taux d’oxygène dans l’enceinte, tout au long du cycle thermique subi (préchauffage, fabrication en température et refroidissement) soit durant toute la fabrication en PBF soit durant le refroidissement jusqu’à une température inférieure à 60 °C.
Le recyclage est favorisé par le fait que la poudre fraîche possède la viscosité interne indiquée ci-dessus. En effet, pour fabriquer des pièces de bonne qualité par le procédé selon l’invention, on peut utiliser une poudre dont l’indice de viscosité interne se situe un peu en dehors de cette zone entre 0,9 décilitres par gramme et 1 ,4 décilitres par gramme, mais pour que la poudre fraîche puisse être recyclée dans le procédé PBF, dans des conditions économiques intéressantes et selon les conditions techniques indiquées ci-dessus (mélangé à de la poudre fraîche à raison de 30 % à 60 %), il est préférable de respecter, pour la poudre fraîche, un rafraîchissement continue à 50 % et le tamisage systématique de la poudre déjà cyclée.
A titre d’exemple, la composition selon l’invention est la poudre A (déjà décrite plus haut). La poudre A fraiche présente un indice de viscosité interne égale à 1 ,3 décilitres par gramme. Après mise en œuvre d’un procédé de frittage, une nouvelle composition de poudre selon l’invention est formée par mélange de moitié de poudre fraîche et de moitié recyclée. Après un à deux cycles, la composition de poudre présente un indice de viscosité interne égale de l’ordre de 1 ,7 décilitres par gramme. Après trois à six cycles, la composition de poudre présente un indice de viscosité interne de l’ordre de 2,05 décilitres par gramme.
[Table 3]
Figure imgf000025_0001
Au lieu du nombre de cycle, on peut prendre en considération le temps en température, c’est-à-dire le temps durant lequel est la composition de poudre est soumis à un échauffement dans l’enceinte chauffée. Cette approche peut être plus précise car les cycles de fabrication peuvent être plus ou moins longs. Les temps en température testés pour aboutir aux valeurs de l’indice de viscosité interne du tableau ci-dessus sont également indiqués. Ce temps en température est égal à 0 pour une poudre fraîche, il est supérieur à 20 heures pour une poudre ayant subi 1 à 2 cycles et supérieur à 50 heures pour une poudre ayant subi 3 à 6 cycles de recyclage.
Détection magnétique des objets 3D obtenus
La présence d’un additif de détection optique ou magnétique dans la composition de poudre de l’invention permet la détection des objets 3D obtenus par frittage de cette poudre.
Dans le cas d’une détection magnétique, les objets 3D obtenus à partir d’une poudre comportant un additif de détection magnétique sont par exemple détectés par induction électromagnétique ou selon toute autre méthode de détection d’un objet magnétique. Ces méthodes bien connues de l’homme du métier ne sont pas décrites ici.
Détection optique des objets 3D obtenus
Les objets 3D obtenus par fabrication additive d’une composition de poudre son colorés dans la masse, c’est-à-dire que le la matière constituant l’objet 3D est colorée et que l’objet ne présente pas seulement une coloration sur sa surface extérieure. Cette caractéristique permet à un fragment d’objet 3D cassé de présenter sur toutes ses faces la couleur correspondante à l’additif de détection optique utilisé. Ainsi, un fragment d’un objet coloré dans la masse peut être détecté par des méthodes de détection optiques, lorsque l’objet est cassé.
Préférentiellement, l’objet 3D est coloré en bleu dans la masse. La couleur bleue étant peu courante parmi les produits alimentaires, elle ressort plus facilement que d’autres couleurs lorsqu’elle se trouve au milieu de produits alimentaires. En particulier, il peut être mise en œuvre une détection par infrarouge par irradiation dans une gamme de longueur d’onde comprise entre 0,5 μm et 12 μm. Ces méthodes de détection optique, même appliquées aux fragments de matières plastiques, sont bien connues de l’homme du métier et ne seront pas décrites ici en plus grand détail.
Propriétés mécaniques des objets 3D obtenus par frittage selon l’invention
Préférentiellement, un objet 3D obtenus par frittage selon l’invention présente une résistance à la traction la plus faible supérieure ou égale à 40 MPa (mégapascals), préférentiellement supérieure ou égale à 44 MPa.
Dans le cas où l’objet 3D est obtenu par frittage d’une poudre comportant un additif de détection magnétique, l’objet 4D présente préférentiellement une résistance à la traction la plus faible supérieure ou égale à 30 MPa, très préférentiellement supérieure ou égale à 35 MPa.
Préférentiellement, un objet 3D obtenu par frittage selon l’invention présente un module d’élasticité le plus faible supérieur ou égal à 1600 MPa, préférentiellement supérieur ou égal à 1750 MPa.
En particulier, des éprouvettes standardisées d’objets 3D obtenus à partir d’un procédé de frittage selon l’invention ont été testées concernant leur résistance à la traction et leur module d’élasticité, exprimés en mégapascals (MPa) et concernant leur allongement à la rupture, exprimée en pourcentage. L’objet 3D testé est obtenu à partir d’une composition de poudre de frittage A selon l’invention comportant un additif de détection optique est dans laquelle le polyamide est du PA11. La méthode de test mise en œuvre est conforme au standard ISO 527-1 :2019 pour la détermination des propriétés en traction.
[Table 4]
Figure imgf000027_0001
Préférentiellement, les objets 3D obtenus par le procédé de l’invention présentent un allongement à la rupture supérieur ou égal à 20 % sur une première orientation et supérieure ou égale à 35 % sur une deuxième orientation, perpendiculaire à la première.
Dans des essais menés selon ISO 527-1 :2019, dont les résultats sont présentés dans le tableau 4 ci-dessus, ces allongements à la rupture ont été mesurés à 25 % et 40 %.
On observe en figure 10 et 11 les graphiques correspondants aux résultats des tests présentés ci-dessus pour l’allongement à la rupture. En figure 10 les résultats du test d’allongement en traction selon une orientation xy et en figure 1 1 les résultats du test d’allongement en traction selon une orientation xz.

Claims

REVENDICATIONS
1. Procédé de fabrication d’un objet tridimensionnel, comportant une élévation locale de la température d’une poudre à base de polyamide par un rayonnement électromagnétique dans une enceinte chauffée, provoquant la fusion localisée d’une couche d’une épaisseur prédéterminée pour former, après refroidissement, une couche solide de polyamide, ledit procédé étant caractérisée en ce que ladite poudre comporte, sur le poids total de la composition :
- entre 60 % et 99% en poids de polyamide ;
- entre 1 % et 40 % en poids d’un additif de détection optique et/ou magnétique sélectionné dans le groupe formé par : les pigments comprenant une structure spinelle qui renferme un cation d’un métal de transition, les oxydes d’un métal de transition, les sulfures d’un métal de transition ;
- entre 0 % et 5 % et de préférence entre 0,1 % et 4,5 % en poids d’un agent d’écoulement ; et en ce que la poudre présente :
- une distribution granulométrique D50 comprise entre 35 μm et 55 μm ; et
- une distribution granulométrique D10 supérieure à 15 μm et
- une distribution granulométrique D90 inférieure à 100 μm.
2. Procédé selon la revendication 1 , dans lequel une fraction massique comprise entre 30 % et 70 % de ladite poudre est de la poudre polyamide fraîche, et une fraction massique comprise entre 70 % et 30 % de ladite poudre est une poudre polyamide récupérée dans ladite enceinte chauffée à l’issue d’une fabrication précédente, et dans lequel ladite poudre polyamide fraîche présente un indice de viscosité interne mesurée à 25 °C selon ISO 307:2019 comprise entre 0,9 décilitres par gramme et 1 ,4 décilitres par gramme.
3. Procédé selon l’une des revendications 1 ou 2, dans lequel le rayonnement électromagnétique est un rayonnement laser d’une densité énergétique supérieure à 25 mJ/mm2.
4. Composition de poudre pour procédé de fabrication additive par élévation locale de la température d’une poudre à base de polyamide par un rayonnement électromagnétique dans une enceinte chauffée, provoquant la fusion localisée d’une couche d’une épaisseur prédéterminée pour former, après refroidissement, une couche solide de polyamide caractérisée en ce que ladite poudre comporte, sur le poids total de la composition :
- entre 60 % et 99 % en poids de polyamide
- entre 1 % et 40 % en poids d’un additif de détection, de préférence un additif de détection optique et/ou un additif de détection magnétique, sélectionné dans le groupe formé par : les pigments comprenant une structure spinelle qui renferme un cation d’un métal de transition, les oxydes d’un métal de transition, les sulfures d’un métal de transition ;
- entre 0 % et 5 % et de préférence entre 0,1 % et 4,5 % en poids d’un agent d’écoulement ; et en ce que la poudre présente :
- une distribution granulométrique D50 comprise entre 35 μm et 55 μm ; et
- une distribution granulométrique D10 supérieure à 15 μm et
- une distribution granulométrique D90 inférieure à 100 μm.
5. Composition de poudre selon la revendication 4, qui présente :
- une distribution granulométrique D50 comprise entre 35 μm et 55 μm,
- une distribution granulométrique D10 comprise entre 15 μm et 25 μm et
- une distribution granulométrique D90 comprise entre 80 μm et 100 μm.
6. Composition de poudre selon l’une des revendications 4 ou 5, obtenue par mélange à sec d’une poudre de polyamide naturelle avec une poudre de polyamide comportant un additif de détection.
7. Composition de poudre selon l’une des revendications 4 à 6, qui comporte :
- entre 0,05 % et 5% en poids d’un additif de détection optique choisi parmi les pigments comprenant une structure spinelle qui renferme un cation d’un métal de transition et - entre 1 % et 35% en poids d’un additif de détection magnétique parmi les oxydes des métaux de transition.
8. Composition de poudre selon l’une des revendications 4 à 7, qui présente un indice de viscosité interne mesuré selon ISO 307:2019 compris entre 0,9 et 1 ,4 décilitres par gramme, à 25 °C.
9. Composition de poudre selon l’une des revendications 4 à 8, qui présente une valeur ΔT= (Tm-Tc)onset., comprise entre 30 °C et 50°C.
10. Composition de poudre selon l’une des revendications 4 à 9, qui comporte un additif de détection optique et dans lequel ledit additif de détection optique comporte du bleu de cobalt.
11. Objet tridimensionnel obtenu par fabrication additive à partir d’une composition selon l’une des revendications 4 à 10.
12. Objet selon la revendication 11 , coloré en bleu dans la masse par un additif de détection optique et dans lequel ledit additif de détection optique permet une détection optique dans une gamme de longueur d’onde comprise entre 0,5 μm et 12 μm.
13. Objet selon l’une des revendications 11 ou 12, qui présente un module d’élasticité supérieur ou égal à 1600 MPa, une résistance à la traction supérieure ou égale à 30 MPa, un allongement à la rupture supérieur ou égal à 20% selon une première orientation et supérieure ou égale à 35% sur une deuxième orientation perpendiculaire à la première.
PCT/IB2022/055495 2021-06-17 2022-06-14 Procédé de fabrication additive, composition de poudre polymere comportant un additif de détection, et objet obtenu par ledit procédé WO2022264027A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE22743558.3T DE22743558T1 (de) 2021-06-17 2022-06-14 Verfahren zur generativen fertigung, polymerpulverzusammensetzung mit einem nachweisadditiv und mit dem verfahren erhaltener gegenstand
DE212022000027.7U DE212022000027U1 (de) 2021-06-17 2022-06-14 Polymerpulverzusammensetzung für additives Herstellungsverfahren, die einen Erfassungszusatzstoff umfasst, und durch das Verfahren erhaltener Gegenstand
EP22743558.3A EP4355555A1 (fr) 2021-06-17 2022-06-14 Procédé de fabrication additive, composition de poudre polymere comportant un additif de détection, et objet obtenu par ledit procédé
JP2023577928A JP2024522793A (ja) 2021-06-17 2022-06-14 積層造形法、検出添加剤を含むポリマー粉末組成物、及び該方法により得られる物品
DK22743558.3T DK4355555T1 (da) 2021-06-17 2022-06-14 Additiv fremstillingsfremgangsmåde, polymerpulversammensætning omfattende et detektionsadditiv samt emne tilvejebragt ved hjælp af nævnte fremgangsmåde

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2106442A FR3124112A1 (fr) 2021-06-17 2021-06-17 Procédé de fabrication additive, composition de poudre polymere comportant un additif de détéction, et objet obtenu par ledit procédé
FR2106442 2021-06-17

Publications (1)

Publication Number Publication Date
WO2022264027A1 true WO2022264027A1 (fr) 2022-12-22

Family

ID=77519258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2022/055495 WO2022264027A1 (fr) 2021-06-17 2022-06-14 Procédé de fabrication additive, composition de poudre polymere comportant un additif de détection, et objet obtenu par ledit procédé

Country Status (2)

Country Link
FR (1) FR3124112A1 (fr)
WO (1) WO2022264027A1 (fr)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017140764A1 (fr) * 2016-02-19 2017-08-24 Basf Se Kaolin destiné à renforcer mécaniquement une poudre polymère pour le frittage laser
US20180009982A1 (en) * 2016-07-11 2018-01-11 A. Schulman Gmbh Compounded copolyamide powders
US20200047385A1 (en) * 2016-10-03 2020-02-13 Viskase Companies, Inc. Method of manufacturing food packaging plastic films and food packaging plastic films thus produced
WO2020069227A1 (fr) * 2018-09-27 2020-04-02 Zymtronix Catalytic Systems, Inc. Poudres magnétiques imprimables et objets imprimés par impression 3d pour immobilisation de bio-nanocatalyseurs
WO2020161373A1 (fr) * 2019-02-04 2020-08-13 Avanzare Innovacion Tecnologica S.L. Procédé pour conférer à des polymères organiques la possibilité d'être détectés
FR3096053A1 (fr) * 2019-05-16 2020-11-20 Arkema France Poudre de copolymère à blocs polyamides et à blocs polyéthers
US20210070992A1 (en) * 2019-09-09 2021-03-11 Xerox Corporation Particles comprising polyamides with pendent pigments and related methods

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017140764A1 (fr) * 2016-02-19 2017-08-24 Basf Se Kaolin destiné à renforcer mécaniquement une poudre polymère pour le frittage laser
US20180009982A1 (en) * 2016-07-11 2018-01-11 A. Schulman Gmbh Compounded copolyamide powders
US20200047385A1 (en) * 2016-10-03 2020-02-13 Viskase Companies, Inc. Method of manufacturing food packaging plastic films and food packaging plastic films thus produced
WO2020069227A1 (fr) * 2018-09-27 2020-04-02 Zymtronix Catalytic Systems, Inc. Poudres magnétiques imprimables et objets imprimés par impression 3d pour immobilisation de bio-nanocatalyseurs
WO2020161373A1 (fr) * 2019-02-04 2020-08-13 Avanzare Innovacion Tecnologica S.L. Procédé pour conférer à des polymères organiques la possibilité d'être détectés
FR3096053A1 (fr) * 2019-05-16 2020-11-20 Arkema France Poudre de copolymère à blocs polyamides et à blocs polyéthers
US20210070992A1 (en) * 2019-09-09 2021-03-11 Xerox Corporation Particles comprising polyamides with pendent pigments and related methods

Also Published As

Publication number Publication date
FR3124112A1 (fr) 2022-12-23

Similar Documents

Publication Publication Date Title
EP2352636B1 (fr) Realisation d'article par fusion selective de couches de poudre de polymere
EP2072462A1 (fr) Procédé de fabrication d'une dispersion de fines particules de composé métallique et la dispersion correspondante
EP3423510B1 (fr) Poudre de poly-(aryl-ether-cetone) (paek) apte a etre utilisee plusieurs fois dans des procedes de frittage
KR102617785B1 (ko) 광학 흡수 열가소성 중합체 입자 및 이의 제조 및 사용 방법
EP4355555A1 (fr) Procédé de fabrication additive, composition de poudre polymere comportant un additif de détection, et objet obtenu par ledit procédé
CN112457484B (zh) 包含具有主链内光吸收剂的聚酰胺的颗粒及相关方法
EP3789430A2 (fr) Particules de polyester thermoplastique et leurs procédés de production et leurs utilisations
WO2013186120A1 (fr) Procede de traitement thermique de poudres
CN102863639B (zh) 包含用聚合物涂覆的聚合物芯颗粒的粉末
CN112457486A (zh) 具有主链内光吸收剂的聚酰胺及相关方法
JP7443199B2 (ja) ペンダント光吸収体を有するポリアミドを含む粒子及び関連する方法
CA3091667C (fr) Particules de polyamide et procedes de fabrication et utilisations connexes
EP3004220A1 (fr) Procede de traitement thermique de poudres de polyarylene-ether-cetone-cetone adaptees au frittage laser
TW201504263A (zh) 乙烯-乙烯基醇系共聚物微粒子、及含有其之分散液與樹脂組成物、以及該微粒子之製造方法
WO2022264027A1 (fr) Procédé de fabrication additive, composition de poudre polymere comportant un additif de détection, et objet obtenu par ledit procédé
EP3936316A1 (fr) Microparticules de polyamide hautement sphériques et procédés de synthèse associés
EP2726262A1 (fr) Procede de fabrication de pieces colorees en ceramique par pim
EP4041516A1 (fr) Poudre de poly-aryl-éther-cétone(s) chargée, procédé de fabrication et utilisation correspondants
WO2003024692A1 (fr) Procede pour la mise en oeuvre par extrusion-soufflage d'un hdpe usage
WO2024126965A1 (fr) Procede de fabrication d'objets frittes a rugosite amelioree
WO2023067284A1 (fr) Poudre de polymère thermoplastique pour l'impression 3d par frittage
EP3328789B1 (fr) Procede et systeme pour l'elaboration de nanocomposites polymeres/oxyde de graphene reduit par reductionin situ
Liu et al. Rapid 3D Printing of Nanoporous Copper Powders via Micro-Clip
FR3130275A1 (fr) Procede de fabrication additive de piece ceramique oxyde
WO2020099803A1 (fr) Poudre de poly(ether-cetone-cetone) reutilisable pour procede de frittage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22743558

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023577928

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022743558

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022743558

Country of ref document: EP

Effective date: 20240117