WO2022263192A1 - Verfahren zum betreiben eines brennstoffzellensystems, brennstoffzellensystem - Google Patents

Verfahren zum betreiben eines brennstoffzellensystems, brennstoffzellensystem Download PDF

Info

Publication number
WO2022263192A1
WO2022263192A1 PCT/EP2022/065081 EP2022065081W WO2022263192A1 WO 2022263192 A1 WO2022263192 A1 WO 2022263192A1 EP 2022065081 W EP2022065081 W EP 2022065081W WO 2022263192 A1 WO2022263192 A1 WO 2022263192A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
fuel cell
path
integrated
supply
Prior art date
Application number
PCT/EP2022/065081
Other languages
English (en)
French (fr)
Inventor
Martin Katz
Wolfgang Sander
Andreas Knoop
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2022263192A1 publication Critical patent/WO2022263192A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04126Humidifying
    • H01M8/04141Humidifying by water containing exhaust gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04059Evaporative processes for the cooling of a fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04111Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants using a compressor turbine assembly
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04126Humidifying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04291Arrangements for managing water in solid electrolyte fuel cell systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04619Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04723Temperature of the coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04761Pressure; Flow of fuel cell exhausts

Definitions

  • the invention relates to a method for operating a fuel cell system and a fuel cell system which is suitable for carrying out the method or can be operated according to the method.
  • Fuel cells convert a fuel, such as hydrogen, and oxygen into electrical energy, heat, and water.
  • Air in particular ambient air, can serve as the oxygen supplier.
  • the air is supplied to a cathode of the fuel cell via an air supply path. Since the energy conversion process requires a certain air mass flow and a certain pressure level, the air supplied on the cathode side is first compressed with the aid of a single- or multi-stage air compression system arranged in the supply air path. Before it enters the fuel cells, the air is usually humidified to prevent the membranes of the fuel cells from drying out. Otherwise there is a risk that the fuel cells will be damaged.
  • a gas-to-gas membrane humidifier can be used for humidification, which transports water, in particular product water, that occurs during operation of the fuel cells from the outlet side to the inlet side of the fuel cells.
  • a gas-to-gas membrane humidifier can be found, for example, in published application DE 10 2008 053 151 A1. Since the exchange surfaces must be large in order to transport the required water mass flow, the installation space required for such a humidifier is quite large. In addition, water can only be transferred if there is sufficient water on the outlet side. Since water always remains in the exchange regions, this can lead to damage due to ice pressure during frost. In addition, there are at such humidifiers no way to directly control the water transfer.
  • a bypass channel is typically provided for this purpose on one of the two sides, which allows the humidity at the inlet of the fuel cells to be adjusted by means of a bypass flap. Adjusting this concept precisely is comparatively difficult and therefore expensive.
  • the moist exhaust air emerging from the fuel cells can be recirculated to humidify the air in the supply air path.
  • This type of humidification is described by way of example in published application DE 101 55 217 A1.
  • nitrogen is also recirculated, which is particularly evident in full or High-load operation of the fuel cell system has a negative effect.
  • a high oxygen partial pressure is particularly important in high-load operation. In this case, the recirculation of moist exhaust air leads to a lowering of the U-I characteristic and thus to a reduced efficiency of the fuel cell system.
  • the present invention is therefore based on the object of providing a concept for humidifying the air in an air supply path of a fuel cell system which eliminates or at least reduces the disadvantages mentioned above.
  • a method for operating a fuel cell system comprising at least one fuel cell, to which air is supplied via an air inlet path, which air is compressed before it enters the fuel cell using a single-stage or multi-stage air compression system integrated into the air inlet path.
  • the air before it enters the fuel cell is humidified either by water injection or by recirculation of the moist exhaust air emerging from the fuel cell.
  • at least two different humidification methods are used in combination, namely water injection and exhaust air recirculation.
  • the humidification method that proves to be particularly advantageous or at least more advantageous than the other humidification method is selected. The disadvantages described above can be avoided in this way.
  • the humidification method of exhaust air recirculation can be selected whenever no liquid water/product water is available for water injection. This is usually the case when the water required for humidification is still frozen in winter operation or when insufficient amounts of liquid water are produced in summer operation in the lower load range. In contrast, in full-load operation and/or in summer operation, in which there are usually sufficient amounts of liquid water, the humidification can take place by water injection. In particular in full-load operation, in which a high oxygen partial pressure is important, so that humidification by means of exhaust air recirculation is less advisable, humidification of the air by means of water injection proves to be advantageous.
  • the air is humidified by water injection before it enters the fuel cell.
  • An injection valve is preferably used for water injection, with the aid of which water is injected into the supply air path.
  • the water can in particular be product water that occurs during operation of the fuel cell system and is separated and collected. In this way, the product water that accumulates during operation can be put to use.
  • the water is preferably injected into the supply air path with the aid of the injection valve downstream of the air compression system and upstream of a charge air cooler integrated into the supply air path. Since the air heats up considerably during compression, the vapor that collects downstream of the air compression system evaporates. splashed water before it entered the intercooler. The charge air cooler is relieved by the evaporative cooling effected in this way. This is particularly advantageous in summer or summer operation.
  • the water can be injected into the supply air path downstream of a first compression stage and upstream of a second compression stage of a multi-stage air compression system.
  • intermediate cooling is achieved at the same time.
  • the air is humidified before it enters the fuel cell by recirculating the moist exhaust air exiting the fuel cell. This means that, in particular if there is an insufficient amount of water available in the water, in particular product water, the water injection is replaced by exhaust air recirculation.
  • At least a partial mass flow of the moist exhaust air emerging from the fuel cell and discharged via an exhaust air path is preferably introduced into the intake air path via a recirculation path branching off from the exhaust air path.
  • the exhaust air is preferably introduced into the supply air path upstream of the air compression system or an air compression stage of the air compression system. In this way, the air compression system can be used to recirculate the exhaust air or at least to support the exhaust air recirculation. If necessary, the partial mass flow can be varied via the speed of an air compressor of the air compression system.
  • a valve integrated into the exhaust air path is preferably at least partially closed and another valve integrated into the recirculation path is opened to control the branched-off partial mass flow of moist exhaust air.
  • the valve integrated in the exhaust air path which can in particular be a pressure control valve, the exhaust air mass flow is backed up in the exhaust air path. Is that in recirculation tion path arranged additional valve is opened, a partial mass flow can be branched off via the recirculation path and introduced into the supply air path.
  • the coolant flow temperature of a cooling circuit connected to the fuel cell is lowered. This measure reduces the humidification requirements of the fuel cell, so that the fuel cell system can even be operated without external humidification if the coolant temperature is sufficiently reduced. If the coolant flow temperature is, for example, 65° C. during normal operation of the fuel cell system, it can be lowered to a temperature of around 40° C. in winter operation.
  • the fuel cell system proposed in addition to solving the task mentioned at the outset comprises at least one fuel cell to which air can be supplied via an air supply path.
  • a one-stage or multi-stage air compression system for compressing the air is integrated into the supply air path.
  • the injection valve for water injection is integrated into the supply air path.
  • a recirculation path branching off from an exhaust air path opens into the supply air path.
  • the humidification of the air in the supply air path can be effected by means of water injection and/or by means of exhaust air recirculation.
  • the injection valve is integrated either downstream of the air compression system and upstream of a charge air cooler integrated into the supply air path or downstream of a first compression stage and upstream of a second compression stage of the air compression system in the supply air path.
  • the recirculation path preferably opens into the supply air path upstream of the injection valve, preferably upstream of the air compression system or upstream of an air compression stage of the air compression system. In this way, the exhaust air can be recirculated with the help of the air compression system.
  • a valve is preferably integrated in the exhaust air path and a further valve is integrated in the recirculation path.
  • the exhaust air mass flow can be backed up in the exhaust air path by at least partially closing the valve integrated in the exhaust air path.
  • the valve integrated in the recirculation path opens, a partial mass flow is branched off from the exhaust air path into the recirculation path and fed to the supply air path via the recirculation path.
  • the valve arranged in the exhaust air path can, in particular, be a pressure control valve, since this allows variable adjustment of the exhaust air mass flow.
  • the air compression system is multi-stage.
  • the multi-stage design of the air compression system enables high system pressures because the air is compressed over several, for example two, compression stages of the air compression system.
  • the air compression system be coupled to a turbine integrated in the exhaust air path. With the help of the turbine, to which the exhaust air from the fuel cell is fed, part of the energy previously used to compress the air can be recovered.
  • FIG. 1 shows a schematic representation of a cathode area of a first fuel cell system according to the invention
  • FIG. 2 shows a schematic representation of a cathode area of a second fuel cell system according to the invention
  • FIG. 3 shows a schematic representation of a cathode region of a third fuel cell system according to the invention
  • FIG. 4 shows a schematic representation of a cathode area of a fourth fuel cell system according to the invention.
  • the fuel cell system 1 shown in detail in FIG. 1 comprises at least one fuel cell 2 with a cathode 2.1 and an anode 2.2. Air can be supplied to the cathode 2.1 via an air supply path 3 .
  • the anode 2.2 can be supplied with a fuel, in particular hydrogen, via an anode circuit 13 (not shown).
  • the air supplied to the fuel cell 2 via the air supply path 3 is removed from the surrounding environment and supplied to an air compression system 4 integrated into the air supply path 3 .
  • the air is compressed with the aid of the air compression system 4, and the air heats up.
  • the compressed air is therefore cooled before it enters the fuel cell 2 with the aid of an intercooler 6 integrated into the supply air path 3 downstream of the air compression system 4 .
  • the fuel cell 2 exiting air or exhaust air is discharged via an exhaust air path 7, in which a turbine 12 is integrated.
  • the turbine 12 is used together with an electric motor 11 to drive the air compression system 4.
  • an injection valve 5 is integrated in the air supply path 3, namely upstream of the air compression system 4.
  • air or exhaust air can be branched off from the exhaust air path 7 and introduced into the air supply path 3 via a recirculation path 8 . It is introduced upstream of the injection valve 5.
  • the air compression system 4 can be used to recirculate the exhaust air.
  • a valve 9 integrated into the exhaust air path 7 is at least partially closed and another valve 10 integrated into the recirculation path 8 is opened.
  • different humidification methods can be used so that the more favorable method can be selected in each case.
  • FIG. 2 shows a modification of the system from FIG. 1, which consists in the fact that the injection valve 5 is integrated into the supply air path 3 downstream of the air compression system 4 and upstream of the charge air cooler 6 . In this way, the compressed air can be cooled with the aid of the water injection, which relieves the charge air cooler 6 .
  • Figures 3 and 4 show further modifications of the system of Figure 1.
  • the air compression system 4 is designed in multiple stages and includes a first compression stage 4.1 and a second compression stage 4.2.
  • Figures 3 and 4 differ only in the positioning of the injection valve 5.
  • the injection valve 5 is integrated into the supply air path 3 downstream of the first compression stage 4.1 and upstream of the second compression stage 4.2 of the air compression system 4. In this way, an intermediate cooling can be achieved with the help of a sprayed water.
  • the injection valve 5 is arranged downstream of the air compression system 4 and upstream of the intercooler 6 . The cooling of the air by means of the injected water is therefore only effected after complete compression, so that the load on the intercooler 6 is optimally relieved.

Abstract

Die Erfindung betrifft ein Verfahren zum Betreiben eines Brennstoffzellensystems (1), umfassend mindestens eine Brennstoffzelle (2), der über einen Zuluftpfad (3) Luft zugeführt wird, die vor ihrem Eintritt in die Brennstoffzelle (2) mit Hilfe eines in den Zuluftpfad (3) integrierten ein- oder mehrstufigen Luftverdichtungssystems (4) verdichtet wird. Erfindungsgemäß wird temperatur- und/oder lastabängig die Luft vor dem Eintritt in die Brennstoffzelle (2) wahlweise durch Wassereinspritzung oder durch Rezirkulation der aus der Brennstoffzelle (2) austretenden feuchten Abluft befeuchtet. Die Erfindung betrifft ferner ein Brennstoffzellensystem (1) zur Durchführung des Verfahrens.

Description

Beschreibung
Titel:
Verfahren zum Betreiben eines Brennstoffzellensystems, Brennstoffzellensystem
Die Erfindung betrifft ein Verfahren zum Betreiben eines Brennstoffzellensystems sowie ein Brennstoffzellensystem, das zur Durchführung des Verfahrens geeig net bzw. nach dem Verfahren betreibbar ist.
Stand der Technik
Brennstoffzellen wandeln einen Brennstoff, beispielsweise Wasserstoff, und Sauerstoff in elektrische Energie, Wärme und Wasser. Als Sauerstofflieferant kann Luft, insbesondere Umgebungsluft, dienen. Die Luft wird über einen Zuluft pfad einer Kathode der Brennstoffzellen zugeführt. Da der Energiewandlungs prozess einen gewissen Luftmassenstrom und ein gewisses Druckniveau erfor dert, wird die kathodenseitig zugeführte Luft zuvor mit Hilfe eines im Zuluftpfad angeordneten ein- oder mehrstufigen Luftverdichtungssystems verdichtet. Vor dem Eintritt in die Brennstoffzellen wird die Luft in der Regel zudem befeuchtet, um ein Austrocknen der Membranen der Brennstoffzellen zu verhindern. Andern falls besteht die Gefahr, dass die Brennstoffzellen Schaden nehmen.
Zum Befeuchten kann ein Gas-zu-Gas Membran- Befeuchter eingesetzt werden, der Wasser, insbesondere Produktwasser, das im Betrieb der Brennstoffzellen anfällt, von der Austrittsseite auf die Eintrittsseite der Brennstoffzellen transpor tiert. Ein derartiger Gas-zu-Gas Membran-Befeuchter geht beispielhaft aus der Offenlegungsschrift DE 10 2008 053 151 Al hervor. Da die Austauschflächen groß sein müssen, um den geforderten Wassermassenstrom zu transportieren, ist der Bauraumbedarf eines solchen Befeuchters recht groß. Zudem kann nur dann Wasser transferiert werden, wenn auf der Austrittsseite ausreichend Was ser vorhanden ist. Da immer Wasser in den Austauschregionen verbleibt, kann dies bei Frost zu Schäden aufgrund Eisdruck führen. Darüber hinaus gibt es bei derartigen Befeuchtern keine Eingriffsmöglichkeit, die Wasserübertragung direkt zu kontrollieren. Typischerweise ist hierfür ein Bypasskanal auf einer der beiden Seiten vorgesehen, welcher mittels einer Bypassklappe eine Einstellung der Feuchtigkeit am Eintritt der Brennstoffzellen erlaubt. Dieses Konzept genau ein zuregeln, ist vergleichsweise schwierig und demzufolge aufwendig.
Darüber hinaus kann zum Befeuchten der Luft im Zuluftpfad die aus den Brenn stoffzellen austretende feuchte Abluft rezirkuliert werden. Diese Art der Befeuch tung wird in der Offenlegungsschrift DE 101 55 217 Al beispielhaft beschrieben. Neben der gewünschten Feuchtigkeit wird jedoch auch Stickstoff rezirkuliert, was sich insbesondere im Voll-bzw. Hochlastbetrieb des Brennstoffzellensystems als nachteilig auswirkt. Denn insbesondere im Hochlastbetrieb kommt es auf einen hohen Sauerstoffpartialdruck an. Die Rezirkulation feuchter Abluft führt in diesem Fall zu einer Absenkung der U-I-Kennlinie und damit zu einem reduzierten Wir kungsgrad des Brennstoffzellensystems.
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein Konzept zum Befeuchten der Luft in einem Zuluftpfad eines Brennstoffzellensystems bereitzu stellen, das die vorstehend genannten Nachteile beseitigt oder zumindest redu ziert.
Zur Lösung der Aufgabe werden das Verfahren mit den Merkmalen des An spruchs 1 sowie das Brennstoffzellensystem mit den Merkmalen des Anspruchs 8 vorgeschlagen. Vorteilhafte Weiterbildungen der Erfindung sind den jeweiligen Unteransprüchen zu entnehmen.
Offenbarung der Erfindung
Vorgeschlagen wird ein Verfahren zum Betreiben eines Brennstoffzellensystems, umfassend mindestens eine Brennstoffzelle, der über einen Zuluftpfad Luft zuge führt wird, die vor ihrem Eintritt in die Brennstoffzelle mit Hilfe eines in den Zuluft pfad integrierten, ein- oder mehrstufigen Luftverdichtungssystems verdichtet wird. Erfindungsgemäß wird temperatur- und/oder lastabhängig die Luft vor dem Eintritt in die Brennstoffzelle wahlweise durch Wassereinspritzung oder durch Rezirkulation der aus der Brennstoffzelle austretenden feuchten Abluft befeuch tet. Bei dem vorgeschlagenen Verfahren kommen demnach mindestens zwei unter schiedliche Befeuchtungsmethoden kombiniert zum Einsatz, nämlich die der Wassereinspritzung und der Abluftrezirkulation. Temperatur- und/oder lastab hängig wird jeweils die Befeuchtungsmethode ausgewählt, die sich als beson ders vorteilhaft oder zumindest vorteilhafter als die jeweils andere Befeuch tungsmethode erweist. Die eingangs beschriebenen Nachteile können auf diese Weise vermieden werden.
Insbesondere kann immer dann, wenn kein flüssiges Wasser/Produktwasser für die Wassereinspritzung zur Verfügung steht, die Befeuchtungsmethode der Ab luftrezirkulation gewählt werden. Dies ist in der Regel der Fall, wenn im Winterbe trieb das für die Befeuchtung notwendige Wasser noch gefroren ist oder im Sommerbetrieb im unteren Lastbereich keine ausreichenden Mengen von flüssi gen Wasser produziert werden. Demgegenüber kann im Volllastbetrieb und/oder im Sommerbetrieb, bei dem in der Regel ausreichende Mengen von flüssigem Wasser vorliegen, die Befeuchtung durch Wassereinspritzung erfolgen. Insbe sondere im Volllastbetrieb, in dem es auf einen hohen Sauerstoffpartialdruck an kommt, so dass die Befeuchtung mittels Abluftrezirkulation weniger ratsam ist, erweist sich eine Befeuchtung der Luft mittels Wassereinspritzung als vorteilhaft.
In Weiterbildung der Erfindung wird daher vorgeschlagen, dass bei Umgebungs temperaturen über 0°C, vorzugsweise im Sommerbetrieb des Brennstoffzellen systems, und/oder im Volllastbetrieb die Luft vor dem Eintritt in die Brennstoffzel le durch Wassereinspritzung befeuchtet wird.
Zur Wassereinspritzung wird vorzugsweise ein Einspritzventil verwendet, mit dessen Hilfe Wasser in den Zuluftpfad eingespritzt wird. Bei dem Wasser kann es sich insbesondere um Produktwasser handeln, das im Betrieb des Brennstoff zellensystems anfällt, abgeschieden und gesammelt wird. Auf diese Weise kann das im Betrieb anfallende Produktwasser einer Nutzung zugeführt werden.
Bevorzugt wird das Wasser mit Hilfe des Einspritzventils stromabwärts des Luft verdichtungssystems und stromaufwärts eines in den Zuluftpfad integrierten La deluftkühlers in den Zuluftpfad eingespritzt. Da sich die Luft beim Verdichten stark erhitzt, verdunstet das stromabwärts des Luftverdichtungssystem einge- spritzte Wasser bevor es in den Ladeluftkühler gelangt. Durch die derart bewirkte Verdunstungskühlung wird der Ladeluftkühler entlastet. Dies ist insbesondere im Sommer bzw. Sommerbetrieb von Vorteil.
Alternativ kann das Wasser stromabwärts einer ersten Verdichtungsstufe und stromaufwärts einer zweit Verdichtungsstufe eines mehrstufig ausgeführten Luft verdichtungssystem in den Zuluftpfad eingespritzt werden. In diesem Fall wird mit Hilfe der Wassereinspritzung zugleich eine Zwischenkühlung erreicht.
Des Weiteren wird vorgeschlagen, dass bei Umgebungstemperaturen unter 0°C, vorzugsweise im Winterbetrieb des Brennstoffzellensystems, und/oder im Teil lastbetrieb die Luft vor dem Eintritt in die Brennstoffzelle durch Rezirkulation der aus der Brennstoffzelle austretenden feuchten Abluft befeuchtet wird. Das heißt, dass insbesondere bei einer unzureichenden Menge an vorrätig im Wasser, ins besondere Produkt Wasser, die Wassereinspritzung durch Abluftrezirkulation er setzt wird.
Zur Rezirkulation der feuchten Abluft wird vorzugsweise zumindest ein Teilmas senstrom der aus der Brennstoffzelle austretenden und über einen Abluftpfad abgeführten feuchten Abluft über einen vom Abluftpfad abzweigenden Rezirkula- tionspfad in den Zuluftpfad eingeleitet. Auf diese Weise wird zugleich der über den Abluftpfad abzuführende Abluftmassenstrom reduziert, so dass weniger Ab luft an die Umgebung abgegeben werden muss. Vorzugsweise wird die Abluft stromaufwärts des Luftverdichtungssystems oder einer Luftverdichtungsstufe des Luftverdichtungssystems in den Zuluftpfad eingeleitet. Das Luftverdichtungssys tem kann auf diese Weise zur Rezirkulation der Abluft oder zumindest zur Unter stützung der Abluftrezirkulation eingesetzt werden. Bei Bedarf kann über die Drehzahl eines Luftverdichters des Luftverdichtungssystems der Teilmassen strom variiert werden.
Des Weiteren bevorzugt werden zur Steuerung des abgezweigten Teilmassen stroms der feuchten Abluft ein in den Abluftpfad integriertes Ventil zumindest teilweise geschlossen und ein in den Rezirkulationspfad integriertes weiteres Ventil geöffnet. Durch zumindest teilweises Schließen des in den Abluftpfad inte grierten Ventils, wobei es sich insbesondere um ein Druckregelventil handeln kann, wird der Abluftmassenstrom im Abluftpfad aufgestaut. Ist das im Rezirkula- tionspfad angeordnete weitere Ventil geöffnet, kann über den Rezirkulationspfad ein Teilmassenstrom abgezweigt und in den Zuluftpfad eingeleitet werden.
Als weiterbildende Maßnahme wird vorgeschlagen, dass bei Umgebungstempe raturen unter 0°C, vorzugsweise im Winterbetrieb des Brennstoffzellensystems, die Kühlmittelvorlauftemperatur eines an die Brennstoffzelle angeschlossenen Kühlkreises gesenkt wird. Durch diese Maßnahme werden die Befeuchtungsan forderungen der Brennstoffzelle verringert, so dass bei einer ausreichenden Kühlmitteltemperaturabsenkung das Brennstoffzellensystem sogar ohne externe Befeuchtung betrieben werden kann. Beträgt die Kühlmittelvorlauftemperatur im Normalbetrieb des Brennstoffzellensystems beispielsweise 65°C, kann sie im Winterbetrieb auf eine Temperatur von etwa 40°C abgesenkt werden.
Das darüber hinaus zur Lösung der eingangs genannten Aufgabe vorgeschlage ne Brennstoffzellensystem umfasst mindestens eine Brennstoffzelle, der über ei nen Zuluftpfad Luft zuführbar ist. In den Zuluftpfad ist dabei ein ein- oder mehr stufiges Luftverdichtungssystem zum Verdichten der Luft integriert. Erfindungs gemäß ist in den Zuluftpfad in Einspritzventil zur Wassereinspritzung integriert. Zudem mündet in den Zuluftpfad ein von einem Abluftpfad abzweigender Rezir kulationspfad.
Im Betrieb des vorgeschlagenen Brennstoffzellensystems kann demnach die Be feuchtung der Luft im Zuluftpfad mittels Wassereinspritzung und/oder mittels Ab- luftrezirkulation bewirkt werden. Das heißt, dass das vorgeschlagene Brennstoff zellensystem die Durchführung des zuvor beschriebenen erfindungsgemäßen Verfahrens ermöglicht bzw. nach dem zuvor beschriebenen erfindungsgemäßen Verfahren betreibbar ist. Somit werden mit Hilfe des Brennstoffzellensystems die gleichen Vorteile erreicht.
Gemäß einer bevorzugten Ausführungsform der Erfindung ist das Einspritzventil entweder stromabwärts des Luftverdichtungssystems und stromaufwärts eines in den Zuluftpfad integrierten Ladeluftkühlers oder stromabwärts einer ersten Ver dichtungsstufe und stromaufwärts einer zweiten Verdichtungsstufe des Luftver dichtungssystems in den Zuluftpfad integriert. Mit Hilfe des eingespritzten Was sers kann auf diese Weise eine Kühlung oder Zwischenkühlung der beim Ver dichten stark erhitzten Luft bewirkt werden. Des Weiteren bevorzugt mündet der Rezirkulationspfad stromaufwärts des Ein spritzen Ventils, vorzugsweise stromaufwärts des Luftverdichtungssystems oder stromaufwärts einer Luftverdichtungsstufe des Luftverdichtungssystems in den Zuluftpfad. Auf diese Weise kann mit Hilfe des Luftverdichtungssystem die Rezir- kulation der Abluft bewirkt werden.
Ferner bevorzugt sind in den Abluftpfad ein Ventil und in den Rezirkulationspfad ein weiteres Ventil integriert. Durch zumindest teilweises Schließen des in der Abluftpfad integrierten Ventils kann der Abluftmassenstrom im Abluftpfad aufge staut werden. Zugleich das den Rezirkulationspfad integrierte Ventil geöffnet, wird ein Teilmassenstrom aus dem Abluftpfad in den Rezirkulationspfad abge zweigt und über den Rezirkulationspfad dem Zuluftpfad zugeführt. Das im Abluft pfad angeordnete Ventil kann insbesondere ein Druckregelventil sein, da dieses eine variable Einstellung des Abluftmassenstroms ermöglicht.
Vorteilhafterweise ist das Luftverdichtungssystem mehrstufig ausgeführt. Die mehrstufige Ausführung des Luftverdichtungssystems ermöglicht hohe System drücke, da die Luft über mehrere, beispielsweise zwei, Verdichtungsstufen des Luftverdichtungssystem verdichtet wird. Alternativ oder ergänzend wird vorge schlagen, dass das Luftverdichtungssystem mit einer in den Abluftpfad integrier ten Turbine gekoppelt. Mit Hilfe der Turbine, der die aus der Brennstoffzelle aus tretende Abluft zugeführt wird, kann ein Teil der zuvor zum Verdichten der Luft eingesetzten Energie zurückgewonnen werden.
Bevorzugte Ausführungsformen der Erfindung werden nachfolgend anhand der beigefügten Zeichnungen näher erläutert. Diese zeigen:
Figur 1 eine schematische Darstellung eines Kathodenbereichs eines ersten er findungsgemäßen Brennstoffzellensystems,
Figur 2 eine schematische Darstellung eines Kathodenbereichs eines zweiten erfindungsgemäßen Brennstoffzellensystems,
Figur 3 eine schematische Darstellung eines Kathodenbereichs eines dritten er findungsgemäßen Brennstoffzellensystems und Figur 4 eine schematische Darstellung eines Kathodenbereichs eines vierten er findungsgemäßen Brennstoffzellensystems.
Ausführliche Beschreibung der Zeichnungen
Das in der Figur 1 ausschnittsweise dargestellte Brennstoffzellensystem 1 um fasst mindestens eine Brennstoffzelle 2 mit einer Kathode 2.1 und einer Anode 2.2. Der Kathode 2.1 ist über einen Zuluftpfad 3 Luft zuführbar. Die Anode 2.2 ist über einen nicht näher dargestellten Anodenkreis 13 mit einem Brennstoff, ins besondere Wasserstoff, versorgbar.
Die der Brennstoffzelle 2 über den Zuluftpfad 3 zugeführte Luft wird der Umge bung entnommen und einem in den Zuluftpfad 3 integrierten Luftverdichtungssys tem 4 zugeführt. Mit Hilfe des Luftverdichtungssystems 4 wird die Luft verdichtet, wobei sich die Luft erwärmt. Mit Hilfe eines stromabwärts des Luftverdichtungs systems 4 in den Zuluftpfad 3 integrierten Ladeluftkühler 6 wird daher die ver dichtete Luft vor ihrem Eintritt in die Brennstoffzelle 2 gekühlt. Die aus der Brenn stoffzelle 2 austretende Luft bzw. Abluft wird über einen Abluftpfad 7 abgeführt, in den eine Turbine 12 integriert ist. Die Turbine 12 dient zusammen mit einem Elektromotor 11 dem Antrieb des Luftverdichtungssystem 4.
Zum Befeuchten der Luft im Zuluftpfad 3 ist in den Zuluftpfad 3 ein Einspritzventil 5 integriert, und zwar stromaufwärts des Luftverdichtungssystem 4. Darüber hin aus kann Luft bzw. Abluft aus dem Abluftpfad 7 abgezweigt und über einen Re- zirkulationspfad 8 in den Zuluftpfad 3 eingeleitet werden. Die Einleitung erfolgt stromaufwärts des Einspritzventils 5. Auf diese Weise kann das Luftverdich tungssystem 4 zur Rezirkulation der Abluft eingesetzt werden. Zeitgleich werden ein in den Abluftpfad 7 integriertes Ventil 9 zumindest teilweise geschlossen und ein in den Rezirkulationspfad 8 integriertes weiteres Ventil 10 geöffnet. Tempera tur- und/oder lastabhängig können somit unterschiedliche Befeuchtungsmetho den eingesetzt werden, so dass die jeweils günstigere Methode gewählt werden kann. Insbesondere kann immer dann, wenn keine ausreichende Menge an flüs sigem Wasser zur Verfügung steht, anstelle der Wassereinspritzung die Abluftre- zirkulation als Befeuchtungsmethode angewendet werden. Der Figur 2 ist eine Modifikation des Systems der Figur 1 dargestellt, die darin besteht, dass das Einspritzventil 5 stromabwärts des Luftverdichtungssystems 4 und stromaufwärts des Ladeluftkühlers 6 in den Zuluftpfad 3 integriert ist. Auf diese Weise kann mit Hilfe der Wassereinspritzung eine Kühlung der verdichte- ten Luft erzielt werden, welche den Ladeluftkühler 6 entlastet.
Die Figuren 3 und 4 zeigen weitere Modifikationen des Systems der Figur 1. Hier ist das Luftverdichtungssystem 4 mehrstufig ausgeführt und umfasst eine erste Verdichtungsstufe 4.1 sowie eine zweite Verdichtungsstufe 4.2. Die Figuren 3 und 4 unterscheiden sich lediglich durch die Positionierung des Einspritzventils 5.
In der Figur 3 ist das Einspritzventil 5 stromabwärts der ersten Verdichtungsstufe 4.1 und stromaufwärts der zweiten Verdichtungsstufe 4.2 des Luftverdichtungs systems 4 in den Zuluftpfad 3 integriert. Auf diese Weise kann mit Hilfe des ein gespritzten Wassers eine Zwischenkühlung erzielt werden. In der Figur 4 ist das Einspritzventil 5 stromabwärts des Luftverdichtungssystems 4 und stromaufwärts des Ladeluftkühlers 6 angeordnet. Die Kühlung der Luft mittels des eingespritz ten Wassers wird demnach erst nach der vollständigen Verdichtung bewirkt, so dass der Ladeluftkühler 6 optimal entlastet wird.

Claims

Ansprüche
1. Verfahren zum Betreiben eines Brennstoffzellensystems (1), umfassend mindestens eine Brennstoffzelle (2), der über einen Zuluftpfad (3) Luft zugeführt wird, die vor ihrem Eintritt in die Brennstoffzelle (2) mit Hilfe eines in den Zuluft pfad (3) integrierten ein- oder mehrstufigen Luftverdichtungssystems (4) verdich tet wird, dadurch gekennzeichnet, dass temperatur- und/oder lastabängig die Luft vor dem Eintritt in die Brennstoffzelle (2) wahlweise durch Wasserseinspritzung oder durch Rezirkulation der aus der Brennstoffzelle (2) austretenden feuchten Abluft befeuchtet wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass bei Umgebungstemperaturen über 0°C, vor zugsweise im Sommerbetrieb des Brennstoffzellensystems (1), und/oder im Voll lastbetrieb die Luft vor dem Eintritt in die Brennstoffzelle (2) durch Wasserein spritzung befeuchtet wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass zur Wassereinspritzung ein Einspritzventil (5) verwendet wird, mit dessen Hilfe Wasser in den Zuluftpfad (3) eingespritzt wird, vorzugsweise
(i) stromabwärts des Luftverdichtungssystems (4) und stromaufwärts eines in den Zuluftpfad (3) integrierten Ladeluftkühlers (6) oder
(ii) stromabwärts einer ersten Verdichtungsstufe (4.1) und stromaufwärts einer zweiten Verdichtungsstufe (4.2) in den Zuluftpfad (3).
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass bei Umgebungstemperaturen unter 0°C, vor zugsweise im Winterbetrieb des Brennstoffzellensystems (1), und/oder im Teil lastbetrieb die Luft vor dem Eintritt in die Brennstoffzelle (2) durch Rezirkulation der aus der Brennstoffzelle (2) austretenden feuchten Abluft befeuchtet wird.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur Rezirkulation der feuchten Abluft zumindest ein Teilmassenstrom der aus der Brennstoffzelle (2) austretenden und über einen Abluftpfad (7) abgeführten feuchten Abluft über einen vom Abluftpfad (7) abzwei genden Rezirkulationspfad (8) in den Zuluftpfad (3) eingeleitet wird, vorzugswei se stromaufwärts des Luftverdichtungssystems (4) oder einer Luftverdichtungs stufe (4.2) des Luftverdichtungssystems (4).
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass zur Steuerung des abgezweigten Teilmassen stroms der feuchten Abluft ein in den Abluftpfad (7) integriertes Ventil (9), vor zugsweise ein Druckregelventil, zumindest teilweise geschlossen und ein in den Rezirkulationspfad (8) integriertes weiteres Ventil (10) geöffnet werden.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass bei Umgebungstemperaturen unter 0°C, vor zugsweise im Winterbetrieb des Brennstoffzellensystems (1), die Kühlmittelvor- lauftemperatur eines an die Brennstoffzelle (2) angeschlossenen Kühlkreises ge senkt wird.
8. Brennstoffzellensystem (1), umfassend mindestens eine Brennstoffzelle (2), der über einen Zuluftpfad (3) Luft zuführbar ist, wobei in den Zuluftpfad (3) ein ein- oder mehrstufiges Luftverdichtungssystem (4) zum Verdichten der Luft inte griert ist, dadurch gekennzeichnet, dass in den Zuluftpfad (3) ein Einspritzventil (5) zur Wassereinspritzung integriert ist und in den Zuluftpfad (3) ein von einem Abluft pfad (7) abzweigender Rezirkulationspfad (8) mündet.
9. Brennstoffzellensystem (1) nach Anspruch 7, dadurch gekennzeichnet, dass das Einspritzventil (5)
(i) stromabwärts des Luftverdichtungssystems (4) und stromaufwärts eines in den Zuluftpfad (3) integrierten Ladeluftkühlers (6) oder
(ii) stromabwärts einer ersten Verdichtungsstufe (4.1) und stromaufwärts einer zweiten Verdichtungsstufe (4.2) in den Zuluftpfad (3) integriert ist.
10. Brennstoffzellensystem (1) nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass der Rezirkulationspfad (8) stromaufwärts des Einspritzventils (5), vorzugsweise stromaufwärts des Luftverdichtungssystems (4) oder stromaufwärts einer Luftverdichtungsstufe (4.2) des Luftverdichtungssys tems (4) in den Zuluftpfad (3) mündet.
11. Brennstoffzellensystem (1) nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass in den Abluftpfad (7) ein Ventil (9), vorzugswei- se ein Druckregelventil, und in den Rezirkulationspfad (8) ein weiteres Ventil (10) integriert sind.
12. Brennstoffzellensystem (1) nach einem der Ansprüche 8 bis 11, dadurch gekennzeichnet, dass das Luftverdichtungssystem (4) mehrstufig aus- geführt ist und/oder mit einer in den Abluftpfad (7) integrierten Turbine (12) ge koppelt ist.
PCT/EP2022/065081 2021-06-15 2022-06-02 Verfahren zum betreiben eines brennstoffzellensystems, brennstoffzellensystem WO2022263192A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021206058.7 2021-06-15
DE102021206058.7A DE102021206058A1 (de) 2021-06-15 2021-06-15 Verfahren zum Betreiben eines Brennstoffzellensystems, Brennstoffzellensystem

Publications (1)

Publication Number Publication Date
WO2022263192A1 true WO2022263192A1 (de) 2022-12-22

Family

ID=82163381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/065081 WO2022263192A1 (de) 2021-06-15 2022-06-02 Verfahren zum betreiben eines brennstoffzellensystems, brennstoffzellensystem

Country Status (2)

Country Link
DE (1) DE102021206058A1 (de)
WO (1) WO2022263192A1 (de)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19856499C1 (de) * 1998-12-08 2000-10-26 Daimler Chrysler Ag Verfahren und Vorrichtung zur zweistufigen Aufladung von Prozeßluft für eine Brennstoffzelle
DE10155217A1 (de) 2001-11-09 2003-05-28 Ballard Power Systems Brennstoffzellensystem und Verfahren zum Betreiben des Brennstoffzellensystems
JP2006093025A (ja) * 2004-09-27 2006-04-06 Nissan Motor Co Ltd 燃料電池システム
DE102008053151A1 (de) 2008-10-24 2010-04-29 Daimler Ag Befeuchtungseinrichtung und Verfahren zum Befeuchten eines einem Brennstoffzellenstapel zuführbaren Oxidationsmittelstroms und Brennstoffzellensystem
US20170054167A1 (en) * 2015-08-21 2017-02-23 Hyundai Motor Company Device and method for improving stack performance of fuel cell system
CN110649284A (zh) * 2018-06-27 2020-01-03 上海汽车集团股份有限公司 燃料电池系统及具有其的车辆

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4318818C2 (de) 1993-06-07 1995-05-04 Daimler Benz Ag Verfahren und Vorrichtung zur Bereitstellung von konditionierter Prozessluft für luftatmende Brennstoffzellensysteme
US7258937B2 (en) 2003-07-21 2007-08-21 General Motors Corporation Gas humidification for cathode supply of a PEM fuel cell
DE102016224721A1 (de) 2016-12-12 2018-06-14 Bayerische Motoren Werke Aktiengesellschaft Brennstoffzellensystem
DE102020208833A1 (de) 2020-07-15 2022-01-20 Robert Bosch Gesellschaft mit beschränkter Haftung Brennstoffzellensystem und ein Verfahren zum Betreiben eines Brennstoffzellensystems

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19856499C1 (de) * 1998-12-08 2000-10-26 Daimler Chrysler Ag Verfahren und Vorrichtung zur zweistufigen Aufladung von Prozeßluft für eine Brennstoffzelle
DE10155217A1 (de) 2001-11-09 2003-05-28 Ballard Power Systems Brennstoffzellensystem und Verfahren zum Betreiben des Brennstoffzellensystems
JP2006093025A (ja) * 2004-09-27 2006-04-06 Nissan Motor Co Ltd 燃料電池システム
DE102008053151A1 (de) 2008-10-24 2010-04-29 Daimler Ag Befeuchtungseinrichtung und Verfahren zum Befeuchten eines einem Brennstoffzellenstapel zuführbaren Oxidationsmittelstroms und Brennstoffzellensystem
US20170054167A1 (en) * 2015-08-21 2017-02-23 Hyundai Motor Company Device and method for improving stack performance of fuel cell system
CN110649284A (zh) * 2018-06-27 2020-01-03 上海汽车集团股份有限公司 燃料电池系统及具有其的车辆

Also Published As

Publication number Publication date
DE102021206058A1 (de) 2022-12-15

Similar Documents

Publication Publication Date Title
DE102011111742A1 (de) Brennstoffzellensystem
WO2017067966A2 (de) Anordnung für eine kathoden-rezirkulation einer brennstoffzelle sowie verfahren zur kathoden-rezirkulation
WO2016124575A1 (de) Brennstoffzellensystem und verfahren zum betrieb eines solchen
EP4107805A1 (de) Verfahren zum betreiben eines brennstoffzellensystems, brennstoffzellensystem
DE102018124717A1 (de) Brennstoffzellensystem
WO2022263192A1 (de) Verfahren zum betreiben eines brennstoffzellensystems, brennstoffzellensystem
WO2007128018A2 (de) Brennstoffzellensystem
WO2022248359A1 (de) Verfahren zum betreiben eines brennstoffzellensystems sowie brennstoffzellensystem
DE102018120601B4 (de) Brennstoffzellenmodul
DE102015218751A1 (de) Wärme-Feuchte-Übertragungseinrichtung für Brennstoffzelle, sowie Brennstoffzellensystem und Fahrzeug mit einer solchen
WO2017108624A1 (de) Gaszu- und abführsystem
DE102021202857A1 (de) Vorrichtung zum Abscheiden und Sammeln von Wasser aus einem Gasstrom, Brennstoffzellensystem sowie Verfahren zum Betreiben eines Brennstoffzellensystems
DE102016222671A1 (de) Vorrichtung und Verfahren zur Klimatisierung eines Fahrgastinnenraumes
AT502009B1 (de) Brennstoffzellensystem, sowie verfahren zum betrieb eines brennstoffzellensystems
DE102014018444A1 (de) Brennstoffzellensystem und Gas/Gas-Befeuchter
DE102017218036A1 (de) Brennstoffzellensystem
DE102021123184B3 (de) Festoxid-Brennstoffzellenvorrichtung
DE102022206114A1 (de) Kühlsystem für ein Brennstoffzellensystem, Brennstoffzellensystem sowie Verfahren zum Betreiben eines Brennstoffzellensystems
DE102021202986A1 (de) Verfahren zum Betreiben eines Brennstoffzellensystems, Brennstoffzellensystem
DE102022206107A1 (de) Kühlsystem für ein Brennstoffzellensystem, Brennstoffzellensystem sowie Verfahren zum Betreiben eines Brennstoffzellensystems
DE102021203594A1 (de) Verfahren zum Betreiben eines Brennstoffzellensystems, Brennstoffzellensystem
DE10324386B4 (de) Brennstoffzellensystem
DE102017107577A1 (de) Energieanlage
DE102021214677A1 (de) Verfahren zum Trocknen eines Brennstoffzellensystems, Brennstoffzellensystem
WO2023094318A1 (de) Verfahren zum betreiben eines brennstoffzellensystems, brennstoffzellensystem

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22732962

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE