WO2022262785A1 - 一种唤醒电路及包括其的电子装置 - Google Patents
一种唤醒电路及包括其的电子装置 Download PDFInfo
- Publication number
- WO2022262785A1 WO2022262785A1 PCT/CN2022/099031 CN2022099031W WO2022262785A1 WO 2022262785 A1 WO2022262785 A1 WO 2022262785A1 CN 2022099031 W CN2022099031 W CN 2022099031W WO 2022262785 A1 WO2022262785 A1 WO 2022262785A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- capacitor
- signal
- wake
- control unit
- high level
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 claims abstract description 195
- 239000013256 coordination polymer Substances 0.000 claims abstract description 160
- 238000007599 discharging Methods 0.000 claims description 9
- 230000000903 blocking effect Effects 0.000 claims description 5
- 230000007774 longterm Effects 0.000 claims description 4
- 238000003780 insertion Methods 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 8
- 238000010586 diagram Methods 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical group 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/60—Monitoring or controlling charging stations
- B60L53/66—Data transfer between charging stations and vehicles
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/36—Means for starting or stopping converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/60—Monitoring or controlling charging stations
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/12—Electric charging stations
Definitions
- the invention relates to the field of power supplies, in particular to a wake-up circuit.
- the current vehicle wake-up signals include KL15 wake-up (engine ignition signal wake-up), CC wake-up (used to confirm the connection status of the charging gun and the electric vehicle, and specify the maximum current that the charging cable can withstand), CP signal wake-up, and vehicle message wake-up , only the CP signal can be controlled by the charging pile.
- the current CP signal mainly includes several situations where the CP signal changes from low level to high level, CP signal changes from low level to PWM wave, and CP signal changes from high level to PWM wave, which correspond to the gun wake-up mode and reserved charging mode respectively. And insert the gun to reserve the charging mode.
- the current wake-up circuits can only implement one of the above-mentioned wake-up modes, resulting in a single wake-up method for electric vehicles.
- the current wake-up circuits can only implement one of the above-mentioned wake-up modes, resulting in a single wake-up method for electric vehicles.
- multiple sets of wake-up circuits are required, which leads to complex circuit structures and does not conform to the development trend of miniaturization and intelligence.
- the present invention proposes a wake-up circuit, comprising: a switch unit, including a switch tube Q1, the switch tube Q1 includes a first terminal, a second terminal and a control terminal, and the second terminal of the switch tube is grounded; a switch control unit, an input of the switch control unit The terminal receives the CP signal, and the output terminal of the switch control unit is connected to the control terminal of the switch tube Q1, so that the switch tube Q1 is turned on or off according to the CP signal.
- the CP signal is low level
- the low level CP signal is controlled by the switch After the unit, the output terminal of the switch control unit outputs a low level.
- the switch control unit transmits the high level CP signal to the control terminal of the switch tube Q1.
- the switch control unit When the CP signal is at a high level for a long time, after the long-time high level CP signal passes through the switch control unit, it outputs a low level at the output end of the switch control unit; the first capacitor C1, the first end of the first capacitor C1 Connect the first terminal of the switch tube Q1, the second terminal of the first capacitor C1 outputs a wake-up signal; the capacitor charging resistor unit, the first terminal of the capacitor charging resistor unit is connected to the second terminal of the first capacitor C1, and the capacitor charging resistor unit The first terminal of the capacitor charging resistor unit The two terminals are connected to the auxiliary power supply Vaux, when the switch tube Q1 is turned on, the auxiliary power supply Vaux charges the first capacitor C1 through the capacitor charging resistor unit; and the capacitor discharge branch, the two ends of the capacitor discharge branch are connected to the two terminals of the first capacitor C1 terminal, and the resistance value of
- the CP signal changes from low level to high level.
- the voltage on the first capacitor C1 is 0V, and the low level CP signal passes through
- the output terminal of the switch control unit outputs a low level, and the control makes the switch tube Q1 turn off, so that the wake-up signal is pulled up to a high level, when the CP signal changes from a low level to a high level
- the switch control unit transmits the high-level CP signal to the control terminal of the switch tube Q1, so that the switch tube Q1 is turned on, and the wake-up signal is pulled down to generate a falling-edge wake-up signal, and then the CP signal continues to be high.
- the CP signal changes from low level to PWM wave.
- the voltage on the first capacitor C1 is 0V.
- the output terminal of the switch control unit outputs a low level, and the control makes the switch tube Q1 turn off, so that the wake-up signal is pulled up to a high level.
- the switch control unit When the CP signal changes from a low level to a high level, the switch control unit The high-level CP signal is transmitted to the control terminal of the switch tube Q1, so that the switch tube Q1 is turned on, and the wake-up signal is pulled down to generate a falling-edge wake-up signal, and then during the high-level period of the CP signal, the auxiliary power supply Vaux The first capacitor C1 is charged through the capacitor charging resistor unit and the turned-on switch tube Q1, and then when the CP signal changes from the high level of the PWM wave to the low level, the low-level CP signal passes through the switch control unit and then passes through the switch.
- the output terminal of the control unit outputs a low level, and the control makes the switch tube Q1 turn off, the wake-up signal is pulled up to a high level, the energy in the first capacitor C1 is discharged through the capacitor discharge branch, and the next CP of the PWM wave is high level, the first capacitor C1 continues to be charged, because the resistance value of the capacitor discharge branch is much greater than the resistance value of the capacitor charging resistance unit, the discharge time of the first capacitor C1 is much longer than the charging time, so that the first capacitor C1 is gradually filled. Keep the wake-up signal at a high level;
- the CP signal changes from a high level to a PWM wave.
- the output terminal of the unit outputs a low level, and the control makes the switch tube Q1 turn off, so that the wake-up signal is pulled up to a high level.
- the low level CP signal passes through After switching the control unit, the output terminal of the switch control unit outputs a low level, and the control makes the switch tube Q1 turn off, so that the wake-up signal continues to be pulled up to a high level, and then the CP signal changes from a low level to a high level
- the switch control unit transmits the high level CP signal to the control terminal of the switch tube Q1, so that the switch tube Q1 is turned on, and the wake-up signal is pulled down, A falling edge wake-up signal is generated, and then during the high level period of the CP signal, the auxiliary power supply Vaux charges the first capacitor C1 through the capacitor charging resistor unit and the turned-on switch tube Q1, and then when the CP signal changes from the high level of the PWM wave to When it is at low level, the low-level CP signal outputs low level at the output terminal of the switch control unit after passing through the switch control unit, and the control
- the first The discharge time of the capacitor C1 is much longer than the charging time, so that the first capacitor C1 is gradually charged, and the wake-up signal is kept at a high level.
- the switch control unit includes a second capacitor C2, a third capacitor C3, a first resistor unit and a diode D3, the first terminal of the first resistor unit is the input terminal of the switch control unit for receiving the CP signal, the first The second terminal of the resistance unit is connected to the first terminal of the second capacitor C2, the second terminal of the second capacitor C2 is connected to the control terminal of the switch tube Q1, the first terminal of the third capacitor C3 is connected to the control terminal of the switch tube Q1, and the third terminal of the third capacitor C3 is connected to the control terminal of the switch tube Q1.
- the second end of the capacitor C3 is grounded, the anode of the diode D3 is grounded, the cathode of the diode D3 is connected to the second end of the second capacitor C2, and the second end of the second capacitor C2 forms the output end of the switch control unit.
- the switch control unit transmits the high level CP signal to the control terminal of the switch tube Q1; when the CP signal is at a high level for a long time, due to the second The DC blocking function of the second capacitor C2, the voltage on the third capacitor C3 is 0V, then the output terminal of the switch control unit outputs a low level; and when the CP signal is at a low level, the energy on the third capacitor C3 passes through the second capacitor The discharge circuit formed by C2 and the first resistance unit is discharged, and the energy on the second capacitor C2 is discharged through the discharge circuit formed by the first resistance unit and the diode D3.
- the switch control unit further includes a second resistance unit, and the second resistance unit is connected between the first terminal of the first resistance unit and the ground terminal.
- the switch control unit may further include a diode D2, the anode of the diode D2 is connected to the second end of the first resistance unit, and the cathode of the diode D2 is connected to the first end of the first resistance unit.
- a diode D1 is further included, the anode of the diode D1 receives the CP signal, and the cathode of the diode D1 is connected to the first terminal of the first resistance unit.
- the capacitor discharge branch includes a discharge resistance unit and a diode D4, the first end of the discharge resistance unit is connected to the first end of the first capacitor C1, the second end of the discharge resistance unit is connected to the cathode of the diode D4, and the anode of the diode D4 Connect the second end of the first capacitor C1.
- the cathode of the diode D4 is also connected to the auxiliary power supply Vaux.
- the present application also provides an electronic device, including the above-mentioned wake-up circuit.
- FIG. 1 is a schematic diagram of a wake-up circuit according to an embodiment of the present invention.
- Fig. 2a is a waveform diagram of a CP signal according to an embodiment.
- Fig. 2b is a waveform diagram of a CP signal according to an embodiment.
- FIG. 3 is a schematic diagram of a wake-up circuit according to another embodiment of the present invention.
- a wake-up circuit is provided. Specifically, please refer to the schematic diagram of the wake-up circuit of an embodiment of the present invention shown in FIG. 1.
- the wake-up circuit of the present application includes:
- the switch unit 12 includes a switch tube Q1, the switch tube Q1 includes a first terminal, a second terminal and a control terminal, and the second terminal of the switch tube is grounded;
- the switch control unit 11 the input terminal of the switch control unit 11 receives the CP signal, the output terminal of the switch control unit 11 is connected to the control terminal of the switch tube Q1, so that the switch tube Q1 is turned on or off according to the CP signal, when the CP signal is low level, after the low level CP signal passes through the switch control unit 11, the output terminal of the switch control unit 11 outputs a low level, when the CP signal changes from low level to high level, the switch control unit 11 will be high
- the high-level CP signal is transmitted to the control terminal of the switch tube Q1.
- the long-time high-level CP signal passes through the switch control unit 11 and is output at the output terminal of the switch control unit 11. low level;
- the first capacitor C1, the first end of the first capacitor C1 is connected to the first end of the switch tube Q1, and the second end of the first capacitor C1 outputs a wake-up signal;
- the capacitor charging resistor unit 13 the first end of the capacitor charging resistor unit 13 is connected to the second end of the first capacitor C1, the second end of the capacitor charging resistor unit 13 is connected to the auxiliary power supply Vaux, when the switch tube Q1 is turned on, the auxiliary power supply Vaux Charge the first capacitor C1 through the capacitor charging resistor unit 13;
- Capacitor discharging branch 14 both ends of the capacitor discharging branch 14 are connected to both ends of the first capacitor C1 , and the resistance of the capacitor discharging branch 14 is much larger than the resistance of the capacitor charging resistor unit 13 .
- the CP signal changes from low level to high level.
- the CP signal waveform diagram of an embodiment shown in FIG. 2a When the CP signal is low level, the first The voltage on the capacitor C1 is 0V. After the low-level CP signal passes through the switch control unit 11, the output terminal of the switch control unit 11 outputs a low level, and the control makes the switch tube Q1 turn off, so that the wake-up signal is pulled up.
- the switch control unit 11 transmits the high level CP signal to the control terminal of the switch tube Q1, so that the switch tube Q1 is turned on, and the The wake-up signal is pulled low to generate a falling-edge wake-up signal, and then the CP signal continues to be at a high level, that is, a long-time high level.
- the long-time high-level CP signal passes through the switch control unit 11, the The output terminal of 11 outputs a low level, and the control makes the switch tube Q1 turn off, so that the wake-up signal is continuously pulled up to a high level and remains at a high level. In this way, when the wake-up mode is the gun wake-up mode, only Generate a falling edge wake-up signal.
- the CP signal changes from low level to PWM wave. Please refer to the CP signal waveform diagram of an embodiment shown in Figure 2b.
- the wake-up circuit works the same as in the gun-inserting wake-up mode, and will not repeat it here.
- the auxiliary power supply Vaux passes through the capacitor charging resistor unit 13 and the conduction switch
- the tube Q1 charges the first capacitor C1, and then when the CP signal changes from the high level of the PWM wave to the low level, the low level CP signal passes through the switch control unit 11, and outputs a low voltage at the output terminal of the switch control unit 11 level, and the control makes the switch tube Q1 turn off, the wake-up signal is pulled up to a high level, the energy in the first capacitor C1 is discharged through the capacitor discharge branch 14, and the first capacitor C1 continues to is charged, because the resistance value of the capacitor discharge branch 14 is much greater than the resistance value of the capacitor charging resistor unit 13, the discharge time of the first capacitor C1 is much longer than the charge time, so that the first capacitor C1 is gradually filled, and the wake-up signal is kept At high level, so when the wake-up mode is scheduled charging mode, only one falling edge wake-up signal is generated.
- the CP signal changes from a high level to a PWM wave.
- the CP signal is a long time high level
- the output terminal of the switch control unit 11 outputs a low level
- the control makes The switch tube Q1 is turned off, so that the wake-up signal is pulled up to a high level.
- the output terminal outputs low level, and the control makes the switch tube Q1 turn off, so that the wake-up signal continues to be pulled up to high level, and then the CP signal changes from low level to high level.
- the CP signal changes from low level to At the moment of high level and during the subsequent PWM wave period of the CP signal, the working principle is the same as that in the reserved charging mode, and will not be repeated here.
- the switch control unit 11 includes a second capacitor C2, a third capacitor C3, a first resistance unit 111 and a diode D3, the first end of the first resistance unit 111 is the input end of the switch control unit 11,
- the second terminal of the first resistance unit 111 is connected to the first terminal of the second capacitor C2
- the second terminal of the second capacitor C2 is connected to the control terminal of the switching transistor Q1
- the first terminal of the third capacitor C3 is connected to The control terminal of the switch tube Q1
- the second terminal of the third capacitor C3 is grounded
- the anode of the diode D3 is grounded
- the cathode of the diode D3 is connected to the second terminal of the second capacitor C2
- the second terminal of the second capacitor C2 forms a switch control unit 11 output terminal.
- the output terminal of the switch control unit 11 When the CP signal is at a low level, the voltages on the second capacitor C2 and the third capacitor C3 in the switch control unit 11 are both 0V, and the output terminal of the switch control unit 11 outputs a low level, that is, a low level CP After the signal passes through the switch control unit 11, the output terminal of the switch control unit 11 outputs a low level; when the CP signal changes from a low level to a high level, the second capacitor C2 is equivalent to a short circuit, and the switch control unit 11 will be high
- the high-level CP signal is transmitted to the control terminal of the switch tube Q1, that is, at the moment the CP signal changes from low level to high level, the switch control unit 11 transmits the high-level CP signal to the control terminal of the switch tube Q1 ;
- the voltage on the third capacitor C3 is 0V, and the output terminal of the switch control unit 11 outputs a low level, that is,
- the energy on the third capacitor C3 is discharged through the discharge circuit formed by the second capacitor C2 and the first resistor unit 111, and the energy on the second capacitor C2 is formed by the first resistor unit 111 and the diode D3
- the discharge circuit discharges.
- the switch control unit 11 may further include a second resistance unit 112, and the second resistance unit 112 is connected between the first terminal of the first resistance unit 111 and the ground terminal, so when the CP signal is When the level is low, the energy on the third capacitor C3 is discharged through the discharge loop formed by the second capacitor C2, the first resistance unit 111 and the second resistance unit 112, and the energy on the second capacitor C2 is discharged through the first resistance unit 111, the second The discharge circuit formed by the resistance unit 112 and the diode D3 is discharged.
- the switch control unit 11 may further include a diode D2, the anode of the diode D2 is connected to the second end of the first resistance unit 111, and the cathode of the diode D2 is connected to the first end of the first resistance unit 111.
- the discharge loop for discharging the energy on the third capacitor C3 and the second capacitor C2 passes through the diode D2, that is, the diode D2 conducts and short-circuits the first resistance unit 111 to increase the discharge speed.
- the wake-up circuit further includes a diode D1, the anode of the diode D1 receives the CP signal, and the cathode of the diode D1 is connected to the first resistor unit 111. end. Because the input end of the CP signal of the wake-up circuit of the present application is connected with the CP end of the whole vehicle, the diode D1 can guarantee the unidirectionality of the wake-up circuit of the present application, and ensure that the internal circuit of the wake-up circuit of the present application does not have a problem. It will affect the external circuit and improve the reliability of the vehicle.
- the third capacitor C3 may be a parasitic capacitor of the switch tube Q1, or may be an external capacitor.
- the switch control unit 11 further includes a third resistor unit 113, and the third resistor unit 113 is connected between the control terminal of the switch transistor Q1 and the ground terminal, and is used to prevent the switch transistor Q1 from being misconducted.
- the capacitance discharge branch 14 includes a discharge resistance unit 141 and a diode D4, the first end of the discharge resistance unit 141 is connected to the first end of the first capacitor C1, and the first end of the discharge resistance unit 141 is The two terminals are connected to the cathode of the diode D4, and the anode of the diode D4 is connected to the second terminal of the first capacitor C1.
- the resistance value of the discharging resistor unit 141 is much greater than the resistance value of the capacitor charging resistor unit 13 .
- the cathode of the diode D4 is also connected to the auxiliary power supply Vaux.
- the cathode of the diode D4 is connected to the auxiliary power supply Vaux, which can ensure that when the switch tube Q1 is turned on to charge the first capacitor C1, the diode D4 is not turned on, thereby reducing the loss, otherwise a part of the current will flow through the diode D4 and Discharging the resistor unit 141 increases device loss.
- the auxiliary power supply Vaux provides a voltage value of 12V, of course, it may also be other suitable voltage values, which are not limited herein.
- the switch transistor Q1 is a Metal-Oxide Semiconductor Field Effect Transistor (MOSFET), wherein the first terminal is the drain D, the second terminal is the source S, and the control terminal is the gate G.
- MOSFET Metal-Oxide Semiconductor Field Effect Transistor
- the long-term high level, long-term low level, continuous high level or continuous low level in the above-mentioned CP signal means that the level is maintained longer than the high level in the PWM wave in the CP signal Or keep the low level for a long time. In an embodiment, for example, the level is maintained for more than 1 ms.
- the resistance value of the above-mentioned discharge resistance unit 141 is much greater than the resistance value of the capacitance charging resistance unit 13, or the resistance value of the capacitance discharge branch 14 is much greater than the “greater than” in the resistance value of the capacitance charging resistance unit 13 "In" refers to more than 20 times.
- any of the above-mentioned resistance units may only include one resistor. As shown in FIG. It can also be a series and/or parallel connection of multiple resistors. As shown in FIG. 1 , the second resistor unit 112 is formed by connecting a resistor R1 and a resistor R2 in series.
- the CP signal when the wake-up mode is the gun wake-up mode, the CP signal changes from low level to high level, as shown in Figure 2a, the CP signal is initially low level (that is, for a long time).
- the third capacitor C3 and the first capacitor C1 in the switch control unit 11 are all 0V, then the output terminal of the switch control unit 11 outputs a low level, and the control makes The switch tube Q1 is turned off, so that the wake-up signal is pulled up to a high level; when the CP signal changes from a low level to a high level, the second capacitor C2 is equivalent to a short circuit, and the switch control unit 11 turns the high level
- the CP signal is transmitted to the control terminal of the switch tube Q1, so that the switch tube Q1 is turned on, and the wake-up signal is pulled down, so a falling edge wake-up signal is generated, and then the CP signal is at a high level for a long time, due to the second capacitor C2 DC
- the CP signal changes from low level to PWM wave, as shown in Figure 2b, when the CP signal is initially low level and the moment the CP signal changes from low level to high level, the wake-up circuit
- the working process is the same as that in the gun wake-up mode, and will not be repeated here.
- the second capacitor C2 and the third capacitor C3 are charged by the high level CP signal, and the third capacitor C3 is charged by the auxiliary
- the power supply Vaux charges it through the charging capacitor charging resistor unit 13 and the turned-on switch tube Q1, then the CP signal changes from high level to low level of the PWM wave, and the energy in the third capacitor C3 passes through the second capacitor C2 and the second capacitor C2.
- the energy in the second capacitor C2 is discharged through the first resistor unit 111 and the diode D3, then the switch tube Q1 is turned off, the wake-up signal is pulled up to a high level, and the energy in the first capacitor C1 The energy is discharged through the discharge resistance unit 141 and the diode D4, and the first capacitor C1 continues to be charged when the next CP of the PWM wave is at a high level.
- the first The discharge time of the capacitor C1 is much longer than the charging time, so that the first capacitor C1 is gradually filled, and the wake-up signal is kept at a high level, so when the wake-up mode is the scheduled charging mode, only a falling edge wake-up signal is generated, instead of following
- the PWM wave of the CP signal generates a PWM wave wake-up signal, so as to ensure that the chip can work normally when the falling edge of the wake-up signal is received.
- the CP signal changes from a high level to a PWM wave, as shown in Figure 2c, when the CP signal is initially at a high level (that is, a long time high level), due to the second capacitor
- the DC blocking function of C2 the voltage on the third capacitor C3 is 0V
- the output terminal of the switch control unit 11 outputs a low level
- the control makes the switch tube Q1 turn off, so that the wake-up signal is pulled up to a high level
- the CP signal changes from the high level to the low level of the PWM wave, and the voltages on the second capacitor C2, the third capacitor C3 and the first capacitor C1 in the switch control unit 11 are all 0V, then the output of the switch control unit 11
- the terminal outputs a low level
- the control makes the switch tube Q1 turn off, so that the wake-up signal continues to be pulled up to a high level
- the CP signal changes from a low level of the PWM wave to
- the wake-up mode is the preset charging mode for inserting the gun
- only a falling edge wake-up signal is generated, and no PWM wave wake-up signal is generated along with the PWM wave of the CP signal, so as to ensure that the chip wakes up normally when the falling edge of the wake-up signal is received.
- the wake-up circuit of the present application can not only meet the needs of multiple wake-up methods for electric vehicles, but also solve the problem of a single wake-up method, and can be compatible with the needs of multiple wake-up methods for electric vehicles through only one wake-up circuit, and the circuit structure is simple, and the loss Small and easy to control.
- an electronic device including the above-mentioned wake-up circuit.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Electronic Switches (AREA)
- Dc-Dc Converters (AREA)
Abstract
提供了一种唤醒电路,包括开关管Q1、开关控制单元(11)、第一电容C1、电容充电电阻单元(13)和电容放电支路(14),开关控制单元(11)根据CP信号输出控制开关管Q1工作的开关控制信号,第一电容C1的第一端连接开关管Q1的漏极,第一电容C1的第二端输出唤醒信号,辅助电源通过电容充电电阻单元(13)连接第一电容C1的第二端,电容放电支路(14)的两端连接第一电容C1的两端,电容放电支路(14)的电阻值远大于电容充电电阻单元(13)的电阻值,通过一个唤醒电路就能兼容电动汽车的多种唤醒方法需求,电路结构简单,损耗小,控制简单。
Description
本申请要求于2021年06月17日提交中国专利局、申请号为202110669111.1、申请名称为“一种唤醒电路及包括其的电子装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明涉及电源领域,尤其是一种唤醒电路。
随着电动汽车技术的发展,智能化越来越成为其重要特征,利用唤醒电路唤醒电动汽车的充电模式成为必要。
目前的整车唤醒信号包括KL15唤醒(发动机点火信号唤醒),CC唤醒(用于确认充电枪与电动汽车连接状态,并明确充电电缆可承受的最大电流)、CP信号唤醒、整车报文唤醒,充电桩可以控制的仅有CP信号。目前的CP信号主要包括CP信号由低电平变为高电平、CP信号由低电平变PWM波及CP信号由高电平变PWM波几种情况,分别对应插枪唤醒模式、预约充电模式及插枪预约充电模式。
然而,目前的唤醒电路均只能实现上述几种唤醒模式中的其中一种唤醒模式,导致电动汽车的唤醒方法单一。或,为了兼容上述的插枪唤醒模式、预约充电模式及插枪预约充电模式,需要多套唤醒电路,而又导致电路结构复杂,不符合小型化和智能化的发展趋势。
发明内容
本发明提出一种唤醒电路,包括:开关单元,包括开关管Q1,开关管Q1包括第一端、第二端和控制端,开关管的第二端接地;开关控制单元,开关控制单元的输入端接收CP信号,开关控制单元的输出端连接开关管Q1的控制端,以使开关管Q1根据CP信号导通或关断,当CP信号为低电平时,低电平的CP信号经开关控制单元后,在开关控制单元的输出端输出低电平,当CP信号由低电平变为高电平的瞬间,开关控制单元将高电平的CP信号传递至开关管Q1的控制端,当CP信号为长时间的高电平时,长时间的高电平的CP信号经开关控制单元后, 在开关控制单元的输出端输出低电平;第一电容C1,第一电容C1的第一端连接开关管Q1的第一端,第一电容C1的第二端输出唤醒信号;电容充电电阻单元,电容充电电阻单元的第一端连接第一电容C1的第二端,电容充电电阻单元的第二端连接辅助电源Vaux,在开关管Q1导通时,辅助电源Vaux经电容充电电阻单元给第一电容C1充电;以及电容放电支路,电容放电支路的两端连接第一电容C1的两端,并且电容放电支路的电阻值远大于电容充电电阻单元的电阻值。
更进一步的,当唤醒模式为插枪唤醒模式,则CP信号由低电平变高电平,当CP信号为低电平时,第一电容C1上的电压为0V,低电平的CP信号经开关控制单元后,在开关控制单元的输出端输出低电平,而控制使得开关管Q1关断,而使唤醒信号被上拉为高电平,当CP信号由低电平变为高电平的瞬间,开关控制单元将高电平的CP信号传递至开关管Q1的控制端,而使开关管Q1导通,而将唤醒信号拉低,产生下降沿唤醒信号,之后CP信号持续为高电平,长时间的高电平的CP信号经开关控制单元后,在开关控制单元的输出端输出低电平,而控制使得开关管Q1关断,而使唤醒信号持续被上拉为高电平,并保持为高电平;
当唤醒模式为预约充电模式,则CP信号由低电平变PWM波,当CP信号为低电平时,第一电容C1上的电压为0V,低电平的CP信号经开关控制单元后,在开关控制单元的输出端输出低电平,而控制使得开关管Q1关断,而使唤醒信号被上拉为高电平,当CP信号由低电平变为高电平的瞬间,开关控制单元将高电平的CP信号传递至开关管Q1的控制端,而使开关管Q1导通,而将唤醒信号拉低,产生下降沿唤醒信号,接着在CP信号的高电平期间,辅助电源Vaux通过电容充电电阻单元和导通的开关管Q1对第一电容C1充电,之后当CP信号由PWM波的高电平变为低电平时,低电平的CP信号经开关控制单元后,在开关控制单元的输出端输出低电平,而控制使得开关管Q1关断,唤醒信号被上拉为高电平,第一电容C1中的能量通过电容放电支路放电,PWM波的下一个CP高电平时第一电容C1继续被充电,由于电容放电支路的电阻值远大于电容充电电阻单元的电阻值,则第一电容C1的放电时间远大于充电时间,使得第一电容C1被 逐渐充满,则将唤醒信号保持在高电平;
当唤醒模式为插枪预约充电模式,则CP信号由高电平变PWM波,当CP信号为长时间的高电平时,长时间的高电平的CP信号经开关控制单元后,在开关控制单元的输出端输出低电平,而控制使得开关管Q1关断,而使唤醒信号被上拉为高电平,当CP信号由高电平变为低电平,低电平的CP信号经开关控制单元后,在开关控制单元的输出端输出低电平,而控制使得开关管Q1关断,而使唤醒信号继续被上拉为高电平,之后CP信号由低电平变高电平,当CP信号由低电平变为高电平的瞬间,开关控制单元将高电平的CP信号传递至开关管Q1的控制端,而使开关管Q1导通,而将唤醒信号拉低,产生下降沿唤醒信号,接着在CP信号的高电平期间,辅助电源Vaux通过电容充电电阻单元和导通的开关管Q1对第一电容C1充电,之后当CP信号由PWM波的高电平变为低电平时,低电平的CP信号经开关控制单元后,在开关控制单元的输出端输出低电平,而控制使得开关管Q1关断,唤醒信号被上拉为高电平,第一电容C1中的能量通过电容放电支路放电,PWM波的下一个CP高电平时第一电容C1继续被充电,由于电容放电支路的电阻值远大于电容充电电阻单元的电阻值,则第一电容C1的放电时间远大于充电时间,使得第一电容C1被逐渐充满,则将唤醒信号保持在高电平。
更进一步的,开关控制单元包括第二电容C2、第三电容C3、第一电阻单元和二极管D3,第一电阻单元的第一端为开关控制单元的输入端,用于接收CP信号,第一电阻单元的第二端连接第二电容C2的第一端,第二电容C2的第二端连接开关管Q1的控制端,第三电容C3的第一端连接开关管Q1的控制端,第三电容C3的第二端接地,二极管D3的阳极接地,二极管D3的阴极连接第二电容C2的第二端,第二电容C2的第二端形成开关控制单元的输出端。
更进一步的,当CP信号为低电平时,开关控制单元中的第二电容C2和第三电容C3上的电压均为0V,则开关控制单元的输出端输出低电平;当CP信号由低电平变为高电平的瞬间,第二电容C2相当于短路,开关控制单元将高电平 的CP信号传递至开关管Q1的控制端;当CP信号为长时间的高电平时,由于第二电容C2的隔直作用,第三电容C3上的电压为0V,则开关控制单元的输出端输出低电平;并在CP信号为低电平时,第三电容C3上的能量通过第二电容C2和第一电阻单元形成的放电回路放电,第二电容C2上的能量通过第一电阻单元和二极管D3形成的放电回路放电。
更进一步的,开关控制单元还包括第二电阻单元,第二电阻单元连接在第一电阻单元的第一端与接地端之间。
更进一步的,开关控制单元还可包括二极管D2,二极管D2的阳极连接第一电阻单元的第二端,二极管D2的阴极连接第一电阻单元的第一端。
更进一步的,还包括二极管D1,二极管D1的阳极接收CP信号,二极管D1的阴极连接第一电阻单元的第一端。
更进一步的,电容放电支路包括放电电阻单元和二极管D4,放电电阻单元的第一端连接第一电容C1的第一端,放电电阻单元的第二端连接二极管D4的阴极,二极管D4的阳极连接第一电容C1的第二端.
更进一步的,二极管D4的阴极还连接辅助电源Vaux。
本申请还提供一种电子装置,包括上述的唤醒电路。
图1为本发明一实施例的唤醒电路示意图。
图2a为一实施例的CP信号波形图。
图2b为一实施例的CP信号波形图。
图2c所示的一实施例的CP信号波形图。
图3为本发明另一实施例的唤醒电路示意图。
下面将结合附图,对本发明中的技术方案进行清楚、完整的描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在不做出创造性劳动的前提下所获得的所有 其它实施例,都属于本发明保护的范围。
本发明一实施例中,在于提供一种唤醒电路,具体的,请参阅图1所示的本发明一实施例的唤醒电路示意图,本申请的唤醒电路包括:
开关单元12,包括开关管Q1,开关管Q1包括第一端、第二端和控制端,开关管的第二端接地;
开关控制单元11,开关控制单元11的输入端接收CP信号,开关控制单元11的输出端连接开关管Q1的控制端,以使开关管Q1根据CP信号导通或关断,当CP信号为低电平时,低电平的CP信号经开关控制单元11后,在开关控制单元11的输出端输出低电平,当CP信号由低电平变为高电平的瞬间,开关控制单元11将高电平的CP信号传递至开关管Q1的控制端,当CP信号为长时间的高电平时,长时间的高电平的CP信号经开关控制单元11后,在开关控制单元11的输出端输出低电平;
第一电容C1,第一电容C1的第一端连接开关管Q1的第一端,第一电容C1的第二端输出唤醒信号;
电容充电电阻单元13,电容充电电阻单元13的第一端连接第一电容C1的第二端,电容充电电阻单元13的第二端连接辅助电源Vaux,在开关管Q1导通时,辅助电源Vaux经电容充电电阻单元13给第一电容C1充电;以及
电容放电支路14,电容放电支路14的两端连接第一电容C1的两端,并且电容放电支路14的电阻值远大于电容充电电阻单元13的电阻值。
具体的,当唤醒模式为插枪唤醒模式,则CP信号由低电平变高电平,请参阅图2a所示的一实施例的CP信号波形图,当CP信号为低电平时,第一电容C1上的电压为0V,低电平的CP信号经开关控制单元11后,在开关控制单元11的输出端输出低电平,而控制使得开关管Q1关断,而使唤醒信号被上拉为高电平,当CP信号由低电平变为高电平的瞬间,开关控制单元11将高电平的CP信号传递至开关管Q1的控制端,而使开关管Q1导通,而将唤醒信号拉低,产生下降沿唤醒信号,之后CP信号持续为高电平,也即为长时间的高电平,长时间的高电平的 CP信号经开关控制单元11后,在开关控制单元11的输出端输出低电平,而控制使得开关管Q1关断,而使唤醒信号持续被上拉为高电平,并保持为高电平,如此在唤醒模式为插枪唤醒模式时,仅产生一个下降沿唤醒信号。
当唤醒模式为预约充电模式,则CP信号由低电平变PWM波,请参阅图2b所示的一实施例的CP信号波形图,当CP信号为低电平以及CP信号由低电平变为高电平的瞬间,唤醒电路的工作过程与插枪唤醒模式时相同,在此不再赘述,接着在CP信号的高电平期间,辅助电源Vaux通过电容充电电阻单元13和导通的开关管Q1对第一电容C1充电,之后当CP信号由PWM波的高电平变为低电平时,低电平的CP信号经开关控制单元11后,在开关控制单元11的输出端输出低电平,而控制使得开关管Q1关断,唤醒信号被上拉为高电平,第一电容C1中的能量通过电容放电支路14放电,PWM波的下一个CP高电平时第一电容C1继续被充电,由于电容放电支路14的电阻值远大于电容充电电阻单元13的电阻值,则第一电容C1的放电时间远大于充电时间,使得第一电容C1被逐渐充满,则将唤醒信号保持在高电平,如此在唤醒模式为预约充电模式时,仅产生一个下降沿唤醒信号。
当唤醒模式为插枪预约充电模式,则CP信号由高电平变PWM波,请参阅图2c所示的一实施例的CP信号波形图,则CP信号初始为高电平(也即为长时间的高电平),当CP信号为长时间的高电平时,长时间的高电平的CP信号经开关控制单元11后,在开关控制单元11的输出端输出低电平,而控制使得开关管Q1关断,而使唤醒信号被上拉为高电平,当CP信号由高电平变为低电平,低电平的CP信号经开关控制单元11后,在开关控制单元11的输出端输出低电平,而控制使得开关管Q1关断,而使唤醒信号继续被上拉为高电平,之后CP信号由低电平变高电平,当CP信号由低电平变为高电平的瞬间以及CP信号的后续的PWM波期间,其工作原理与预约充电模式时相同,在此不再赘述。
具体的,请参阅图1,开关控制单元11包括第二电容C2、第三电容C3、第一电阻单元111和二极管D3,第一电阻单元111的第一端为开关控制单元11的输入端,用于接收CP信号,第一电阻单元111的第二端连接第二电容C2的第一端,第 二电容C2的第二端连接开关管Q1的控制端,第三电容C3的第一端连接开关管Q1的控制端,第三电容C3的第二端接地,二极管D3的阳极接地,二极管D3的阴极连接第二电容C2的第二端,第二电容C2的第二端形成开关控制单元11的输出端。当CP信号为低电平时,开关控制单元11中的第二电容C2和第三电容C3上的电压均为0V,则开关控制单元11的输出端输出低电平,也即低电平的CP信号经开关控制单元11后,在开关控制单元11的输出端输出低电平;当CP信号由低电平变为高电平的瞬间,第二电容C2相当于短路,开关控制单元11将高电平的CP信号传递至开关管Q1的控制端,也即在CP信号由低电平变为高电平的瞬间,开关控制单元11将高电平的CP信号传递至开关管Q1的控制端;当CP信号为长时间的高电平时,由于第二电容C2的隔直作用,第三电容C3上的电压为0V,则开关控制单元11的输出端输出低电平,也即在CP信号为长时间的高电平时,长时间的高电平的CP信号经开关控制单元11后,在开关控制单元11的输出端输出低电平。并在CP信号为低电平时,第三电容C3上的能量通过第二电容C2和第一电阻单元111形成的放电回路放电,第二电容C2上的能量通过第一电阻单元111和二极管D3形成的放电回路放电。
更进一步的,如图1所示,开关控制单元11还可包括第二电阻单元112,第二电阻单元112连接在第一电阻单元111的第一端与接地端之间,则在CP信号为低电平时,第三电容C3上的能量通过第二电容C2、第一电阻单元111和第二电阻单元112形成的放电回路放电,第二电容C2上的能量通过第一电阻单元111、第二电阻单元112和二极管D3形成的放电回路放电。
更进一步的,如图1所示,开关控制单元11还可包括二极管D2,二极管D2的阳极连接第一电阻单元111的第二端,二极管D2的阴极连接第一电阻单元111的第一端,在CP信号为低电平时,对第三电容C3和第二电容C2上的能量放电的放电回路通过二极管D2,也即二极管D2导通将第一电阻单元111短路,而提高放电速度。
更进一步的,请参阅图3所示的本发明另一实施例的唤醒电路示意图,唤醒电路还包括二极管D1,二极管D1的阳极接收CP信号,二极管D1的阴极连接第一电阻单元111的第一端。由于本申请的唤醒电路的CP信号的输入端是与整车CP端连接在一起的,二极管D1可保证本申请的唤醒电路单向性的,而保证本申请的唤醒电路内部电路有问题时不会影响外部电路,提高整车的可靠性。
在一实施例中,第三电容C3可为开关管Q1的寄生电容,也可为外接电容。
在一实施例中,开关控制单元11还包括第三电阻单元113,第三电阻单元113连接在开关管Q1的控制端与接地端之间,用于防止开关管Q1误导通。
在一实施例中,如图1所示,电容放电支路14包括放电电阻单元141和二极管D4,放电电阻单元141的第一端连接第一电容C1的第一端,放电电阻单元141的第二端连接二极管D4的阴极,二极管D4的阳极连接第一电容C1的第二端。具体的,放电电阻单元141的电阻值远大于电容充电电阻单元13的电阻值。更进一步的,二极管D4的阴极还连接辅助电源Vaux。具体的,二极管D4的阴极接到辅助电源Vaux,可以保证在开关管Q1导通而对第一电容C1充电时,二极管D4不导通,而降低损耗,否则会有一部分电流流过二极管D4和放电电阻单元141,而增加器件损耗。
在一实施例中,辅助电源Vaux提供12V的电压值,当然也可为其它合适的电压值,在此不做限定。
在一实施例中,开关管Q1为金属-氧化物半导体场效应晶体管(MOSFET),其中第一端为漏极D,第二端为源极S,控制端为栅极G。
上述的CP信号中的长时间的高电平、长时间的低电平、持续为高电平或持续为低电平,指电平保持的时间较CP信号中的PWM波中的高电平或低电平保持的时间长。在一实施例中,如电平保持1ms以上的时间。
在一实施例中,上述的放电电阻单元141的电阻值远大于电容充电电阻单元13的电阻值,或,电容放电支路14的电阻值远大于电容充电电阻单元13的电阻值中的“远大于”指大于20倍以上。
以上所述的任何电阻单元可仅包括一个电阻,如图1所示,电容充电电阻单元13仅包括电阻R6,放电电阻单元141仅包括电阻R5,第一电阻单元111仅包括电阻R3,然其也可为多个电阻的串和/或并联,如图1所示,第二电阻单元112由电阻R1和电阻R2串联形成。
对于图1所示的具体的唤醒电路,当唤醒模式为插枪唤醒模式,则CP信号由低电平变高电平,如图2a所示,CP信号初始为低电平(即为长时间的低电平)时,开关控制单元11中的第二电容C2、第三电容C3以及第一电容C1上的电压均为0V,则开关控制单元11的输出端输出低电平,而控制使得开关管Q1关断,而使唤醒信号被上拉为高电平;当CP信号由低电平变为高电平的瞬间,第二电容C2相当于短路,开关控制单元11将高电平的CP信号传递至开关管Q1的控制端,而使开关管Q1导通,而将唤醒信号拉低,因此产生下降沿唤醒信号,之后CP信号为长时间的高电平,由于第二电容C2的隔直作用,第三电容C3上的电压为0V,则开关控制单元11的输出端输出低电平,而控制使得开关管Q1关断,而使得唤醒信号被上拉为高电平,并保持为高电平,如此在唤醒模式为插枪唤醒模式时,仅产生一个下降沿唤醒信号。当唤醒模式为预约充电模式,则CP信号由低电平变PWM波,如图2b所示,CP信号初始为低电平时以及CP信号由低电平变为高电平的瞬间,唤醒电路的工作过程与插枪唤醒模式时相同,在此不再赘述,接着在PWM波的高电平期间,第二电容C2和第三电容C3由高电平的CP信号充电,第三电容C3由辅助电源Vaux经充电容充电电阻单元13及导通的开关管Q1对其充电,接着CP信号由PWM波的高电平变为低电平,第三电容C3中的能量通过第二电容C2和第一电阻单元111放掉,第二电容C2中的能量通过第一电阻单元111和二极管D3放掉,则开关管Q1关断,唤醒信号被上拉为高电平,并第一电容C1中的能量通过放电电阻单元141和二极管D4放电,PWM波的下一个CP高电平时第一电容C1继续被充电,由于放电电阻单元141的电阻值远大于电容充电电阻单元13的电阻值,则第一电容C1的放电时间远大于充电时间,使得第一电容C1被逐渐充满,则唤醒信号保持在高电平,如此在唤醒模式为预约充电模式时,仅产生一个下 降沿唤醒信号,而不会随CP信号的PWM波产生PWM波式的唤醒信号,从而保证接收唤醒信号的下降沿唤醒芯片能正常工作。当唤醒模式为插枪预约充电模式,则CP信号由高电平变PWM波,如图2c所示,CP信号初始为高电平(即为长时间的高电平)时,由于第二电容C2的隔直作用,第三电容C3上的电压为0V,则开关控制单元11的输出端输出低电平,而控制使得开关管Q1关断,而使得唤醒信号被上拉为高电平,接着CP信号由高电平变为PWM波的低电平,开关控制单元11中的第二电容C2、第三电容C3以及第一电容C1上的电压均为0V,则开关控制单元11的输出端输出低电平,而控制使得开关管Q1关断,而使唤醒信号继续被上拉为高电平,之后CP信号由PWM波的低电平变为高电平并继续为PWM波,CP信号由低电平变为高电平的瞬间及之后的PWM波期间,唤醒电路的工作过程与预约充电时的PWM波时相同,在此不再赘述,唤醒信号被保持为高电平,如此在唤醒模式为插枪预约充电模式时,仅产生一个下降沿唤醒信号,而不会随CP信号的PWM波产生PWM波式的唤醒信号,从而保证接收唤醒信号的下降沿唤醒芯片能正常工作。
如此,本申请的唤醒电路不仅能满足电动汽车的多种唤醒方法需求,解决唤醒方法单一的问题,且仅通过一个唤醒电路就能兼容电动汽车的多种唤醒方法需求,且电路结构简单,损耗小,控制简单。
本申请一实施例中,还提供一种电子装置,包括上述的唤醒电路。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
Claims (10)
- 一种唤醒电路,其特征在于,包括:开关单元,包括开关管Q1,开关管Q1包括第一端、第二端和控制端,开关管的第二端接地;开关控制单元,开关控制单元的输入端接收CP信号,开关控制单元的输出端连接开关管Q1的控制端,以使开关管Q1根据CP信号导通或关断,当CP信号为低电平时,低电平的CP信号经开关控制单元后,在开关控制单元的输出端输出低电平,当CP信号由低电平变为高电平的瞬间,开关控制单元将高电平的CP信号传递至开关管Q1的控制端,当CP信号为长时间的高电平时,长时间的高电平的CP信号经开关控制单元后,在开关控制单元的输出端输出低电平;第一电容C1,第一电容C1的第一端连接开关管Q1的第一端,第一电容C1的第二端输出唤醒信号;电容充电电阻单元,电容充电电阻单元的第一端连接第一电容C1的第二端,电容充电电阻单元的第二端连接辅助电源Vaux,在开关管Q1导通时,辅助电源Vaux经电容充电电阻单元给第一电容C1充电;以及电容放电支路,电容放电支路的两端连接第一电容C1的两端,并且电容放电支路的电阻值远大于电容充电电阻单元的电阻值。
- 根据权利要求1所述的一种唤醒电路,其特征在于,当唤醒模式为插枪唤醒模式,则CP信号由低电平变高电平,当CP信号为低电平时,第一电容C1上的电压为0V,低电平的CP信号经开关控制单元后,在开关控制单元的输出端输出低电平,而控制使得开关管Q1关断,而使唤醒信号被上拉为高电平,当CP信号由低电平变为高电平的瞬间,开关控制单元将高电平的CP信号传递至开关管Q1的控制端,而使开关管Q1导通,而将唤醒信号拉低,产生下降沿唤醒信号,之后CP信号持续为高电平,长时间的高电平的CP信号经开关控制单元后,在开关控制单元的输出端输出低电平,而控制使得开关管Q1关断,而使唤醒信 号持续被上拉为高电平,并保持为高电平;当唤醒模式为预约充电模式,则CP信号由低电平变PWM波,当CP信号为低电平时,第一电容C1上的电压为0V,低电平的CP信号经开关控制单元后,在开关控制单元的输出端输出低电平,而控制使得开关管Q1关断,而使唤醒信号被上拉为高电平,当CP信号由低电平变为高电平的瞬间,开关控制单元将高电平的CP信号传递至开关管Q1的控制端,而使开关管Q1导通,而将唤醒信号拉低,产生下降沿唤醒信号,接着在CP信号的高电平期间,辅助电源Vaux通过电容充电电阻单元和导通的开关管Q1对第一电容C1充电,之后当CP信号由PWM波的高电平变为低电平时,低电平的CP信号经开关控制单元后,在开关控制单元的输出端输出低电平,而控制使得开关管Q1关断,唤醒信号被上拉为高电平,第一电容C1中的能量通过电容放电支路放电,PWM波的下一个CP高电平时第一电容C1继续被充电,由于电容放电支路的电阻值远大于电容充电电阻单元的电阻值,则第一电容C1的放电时间远大于充电时间,使得第一电容C1被逐渐充满,则将唤醒信号保持在高电平;当唤醒模式为插枪预约充电模式,则CP信号由高电平变PWM波,当CP信号为长时间的高电平时,长时间的高电平的CP信号经开关控制单元后,在开关控制单元的输出端输出低电平,而控制使得开关管Q1关断,而使唤醒信号被上拉为高电平,当CP信号由高电平变为低电平,低电平的CP信号经开关控制单元后,在开关控制单元的输出端输出低电平,而控制使得开关管Q1关断,而使唤醒信号继续被上拉为高电平,之后CP信号由低电平变高电平,当CP信号由低电平变为高电平的瞬间,开关控制单元将高电平的CP信号传递至开关管Q1的控制端,而使开关管Q1导通,而将唤醒信号拉低,产生下降沿唤醒信号,接 着在CP信号的高电平期间,辅助电源Vaux通过电容充电电阻单元和导通的开关管Q1对第一电容C1充电,之后当CP信号由PWM波的高电平变为低电平时,低电平的CP信号经开关控制单元后,在开关控制单元的输出端输出低电平,而控制使得开关管Q1关断,唤醒信号被上拉为高电平,第一电容C1中的能量通过电容放电支路放电,PWM波的下一个CP高电平时第一电容C1继续被充电,由于电容放电支路的电阻值远大于电容充电电阻单元的电阻值,则第一电容C1的放电时间远大于充电时间,使得第一电容C1被逐渐充满,则将唤醒信号保持在高电平。
- 根据权利要求2所述的一种唤醒电路,其特征在于,开关控制单元包括第二电容C2、第三电容C3、第一电阻单元和二极管D3,第一电阻单元的第一端为开关控制单元的输入端,用于接收CP信号,第一电阻单元的第二端连接第二电容C2的第一端,第二电容C2的第二端连接开关管Q1的控制端,第三电容C3的第一端连接开关管Q1的控制端,第三电容C3的第二端接地,二极管D3的阳极接地,二极管D3的阴极连接第二电容C2的第二端,第二电容C2的第二端形成开关控制单元的输出端。
- 根据权利要求3所述的一种唤醒电路,其特征在于,当CP信号为低电平时,开关控制单元中的第二电容C2和第三电容C3上的电压均为0V,则开关控制单元的输出端输出低电平;当CP信号由低电平变为高电平的瞬间,第二电容C2相当于短路,开关控制单元将高电平的CP信号传递至开关管Q1的控制端;当CP信号为长时间的高电平时,由于第二电容C2的隔直作用,第三电容C3上的电压为0V,则开关控制单元的输出端输出低电平;并在CP信号为低电平时,第三电容C3上的能量通过第二电容C2和第一电阻单元形成的放电回路放电, 第二电容C2上的能量通过第一电阻单元和二极管D3形成的放电回路放电。
- 根据权利要求3所述的一种唤醒电路,其特征在于,开关控制单元还包括第二电阻单元,第二电阻单元连接在第一电阻单元的第一端与接地端之间。
- 根据权利要求3或5所述的一种唤醒电路,其特征在于,开关控制单元还可包括二极管D2,二极管D2的阳极连接第一电阻单元的第二端,二极管D2的阴极连接第一电阻单元的第一端。
- 根据权利要求1所述的一种唤醒电路,其特征在于,还包括二极管D1,二极管D1的阳极接收CP信号,二极管D1的阴极连接第一电阻单元的第一端。
- 根据权利要求1所述的一种唤醒电路,其特征在于,电容放电支路包括放电电阻单元和二极管D4,放电电阻单元的第一端连接第一电容C1的第一端,放电电阻单元的第二端连接二极管D4的阴极,二极管D4的阳极连接第一电容C1的第二端。
- 根据权利要求8所述的一种唤醒电路,其特征在于,二极管D4的阴极还连接辅助电源Vaux。
- 一种电子装置,其特征在于,包括权利要求1所述的唤醒电路。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22824260.8A EP4357191A1 (en) | 2021-06-17 | 2022-06-15 | Wake-up circuit and electronic device comprising same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110669111.1A CN113258765B (zh) | 2021-06-17 | 2021-06-17 | 一种唤醒电路及包括其的电子装置 |
CN202110669111.1 | 2021-06-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022262785A1 true WO2022262785A1 (zh) | 2022-12-22 |
Family
ID=77188288
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/099031 WO2022262785A1 (zh) | 2021-06-17 | 2022-06-15 | 一种唤醒电路及包括其的电子装置 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP4357191A1 (zh) |
CN (1) | CN113258765B (zh) |
WO (1) | WO2022262785A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117048371A (zh) * | 2023-10-13 | 2023-11-14 | 万帮数字能源股份有限公司 | 一种新能源汽车充电唤醒系统及方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113258765B (zh) * | 2021-06-17 | 2021-10-15 | 浙江富特科技股份有限公司 | 一种唤醒电路及包括其的电子装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7759826B1 (en) * | 2008-08-20 | 2010-07-20 | Yazaki North America, Inc. | Smart connector wakeup and sleep control |
US20180208066A1 (en) * | 2017-01-26 | 2018-07-26 | Borgward Trademark Holdings Gmbh | Method, battery management system and vehicle for charging awakening |
CN109774534A (zh) * | 2019-03-08 | 2019-05-21 | 上海度普新能源科技有限公司 | 一种充电唤醒电路 |
CN210912030U (zh) * | 2019-08-12 | 2020-07-03 | 宁德时代新能源科技股份有限公司 | 唤醒电路与可充电设备 |
CN112436576A (zh) * | 2021-01-26 | 2021-03-02 | 杭州富特科技股份有限公司 | 一种唤醒电路的控制方法、装置以及电子设备 |
CN113258765A (zh) * | 2021-06-17 | 2021-08-13 | 杭州富特科技股份有限公司 | 一种唤醒电路及包括其的电子装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110774907B (zh) * | 2019-09-24 | 2021-04-27 | 浙江零跑科技有限公司 | 一种充电cc信号的检测与单次唤醒电路 |
CN212171943U (zh) * | 2020-03-27 | 2020-12-18 | 安徽贵博新能科技有限公司 | 一种电动汽车慢充cp唤醒系统 |
-
2021
- 2021-06-17 CN CN202110669111.1A patent/CN113258765B/zh active Active
-
2022
- 2022-06-15 EP EP22824260.8A patent/EP4357191A1/en active Pending
- 2022-06-15 WO PCT/CN2022/099031 patent/WO2022262785A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7759826B1 (en) * | 2008-08-20 | 2010-07-20 | Yazaki North America, Inc. | Smart connector wakeup and sleep control |
US20180208066A1 (en) * | 2017-01-26 | 2018-07-26 | Borgward Trademark Holdings Gmbh | Method, battery management system and vehicle for charging awakening |
CN109774534A (zh) * | 2019-03-08 | 2019-05-21 | 上海度普新能源科技有限公司 | 一种充电唤醒电路 |
CN210912030U (zh) * | 2019-08-12 | 2020-07-03 | 宁德时代新能源科技股份有限公司 | 唤醒电路与可充电设备 |
CN112436576A (zh) * | 2021-01-26 | 2021-03-02 | 杭州富特科技股份有限公司 | 一种唤醒电路的控制方法、装置以及电子设备 |
CN113258765A (zh) * | 2021-06-17 | 2021-08-13 | 杭州富特科技股份有限公司 | 一种唤醒电路及包括其的电子装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117048371A (zh) * | 2023-10-13 | 2023-11-14 | 万帮数字能源股份有限公司 | 一种新能源汽车充电唤醒系统及方法 |
CN117048371B (zh) * | 2023-10-13 | 2023-12-15 | 万帮数字能源股份有限公司 | 一种新能源汽车充电唤醒系统及方法 |
Also Published As
Publication number | Publication date |
---|---|
EP4357191A1 (en) | 2024-04-24 |
CN113258765B (zh) | 2021-10-15 |
CN113258765A (zh) | 2021-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022262785A1 (zh) | 一种唤醒电路及包括其的电子装置 | |
CN109774534B (zh) | 一种充电唤醒电路 | |
TWI491152B (zh) | 用於調整一半導體元件之操作的方法及用於調整一臨限電壓之方法 | |
EP3748959A1 (en) | Display apparatus | |
CN107182148B (zh) | 一种基于pwm调光的dc-dc led驱动电路 | |
JP2003009514A (ja) | 駆動信号供給回路 | |
CN111969577A (zh) | 一种车用低功耗反接保护电路及其控制方法 | |
CN216217643U (zh) | 一种调光控制电路及其调光控制芯片 | |
CN107249235B (zh) | 一种兼容带指示灯开关的led驱动电路 | |
KR100535082B1 (ko) | 두 개의 배터리를 입출력으로 하는 직류 컨버터의돌입전류 방지회로 | |
CN103957640A (zh) | Led驱动电路及其控制方法 | |
CN206602454U (zh) | 使同步整流电路中整流管软启动的电路、模块及其电源 | |
CN116191880A (zh) | 一种自举驱动的开关电源掉电控制电路 | |
CN113037070B (zh) | 开关电源快速启动电路 | |
CN111555397B (zh) | 锂电池充电时关断放电输出的控制电路 | |
CN111883085B (zh) | 一种改善液晶设备稳定工作的装置 | |
CN110165880B (zh) | 一种稳定开关电路输出电压的电路及方法 | |
TWI399006B (zh) | 短路保護電路、短路保護方法及電源供應裝置 | |
CN113709935A (zh) | 一种调光控制电路及其调光控制芯片 | |
CN112769103A (zh) | 一种用于超级电容器的暂态支撑保护系统 | |
CN220210633U (zh) | 驱动电路及驱动电源 | |
CN217689992U (zh) | 开机唤醒电路和电子设备 | |
US20240162801A1 (en) | Controller and method for controlling a voltage converter | |
CN111342526B (zh) | 一种充电器的输出保护装置 | |
CN218335949U (zh) | 光伏供电控制电路、光伏供电控制装置及电源设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22824260 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022824260 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022824260 Country of ref document: EP Effective date: 20240117 |