WO2022262690A1 - 一种三元催化器预加热控制方法、系统、车辆及存储介质 - Google Patents

一种三元催化器预加热控制方法、系统、车辆及存储介质 Download PDF

Info

Publication number
WO2022262690A1
WO2022262690A1 PCT/CN2022/098490 CN2022098490W WO2022262690A1 WO 2022262690 A1 WO2022262690 A1 WO 2022262690A1 CN 2022098490 W CN2022098490 W CN 2022098490W WO 2022262690 A1 WO2022262690 A1 WO 2022262690A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
catalytic converter
working
way catalytic
low
Prior art date
Application number
PCT/CN2022/098490
Other languages
English (en)
French (fr)
Inventor
刘军奇
杨陈
李曙波
马荣春
陈杰
孙旭东
肖逸阁
王瑞平
Original Assignee
浙江吉利控股集团有限公司
宁波吉利罗佑发动机零部件有限公司
极光湾科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江吉利控股集团有限公司, 宁波吉利罗佑发动机零部件有限公司, 极光湾科技有限公司 filed Critical 浙江吉利控股集团有限公司
Priority to EP22802862.7A priority Critical patent/EP4357211A1/en
Priority to US18/041,801 priority patent/US12000319B2/en
Publication of WO2022262690A1 publication Critical patent/WO2022262690A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/16Control strategies specially adapted for achieving a particular effect for reducing engine exhaust emissions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/30Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • B60L1/04Supplying electric power to auxiliary equipment of vehicles to electric heating circuits fed by the power supply line
    • B60L1/10Supplying electric power to auxiliary equipment of vehicles to electric heating circuits fed by the power supply line with provision for using different supplies
    • B60L1/12Methods and devices for control or regulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/445Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/068Engine exhaust temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0694Engine exhaust temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/086Power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/002Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/002Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
    • F01N11/005Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus the temperature or pressure being estimated, e.g. by means of a theoretical model
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/16Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an electric heater, i.e. a resistance heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2390/00Arrangements for controlling or regulating exhaust apparatus
    • F01N2390/02Arrangements for controlling or regulating exhaust apparatus using electric components only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/22Monitoring or diagnosing the deterioration of exhaust systems of electric heaters for exhaust systems or their power supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2590/00Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines
    • F01N2590/11Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines for hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/0602Electrical exhaust heater signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/08Parameters used for exhaust control or diagnosing said parameters being related to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/10Parameters used for exhaust control or diagnosing said parameters being related to the vehicle or its components
    • F01N2900/104Battery status
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1404Exhaust gas temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1602Temperature of exhaust gas apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/027Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0892Electric or magnetic treatment, e.g. dissociation of noxious components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/005Electrical control of exhaust gas treating apparatus using models instead of sensors to determine operating characteristics of exhaust systems, e.g. calculating catalyst temperature instead of measuring it directly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/007Storing data relevant to operation of exhaust systems for later retrieval and analysis, e.g. to research exhaust system malfunctions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the application relates to the technical field of energy saving and emission reduction of hybrid electric vehicles, in particular to a three-way catalytic converter preheating control method, system, vehicle and storage medium.
  • the 300V For a hybrid vehicle using a high-voltage power battery of about 300V, to use a 48V/4kW electric heater, the 300V must be converted to DC 48V before it can be used.
  • the DC-DC circuit (DC-DC) on hybrid vehicles generally outputs 12V DC-DC. If you want to add a 48V power supply, you need to develop another DC-DC that outputs 48V or the existing DC-DC on hybrid vehicles.
  • the 48V DC-DC is integrated in the 12VDC-DC, but no matter the split 48V external DC-DC or the internal integrated 48VDC-DC, there will be problems of large size and high cost, which is difficult for industrial application.
  • the application provides a three-way catalytic converter preheating control method, system, vehicle and storage medium, using two operating voltage modes provided by a high-voltage and low-voltage conversion module (ie, high-voltage to low-voltage DCDC), through digital control commands, it can be used in the exhaust
  • a high-voltage and low-voltage conversion module ie, high-voltage to low-voltage DCDC
  • DCDC low-voltage to low-voltage DCDC
  • the present application provides a method for controlling preheating of a three-way catalytic converter, which is applied to a hybrid electric vehicle.
  • the method for controlling preheating of a three-way catalytic converter includes: when the temperature of the exhaust pipe of the hybrid electric vehicle is lower than When the first temperature threshold is reached, send a first working instruction to the high and low voltage conversion module; the high and low voltage conversion module outputs a first working voltage to turn on the electric heating of the catalyst according to the first working instruction; obtain the electric heating of the hybrid vehicle Working data; when the working data meets the switching condition, send a second working instruction to the high-low voltage conversion module; the high-low voltage conversion module outputs a second working voltage according to the second working instruction and stops outputting the The first working voltage is to stop the electric heating.
  • the three-way catalytic converter preheating control method before performing the step of sending the first work instruction to the high-low pressure conversion module when the temperature of the exhaust pipe of the hybrid vehicle is lower than the first temperature threshold, includes: obtaining The electric quantity of the low-voltage battery; when the electric quantity of the low-voltage battery is lower than the electric quantity threshold, output a second working voltage to charge the low-voltage battery.
  • the three-way catalytic converter preheating control method starts said The engine of a hybrid car.
  • the switching condition of the three-way catalytic converter preheating control method is that the output duration of the first working voltage reaches a first time threshold; or, the temperature of the exhaust pipe is not lower than a second temperature threshold.
  • the present application also provides a three-way catalytic converter preheating control system applied to hybrid vehicles, specifically, the three-way catalytic converter preheating control system includes a state acquisition module, a processing module, a high-speed Low-voltage conversion module, electric heater module and power battery module: the state acquisition module is used to obtain and send the exhaust pipe temperature of the hybrid electric vehicle and the working data of the hybrid electric vehicle to the processing module; the processing module When the temperature of the exhaust pipe of the hybrid vehicle is lower than the first temperature threshold, the first work instruction is sent to the high and low voltage conversion module, and the processing module can be a vehicle controller or other ECU with the same function ; When the working data meets the switching condition, send a second working command to the high-low voltage conversion module; the high-low voltage conversion module outputs a first working voltage according to the first working command to make the electric heater The module turns on the electric heating of the catalyst; according to the second working instruction, outputs the second working voltage and stops outputting the first working voltage so that the electric heater module stops the
  • the processing module of the three-way catalytic converter preheating control system is also used to start the engine of the hybrid electric vehicle.
  • the first working voltage of the three-way catalytic converter preheating control system is 48V
  • the second working voltage is 12V
  • the high-voltage and low-voltage conversion module of the three-way catalytic converter preheating control system includes a voltage conversion circuit, and the voltage conversion circuit is used to convert the voltage of the high-voltage power battery into the first and second Operating Voltage.
  • the voltage conversion circuit of the three-way catalytic converter preheating control system includes a high-low voltage conversion switch circuit, a high-frequency transformer, a 12V output circuit, a 48V output circuit, and a 12V output and 48V output switching circuit.
  • the switching condition of the three-way catalytic converter preheating control system is that the output duration of the first operating voltage reaches a first time threshold; or, the temperature of the exhaust pipe is not lower than a set temperature threshold .
  • the present application also provides a vehicle, specifically, the vehicle includes a vehicle body and the three-way catalytic converter preheating control system as described above.
  • the present application also provides a storage medium, specifically, a computer program is stored on the storage medium, and when the computer program is executed by a computer, the three-way catalytic converter preheating control method as described above can be realized .
  • the three-way catalytic converter preheating control method, system, vehicle and storage medium provided by this application can provide two working modes through digital control instructions, and can use the power battery to preheat The catalyst is heated electrically.
  • Fig. 1 is a flowchart of a three-way catalytic converter preheating control method according to an embodiment of the present application.
  • Fig. 2 is a flowchart of a three-way catalytic converter preheating control method according to another embodiment of the present application.
  • Fig. 3 is a block diagram of a three-way catalytic converter preheating control system according to another embodiment of the present application.
  • Fig. 4 is a working sequence diagram of the three-way catalytic converter preheating control system according to an embodiment of the present application.
  • FIG. 1 is a flowchart of a method for controlling preheating of a three-way catalytic converter according to an embodiment of the present application.
  • the three-way catalytic converter preheating control method applied to hybrid electric vehicles includes:
  • the temperature of the exhaust pipe is first detected to determine whether the temperature of the exhaust pipe meets the temperature required for the normal operation of the catalyst.
  • the high-voltage and low-voltage conversion module outputs the first working voltage to turn on the electric heating of the catalyst according to the first working order.
  • the high-voltage and low-voltage conversion module outputs the second working voltage and stops outputting the first working voltage according to the second working order to stop electric heating.
  • the vehicle controller (that is, the processing module) Send the first working command through CAN communication.
  • the high and low voltage conversion module receives the command, it will immediately start the corresponding first working voltage mode to electrically heat the catalyst. After heating for a period of time or the electric heating temperature reaches the working temperature of the catalyst for efficient conversion. , the electrical heating of the catalyst is completed.
  • the vehicle controller needs to stop supplying power to the electric heater module, after which the temperature of the exhaust pipe is generally not lower than the first temperature threshold when the engine is running.
  • the vehicle controller sends a second work command according to the vehicle demand, and the high-voltage and low-voltage conversion module turns off the first work voltage according to the second work order to stop the corresponding first work voltage mode, stop the electric heating of the catalyst, and switch to Second working voltage mode.
  • the two working modes directly thus realize digital command control.
  • the application can not only meet the needs of electric heating by switching between the two working modes, but also has small size, low cost, and is convenient for industrial mass production and application, and has high practical value and good economic benefits.
  • the engine in order to meet the power demand required by the electric heating of the catalyst, the engine will charge the power battery module in time according to the hybrid operation strategy when the hybrid vehicle is running, and the power battery module group will always maintain sufficient power and provide sufficient output. power.
  • the power battery module group Before entering the first voltage mode to electrically heat the catalyst, first check whether the power of the power battery module is sufficient, and if not enough, the power battery module needs to be charged first.
  • the source of charging can choose an external power supply, or use the engine to generate electricity for charging.
  • Fig. 2 is a flowchart of a three-way catalytic converter preheating control method according to another embodiment of the present application.
  • the three-way catalytic converter preheating control method executes S10: when the exhaust pipe temperature of the hybrid vehicle is lower than the first temperature threshold, send the first work instruction to the high and low pressure conversion module
  • the steps before include:
  • the low-voltage battery is the working power supply for the entire vehicle system including the circuits such as instruments and sensors, before entering the first voltage mode to electrically heat the catalyst, first check whether the power of the low-voltage battery is sufficient. In some cases, it is necessary to use the power battery to charge the low-voltage battery first through the high-voltage conversion module.
  • the three-way catalytic converter preheating control method starts the engine of the hybrid vehicle after performing the step of S50: the high-low voltage conversion module outputs the second operating voltage and stops outputting the first operating voltage according to the second operating command.
  • the temperature of the exhaust pipe has reached the first temperature threshold, which satisfies the need for the normal operation of the catalyst.
  • the engine can be started normally.
  • the working data of the hybrid electric vehicle includes the output duration of the first working voltage.
  • the switching condition of the three-way catalytic converter preheating control method is that the output duration of the first working voltage reaches the first time threshold.
  • the vehicle controller switches the working mode according to the needs of the vehicle.
  • the operating data of the hybrid vehicle includes exhaust pipe temperature.
  • the switching condition of the three-way catalytic converter preheating control method is that the temperature of the exhaust pipe is not lower than the second temperature threshold.
  • the first temperature threshold may be equal to the second temperature threshold.
  • the current temperature of the exhaust pipe is directly monitored to determine whether the heating is over.
  • the electric heating temperature reaches the working temperature of the efficient conversion of the catalyst, and the vehicle controller switches the working mode according to the needs of the vehicle.
  • FIG. 3 is a block diagram of the three-way catalytic converter preheating control system according to an embodiment of the present application.
  • the three-way catalytic converter preheating control system includes a state acquisition module 100, a processing module 200, a high and low voltage conversion module 300, an electric heater module 400 and a power battery module 500, wherein the state acquisition The module 100 , the processing module 200 , the high and low voltage conversion module 300 and the electric heater module 400 are connected in sequence, and the power battery module 500 is connected to the high and low voltage conversion module 300 .
  • the state acquiring module 100 is used to acquire and send the exhaust pipe temperature of the hybrid electric vehicle and the working data of the hybrid electric vehicle to the processing module 200 .
  • the processing module 200 is used to send the first work instruction to the high-low pressure conversion module 300 when the temperature of the exhaust pipe of the hybrid vehicle is lower than the first temperature threshold, and send the second work order to the high-low pressure conversion module 300 when the work data meets the switching condition 300.
  • the high and low voltage conversion module 300 outputs the first working voltage according to the first working order so that the electric heater module 400 can electrically heat the catalyst; according to the second working order, outputs the second working voltage and stops outputting the first working voltage so that the electric The heater module 400 stops electric heating.
  • the state acquisition module 100 acquires and sends the operating data that the temperature of the exhaust pipe of the hybrid vehicle is lower than the first temperature threshold to the processing
  • the module 200 and the processing module 200 send the first working instruction through CAN communication.
  • the high and low voltage conversion module 300 receives the instruction, it immediately starts the corresponding first working voltage mode, and waits for the electric heater module 400 to electrically heat the catalyst. After a period of time or when the electric heating temperature reaches the working temperature for efficient conversion of the catalyst, the electric heating of the catalyst is completed.
  • the processing module 200 sends a second work instruction according to the demand of the whole vehicle, and the high-voltage and low-voltage conversion module closes the first work voltage according to the second work order to stop the corresponding first work voltage mode, stops the electric heating of the catalyst, and switches to Second working voltage mode.
  • Two operating modes thus enable digital command control.
  • the engine of the hybrid vehicle in order to meet the power requirement for electric heating, the engine of the hybrid vehicle will charge the power battery module 500 in time when the hybrid vehicle is running, and the power battery module 500 will always maintain sufficient power and provide sufficient output power.
  • the processing module 200 decides whether to charge the power battery according to the power off state sent by the power battery.
  • the source of charging can choose an external power supply, or use the engine to generate electricity for charging.
  • the processing module 200 of the three-way catalytic converter preheating control system is also used to start the engine of the hybrid electric vehicle.
  • the temperature of the exhaust pipe has reached the first temperature threshold, which satisfies the requirements for normal operation of the catalyst.
  • the engine can be started normally. Thereafter during engine operation, the exhaust pipe temperature generally does not fall below the first temperature threshold.
  • the first working voltage of the three-way catalytic converter preheating control system of the hybrid electric vehicle electric heating control system is 48V
  • the second working voltage is 12V
  • the first operating voltage of 48V and the second operating voltage of 12V in the high and low voltage conversion module 300 share the main circuit, control circuit and heat dissipation system of the high and low voltage conversion module, which effectively releases the decoration space, reduces the product volume, and greatly reduces Product cost, easy to implement industrialized mass production applications.
  • the first working voltage 48V output by the high-low voltage conversion module 300 may use a transformer-transformed rectification circuit, or a bootstrap boost or voltage doubler circuit, and may share a transformer with the second working voltage 12V.
  • the working data of the hybrid electric vehicle includes the output duration of the first working voltage.
  • the switching condition of the three-way catalytic converter preheating control system is that the output duration of the first working voltage reaches the first time threshold.
  • the vehicle controller switches the working mode according to the needs of the vehicle.
  • the operating data of the hybrid vehicle includes exhaust pipe temperature.
  • the switching condition of the three-way catalytic converter preheating control system is that the temperature of the exhaust pipe is not lower than the second temperature threshold.
  • the current temperature of the exhaust pipe is directly monitored to determine whether the heating is over.
  • the vehicle controller switches the working mode according to the demand of the vehicle.
  • the first temperature threshold may be equal to the second temperature threshold.
  • Fig. 4 is a working sequence diagram of the three-way catalytic converter preheating control system according to an embodiment of the present application.
  • the three-way catalytic converter preheating control system when the vehicle wakes up, the three-way catalytic converter preheating control system first provides an operating voltage of 48V to enter the first operating voltage mode, corresponding to the period t1 in the figure. After reaching the first time threshold of 1-2 minutes, the three-way catalytic converter preheating control system turns off the working voltage of 48V, outputs the second working voltage of 12V, and enters the second working voltage mode, which corresponds to the period t2 in the figure .
  • the engine is started after the temperature of the exhaust pipe has reached the high-efficiency operating temperature of the catalyst.
  • the present application also provides a vehicle, specifically, the vehicle includes a vehicle body and the above-mentioned three-way catalytic converter preheating control system.
  • the vehicle uses the three-way catalytic converter preheating control system, the technical principles involved are the same as those in the above embodiments, and will not be repeated here.
  • the working principle and characteristics of the three-way catalyst preheating of the vehicle are as follows:
  • the power battery module can use a high-voltage, high-power lithium-ion battery pack, which can meet the power demand of 4kW/2 minutes for the electric heating of the catalyst.
  • the engine When the hybrid vehicle is running, the engine will charge the power battery module in time, and the power battery It will always maintain sufficient power to provide sufficient output power.
  • the 48V/4kW power supply can be integrated in 12VDC-DC, among which, the main circuit of high and low voltage converter, control circuit and heat dissipation system are shared with 12VDC-DC.
  • the two voltage output terminals of 12V and 48V are respectively equipped with power electronic switches to control the switching of different working voltage modes.
  • the electronic switch can be set at the positive terminal of each output terminal of 12V and 48V, and can also be set at the negative terminal.
  • the three-way catalytic converter preheating control system has two working modes: 48V working mode and 12V working mode.
  • the switch between the two working modes is digitally controlled by the communication command sent by the vehicle controller through the CAN bus.
  • 48V and 12V adopt a time-sharing working mechanism: when the engine is cold started or the engine is restarted after a long shutdown, the vehicle controller sends a 48V work command through CAN communication.
  • the 48V&12V high and low voltage conversion module receives the command, Immediately start the 48V working mode, and the catalyst electric heating will obtain 48V DC power supply. After heating for 1 ⁇ 2 minutes, the temperature of the electric heater reaches the working temperature of the efficient conversion of the catalyst, and the vehicle controller will issue a shutdown 48V work command, and the 48V power supply will stop immediately Supply power to the electric heater, the electric heating of the catalyst is completed, and then the vehicle controller switches to the 12V working mode according to the needs of the vehicle.
  • the vehicle controller can make a comprehensive judgment based on the temperature of the engine exhaust pipe, the power of the power battery, the voltage of the 12V low-voltage battery, and the working conditions of the vehicle's low-voltage load, and then switch the 48V/12V working mode.
  • the present application also provides a storage medium, specifically, a computer program is stored on the storage medium, and when the computer program is executed by a computer, the above-mentioned three-way catalytic converter preheating control method can be realized.
  • the computer program implements the three-way catalytic converter preheating control method, the technical principles involved are the same as those in the above embodiments, and will not be repeated here.
  • the three-way catalytic converter preheating control method, system, vehicle and storage medium provided by this application can provide two working modes through digital control instructions, and can use the power battery to preheat
  • the catalyst in the three-way catalytic converter is electrically heated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Transportation (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

本申请提供一种三元催化器预加热控制方法、系统、车辆及存储介质。应用于混合动力汽车的三元催化器预加热控制方法包括:在混合动力汽车的排气管温度低于第一温度阈值时,发送第一工作指令至高低压转换模块;所述高低压转换模块根据所述第一工作指令,输出第一工作电压以开启对三元催化器内催化剂预加热;获取所述混合动力汽车的工作数据;在所述工作数据满足切换条件时,发送第二工作指令至所述高低压转换模块;所述高低压转换模块根据所述第二工作指令,输出第二工作电压且停止输出所述第一工作电压以停止所述电加热。本申请提供的三元催化器预加热控制方法、系统、车辆及存储介质,可以通过数字控制指令提供两种工作模式,能够在排气管的温度较低时使用动力电池通过高低压转换模块预先对催化剂进行电加热。

Description

一种三元催化器预加热控制方法、系统、车辆及存储介质
本专利申请要求2021年06月18日提交的申请号为202110680005.3,申请人为浙江吉利控股集团有限公司、宁波吉利罗佑发动机零部件有限公司和极光湾科技有限公司,发明名称为“一种三元催化器预加热控制方法、系统、车辆及存储介质”的中国专利申请的优先权,上述申请的全文以引用的方式并入本申请中。
技术领域
本申请涉及混合动力汽车节能减排技术领域,具体涉及一种三元催化器预加热控制方法、系统、车辆及存储介质。
背景技术
在能源与生态领域,资源枯竭、环境恶化是人们不得不面对的严重问题,作为能耗和排放大户,节能减排已成为汽车行业的首要任务,到2025年,国家将实行国七排放标准,对排放要求将更加严苛,这就对汽车尾排处理技术提出更高的要求。
为了解决当发动机排气管的温度低于300℃时,三元催化器内催化剂转化效率非常低的问题,人们发明了EHC(Electrically Heated Catalyst)电加热技术,即在发动机起动前,使用预先电加热方式用1~2分钟将催化剂快速加热到它的工作温度。目前市场上有12V/2kW、48V/4kWEHC两种催化剂电加热器,经试验发现48V/4kW电加热器使用效果较好,可以满足未来国七排放要求。
技术问题
现有技术的解决方案中存在一些缺陷:
对于采用300V左右高压动力电池的混合动力汽车来说,要使用48V/4kW电加热器必须先将300V转化直流48V才可以使用。目前混动汽车上的直流转直流电路(DC-DC)一般都是输出12V的DC-DC,如果要增加一路48V电源需要另外开发一款输出48V的DC-DC或在混动汽车上现有的12VDC-DC内集成48V的DC-DC,但无论分体式48V外挂DC-DC还是内部集成48VDC-DC都会出现体积大、成本高问题,很难进行产业化应用。
技术解决方案
本申请提供一种三元催化器预加热控制方法、系统、车辆及存储介质,使用高低压转换模块(即高压转低压DCDC)提供的两种工作电压模式,通过数字控制指令,能够在排气管的温度较低时使用动力电池通过高低压转换模块对三元催化器内催化剂进行预加热。
在一方面,本申请提供一种三元催化器预加热控制方法,应用于混合动力汽车,具体地,所述三元催化器预加热控制方法包括:在混合动力汽车的排气管温度低于第一温度阈值时,发送第一工作指令至高低压转换模块;所述高低压转换模块根据所述第一工作指令,输出第一工作电压以开启对催化剂的电加热;获取所述混合动力汽车的工作数据;在所述工作数据满足切换条件时,发送第二工作指令至所述高低压转换模块;所述高低压转换模块根据所述第二工作指令,输出第二工作电压且停止输出所述第一工作电压以停止所述电加热。
可选地,所述三元催化器预加热控制方法在执行所述在混合动力汽车的排气管温度低于第一温度阈值时,发送第一工作指令至高低压转换模块的步骤之前包括:获取低压电池的电量;在所述低压电池的电量低于电量阈值时,输出第二工作电压以对所述低压电池充电。
可选地,所述三元催化器预加热控制方法在执行所述高低压转换模块根据所述第二工作指令,输出第二工作电压且停止输出所述第一工作电压的步骤之后启动所述混合动力汽车的发动机。
可选地,所述三元催化器预加热控制方法的所述切换条件为所述第一工作电压输出时长达到第一时间阈值;或,所述排气管温度不低于第二温度阈值。
另一方面,本申请还提供一种应用于混合动力汽车的三元催化器预加热控制系统,具体地,所述三元催化器预加热控制系统包括依次连接的状态获取模块、处理模块、高低压转换模块、电加热器模块和动力电池模块:所述状态获取模块用于获取并发送混合动力汽车的排气管温度和所述混合动力汽车的工作数据至所述处理模块;所述处理模块用于在混合动力汽车的排气管温度低于第一温度阈值时,发送第一工作指令至所述高低压转换模块,所述的处理模块可以是整车控制器或具有相同功能的其它ECU;在所述工作数据满足切换条件时,发送第二工作指令至所述高低压转换模块;所述高低压转换模块根据所述第一工作指令,输出第一工作电压以使所述电加热器模块开启对催化剂的电加热;根据所述第二工作指令,输出第二工作电压且停止输出所述第一工作电压以使所述电加热器模块停止所述电加热。
可选地,所述三元催化器预加热控制系统的所述处理模块还用于启动所述混合动力汽车的发动机。
可选地,所述三元催化器预加热控制系统的所述第一工作电压为48V,所述第二工作电压为12V。
可选地,所述三元催化器预加热控制系统的所述高低压转换模块包括电压转换电路,所述电压转换电路用于将所述高压动力电池电压转换为所述的第一、第二工作电压。
可选地,所述三元催化器预加热控制系统的所述电压转换电路包括高低压转换开关电路、高频变压器、12V输出电路、48V输出电路、12V输出与48V输出切换电路。
可选地,所述三元催化器预加热控制系统的所述切换条件为所述第一工作电压输出时长达到第一时间阈值;或,所述排气管温度不低于所设置的温度阈值。
另一方面,本申请还提供一种车辆,具体地,所述车辆包括车体和如上所述的三元催化器预加热控制系统。
另一方面,本申请还提供一种存储介质,具体地,所述存储介质上存储有计算机程序,所述计算机程序在被计算机执行时,可实现如上所述的三元催化器预加热控制方法。
有益效果
本申请提供的三元催化器预加热控制方法、系统、车辆及存储介质,可以通过数字控制指令提供两种工作模式,能够在排气管的温度较低时使用动力电池通过高低压转换模块预先对催化剂进行电加热。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一实施例的三元催化器预加热控制方法流程图。
图2为本申请另一实施例的三元催化器预加热控制方法流程图。
图3为本申请另一实施例的三元催化器预加热控制系统方框图。
图4为本申请一实施例的三元催化器预加热控制系统工作时序图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。通过上述附图,已示出本申请明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本申请构思的范围,而是通过参考特定实施例为本领域技术人员说明本申请的概念。
本发明的实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素,此外,本申请不同实施例中具有同样命名的部件、特征、要素可能具有相同含义,也可能具有不同含义,其具体含义需以其在该具体实施例中的解释或者进一步结合该具体实施例中上下文进行确定。
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在一方面,本申请提供一种三元催化器预加热控制方法,图1为本申请一实施例的三元催化器预加热控制方法流程图。
请参阅图1,在一实施例中,应用于混合动力汽车的三元催化器预加热控制方法包括:
S10:在混合动力汽车的排气管温度低于第一温度阈值时,发送第一工作指令至高低压转换模块。
在混合动力汽车上电状态时,首先检测排气管温度,以判断排气管温度是否满足催化剂正常工作所需要的温度。
S20:高低压转换模块根据第一工作指令,输出第一工作电压以开启对催化剂的电加热。
在排气管温度不满足时,进入第一工作电压模式开始对催化剂的电加热功能。
S30:获取混合动力汽车的工作数据。
通过车辆的工作数据监控车辆当前情况。例如对车辆电加热的计时以及对排气管温度的进一步检测。
S40:在工作数据满足切换条件时,发送第二工作指令至高低压转换模块。
判断当前的工作数据是否满足工作电压模式的切换条件。
S50:高低压转换模块根据第二工作指令,输出第二工作电压且停止输出第一工作电压以停止电加热。
当前的工作数据满足切换条件时,切换进入第二工作电压模式。
在一实施例中,当混合动力汽车的发动机冷启动时或发动机长时间停机再次启动时,即混合动力汽车的排气管温度低于第一温度阈值时,整车控制器(即处理模块)通过CAN通信发送第一工作指令,当高低压转换模块接收到该指令,立即启动相应的第一工作电压模式对催化剂进行电加热,待加热一段时间后或者电加热温度达到催化剂高效转化的工作温度时,对催化剂的电加热工作完成。整车控制器需要停止对电加热器模块供电,此后在发动机运行期间,排气管温度一般不低于第一温度阈值。因此整车控制器根据整车需求发送第二工作指令,高低压转换模块根据第二工作指令关闭第一工作电压以停止相应的第一工作电压模式,停止对催化剂进行电加热,此时切换到第二工作电压模式。两个工作模式直接因此实现数字指令控制。
在本实施例中,本申请通过两种工作模式的切换不仅能满足电加热需求,还具有体积小、成本低、便于产业化量产应用,具有较高的实用价值和较好的经济效益。
在本实施例中,为了满足催化剂电加热所需要功率需求,混合动力汽车运行中发动机会根据混动运行策略及时给动力电池模块充电,动力电池模块组将一直保持充足的电量,提供足够的输出功率。在进入第一电压模式对催化剂进行电加热之前,先检测动力电池模块的电量是否够用,在不够用的情况下,需要先对动力电池模块进行充电。充电的来源可以选择外接电源,或者使用发动机进行发电充电。
图2为本申请另一实施例的三元催化器预加热控制方法流程图。
如图2所示,在一实施例中,三元催化器预加热控制方法在执行S10:在混合动力汽车的排气管温度低于第一温度阈值时,发送第一工作指令至高低压转换模块的步骤之前包括:
S60:获取低压电池的电量;
S61:在低压电池的电量低于电量阈值时,输出第二工作电压以对低压电池充电。
在本实施例中,由于低压电池是供应整车系统包括仪表及传感器等电路的工作电源,在进入第一电压模式对催化剂进行电加热之前,先检测低压电池的电量是否够用,在不够用的情况下,需要采用动力电池通过高低压转换模块先对低压电池进行充电。
在一实施例中,三元催化器预加热控制方法在执行S50:高低压转换模块根据第二工作指令,输出第二工作电压且停止输出第一工作电压的步骤之后启动混合动力汽车的发动机。
对催化剂的电加热工作完成后,排气管温度已达到第一温度阈值,满足催化剂正常工作需要。可以正常启动发动机。
在一实施例中,混合动力汽车的工作数据包括第一工作电压的输出时长。三元催化器预加热控制方法的切换条件为第一工作电压输出时长达到第一时间阈值。
经过实验及测算,例如48V电压在工作1-2分钟(例如1.5分钟)的情况下,已经能够使排气管温度已达到催化剂完全工作的温度。因此,当催化剂电加热模块加热时间达到预设的第一时间阈值时,整车控制器根据整车需求切换工作模式。
在另一实施例中,混合动力汽车的工作数据包括排气管温度。三元催化器预加热控制方法的切换条件为排气管温度不低于第二温度阈值。其中,第一温度阈值可以与第二温度阈值相等。
在本实施例中,直接监控排气管的当前温度以判断是否加热结束。电加热温度达催化剂高效转化的工作温度,整车控制器根据整车需求切换工作模式。
另一方面,本申请还提供一种应用于混合动力汽车的三元催化器预加热控制系统,图3为本申请一实施例的三元催化器预加热控制系统方框图。
请参阅图3,在一实施例中,三元催化器预加热控制系统包括状态获取模块100、处理模块200、高低压转换模块300、电加热器模块400和动力电池模块500,其中,状态获取模块100、处理模块200、高低压转换模块300和电加热器模块400依次相连,动力电池模块500与高低压转换模块300连接。
其中,状态获取模块100用于获取并发送混合动力汽车的排气管温度和混合动力汽车的工作数据至处理模块200。处理模块200用于在混合动力汽车的排气管温度低于第一温度阈值时,发送第一工作指令至高低压转换模块300,在工作数据满足切换条件时,发送第二工作指令至高低压转换模块300。
高低压转换模块300根据第一工作指令,输出第一工作电压以使电加热器模块400对催化剂进行电加热;根据第二工作指令,输出第二工作电压且停止输出第一工作电压以使电加热器模块400停止电加热。
在一实施例中,当混合动力汽车的发动机冷启动时或发动机长时间停机再次启动时,状态获取模块100获取并发送混合动力汽车的排气管温度低于第一温度阈值的工作数据至处理模块200,处理模块200通过CAN通信发送第一工作指令,当高低压转换模块300接收到该指令,立即启动相应的第一工作电压模式,待电加热器模块400对催化剂进行电加热,待加热一段时间后或者电加热温度达到催化剂高效转化的工作温度时,对催化剂的电加热工作完成。此后在发动机运行期间,排气管温度一般不低于第一温度阈值,因此需要停止对电加热器模块400供电。此时处理模块200根据整车需求发送第二工作指令,高低压转换模块根据第二工作指令关闭第一工作电压以停止相应的第一工作电压模式,停止对催化剂进行电加热,此时切换到第二工作电压模式。两个工作模式因此实现数字指令控制。
在本实施例中,为了满足电加热所需要功率需求,混动汽车运行中发动机及时给动力电池模块500充电,动力电池模块500将一直保持充足的电量,提供足够的输出功率。在进入第一电压模式对催化剂进行电加热之前,处理模块200根据动力电池发送的电量关态决定是否给动力电池充电。充电的来源可以选择外接电源,或者使用发动机进行发电充电。
在一实施例中,三元催化器预加热控制系统的处理模块200还用于启动混合动力汽车的发动机。
在本实施例中,对催化剂的电加热工作完成后,排气管温度已达到第一温度阈值,满足催化剂正常工作需要。可以正常启动发动机。此后在发动机运行期间,排气管温度一般不低于第一温度阈值。
在一实施例中,混合动力汽车电加热控制系统三元催化器预加热控制系统的第一工作电压为48V,第二工作电压为12V。
在本实施例中,目前市场上有12V/2kW、48V/4kW两种催化剂电加热器,经试验发现48V/4kWEHC电加热器使用效果较好,可以满足未来国七排放要求;48V/4KW电加热器工作电压为48V,目前市场上混合动力汽车的DC-DC一般只输出12V电压。
在一实施例中,高低压转换模块300内第一工作电压48V和第二工作电压12V共用高低压转换模块主回路、控制电路及散热系统,有效释放了摆件空间,缩小了产品体积,大幅降低产品成本,便于实施产业化的量产应用。
在一实施例中,高低压转换模块300输出的第一工作电压48V可以采用经变压器变压整流电路,也可以采用自举升压或倍压电路,可以与第二工作电压12V共用一个变压器。
在一实施例中,混合动力汽车的工作数据包括第一工作电压的输出时长。三元催化器预加热控制系统的切换条件为第一工作电压输出时长达到第一时间阈值。
经过实验及测算,48V在工作1-2分钟(例如1.5分钟)的情况下,已经能够使排气管温度已达到催化剂完全工作的温度。因此,当催化剂电加热模块加热时间达到预设的第一时间阈值时,整车控制器根据整车需求切换工作模式。
在另一实施例中,混合动力汽车的工作数据包括排气管温度。三元催化器预加热控制系统的切换条件为排气管温度不低于第二温度阈值。
在本实施例中,直接监控排气管的当前温度以判断是否加热结束。当催化剂电加热器模块400电加热温度达催化剂高效转化的工作温度,整车控制器根据整车需求切换工作模式。其中,第一温度阈值可以与第二温度阈值相等。
图4为本申请一实施例的三元催化器预加热控制系统工作时序图。
如图4所示,在一实施例中,在汽车唤醒时,三元催化器预加热控制系统首先提供48V的工作电压进入第一工作电压模式,对应图中的的t1时段。在达到1-2分钟的第一时间阈值后,三元催化器预加热控制系统关闭48V的工作电压,输出12V的第二工作电压,进入第二工作电压模式,此时对应图中的t2时段。
在t2时段,排气管的温度已达到催化剂高效工作温度后启动发动机。
另一方面,本申请还提供一种车辆,具体地,车辆包括车体和如上述的三元催化器预加热控制系统。车辆在使用三元催化器预加热控制系统时,所涉及的技术原理与以上实施例相同,在此不再赘述。
在一实施例中,车辆的三元催化剂预加热工作原理及特征如下:
(1)动力电池模块可以采用高压、高功率的锂离子电池组,可以满足催化剂电加热所需要的4kW/2分钟功率需求,在混动汽车运行中发动机会及时给动力电池模块充电,动力电池将一直保持充足的电量,提供足够的输出功率。
(2)48V/4kW电源可以集成在12VDC-DC中,其中,高低压转换器主回路、控制电路、散热系统与12VDC-DC共用。
(3)由于48V/4kW在发动机启动前需要使用1~2分钟,不仅使用频次少,工作时间也较短,原12VDC-DC主回路的功率器件及散热系统只需进行适当调整就可以满足48V/4kW1~2分钟EHC电加热功率需求。
(4)在集成了12V及48V的高低压转换电路中,12V及48V两路电压输出端分别设置功率型电子开关进行不同工作电压模式的切换控制。电子开关可以在12V及48V每路输出端的正极端设置,也可以在负极端设置。
(5)三元催化器预加热控制系统设有两个工作模式:48V工作模式和12V工作模式。两种工作模式切换由整车控制器通过CAN总线发送的通信指令实现数字化控制。
(6)48V与12V采用分时工作机制:在发动机冷启动时或发动机长时间停机再次启动时,整车控制器通过CAN通信发送48V工作指令,当48V&12V的高低压转换模块接收到该指令,立即启动48V工作模式,催化剂电加热获得48V直流供电,待加热1~2分钟后,电加热器温度达催化剂高效转化的工作温度,整车控制器就发出关断48V工作指令,48V电源立即停止对电加热器供电,催化剂电加热工作完成,然后整车控制器根据整车需求,切换到12V工作模式。
(7)整车控制器可以根据发动机排气管的温度、动力电池的电量、12V低压电池的电压、整车低压负载的工作情况进行综合判断,进而对48V/12V工作模式进行切换。
另一方面,本申请还提供一种存储介质,具体地,存储介质上存储有计算机程序,计算机程序在被计算机执行时,可实现如上述的三元催化器预加热控制方法。计算机程序在实现三元催化器预加热控制方法时,所涉及的技术原理与以上实施例相同,在此不再赘述。
本申请提供的三元催化器预加热控制方法、系统、车辆及存储介质,可以通过数字控制指令提供两种工作模式,能够在排气管的温度较低时使用动力电池通过高低压转换模块预先对三元催化器内催化剂进行电加热。
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (13)

  1. 一种三元催化器预加热控制方法,其特征在于,应用于混合动力汽车,包括:
    在混合动力汽车的排气管温度低于第一温度阈值时,发送第一工作指令至高低压转换模块;
    所述高低压转换模块根据所述第一工作指令,输出第一工作电压以开启对催化剂的电加热;
    获取所述混合动力汽车的工作数据;
    在所述工作数据满足切换条件时,发送第二工作指令至所述高低压转换模块;
    所述高低压转换模块根据所述第二工作指令,输出第二工作电压且停止输出所述第一工作电压以停止所述电加热。
  2. 如权利要求1所述的三元催化器预加热控制方法,其特征在于,在执行所述在混合动力汽车的排气管温度低于第一温度阈值时,发送第一工作指令至高低压转换模块的步骤之前包括:
    获取混合动力汽车中高压动力电池的电量。
  3. 如权利要求1所述的三元催化器预加热控制方法,其特征在于,在执行所述在混合动力汽车的排气管温度低于第一温度阈值时,发送第一工作指令至高低压转换模块的步骤之前包括:
    获取低压电池的电量;
    在所述低压电池的电量低于电量阈值时,输出第二工作电压以对所述低压电池充电。
  4. 如权利要求1所述的三元催化器预加热控制方法,其特征在于,在执行所述高低压转换模块根据所述第二工作指令,输出第二工作电压且停止输出所述第一工作电压的步骤之后包括:
    根据所述第二工作电压启动所述混合动力汽车的发动机。
  5. 如权利要求1-4任一项所述的三元催化器预加热控制方法,其特征在于,所述切换条件为所述第一工作电压输出时长达到第一时间阈值;或,所述排气管温度不低于第一温度阈值。
  6. 一种应用于混合动力汽车的三元催化器预加热控制系统,其特征在于,包括状态获取模块、处理模块、高低压转换模块、电加热器模块和动力电池模块,其中,所述状态获取模块、所述处理模块、所述高低压转换模块和所述电加热器模块依次相连,所述动力电池模块和所述高低压转换模块连接:
    所述状态获取模块用于获取并发送混合动力汽车的排气管温度和所述混合动力汽车的工作数据至所述处理模块;所述处理模块用于在混合动力汽车的排气管温度低于第一温度阈值时,发送第一工作指令至所述高低压转换模块,在所述工作数据满足切换条件时,发送第二工作指令至所述高低压转换模块;
    所述高低压转换模块根据所述第一工作指令,输出第一工作电压以使所述电加热器模块开启对催化剂的电加热;根据所述第二工作指令,输出第二工作电压且停止输出所述第一工作电压以使所述电加热器模块停止所述电加热,所述动力电池模块为高低压转换模块提供高压电源。
  7. 如权利要求6所述的三元催化器预加热控制系统,其特征在于,所述处理模块还用于启动所述混合动力汽车的发动机。
  8. 如权利要求6所述的三元催化器预加热控制系统,其特征在于,所述第一工作电压为48V,所述第二工作电压为12V。
  9. 如权利要求6所述的三元催化器预加热控制系统,其特征在于,所述高低压转换模块包括高低压转换电路,所述电压转换电路用于将所述高压动力电池电压转换为所述的第一、第二工作电压。
  10. 如权利要求6所述的三元催化器预加热控制系统,其特征在于,所述高低压转换电路包括高低压转换开关电路、高频变压器、12V输出电路、48V输出电路、12V输出与48V输出切换电路。
  11. 如权利要求6-10任一项所述的三元催化器预加热控制系统,其特征在于,所述切换条件为所述第一工作电压输出时长达到第一时间阈值;或,所述排气管温度不低于第一温度阈值。
  12. 一种车辆,其特征在于,包括车体和如权利要求6-11任一项所述的三元催化器预加热控制系统。
  13. 一种存储介质,其特征在于,所述存储介质上存储有计算机程序,所述计算机程序在被计算机执行时,可实现如权利要求1-5任一项所述的三元催化器预加热控制方法。
PCT/CN2022/098490 2021-06-18 2022-06-13 一种三元催化器预加热控制方法、系统、车辆及存储介质 WO2022262690A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22802862.7A EP4357211A1 (en) 2021-06-18 2022-06-13 Pre-heating control method and system for three-way catalytic converter, and vehicle and storage medium
US18/041,801 US12000319B2 (en) 2021-06-18 2022-06-13 Three-way catalytic converter preheating control method and system, vehicle and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110680005.3A CN113442898B (zh) 2021-06-18 2021-06-18 三元催化器预加热控制方法、系统、车辆及存储介质
CN202110680005.3 2021-06-18

Publications (1)

Publication Number Publication Date
WO2022262690A1 true WO2022262690A1 (zh) 2022-12-22

Family

ID=77811809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/098490 WO2022262690A1 (zh) 2021-06-18 2022-06-13 一种三元催化器预加热控制方法、系统、车辆及存储介质

Country Status (4)

Country Link
US (1) US12000319B2 (zh)
EP (1) EP4357211A1 (zh)
CN (1) CN113442898B (zh)
WO (1) WO2022262690A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113442898B (zh) * 2021-06-18 2024-04-09 浙江吉利控股集团有限公司 三元催化器预加热控制方法、系统、车辆及存储介质
CN115030802B (zh) * 2022-05-30 2023-11-28 中国第一汽车股份有限公司 发动机催化器加热方法、装置、整车控制器、系统及车辆

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07102968A (ja) * 1993-10-12 1995-04-18 Mitsubishi Motors Corp 電気加熱触媒制御装置
DE19804098A1 (de) * 1998-02-03 1999-08-05 Daimler Chrysler Ag Heizeinrichtung in einem Kraftfahrzeug
US20150183334A1 (en) * 2013-12-26 2015-07-02 Hyundai Mobis Co., Ltd. Apparatus and method for providing multi-voltage output of low voltage dc-dc converter of eco-friendly vehicle
CN109424399A (zh) * 2017-08-22 2019-03-05 通用汽车环球科技运作有限责任公司 用于电控自动变速器的双电源及控制
CN110667382A (zh) * 2019-10-09 2020-01-10 上海华羿汽车系统集成有限公司 农业机械供电方法和系统
CN113442898A (zh) * 2021-06-18 2021-09-28 浙江吉利控股集团有限公司 三元催化器预加热控制方法、系统、车辆及存储介质
CN113472214A (zh) * 2021-07-30 2021-10-01 宁波吉利罗佑发动机零部件有限公司 一种车辆直流电压转换电路

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102427981B (zh) * 2009-05-19 2014-04-23 丰田自动车株式会社 混合动力车辆及其控制方法
US11279357B2 (en) * 2013-12-25 2022-03-22 Denso Corporation Vehicle diagnosis system and method
JP6424861B2 (ja) * 2016-04-20 2018-11-21 トヨタ自動車株式会社 ハイブリッド車両
JP6569652B2 (ja) * 2016-12-08 2019-09-04 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP6791096B2 (ja) * 2017-10-24 2020-11-25 株式会社デンソー 車両の排気浄化システムの制御装置および制御方法
JP2019189178A (ja) * 2018-04-27 2019-10-31 トヨタ自動車株式会社 ハイブリッド車両の制御装置
JP7031618B2 (ja) * 2019-01-17 2022-03-08 トヨタ自動車株式会社 電気加熱式触媒の異常検出装置
US20210348540A1 (en) * 2020-05-08 2021-11-11 Denso International America, Inc. Systems and methods for monitoring a temperature of an exhaust aftertreatment system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07102968A (ja) * 1993-10-12 1995-04-18 Mitsubishi Motors Corp 電気加熱触媒制御装置
DE19804098A1 (de) * 1998-02-03 1999-08-05 Daimler Chrysler Ag Heizeinrichtung in einem Kraftfahrzeug
US20150183334A1 (en) * 2013-12-26 2015-07-02 Hyundai Mobis Co., Ltd. Apparatus and method for providing multi-voltage output of low voltage dc-dc converter of eco-friendly vehicle
CN109424399A (zh) * 2017-08-22 2019-03-05 通用汽车环球科技运作有限责任公司 用于电控自动变速器的双电源及控制
CN110667382A (zh) * 2019-10-09 2020-01-10 上海华羿汽车系统集成有限公司 农业机械供电方法和系统
CN113442898A (zh) * 2021-06-18 2021-09-28 浙江吉利控股集团有限公司 三元催化器预加热控制方法、系统、车辆及存储介质
CN113472214A (zh) * 2021-07-30 2021-10-01 宁波吉利罗佑发动机零部件有限公司 一种车辆直流电压转换电路

Also Published As

Publication number Publication date
CN113442898B (zh) 2024-04-09
US20230296040A1 (en) 2023-09-21
US12000319B2 (en) 2024-06-04
CN113442898A (zh) 2021-09-28
EP4357211A1 (en) 2024-04-24

Similar Documents

Publication Publication Date Title
WO2022262690A1 (zh) 一种三元催化器预加热控制方法、系统、车辆及存储介质
US8154149B2 (en) Method and apparatus for charging a vehicle energy storage system
WO2021238987A1 (zh) 蓄电池充电方法及系统、车辆
CN101685971B (zh) 车载磷酸铁锂锂电池的低温激活装置及方法
US9583774B2 (en) Method for cold starting a fuel cell system and fuel cell system of a motor vehicle
TWI270998B (en) A voltage supplying apparatus using a fuel cell
CN108216086B (zh) 一种48v微混系统的dcdc转换器及其控制方法
JP7518924B2 (ja) 電池のエネルギー処理装置及び方法、並びに車両
JP2006042595A (ja) 車両用蓄電装置の加熱システム
JP2012120421A (ja) 電気自動車の制御装置の起動装置
WO2009067887A1 (fr) Procédé de commande cc-cc pour véhicules électriques hybrides
CN109842191B (zh) 一种复合电源系统及其功率分配方法
CN111600049B (zh) 一种氢发动机的新型能量输出管理方法
CN107323433B (zh) 车辆的故障检测维修方法、装置及存储介质
US20230299684A1 (en) Vehicle dc voltage conversion circuit
CN108454618A (zh) 混合动力汽车降低排放的控制方法
CN110789400A (zh) 电池无线充电-加热一体化系统、控制方法及电池系统
CN203721845U (zh) 一种升压式dc-dc动力电池交流充放电低温加热电路
CN110015192B (zh) 一种燃料电池混合动力系统、供电单元及充电控制方法
CN201559546U (zh) 混合电动汽车用超级电容器放电装置
CN115347655B (zh) 一种适用于电动汽车的复合电源能量管理系统
CN111193302B (zh) 一种双向车载充电机的控制方法及系统
CN111251947A (zh) 一种氢能汽车燃料电池低温环境下启动的控制装置及方法
CN115064797B (zh) 一种无需外部电源供电的电池低温启动方法与系统
CN112277681A (zh) 一种电动汽车低温交流充电系统及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22802862

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022802862

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022802862

Country of ref document: EP

Effective date: 20240118