WO2022262554A1 - 通信方法和通信装置 - Google Patents

通信方法和通信装置 Download PDF

Info

Publication number
WO2022262554A1
WO2022262554A1 PCT/CN2022/095489 CN2022095489W WO2022262554A1 WO 2022262554 A1 WO2022262554 A1 WO 2022262554A1 CN 2022095489 W CN2022095489 W CN 2022095489W WO 2022262554 A1 WO2022262554 A1 WO 2022262554A1
Authority
WO
WIPO (PCT)
Prior art keywords
interference
resource
interference measurement
measurement resources
resources
Prior art date
Application number
PCT/CN2022/095489
Other languages
English (en)
French (fr)
Inventor
樊波
周宏睿
张希
陈雷
刘凤威
袁世通
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22824034.7A priority Critical patent/EP4336888A1/en
Publication of WO2022262554A1 publication Critical patent/WO2022262554A1/zh
Priority to US18/510,674 priority patent/US20240089778A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/24Monitoring; Testing of receivers with feedback of measurements to the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]

Definitions

  • the present application relates to the communication field, and, more specifically, to a communication method and a communication device.
  • the fifth generation mobile communication system uses high-frequency communication, that is, uses ultra-high frequency (>6GHz) signals to transmit data.
  • a major problem with high-frequency communication is that the signal energy drops dramatically with the transmission distance, resulting in short signal transmission distances.
  • high-frequency communication adopts analog beam technology, which is weighted by a large-scale antenna array to concentrate the signal energy in a small range to form a signal similar to a beam (called an analog beam, referred to as a beam ), thereby increasing the transmission distance.
  • a network device may simultaneously use multiple beams to transmit data for multiple terminal devices respectively, and each beam corresponds to a terminal device.
  • the network device uses beam 1 and beam 2 to transmit data for terminal device 1 and terminal device 2 respectively.
  • Terminal device 1 receives data transmitted on beam 1
  • terminal device 2 receives data transmitted on beam 2.
  • Terminal device 1 will also receive the signal on beam 2
  • terminal device 2 will also receive the signal on beam 1, and these signals are called interference signals.
  • the beam for which data is transmitted is called a serving beam, and other beams are called interference beams.
  • the interfering beam will interfere with the data transmitted on the serving beam, which will affect the performance of the transmission.
  • the interference signal on the interference beam will reduce the Signal to Noise and Interference Ration (SINR, Signal to Noise and Interference Ration) of the serving beam, thereby reducing the transmission throughput.
  • SINR Signal to Noise and Interference Ration
  • the network device In order to reduce the interference of the interference beam to the service beam, for each terminal device, the network device needs to know which beams will cause strong interference to the service beam of the terminal device, so as to avoid using multiple beams for transmission.
  • the beam with strong interference transmits simultaneously with the serving beam.
  • the terminal device after performing interference measurement, the terminal device can only report the impact of one interference beam on the serving beam at a time, or can only report the total impact of multiple interference beams on the serving beam at a time, which is poor in flexibility and wastes resources.
  • the present application provides a communication method, so that a terminal device can report the impact of each interference beam on a service beam in one interference measurement by reporting a bitmap, thereby reducing resource waste and improving resource utilization.
  • the network device can determine the impact of each interference beam on the service beam according to the bitmap reported by the terminal device.
  • a communication method including: receiving measurement configuration information from a network device, the measurement configuration information is used to configure channel measurement resources and M interference measurement resources, M is greater than or equal to 1, and M is a positive integer;
  • the device sends a bitmap, the bitmap includes one or more bits, each bit in the one or more bits corresponds to one or more interference measurement resources, and each bit in the one or more bits The value of the bit is used to indicate the interference situation of the channel measurement resource by one or more interference measurement resources corresponding to each bit, and the M interference measurement resources include one or more interference measurement resources.
  • the communication method provided in this application by sending the bitmap to the network device, the impact of each interference measurement resource on the channel measurement resource can be reported in one interference measurement, which improves the reporting efficiency and reduces the waste of resources.
  • the interference situation of the one or more interference measurement resources on the channel measurement resource is whether the interference degree of the one or more interference measurement resources on the channel measurement resource is greater than the first threshold. Specifically, if the interference condition of the one or more interference measurement resources to the channel measurement resource is greater than the first threshold, the value of the bit corresponding to the one or more interference measurement resources is 1, otherwise it is 0. Or, if the interference of the one or more interference measurement resources to the channel measurement resources is greater than the first threshold, the value of the bit corresponding to the one or more interference measurement resources is 0, otherwise it is 1.
  • the degree of interference of the one interference measurement resource to the channel measurement resource is greater than the first threshold may be The signal strength of the one interference measurement resource is greater than a second threshold.
  • the second threshold is an absolute threshold, which is compared with a result obtained by direct measurement of the interference measurement resource.
  • the degree of interference of the one interference measurement resource to the channel measurement resource is greater than the first threshold may be A difference between the first SINR of the channel measurement resource and the second SINR of the channel measurement resource is greater than a third threshold.
  • the third threshold is a relative threshold
  • the first SINR is the SINR of the channel measurement resource without considering the interference of the interference measurement resource
  • the second SINR is considering an interference measurement
  • the third threshold is compared with the difference between the measurement results of the channel measurement resource when the interference measurement resource interferes and the channel measurement resource does not interfere.
  • the interference degree of the multiple interference measurement resources to the channel measurement resources is greater than the first threshold
  • An average signal strength of the plurality of interference measurement resources may be greater than a second threshold.
  • the interference degree of the multiple interference measurement resources to the channel measurement resources is greater than the first threshold may be The difference between the third SINR of the channel measurement resource and the fourth SINR of the channel measurement resource is greater than a third threshold, and the third SINR is determined without considering the interference of the multiple interference measurement resources.
  • the SINR of the channel measurement resource, the fourth SINR is the SINR of the channel measurement resource determined by taking the average interference intensity of multiple interference measurement resources as interference.
  • the first threshold, and/or the second threshold, and/or the third threshold are configured by using measurement configuration information.
  • the multiple interference measurement resources are consecutive multiple interference measurement resources determined according to the configuration order of the interference measurement resources. Measure resources.
  • a communication method including: sending measurement configuration information to a terminal device, where the measurement configuration information is used to configure channel measurement resources and M interference measurement resources, where M is greater than or equal to 1, and M is a positive integer; from the terminal The device receives a bitmap, the bitmap includes one or more bits, each bit in the one or more bits corresponds to one or more interference measurement resources, and each bit in the one or more bits The bit value is used to indicate the interference situation of one or more interference measurement resources corresponding to each bit on the channel measurement resources, and the M interference measurement resources include one or more interference measurement resources.
  • the impact of each interference measurement resource on the channel measurement resource can be obtained in one interference measurement, which improves the reporting efficiency and reduces the waste of resources.
  • the interference situation of one or more interference measurement resources to the channel measurement resource is confirmed according to the bitmap, wherein, the one or more interference measurement resources to the channel measurement resource
  • the interference condition of the channel measurement resources is determined by whether the interference degree of one or more interference measurement resources to the channel measurement resources is greater than a first threshold.
  • a communication device including a unit for performing each step of the communication method in the first aspect above.
  • the communication device is a communication chip
  • the communication chip may include an input circuit or interface for sending information or data, and an output circuit or interface for receiving information or data.
  • the communication device is a communication device (for example, a terminal device), and the communication chip may include a transmitter for sending information or data, and a receiver for receiving information or data.
  • a communication device including a unit for performing each step of the communication method in the second aspect above.
  • the communication device is a communication chip
  • the communication chip may include an input circuit or interface for sending information or data, and an output circuit or interface for receiving information or data.
  • the communication device is a communication device (for example, a network device), and the communication chip may include a transmitter for sending information or data, and a receiver for receiving information or data.
  • the communication chip may include a transmitter for sending information or data, and a receiver for receiving information or data.
  • a communication device including a processor and a memory, the memory is used to store a computer program, and the processor is used to call and run the computer program from the memory, so that the communication device performs the above-mentioned first aspect and Any aspect in the second aspect and the communication method in each implementation manner thereof.
  • processors there are one or more processors, and one or more memories.
  • the memory can be integrated with the processor, or the memory can be set separately from the processor.
  • the communication device further includes a transmitter (transmitter) and a receiver (receiver).
  • a computer program product includes: a computer program (also
  • a computer-readable medium stores a computer program (also referred to as code or instruction), and when the computer program is executed, the computer executes the above-mentioned first aspect and the second aspect Any one of the aspects and the communication method in each implementation thereof.
  • a computer program also referred to as code or instruction
  • a chip system including a memory and a processor, the memory is used to store computer programs
  • the processor is used to call and run the computer program from the memory, so that the communication device installed with the chip system
  • the device executes any one of the first aspect and the second aspect and the communication method in each implementation manner thereof.
  • the chip system may include an input circuit or interface for sending information or data, and an output circuit or interface for receiving information or data.
  • FIG. 1 is a schematic diagram of simultaneous transmission of multiple beams according to an embodiment of the present application.
  • FIG. 2 is a system architecture diagram of an embodiment of the present application.
  • Fig. 3 is a schematic diagram of an example of a communication method provided by an embodiment of the present application.
  • Fig. 4 is a schematic diagram of a communication device according to an embodiment of the present application.
  • Fig. 5 is a schematic diagram of another communication device according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another communication device according to an embodiment of the present application.
  • the technical solution of the embodiment of the present application can be applied to various communication systems, such as: Global System of Mobile communication (Global System of Mobile communication, GSM) system, code division multiple access (Code Division Multiple Access, CDMA) system, broadband code division multiple access (Wideband Code Division Multiple Access, WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, LTE Frequency Division Duplex (FDD) system, LTE Time Division Duplex (TDD), Universal Mobile Telecommunication System (UMTS), Worldwide Interoperability for Microwave Access (WiMAX) communication system, 5th Generation (5G) System or New Radio (New Radio, NR), etc.
  • GSM Global System of Mobile communication
  • CDMA code division multiple access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the involved terminal devices may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to wireless modems.
  • the terminal can be a mobile station (Mobile Station, MS), a subscriber unit (subscriber unit), a cellular phone (cellular phone), a smart phone (smart phone), a wireless data card, a personal digital assistant (Personal Digital Assistant, referred to as: PDA) computer , tablet computer, wireless modem (modem), handheld device (handset), laptop computer (laptop computer), machine type communication (Machine Type Communication, MTC) terminal, etc.
  • PDA Personal Digital Assistant
  • the involved network device is a device deployed in a radio access network to provide a wireless communication function for a terminal device.
  • Network equipment may include various forms of macro base stations, micro base stations (also called small stations), relay stations, access points, and the like.
  • the names of network devices may be different, such as GSM (Global System for Mobile Communication, Global System for Mobile Communication) or CDMA (Code Division Multiple Access, Code Division Multiple Access) network BTS (Base Transceiver Station, Base Transceiver Station), WCDMA (Wideband Code Division Multiple Access, Wideband Code Division Multiple Access, NB (NodeB), LTE (Long Term Evolution, long-term evolution) in the eNB or eNodeB ( Evolutional NodeB).
  • GSM Global System for Mobile Communication
  • CDMA Code Division Multiple Access, Code Division Multiple Access
  • BTS Base Transceiver Station
  • WCDMA Wideband Code Division Multiple Access
  • NB NodeB
  • LTE Long Term Evolution, long-term evolution
  • the network device can also be a wireless controller in a CRAN (Cloud Radio Access Network, Cloud Radio Access Network) scenario.
  • the network device may also be a base station device in a 5G network or a network device in a future evolved PLMN network.
  • a network device can also be a wearable device or an in-vehicle device.
  • the transmission and reception point can be regarded as a network device, or a part of the network device, such as a transceiver part. For example, in a cell using multiple TRPs, downlink signals in the cell are sent to terminal equipment through multiple TRPs at the same time. Multiple transmitters across network devices.
  • the embodiment of the beam in the protocol can be a spatial domain filter, or a spatial filter, or a spatial domain parameter, a spatial parameter, and a spatial domain setting. ), spatial setting, or QCL (quasi-colocation, Quasi-colocation) information, QCL assumptions, QCL instructions, etc.
  • Beams can be indicated by a transmission configuration indication state (TCI-state) parameter, or by a spatial relation (spatial relation) parameter. Therefore, in this application, beams can be replaced by spatial filters, spatial filters, spatial parameters, spatial parameters, spatial settings, spatial settings, QCL information, QCL assumptions, QCL indications, TCI-state (DL TCI-state, UL TCI -state), spatial relationship, etc.
  • TCI-state transmission configuration indication state
  • spatial relation spatial relation
  • the beam used to send signals can be called a transmission beam (transmission beam, Tx beam), and can also be called a spatial domain transmission filter (spatial domain transmission filter), a spatial transmission filter (spatial transmission filter), and a spatial domain transmission parameter (spatial domain transmission filter).
  • transmission parameter or spatial transmission parameter (spatial transmission parameter), spatial domain transmission setting (spatial domain transmission setting) or spatial transmission setting (spatial transmission setting).
  • the downlink transmit beam can be indicated by TCI-state.
  • the beam used to receive signals can be called reception beam (reception beam, Rx beam), also can be called spatial domain reception filter (spatial domain reception filter), spatial reception filter (spatial reception filter), spatial domain reception parameter (spatial domain reception filter) reception parameter) or spatial reception parameter (spatial reception parameter), spatial domain reception setting (spatial domain reception setting) or spatial reception setting (spatial reception setting).
  • the uplink transmission beam can be indicated by spatial relation, or uplink TCI-state, or SRS resource (representing the transmission beam using the SRS). Therefore, the uplink beams can also be replaced by SRS resources.
  • the transmitting beam may refer to the distribution of signal strength formed in different directions in space after the signal is transmitted by the antenna
  • the receiving beam may refer to the distribution of signal strength in different directions in space of the wireless signal received from the antenna.
  • the beams can be wide beams, or narrow beams, or other types of beams.
  • the beamforming technique may be beamforming technique or other techniques.
  • the beamforming technology may be a digital beamforming technology, an analog beamforming technology, or a mixed digital and analog beamforming technology.
  • Beams generally correspond to resources. For example, when performing beam measurement, network devices use different resources to measure different beams. Terminal devices feed back the measured resource quality, and network devices know the quality of the corresponding beams. During data transmission, beam information is also indicated through its corresponding resources. For example, the network device indicates the PDSCH beam information of the terminal device through the TCI field in the DCI.
  • multiple beams with the same or similar communication characteristics are regarded as one beam.
  • One or more antenna ports can be included in one beam, used to transmit data channels, control channels and sounding signals, etc.
  • One or more antenna ports forming a beam can also be regarded as an antenna port set.
  • a beam refers to a transmission beam of a network device.
  • each beam of the network device corresponds to a resource, so the resource index can be used to uniquely identify the beam corresponding to the resource.
  • the resource index can be used to uniquely identify the beam corresponding to the resource.
  • the resources may be uplink signal resources or downlink signal resources.
  • Uplink signals include but are not limited to sounding reference signal (sounding reference signal, SRS) and demodulation reference signal (demodulation reference signal, DMRS).
  • Downlink signals include but are not limited to: channel state information reference signal (channel state information reference signal, CSI-RS), cell specific reference signal (cell specific reference signal, CS-RS), UE specific reference signal (user equipment specific reference signal, US-RS), demodulation reference signal (demodulation reference signal, DMRS), and synchronization signal/physical broadcast channel block (synchronization system/physical broadcast channel block, SS/PBCH block).
  • the SS/PBCH block may be referred to as a synchronization signal block (synchronization signal block, SSB) for short.
  • the resources are configured through RRC (Radio Resource Control, radio resource control signaling) signaling.
  • RRC Radio Resource Control, radio resource control signaling
  • a resource is a data structure, including the relevant parameters of its corresponding uplink/downlink signal, such as the type of uplink/downlink signal, the resource element carrying the uplink/downlink signal, the sending time and period of the uplink/downlink signal , the number of ports used to send uplink/downlink signals, etc.
  • Each uplink/downlink signal resource has a unique index to identify the downlink signal resource. It can be understood that the resource index may also be referred to as the resource identifier, which is not limited in this embodiment of the present application.
  • the channel resource refers to the resource configured by the network device for channel measurement.
  • Channel resources can be used to measure RSRP (Reference signal receiving power, reference signal received power), CQI (Channel Quality Indication, channel quality indication), SINR (Signal to Interference plus Noise Ratio, signal to interference plus noise ratio and other channel information).
  • RSRP Reference signal receiving power
  • CQI Channel Quality Indication
  • SINR Signal to Interference plus Noise Ratio, signal to interference plus noise ratio and other channel information.
  • interference resources also need to be configured.
  • the interference resource refers to the resource configured by the network device for channel measurement.
  • these interference resources are used as interference sources, and the CQI and SINR are calculated together with channel resources.
  • the energy of the channel resource may be used as a numerator, and the energy of the interference resource may be used as a denominator to calculate the SINR.
  • the resource set refers to a set composed of a group of resources, which is configured through RRC signaling.
  • a resource set can be a resource set resource set, or a resource set resource setting, or a subset of a resource subset resource set, or other forms of resource set.
  • Beam measurements can be used to measure the quality of a beam, for example measuring the RSRP or SINR of a beam.
  • FIG. 2 is a system architecture diagram of an embodiment of the present application.
  • a single network device can transmit data or control signaling to a single or multiple terminal devices, as shown in (b) of Figure 2, multiple network devices can be a single terminal device at the same time transmit data or control signaling.
  • the communication method 300 includes:
  • the network device sends measurement configuration information to the terminal device.
  • the channel measurement resource corresponds to the serving beam and is used to measure information corresponding to the serving beam
  • the interference measurement resource corresponds to the interference beam and is used to measure information corresponding to the interference beam.
  • the M interference measurement resources may be included in one resource setting (resource setting), or one resource set (resource set), or one resource subset (resource subset).
  • N (N>1) channel measurement resources and multiple interference measurement resources respectively corresponding to the N channel measurement resources may be configured in the measurement configuration information at the same time, wherein the multiple interference measurement resources corresponding to each channel measurement resource
  • the number of measurement resources may be the same or different.
  • N channel measurement resources may be included in one resource setting, or one resource set, or one resource subset, and the N channel measurement resources may also be included in N resource settings, or N resource sets, respectively. Or in N resource subsets.
  • Resource set is a subset of resource setting, and a resource setting can include one or more resource sets.
  • Resource subset is a subset of resource set, and a resource set can include one or more resource subsets.
  • the information of the interference measurement resources to be measured may be indicated through MAC CE signaling or DCI signaling.
  • the network device indicates the information of the interference measurement resource to be measured through MAC CE signaling, and the signaling includes one or more of the following: an index of the interference measurement resource, an index of the interference measurement resource set (for example, resource set index or resource setting index), the information of the channel measurement resource or channel measurement resource set corresponding to the interference measurement resource (such as index information), the information of the measurement reporting configuration corresponding to the interference measurement resource (such as index information), the information of the interference measurement resource Type, TCI-state or QCL (Quasi co-location, quasi-co-location) information of the interference measurement resource, the cell corresponding to the interference measurement resource, and the BWP (Bandwidth Part, subset bandwidth) corresponding to the interference measurement resource.
  • an index of the interference measurement resource for example, resource set index or resource setting index
  • the information of the channel measurement resource or channel measurement resource set corresponding to the interference measurement resource such as index information
  • the information of the measurement reporting configuration corresponding to the interference measurement resource such as index information
  • the information of the interference measurement resource Type TCI
  • the MAC CE signaling may include a bitmap, where each bit corresponds to an interference measurement resource or a group of interference measurement resources or a set or a set of interference measurement resources, and a bit value of 1 indicates that the corresponding interference measurement resource is to be measured Measurement resource, a bit value of 0 indicates that the corresponding interference measurement resource is not measured. Alternatively, a bit value of 0 indicates that the corresponding interference measurement resource is to be measured, and a bit value of 1 indicates that the corresponding interference measurement resource is not measured.
  • the MAC CE signaling may also directly include the index of the interference measurement resource to be measured.
  • the information of the interference measurement resource to be measured may be indicated through the DCI, including one or more of the following: an index of the interference measurement resource, an index of the interference measurement resource set (for example, resource set index or resource setting index), Information about the channel measurement resource or channel measurement resource set corresponding to the interference measurement resource (such as index information), information about the measurement report configuration corresponding to the interference measurement resource (such as index information), the type of the interference measurement resource, and the TCI-state of the interference measurement resource Or QCL (Quasi co-location, quasi co-location) information, the cell corresponding to the interference measurement resource, and the BWP corresponding to the interference measurement resource.
  • the DCI uses a field to indicate the interference measurement resource to be measured.
  • Each field value of this field corresponds to one or a group of interference measurement resources or one or a group of interference measurement resource sets.
  • the value of this field is a certain field value, it indicates that the terminal device is required to measure the interference measurement resource corresponding to the field value.
  • the interference measurement resources corresponding to each field value can be configured through RRC signaling, or indicated through MAC CE signaling. It should be noted that the above field may be a newly introduced field specially used for indicating interference measurement resources, or may be a multiplexing of other existing fields.
  • the terminal device determines a bitmap.
  • the terminal device receives the measurement configuration information, and further, determines the bitmap according to the measurement configuration information.
  • the measurement configuration information includes a first reporting amount, and the first reporting amount is used to instruct the terminal device to report the bitmap.
  • the terminal device reports the bitmap by default.
  • the terminal device performs interference measurement immediately after receiving the measurement configuration information.
  • the terminal device receives measurement configuration information, and performs measurement according to the measurement configuration information in each preset period.
  • the bitmap includes one or more bits, each of the one or more bits corresponds to an interference measurement resource, and each of the one or more bits The bit value is used to indicate the interference situation of a corresponding interference measurement resource to the channel measurement resource.
  • the value of each bit indicates the relationship between the degree of interference of an interference measurement resource corresponding to the bit to the channel measurement resource and the first threshold.
  • the terminal device judges whether the interference degree of the above-mentioned interference measurement resource to the channel measurement resource reaches a first threshold to determine the value of the corresponding bit.
  • the first threshold may be an RSRP (Reference signal receiving power, reference signal receiving power) threshold, RSSI (Received Signal Strength Indication, received signal strength indication) threshold, or RSRQ (Reference signal receiving quality, reference signal receiving quality) threshold, or SINR (Signal to Interference plus Noise Ratio, signal to interference plus noise ratio) threshold, or CQI (Channel Quality Indication, Channel Quality Indication) threshold, or MCS (Modulation and Coding scheme, adjustment coding scheme) threshold, or other thresholds.
  • RSRP and RSSI are signal strength indicators, and the signal strength in this application may specifically refer to RSRP, RSSI, or other indicators.
  • SINR and CQI are SINR indicators, and the SINR in this application may specifically refer to SINR, CQI, or other indicators.
  • the MCS is an index associated with the CQI, and a corresponding MCS can be determined through the CQI.
  • the signal strength of the interference measurement resource may specifically refer to RSRP and RSSI.
  • the interference degree of the interference measurement resource may refer to RSRP and RSSI, or may refer to the signal-to-interference-noise ratio corresponding to the channel measurement resource under the interference of the interference measurement resource.
  • the value of its corresponding bit when the interference level of the one interference measurement resource is greater than or equal to the first threshold, the value of its corresponding bit may be 1; when the interference level of the one interference measurement resource is less than the first threshold, its corresponding The value of the bit may be 0, or, when the interference level of the one interference measurement resource is greater than or equal to the first threshold, the value of the corresponding bit may be 0, and when the interference level of the one interference measurement resource is less than the first threshold , the value of the corresponding bit can be 1.
  • the greater than or equal to may also be greater than, and the less than may also be less than or equal to. The specific method for determining the degree of interference will be described below.
  • the first threshold is an absolute threshold, represented by a second threshold.
  • the absolute threshold corresponds to a specific method for determining the degree of interference from an interference measurement resource to a channel measurement resource.
  • the value of the corresponding bit may be 1, and when the interference level of the one interference measurement resource is smaller than the second threshold, the value of the corresponding bit may be is 0.
  • the value of the corresponding bit may be 0, and when the interference degree of the one interference measurement resource is smaller than the second threshold, the value of the corresponding bit A bit can have a value of 1.
  • the above-mentioned greater than or equal to may also be greater than.
  • the above-mentioned less than can also be replaced with less than or equal to.
  • the interference degree is represented by an RSRP value
  • the second threshold is an RSRP threshold.
  • the RSRP value corresponding to the interference measurement resource is 1, and when the RSRP value corresponding to the interference measurement resource is smaller than the second threshold, the value of the bit corresponding to the interference measurement resource is 0.
  • the value of the bit corresponding to the interference measurement resource is 0, and when the RSRP value corresponding to the interference measurement resource is smaller than the second threshold, the The value of the bit corresponding to the interference measurement resource is 1.
  • the above method is also applicable to the situation where the second threshold is a RSRQ threshold, SINR threshold, CQI threshold, MCS threshold or other measurement parameter thresholds, just replace the above RSRP value with RSRQ value, SINR value, CQI value, MCS values or other measurements are sufficient.
  • the above greater than or equal to can also be replaced with greater than.
  • the above-mentioned less than can also be replaced with less than or equal to.
  • the first threshold is a relative threshold, represented by a third threshold.
  • the relative threshold corresponds to a specific method for determining the degree of interference of the one interference measurement resource to the channel measurement resource.
  • the interference degree is determined by considering the interference of the one interference measurement resource or not considering the one interference measurement resource.
  • the difference between the interference levels of the channel measurement resources is represented, and the value of the bit corresponding to the interference measurement resource is determined according to the magnitude relationship between the difference and the third threshold.
  • the value of the bit corresponding to the one interference measurement resource when the difference is greater than or equal to the third threshold, the value of the bit corresponding to the one interference measurement resource may be 1, and when the difference is smaller than the third threshold, the value of the bit corresponding to the one interference measurement resource The value can be 0.
  • the value of the bit corresponding to the one interference measurement resource when the difference is greater than or equal to the third threshold, the value of the bit corresponding to the one interference measurement resource may be 0, and when the difference is smaller than the third threshold, the value of the bit corresponding to the one interference measurement resource The value can be 1.
  • the above-mentioned greater than or equal to may also be greater than.
  • the above-mentioned less than can also be replaced with less than or equal to.
  • the specific calculation method of the above interference degree is related to the expression of the interference degree by SINR/RSRP/CQI/RSRQ/MCS.
  • SINR/RSRP/CQI/RSRQ/MCS For the convenience of description, specific examples will be used for illustration below.
  • the interference degree is represented by an SINR value
  • the third threshold is the SINR threshold.
  • the SINR value of the channel measurement resource without the interference of the interference measurement resource is related to the channel measurement If the difference between the SINR values of resources with the interference of the interference measurement resource is greater than or equal to the third threshold, the value of the bit corresponding to the interference measurement resource may be 1, and the channel measurement resource without the interference measurement resource If the difference between the SINR value under the interference of the channel measurement resource and the SINR value of the channel measurement resource under the interference of the interference measurement resource is less than the third threshold, the value of the bit corresponding to the interference measurement resource may be 0.
  • the difference between the SINR value of the channel measurement resource without the interference of the interference measurement resource and the SINR value of the channel measurement resource with the interference of the interference measurement resource is greater than or equal to the third threshold, then the The value of the bit corresponding to the interference measurement resource may be 0, and the difference between the SINR value of the channel measurement resource without the interference of the interference measurement resource and the SINR value of the channel measurement resource with the interference of the interference measurement resource is less than
  • the third threshold the value of the bit corresponding to the interference measurement resource may be 1.
  • the above method is also applicable to the situation where the third threshold is a RSRQ threshold, SINR threshold, CQI threshold, MCS threshold or other measurement parameter thresholds, just replace the above RSRP value with the RSRQ value, RSRP value, CQI value, MCS values or other measurements are sufficient.
  • the above-mentioned greater than or equal to can also be replaced by greater than, and the above-mentioned less than can also be replaced by greater than or equal to.
  • the bitmap includes one or more bits, the one or more bits correspond to a plurality of interference measurement resources, and the value of each bit in the one or more bits is used to represent The interference situation of the corresponding multiple interference measurement resources on the channel measurement resources.
  • the multiple interference measurement resources are configured consecutive L (L>1) interference measurement resources, that is, according to the configuration order, the continuous L interference measurement resources are taken as a group and correspond to one bit.
  • the L interference measurement resources may also be L consecutive interference measurement resources sorted according to resource index size.
  • the L interference resources may also be all resources configured in one resource set, that is, the network device may configure one or more resource sets, each resource set corresponds to a bit, or each resource set All resources correspond to one bit.
  • the value of L may be indicated by measurement configuration information.
  • the value of L may be reported by the terminal capability reporting process. The following uses the plurality of interference measurement resources as L to expand the description.
  • each bit represents the relationship between the degree of interference of the L interference measurement resources corresponding to the bit to the channel measurement resource and the first threshold. Reference may be made to the relevant description that the value of each bit indicates that the bit corresponds to an interference degree of an interference measurement resource to a channel measurement resource. A specific method for determining the degree of interference will be described below.
  • the first threshold is an absolute threshold, represented by a second threshold.
  • the absolute threshold corresponds to a specific method for determining the degree of interference of the L interference measurement resources on the channel measurement resources.
  • the method needs to be adapted.
  • the interference level is represented by the equivalent interference level of the L interference measurement resources. In this determination method, the relationship between the equivalent interference level of the L interference measurement resources and the second threshold determines the Values of bits corresponding to the L interference measurement resources.
  • the value of the corresponding bit when the equivalent interference levels of the L interference measurement resources are greater than or equal to the second threshold, the value of the corresponding bit may be 1, and when the equivalent interference levels of the L interference measurement resources are less than the second threshold When the threshold is set, the value of the corresponding bit can be 0.
  • the value of the corresponding bit when the equivalent interference levels of the L interference measurement resources are greater than or equal to the second threshold, the value of the corresponding bit may be 0, and when the equivalent interference levels of the L interference measurement resources are less than the second threshold When the threshold is set, the value of the corresponding bit can be 1.
  • the above-mentioned greater than or equal to may also be greater than.
  • the above-mentioned less than may also be less than or equal to.
  • the equivalent interference level may be an average value, a maximum value, or a minimum value of L interference levels of the L interference measurement resources.
  • the interference degree is represented by an RSRP value
  • the second threshold is an RSRP threshold.
  • the value of the bit corresponding to the L interference measurement resources can be 1, when the average value, or the maximum value, or the minimum value of the RSRP value corresponding to the L interference measurement resources If the value is smaller than the second threshold, the value of the bit corresponding to the L interference measurement resources may be 0.
  • the value of the bit corresponding to the L interference measurement resources may be 0, when the average value, or the maximum value, or the minimum value of the RSRP values corresponding to the L interference measurement resources is smaller than the second threshold, the value of the bit corresponding to the L interference measurement resources may be 1.
  • the above method is also applicable to the situation where the second threshold is a RSRQ threshold, SINR threshold, CQI threshold, MCS threshold or other measurement parameter thresholds, just replace the above RSRP value with RSRQ value, SINR value, CQI value, MCS values or other measurements are sufficient.
  • the above greater than or equal to can also be replaced with greater than.
  • the above-mentioned less than can also be replaced with less than or equal to.
  • the first threshold is a relative threshold, represented by a third threshold.
  • the relative threshold corresponds to a specific method for determining the degree of interference of the L interference measurement resources on the channel measurement resource. For the convenience of description, the method of this implementation will be described below by way of example.
  • the terminal device calculates the SINR and L difference values are obtained from the SINR difference values of the channel measurement resource under the interference of the interference measurement resource.
  • An equivalent difference is calculated from the L differences, and the equivalent difference is equal to the average value, or the maximum value, or the minimum value, or a value determined by other calculation methods.
  • the value of the bit corresponding to the L interference measurement resources may be 1, and if the equivalent difference is greater than the third threshold, then the value of the bit corresponding to the L interference measurement resources The value of a bit can be 0.
  • the value of the bit corresponding to the L interference measurement resources may be 0, and when the equivalent difference is smaller than the third threshold, the L interference measurement resources
  • the value of the bit corresponding to the measurement resource may be 1.
  • the above-mentioned greater than or equal to may also be greater than.
  • the above-mentioned less than can also be replaced with less than or equal to.
  • the terminal device calculates the SINR and channel The SINR of the resource under the interference of the interference measurement resource is measured to obtain L first SINRs and L second SINRs.
  • Each interference measurement resource corresponds to a first SINR and a second SINR, wherein the first SINR is the SINR of the channel measurement resource without the interference of the interference measurement resource, and the second SINR is the channel measurement resource with the interference measurement resource.
  • SINR under interference The terminal device calculates the first equivalent SINR and the second equivalent SINR according to the L first SINRs and the L second SINRs, where the first equivalent SINR is the average value or the maximum value of the L first SINRs, or The minimum value, or a value determined by other calculation methods, and the second equivalent SINR is the average value, or maximum value, or minimum value, or a value determined by other calculation methods of the L second SINRs. A difference between the first equivalent SINR and the second equivalent SINR is calculated.
  • the value of one bit corresponding to the L interference measurement resources may be 1, and when the difference is smaller than the third threshold, it is considered that the L interference measurement resources correspond to The value of one bit of can be 0.
  • the value of the bit corresponding to the L interference measurement resources may be 0; optionally, when the difference is smaller than the third threshold, the L interference measurement resources The value of the bit corresponding to the measurement resource may be 1.
  • the above-mentioned greater than or equal to may also be greater than.
  • the above-mentioned less than can also be replaced with less than or equal to.
  • the terminal device calculates the equivalent interference intensity of the L interference measurement resources.
  • the equivalent interference strength may be an average value, or a maximum value, or a minimum value, or a value determined by other calculation methods of the signal strength (RSRP) of the L interference measurement resources.
  • the terminal device can calculate the third equivalent SINR and the fourth equivalent SINR.
  • the fourth equivalent SINR is the SINR of the above-mentioned channel measurement resource calculated by using the above-mentioned equivalent interference strength as interference.
  • the third equivalent SINR is the SINR of the above-mentioned channel measurement resource calculated without using the above-mentioned equivalent interference intensity as interference.
  • the terminal device further calculates the difference between the third equivalent SINR and the fourth equivalent SINR.
  • the value of the bit corresponding to the L interference measurement resources may be 1, and if the difference is smaller than the third threshold, then the bit corresponding to the L interference measurement resources The value can be 0.
  • the value of the bit corresponding to the L interference measurement resources may be 0, and when the difference is smaller than the third threshold, the value of the bit corresponding to the L interference measurement resources
  • a bit can have a value of 1.
  • the above-mentioned greater than or equal to may also be greater than.
  • the above-mentioned less than can also be replaced with less than or equal to.
  • the method described in the above example is also applicable to the situation where the measurement value is RSRQ, SINR, CQI, MCS or other measurement values, and the above SINR can be replaced by RSRQ, RSRP, CQI, MCS or other measurement values.
  • the CQI is obtained by quantizing the SINR, and there is a corresponding relationship between the two.
  • the MCS is obtained by quantizing the CQI, and there is a corresponding relationship between the two.
  • the SINR value can be measured first, and then the corresponding CQI value can be obtained according to the corresponding relationship between CQI and SINR, or the SINR value can be measured first, and the corresponding CQI value can be obtained according to the corresponding relationship between CQI and SINR , and then obtain the corresponding MCS value according to the corresponding relationship between the CQI and the MCS.
  • the corresponding method above is also applicable to the calculation of various equivalent CQIs and equivalent MCSs. For the convenience of description, an example will be used below to describe the implementation method.
  • the terminal device needs to determine a first equivalent CQI and a second equivalent CQI, and determine whether the difference between the first equivalent CQI and the second equivalent CQI is greater than the third threshold. Judging whether the degree of interference caused by the L interference measurement resources to the channel measurement resources reaches a third threshold, and further determining the corresponding bit value.
  • the above-mentioned first equivalent CQI and second equivalent CQI can be obtained by the following method.
  • the terminal device can determine L first SINRs and L second SINRs according to the above method, and according to the correspondence between SINRs and CQIs, each first SINR can determine a first CQI, and each second SINR can determine One second CQI, that is, L first CQIs and L second CQIs can be obtained.
  • the average value, maximum value, or minimum value of the L first CQIs is used as the first equivalent CQI
  • the average value, maximum value, or minimum value of the L second CQIs is used as the second equivalent CQI.
  • the terminal device may determine a first equivalent SINR and a second equivalent SINR according to the above method, and then determine the first equivalent CQI according to the first equivalent SINR according to the correspondence between the SINR and the CQI, and then determine the first equivalent CQI according to the second The equivalent SINR determines the second equivalent CQI.
  • the terminal device may determine a third equivalent SINR and a fourth equivalent SINR according to the above method, and then determine the third equivalent CQI according to the third equivalent SINR according to the correspondence between SINR and CQI, and determine the third equivalent CQI according to the fourth The equivalent SINR determines the fourth equivalent CQI.
  • the terminal device needs to determine a first equivalent MCS and a second equivalent MCS, and determine whether the difference between the first equivalent MCS and the second equivalent MCS is greater than the third threshold. Judging whether the degree of interference caused by the L interference measurement resources to the channel measurement resources reaches a third threshold, and further determining the corresponding bit value.
  • the above-mentioned first equivalent MCS and second equivalent MCS can be obtained by the following method.
  • the terminal device can determine L first SINRs and L second SINRs according to the above method, and according to the correspondence between SINRs and CQIs, each first SINR can determine a first CQI, and each second SINR can determine One second CQI, that is, L first CQIs and L second CQIs can be obtained.
  • each first CQI can determine a first MCS
  • each second CQI can determine a second MCS, that is, L first MCSs and L second MCSs can be obtained.
  • the average value, or maximum value, or minimum value of the L first MCSs is used as the first equivalent MCS
  • the average value, or maximum value, or minimum value of the L second MCSs is used as the second equivalent MCS.
  • the terminal device may determine a first equivalent SINR and a second equivalent SINR according to the above method, and then determine the first equivalent CQI according to the first equivalent SINR according to the correspondence between the SINR and the CQI, and then determine the first equivalent CQI according to the second The equivalent SINR determines the second equivalent CQI. Then, according to the corresponding relationship between the CQI and the MCS, the first equivalent MCS is determined according to the first equivalent CQI, and the second equivalent MCS is determined according to the second equivalent CQI.
  • the terminal device may determine a third equivalent SINR and a fourth equivalent SINR according to the above method, and then determine the third equivalent CQI according to the third equivalent SINR according to the correspondence between SINR and CQI, and determine the third equivalent CQI according to the fourth The equivalent SINR determines the fourth equivalent CQI. Then, according to the corresponding relationship between the CQI and the MCS, the third equivalent MCS is determined according to the third equivalent CQI, and the fourth equivalent MCS is determined according to the fourth equivalent CQI.
  • multiple bits may be used to correspond to interference conditions of one or more interference measurement resources.
  • 2 bits can be used to correspond to the interference situation of one or more interference measurement resources.
  • multiple thresholds are set to form a threshold gradient. For example, according to the threshold gradient, the interference degree is divided into strong interference, strong Interference, weak interference, weaker interference, or divided into first-level interference, second-level interference, etc.
  • An interference situation in which more bits are used to correspond to one or more interference measurement resources is similar to the above example, which is not particularly limited in the present application.
  • the measurement configuration information sent by the network device configures N channel measurement resources and multiple interference measurement resources corresponding to them at the same time.
  • the terminal device can determine the N bits corresponding to the N channel measurement resources The bitmap is sent to the network device.
  • the method for determining the bitmap corresponding to each channel measurement resource is the same as the above method, and reference may be made to the above method.
  • the terminal device may also determine a bitmap and send it to the network device, and multiple consecutive bits in the bitmap may represent interference corresponding to one piece of measurement configuration information. This application does not limit this.
  • the terminal device sends the bitmap to the network device.
  • the terminal device feeds back the bitmap to the network device.
  • the value of the bit in the bitmap represents the interference situation of each interference measurement resource on the channel measurement resource.
  • the terminal device feeds back the information of each interference measurement resource reaching a certain interference level to the network device.
  • the terminal device may report the information of each interference measurement resource reaching the first threshold, for example, report the index of these interference measurement resource sets.
  • the terminal device feeds back the information of each interference measurement resource that does not reach a certain interference level to the network device.
  • the terminal device may report the information of each interference measurement resource that does not reach the first threshold, for example, report the indexes of these interference measurement resource sets.
  • each of the M channel measurement resources configured by the network device has one or more interference measurement resources corresponding to it, and the terminal device may choose to report all M channel measurement resources at one time
  • the value of K may be determined by The configuration of the network device may be included in the measurement configuration information, or reported by the terminal device capability reporting process. This application does not limit this.
  • the communication method provided by the embodiment of the present application enables the terminal device to report the respective interference results of each interference measurement resource on the channel measurement resource in the form of a bitmap, which saves transmission resources.
  • the network device uses multiple beams to simultaneously transmit data to multiple terminal devices, it can avoid simultaneous transmission of multiple beams with strong interference, thereby reducing mutual interference and improving transmission performance.
  • FIG. 4 is a schematic diagram of a communication device 400 according to an embodiment of the present application.
  • the communication device can be used to execute the method or step corresponding to the terminal device in the method 300.
  • the communication device 400 includes:
  • Transceiving unit 401 configured to receive measurement configuration information.
  • Processing unit 402 used to determine a bitmap.
  • the channel measurement resource corresponds to the serving beam and is used to measure information corresponding to the serving beam
  • the interference measurement resource corresponds to the interference beam and is used to measure information corresponding to the interference beam.
  • the M interference measurement resources may be included in one resource setting (resource setting), or one resource set (resource set), or one resource subset (resource subset).
  • N (N>1) channel measurement resources and multiple interference measurement resource sets respectively corresponding to the N channel measurement resources may be configured in the measurement configuration information, wherein each channel measurement resource corresponds to multiple
  • the number of interference measurement resources may be the same or different.
  • N channel measurement resources may be included in one resource setting, or one resource set, or one resource subset, and the N channel measurement resources may also be included in N resource settings, or N resource sets, respectively. Or in N resource subsets.
  • Resource set is a subset of resource setting, and a resource setting can include one or more resource sets.
  • Resource subset is a subset of resource set, and a resource set can include one or more resource subsets.
  • the information of the interference measurement resources to be measured may be indicated through MAC CE signaling or DCI signaling.
  • the information of the interference measurement resources to be measured may be indicated through MAC CE signaling or DCI signaling.
  • the network device indicates the information of the interference measurement resource to be measured through the MAC CE signaling, and the signaling includes one or more of the following: the index of the interference measurement resource, the index of the interference measurement resource set (such as resource set index or resource setting index), the information of the channel measurement resource or channel measurement resource set corresponding to the interference measurement resource (such as index information), the information of the measurement reporting configuration corresponding to the interference measurement resource (such as index information), the type of the interference measurement resource , TCI-state or QCL (Quasi co-location) information of the interference measurement resource, the cell corresponding to the interference measurement resource, and the BWP (Bandwidth Part, subset bandwidth) corresponding to the interference measurement resource.
  • the index of the interference measurement resource such as resource set index or resource setting index
  • the information of the channel measurement resource or channel measurement resource set corresponding to the interference measurement resource such as index information
  • the information of the measurement reporting configuration corresponding to the interference measurement resource such as index information
  • the type of the interference measurement resource TCI-state or QCL (Qua
  • the MAC CE signaling may include a bitmap, where each bit corresponds to an interference measurement resource or a group of interference measurement resources or a set of interference measurement resources, and a bit value of 1 indicates that the corresponding interference measurement resource is to be measured, A bit value of 0 indicates that the corresponding interference measurement resource is not measured. Alternatively, a bit value of 0 indicates that the corresponding interference measurement resource is to be measured, and a bit value of 1 indicates that the corresponding interference measurement resource is not measured.
  • the MAC CE signaling may also directly include the index of the interference measurement resource to be measured.
  • the information of the interference measurement resource to be measured may be indicated through the DCI, including one or more of the following: an index of the interference measurement resource, an index of the interference measurement resource set (for example, resource set index or resource setting index), Information about the channel measurement resource or channel measurement resource set corresponding to the interference measurement resource (such as index information), information about the measurement report configuration corresponding to the interference measurement resource (such as index information), the type of the interference measurement resource, and the TCI-state of the interference measurement resource Or QCL (Quasi co-location, quasi co-location) information, the cell corresponding to the interference measurement resource, and the BWP corresponding to the interference measurement resource.
  • the DCI uses a field to indicate the interference measurement resource to be measured.
  • Each field value of this field corresponds to one or a group of interference measurement resources or one or a group of interference measurement resource sets.
  • the value of this field is a certain field value, it indicates that the terminal device is required to measure the interference measurement resource corresponding to the field value.
  • the interference measurement resources corresponding to each field value can be configured through RRC signaling, or indicated through MAC CE signaling. It should be noted that the above field may be a newly introduced field specially used for indicating interference measurement resources, or may be a multiplexing of other existing fields.
  • the measurement configuration information includes a first reporting quantity, and the first reporting quantity is used to instruct the transceiving unit 401 to report the bitmap.
  • the transceiver unit 401 reports the bitmap by default.
  • the processing unit 402 performs interference measurement immediately after the transceiver unit 401 receives the measurement configuration information.
  • the transceiver unit 401 receives measurement configuration information, and the processing unit 402 performs measurement according to the measurement configuration information in each preset period.
  • the bitmap includes one or more bits, each of the one or more bits corresponds to an interference measurement resource, and each of the one or more bits The bit value is used to indicate the interference situation of a corresponding interference measurement resource to the channel measurement resource.
  • the value of each bit indicates the relationship between the degree of interference of an interference measurement resource corresponding to the bit to the channel measurement resource and the first threshold.
  • the processing unit 402 judges whether the interference degree of the above-mentioned interference measurement resource to the channel measurement resource reaches a first threshold to determine the value of the corresponding bit, and the first threshold may be a RSRP (Reference signal receiving power, reference signal received power) threshold , or RSRQ (Reference signal receiving quality, reference signal receiving quality) threshold, or SINR (Signal to Interference plus Noise Ratio, signal to interference plus noise ratio) threshold, or CQI (Channel Quality Indication, channel quality indication) threshold, or MCS (Modulation and Coding scheme, adjust the coding scheme) threshold, or other thresholds.
  • RSRP Reference signal receiving power, reference signal received power
  • RSRQ Reference signal receiving quality, reference signal receiving quality
  • SINR Signal to Interference plus Noise Ratio, signal to interference plus noise ratio
  • CQI Channel Quality Indication, channel quality indication
  • MCS Mod
  • RSRP can be obtained by directly measuring interference channel measurement resources.
  • the signal strength represents the ratio of RSRP and SINR value.
  • the signal-to-interference and noise ratio represents SINR
  • RSRQ represents the interference level of the one interference measurement resource when the interference level of the one interference measurement resource is greater than or equal to the first threshold, the value of its corresponding bit may be 1, and when the interference level of the one interference measurement resource is less than the first threshold, the value of its corresponding bit The value can be 0.
  • the value of the corresponding bit when the interference level of the one interference measurement resource is greater than or equal to the first threshold, the value of the corresponding bit may be 0, and when the interference level of the one interference measurement resource is less than the first threshold, the value of the corresponding bit The value can be 1.
  • the above greater than or equal to can also be replaced with greater than.
  • the above-mentioned less than can also be replaced with less than or equal to. A specific method for determining the degree of interference will be described below.
  • the first threshold is an absolute threshold, represented by a second threshold.
  • the absolute threshold corresponds to a specific method for determining the degree of interference from one interference measurement resource to the channel measurement resource.
  • the value of the corresponding bit may be 1, and when the interference level of the one interference measurement resource is less than the second threshold, the value of the corresponding bit Bits can have a value of 0.
  • the value of the corresponding bit may be 0, and when the interference degree of the one interference measurement resource is smaller than the second threshold, the value of the corresponding bit A bit can have a value of 1.
  • the above greater than or equal to can also be replaced with greater than.
  • the above-mentioned less than can also be replaced with less than or equal to.
  • the specific calculation method of the above interference degree is related to the expression of the interference degree by SINR/RSRP/CQI/RSRQ/MCS.
  • SINR/RSRP/CQI/RSRQ/MCS For the convenience of description, specific examples will be used for illustration below.
  • the interference degree is represented by an RSRP value
  • the second threshold is an RSRP threshold.
  • the interference measurement resource corresponds to The value of the bit of the interference measurement resource is 1, and when the RSRP value corresponding to the interference measurement resource is smaller than the second threshold, the value of the bit corresponding to the interference measurement resource is 0.
  • the value of the bit corresponding to the interference measurement resource is 0, and when the RSRP value corresponding to the interference measurement resource is smaller than the second threshold, the The value of the bit corresponding to the interference measurement resource is 1.
  • the above method is also applicable to the situation where the second threshold is a RSRQ threshold, SINR threshold, CQI threshold, MCS threshold or other measurement parameter thresholds, just replace the above RSRP value with RSRQ value, SINR value, CQI value, MCS values or other measurements are sufficient.
  • the above greater than or equal to can also be replaced with greater than.
  • the above-mentioned less than can also be replaced with less than or equal to.
  • the first threshold is a relative threshold, represented by a third threshold.
  • the relative threshold corresponds to a specific method for determining the degree of interference of the one interference measurement resource to the channel measurement resource.
  • the interference degree is determined by considering the interference of the one interference measurement resource or not considering the one interference measurement resource.
  • the difference between the interference levels of the channel measurement resources is represented, and the value of the bit corresponding to the interference measurement resource is determined according to the magnitude relationship between the difference and the third threshold.
  • the value of the bit corresponding to the one interference measurement resource when the difference is greater than or equal to the third threshold, the value of the bit corresponding to the one interference measurement resource may be 1, and when the difference is smaller than the third threshold, the value of the bit corresponding to the one interference measurement resource The value can be 0.
  • the value of the bit corresponding to the one interference measurement resource when the difference is greater than or equal to the third threshold, the value of the bit corresponding to the one interference measurement resource may be 0, and when the difference is smaller than the third threshold, the value of the bit corresponding to the one interference measurement resource The value can be 1.
  • the above-mentioned greater than or equal to may also be greater than.
  • the above-mentioned less than can also be replaced with less than or equal to.
  • the specific calculation method of the above interference degree is related to the expression of the interference degree by SINR/RSRP/CQI/RSRQ/MCS.
  • SINR/RSRP/CQI/RSRQ/MCS For the convenience of description, specific examples will be used for illustration below.
  • the degree of interference is represented by a SINR value
  • the third threshold is the SINR threshold.
  • the SINR value of the channel measurement resource without the interference of the interference measurement resource is the same as that of the channel measurement resource with The difference between the SINR values under the interference of the interference measurement resource is greater than or equal to the third threshold, then the value of the bit corresponding to the interference measurement resource is 1, and the channel measurement resource is without the interference of the interference measurement resource. If the difference between the SINR value and the SINR value of the channel measurement resource under the interference of the interference measurement resource is smaller than the third threshold, the value of the bit corresponding to the interference measurement resource may be 0.
  • the difference between the SINR value of the channel measurement resource without the interference of the interference measurement resource and the SINR value of the channel measurement resource with the interference of the interference measurement resource is greater than or equal to the third threshold, then the The value of the bit corresponding to the interference measurement resource may be 0, and the difference between the SINR value of the channel measurement resource without the interference of the interference measurement resource and the SINR value of the channel measurement resource with the interference of the interference measurement resource is less than
  • the third threshold the value of the bit corresponding to the interference measurement resource may be 1.
  • the above method is also applicable to the situation where the third threshold is a RSRQ threshold, RSRP threshold, CQI threshold, MCS threshold or other measurement parameter thresholds, just replace the above RSRP value with RSRQ value, RSRP value, CQI value, MCS value or other measurements.
  • the above greater than or equal to can also be replaced with greater than.
  • the above-mentioned less than can also be replaced with less than or equal to.
  • the bitmap includes one or more bits, each of the one or more bits corresponds to a plurality of interference measurement resources, each of the one or more bits The value of the bit is used to indicate the interference situation of the corresponding multiple interference measurement resources to the channel measurement resources.
  • the multiple interference measurement resources are configured consecutive L (L>1) interference measurement resources, that is, according to the configuration order, the continuous L interference measurement resources are taken as a group and correspond to one bit.
  • the L interference measurement resources may also be L consecutive interference measurement resources sorted according to resource index size.
  • the L interference resources may also be all resources configured in one resource set, that is, the network device may configure one or more resource sets, each resource set corresponds to a bit, or each resource set All resources correspond to one bit.
  • the value of L may be indicated by measurement configuration information.
  • the value of L may be reported by the capability reporting process of the processing unit 402 . The following uses the plurality of interference measurement resources as L to expand the description.
  • each bit represents the relationship between the degree of interference of the L interference measurement resources corresponding to the bit to the channel measurement resource and the first threshold. Reference may be made to the relevant description that the value of each bit indicates that the bit corresponds to an interference degree of an interference measurement resource to a channel measurement resource. A specific method for determining the degree of interference will be described below.
  • the first threshold is an absolute threshold, represented by a second threshold.
  • the absolute threshold corresponds to a specific method for determining the degree of interference of the L interference measurement resources on the channel measurement resources.
  • the method needs to be adapted.
  • the interference level is represented by the equivalent interference level of the L interference measurement resources. In this determination method, the relationship between the equivalent interference level of the L interference measurement resources and the second threshold determines the Values of bits corresponding to the L interference measurement resources.
  • the value of the corresponding bit when the equivalent interference levels of the L interference measurement resources are greater than or equal to the second threshold, the value of the corresponding bit may be 1, and when the equivalent interference levels of the L interference measurement resources are less than the second threshold When the threshold is set, the value of the corresponding bit can be 0.
  • the value of the corresponding bit when the equivalent channel interference levels of the L interference measurement resources are greater than or equal to the second threshold, the value of the corresponding bit may be 0, and when the equivalent channel interference levels of the L interference measurement resources are less than the second threshold When there are two thresholds, the value of the corresponding bit can be 1.
  • the above-mentioned greater than or equal to may also be greater than.
  • the equivalent signal strength may be an average value, a maximum value, or a minimum value of L signal strengths of the L interference measurement resources.
  • the above greater than or equal to can also be replaced with greater than.
  • the above-mentioned less than can also be replaced with less than or equal to.
  • the specific calculation method of the above interference degree is related to the expression of the interference degree by SINR/RSRP/CQI/RSRQ/MCS.
  • SINR/RSRP/CQI/RSRQ/MCS For the convenience of description, specific examples will be used for illustration below.
  • the interference degree is represented by an RSRP value
  • the second threshold is an RSRP threshold.
  • the average value or maximum value of the RSRP values corresponding to the L interference measurement resources , or the minimum value is greater than or equal to the second threshold, then the value of the bit corresponding to the L interference measurement resources is 1, when the average value, or maximum value, or minimum value of the RSRP values corresponding to the L interference measurement resources is less than
  • the value of the bit corresponding to the L interference measurement resources may be 0.
  • the value of the bit corresponding to the L interference measurement resources may be 0, when the average value, or the maximum value, or the minimum value of the RSRP values corresponding to the L interference measurement resources is less than the second threshold, the value of the bit corresponding to the L interference measurement resources can be 1.
  • the above method is also applicable In the case where the second threshold is a RSRQ threshold, SINR threshold, CQI threshold, MCS threshold or other measurement parameter threshold, just replace the above RSRP value with the RSRQ value, SINR value, CQI value, MCS value or other measurement values. .
  • the above greater than or equal to can also be replaced with greater than.
  • the above-mentioned less than can also be replaced with less than or equal to.
  • the first threshold is a relative threshold, represented by a third threshold.
  • the relative threshold corresponds to a specific method for determining the degree of interference of the L interference measurement resources on the channel measurement resource. For the convenience of description, the method of this implementation will be described below by way of example.
  • the processing unit 402 calculates the SINR and L difference values are obtained from the SINR difference values of the channel measurement resource under the interference of the interference measurement resource.
  • An equivalent difference is calculated from the L differences, and the equivalent difference is equal to the average value, or the maximum value, or the minimum value, or a value determined by other calculation methods.
  • the equivalent difference is greater than the third threshold, it is considered that the value of the bit corresponding to the L interference measurement resources can be 1, and if the equivalent difference is greater than the third threshold, then the L interference measurement resources correspond to The value of the bit can be 0.
  • the value of the bit corresponding to the L interference measurement resources when the equivalent difference is greater than or equal to the third threshold, the value of the bit corresponding to the L interference measurement resources may be 0, and when the equivalent difference is smaller than the third threshold, the L interference measurement resources The value of the bit corresponding to the measurement resource may be 1.
  • the above-mentioned greater than or equal to may also be greater than.
  • the above-mentioned less than can also be replaced with less than or equal to.
  • the terminal device calculates the SINR and channel The SINR of the resource under the interference of the interference measurement resource is measured to obtain L first SINRs and L second SINRs.
  • Each interference measurement resource corresponds to a first SINR and a second SINR, wherein the first SINR is the SINR of the channel measurement resource without the interference of the interference measurement resource, and the second SINR is the channel measurement resource with the interference measurement resource. SINR under interference.
  • the terminal device calculates the first equivalent SINR and the second equivalent SINR according to the L first SINRs and the L second SINRs, where the first equivalent SINR is the average value or the maximum value of the L first SINRs, or The minimum value, or a value determined by other calculation methods, and the second equivalent SINR is the average value, or maximum value, or minimum value, or a value determined by other calculation methods of the L second SINRs.
  • a difference between the first equivalent SINR and the second equivalent SINR is calculated.
  • the difference is greater than or equal to the third threshold, it is considered that the value of one bit corresponding to the L interference measurement resources can be 1, and when the difference is smaller than the third threshold, it is considered that the L interference measurement resources correspond to The value of one bit of can be 0.
  • the value of the bit corresponding to the L interference measurement resources can be 0.
  • the value of one bit corresponding to the L interference measurement resources may be 1.
  • the above-mentioned greater than or equal to may also be greater than.
  • the above-mentioned less than can also be replaced with less than or equal to.
  • the terminal device calculates the equivalent interference intensity of the L interference measurement resources.
  • the equivalent interference strength may be an average value, or a maximum value, or a minimum value, or a value determined by other calculation methods of the signal strengths of the L interference measurement resources.
  • the terminal device can calculate the third equivalent SINR and the fourth equivalent SINR.
  • the fourth equivalent SINR is the SINR of the channel measurement resource calculated by using the equivalent signal strength as interference.
  • the third equivalent SINR is the SINR of the channel measurement resource calculated without using the equivalent signal strength as interference.
  • the terminal device further calculates the difference between the third equivalent SINR and the fourth equivalent SINR.
  • the difference is greater than or equal to the third threshold, it is considered that the value of the bit corresponding to the L interference measurement resources is 1, and if the difference is smaller than the third threshold, it is considered that the value of the bit corresponding to the L interference measurement resources
  • the value of the bit may be 0.
  • the value of the bit corresponding to the L interference measurement resources may be 0.
  • the difference is less than the third threshold, it is considered The bit values corresponding to the L interference measurement resources may be 1.
  • the above-mentioned greater than or equal to may also be greater than.
  • the above-mentioned less than can also be replaced with less than or equal to.
  • the method described in the above example is also applicable to the situation where the measured value is RSRQ, RSRP, CQI, MCS or other measured values, and the above SINR can be replaced by RSRQ, RSRP, CQI, MCS or other measured values.
  • the CQI is obtained by quantizing the SINR, and there is a corresponding relationship between the two.
  • the MCS is obtained by quantizing the CQI, and there is a corresponding relationship between the two.
  • the terminal device needs to determine a first equivalent CQI and a second equivalent CQI, and determine whether the difference between the first equivalent CQI and the second equivalent CQI is greater than the third threshold. Judging whether the degree of interference caused by the L interference measurement resources to the channel measurement resources reaches a third threshold, and further determining the corresponding bit value.
  • the above-mentioned first equivalent CQI and second equivalent CQI can be obtained by the following method.
  • the terminal device can determine L first SINRs and L second SINRs according to the above method, and according to the correspondence between SINRs and CQIs, each first SINR can determine a first CQI, and each second SINR can determine One second CQI, that is, L first CQIs and L second CQIs can be obtained.
  • the average value, maximum value, or minimum value of the L first CQIs is used as the first equivalent CQI
  • the average value, maximum value, or minimum value of the L second CQIs is used as the second equivalent CQI.
  • the terminal device may determine a first equivalent SINR and a second equivalent SINR according to the above method, and then determine the first equivalent CQI according to the first equivalent SINR according to the correspondence between the SINR and the CQI, and then determine the first equivalent CQI according to the second The equivalent SINR determines the second equivalent CQI.
  • the terminal device may determine a third equivalent SINR and a fourth equivalent SINR according to the above method, and then determine the third equivalent CQI according to the third equivalent SINR according to the correspondence between SINR and CQI, and determine the third equivalent CQI according to the fourth The equivalent SINR determines the fourth equivalent CQI.
  • the terminal device needs to determine a first equivalent MCS and a second equivalent MCS, and determine whether the difference between the first equivalent MCS and the second equivalent MCS is greater than the third threshold. Judging whether the degree of interference caused by the L interference measurement resources to the channel measurement resources reaches a third threshold, and further determining the corresponding bit value.
  • the above-mentioned first equivalent MCS and second equivalent MCS can be obtained by the following method.
  • the terminal device can determine L first SINRs and L second SINRs according to the above method, and according to the correspondence between SINRs and CQIs, each first SINR can determine a first CQI, and each second SINR can determine One second CQI, that is, L first CQIs and L second CQIs can be obtained.
  • each first CQI can determine a first MCS
  • each second CQI can determine a second MCS, that is, L first MCSs and L second MCSs can be obtained.
  • the average value, or maximum value, or minimum value of the L first MCSs is used as the first equivalent MCS
  • the average value, or maximum value, or minimum value of the L second MCSs is used as the second equivalent MCS.
  • the terminal device may determine a first equivalent SINR and a second equivalent SINR according to the above method, and then determine the first equivalent CQI according to the first equivalent SINR according to the correspondence between the SINR and the CQI, and then determine the first equivalent CQI according to the second The equivalent SINR determines the second equivalent CQI. Then, according to the corresponding relationship between the CQI and the MCS, the first equivalent MCS is determined according to the first equivalent CQI, and the second equivalent MCS is determined according to the second equivalent CQI.
  • the terminal device may determine a third equivalent SINR and a fourth equivalent SINR according to the above method, and then determine the third equivalent CQI according to the third equivalent SINR according to the correspondence between SINR and CQI, and determine the third equivalent CQI according to the fourth The equivalent SINR determines the fourth equivalent CQI. Then, according to the corresponding relationship between the CQI and the MCS, the third equivalent MCS is determined according to the third equivalent CQI, and the fourth equivalent MCS is determined according to the fourth equivalent CQI.
  • multiple bits may be used to correspond to interference conditions of one or more interference measurement resources.
  • 2 bits can be used to correspond to the interference situation of one or more interference measurement resources.
  • multiple thresholds are set to form a threshold gradient. For example, according to the threshold gradient, the interference degree is divided into strong interference, strong Interference, weak interference, weaker interference, or divided into first-level interference, second-level interference, etc. This application does not specifically limit it.
  • the measurement configuration information sent by the network device simultaneously configures N channel measurement resources and multiple interference measurement resources corresponding to them.
  • the processing unit 402 may determine the N channel measurement resources corresponding to The bitmap is sent to the network device.
  • the method for determining the bitmap corresponding to each channel measurement resource is the same as the above method.
  • the processing unit 402 may also determine a bitmap and send it to the network device, and the consecutive multiples in the bitmap may represent interference corresponding to one piece of measurement configuration information. This application does not limit this.
  • the transceiver unit 401 is also configured to send the bitmap to the network device.
  • the transceiver unit 401 sends the bitmap to the network device.
  • the value of the bit in the bitmap represents the interference situation of each interference measurement resource on the channel measurement resource.
  • the transceiving unit 401 sends information of each interference measurement resource reaching a certain interference level to the network device.
  • the transceiving unit 401 may report the information of each interference measurement resource reaching the first threshold, for example, report the index of these interference measurement resource sets.
  • the transceiving unit 401 sends information of each interference measurement resource that does not reach a certain interference level to the network device.
  • the transceiving unit 401 may report information of each interference measurement resource that does not reach the first threshold, for example, report indexes of these interference measurement resource sets.
  • each of the M channel measurement resources configured by the network device has one or more interference measurement resources corresponding to it, and the transceiver unit 401 may choose to report all M channel measurement resources at one time
  • the value of K can be
  • the configuration is performed by the network device, may be included in the measurement configuration information, or may be reported by the capability reporting process of the transceiver unit 401 . This application does not limit this.
  • FIG. 5 is a schematic diagram of a communication device 500 according to an embodiment of the present application.
  • the communication device can be used to execute a method or step corresponding to a network device in method 300.
  • the communication device 500 includes:
  • Transceiving unit 501 configured to send measurement configuration information.
  • Processing unit 502 configured to determine measurement configuration information.
  • the channel measurement resource corresponds to the serving beam and is used to measure information corresponding to the serving beam
  • the interference measurement resource corresponds to the interference beam and is used to measure information corresponding to the interference beam.
  • the M interference measurement resources may be included in one resource setting (resource setting), or one resource set (resource set), or one resource subset (resource subset).
  • N (N>1) channel measurement resources and multiple interference measurement resource sets respectively corresponding to the N channel measurement resources may be configured in the measurement configuration information, wherein each channel measurement resource corresponds to multiple
  • the number of interference measurement resources may be the same or different.
  • N channel measurement resources may be included in one resource setting, or one resource set, or one resource subset, and the N channel measurement resources may also be included in N resource settings, or N resource sets, respectively. Or in N resource subsets.
  • Resource set is a subset of resource setting, and a resource setting can include one or more resource sets.
  • Resource subset is a subset of resource set, and a resource set can include one or more resource subsets.
  • the information of the interference measurement resources to be measured may be indicated through MAC CE signaling or DCI signaling.
  • the transceiver unit 501 indicates the information of the interference measurement resource to be measured by sending MAC CE signaling, the signaling includes an index of the interference measurement resource, an index of an interference measurement resource set corresponding to the interference measurement resource, and an interference measurement Resource type, TCI-state or QCL (Quasi co-location) information of interference measurement resources, cell corresponding to interference measurement resources, and BWP (Bandwidth Part, subset bandwidth) corresponding to interference measurement resources.
  • the MAC CE signaling may include a bitmap, where each bit corresponds to an interference measurement resource or a group of interference measurement resources, a bit value of 1 indicates that the corresponding interference measurement resource is to be measured, and a bit value of 0 indicates that no Measure the corresponding interference measurement resources.
  • a bit value of 0 indicates that the corresponding interference measurement resource is to be measured, and a bit value of 1 indicates that the corresponding interference measurement resource is not measured.
  • the MAC CE signaling may also directly include the index of the resource to be measured.
  • the transceiver unit 501 may send DCI to indicate the information of the interference measurement resource to be measured, including the index of the interference measurement resource, the index of the interference measurement resource set corresponding to the interference measurement resource, the type of the interference measurement resource, the interference measurement TCI-state or QCL (Quasi co-location, quasi-co-location) information of the resource, the cell corresponding to the interference measurement resource, and the BWP corresponding to the interference measurement resource.
  • the DCI uses a field to indicate the interference measurement resource to be measured. Each field value of this field corresponds to one or a group of interference measurement resources.
  • the value of this field is a certain field value, it indicates that the terminal device is required to measure the interference measurement resource corresponding to the field value.
  • the interference measurement resources corresponding to each field value can be configured through RRC signaling, or indicated through MAC CE signaling. It should be noted that the above field may be a newly introduced field specially used for indicating interference measurement resources, or may be a multiplexing of other existing fields.
  • the transceiver unit 501 is also used for receiving the bitmap.
  • FIG. 6 is a schematic diagram of a communication device 600 according to an embodiment of the present application, and the communication device 600 includes: a transceiver 601 , a processor 602 and a memory 603 .
  • the memory 603 is used to store instructions.
  • the processor 602 is coupled with the memory 603, and is configured to execute instructions stored in the memory, so as to execute the method provided by the foregoing embodiments of the present application.
  • the transceiver 601 in the communication device 600 may correspond to the transceiver unit 401 in the communication device 400
  • the processor 602 in the communication device 600 may correspond to the processing unit 402 in the communication device 400 .
  • the transceiver 601 in the communication device 600 may correspond to the transceiver unit 501 in the communication device 500
  • the processor 602 in the communication device 600 may correspond to the processing unit 502 in the communication device 500 .
  • the memory 603 and the processor 602 may be combined into a processing device, and the processor 602 is configured to execute the program codes stored in the memory 603 to implement the above functions.
  • the memory 603 may also be integrated in the processor 602, or be independent of the processor 602.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了,一种通信方法和装置,该传输信息的方法包括:从网络设备接收测量配置信息,测量配置信息用于配置信道测量资源和M个干扰测量资源,M大于或等于1,M为正整数;向网络设备发送一个比特位图,比特位图包括一个或多个比特位,一个或多个比特位中的每个比特位对应一个或多个干扰测量资源,一个或多个比特位中的每个比特位的值用于表示每个比特位对应的一个或多个干扰测量资源对信道测量资源的干扰情况,M个干扰测量资源包括一个或多个干扰测量资源。本申请实施例提供的通信方法使得终端设备通过上报比特位图能够在一次测量中上报各个干扰测量资源对信道测量资源分别造成的影响,节省传输资源,提高传输效率

Description

通信方法和通信装置
本申请要求于2021年6月18日提交中国专利局、申请号为202110681003.6、申请名称为“通信方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且,更具体地,涉及一种通信方法和通信装置。
背景技术
第五代移动通信系统(5th generation,5G)采用高频通信,即采用超高频段(>6GHz)信号传输数据。高频通信的一个主要问题是信号能量随传输距离急剧下降,导致信号传输距离短。为了克服这个问题,高频通信采用模拟波束技术,通过大规模天线阵列进行加权处理,将信号能量集中在一个较小的范围内,形成一个类似于光束一样的信号(称为模拟波束,简称波束),从而提高传输距离。
网络设备可以同时采用多个波束来分别为多个终端设备传输数据,每个波束对应一个终端设备。如图1所示,网络设备采用波束1和波束2分别为终端设备1和终端设备2传输数据。终端设备1接收波束1上传输的数据,终端设备2接收波束2上传输的数据。终端设备1也会接收到波束2上的信号,终端设备2也会接收到波束1上的信号,这些信号称为干扰信号。网络设备同时采用多个波束向多个终端设备传输数据时,对于每个终端设备,为其传输数据的波束称为服务波束,其他波束称为干扰波束。干扰波束会对服务波束上传输的数据造成干扰,会影响传输的性能。具体的,干扰波束上的干扰信号会导致服务波束的信干噪比(SINR,Signal to Noise and Interference Ration)降低,从而降低传输的吞吐。
为了降低干扰波束对服务波束的干扰,对于每个终端设备,网络设备需要知道哪些波束会对该终端设备的服务波束造成较强的干扰,从而在采用多个波束进行传输时,避免将具有较强干扰的波束与该服务波束进行同时传输。然而现有技术中,终端设备进行干扰测量后,一次只能上报一个干扰波束对服务波束的影响,或一次只能上报多个干扰波束对服务波束总的影响,灵活性较差且浪费资源。
发明内容
本申请提供一种通信方法,使得终端设备通过上报比特位图,可以在一次干扰测量上报各个干扰波束对服务波束分别造成的影响,减少资源浪费,提高资源的利用率。使得网络设备可以根据终端设备上报的比特位图,确定各个干扰波束对服务波束分别造成的影响,在采用多个波束向多个终端设备同时传输数据时,可以避免将具有较强干扰的多个波束进行同时传输,从而降低了波束之间的相互干扰,提升传输性能。
第一方面,提供了一种通信方法,包括:从网络设备接收测量配置信息,测量配置信息用于配置信道测量资源和M个干扰测量资源,M大于或等于1,M为正整数;向网络设备发送一个比特位图,比特位图包括一个或多个比特位,一个或多个比特位中的每个比特位对应一个或多个干扰测量资源,一个或多个比特位中的每个比特位的值用于表示每个比特位对应的一个或多个干扰测量资源对所述信道测量资源的干扰情况,M个干扰测量资源包括一个或多个干扰测量资源。
根据本申请提供的通信方法,通过向网络设备发送比特位图的方式,可以在一次干扰测量上报各个干扰测量资源对信道测量资源分别造成的影响,提高了上报效率,减少了资源的浪费。
结合第一方面,在第一方面的某些实现方式中,该一个或多个干扰测量资源对信道测量资源的干扰情况为一个或多个干扰测量资源对信道测量资源的干扰程度是否大于第一阈值。具体的,该一个或多个干扰测量资源对信道测量资源的干扰情况大于第一阈值,则该一个或多个干扰测量资源对应的比特位的值为1,反之为0。或,该一个或多个干扰测量资源对信道测量资源的干扰情况大于第一阈值,则该一个或多个干扰测量资源对应的比特位的值为0,反之为1。
结合第一方面,在第一方面的某些实现方式中,在每个比特位对应一个干扰测量资源的情况下,该一个干扰测量资源对所述信道测量资源的干扰程度大于第一阈值可以为该一个干扰测量资源的信号强度大于第二阈值。该第二阈值为绝对阈值,与该干扰测量资源进行直接测量得出的结果相对比。
结合第一方面,在第一方面的某些实现方式中,在每个比特位对应一个干扰测量资源的情况下,该一个干扰测量资源对所述信道测量资源的干扰程度大于第一阈值可以为信道测量资源的第一信干噪比与信道测量资源的第二信干噪比之间的差值大于第三阈值。该第三阈值为相对阈值,第一信干噪比是在不考虑该一个干扰测量资源的干扰的情况下,信道测量资源的信干噪比,第二信干噪比是在考虑一个干扰测量资源的干扰的情况下,信道测量资源的信干噪比,该第三阈值与该一个干扰测量资源干扰与不干扰时信道测量资源的测量结果的差值相对比。
结合第一方面,在第一方面的某些实现方式中,在所述每个比特位对应多个干扰测量资源的情况下,该多个干扰测量资源对信道测量资源的干扰程度大于第一阈值可以为多个干扰测量资源的平均信号强度大于第二阈值。
结合第一方面,在第一方面的某些实现方式中,在每个比特位对应多个干扰测量资源的情况下,该多个干扰测量资源对信道测量资源的干扰程度大于第一阈值可以为信道测量资源的第三信干噪比与信道测量资源的第四信干噪比之间的差值大于第三阈值,第三信干噪比是在不考虑所述多个干扰测量资源的干扰的情况下,信道测量资源的信干噪比,第四信干噪比是将多个干扰测量资源的平均干扰强度作为干扰,确定的信道测量资源的信干噪比。
结合第一方面,在第一方面的某些实现方式中,第一阈值,和/或第二阈值,和/或第三阈值通过测量配置信息进行配置。
结合第一方面,在第一方面的某些实现方式中,在每个比特位对应多个干扰测量资源的情况下,多个干扰测量资源为按照干扰测量资源的配置顺序确定的连续多个干扰测量资 源。
第二方面,提供了一种通信方法,包括:向终端设备发送测量配置信息,测量配置信息用于配置信道测量资源和M个干扰测量资源,M大于或等于1,M为正整数;从终端设备接收一个比特位图,比特位图包括一个或多个比特位,一个或多个比特位中的每个比特位对应一个或多个干扰测量资源,一个或多个比特位中的每个比特位的值用于表示每个比特位对应的一个或多个干扰测量资源对信道测量资源的干扰情况,M个干扰测量资源包括一个或多个干扰测量资源。
根据本申请提供的通信方法,通过从终端设备接收比特位图的方式,可以在一次干扰测量获得各个干扰测量资源对信道测量资源分别造成的影响,提高了上报效率,减少了资源的浪费。
结合第二方面,在第二方面的某些实现方式中,根据比特位图确述一个或多个干扰测量资源对所述信道测量资源的干扰情况,其中,一个或多个干扰测量资源对所述信道测量资源的干扰情况通过一个或多个干扰测量资源对信道测量资源的干扰程度是否大于第一阈值来确定。
第三方面,提供了一种通信装置,包括用于执行上述第一方面的通信方法的各步骤的单元。
在一种设计中,该通信装置为通信芯片,通信芯片可以包括用于发送信息或数据的输入电路或者接口,以及用于接收信息或数据的输出电路或者接口。
在另一种设计中,该通信装置为通信设备(例如,终端设备),通信芯片可以包括用于发送信息或数据的发射机,以及用于接收信息或数据的接收机。
第四方面,提供了一种通信装置,包括用于执行上述第二方面的通信方法的各步骤的单元。
在一种设计中,该通信装置为通信芯片,通信芯片可以包括用于发送信息或数据的输入电路或者接口,以及用于接收信息或数据的输出电路或者接口。
在另一种设计中,该通信装置为通信设备(例如,网络设备),通信芯片可以包括用于发送信息或数据的发射机,以及用于接收信息或数据的接收机。
第五方面,提供了一种通信设备,包括,处理器,存储器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该通信设备执行上述第一方面和第二方面中的任一方面及其各实现方式中的通信方法。
可选的,该处理器为一个或多个,该存储器为一个或多个。
可选的,该存储器可以与该处理器集成在一起,或者该存储器可以与该处理器分离设置。
可选的,该通信装置还包括,发射机(发射器)和接收机(接收器)。
第六方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也
可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述第一方面和
第二方面中的任一方面及其各实现方式中的通信方法。
第七方面,提供了一种计算机可读介质,该计算机可读介质存储有计算机程序(也可以称为代码或指令),当计算机程序被运行时,使得计算机执行上述第一方面和第二方面 中的任一方面及其各实现方式中的通信方法。
第八方面,提供了一种芯片系统,包括存储器和处理器,该存储器用于存储计算机程
序,该处理器用于从存储器中调用并运行该计算机程序,使得安装有该芯片系统的通信设
备执行上述第一方面和第二方面中的任一方面及其各实现方式中的通信方法。
其中,该芯片系统可以包括用于发送信息或数据的输入电路或者接口,以及用于接收信息或数据的输出电路或者接口。
附图说明
图1是本申请实施例多个波束同时传输的示意图。
图2是本申请实施例的系统架构图。
图3是本申请实施例提供的通信方法的一例的示意图。
图4是本申请实施例的一个通信装置示意图。
图5是本申请实施例的另一个通信装置示意图。
图6是本申请实施例的又一个通信装置示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、第五代(5th Generation,5G)系统或新无线(New Radio,NR)等。
本申请实施例中,所涉及到的终端设备可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。终端可以是移动站(Mobile Station,MS)、用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(Personal Digital Assistant,简称:PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handset)、膝上型电脑(laptop computer)、机器类型通信(Machine Type Communication,MTC)终端等。本申请实施例对此并不限定。
本申请实施例中,所涉及到的网络设备是一种部署在无线接入网中为终端设备提供无线通信功能的装置。网络设备可以包括各种形式的宏基站,微基站(也称为小站),中继站,接入点等。在采用不同的无线接入技术的系统中,网络设备的名称可能会有所不同,例如GSM(Global System for Mobile Communication,全球移动通信系统)或CDMA(Code Division Multiple Access,码分多址)网络中的BTS(Base Transceiver Station,基站收发信台),WCDMA(Wideband Code Division Multiple Access,宽带码分多址)中的NB(NodeB), LTE(Long Term Evolution,长期演进)中的eNB或eNodeB(Evolutional NodeB)。网络设备还可以是CRAN(Cloud Radio Access Network,云无线接入网络)场景下的无线控制器。网络设备还可以是5G网络中的基站设备或者未来演进的PLMN网络中的网络设备。网络设备还可以是可穿戴设备或车载设备。本申请实施例中,传输接收节点(Transmission and Reception Point,TRP)可以认为是一种网络设备,或者网络设备中的一部分,如收发机部分。例如,在采用多TRP的小区中,小区中的下行信号是通过多个TRP同时发送给终端设备的,这时可以将该多个TRP同时看作网络设备,或者可以将该多个TRP看作整个网络设备的多个发射机。
为了便于对本申请实施例通信方法展开相关描述,下面先对本申请涉及的关键术语进行说明:
1.波束。
波束在协议中的体现可以是空域滤波器(spatial domain filter),或者称空间滤波器(spatial filter),或称空域参数(spatial domain parameter),空间参数(spatial parameter),空域设置(spatial domain setting),空间设置(spatial setting),或QCL(准共址,Quasi-colocation)信息,QCL假设,QCL指示等。波束可以通过传输配置指示状态(TCI-state)参数来指示,或通过空间关系(spatial relation)参数来指示。因此,本申请中,波束可以替换为空域滤波器,空间滤波器,空域参数,空间参数,空域设置,空间设置,QCL信息,QCL假设,QCL指示,TCI-state(DL TCI-state,UL TCI-state),空间关系等。上述术语之间也相互等效。波束也可以替换为其他表示波束的术语,本申请不作限定。
用于发送信号的波束可以称为发送波束(transmission beam,Tx beam),也可以称为空域发送滤波器(spatial domain transmission filter),空间发送滤波器(spatial transmission filter),空域发送参数(spatial domain transmission parameter)或空间发送参数(spatial transmission parameter),空域发送设置(spatial domain transmission setting)或空间发送设置(spatial transmission setting)。下行发送波束可以通过TCI-state来指示。
用于接收信号的波束可以称为接收波束(reception beam,Rx beam),也可以称为空域接收滤波器(spatial domain reception filter),空间接收滤波器(spatial reception filter),空域接收参数(spatial domain reception parameter)或空间接收参数(spatial reception parameter),空域接收设置(spatial domain reception setting)或空间接收设置(spatial reception setting)。上行发送波束可以通过空间关系spatial relation,或上行TCI-state,或SRS资源(表示采用该SRS的发送波束)来指示。因此上行波束还可以替换为SRS资源。
发送波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。
波束可以是宽波束,或者窄波束,或者其他类型波束。形成波束的技术可以是波束赋形技术或者其他技术。波束赋形技术具体可以为数字波束赋形技术、模拟波束赋形技术或者混合数字、模拟波束赋形技术等。
波束一般和资源对应,例如,进行波束测量时,网络设备通过不同的资源来测量不同的波束,终端设备反馈测得的资源质量,网络设备就知道对应的波束的质量。在数据传输是,波束信息也是通过其对应的资源来进行指示的。例如网络设备通过DCI中的TCI字段,来指示终端设备PDSCH波束的信息。
可选的,将具有相同或者类似的通信特征的多个波束视为是一个波束。一个波束内可以包括一个或多个天线端口,用于传输数据信道、控制信道和探测信号等。形成一个波束的一个或多个天线端口也可以看作是一个天线端口集。
在本申请实施例中,若未做出特别说明,波束是指网络设备的发送波束。在波束测量中,网络设备的每一个波束对应一个资源,因此可以以资源的索引来唯一标识该资源对应的波束。
2.资源。
在波束测量中,可以通过资源的索引来唯一标识该资源对应的波束。资源可以是上行信号资源,也可以是下行信号资源。上行信号包括但不限于探测参考信号(sounding reference signal,SRS),解调参考信号(demodulation reference signal,DMRS)。下行信号包括但不限于:信道状态信息参考信号(channel state information reference signal,CSI-RS)、小区专用参考信号(cell specific reference signal,CS-RS)、UE专用参考信号(user equipment specific reference signal,US-RS)、解调参考信号(demodulation reference signal,DMRS)、以及同步信号/物理广播信道块(synchronization system/physical broadcast channel block,SS/PBCH block)。其中,SS/PBCH block可以简称为同步信号块(synchronization signal block,SSB)。
资源通过RRC(Radio Resource Control,无线资源控制信令)信令配置。在配置结构上,一个资源是一个数据结构,包括其对应的上行/下行信号的相关参数,例如上行/下行信号的类型,承载上行/下行信号的资源粒,上行/下行信号的发送时间和周期,发送上行/下行信号所采用的端口数等。每一个上行/下行信号的资源具有唯一的索引,以标识该下行信号的资源。可以理解的是,资源的索引也可以称为资源的标识,本申请实施例对此不作任何限制。
其中,信道资源是指网络设备配置的用于信道测量的资源。信道资源可以用于测量RSRP(Reference signal receiving power,参考信号接收功率),CQI(Channel Quality Indication,信道质量指示),SINR(Signal to Interference plus Noise Ratio,信号与干扰加噪声比等信道信息)。在测量CQI和SINR时,还需要配置干扰资源。
其中,干扰资源是指网络设备配置的用于信道测量的资源。在测量CQI和SINR等信道信息时,这些干扰资源作为干扰源,与信道资源一起计算CQI和SINR。例如,要测量一个信道资源在一个干扰资源的SINR时,可以以该信道资源的能量作为分子,该干扰资源的能量作为分母,来计算SINR。
需要说明的是,资源集合是指一组资源组成的集合,通过RRC信令进行配置。资源集合可以是资源设置resource set,或资源集resource setting,或资源子集resource set的子集,或其他形式的资源集合。
3.波束管理或波束测量。
波束测量可以用于测量波束的质量,例如测量波束的RSRP或SINR。
图2是本申请实施例的系统架构图。如图2的(a)中所示,单个网络设备可以向单个或者多个终端设备传输数据或控制信令,如图2的(b)中所示,多个网络设备可以同时为单个终端设备传输数据或控制信令。
如图3所示是本申请实施例通信方法的示意性流程图。如图3所示,该通信方法300 包括:
S301,网络设备向终端设备发送测量配置信息。
优选的,该测量配置信息用于给终端设备配置M(M>=1)个干扰测量资源和一个信道测量资源。需要说明的是,信道测量资源对应服务波束,用于测量服务波束对应的信息,干扰测量资源对应干扰波束,用于测量干扰波束对应的信息。
需要说明的是,该M个干扰测量资源可以包含在一个资源设置(resource setting),或一个资源集(resource set),或一个资源子集(resource subset)。
可选的,该测量配置信息中可以同时配置N(N>1)个信道测量资源和该N个信道测量资源分别对应的多个干扰测量资源,其中,每个信道测量资源对应的多个干扰测量资源的个数可以相同,也可以不同。
需要说明的是,该N个信道测量资源可以包含在一个resource setting,或一个resource set,或一个resource subset,该N个信道测量资源也可以分别包含在N个resource setting,或N个resource set,或N个resource subset中。需要说明的是,Resource set是resource setting中的一个子集,一个resource setting可以包括一个或多个resource set。Resource subset是resource set中的一个子集,一个resource set可以包括一个或多个resource subset。
可选的,可以通过MAC CE信令或DCI信令指示要测量的干扰测量资源的信息。
在某些实施例中,网络设备通过MAC CE信令指示要测量的干扰测量资源的信息,该信令包括以下一项或多项:干扰测量资源的索引,干扰测量资源集合的索引(例如,resource set index或resource setting index),干扰测量资源对应的信道测量资源或信道测量资源集合的信息(例如索引信息),干扰测量资源对应的测量上报配置的信息(例如索引信息),干扰测量资源的类型,干扰测量资源的TCI-state或QCL(Quasi co-location,准共址)信息,干扰测量资源对应的小区,干扰测量资源对应的BWP(Bandwidth Part,子集带宽)。可选的,MAC CE信令可以包括一个比特位图,其中每个比特对应一个干扰测量资源或一组干扰测量资源或一个或一组干扰测量资源集合,比特值为1表示要测量对应的干扰测量资源,比特值为0表示不测量对应的干扰测量资源。或者,比特值为0表示要测量对应的干扰测量资源,比特值为1表示不测量对应的干扰测量资源。可选的,MAC CE信令也可以直接包含要测量的干扰测量资源的索引。
在某些实施例中,可以通过DCI指示要测量干扰测量资源的信息,包括以下一项或多项:干扰测量资源的索引,干扰测量资源集合的索引(例如resource set index或resource setting index),干扰测量资源对应的信道测量资源或信道测量资源集合的信息(例如索引信息),干扰测量资源对应的测量上报配置的信息(例如索引信息),干扰测量资源的类型,干扰测量资源的TCI-state或QCL(Quasi co-location,准共址)信息,干扰测量资源对应的小区,干扰测量资源对应的BWP。可选的,DCI通过一个字段来指示要测量的干扰测量资源。该字段的每个字段值对应一个或一组干扰测量资源或一个或一组干扰测量资源集合。可选的,该字段的取值为某个字段值时,表示要求终端设备测量该字段值对应的干扰测量资源。其中,每个字段值对应的干扰测量资源可以通过RRC信令进行配置,或者通过MAC CE信令进行指示。需要说明的是,上述字段可以是一个新引入的专门用于干扰测量资源指示的字段,可以是复用其他已有的字段。
通过上述方法可以实现动态的干扰测量资源的更新,提高配置干扰测量资源的灵活度。
需要说明的是,本申请实施例以一个信道测量资源和其对应的M个干扰测量资源为例展开说明。
S302,终端设备确定比特位图。
具体的,终端设备接收测量配置信息,进一步的,根据测量配置信息确定比特位图。可选的,该测量配置信息中包括第一上报量,第一上报量用于指示终端设备上报比特位图。可选的,终端设备默认上报比特位图。
可选的,终端设备接收测量配置信息后立即进行干扰测量。可选的,终端设备接收测量配置信息,在预先设定的每个周期内都根据该测量配置信息进行测量。
在某些优选的实施例中,该比特位图包括一个或多个比特位,该一个或多个比特位中的每个比特位对应一个干扰测量资源,该一个或多个比特位中每个比特位的值用于表示其对应的一个干扰测量资源对信道测量资源的干扰情况。
具体的,每个比特位的值表示该比特位对应的一个干扰测量资源对信道测量资源的干扰程度与第一阈值的大小关系。终端设备判断上述一个干扰测量资源对信道测量资源的干扰程度是否达到第一阈值来确定对应的比特位的值,该第一阈值可以是一个RSRP(Reference signal receiving power,参考信号接收功率)阈值,RSSI(Received Signal Strength Indication,接收的信号强度指示)阈值,或RSRQ(Reference signal receiving quality,参考信号接收质量)阈值,或SINR(Signal to Interference plus Noise Ratio,信号与干扰加噪声比)阈值,或CQI(Channel Quality Indication,信道质量指示)阈值,或MCS(Modulation and Coding scheme,调整编码方案)阈值,或其他阈值。需要说明的是,RSRP和RSSI是信号强度指标,本申请中的信号强度可以具体指RSRP,或RSSI,或其他指标。SINR和CQI是信干噪比指标,本申请中的信干噪比可以具体指SINR,CQI,或其他指标。MCS是与CQI具有关联关系的一个指标,通过CQI可以确定一个对应的MCS。当测量干扰测量资源时,干扰测量资源的信号强度可以具体指RSRP,RSSI。干扰测量资源的干扰程度,可以是指RSRP,RSSI,也可以是指在该干扰测量资源干扰下,信道测量资源对应的信干噪比。
可选的,当该一个干扰测量资源的干扰程度大于或等于第一阈值时,其对应的比特位的值可以为1,当该一个干扰测量资源的干扰程度小于第一阈值时,其对应的比特位的值可以为0,或,该一个干扰测量资源的干扰程度大于或等于第一阈值时,其对应的比特位的值可以为0,该一个干扰测量资源的干扰程度小于第一阈值时,其对应的比特位的值可以为1。该大于或等于也可以为大于,该小于也可以为小于等于下面将对该干扰程度的具体确定方法展开说明。
在一种可能的实现方式中,该第一阈值为绝对阈值,用第二阈值表示,应理解,该绝对阈值对应该一个干扰测量资源对信道测量资源的干扰程度的具体确定方法可选的,当该一个干扰测量资源的干扰程度大于或等于第二阈值时,其对应的比特位的值可以为1,该一个干扰测量资源的干扰程度小于第二阈值时,其对应的比特位的值可以为0。可选的,当该一个干扰测量资源的干扰程度大于或等于第二阈值时,其对应的比特位的值可以为0,该一个干扰测量资源的干扰程度小于第二阈值时,其对应的比特位的值可以为1。上述大于或等于也可以为大于。上述小于也可以替换为小于或等于。
需要说明的是,上述干扰程度的具体计算方法与该干扰程度用SINR/RSRP/CQI /RSRQ/MCS表示有关。为了便于描述,下面将以具体的例子进行说明。
作为示例而非限定,该干扰程度用RSRP值表示,第二阈值为一个RSRP阈值,对于一个干扰测量资源,可选的,当该干扰测量资源对应的RSRP值大于或等于第二阈值,则该干扰测量资源对应的比特位的值为1,当该干扰测量资源对应的RSRP值小于第二阈值,则该干扰测量资源对应的比特位的值为0。可选的,当该干扰测量资源对应的RSRP值大于或等于第二阈值,则该干扰测量资源对应的比特位的值为0,当该干扰测量资源对应的RSRP值小于第二阈值,则该干扰测量资源对应的比特位的值1。同理,上述方法同样适用于第二阈值为一个RSRQ阈值,SINR阈值,CQI阈值,MCS阈值或其他测量参数阈值的情形,只需将上述RSRP值替换为RSRQ值,SINR值,CQI值,MCS值或其他测量值即可。上述大于或等于也可以替换为大于。上述小于也可以替换为小于等于。
在一种可能的实现方式中,该第一阈值为相对阈值,用第三阈值表示。应理解,该相对阈值对应该一个干扰测量资源对信道测量资源的干扰程度的具体确定方法,作为示例而非限定,该干扰程度用考虑该一个干扰测量资源的干扰时与不考虑该一个干扰测量资源的干扰时,信道测量资源的干扰程度的差值来表示,用该差值与第三阈值的大小关系确定该一个干扰测量资源对应的比特位的值。可选的,当该差值大于或等于第三阈值时,该一个干扰测量资源对应的比特位的值可以为1,当该差值小于第三阈值时,该一个干扰测量资源对应的比特位的值可以为0。可选的,当该差值大于或等于第三阈值时,该一个干扰测量资源对应的比特位的值可以为0,当该差值小于第三阈值时,该一个干扰测量资源对应的比特位的值可以为1。上述大于或等于也可以为大于。上述小于也可以替换为小于或等于。
需要说明的是,上述干扰程度的具体计算方法与该干扰程度用SINR/RSRP/CQI/RSRQ/MCS表示有关。为了便于描述,下面将以具体的例子进行说明。
作为示例而非限定,该干扰程度用SINR值表示,该第三阈值为SINR阈值,对于一个干扰测量资源,可选的,信道测量资源在没有该干扰测量资源的干扰下的SINR值与信道测量资源在有该干扰测量资源的干扰下的SINR值之间的差值大于或等于该第三阈值,则该干扰测量资源对应的比特位的值可以为1,信道测量资源在没有该干扰测量资源的干扰下的SINR值与信道测量资源在有该干扰测量资源的干扰下的SINR值之间的差值小于该第三阈值,则该干扰测量资源对应的比特位的值可以为0。可选的,信道测量资源在没有该干扰测量资源的干扰下的SINR值与信道测量资源在有该干扰测量资源的干扰下的SINR值之间的差值大于或等于该第三阈值,则该干扰测量资源对应的比特位的值可以为0,信道测量资源在没有该干扰测量资源的干扰下的SINR值与信道测量资源在有该干扰测量资源的干扰下的SINR值之间的差值小于该第三阈值,则该干扰测量资源对应的比特位的值可以为1。同理,上述方法同样适用于第三阈值为一个RSRQ阈值,SINR阈值,CQI阈值,MCS阈值或其他测量参数阈值的情形,只需将上述RSRP值替换为RSRQ值,RSRP值,CQI值,MCS值或其他测量值即可。上述大于或等于也可以替换为大于,上述小于也可以替换为大于或等于。
在某些实施例中,该比特位图包括一个或多个比特位,该一个或多个比特位对应多个干扰测量资源,该一个或多个比特位中每个比特位的值用于表示其对应的多个干扰测量资源对信道测量资源的干扰情况。
可选的,该多个干扰测量资源是配置上连续的L(L>1)个干扰测量资源,即按照配置顺序,将连续的L个干扰测量资源作为一组对应一个比特。可选的,该L个干扰测量资源也可以是按照资源索引大小顺序排序后,连续的L个干扰测量资源。可选的,该L个干扰资源也可以是配置在一个资源集合中的所有资源,即网络设备可以配置一个或多个资源集合,每个资源集合对应一个比特位,或每个资源集合中的所有资源对应一个比特位。可选的,L的值可以由测量配置信息进行指示。可选的,L的值可以由终端能力上报过程进行上报。下面以该多个干扰测量资源为L个展开说明。
具体的,每个比特位的值表示该比特位对应的L个干扰测量资源对信道测量资源的干扰程度与第一阈值的大小关系。可参见上述每个比特位的值表示该比特位对应一个干扰测量资源对信道测量资源的干扰程度的相关描述。下面将对该干扰程度的具体确定方法展开说明。
在一种可能的实现方式中,该第一阈值为绝对阈值,用第二阈值表示,应理解,该绝对阈值对应该L个干扰测量资源对信道测量资源的干扰程度的具体确定方法,当对应L个干扰测量资源时,该方法需要进行适应性修改。作为示例而非限定,该干扰程度用该L个干扰测量资源的等效干扰程度来表示,在该确定方法中,该L个干扰测量资源的等效干扰程度与第二阈值的大小关系确定该L个干扰测量资源对应的比特位的值。可选的,当该L个干扰测量资源的等效干扰程度大于或等于第二阈值时,其对应的比特位的值可以为1,当该L个干扰测量资源的等效干扰程度小于第二阈值时,其对应的比特位的值可以为0。可选的,当该L个干扰测量资源的等效干扰程度大于或等于第二阈值时,其对应的比特位的值可以为0,当该L个干扰测量资源的等效干扰程度小于第二阈值时,其对应的比特位的值可以为1。上述大于或等于也可以为大于。上述小于也可以为小于等于。需要说明的是,该等效干扰程度可以为L个干扰测量资源的L各干扰程度的平均值,或最大值,或最小值。
需要说明的是,上述干扰程度的具体计算方法与该干扰程度用SINR/RSRP/RSSI/CQI/RSRQ/MCS表示有关。为了便于描述,下面将以具体的例子进行说明。
作为示例而非限定,该干扰程度用RSRP值表示,第二阈值为一个RSRP阈值,对于L个干扰测量资源,可选的,当该L个干扰测量资源对应的RSRP值的平均值,或最大值,或最小值大于或等于第二阈值,则该L个干扰测量资源对应的比特位的值可以为1,当该L个干扰测量资源对应的RSRP值的平均值,或最大值,或最小值小于第二阈值,则该L个干扰测量资源对应的比特位的值可以为0。可选的,当该L个干扰测量资源对应的RSRP值的平均值,或最大值,或最小值大于或等于第二阈值,则该L个干扰测量资源对应的比特位的值可以为0,当该L个干扰测量资源对应的RSRP值的平均值,或最大值,或最小值小于第二阈值,则该L个干扰测量资源对应的比特位的值可以为1。同理,上述方法同样适用于第二阈值为一个RSRQ阈值,SINR阈值,CQI阈值,MCS阈值或其他测量参数阈值的情形,只需将上述RSRP值替换为RSRQ值,SINR值,CQI值,MCS值或其他测量值即可。上述大于或等于也可以替换为大于。上述小于也可以替换为小于或等于。
在一种可能的实现方式中,该第一阈值为相对阈值,用第三阈值表示。应理解,该相对阈值对应该L个干扰测量资源对信道测量资源的干扰程度的具体确定方法,为了描述方便,下面将通过示例对该实现方式的方法展开描述。
可选的,以测量SINR值为例,对于一个比特位对应的L个干扰测量资源中的每个干扰测量资源,终端设备计算对应的信道测量资源在没有该干扰测量资源的干扰下的SINR和信道测量资源在有该干扰测量资源的干扰下的SINR的差值,得到L个差值。通过该L个差值计算出一个等效差值,该等效差值等于L个差值的平均值,或最大值,或最小值,或其他计算方式确定的值。可选的,该等效差值大于第三阈值,则该L个干扰测量资源对应的比特位的值可以为1,该等效差值大于第三阈值,则该L个干扰测量资源对应的比特位的值可以为0。可选的,当该等效差值大于或等于第三阈值时,该L个干扰测量资源对应的比特位的值可以为0,当该等效差值小于第三阈值时,该L个干扰测量资源对应的比特位的值可以为1。上述大于或等于也可以为大于。上述小于也可以替换为小于或等于。可选的,以测量SINR值为例,对于一个比特对应的L个干扰测量资源中的每个干扰测量资源,终端设备计算对应的信道测量资源在没有该干扰测量资源的干扰下的SINR和信道测量资源在有该干扰测量资源的干扰下的SINR,得到L个第一SINR和L个第二SINR。每个干扰测量资源对应一个第一SINR和一个第二SINR,其中第一SINR为信道测量资源在没有该干扰测量资源的干扰下的SINR,第二SINR为信道测量资源在有该干扰测量资源的干扰下的SINR。终端设备根据L个第一SINR和L个第二SINR计算出第一等效SINR和第二等效SINR,其中第一等效SINR为该L个第一SINR的平均值,或最大值,或最小值,或其他计算方式确定的值第二等效SINR为该L个第二SINR的平均值,或最大值,或最小值,或其他计算方式确定的值。计算第一等效SINR与第二等效SINR的差值。可选的,当该差值大于或等于第三阈值,则该L个干扰测量资源对应的一比特的值可以为1,当该差值小于第三阈值,则认为该L个干扰测量资源对应的一比特的值可以为0。可选的,当该差值大于或等于第三阈值时,该L个干扰测量资源对应的比特位的值可以为0,可选的,当该差值小于第三阈值时,该L个干扰测量资源对应的比特位的值可以为1。上述大于或等于也可以为大于。上述小于也可以替换为小于或等于。
可选的,以测量SINR值为例,对于一个比特对应的L个干扰测量资源,终端设备计算该L个干扰测量资源的等效干扰强度。该等效干扰强度可以是该L个干扰测量资源的信号强度(RSRP)的平均值,或最大值,或最小值,或其他计算方式确定的值。对于对应的信道测量资源,终端设备可以计算第三等效SINR和第四等效SINR。第四等效SINR是将上述等效干扰强度作为干扰,计算得到的上述信道测量资源的SINR。第三等效SINR是不将上述等效干扰强度作为干扰,计算得到的上述信道测量资源的SINR。终端设备进一步计算第三等效SINR与第四等效SINR之间的差值。可选的,该差值大于或等于第三阈值,则该L个干扰测量资源对应的比特位的值可以为1,该差值小于第三阈值,则该L个干扰测量资源对应的比特位的值可以为0。可选的,当该差值大于或等于第三阈值时,该L个干扰测量资源对应的比特位的值可以为0,当该差值小于第三阈值时,该L个干扰测量资源对应的比特位的值可以为1。上述大于或等于也可以为大于。上述小于也可以替换为小于或等于。
需要说明的是,上述例子所描述的方法同样适用于测量值为RSRQ,SINR,CQI,MCS或其他测量的情形,将上述SINR替换为RSRQ,RSRP,CQI,MCS或其他测量值即可。
需要特别说明的是,CQI是由SINR量化得到的,两者有对应关系。MCS是由CQI 量化得到的,两者有对应关系。当测量CQI和MCS时,可以先测量SINR值,再根据CQI与SINR的对应关系,得出对应的CQI值,或先测量SINR值,在根据CQI与SINR的对应关系,得出对应的CQI值,再根据CQI和MCS的对应关系,得出对应的MCS值。上述对应方法同样适用于各种等效CQI和等效MCS的计算,为了方便描述,下面将通过示例对该实现方式的方法展开描述。
具体的,以测量CQI值为例,终端设备需要确定一个第一等效CQI和一个第二等效CQI,根据第一等效CQI和第二等效CQI的差值是否大于第三阈值,来判断该L个干扰测量资源对信道测量资源造成的干扰程度是否达到第三阈值,进一步确定对应的比特位的值。上述第一等效CQI和第二等效CQI可以通过以下方法得到。
可选的,终端设备可以根据上述方法确定L个第一SINR和L个第二SINR,根据SINR与CQI的对应关系,每个第一SINR可以确定一个第一CQI,每个第二SINR可以确定一个第二CQI,即可以得到L个第一CQI和L个第二CQI。以这L个第一CQI的平均值,或最大值,或最小值作为第一等效CQI,以这L个第二CQI的平均值,或最大值,或最小值作为第二等效CQI。
可选的,终端设备可以按照上述方法确定一个第一等效SINR和一个第二等效SINR,然后根据SINR与CQI的对应关系,根据第一等效SINR确定第一等效CQI,根据第二等效SINR确定第二等效CQI。
可选的,终端设备可以按照上述方法确定一个第三等效SINR和一个第四等效SINR,然后根据SINR与CQI的对应关系,根据第三等效SINR确定第三等效CQI,根据第四等效SINR确定第四等效CQI。
具体的,以测量MCS值为例,终端设备需要确定一个第一等效MCS和一个第二等效MCS,根据第一等效MCS和第二等效MCS的差值是否大于第三阈值,来判断该L个干扰测量资源对信道测量资源造成的干扰程度是否达到第三阈值,进一步确定对应的比特位的值。上述第一等效MCS和第二等效MCS可以通过以下方法得到。
可选的,终端设备可以按照上述方法确定L个第一SINR和L个第二SINR,根据SINR与CQI的对应关系,每个第一SINR可以确定一个第一CQI,每个第二SINR可以确定一个第二CQI,即可以得到L个第一CQI和L个第二CQI。根据CQI与MCS的对应关系,每个第一CQI可以确定一个第一MCS,每个第二CQI可以确定一个第二MCS,即可以得到L个第一MCS和L个第二MCS。以这L个第一MCS的平均值,或最大值,或最小值作为第一等效MCS,以这L个第二MCS的平均值,或最大值,或最小值作为第二等效MCS。
可选的,终端设备可以按照上述方法确定一个第一等效SINR和一个第二等效SINR,然后根据SINR与CQI的对应关系,根据第一等效SINR确定第一等效CQI,根据第二等效SINR确定第二等效CQI。再根据CQI与MCS的对应关系,根据第一等效CQI确定第一等效MCS,根据第二等效CQI确定第二等效MCS。
可选的,终端设备可以按照上述方法确定一个第三等效SINR和一个第四等效SINR,然后根据SINR与CQI的对应关系,根据第三等效SINR确定第三等效CQI,根据第四等效SINR确定第四等效CQI。再根据CQI与MCS的对应关系,根据第三等效CQI确定第三等效MCS,根据第四等效CQI确定第四等效MCS。
在某些实施例中,可以用多个比特位对应一个或多个干扰测量资源的干扰情况。作为示例而非限定,可以用2个比特位对应一个或多个干扰测量资源的干扰情况,对应的,设置多个阈值形成阈值梯度,例如,根据阈值梯度将干扰程度划分为较强干扰,强干扰,弱干扰,较弱干扰,或划分为一级干扰,二级干扰等。采用更多个比特位对应一个或多个干扰测量资源的干扰情况与上述示例类似,本申请对此不做特别限定。
在某些实施例中,网络设备发送的测量配置信息同时配置N个信道测量资源和其分别对应的多个干扰测量资源,可选的,终端设备可以确定N个信道测量资源对应的N个比特位图发送给网络设备。其中,每个信道测量资源对应的比特位图的确定方法与上述方法相同,可参照上述方法。可选的,终端设备也可以确定一个比特位图发送给网络设备,可以为该比特位图中的连续多位代表一个测量配置信息对应的干扰。本申请对此不做限定。
S303,终端设备向网络设备发送比特位图。
在某些优选的实施例中,终端设备向网络设备反馈比特位图。通过比特位图中的比特为的值表示各个干扰测量资源对信道测量资源的干扰情况。
在某些实施例中,终端设备向网络设备反馈达到某干扰程度的各个干扰测量资源的信息。作为示例而非限定,终端设备可以上报达到第一阈值的各个干扰测量资源的信息,例如上报这些干扰测量资源集合的索引。
在某些实施例中,终端设备向网络设备反馈未达到某干扰程度的各个干扰测量资源的信息。作为示例而非限定,终端设备可以上报未达到第一阈值的各个干扰测量资源的信息,例如上报这些干扰测量资源集合的索引。
在某些实施例中,网络设备配置的M个信道测量资源中的每个信道测量资源都存在与他相对应的一个或多个干扰测量资源,终端设备可以选择一次上报所有M个信道测量资源对应的干扰测量资源的干扰结果,也可以选择一次上报其中K(K>=1)个信道测量资源对应的干扰测量资源集合的干扰结果,在一种可能的实现方式中,K的值可以由网络设备进行配置,可以包括在测量配置信息中,也可以由终端设备能力上报过程进行上报。本申请对此不做限定。
本申请实施例提供的通信方法,使得终端设备可以采用比特位图的方式上报各个干扰测量资源对信道测量资源分别的干扰结果,节约了传输资源。使得网络设备在采用多个波束向多个终端设备同时传输数据时,可以避免将具有较强干扰的多个波束进行同时传输,从而降低了相互之间的干扰,提升传输的性能。
图4为本申请实施例的通信装置400的示意图,该通信装置可以用于执行方法300中终端设备对应的方法或步骤,该通信装置400包括:
收发单元401:用于接收测量配置信息。
处理单元402:用于确定比特位图。
优选的,该测量配置信息用于给该处理单元402配置M(M>=1)个干扰测量资源和一个信道测量资源。需要说明的是,信道测量资源对应服务波束,用于测量服务波束对应的信息,干扰测量资源对应干扰波束,用于测量干扰波束对应的信息。
需要说明的是,该M个干扰测量资源可以包含在一个资源设置(resource setting),或一个资源集(resource set),或一个资源子集(resource subset)。
可选的,该测量配置信息中可以同时配置N(N>1)个信道测量资源和该N个信道测量 资源分别对应的多个干扰测量资源集合,其中,每个信道测量资源对应的多个干扰测量资源的个数可以相同,也可以不同。
需要说明的是,该N个信道测量资源可以包含在一个resource setting,或一个resource set,或一个resource subset,该N个信道测量资源也可以分别包含在N个resource setting,或N个resource set,或N个resource subset中。需要说明的是,Resource set是resource setting中的一个子集,一个resource setting可以包括一个或多个resource set。Resource subset是resource set中的一个子集,一个resource set可以包括一个或多个resource subset。
可选的,可以通过MAC CE信令或DCI信令指示要测量的干扰测量资源的信息。
可选的,可以通过MAC CE信令或DCI信令指示要测量的干扰测量资源的信息。
在某些实施例中,网络设备通过MAC CE信令指示要测量的干扰测量资源的信息,该信令包括以下一项或多项:干扰测量资源的索引,干扰测量资源集合的索引(例如resource set index或resource setting index),干扰测量资源对应的信道测量资源或信道测量资源集合的信息(例如索引信息),干扰测量资源对应的测量上报配置的信息(例如索引信息),干扰测量资源的类型,干扰测量资源的TCI-state或QCL(Quasi co-location,准共址)信息,干扰测量资源对应的小区,干扰测量资源对应的BWP(Bandwidth Part,子集带宽)。可选的,MAC CE信令可以包括一个比特位图,其中每个比特对应一个干扰测量资源或一组干扰测量资源或一个干扰测量资源集合,比特值为1表示要测量对应的干扰测量资源,比特值为0表示不测量对应的干扰测量资源。或者,比特值为0表示要测量对应的干扰测量资源,比特值为1表示不测量对应的干扰测量资源。可选的,MAC CE信令也可以直接包含要测量的干扰测量资源的索引。
在某些实施例中,可以通过DCI指示要测量干扰测量资源的信息,包括以下一项或多项:干扰测量资源的索引,干扰测量资源集合的索引(例如resource set index或resource setting index),干扰测量资源对应的信道测量资源或信道测量资源集合的信息(例如索引信息),干扰测量资源对应的测量上报配置的信息(例如索引信息),干扰测量资源的类型,干扰测量资源的TCI-state或QCL(Quasi co-location,准共址)信息,干扰测量资源对应的小区,干扰测量资源对应的BWP。可选的,DCI通过一个字段来指示要测量的干扰测量资源。该字段的每个字段值对应一个或一组干扰测量资源或一个或一组干扰测量资源集合。可选的,该字段的取值为某个字段值时,表示要求终端设备测量该字段值对应的干扰测量资源。其中,每个字段值对应的干扰测量资源可以通过RRC信令进行配置,或者通过MAC CE信令进行指示。需要说明的是,上述字段可以是一个新引入的专门用于干扰测量资源指示的字段,可以是复用其他已有的字段。
通过上述方法可以实现动态的干扰测量资源的更新,提高配置干扰测量资源的灵活度。
需要说明的是,本申请实施例以一个信道测量资源和其对应的M个干扰测量资源为例展开说明。
可选的,该测量配置信息中包括第一上报量,第一上报量用于指示收发单元401上报比特位图。可选的,收发单元401默认上报比特位图。
可选的,收发单元401接收测量配置信息后该处理单元402立即进行干扰测量。可选的,收发单元401接收测量配置信息,处理单元402在预先设定的每个周期内都根据该测量配置信息进行测量。
在某些优选的实施例中,该比特位图包括一个或多个比特位,该一个或多个比特位中的每个比特位对应一个干扰测量资源,该一个或多个比特位中每个比特位的值用于表示其对应的一个干扰测量资源对信道测量资源的干扰情况。
具体的,每个比特位的值表示该比特位对应的一个干扰测量资源对信道测量资源的干扰程度与第一阈值的大小关系。处理单元402判断上述一个干扰测量资源对信道测量资源的干扰程度是否达到第一阈值来确定对应的比特位的值,该第一阈值可以是一个RSRP(Reference signal receiving power,参考信号接收功率)阈值,或RSRQ(Reference signal receiving quality,参考信号接收质量)阈值,或SINR(Signal to Interference plus Noise Ratio,信号与干扰加噪声比)阈值,或CQI(Channel Quality Indication,信道质量指示)阈值,或MCS(Modulation and Coding scheme,调整编码方案)阈值,或其他阈值。需要说明的是,RSRP可以通过直接对干扰信道测量资源测量得出,在本申请实施例中信号强度表示RSRP,SINR值表示的比值,在本申请实施例中信干噪比表示SINR,RSRQ表示可选的,当该一个干扰测量资源的干扰程度大于或等于第一阈值时,其对应的比特位的值可以为1,该一个干扰测量资源的干扰程度小于第一阈值时,其对应的比特位的值可以为0。可选的,该一个干扰测量资源的干扰程度大于或等于第一阈值时,其对应的比特位的值可以为0,该一个干扰测量资源的干扰程度小于第一阈值时,其对应的比特位的值可以为1。上述大于或等于也可以替换为大于。上述小于也可以替换为小于或等于。下面将对该干扰程度的具体确定方法展开说明。
在一种可能的实现方式中,该第一阈值为绝对阈值,用第二阈值表示,应理解,该绝对阈值对应该一个干扰测量资源对信道测量资源的干扰程度的具体确定方法。可选的,当该一个干扰测量资源的干扰程度大于或等于第二阈值时,其对应的比特位的值可以为1,该一个干扰测量资源的干扰程度小于第二阈值时,其对应的比特位的值可以为0。可选的,当该一个干扰测量资源的干扰程度大于或等于第二阈值时,其对应的比特位的值可以为0,该一个干扰测量资源的干扰程度小于第二阈值时,其对应的比特位的值可以为1。上述大于或等于也可以替换为大于。上述小于也可以替换为小于或等于。
需要说明的是,上述干扰程度的具体计算方法与该干扰程度用SINR/RSRP/CQI/RSRQ/MCS表示有关。为了便于描述,下面将以具体的例子进行说明。
作为示例而非限定,该干扰程度用RSRP值表示,第二阈值为一个RSRP阈值,对于一个干扰测量资源,如果该干扰测量资源对应的RSRP值大于或等于第二阈值,则该干扰测量资源对应的比特位的值为1,当该干扰测量资源对应的RSRP值小于第二阈值,则该干扰测量资源对应的比特位的值为0。可选的,当该干扰测量资源对应的RSRP值大于或等于第二阈值,则该干扰测量资源对应的比特位的值为0,当该干扰测量资源对应的RSRP值小于第二阈值,则该干扰测量资源对应的比特位的值1。同理,上述方法同样适用于第二阈值为一个RSRQ阈值,SINR阈值,CQI阈值,MCS阈值或其他测量参数阈值的情形,只需将上述RSRP值替换为RSRQ值,SINR值,CQI值,MCS值或其他测量值即可。上述大于或等于也可以替换为大于。上述小于也可以替换为小于或等于。
在一种可能的实现方式中,该第一阈值为相对阈值,用第三阈值表示。应理解,该相对阈值对应该一个干扰测量资源对信道测量资源的干扰程度的具体确定方法,作为示例而非限定,该干扰程度用考虑该一个干扰测量资源的干扰时与不考虑该一个干扰测量资源的 干扰时,信道测量资源的干扰程度的差值来表示,用该差值与第三阈值的大小关系确定该一个干扰测量资源对应的比特位的值。可选的,当该差值大于或等于第三阈值时,该一个干扰测量资源对应的比特位的值可以为1,当该差值小于第三阈值时,该一个干扰测量资源对应的比特位的值可以为0。可选的,当该差值大于或等于第三阈值时,该一个干扰测量资源对应的比特位的值可以为0,当该差值小于第三阈值时,该一个干扰测量资源对应的比特位的值可以为1。上述大于或等于也可以为大于。上述小于也可以替换为小于或等于。
需要说明的是,上述干扰程度的具体计算方法与该干扰程度用SINR/RSRP/CQI/RSRQ/MCS表示有关。为了便于描述,下面将以具体的例子进行说明。
作为示例而非限定,该干扰程度用SINR值表示,该第三阈值为SINR阈值,对于一个干扰测量资源,如果信道测量资源在没有该干扰测量资源的干扰下的SINR值与信道测量资源在有该干扰测量资源的干扰下的SINR值之间的差值大于或等于该第三阈值,则该干扰测量资源对应的比特位的值为1,信道测量资源在没有该干扰测量资源的干扰下的SINR值与信道测量资源在有该干扰测量资源的干扰下的SINR值之间的差值小于该第三阈值,则该干扰测量资源对应的比特位的值可以为0。可选的,信道测量资源在没有该干扰测量资源的干扰下的SINR值与信道测量资源在有该干扰测量资源的干扰下的SINR值之间的差值大于或等于该第三阈值,则该干扰测量资源对应的比特位的值可以为0,信道测量资源在没有该干扰测量资源的干扰下的SINR值与信道测量资源在有该干扰测量资源的干扰下的SINR值之间的差值小于该第三阈值,则该干扰测量资源对应的比特位的值可以为1。同理,上述方法同样适用于第三阈值为一个RSRQ阈值,RSRP阈值CQI阈值,MCS阈值或其他测量参数阈值的情形,只需将上述RSRP值替换为RSRQ值,RSRP值,CQI值,MCS值或其他测量值即可。上述大于或等于也可以替换为大于。上述小于也可以替换为小于或等于。
在某些实施例中,该比特位图包括一个或多个比特位,该一个或多个比特位中的每个比特位对应多个干扰测量资源,该一个或多个比特位中每个比特位的值用于表示其对应的多个干扰测量资源对信道测量资源的干扰情况。
可选的,该多个干扰测量资源是配置上连续的L(L>1)个干扰测量资源,即按照配置顺序,将连续的L个干扰测量资源作为一组对应一个比特。可选的,该L个干扰测量资源也可以是按照资源索引大小顺序排序后,连续的L个干扰测量资源。可选的,该L个干扰资源也可以是配置在一个资源集合中的所有资源,即网络设备可以配置一个或多个资源集合,每个资源集合对应一个比特位,或每个资源集合中的所有资源对应一个比特位。可选的,L的值可以由测量配置信息进行指示。可选的,L的值可以由该处理单元402能力上报过程进行上报。下面以该多个干扰测量资源为L个展开说明。
具体的,每个比特位的值表示该比特位对应的L个干扰测量资源对信道测量资源的干扰程度与第一阈值的大小关系。可参见上述每个比特位的值表示该比特位对应一个干扰测量资源对信道测量资源的干扰程度的相关描述。下面将对该干扰程度的具体确定方法展开说明。
在一种可能的实现方式中,该第一阈值为绝对阈值,用第二阈值表示,应理解,该绝对阈值对应该L个干扰测量资源对信道测量资源的干扰程度的具体确定方法,当对应L 个干扰测量资源时,该方法需要进行适应性修改。作为示例而非限定,该干扰程度用该L个干扰测量资源的等效干扰程度来表示,在该确定方法中,该L个干扰测量资源的等效干扰程度与第二阈值的大小关系确定该L个干扰测量资源对应的比特位的值。可选的,当该L个干扰测量资源的等效干扰程度大于或等于第二阈值时,其对应的比特位的值可以为1,当该L个干扰测量资源的等效干扰程度小于第二阈值时,其对应的比特位的值可以为0。可选的,当该L个干扰测量资源的等效信道干扰程度大于或等于第二阈值时,其对应的比特位的值可以为0,当该L个干扰测量资源的等效干扰程度小于第二阈值时,其对应的比特位的值可以为1。上述大于或等于也可以为大于。需要说明的是,该等效信号强度可以为L个干扰测量资源的L各信号强度的平均值,或最大值,或最小值。上述大于或等于也可以替换为大于。上述小于也可以替换为小于或等于。
需要说明的是,上述干扰程度的具体计算方法与该干扰程度用SINR/RSRP/CQI/RSRQ/MCS表示有关。为了便于描述,下面将以具体的例子进行说明。
作为示例而非限定,该干扰程度用RSRP值表示,第二阈值为一个RSRP阈值,对于L个干扰测量资源,可选的,该L个干扰测量资源对应的RSRP值的平均值,或最大值,或最小值大于或等于第二阈值,则该L个干扰测量资源对应的比特位的值为1,当该L个干扰测量资源对应的RSRP值的平均值,或最大值,或最小值小于第二阈值,则该L个干扰测量资源对应的比特位的值可以为0。可选的,当该L个干扰测量资源对应的RSRP值的平均值,或最大值,或最小值大于或等于第二阈值,则该L个干扰测量资源对应的比特位的值可以为0,当该L个干扰测量资源对应的RSRP值的平均值,或最大值,或最小值小于第二阈值,则该L个干扰测量资源对应的比特位的值可以为1同理,上述方法同样适用于第二阈值为一个RSRQ阈值,SINR阈值,CQI阈值,MCS阈值或其他测量参数阈值的情形,只需将上述RSRP值替换为RSRQ值,SINR值,CQI值,MCS值或其他测量值即可。上述大于或等于也可以替换为大于。上述小于也可以替换为小于或等于。
在一种可能的实现方式中,该第一阈值为相对阈值,用第三阈值表示。应理解,该相对阈值对应该L个干扰测量资源对信道测量资源的干扰程度的具体确定方法,为了描述方便,下面将通过示例对该实现方式的方法展开描述。
可选的,以测量SINR值为例,对于一个比特对应的L个干扰测量资源中的每个干扰测量资源,处理单元402计算对应的信道测量资源在没有该干扰测量资源的干扰下的SINR和信道测量资源在有该干扰测量资源的干扰下的SINR的差值,得到L个差值。通过该L个差值计算出一个等效差值,该等效差值等于L个差值的平均值,或最大值,或最小值,或其他计算方式确定的值。可选的,该等效差值大于第三阈值,则认为该L个干扰测量资源对应的比特位的值可以为1,该等效差值大于第三阈值,则该L个干扰测量资源对应的比特位的值可以为0。可选的,当该等效差值大于或等于第三阈值时,该L个干扰测量资源对应的比特位的值可以为0,当该等效差值小于第三阈值时,该L个干扰测量资源对应的比特位的值可以为1。上述大于或等于也可以为大于。上述小于也可以替换为小于或等于。
可选的,以测量SINR值为例,对于一个比特对应的L个干扰测量资源中的每个干扰测量资源,终端设备计算对应的信道测量资源在没有该干扰测量资源的干扰下的SINR和信道测量资源在有该干扰测量资源的干扰下的SINR,得到L个第一SINR和L个第二SINR。 每个干扰测量资源对应一个第一SINR和一个第二SINR,其中第一SINR为信道测量资源在没有该干扰测量资源的干扰下的SINR,第二SINR为信道测量资源在有该干扰测量资源的干扰下的SINR。终端设备根据L个第一SINR和L个第二SINR计算出第一等效SINR和第二等效SINR,其中第一等效SINR为该L个第一SINR的平均值,或最大值,或最小值,或其他计算方式确定的值,第二等效SINR为该L个第二SINR的平均值,或最大值,或最小值,或其他计算方式确定的值。计算第一等效SINR与第二等效SINR的差值。可选的,该差值大于或等于第三阈值,则认为该L个干扰测量资源对应的一比特的值可以为1,当该差值小于第三阈值,则认为该L个干扰测量资源对应的一比特的值可以为0,可选的,当该差值大于或等于第三阈值时,该L个干扰测量资源对应的比特位的值可以为0,当该差值小于第三阈值,则认为该L个干扰测量资源对应的一比特的值可以为1。上述大于或等于也可以为大于。上述小于也可以替换为小于或等于。
可选的,以测量SINR值为例,对于一个比特对应的L个干扰测量资源,终端设备计算该L个干扰测量资源的等效干扰强度。该等效干扰强度可以是该L个干扰测量资源的信号强度的平均值,或最大值,或最小值,或其他计算方式确定的值。对于对应的信道测量资源,终端设备可以计算第三等效SINR和第四等效SINR。第四等效SINR是将上述等效信号强度作为干扰,计算得到的上述信道测量资源的SINR。第三等效SINR是不将上述等效信号强度作为干扰,计算得到的上述信道测量资源的SINR。终端设备进一步计算第三等效SINR与第四等效SINR之间的差值。可选的,该差值大于或等于第三阈值,则认为该L个干扰测量资源对应的比特位的值为1,该差值小于第三阈值,则认为该L个干扰测量资源对应的比特比特位的值可以为0,可选的,当该差值大于或等于第三阈值时,该L个干扰测量资源对应的比特位的值可以为0,该差值小于第三阈值,则认为该L个干扰测量资源对应的比特比特位的值可以为1。上述大于或等于也可以为大于。上述小于也可以替换为小于或等于。需要说明的是,上述例子所描述的方法同样使用与测量值为RSRQ,RSRP,CQI,MCS或其他测量的情形,将上述SINR替换为RSRQ,RSRP,CQI,MCS或其他测量值即可。
需要特别说明的是,CQI是由SINR量化得到的,两者有对应关系。MCS是由CQI量化得到的,两者有对应关系。当测量CQI和MCS时,只需先测量SINR值,再根据CQI与SINR的对应关系,得出对应的CQI值,或先测量SINR值,在根据CQI与SINR的对应关系,得出对应的CQI值,再根据CQI和MCS的对应关系,得出对应的MCS值。
为了方便描述,下面将通过示例对该实现方式的方法展开描述。
具体的,以测量CQI值为例,终端设备需要确定一个第一等效CQI和一个第二等效CQI,根据第一等效CQI和第二等效CQI的差值是否大于第三阈值,来判断该L个干扰测量资源对信道测量资源造成的干扰程度是否达到第三阈值,进一步确定对应的比特位的值。上述第一等效CQI和第二等效CQI可以通过以下方法得到。
可选的,终端设备可以根据上述方法确定L个第一SINR和L个第二SINR,根据SINR与CQI的对应关系,每个第一SINR可以确定一个第一CQI,每个第二SINR可以确定一个第二CQI,即可以得到L个第一CQI和L个第二CQI。以这L个第一CQI的平均值,或最大值,或最小值作为第一等效CQI,以这L个第二CQI的平均值,或最大值,或最小值作为第二等效CQI。
可选的,终端设备可以按照上述方法确定一个第一等效SINR和一个第二等效SINR,然后根据SINR与CQI的对应关系,根据第一等效SINR确定第一等效CQI,根据第二等效SINR确定第二等效CQI。
可选的,终端设备可以按照上述方法确定一个第三等效SINR和一个第四等效SINR,然后根据SINR与CQI的对应关系,根据第三等效SINR确定第三等效CQI,根据第四等效SINR确定第四等效CQI。
具体的,以测量MCS值为例,终端设备需要确定一个第一等效MCS和一个第二等效MCS,根据第一等效MCS和第二等效MCS的差值是否大于第三阈值,来判断该L个干扰测量资源对信道测量资源造成的干扰程度是否达到第三阈值,进一步确定对应的比特位的值。上述第一等效MCS和第二等效MCS可以通过以下方法得到。
可选的,终端设备可以按照上述方法确定L个第一SINR和L个第二SINR,根据SINR与CQI的对应关系,每个第一SINR可以确定一个第一CQI,每个第二SINR可以确定一个第二CQI,即可以得到L个第一CQI和L个第二CQI。根据CQI与MCS的对应关系,每个第一CQI可以确定一个第一MCS,每个第二CQI可以确定一个第二MCS,即可以得到L个第一MCS和L个第二MCS。以这L个第一MCS的平均值,或最大值,或最小值作为第一等效MCS,以这L个第二MCS的平均值,或最大值,或最小值作为第二等效MCS。
可选的,终端设备可以按照上述方法确定一个第一等效SINR和一个第二等效SINR,然后根据SINR与CQI的对应关系,根据第一等效SINR确定第一等效CQI,根据第二等效SINR确定第二等效CQI。再根据CQI与MCS的对应关系,根据第一等效CQI确定第一等效MCS,根据第二等效CQI确定第二等效MCS。
可选的,终端设备可以按照上述方法确定一个第三等效SINR和一个第四等效SINR,然后根据SINR与CQI的对应关系,根据第三等效SINR确定第三等效CQI,根据第四等效SINR确定第四等效CQI。再根据CQI与MCS的对应关系,根据第三等效CQI确定第三等效MCS,根据第四等效CQI确定第四等效MCS。
在某些实施例中,可以用多个比特位对应一个或多个干扰测量资源的干扰情况。作为示例而非限定,可以用2个比特位对应一个或多个干扰测量资源的干扰情况,对应的,设置多个阈值形成阈值梯度,例如,根据阈值梯度将干扰程度划分为较强干扰,强干扰,弱干扰,较弱干扰,或划分为一级干扰,二级干扰等。本申请对此不做特别限定。
在某些实施例中,网络设备发送的测量配置信息同时配置N个信道测量资源和其分别对应的多个干扰测量资源,可选的,处理单元402可以确定N个信道测量资源对应的N个比特位图发送给网络设备。其中,每个信道测量资源对应的比特位图的确定方法与上述方法相同。可选的,处理单元402也可以确定一个比特位图发送给网络设备,可以为该比特位图中的连续多为代表一个测量配置信息对应的干扰。本申请对此不做限定。
该收发单元401还用于向网络设备发送比特位图。
在某些优选的实施例中,收发单元401向网络设备发送比特位图。通过比特位图中的比特为的值表示各个干扰测量资源对信道测量资源的干扰情况。
在某些实施例中,收发单元401向网络设备发送达到某干扰程度的各个干扰测量资源的信息。作为示例而非限定,收发单元401可以上报达到第一阈值的各个干扰测量资源的 信息,例如上报这些干扰测量资源集合的索引。
在某些实施例中,收发单元401向网络设备发送未达到某干扰程度的各个干扰测量资源的信息。作为示例而非限定,收发单元401可以上报未达到第一阈值的各个干扰测量资源的信息,例如上报这些干扰测量资源集合的索引。
在某些实施例中,网络设备配置的M个信道测量资源中的每个信道测量资源都存在与他相对应的一个或多个干扰测量资源,收发单元401可以选择一次上报所有M个信道测量资源对应的干扰测量资源的干扰结果,也可以选择一次上报其中K(K>=1)个信道测量资源对应的干扰测量资源集合的干扰结果,在一种可能的实现方式中,K的值可以由网络设备进行配置,可以包括在测量配置信息中,也可以由收发单元401的能力上报过程进行上报。本申请对此不做限定。
图5为本申请实施例的通信装置500的示意图,该通信装置可以用于执行方法300中网络设备对应的方法或步骤,该通信装置500包括:
收发单元501:用于发送测量配置信息。
处理单元502:用于确定测量配置信息。
优选的,该测量配置信息用于给终端设备配置M(M>=1)个干扰测量资源和一个信道测量资源。需要说明的是,信道测量资源对应服务波束,用于测量服务波束对应的信息,干扰测量资源对应干扰波束,用于测量干扰波束对应的信息。
需要说明的是,该M个干扰测量资源可以包含在一个资源设置(resource setting),或一个资源集(resource set),或一个资源子集(resource subset)。
可选的,该测量配置信息中可以同时配置N(N>1)个信道测量资源和该N个信道测量资源分别对应的多个干扰测量资源集合,其中,每个信道测量资源对应的多个干扰测量资源的个数可以相同,也可以不同。
需要说明的是,该N个信道测量资源可以包含在一个resource setting,或一个resource set,或一个resource subset,该N个信道测量资源也可以分别包含在N个resource setting,或N个resource set,或N个resource subset中。需要说明的是,Resource set是resource setting中的一个子集,一个resource setting可以包括一个或多个resource set。Resource subset是resource set中的一个子集,一个resource set可以包括一个或多个resource subset。
可选的,可以通过MAC CE信令或DCI信令指示要测量的干扰测量资源的信息。
在某些实施例中,收发单元501通过发送MAC CE信令指示要测量的干扰测量资源的信息,该信令包括干扰测量资源的索引,干扰测量资源对应的干扰测量资源集合的索引,干扰测量资源的类型,干扰测量资源的TCI-state或QCL(Quasi co-location,准共址)信息,干扰测量资源对应的小区,干扰测量资源对应的BWP(Bandwidth Part,子集带宽)。可选的,MAC CE信令可以包括一个比特位图,其中每个比特对应一个干扰测量资源或一组干扰测量资源,比特值为1表示要测量对应的干扰测量资源,比特值为0表示不测量对应的干扰测量资源。或者,比特值为0表示要测量对应的干扰测量资源,比特值为1表示不测量对应的干扰测量资源。可选的,MAC CE信令也可以直接包含要测量的资源的索引。
在某些实施例中,收发单元501可以通过发送DCI指示要测量干扰测量资源的信息,包括干扰测量资源的索引,干扰测量资源对应的干扰测量资源集合的索引,干扰测量资源的类型,干扰测量资源的TCI-state或QCL(Quasi co-location,准共址)信息,干扰测量资源 对应的小区,干扰测量资源对应的BWP。可选的,DCI通过一个字段来指示要测量的干扰测量资源。该字段的每个字段值对应一个或一组干扰测量资源。可选的,该字段的取值为某个字段值时,表示要求终端设备测量该字段值对应的干扰测量资源。其中,每个字段值对应的干扰测量资源可以通过RRC信令进行配置,或者通过MAC CE信令进行指示。需要说明的是,上述字段可以是一个新引入的专门用于干扰测量资源指示的字段,可以是复用其他已有的字段。
该收发单元501还用于接收比特位图。
图6是本申请实施例的通信装置600的示意图,该通信装置600包括:收发器601、处理器602和存储器603。该存储器603,用于存储指令。该处理器602与存储器603耦合,用于执行存储器中存储的指令,以执行上述本申请实施例提供的方法。
具体的,该通信装置600中的收发器601可以对应于通信装置400中的收发单元401,该通信装置600中的处理器602可以对应于通信装置400中的处理单元402。
具体的,该通信装置600中的收发器601可以对应于通信装置500中的收发单元501,该通信装置600中的处理器602可以对应于通信装置500中的处理单元502。
应理解,上述存储器603和处理器602可以合成一个处理装置,处理器602用于执行存储器603中存储的程序代码来实现上述功能。具体实现时,该存储器603也可以集成在处理器602中,或者独立于处理器602.
应理解,各收发器处理器执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机 软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (25)

  1. 一种通信方法,其特征在于,包括;
    从网络设备接收测量配置信息,所述测量配置信息用于配置信道测量资源和M个干扰测量资源,所述M大于或等于1,所述M为正整数;
    向所述网络设备发送一个比特位图,所述比特位图包括一个或多个比特位,所述一个或多个比特位中的每个比特位对应一个或多个干扰测量资源,所述一个或多个比特位中的每个比特位的值用于表示所述每个比特位对应的一个或多个干扰测量资源对所述信道测量资源的干扰情况,所述M个干扰测量资源包括所述一个或多个干扰测量资源。
  2. 根据权利要求1所述的方法,其特征在于,所述一个或多个干扰测量资源对所述信道测量资源的干扰情况,包括:
    所述一个或多个干扰测量资源对所述信道测量资源的干扰程度是否大于第一阈值。
  3. 根据权利要求2所述的方法,其特征在于,在所述每个比特位对应一个干扰测量资源的情况下,所述一个或多个干扰测量资源对所述信道测量资源的干扰程度大于第一阈值,包括:
    所述一个干扰测量资源的信号强度大于第二阈值。
  4. 根据权利要求2所述的方法,其特征在于,在所述每个比特位对应一个干扰测量资源的情况下,所述一个或多个干扰测量资源对所述信道测量资源的干扰程度大于第一阈值,包括:
    所述信道测量资源的第一信干噪比与所述信道测量资源的第二信干噪比之间的差值大于第三阈值;
    所述第一信干噪比是在不考虑所述一个干扰测量资源的干扰的情况下,所述信道测量资源的信干噪比;
    所述第二信干噪比是在考虑所述一个干扰测量资源的干扰的情况下,所述信道测量资源的信干噪比。
  5. 根据权利要求2所述的方法,其特征在于,在所述每个比特位对应多个干扰测量资源的情况下,所述一个或多个干扰测量资源对所述信道测量资源的干扰程度大于第一阈值,包括:
    所述多个干扰测量资源的平均信号强度大于第二阈值。
  6. 根据权利要求2所述的方法,其特征在于,在所述每个比特位对应多个干扰测量资源的情况下,所述一个或多个干扰测量资源对所述信道测量资源的干扰程度大于第一阈值,包括:
    所述信道测量资源的第三信干噪比与所述信道测量资源的第四信干噪比之间的差值大于第三阈值;
    所述第三信干噪比是在不考虑所述多个干扰测量资源的干扰的情况下,所述信道测量资源的信干噪比;
    所述第四信干噪比是将所述多个干扰测量资源的平均干扰强度作为干扰,确定的所述信道测量资源的信干噪比。
  7. 根据权利要求2-6中任一项所述的方法,其特征在于,所述第一阈值,和/或第二阈值,和/或第三阈值通过所述测量配置信息进行配置。
  8. 根据权利要求1所述的方法,其特征在于,在所述每个比特位对应多个干扰测量资源的情况下,所述多个干扰测量资源为按照干扰测量资源的配置顺序确定的连续多个干扰测量资源。
  9. 一种通信方法,其特征在于,包括:
    向终端设备发送测量配置信息,所述测量配置信息用于配置信道测量资源和M个干扰测量资源,所述M大于或等于1,所述M为正整数;
    从终端设备接收一个比特位图,所述比特位图包括一个或多个比特位,所述一个或多个比特位中的每个比特位对应一个或多个干扰测量资源,所述一个或多个比特位中的每个比特位的值用于表示所述每个比特位对应的一个或多个干扰测量资源对所述信道测量资源的干扰情况,所述M个干扰测量资源包括所述一个或多个干扰测量资源。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    根据所述比特位图确定所述一个或多个干扰测量资源对所述信道测量资源的干扰情况。
  11. 根据权利要求9或10所述的方法,其特征在于,所述一个或多个干扰测量资源对所述信道测量资源的干扰情况,包括:
    所述一个或多个干扰测量资源对所述信道测量资源的干扰程度是否大于第一阈值。
  12. 一种通信装置,其特征在于,包括:
    收发单元,用于从网络设备接收测量配置信息,所述测量配置信息用于配置信道测量资源和M个干扰测量资源,所述M大于或等于1,所述M为正整数;
    所述收发单元还用于向所述网络设备发送一个比特位图,所述比特位图包括一个或多个比特位,所述一个或多个比特位中的每个比特位对应一个或多个干扰测量资源,所述一个或多个比特位中的每个比特位的值用于表示所述每个比特位对应的一个或多个干扰测量资源对所述信道测量资源的干扰情况,所述M个干扰测量资源包括所述一个或多个干扰测量资源。
  13. 根据权利要求12所述的通信装置,其特征在于,所述一个或多个干扰测量资源对所述信道测量资源的干扰情况,包括:
    所述一个或多个干扰测量资源对所述信道测量资源的干扰程度是否大于第一阈值。
  14. 根据权利要求13所述的通信装置,其特征在于,在所述每个比特位对应一个干扰测量资源的情况下,所述一个或多个干扰测量资源对所述信道测量资源的干扰程度大于第一阈值,包括:
    所述一个干扰测量资源的信号强度大于第二阈值。
  15. 根据权利要求13所述的通信装置,其特征在于,在所述每个比特位对应一个干扰测量资源的情况下,所述一个或多个干扰测量资源对所述信道测量资源的干扰程度大于第一阈值,包括:
    所述信道测量资源的第一信干噪比与所述信道测量资源的第二信干噪比之间的差值大于第三阈值;
    所述第一信干噪比是在不考虑所述一个干扰测量资源的干扰的情况下,所述信道测量 资源的信干噪比;
    所述第二信干噪比是在考虑所述一个干扰测量资源的干扰的情况下,所述信道测量资源的信干噪比。
  16. 根据权利要求13所述的通信装置,其特征在于,在所述每个比特位对应多个干扰测量资源的情况下,所述一个或多个干扰测量资源对所述信道测量资源的干扰程度大于第一阈值,包括:
    所述多个干扰测量资源的平均信号强度大于第二阈值。
  17. 根据权利要求13所述的通信装置,其特征在于,在所述每个比特位对应多个干扰测量资源的情况下,所述一个或多个干扰测量资源对所述信道测量资源的干扰程度大于第一阈值,包括:
    所述信道测量资源的第三信干噪比与所述信道测量资源的第四信干噪比之间的差值大于第三阈值;
    所述第三信干噪比是在不考虑所述多个干扰测量资源的干扰的情况下,所述信道测量资源的信干噪比;
    所述第四信干噪比是将所述多个干扰测量资源的平均干扰强度作为干扰,确定的所述信道测量资源的信干噪比。
  18. 根据权利要求13-17中任一项所述的通信装置,其特征在于,所述第一阈值,和/或第二阈值,和/或第三阈值通过所述测量配置信息进行配置。
  19. 根据权利要求12所述的通信装置,其特征在于,在所述每个比特位对应多个干扰测量资源的情况下,所述多个干扰测量资源为按照干扰测量资源的配置顺序确定的连续多个干扰测量资源。
  20. 一种通信装置,其特征在于,包括:
    收发单元,用于向终端设备发送测量配置信息,所述测量配置信息用于配置信道测量资源和M个干扰测量资源,所述M大于或等于1,所述M为正整数;
    所述收发单元还用于从终端设备接收一个比特位图,所述比特位图包括一个或多个比特位,所述一个或多个比特位中的每个比特位对应一个或多个干扰测量资源,所述一个或多个比特位中的每个比特位的值用于表示所述每个比特位对应的一个或多个干扰测量资源对所述信道测量资源的干扰情况,所述M个干扰测量资源包括所述一个或多个干扰测量资源。
  21. 根据权利要求20所述的通信装置,其特征在于,所述通信装置还包括:
    处理单元,用于根据所述比特位图确定所述一个或多个干扰测量资源对所述信道测量资源的干扰情况。
  22. 根据权利要求21所述的通信装置,其特征在于,所述一个或多个干扰测量资源对所述信道测量资源的干扰情况,包括:
    所述一个或多个干扰测量资源对所述信道测量资源的干扰程度是否大于第一阈值。
  23. 一种通信系统,其特征在于,包括权利要求12-19中任一项所述的通信装置及20-22中任一项所述的通信装置。
  24. 一种计算机可读存储介质,其特征在于,包括计算机程序,所述计算机程序在计算机上被执行时,使得计算机计算如权利要求1-11中任一项所述的方法。
  25. 一种芯片,其特征在于,包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机介质,以执行如权利要求1-11中任一项所述的方法。
PCT/CN2022/095489 2021-06-18 2022-05-27 通信方法和通信装置 WO2022262554A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22824034.7A EP4336888A1 (en) 2021-06-18 2022-05-27 Communication method and communication apparatus
US18/510,674 US20240089778A1 (en) 2021-06-18 2023-11-16 Communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110681003.6 2021-06-18
CN202110681003.6A CN115499855A (zh) 2021-06-18 2021-06-18 通信方法和通信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/510,674 Continuation US20240089778A1 (en) 2021-06-18 2023-11-16 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2022262554A1 true WO2022262554A1 (zh) 2022-12-22

Family

ID=84463923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095489 WO2022262554A1 (zh) 2021-06-18 2022-05-27 通信方法和通信装置

Country Status (4)

Country Link
US (1) US20240089778A1 (zh)
EP (1) EP4336888A1 (zh)
CN (1) CN115499855A (zh)
WO (1) WO2022262554A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108696891A (zh) * 2012-01-30 2018-10-23 华为技术有限公司 无线通信测量和csi反馈的系统和方法
CN109151875A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 用于测量信道状态的方法和装置
US20190044685A1 (en) * 2015-01-30 2019-02-07 Motorola Mobility Llc Method and apparatus for signaling aperiodic channel state indication reference signals for lte operation
CN111510946A (zh) * 2019-01-31 2020-08-07 成都华为技术有限公司 测量上报的方法与装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108696891A (zh) * 2012-01-30 2018-10-23 华为技术有限公司 无线通信测量和csi反馈的系统和方法
US20190044685A1 (en) * 2015-01-30 2019-02-07 Motorola Mobility Llc Method and apparatus for signaling aperiodic channel state indication reference signals for lte operation
CN109151875A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 用于测量信道状态的方法和装置
CN111510946A (zh) * 2019-01-31 2020-08-07 成都华为技术有限公司 测量上报的方法与装置

Also Published As

Publication number Publication date
CN115499855A (zh) 2022-12-20
US20240089778A1 (en) 2024-03-14
EP4336888A1 (en) 2024-03-13

Similar Documents

Publication Publication Date Title
EP3637838B1 (en) Communication method and communication apparatus
US11337189B2 (en) Terminal, network device, and communication method to improve transmission reliability
AU2017405544B2 (en) Interference measurement method and related device
CN108900224B (zh) 通信系统、通信系统中的网络节点、用户设备及方法
US10925034B2 (en) Resource indication method, apparatus, and system
WO2020207269A1 (zh) 干扰测量的方法和装置
EP3720219B1 (en) Communication method and device
WO2020063334A1 (zh) 一种控制信道波束指示方法及设备
US11888563B2 (en) Channel state information reporting method and apparatus
CN112087291B (zh) 更新传输配置指示tci信息的方法与通信装置
US11601178B2 (en) Channel state information transmission method and apparatus
US11064499B2 (en) Communication method and apparatus
WO2018099328A1 (zh) 通信方法、基站和终端设备
US20220264584A1 (en) Measurement and reporting method and apparatus
CN111095814A (zh) 执行波束报告的用户设备
WO2022262554A1 (zh) 通信方法和通信装置
WO2019029795A1 (en) BEAM INDICATION FOR WIRELESS COMMUNICATION
JP7216813B2 (ja) チャネル状態情報を決定するための方法および装置
WO2023273969A1 (zh) 资源测量方法和通信装置
WO2024149042A1 (zh) 通信方法和通信装置
WO2024174117A1 (en) Dynamic pdsch power allocation
WO2024093638A1 (zh) 一种信息处理的方法和装置
TW202316827A (zh) 用於無線通訊的方法
CN116939839A (zh) 传输处理方法、网络设备、终端、装置及存储介质
TW202308425A (zh) 波束組報告之方法及其使用者設備

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22824034

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022824034

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022824034

Country of ref document: EP

Effective date: 20231202

NENP Non-entry into the national phase

Ref country code: DE