WO2022262520A1 - 控制组件及电子雾化装置 - Google Patents
控制组件及电子雾化装置 Download PDFInfo
- Publication number
- WO2022262520A1 WO2022262520A1 PCT/CN2022/093946 CN2022093946W WO2022262520A1 WO 2022262520 A1 WO2022262520 A1 WO 2022262520A1 CN 2022093946 W CN2022093946 W CN 2022093946W WO 2022262520 A1 WO2022262520 A1 WO 2022262520A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid
- needle tube
- atomization
- assembly
- controller
- Prior art date
Links
- 238000000889 atomisation Methods 0.000 title claims abstract description 162
- 239000007788 liquid Substances 0.000 claims abstract description 341
- 230000004044 response Effects 0.000 claims abstract description 16
- 238000004891 communication Methods 0.000 claims description 2
- 239000012530 fluid Substances 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 16
- 230000001225 therapeutic effect Effects 0.000 abstract description 4
- 238000002664 inhalation therapy Methods 0.000 abstract description 3
- 239000002184 metal Substances 0.000 description 41
- 239000000758 substrate Substances 0.000 description 35
- 238000009434 installation Methods 0.000 description 31
- 239000003814 drug Substances 0.000 description 27
- 238000007789 sealing Methods 0.000 description 23
- 238000010586 diagram Methods 0.000 description 16
- 238000001514 detection method Methods 0.000 description 12
- 230000008569 process Effects 0.000 description 12
- 239000000919 ceramic Substances 0.000 description 8
- 238000001704 evaporation Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 238000002663 nebulization Methods 0.000 description 6
- 239000007921 spray Substances 0.000 description 6
- 230000008020 evaporation Effects 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000003595 mist Substances 0.000 description 4
- 239000000741 silica gel Substances 0.000 description 4
- 229910002027 silica gel Inorganic materials 0.000 description 4
- 230000004308 accommodation Effects 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 210000002345 respiratory system Anatomy 0.000 description 2
- 208000023504 respiratory system disease Diseases 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000006199 nebulizer Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M15/00—Inhalators
- A61M15/0065—Inhalators with dosage or measuring devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M11/00—Sprayers or atomisers specially adapted for therapeutic purposes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M15/00—Inhalators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M15/00—Inhalators
- A61M15/0001—Details of inhalators; Constructional features thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M15/00—Inhalators
- A61M15/06—Inhaling appliances shaped like cigars, cigarettes or pipes
Definitions
- the present application relates to the technical field of atomizers, in particular to a control assembly and an electronic atomization device.
- Nebulization inhalation therapy is to use a nebulizer to atomize the medicinal liquid into tiny droplets.
- the patient inhales the medicinal liquid into the respiratory tract and lungs through breathing, and the medicinal liquid is deposited in the respiratory tract or lungs, so as to achieve the purpose of painless, rapid and effective treatment.
- the present application provides a control assembly to solve the technical problem in the prior art that it is impossible to accurately control the atomized dose of medicinal liquid.
- the first technical solution provided by this application is to provide a control assembly, including: a drive assembly and a controller; the drive assembly is used to provide the liquid in the liquid storage assembly to the atomization assembly for forming the liquid to be atomized; the controller is used to control the operation of the drive assembly, and detect whether the atomization assembly has the liquid to be atomized; wherein, in response to the controller receiving a liquid supply signal, the The controller controls the drive assembly to supply liquid to the atomization assembly, and detects whether the atomization assembly has the liquid to be atomized; and in response to the controller detecting that the atomization assembly has the liquid to be atomized atomizing liquid, the controller controls the driving assembly to continue supplying liquid to provide a constant dose of the liquid to be atomized.
- the atomization assembly includes a needle tube and a microporous atomizing sheet
- the controller is electrically connected to the needle tube and the microporous atomizing sheet respectively, and the controller detects that the needle tube and the micropore Whether the atomizing sheets are connected through the liquid to be atomized determines whether the atomization component has the liquid to be atomized.
- the controller controls the drive assembly to perform the first stage of liquid supply, and the first stage of liquid supply continues until the controller detects that the needle tube is in contact with the The microporous atomizing sheet is turned on; and in response to the controller detecting the conduction between the needle tube and the microporous atomizing sheet, the controller controls the drive assembly to perform a second stage of liquid supply, During the liquid supply process of the second stage, the controller controls the drive assembly to flow out a constant dose of the liquid to be atomized from the liquid storage assembly.
- the controller controls the driving assembly to supply liquid in the first stage, the liquid to be atomized is adsorbed between the microporous atomizing sheet and the needle tube through surface tension, so that the control The device detects that the microporous atomizing sheet is connected to the needle tube.
- liquid supply volume of the first stage is less than 1 microliter.
- the drive assembly includes: a motor connected to the controller; a push rod, one end of which is connected to the motor, and the other end abuts against the liquid storage assembly for driving the motor.
- the liquid in the liquid storage component is pushed into the needle tube, and introduced between the needle tube and the microporous atomizing sheet through the needle tube.
- the controller controls the motor to drive the push rod to move until the controller detects that the needle tube is connected to the microporous atomizing sheet;
- the controller controls the motor to reset the step counting and reset the constant step, thereby driving the push rod to move a constant stroke .
- the push rod when supplying liquid in the first stage, if the liquid in the needle tube is in the first state, the push rod moves the first stroke; if the liquid in the needle tube is in the second state, the push rod moves the second stroke. stroke; if the liquid in the needle tube is in the third state, the push rod moves a third stroke; the second stroke is greater than the third stroke, and the third stroke is greater than the first stroke.
- the controller in response to the controller detecting the conduction between the needle tube and the microporous atomizing sheet, the controller further controls the microporous atomizing sheet to perform an atomizing operation.
- the controller in response to the controller detecting that the needle tube is disconnected from the microporous atomizing sheet, the controller controls the microporous atomizing sheet to stop the atomizing operation.
- the second technical solution provided by the present application is to include an atomization component and a control component, and the control component is used to provide the liquid in the liquid storage component to the atomization component.
- the atomization assembly includes a microporous atomization sheet and a needle tube, one end of the needle tube is spaced from the microporous atomization sheet, and the other end is in communication with the liquid;
- the liquid in the liquid component is delivered to the microporous atomizing sheet through the needle tube to form the liquid to be atomized.
- the controller receives the liquid supply signal, the controller controls the drive assembly to provide the liquid in the liquid storage assembly to the atomization assembly, and starts to detect whether the atomization assembly has liquid to be atomized , the atomizing component has the liquid to be atomized, and the controller controls the driving component to continue to provide a constant dose of the liquid to be atomized to the atomizing component.
- the controller controls the driving component to provide the liquid to be atomized to the atomization component, and detects whether the atomization component has the liquid to be atomized, so as to realize the precise control of the atomized dose, so that the atomized inhalation therapy can achieve the expected therapeutic effect.
- Fig. 1 is a schematic structural diagram of an electronic atomization device provided by the present application.
- Figure 2 is a schematic cross-sectional view of the atomization assembly provided by the present application.
- Fig. 3 is a three-dimensional structural view of the atomization seat in the atomization assembly provided by the present application;
- Fig. 4 is a three-dimensional structural view of the first sealing member in the atomization assembly provided by the present application.
- Fig. 5 is an exploded schematic diagram of the liquid storage assembly provided by the present application.
- Fig. 6 is a schematic structural diagram of the first embodiment of the control assembly provided by the present application.
- Fig. 7 is a schematic structural view of the driving part in the first embodiment of the control assembly provided by the present application.
- Fig. 8 is a schematic structural view of the push rod in the first embodiment of the control assembly provided by the present application.
- Fig. 9 is a schematic cross-sectional view of the push rod in the first embodiment of the control assembly provided by the present application.
- Fig. 10 is a schematic cross-sectional view of another embodiment of the push rod in the first embodiment of the control assembly provided by the present application;
- Fig. 11 is a schematic structural diagram of the second embodiment of the control assembly provided by the present application.
- Fig. 12 is a schematic cross-sectional view of the second embodiment of the control assembly provided by the present application.
- Fig. 13 is an exploded schematic diagram of the second embodiment of the control assembly provided by the present application.
- Fig. 14 is a schematic diagram of the functional modules of the first embodiment of the control assembly provided by the present application.
- Figure 15 is a schematic diagram of residual liquid in the needle provided by the present application.
- Figure 16 is a schematic diagram of the evaporation of liquid in the needle tube provided by the present application.
- Figure 17 is a schematic diagram of the liquids V1 and V2 to be atomized provided by this application;
- Fig. 18 is a schematic diagram of functional modules of the second embodiment of the control assembly provided by the present application.
- first”, “second”, and “third” in this application are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, features defined as “first”, “second”, and “third” may explicitly or implicitly include at least one of these features.
- “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined. All directional indications (such as up, down, left, right, front, back%) in the embodiments of the present application are only used to explain the relative positional relationship between the various components in a certain posture (as shown in the drawings) , sports conditions, etc., if the specific posture changes, the directional indication also changes accordingly.
- FIG. 1 is a schematic structural diagram of the electronic atomization device provided in this application.
- the electronic atomization device can be used for the atomization of liquid substrates such as medicinal liquid, and is applied to medical equipment for the treatment of upper and lower respiratory diseases to atomize medical drugs.
- the electronic atomization device includes an atomization component 1 , a liquid storage component 2 and a control component 3 . In use, the atomization assembly 1 and the liquid storage assembly 2 are installed on the control assembly 3 .
- the liquid storage assembly 2 is used to store medicinal liquid; the atomization assembly 1 is used to atomize the liquid in the liquid storage assembly 2; the control assembly 3 includes a controller 31 and an installation cavity 321, the atomization assembly 1 and the liquid storage assembly 2 Installed in the installation cavity 321 , the control component 3 is used to deliver the liquid in the liquid storage component 2 to the atomization component 1 and control the operation of the atomization component 1 .
- the atomization component 1, the liquid storage component 2 and the control component 3 can be integrated or detachably connected, and can be designed according to specific needs.
- FIG. 2 is a schematic cross-sectional view of the atomization assembly provided by the present application.
- the atomization assembly 1 includes an atomization housing 10 , an atomization seat 11 , a microporous atomization sheet 12 and a needle tube 13 .
- the microporous atomizing sheet 12 is arranged at one end of the atomizing seat 11 and cooperates with the end of the atomizing seat 11 to form an atomizing chamber 14 .
- the extending direction of the needle tube 13 is perpendicular to the extending direction of the microporous atomizing sheet 12 .
- the extending direction of the needle tube 13 can also form other angles with the extending direction of the microporous atomizing sheet 12, for example, between 60° and 90°, which can be designed according to the needs.
- the needle tube 13 is fixed on the atomization seat 11; one end of the needle tube 13 is arranged in the atomization chamber 14 and spaced apart from the microporous atomizing sheet 12; when in use, the other end of the needle tube 13 is inserted into the liquid storage assembly 2 to store the liquid
- the liquid in the liquid component 2 is delivered to the microporous atomizing sheet 12 to form the liquid to be atomized.
- the microporous atomizing sheet 12 is used for atomizing the liquid to be atomized.
- the liquid to be atomized is adsorbed between the microporous atomizing sheet 12 and the needle tube 13 by surface tension.
- One end of the atomizing shell 10 forms or sets a suction nozzle 15, and the microporous atomizing sheet 12 and the needle tube 13 are arranged in the atomizing casing 10 together with the atomizing seat 11; wherein, the suction nozzle 15 and the microporous atomizing sheet 12 It communicates with the atomizing chamber 14 surrounded by the atomizing seat 11 , and the user inhales the atomized medicinal liquid from the microporous atomizing sheet 12 through the mouthpiece 15 .
- FIG. 3 is a three-dimensional structural view of the atomization seat in the atomization assembly provided by the present application
- FIG. 4 is a three-dimensional structural view of the first sealing member in the atomization assembly provided in the present application.
- One end of the atomizing seat 11 is provided with a mounting groove 110 for mounting the microporous atomizing sheet 12 ; the shape of the mounting groove 110 matches the shape of the microporous atomizing sheet 12 .
- a first sealing member 111 is disposed on the periphery of the microporous atomizing sheet 12 , and the microporous atomizing sheet 12 is arranged in the installation groove 110 together with the first sealing member 111 .
- the first sealing member 111 plays the role of fixing the microporous atomizing sheet 12 to prevent the microporous atomizing sheet 12 from shaking at one end of the atomizing seat 11 and affecting the process of atomizing the liquid medicine.
- the microporous atomizing sheet 12 includes a piezoelectric ceramic sheet, a metal substrate, a first electrode and a second electrode, the first electrode is electrically connected to the piezoelectric ceramic sheet, the second electrode is electrically connected to the metal substrate, and the first electrode and the second electrode are electrically connected to the piezoelectric ceramic sheet. Both electrodes are electrically connected to the controller 31 .
- the metal substrate is a disc
- the piezoelectric ceramic sheet is a ring
- the diameter of the metal substrate is larger than the inner diameter of the piezoelectric ceramic sheet.
- the central area of the piezoelectric ceramic sheet is provided with a through hole, and the area corresponding to the central area of the metal substrate and the piezoelectric ceramic sheet is provided with a plurality of micropores; A plurality of micropores connect the suction nozzle part 15 with the atomization chamber 14.
- the central area of the metal substrate bulges toward the suction nozzle 15 to provide a larger adhesion surface for the liquid to be atomized, thereby increasing the adhesion of the liquid to be atomized.
- the metal substrate can be a planar structure, which can be selected according to needs, which is not limited in this application.
- the first seal 111 includes a first panel 1111 , a second panel 1112 and a side wall 1113 .
- the first panel 1111 and the second panel 1112 are opposite to each other.
- the first panel 1111 is disposed at one end of the side wall 1113, and the second panel 1112 is disposed at the other end of the side wall 1113;
- a panel 1111 is connected to a second panel 1112 .
- the side wall 1113 connects the edges of the first panel 1111 and the second panel 1112 to form an integral structure; preferably, the first panel 1111 , the second panel 1112 and the side wall 1113 are integrally formed.
- the material of the first sealing member 111 is rubber, silica gel or the like.
- the first panel 1111 is disposed on a side of the second panel 1112 close to the suction nozzle 15 .
- the first panel 1111, the second panel 1112 and the side wall 1113 are ring structures; the outer diameter of the first panel 1111 is the same as the outer diameter of the second panel 1112; the inner diameter of the first panel 1111 and the inner diameter of the second panel 1112 can be The same or different, according to the design; the inner diameter of the side wall 1113 is the same as the outer diameter of the first panel 1111 and the second panel 1112 .
- the first panel 1111 and the second panel 1112 have the same thickness, and the difference between the inner and outer diameters of the sidewall 1113 is the same as the thickness of the first panel 1111 and the second panel 1112 .
- the first panel 1111, the second panel 1112 and the side wall 1113 jointly form an atomizing sheet cavity 1114 for accommodating the microporous atomizing sheet 12; that is, the microporous atomizing sheet 12 is located between the first panel 1111 and the second Between the two panels 1112 and not beyond the area enclosed by the side walls 1113 .
- the central through hole of the first panel 1111 and the central through hole of the second panel 1112 communicate with each other and can expose the microporous area on the microporous atomizing sheet 12 .
- the first panel 1111 and the second panel 1112 are arranged coaxially, and the inner diameter of the first panel 1111 is larger than the inner diameter of the second panel 1112 .
- An opening 1115 is provided on the first sealing member 111 to facilitate the installation of the microporous atomizing sheet 12 into the cavity 1114 of the atomizing sheet.
- the opening 1115 is disposed at the junction of the side wall 1113 and the first panel 1111 , that is, a piece is cut off from the edge of the first sealing member 111 to form the opening 1115 .
- the opening 1115 can also be provided at the side wall 1113 , as long as the microporous atomizing sheet 12 can be installed in the atomizing sheet cavity 1114 , which is not limited in this application.
- the microporous atomizing sheet 12 can also be in other shapes such as a square, the structure of the first sealing member 111 is set in cooperation with the microporous atomizing sheet 12, and the shape of the installation groove 110 is set in cooperation with it, and can be adjusted according to needs. choose.
- a protrusion 112 is disposed on the bottom wall of the installation groove 110 , and the height of the protrusion 112 is the same as the thickness of the second panel 1112 .
- the protrusion 112 is embedded in the central through hole of the second panel 1112 .
- An opening 113 is provided on the protrusion 112, and the opening 113 is set correspondingly to the microporous area of the microporous atomizing sheet 12;
- the porous atomizing sheet 12 covers the opening 113 , and the microporous area is suspended at the opening 113 , and the microporous atomizing sheet 12 cooperates with the opening 113 to form an atomizing chamber 14 .
- an annular groove 114 is arranged around the opening 113 for installing the second sealing member 115; the size of the annular groove 114 is matched with the size of the second sealing member 115; that is, the atomizing seat 11 is close to
- One end of the microporous atomizing sheet 12 is provided with an annular groove 114 , and a second sealing member 115 is arranged in the annular groove 114 ; the non-microporous area of the microporous atomizing sheet 12 covers the annular groove 114 .
- the second sealing member 115 is a ring, and the material of the second sealing member 115 is rubber, silica gel, etc.; the annular groove 114 is ring-shaped.
- the second sealing member 115 is used to prevent the liquid pumped by the needle tube 13 from leaking out of the atomization chamber 14, so that the accuracy of the dose of the atomized medicinal solution is reduced. That is to say, an annular groove 114 is provided on the protrusion 112, and the second seal 115 is arranged in the annular groove 114; the projection of the annular groove 114 on the plane where the microporous atomizing sheet 12 is located, the annular groove 114 surrounds The microporous area on the microporous atomizing sheet 12 is set, that is, the inner diameter of the annular groove 114 is larger than the diameter of the microporous area.
- the cross section of the protrusion 112 is circular, the cross section of the opening 113 is circular, and is concentrically arranged; the outer diameter of the annular groove 114 is equal to the central area of the piezoelectric ceramic sheet of the microporous atomizing sheet 12 The inner diameter of the through hole; the second sealing member 115 is arranged around the microporous area and abuts against the metal substrate of the microporous atomizing sheet 12 .
- the opening 113 can be a through hole or a blind hole; specifically, the diameter of the opening 113 is larger than the outer diameter of the needle tube 13, and the end of the needle tube 13 close to the microporous atomizing sheet 12 and the side of the opening 113 Wall spacer settings.
- the opening 113 is a through hole, and the atomizing chamber 14 is an open structure, so that the liquid sprayed back can flow out of the atomizing chamber 14 along the side wall of the atomizing chamber 14, so as to avoid the impact of the sprayed liquid on the mist. influence on the chemical process.
- the opening 113 is a blind hole
- the atomization chamber 14 is a closed structure, so that the anti-spray liquid medicine can flow along the side wall of the atomization chamber 14 in a direction away from the microporous atomizing sheet 12 , and finally deposited at the bottom of the atomization chamber 14, to avoid the influence of the anti-spray liquid on the atomization process.
- an opening 113 is provided at the end of the atomizing seat 11 close to the microporous atomizing sheet 12, so that the liquid medicine sprayed back during the atomization process of the microporous atomizing sheet 12 can flow along the side wall of the atomizing chamber 14.
- the controller 31 Flow away from the direction of the microporous atomizing sheet 12, avoiding the formation of air bubbles or water film between the needle tube 13 and the microporous atomizing sheet 12 after the liquid medicine atomization is completed, so that the controller 31 cannot accurately detect Whether there is still liquid to be atomized, and then the controller 31 continues to control the atomization of the microporous atomizing sheet 12, resulting in the problem of dry burning and affecting the service life of the electronic atomizing device.
- the diameter of the opening 113 is equal to the outer diameter of the needle tube 13, and the micro-atomizing chamber 14 formed by the cooperation of the microporous atomizing sheet 12 and the end of the atomizing seat 11 is a closed structure and can realize the spraying of the atomized liquid. Precise control of the quantity. It can be understood that the micro-atomization chamber 14 of this structure cannot make the anti-spray liquid medicine flow along the side wall of the atomization chamber 14 in a direction away from the microporous atomization sheet 12, and the anti-spray liquid medicine will process has an impact.
- the atomization chamber 14 is a miniature atomization chamber 14, and the closed structure also has the probability problem that the liquid is absorbed to the bottom of the closed structure, so that it cannot be atomized.
- the atomization chamber 14 , the needle tube 13 and the microporous area of the microporous atomizing sheet 12 are arranged coaxially.
- the area of the largest cross section of the atomizing chamber 14 is less than four times the area of the microporous region of the microporous atomizing sheet 12 .
- the cross section of the atomization chamber 14 and the micropore area are circular, and the diameter of the atomization chamber 14 is larger than the diameter of the micropore area and less than twice the diameter of the micropore area.
- the diameter of the atomization chamber 14 is 4mm-5mm, and the distance between the end of the needle tube 13 close to the microporous atomizing sheet 12 and the side wall of the atomization chamber 14 is 1.2mm-1.8mm, so that the spray to be pumped out through the needle tube 13
- the atomized liquid is adsorbed between the microporous atomizing sheet 12 and the needle tube 13, so that the atomized drug liquid can be atomized at any angle, and the dose of the atomized drug liquid can be precisely controlled.
- the diameter of the atomization chamber 14 is too large, such as greater than 5mm, the amount of liquid medicine adsorbed outside the micropore area will increase, and the area where the liquid medicine will be sprayed back will increase, and the amount of liquid sprayed back will increase, and the user will inhale the liquid medicine.
- the accuracy of the dose will be reduced; if the diameter of the atomization chamber 14 is too small, for example, less than 4mm, the liquid to be atomized may flow out to the atomization chamber in addition to being adsorbed between the microporous atomization sheet 12 and the needle 13
- the residual amount of non-atomized medicinal liquid increases, and the accuracy of the dose of the medicinal liquid inhaled by the user decreases.
- the atomizing chamber 14 is formed by the opening 113 and the microporous atomizing sheet 12 , and the diameter of the atomizing chamber 14 is equal to the diameter of the opening 113 .
- the distance between the end of the needle tube 13 close to the microporous atomizing sheet 12 and the microporous atomizing sheet 12 is 0.2mm-0.4mm. If the distance between the end of the needle tube 13 close to the microporous atomizing sheet 12 and the microporous atomizing sheet 12 is too far, for example greater than 0.4mm, the amount of medicinal solution adsorbed on the side wall of the atomizing chamber 14 will increase, and part of the medicinal solution cannot Attached to the microporous atomizing sheet 12, atomization cannot be achieved, reducing the accuracy of the user's inhalation of the liquid dose; if the end of the needle tube 13 close to the microporous atomizing sheet 12 is too close to the microporous atomizing sheet 12, For example, if it is less than 0.2 mm, the liquid medicine will form air bubbles or water film between the needle tube 13 and the microporous atomizing sheet 12 after the liquid medicine atomization is completed, so that the controller 31 cannot accurately detect whether there is still liquid to
- the needle tube 13 is provided with a sleeve 131 at one end close to the microporous atomizing sheet 12 , and the outer wall of the sleeve 131 is spaced apart from the side wall of the atomization chamber 14 .
- the sleeve 131 is used to increase the surface area of the needle tube 13 near the end of the microporous atomizing sheet 12, that is, to increase the liquid adhesion area of the needle tube 13, thereby increasing the adhesion of the liquid to be atomized, so that the atomized liquid pumped out by the needle tube 13
- the liquid is better adsorbed between the end of the needle tube 13 close to the microporous atomizing sheet 12 and the microporous atomizing sheet 12 .
- the sleeve 131 is a hollow cylinder, the inner diameter of the sleeve 131 is the same as the outer diameter of the needle tube 13, and the outer diameter is smaller than the diameter of the opening 113; the material of the sleeve 131 is silica gel, rubber, etc.
- the sleeve 131 can also be a solid structure, just insert the needle tube 13 .
- the needle tube 13 is a hollow metal piece.
- the needle tube 13 is a hollow cylindrical metal tube, the inner diameter of the needle tube 13 is 0.7 mm-1.0 mm, and the material of the needle tube 13 is preferably stainless steel.
- the needle tube 13 can also be a hollow metal part of other structures, it only needs to be able to pump the liquid in the liquid storage assembly 2 to the microporous atomizing sheet 12 to form the liquid to be atomized; The atomized medicinal liquid reacts to cause the medicinal liquid to deteriorate.
- the needle tube 13 can also be used for detection.
- a conducting member 132 is provided on the needle tube 13 , and the conducting member 132 is electrically connected to the controller 31 .
- the conducting member 132 is a spring pin.
- other elements can also be used for the conducting member 132 , and it is only necessary to realize the electrical connection between the needle tube 13 and the controller 31 through the conducting member 132 .
- the metal substrate in the microporous atomizing sheet 12 is electrically connected to the controller 31 through a wire
- the needle tube 13 is electrically connected to the controller 31 through a conducting member 132 and a wire
- the needle tube 13 and the metal substrate form an impedance sensor, that is, the needle tube 13 and the
- the metal substrate in the microporous atomizing sheet 12 is equivalent to two metal electrodes.
- the liquid to be atomized is adsorbed between the end of the needle tube 13 close to the microporous atomizing sheet 12 and the microporous atomizing sheet 12, and the liquid in the microporous atomizing sheet 12
- the metal substrate is connected to the needle tube 13, and the resistance between the metal substrate in the microporous atomizing sheet 12 and the needle tube 13 is very small, about 0; when the liquid to be atomized is atomized, the needle tube 13 is close to the microporous mist
- the metal substrate in the microporous atomizing sheet 12 and the needle tube 13 are in an open circuit state, and the metal substrate in the microporous atomizing sheet 12 and the needle tube 13 are in an open circuit state.
- the resistance value between the needle tubes 13 is much greater than 0, and at the same time greater than the resistance value when the metal substrate in the microporous atomizing sheet 12 and the needle tube 13 pass through the liquid to be atomized.
- the controller 31 detecting the resistance value between the metal substrate in the microporous atomizing sheet 12 and the needle tube 13, it can be judged whether there is still liquid to be atomized.
- the controller 31 detects that the resistance between the metal substrate in the microporous atomizing sheet 12 and the needle tube 13 is close to 0, it is determined that there is a liquid to be atomized between the microporous atomizing sheet 12 and the needle tube 13, Then control the microporous atomizing sheet 12 to atomize the liquid to be atomized; if the controller 31 detects that the resistance between the metal substrate in the microporous atomizing sheet 12 and the needle tube 13 is much greater than 0, it is judged that the microporous mist
- the liquid to be atomized between the atomizing sheet 12 and the needle tube 13 is about to be consumed or has been consumed, so that the microporous atomizing sheet 12 is controlled to stop working directly or with a delay (the specific value of the extended time is set according to experience, such as 2s).
- the needle tube 13 is made of silica gel, plastic, etc. At this time, the needle tube 13 does not have a detection function and can only be used to pump the liquid in the liquid storage component 2 to the microporous atomizing sheet 12 .
- the liquid Due to the surface tension and adhesion of the liquid, the liquid will be adsorbed on the microporous atomizing sheet 12 after being pumped out from the needle tube 13 .
- the liquid is located between the end of the needle tube 13 close to the microporous atomizing sheet 12 and the microporous atomizing sheet 12 , and will spread around when the liquid reaches the front edge of the atomizing chamber 14 .
- the liquid is turned into spray and sprayed toward the suction nozzle 15 .
- the non-atomized liquid continuously moves to the micropore area of the microporous atomizing sheet 12, and finally completely atomizes.
- the liquid delivery and atomization process of the liquid by the needle tube 13 is completely free from the constraints of direction and gravity. Therefore, in other embodiments, the needle tube 13 and the microporous atomizing sheet 12 can also be arranged in parallel, and other structures are changed accordingly.
- An accommodating groove 116 is provided at the end of the atomizing seat 11 away from the microporous atomizing sheet 12 , and the accommodating groove 116 is used to accommodate the liquid storage assembly 2 .
- the end of the needle tube 13 away from the microporous atomizing sheet 12 is set in the accommodating groove 116, so that the end of the needle tube 13 away from the microporous atomizing sheet 12 is inserted into the liquid storage assembly 2, and the liquid in the liquid storage assembly 2 is pumped out to the On the microporous atomizing sheet 12.
- FIG. 5 is an exploded schematic view of the liquid storage assembly provided by the present application.
- the liquid storage assembly 2 includes a liquid storage housing 21 , a liquid storage cover 22 , a sealing plug 23 and a piston 24 .
- One end of the liquid storage housing 21 is provided with a liquid storage cover 22 , and the other end is provided with a piston 24 .
- a sealing plug 23 is provided at the end of the liquid storage cover 22 close to the liquid storage housing 21 , and the sealing plug 23 is used to seal the liquid storage housing 21 to prevent the liquid in the liquid storage assembly 2 from leaking.
- the space enclosed by the liquid storage shell 21 , the sealing plug 23 and the piston 24 is a liquid storage chamber, and the liquid storage chamber is used to store the liquid to be atomized. An opening can be set on the liquid storage cap 22, so that the sealing plug 23 is partially exposed.
- the liquid storage assembly 2 is installed in the installation chamber 321 of the control assembly 3 , and one end of the liquid storage assembly 2 provided with the sealing plug 23 faces the opening of the installation chamber 321 , so that the needle tube 13 in the atomization assembly 1 can be inserted into the liquid storage assembly 2 .
- the end of the liquid storage assembly 2 provided with the piston 24 is facing the bottom of the installation cavity 321, so that the components in the control assembly 3 push the piston 24, and the liquid in the liquid storage assembly 2 is transferred to the needle tube 13, and then reaches the microporous atomizing sheet 12 superior.
- FIG. 6 is a schematic structural diagram of the first embodiment of the control assembly provided by the present application.
- the control assembly 3 also includes a control housing 32 , a receiving seat 33 , a push rod 34 , a driving member 35 , and a battery 36 .
- One end of the control housing 32 is provided with an installation cavity 321, the installation cavity 321 is used to accommodate the atomization assembly 1 and part of the liquid storage assembly 2; part of the liquid storage assembly 2 is arranged in the accommodating groove 116 of the atomization assembly 1, same as the atomization assembly 1 are accommodated in the installation cavity 321 together.
- the structure of the installation cavity 321 may be a ring, and in this embodiment, the installation cavity 321 is in the shape of a ring.
- the installation cavity 321 and the control housing 32 are fixed together by glue, bolts, etc., preferably, the installation cavity 321 and the control housing 32 are integrally formed.
- control housing 32 includes a top wall and a bottom wall arranged at intervals, and an annular side wall connecting the top wall and the bottom wall.
- the position of the top wall close to the side wall has a through hole as the installation cavity 321 , and the through hole communicates the inner space of the control housing 32 with the outside.
- the receiving seat 33 is disposed in the control housing 32 and fixedly connected with the control housing 32 .
- the receiving seat 33 is disposed at one end of the installation cavity 321 close to the bottom wall of the control housing 32 , and the inner space of the receiving seat 33 communicates with the installation cavity 321 .
- the receiving seat 33 and the installation cavity 321 can be integrally formed.
- the accommodating seat 33 is used for accommodating part of the liquid storage assembly 2 . After the atomization assembly 1 is inserted into the installation cavity 321 , the end of the receiving seat 33 close to the installation cavity 321 is fixedly connected with the atomization seat 11 in the atomization assembly 1 , such as by means of bolts, fastening, and magnetic attachment. In this embodiment, they are fixed together by means of bolts.
- the end of the receiving seat 33 close to the installation cavity 321 and the end of the atomizing seat 11 close to the receiving seat 33 are provided with installation structures (for example, installation holes) to facilitate fixing the atomizing seat 11 and the receiving seat 33 together.
- the push rod 34 is disposed at an end of the receiving seat 33 away from the installation cavity 321 .
- the push rod 34 is movably connected with the receiving seat 33 , and the push rod 34 abuts against the liquid storage assembly 2 arranged in the receiving seat 33 .
- One end portion of the push rod 34 is accommodated in the accommodating seat 33 , and one end of the push rod 34 close to the driving member 35 and the driving member 35 are located outside the accommodating seat.
- the driving member 35 is disposed on an end of the push rod 34 away from the receiving seat 33 .
- the driving member 35 is used to drive the push rod 34 to move toward the liquid storage assembly 2, so that the push rod 34 pushes the piston 24 in the liquid storage assembly 2 to move toward the atomization assembly 1, and the liquid storage assembly 2
- the liquid is delivered to the microporous atomizing sheet 12 .
- the battery 36 is used to provide electric energy for the microporous atomizing sheet 12 and the driving member 35 to work.
- the controller 31 is used to control the working state of the microporous atomizing sheet 12 and the driving member 35 , that is, the controller 31 controls whether the battery 36 supplies power to the microporous atomizing sheet 12 and the driving member 35 .
- the driving part 35 drives the push rod 34 to move in a direction close to the accommodating seat 33, and then delivers a predetermined amount of liquid medicine in the liquid storage assembly 2 to the atomization chamber 14 through the needle tube 13;
- the controller 31 detects that there is liquid medicine to be atomized between the needle tube 13 in the atomization chamber 14 and the microporous atomizing sheet 1, it controls the microporous atomizing sheet 12 to carry out the atomization operation; the controller 31 detects that the atomization
- the microporous atomizing sheet 12 is controlled to stop working. Since the moving distance of the push rod 34 can be controlled each time, a predetermined amount of medicinal liquid can be controlled to be transported into the atomizing chamber 14 for atomization, so that precise control of the amount of the atomized liquid can be realized.
- FIG. 7 is a structural schematic diagram of the driving part in the first embodiment of the control assembly provided by the present application.
- the driving member 35 includes a motor 351 and a threaded rod 352 rotatably connected to the motor 351 .
- the motor 351 is fixed on the side wall of the control housing 32 through a support member 354 , and the screw rod 352 is arranged at one end of the motor 351 close to the push rod 34 ;
- One end of the motor 351 close to the push rod 34 is provided with a first contact piece 355 , and the first contact piece 355 is electrically connected to the controller 31 .
- the material of the first contact 355 can be but not limited to metal, as long as it can conduct electricity.
- the first contact member 355 is cylindrical. In other implementation manners, the first contact member 355 may be in the form of a sheet or other structures, which can be designed according to needs.
- an elastic member 353 is sheathed on the threaded rod 352 .
- the elastic member 353 is a spring.
- the elastic member 353 may also be other elements that can be deformed and restored to their original shape, as long as they can meet the requirements.
- the driving member 35 may include a motor 351 and a gear rotatably connected to the motor 351 , and the corresponding push rod 34 is provided with matching teeth, so that the driving member 35 drives the push rod 34 to move. It only needs to be able to realize that the driving member 35 can drive the push rod 34 to move along its extending direction, and the specific structures of the driving member 35 and the push rod 34 can be designed according to requirements.
- Figure 8 is a schematic structural view of the push rod in the first embodiment of the control assembly provided by the application
- Figure 9 is a schematic cross-sectional view of the push rod in the first embodiment of the control assembly provided by the application
- FIG. 10 is a schematic cross-sectional view of another embodiment of the push rod in the first embodiment of the control assembly provided by the present application.
- An end of the push rod 34 away from the receiving seat 33 is provided with threads.
- the end of the push rod 34 away from the receiving seat 33 is sheathed on the screw rod 352 , that is, the threaded end of the push rod 34 is rotatably connected to the screw rod 352 .
- the threads on the push rod 34 are set in cooperation with the threads of the screw rod 352 .
- the screw rod 352 rotates, the thread on the push rod 34 moves up and down along the direction of the screw rod 352 .
- the piston 24 in the liquid storage assembly 2 is pushed to move to squeeze out the liquid medicine.
- the accuracy of the thread on the screw rod 352 and the thread on the push rod 34 is set to be less than or equal to level 5, so as to improve the accuracy of a single rotation, Accurate control of the moving distance of the push rod 34 is realized, thereby realizing precise control of the atomization dose.
- the choice of thread accuracy is also related to the atomization accuracy requirements. The higher the accuracy, the higher the atomization accuracy. Among them, the smaller the value of the thread accuracy setting, the higher the accuracy.
- the push rod 34 includes a push rod body 341 and a nut 342 .
- the nut 342 is disposed on an end of the push rod 34 away from the accommodating seat 33 and on the inner wall of the push rod body 341 .
- the push rod 34 includes a push rod body 341 and threads disposed on the inner wall of the push rod body 341 , and the threads are disposed on an end of the push rod body 341 away from the receiving seat 33 .
- a limiting groove 343 is provided at an end of the push rod body 341 close to the driving member 35 , and the limiting groove 343 is disposed around the thread on the push rod body 341 .
- the limiting groove 343 is used for accommodating the elastic member 353 sleeved on the threaded rod 352 .
- the elastic member 353 When the push rod 34 is sleeved on the screw rod 352, one end of the elastic member 353 abuts against the bottom wall of the limiting groove 343, and the other end abuts against the motor 351; as the screw rod 352 rotates, the elastic member 353 is compressed, Elastic member 353 gives push rod 34 a power opposite to its direction of motion, eliminates the gap between the screw thread on the screw mandrel 352 and the thread on the push rod 34, makes the screw thread on the screw mandrel 352 and the screw thread on the push rod 34 cooperate more compact, to achieve precise control over the moving distance of the push rod 34 .
- the elastic member 353 is fixedly connected to the motor 351 , so as to eliminate the gap between the threads on the screw rod 352 and the threads on the push rod 34 .
- a second contact piece 344 is provided at an end of the push rod 34 close to the driving piece 35 , and the second contact piece 344 is electrically connected to the controller 31 .
- the material of the second contact member 344 can be but not limited to metal, as long as it can conduct electricity.
- the second contact member 344 is cylindrical.
- the height of the first contact piece 355 and the second contact piece 344 plus the depth of the limiting groove 343 after abutting against each other is the same as the height of the elastic piece 353 after maximum compression.
- the second contact member 344 may be in the shape of a sheet or other structures, which may be designed according to needs.
- the controller 31 detects The first contact piece 355 conducts with the second contact piece 344 , controls the motor 351 to stop rotating, and then makes the push rod 34 stop moving toward the direction close to the motor 351 , thereby realizing the limitation of the downward movement position of the push rod 34 .
- Figure 11 is a schematic structural view of the second embodiment of the control assembly provided by the application
- Figure 12 is a schematic cross-sectional view of the second embodiment of the control assembly provided by the application
- Figure 13 is a schematic diagram of the second embodiment of the control assembly provided by the application An exploded schematic of a second embodiment of the control assembly is provided.
- the structure of the control assembly 3 is basically the same as that of the first embodiment, the difference lies in the structure of the receiving seat 33, the setting position of the elastic member 353, the receiving seat 33 and the push rod 34, and the drive The connection relationship of item 35.
- the accommodating seat 33, the push rod 34, and the driving member 35 are an integral structure.
- One end of the receiving seat 33 is fixed on the installation cavity 321 and communicates with the installation cavity 321 ; the other end of the receiving seat 33 is fixed on the supporting member 354 .
- Part of the liquid storage assembly 2 is accommodated in the accommodation seat 33; the push rod 34 and the screw rod 352 of the driver 35 are entirely arranged in the accommodation seat 33; the motor 351 is arranged on the side of the support member 354 away from the accommodation seat 33, And the fixed connection with the motor 351 is realized with the receiving seat 33 through the support member 354 .
- the accommodating seat 33, the push rod 34, and the driving member 35 are arranged as an integral structure, which can prevent the support member 354 of the driving member 35 from being slightly deformed along the moving direction of the push rod 34 when the screw rod 352 drives the push rod 34 to move.
- a limiting member 331 is arranged in the receiving seat 33 , and the limiting member 331 is in an annular structure and is arranged on the inner wall of the receiving seat 33 .
- the limiting member 331 is fixedly connected with the receiving seat 33 , and can be fixed together by glue or the like.
- the limiting member 331 and the receiving seat 33 are integrally formed.
- the limiting member 331 is arranged at the end of the liquid storage assembly 2 close to the driving member 35 and abuts against the liquid storage assembly 2 ; that is, the limiting member 331 is arranged at the end of the push rod 34 near the liquid storage assembly 2 .
- the limiting member 331 is used to prevent the push rod 34 from rotating with the rotation of the screw rod 352 , that is, to limit the shaking of the push rod 34 . Control the gap between the push rod 34 and the stopper 331 within 0.05mm, prevent the push rod 34 from shaking to the greatest extent, realize precise control of the moving distance of the push rod 34, and then realize precise control of the atomization dose.
- the elastic member 353 is sheathed on the push rod 34 , that is, the push rod 34 is elastically connected to the receiving seat 33 .
- the elastic member 353 is a spring, one end of the spring abuts against the limiting member 331 , and the other end is fixed on the flange of the outer wall of the end of the push rod 34 close to the motor 351 .
- push rod 34 moves toward the direction close to piston 24, and elastic member 353 is compressed, and elastic member 353 applies a power opposite to its moving direction to push rod 34, eliminates the screw thread on the screw rod 352 and pushes.
- the elastic member 353 can also be other elements capable of being deformed and restored to its original shape, which only needs to be met.
- the electronic atomization device in this application includes a microporous atomizing sheet and a needle tube; one end of the needle tube is spaced from the microporous atomizing sheet, and the other end is inserted into the liquid storage component; the needle tube is used to deliver the liquid in the liquid storage component to the microporous
- the liquid to be atomized is formed on the porous atomizing sheet, and the microporous atomizing sheet is used to atomize the liquid to be atomized, and the liquid to be atomized is adsorbed between the microporous atomizing sheet and the needle tube through surface tension.
- the needle tube to deliver the liquid in the liquid storage component to the microporous atomization sheet, the precise control of the atomization dose can be achieved, which can prevent the patient from taking too much medicine or not enough medicine, so that the nebulization inhalation treatment can achieve the expected the therapeutic effect.
- the inventors of the present application have found that, under ideal conditions, the dose of the liquid medicine pushed out from the liquid storage assembly 2 is equal to the amount of liquid medicine to be atomized between the microporous atomizing sheet 12 and the needle tube 13 during each atomization. dose.
- the medicine liquid sprayed back by the microporous atomizing sheet 12 will accumulate on the needle tube 13 after each atomization, or the interval between each two atomizations is too long, so that the needle tube 13 close to the microporous
- the liquid medicine in one end of the porous atomizing sheet 12 is evaporated; the above reasons will cause the dose of the liquid medicine released from the liquid storage component 2 to be unequal to the dose to be atomized between the microporous atomizing sheet 12 and the needle tube 13, which will affect the atomization precision. Therefore, in order to reduce atomization deviation and improve atomization precision, the inventors of the present application made the following improvements.
- FIG. 14 is a schematic structural diagram of the functional modules of the first embodiment of the control component of the present application.
- the control assembly 3 includes a drive assembly 30 and a controller 31, the drive assembly 30 is connected to the controller 31, wherein the drive assembly 30 provides the liquid in the liquid storage assembly 2 to the atomization assembly 1 to form the liquid to be atomized, and the controller 31 controls The driving assembly 30 works, and detects whether there is liquid to be atomized in the atomizing chamber 14 .
- the atomization assembly 1 includes a microporous atomization sheet 12, and the atomization assembly 1 and part of the liquid storage assembly 2 are accommodated in the installation cavity 321, and the liquid storage assembly 2 is provided with a sealing plug 23
- One end faces the opening of the installation chamber 321, the needle tube 13 in the atomization assembly 1 is inserted into the liquid storage assembly 2, and the end of the liquid storage assembly 2 provided with the piston 24 faces the bottom of the installation chamber 321, and the components of the drive assembly 30 push the piston 24 to the
- the liquid in the liquid storage component 2 is delivered to the needle tube 13 , and then reaches the microporous atomizing sheet 12 .
- the atomization assembly 1 also includes an atomization shell 10, an atomization seat 11 and a needle tube 13, the metal substrate in the microporous atomization sheet 12 is electrically connected to the controller 31 through a wire, and the needle tube 13 passes through
- the conductive member 132 and the wire are electrically connected to the controller 31, and the needle tube 13 and the metal substrate form an impedance sensor, that is, the metal substrate in the needle tube 13 and the microporous atomizing sheet 12 is equivalent to two metal electrodes, and the controller 31 passes the detection Whether the liquid to be atomized is connected between the needle tube 13 and the microporous atomizing sheet 12 determines whether there is liquid to be atomized in the atomization chamber 14 .
- the metal substrate in the microporous atomizing sheet 12 and the needle tube 13 are in a conduction state, and the resistance value between the metal substrate in the microporous atomizing sheet 12 and the needle tube 13 is very small, about 0, and the microporous The metal substrate in the atomizing sheet 12 and the needle tube 13 are in an open circuit state, the resistance between the metal substrate in the microporous atomizing sheet 12 and the needle tube 13 is far greater than 0, and the controller 31 judges the atomization chamber by the resistance value 14 Whether there is liquid to be atomized.
- the liquid to be atomized between the microporous atomizing sheet 12 and the needle tube 13 is completely atomized, and the liquid medicine in the needle tube 13 is flush with the end of the needle tube 13 .
- the liquid to be atomized will accumulate at the end of the needle tube 13 close to the microporous atomizing sheet 12, causing residues; or, please refer to Fig. 16, two times of atomization When the time interval between the injections is longer, a certain amount of evaporation takes place in the medicinal solution in the needle tube 13. In the above situation, the metal substrate in the microporous atomizing sheet 12 and the needle tube 13 will be in an open state.
- the control The controller 31 first receives the liquid supply signal, and the controller 31 controls the drive assembly 30 to start the first stage of liquid supply, and the first stage of liquid supply continues until the controller 31 detects that the needle tube 13 and the microporous atomizing sheet 12 have passed through the atomizer to be atomized.
- the liquid is connected; then the controller 31 controls the drive assembly 30 to start the second stage of liquid supply.
- the controller 31 controls the drive assembly 30 to flow out a constant dose of liquid to be atomized from the liquid storage assembly 2 .
- the microporous atomizing sheet 12 is arranged at one end of the atomizing seat 11, and cooperates with the end of the atomizing seat 11 to form an atomizing chamber 14, and one end of the needle tube 13 is arranged in the atomizing chamber 14 and is spaced from the microporous atomizing sheet 12. The distance is constant.
- the controller 31 first controls the driving assembly 30 to provide the liquid in the liquid storage assembly 2 to the atomizing chamber 14 to form a waiting mist
- the liquid to be atomized can be adsorbed between the microporous atomizing sheet 12 and the needle tube 13 by surface tension, so that the controller 31 detects that the microporous atomizing sheet 12 and the needle tube 13 are connected.
- the first stage of liquid supply is completed. At this time, there is a volume V1 to be atomized in the atomization chamber 14, and the volume V1 to be atomized is less than 1 microliter; after that, the controller 31 controls the drive assembly 30 to perform the second stage of liquid supply.
- the amount of liquid supplied is a constant dose, and the constant dose is the dose to be atomized V2.
- the dose of the liquid supply in the first stage is not a constant amount, so it is only necessary to realize the amount of liquid medicine pushed out from the liquid storage component 2 Just make the needle tube 13 conduct with the metal substrate of the microporous atomizing sheet 12 .
- This design is because the surface tension of the same material is the same, and is affected by the surface tension, no matter whether the atomization sheet 12 and the needle tube 13 are placed at any angle, the dose of the liquid V1 to be atomized between the atomization sheet 12 and the needle tube 13 They are all approximately equal, and their error accuracy is less than ⁇ 5%. Therefore, when the liquid pumped from the liquid storage assembly 2 is adsorbed between the atomizing sheet 12 and the needle tube 13 and detected by the controller 31 , the liquid V1 to be atomized already exists on the atomizing sheet 12 at this time.
- FIG. 18 it is a schematic diagram of functional modules of the second embodiment of the control assembly provided by the present application.
- the control assembly includes a drive assembly 30 and a controller 31, wherein the drive assembly 30 includes a motor 351 and a push rod 34, wherein the motor 351 is electrically connected to the controller 31, and one end of the push rod 34 is connected to the motor 351 through a screw rod 352, and pushes The other end of the rod 34 abuts against the liquid storage assembly 2 .
- the controller 31 includes a signal receiving unit, a detection unit, an atomization control unit, and a liquid supply control unit; wherein, the signal receiving unit is used to receive the liquid supply signal provided by the user; Whether the liquid to be atomized is connected to the conduction; the atomization control unit controls the microporous atomization sheet 12 to start or stop the atomization operation; the liquid supply control unit controls the drive assembly 30 to push the piston.
- the driving assembly 30 includes a push rod 34 and a driving member 35
- the driving member 35 includes a motor 351 and a threaded rod 352 rotatably connected to the motor 351 .
- the liquid supply control unit controls the motor 351 to rotate, the motor 351 drives the screw rod 352 to rotate, and the screw rod 352 drives the push rod 34 to move in a direction close to the liquid storage assembly 2, To move the piston 24 in the liquid storage assembly 2 towards the direction of the atomization assembly 1, and deliver the liquid in the liquid storage assembly 2 to the microporous atomization sheet 12.
- the detection unit starts to detect the atomization chamber 14 Whether there is liquid to be atomized inside, that is, whether there is conduction between the needle tube 13 and the metal substrate of the microporous atomization sheet 12; and the detection unit detects that there is liquid to be atomized in the atomization chamber 14, and the liquid supply control unit controls
- the motor 351 continues to provide a constant dose of liquid to be atomized into the atomization chamber 14 .
- the stroke of the push rod 34 is divided into two stages.
- the first stage is: the controller 31 controls the stroke of the push rod 34 to be L1, so that the liquid storage assembly 2 moves toward the atomization chamber 14 to provide the amount to be atomized V1;
- the push rod moves the first stroke.
- the first state is that the liquid on the needle tube is in a residual state. As shown in FIG. 16 , in the remaining state, the liquid will protrude from the end of the needle tube.
- the push rod moves for the second stroke.
- the second state is that the liquid in the needle tube is in an evaporating state. As shown in FIG. 15 , in the evaporating state, the liquid will be lower than the end of the needle tube. If the liquid in the needle tube is in the third state, the push rod moves for the third stroke.
- the third state is an ideal state, that is, in the third state, the liquid in the needle tube is approximately flush with the end of the needle tube, and there is no evaporation as shown in FIG. 15 or residue as shown in FIG. 16 .
- the second stroke is greater than the third stroke
- the third stroke is greater than the first stroke
- the third stroke is L1.
- the number of steps counted by the controller 31 to the motor 351 is not a constant value during the first stage of liquid supply due to liquid evaporation or residue in the needle tube.
- the liquid supply volume in the first stage is V1
- the stroke of the push rod 34 is L3, and L3>L1.
- the liquid in the liquid storage assembly 2 is delivered to the microporous atomizing sheet 12, and the metal substrate in the microporous atomizing sheet 12 is connected to the needle tube 13, and the microporous atomizing sheet 12
- the resistance value between the metal substrate and the needle tube 13 is very small and about 0.
- the detection unit detects that there is a liquid to be atomized in the atomization chamber 14, and the atomization control unit controls the microporous atomization sheet 12 to start the atomization operation.
- the liquid supply control unit controls the motor 351 , the screw rod 352 and the push rod 34 to continue to supply the liquid to be atomized into the atomization chamber 14 , and the detection unit continues to detect the state between the needle tube 13 and the microporous atomization sheet 12 .
- the liquid in the liquid storage assembly 2 is not delivered to the microporous atomizing sheet 12, that is, the metal substrate in the microporous atomizing sheet 12 and the needle tube 13 are in an open state, and the microporous The resistance between the metal substrate in the atomizing sheet 12 and the needle tube 13 is much greater than 0, the detection unit detects that there is liquid to be atomized in the atomizing chamber 14, and the liquid supply control unit controls the motor 351, the screw rod 352 and the push rod 34 Continue to provide the liquid to be atomized into the atomization chamber 14 until the detection unit detects the liquid to be atomized, the atomization control unit controls the microporous atomization sheet 12 to start the atomization operation, and at the same time, the liquid supply control unit controls The driving assembly 30 continues to provide a certain amount of liquid to be atomized into the atomizing chamber 14 , and the detection unit continues to detect the state between the needle tube 13 and the microporous atomizing sheet 12
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Hematology (AREA)
- Anesthesiology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Pulmonology (AREA)
- Biophysics (AREA)
- Special Spraying Apparatus (AREA)
Abstract
本申请公开了一种控制组件及电子雾化装置,控制组件包括驱动组件,用于将储液组件中的液体提供给雾化组件以形成待雾化液体;控制器,用于控制驱动组件工作,以及检测雾化组件是否具有待雾化液体;其中,响应于控制器接收到供液信号,控制器控制驱动组件向雾化组件供液,并检测雾化组件是否具有待雾化液体;以及响应于控制器检测到雾化组件具有待雾化液体,控制器控制驱动组件继续供液以提供恒定剂量的待雾化液体。通过该方法实现对雾化剂量的精准控制,使得雾化吸入治疗达到预期的治疗效果。
Description
相关申请的交叉引用
本申请基于2021年6月17日提交的中国专利申请202110673230.4主张其优先权,此处通过参照引入其全部记载内容。
本申请涉及雾化器技术领域,具体是涉及一种控制组件及电子雾化装置。
呼吸系统疾病治疗方法中,雾化吸入治疗是一种重要且有效的治疗方法。雾化吸入治疗是采用雾化器将药液雾化成微小液滴,患者通过呼吸将药物吸入呼吸道和肺部,药液在呼吸道或肺部沉积,从而达到无痛、迅速、有效治疗的目的。
传统的雾化器,在雾化的过程中,实际雾化剂量与预设雾化剂量存在偏差,影响雾化精度,进而影响治疗效果。
【发明内容】
有鉴于此,本申请提供一种控制组件,以解决现有技术中无法精准控制药液雾化剂量的技术问题。
为了解决上述技术问题,本申请提供的第一个技术方案为:提供一种控制组件,包括:驱动组件和控制器;所述驱动组件用于将储液组件中的液体提供给雾化组件以形成待雾化液体;所述控制器用于控制所述驱动组件工作,以及检测所述雾化组件是否具有所述待雾化液体;其中,响应于所述控制器接收到供液信号,所述控制器控制所述驱动组件向所述雾化组件供液,并检测所述雾化组件是否具有所述待雾化液体;以及响应于所述控制器检测到所述雾化组件具有所述待雾化液体,所述控制器控制所述驱动组件继续供液以提供恒定剂量的所述待雾化液体。
其中,所述雾化组件包括针管和微孔雾化片,所述控制器分别与所述针管与所述微孔雾化片电连接,所述控制器通过检测所述针管与所述微孔雾化片之间是否通过所述待雾化液体导通,判断所述雾化组件是否具有所述待雾化液体。
其中,响应于所述控制器接收到供液信号,所述控制器控制所述驱动组件进行第一阶段供液,所述第一阶段供液持续到所述控制器检测到所述针管与所述微孔雾化片导通;以及响应于所述控制器检测到所述针管与所述微孔雾化片之间导通,所述控制器控制所述驱动组件进行第二阶段供液,所述第二阶段供液过程中,所述控制器控制所述驱动组件从所述储液组件流出恒定剂量的所述待雾化液体。
其中,在所述控制器控制所述驱动组件进行第一阶段供液时,所述待雾化液体通过表面张力吸附在所述微孔雾化片与所述针管之间,以使得所述控制器检测到所述微孔雾化片与所述针管导通。
其中,所述第一阶段的供液量小于1微升。
其中,所述驱动组件包括:电机,与所述控制器连接;推杆,所述推杆的一端连接所述电机,另一端与所述储液组件抵接,用于在所述电机的驱动下将所述储液组件内的液体推入所述针管内,并通过所述针管导入所述针管与所述微孔雾化片之间。
其中,响应于所述控制器接收到供液信号,所述控制器控制所述电机驱动所述推杆移动直到所述控制器检测到所述针管与所述微孔雾化片导通;响应于所述控制器检测到所述针管与所述微孔雾化片之间导通,所述控制器控制所述电机计步清零后重新计恒定步,从而驱动所述推杆移动恒定行程。
其中,在第一阶段供液时,若所述针管内的液体处于第一状态,所述推杆移动第一行程;若所述针管内的液体处于第二状态,所述推杆移动第二行程;若所述针管内的液体处于第三状态,所述推杆移动第三行程;所述第二行程大于所述第三行程,所述第三行程大于所述第一行程。
其中,响应于所述控制器检测到所述针管与所述微孔雾化片之间导通,所述控制器进一步控制所述微孔雾化片进行雾化操作。
其中,响应于所述控制器检测到所述针管与所述微孔雾化片之间断开,所述控制器控制所述微孔雾化片停止雾化操作。
本申请提供的第二个技术方案为,包括雾化组件和控制组件,所述控制组件用于将储液组件中的液体提供给所述雾化组件。
其中,所述雾化组件包括微孔雾化片和针管,所述针管的一端与所述微孔雾化片间隔设置,另一端与所述液体连通;所述控制组件用于将所述储液组件中的液体通过所述针管输送到所述微孔雾化片以形成待雾化液体。
本申请的有益效果:区别于现有技术,控制器接收到供液信号,控制器控制驱动组件将储液组件中的液体提供给雾化组件,并开始检测雾化组件是否具有待雾化液体,雾化组件具有待雾化液体,控制器控制驱动组件继续向雾化组件提供恒定剂量的待雾化液体。通过控制器控制驱动组件向雾化组件提供待雾化液体,并对雾化组件是否具有待雾化液体进行检测,实现对雾化剂量的精准控制,使得雾化吸入治疗达到预期的治疗效果。
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本申请提供的电子雾化装置的结构示意图。
图2是本申请提供的雾化组件的截面示意图;
图3是本申请提供的雾化组件中雾化座的立体结构图;
图4是本申请提供的雾化组件中第一密封件的立体结构图;
图5是本申请提供的储液组件的爆炸示意图;
图6是本申请提供的控制组件第一实施例的结构示意图;
图7是本申请提供的控制组件第一实施例中驱动件的结构示意图;
图8是本申请提供的控制组件第一实施例中推杆的结构示意图;
图9是本申请提供的控制组件第一实施例中推杆的截面示意图;
图10是本申请提供的控制组件第一实施例中推杆另一实施方式的截面示意图;
图11是本申请提供的控制组件第二实施例的结构示意图;
图12是本申请提供的控制组件第二实施例的截面示意图;
图13是本申请提供的控制组件第二实施例的爆炸示意图;
图14是本申请提供的控制组件的第一实施例的功能模块示意图;
图15是本申请提供的针头有残留液体示意图;
图16是本申请提供的针管内有液体蒸发示意图;
图17是本申请提供的待雾化液体V1、V2示意图;
图18是本申请提供的控制组件的第二实施例的功能模块示意图。
下面结合附图和实施例,对本申请作进一步的详细描述。特别指出的是,以下实施例仅用于说明本申请,但不对本申请的范围进行限定。同样的,以下实施例仅为本申请的部分实施例而非全部实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
本申请中的术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括至少一个该特征。本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。本申请实施例中的术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或组件。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
请参阅图1,是本申请提供的电子雾化装置的结构示意图。
电子雾化装置可用于药液等液态基质的雾化,应用于治疗上下呼吸系统疾病的医用设备,以雾化医用药品。电子雾化装置包括雾化组件1、储液组件2和控制组件3。使用时,雾化组件1和储液组件2安装在控制组件3上。其中,储液组件2用于存储药液;雾化组件1用于将储液组件2中的液体雾化;控制组件3包括控制器31和安装腔321,雾化组件1和储液组件2安装于安装腔321中,控制组件3用于将储液组件2中的液体输送给雾化组件1,并控制雾化组件1工作。
雾化组件1、储液组件2和控制组件3可以是一体设置,也可以是可拆卸连接,根据具体需要进行设计。
请参阅图2,是本申请提供的雾化组件的截面示意图。
雾化组件1包括雾化外壳10、雾化座11、微孔雾化片12和针管13。微孔雾化片12设置于雾化座11的一端,并与雾化座11的端部配合形成雾化仓14。针管13的延伸方向与微孔雾化片12的延伸方向垂直。针管13的延伸方向也可以与微孔雾化片12的延伸方向成其他角度,例如60度到90度之间,根据需要进行设计。针管13固定于雾化座11上;针 管13的一端设置于雾化仓14内且与微孔雾化片12间隔设置;使用时,针管13的另一端插入储液组件2中,以将储液组件2中的液体输送到微孔雾化片12上形成待雾化液体。微孔雾化片12用于雾化待雾化液体。待雾化液体通过表面张力吸附在微孔雾化片12与针管13之间。雾化外壳10的一端形成或设置吸嘴部15,微孔雾化片12和针管13同雾化座11一起设置于雾化外壳10内;其中,吸嘴部15与微孔雾化片12和雾化座11围设而成的雾化仓14连通,使用者通过吸嘴部15将微孔雾化片12雾化好的药液吸食。
请参阅图3和图4,图3是本申请提供的雾化组件中雾化座的立体结构图,图4是本申请提供的雾化组件中第一密封件的立体结构图。
雾化座11的一端设置有安装槽110,安装槽110用于安装微孔雾化片12;安装槽110形状与微孔雾化片12形状匹配。在微孔雾化片12的外围设置有第一密封件111,微孔雾化片12同第一密封件111一起设置于安装槽110中。第一密封件111起到固定微孔雾化片12的作用,避免微孔雾化片12在雾化座11的一端晃动,影响雾化药液过程的进行。
微孔雾化片12包括压电陶瓷片、金属基片、第一电极以及第二电极,第一电极与压电陶瓷片电连接,第二电极与金属基片电连接,第一电极和第二电极均与控制器31电连接。金属基片为圆片,压电陶瓷片为圆环,金属基片的直径大于压电陶瓷片的内径即可。压电陶瓷片的中心区域设置有通孔,金属基片与压电陶瓷片中心区域对应的区域设置有多个微孔;即微孔雾化片12包括微孔区域,微孔区域设置有多个微孔,多个微孔将吸嘴部15与雾化仓14连通。在本实施例中,金属基片的中心区域向靠近吸嘴部15的方向凸起,为待雾化液体提供较大的附着面,进而增大待雾化液体的附着力。其他实施方式中,金属基片可以为平面结构,根据需要进行选择,本申请对此不做限定。
第一密封件111包括第一面板1111、第二面板1112和侧壁1113。第一面板1111和第二面板1112相对设置。第一面板1111设置于侧壁1113的一端,第二面板1112设置于侧壁1113的另一端;即,第一面板1111与第二面板1112间隔设置于侧壁1113上,且侧壁1113将第一面板1111与第二面板1112连接。在一个实施例中,侧壁1113将第一面板1111和第二面板1112的边缘连接形成一整体结构;优选,第一面板1111、第二面板1112和侧壁1113是一体成型的。第一密封件111的材质为橡胶、硅胶等。
第一面板1111设置于第二面板1112靠近吸嘴部15的一侧。第一面板1111、第二面板1112和侧壁1113均为圆环结构;第一面板1111的外径与第二面板1112的外径相同;第一面板1111的内径与第二面板1112的内径可以相同也可以不同,根据需要进行设计;侧壁1113的内径与第一面板1111和第二面板1112的外径相同。第一面板1111和第二面板1112的厚度相同,侧壁1113的内外径之差与第一面板1111和第二面板1112的厚度相同。
第一面板1111、第二面板1112和侧壁1113共同围设形成雾化片腔体1114,用于容置微孔雾化片12;即,微孔雾化片12位于第一面板1111和第二面板1112之间,且不超出侧壁1113围成的区域。第一面板1111的中心通孔和第二面板1112的中心通孔相互连通且能将微孔雾化片12上的微孔区域暴露出来。在一个实施例中,第一面板1111与第二面板1112的同轴设置,第一面板1111的内径大于第二面板1112的内径。
在第一密封件111上设置有开口1115,便于将微孔雾化片12安装到雾化片腔体1114中。本实施例中,开口1115设置于侧壁1113和第一面板1111的连接处,即在第一密封件111的边缘切去一块形成开口1115。开口1115也可以设置于侧壁1113处,只需能够使微孔雾化片12安装于雾化片腔体1114中即可,本申请对此不做限定。
在其他实施方式中,微孔雾化片12也可以为方形等其他形状,第一密封件111的结构与微孔雾化片12配合设置,安装槽110的形状与之配合设置,根据需要进行选择。
继续参阅图3,在安装槽110的底壁上设置有凸起112,凸起112的高度与第二面板1112的厚度相同。凸起112嵌设在第二面板1112的中心通孔内。在凸起112上设置有开孔113,开孔113与微孔雾化片12的微孔区域对应设置;即,雾化座11靠近微孔雾化片12的一端设置有开孔113,微孔雾化片12覆盖开孔113,微孔区域悬空设置于开孔113处,微孔雾化片12与开孔113配合形成雾化仓14。在凸起112上,环绕开孔113设置有环形凹槽114,用于安装第二密封件115;环形凹槽114的尺寸与第二密封件115的尺寸配合设置;即,雾化座11靠近微孔雾化片12的一端设置有环形凹槽114,环形凹槽114内设置有第二密封件115;微孔雾化片12的非微孔区域覆盖环形凹槽114。第二密封件115为圆环,第二密封件115的材质为橡胶、硅胶等;环形凹槽114为圆环状。第二密封件115用于防止针管13泵出的液体泄漏到雾化仓14外,使得雾化药液剂量的精度降低。也就是说,在凸起112上设置环形凹槽114,第二密封件115设置于环形凹槽114中;环形凹槽114在微孔雾化片12所在平面上的投影,环形凹槽114环绕微孔雾化片12上的微孔区域设置,即环形凹槽114的内径大于微孔区域的直径。
在一个实施例中,凸起112的截面为圆形,开孔113的截面为圆形,且同心设置;环形凹槽114的外径等于微孔雾化片12的压电陶瓷片的中心区域通孔的内径;第二密封件115环绕微孔区域设置且与微孔雾化片12的金属基片抵接。
具体实施中,开孔113可以为通孔,也可以为盲孔;具体地,开孔113的孔径大于针管13的外径,针管13靠近微孔雾化片12的一端与开孔113的侧壁间隔设置。本实施例中,开孔113为通孔,雾化仓14为开放式结构,使得反喷的药液能够顺着雾化仓14的侧壁流出雾化仓14,避免反喷药液对雾化过程的影响。在另一实施方式中,开孔113为盲孔,雾化仓14为封闭式结构,使得反喷的药液能够沿着雾化仓14的侧壁向远离微孔雾化片12的方向流动,最后沉积在雾化仓14的底部,避免反喷药液对雾化过程的影响。也就是说,在雾化座11靠近微孔雾化片12的一端设置开孔113,使得微孔雾化片12雾化过程中反喷的药液可以顺着雾化仓14的侧壁向远离微孔雾化片12的方向流动,避免在药液雾化完成后反喷的药液在针管13与微孔雾化片12之间形成气泡或水膜,使得控制器31无法准确检测到是否还存在待雾化液体,进而使得控制器31继续控制微孔雾化片12雾化,导致出现干烧的问题,影响电子雾化装置的使用寿命。
在其他实施方式中,开孔113的孔径等于针管13外径,微孔雾化片12与雾化座11的端部配合形成的微型雾化仓14为封闭式结构且能够实现对雾化液体量的精准控制。可以理解的是,该结构的微型雾化仓14无法使反喷的药液可以顺着雾化仓14的侧壁向远离微孔雾化片12的 方向流动,反喷药液会对雾化过程产生一定的影响。另外,雾化仓14为微型雾化仓14,封闭式结构也存在液体被吸附至封闭结构的底部从而出现无法雾化的概率性问题。
继续参阅图2,雾化仓14、针管13以及微孔雾化片12的微孔区域共轴设置。雾化仓14的最大横截面的面积小于四倍的微孔雾化片12的微孔区域的面积。在本实施例中,雾化仓14的横截面和微孔区域均为圆形,雾化仓14的直径大于微孔区域的直径,且小于两倍的微孔区域直径。具体地,雾化仓14的直径为4mm-5mm,针管13靠近微孔雾化片12的一端与雾化仓14侧壁的距离为1.2mm-1.8mm,使得通过针管13泵出的待雾化液体吸附在微孔雾化片12和针管13之间,实现任意角度的雾化药液,精确控制雾化药液剂量。若雾化仓14的直径过大,例如大于5mm,吸附在微孔区域之外的药液会增加,则药液发生反喷的面积增加,反喷的液体量增大,使用者吸食药液剂量的准确度会降低;若雾化仓14的直径过小,例如小于4mm,则待雾化的液体除了吸附在微孔雾化片12和针头13之间,还可能会流出到雾化仓的侧壁上,未雾化药液的残留量增加,使用者吸食药液剂量的准确度降低。
在一个实施例中,雾化仓14由开孔113与微孔雾化片12形成,雾化仓14的直径为开孔113的孔径。
针管13靠近微孔雾化片12的一端与微孔雾化片12的距离为0.2mm-0.4mm。若针管13靠近微孔雾化片12的一端与微孔雾化片12的距离太远,例如大于0.4mm,吸附着在雾化仓14侧壁上的药液量增大,部分药液无法附着在微孔雾化片12上,无法实现雾化,降低使用者吸食药液剂量的准确度;若针管13靠近微孔雾化片12的一端与微孔雾化片12的距离太近,例如小于0.2mm,药液雾化完成后药液在针管13与微孔雾化片12之间形成气泡或水膜,使得控制器31无法准确检测到是否还存在待雾化液体,进而使得控制器31继续控制微孔雾化片12雾化,导致出现干烧的问题,影响电子雾化装置的使用寿命。
在一实施方式中,针管13在靠近微孔雾化片12的一端设置有管套131,管套131的外壁与雾化仓14的侧壁间隔设置。管套131用于增大针管13靠近微孔雾化片12一端的表面积,即增大针管13的液体附着面积,进而增大待雾化液体的附着力,使得针管13泵出的待雾化液体更好地吸附在针管13靠近微孔雾化片12一端与微孔雾化片12之间。在本实施例中,管套131为空心圆柱体结构,管套131的内径与针管13的外径相同,外径小于开孔113的直径;管套131的材质为硅胶、橡胶等。管套131也可以为实心结构,将针管13插入即可。
针管13为中空的金属件。在本实施例中,针管13为空心的圆柱状金属管,针管13的内径为0.7mm-1.0mm,针管13的材质优选不锈钢。针管13也可以为其它结构的中空金属件,只需能够将储液组件2中的液体泵出到微孔雾化片12上形成待雾化液体即可;针管13的材质只需不与待雾化药液发生反应,使药液发生变质即可。
在一实施方式中,针管13还可以用于检测。在针管13上设置有导通件132,导通件132与控制器31电连接。本实施例中,导通件132选用弹针。其他实施方式中,导通件132也可选用其他元件,只需通过导通件132实现针管13与控制器31的电连接即可。
微孔雾化片12中的金属基片通过导线与控制器31电连接,针管13通过导通件132和导线与控制器31电连接,针管13与金属基片形成阻 抗传感器,即针管13与微孔雾化片12中的金属基片相当于两个金属电极。当储液组件2中的液体被针管13泵出后,待雾化液体吸附在针管13靠近微孔雾化片12一端与微孔雾化片12之间,将微孔雾化片12中的金属基片与针管13导通,微孔雾化片12中的金属基片与针管13之间的阻值很小约为0;当待雾化液体被雾化后,针管13靠近微孔雾化片12一端与微孔雾化片12之间不存在待雾化液体,微孔雾化片12中的金属基片与针管13处于开路状态,微孔雾化片12中的金属基片与针管13之间的阻值远大于0,同时大于微孔雾化片12中的金属基片与针管13通过待雾化液体导通状态下的阻值。通过控制器31检测微孔雾化片12中的金属基片与针管13之间的阻值大小,即可判断出是否还存在待雾化液体。即,若控制器31检测到微孔雾化片12中的金属基片与针管13之间的阻值接近于0,判断出微孔雾化片12与针管13之间存在待雾化液体,则控制微孔雾化片12对待雾化液体进行雾化;若控制器31检测到微孔雾化片12中的金属基片与针管13之间的阻值远大于0,判断出微孔雾化片12与针管13之间的待雾化液体即将消耗完或已经消耗完,从而控制微孔雾化片12直接或延时(延长时间的具体值根据经验设定,例如2s)停止工作。
在另一实施方式中,针管13的材质为硅胶、塑料等,此时针管13不具备检测功能,只能用于将储液组件2中的液体泵出到微孔雾化片12上。
由于液体的表面张力和附着力作用,液体从针管13泵出后,会吸附在微孔雾化片12上。液体位于针管13靠近微孔雾化片12的一端与微孔雾化片12之间,以及会向四周蔓延,当液体到达雾化仓14前端边缘。微孔雾化片12工作时,将液体变成喷雾向吸嘴部15喷出。雾化过程中,随着液体的消耗,在大气压的作用下,未雾化的液体不断向微孔雾化片12的微孔区域移动,最终完全雾化。在液体的表面张力、附着力和大气压的综合作用下,针管13送液及液体的雾化过程完全不受方向和重力的约束。因此,在其他实施方式中,针管13与微孔雾化片12也可平行设置,其他结构做相应改变,针管13与微孔雾化片12的工作原理与上述相同,不再赘述。
雾化座11远离微孔雾化片12的一端设置有容置槽116,容置槽116用于容置储液组件2。针管13远离微孔雾化片12的一端设置于容置槽116内,从而使得针管13远离微孔雾化片12的一端插入储液组件2中,实现将储液组件2中液体泵出到微孔雾化片12上。
请参阅图5,是本申请提供的储液组件的爆炸示意图。
储液组件2包括储液外壳21、储液盖22、密封塞23、活塞24。储液外壳21的一端设置有储液盖22,另一端设置有活塞24。在储液盖22靠近储液外壳21的一端设置有密封塞23,密封塞23用于密封储液外壳21,防止储液组件2中的液体漏液。储液外壳21与密封塞23和活塞24共同围设而成的空间为储液仓,储液仓用于储存待雾化液体。储液盖22上可以设置开孔,使得密封塞23部分暴露。
储液组件2安装在控制组件3的安装腔321内,储液组件2设置有密封塞23的一端朝向安装腔321的开口,便于雾化组件1中的针管13插入储液组件2。储液组件2设置有活塞24的一端朝向安装腔321的底部,便于控制组件3内的部件推动活塞24,将储液组件2中的液体传送到针管13中,进而到达微孔雾化片12上。
请参阅图6,是本申请提供的控制组件第一实施例的结构示意图。
控制组件3还包括控制外壳32、容置座33、推杆34、驱动件35、电池36。
控制外壳32的一端设置有安装腔321,安装腔321用于容置雾化组件1和部分储液组件2;部分储液组件2设置于雾化组件1的容置槽116,同雾化组件1一起容置于安装腔321中。安装腔321的结构可以为环体,在本实施例中,安装腔321为圆环形。安装腔321与控制外壳32通过黏胶、螺栓等方式固定在一起,优选安装腔321与控制外壳32一体成型。在一个实施例中,控制外壳32包括间隔设置的顶壁和底壁,以及连接顶壁和底壁的环形侧壁。顶壁靠近侧壁的位置具有一通孔作为安装腔321,通孔将控制外壳32的内部空间与外部连通。
容置座33设置于控制外壳32内,且与控制外壳32固定连接。容置座33设置于安装腔321靠近控制外壳32的底壁的一端,容置座33的内部空间与安装腔321连通。容置座33与安装腔321可以为一体成型。容置座33用于容置部分储液组件2。雾化组件1插入安装腔321之后,容置座33靠近安装腔321的一端与雾化组件1中的雾化座11固定连接,例如通过螺栓,卡固以及磁力件吸附等方式。在本实施例中,通过螺栓的方式固定在一起。容置座33靠近安装腔321的一端和雾化座11靠近容置座33的一端均设置有安装结构(例如,安装孔),便于将雾化座11和容置座33固定在一起。
推杆34设置于容置座33远离安装腔321的一端。推杆34与容置座33活动连接,推杆34与设置于容置座33内的储液组件2抵接。推杆34的一端部分容置于容置座33中,推杆34靠近驱动件35的一端和驱动件35位于容置座外。
驱动件35设置于推杆34远离容置座33的一端。驱动件35用于驱动推杆34向靠近储液组件2的方向运动,以使推杆34推动储液组件2中的活塞24向靠近雾化组件1的方向运动,将储液组件2中的液体输送到微孔雾化片12上。
电池36用于给微孔雾化片12和驱动件35工作提供电能。控制器31用于控制微孔雾化片12和驱动件35的工作状态,即控制器31控制电池36是否给微孔雾化片12、驱动件35供电。控制器31控制驱动件35启动后,驱动件35带动推杆34向靠近容置座33的方向移动,进而将储液组件2中预定量的药液通过针管13输送到雾化仓14中;控制器31检测到雾化仓14中的针管13与微孔雾化片1之间存在待雾化的药液后,控制微孔雾化片12进行雾化操作;控制器31检测到雾化仓14中的针管13与微孔雾化片1之间的药液雾化完成后,控制微孔雾化片12停止工作。由于推杆34每次移动的距离可以控制,进而可以控制预定量的药液被输送到雾化仓14中进行雾化,从而可以实现对雾化液体量的精准控制。
请参阅图7,是本申请提供的控制组件第一实施例中驱动件的结构示意图。
驱动件35包括电机351以及与电机351转动连接的丝杆352。电机351通过支撑件354固定在控制外壳32的侧壁上,丝杆352设置于电机351靠近推杆34的一端;即,电机351与容置座33间隔设置。电机351靠近推杆34的一端设置有第一接触件355,第一接触件355与控制器31电连接。第一接触件355的材质可以为但不限于金属,只需能够导电 即可。本实施例中,第一接触件355为圆柱状。其他实施方式中,第一接触件355可以为片状或其他结构,根据需要进行设计。
其中,丝杆352上套设有弹性件353。本实施例中,弹性件353为弹簧。在其他实施方式中,弹性件353也可以是其他能够发生形变且可以恢复原状的元件,能够满足需求即可。
在其他实施方式中,驱动件35可以包括电机351和与电机351转动连接的齿轮,相应的推杆34上设置有与之匹配的齿牙,以便于驱动件35驱动推杆34运动。只需能够实现驱动件35驱动推杆34沿其延伸方向运动即可,驱动件35和推杆34的具体结构可以根据需要进行设计。
请参阅图8、图9和图10,图8是本申请提供的控制组件第一实施例中推杆的结构示意图,图9是本申请提供的控制组件第一实施例中推杆的截面示意图,图10是本申请提供的控制组件第一实施例中推杆另一实施方式的截面示意图。
推杆34远离容置座33的一端设置有螺纹。推杆34远离容置座33的一端套设在丝杆352上,即推杆34设置有螺纹的一端与丝杆352转动连接。推杆34上的螺纹与丝杆352的螺纹配合设置。当丝杆352转动时,推杆34上的螺纹沿着丝杆352的方向上下移动。当推杆34在丝杆352的带动下,向靠近容置座33的方向移动,实现推动储液组件2中的活塞24移动以挤出药液。通过控制丝杆352单次转动的圈数,进而控制推杆34和活塞24的行程,最终达到精确给液的目的。为了精准控制储液组件2中的液体通过针管13泵出的液体量,将丝杆352上的螺纹和推杆34上的螺纹的精度设置为小于等于5级,以提高单次转动的精度,实现精确控制推杆34的移动距离,进而实现精准控制雾化剂量。可以理解的是,螺纹精度高低的选择也是跟雾化精度要求相关联的,精度越高,雾化精度越高,其中,螺纹的精度设置的数值越小,精度越高。
在本实施例中,如图9所示,推杆34包括推杆本体341和螺母342,螺母342设置于推杆34远离容置座33的一端且设置于推杆本体341的内壁上。在另一实施方式中,如图10所示,推杆34包括推杆本体341和设置于推杆本体341内壁上的螺纹,且螺纹设置于推杆本体341远离容置座33的一端。
在推杆本体341靠近驱动件35的一端设置有限位槽343,限位槽343环绕推杆本体341上的螺纹设置。限位槽343用于容置套设于丝杆352上的弹性件353。当推杆34套设于丝杆352上,弹性件353的一端与限位槽343的底壁抵接,另一端与电机351抵接;随着丝杆352的转动,弹性件353被压缩,弹性件353给推杆34一个与其运动方向相反的力,消除丝杆352上的螺纹与推杆34上的螺纹之间的间隙,使得丝杆352上的螺纹与推杆34上的螺纹配合更紧密,实现对推杆34移动距离的精准控制。在其他实施方式中,弹性件353与电机351固定连接,实现消除丝杆352上的螺纹与推杆34上的螺纹之间间隙的目的即可。
在推杆34靠近驱动件35的一端设置有第二接触件344,第二接触件344与控制器31电连接。第二接触件344的材质可以为但不限于金属,只需能够导电即可。本实施例中,第二接触件344的为圆柱状。第一接触件355和第二接触件344抵接后的高度加上限位槽343的深度与弹性件353最大程度压缩后的高度相同。在其他实施方式中,第二接触件344可以为片状或其他结构,可以根据需要进行设计。
当丝杆352带动推杆34向远离容置座33的方向移动,即带动推杆34向靠近电机351的方向移动,第一接触件355与第二接触件344接触后,控制器31检测到第一接触件355与第二接触件344导通,控制电机351停止转动,进而使得推杆34停止向靠近电机351的方向运动,实现对推杆34向下移动位置的限定。
请参阅图11、图12和图13,图11是本申请提供的控制组件第二实施例的结构示意图,图12是本申请提供的控制组件第二实施例的截面示意图,图13是本申请提供的控制组件第二实施例的爆炸示意图。
在第二实施例中,控制组件3的结构与第一实施例中的基本相同,不同之处在于容置座33的结构、弹性件353的设置位置以及容置座33与推杆34、驱动件35的连接关系。
在本实施例中,容置座33、推杆34、驱动件35为一整体结构。容置座33的一端固定在安装腔321上,且与安装腔321连通;容置座33的另一端固定在支撑件354上。容置座33中容置有部分储液组件2;推杆34和驱动件35的丝杆352整个设置于容置座33中;电机351设置于支撑件354远离容置座33的一侧,且与容置座33通过支撑件354实现与电机351的固定连接。可以理解的是,为了提高雾化剂量精度,需要提高整个结构的刚性也就是不能变形的能力,也即希望丝杆352转动的过程中,推杆34的位置不会因为其它因素而变化。将容置座33、推杆34、驱动件35设置为整体结构,能够避免丝杆352带动推杆34移动过程中,驱动件35的支撑件354沿推杆34的移动方向发生轻微的变形而导致电机351的推力偏移;容置座33与支撑件354固定连接,容置座33固定于控制外壳32上,从而可以防止支撑件354变形,进而提高雾化剂量精度。
在容置座33中设置有限位件331,限位件331为环形结构,设置于容置座33的内壁。限位件331与容置座33固定连接,可以通过黏胶等方式固定在一起,优选限位件331与容置座33一体成型。限位件331设置于储液组件2靠近驱动件35的一端,且与储液组件2抵接;也就是说,限位件331设置于推杆34靠近储液组件2的一端。限位件331用于防止推杆34随着丝杆352的转动而发生转动,即用于限制推杆34的晃动。将推杆34与限位件331之间的间隙控制在0.05mm之内,最大限度的防止推杆34晃动,实现对推杆34移动距离的精确控制,进而实现对雾化剂量的精准控制。
弹性件353套设于推杆34上,即推杆34与容置座33弹性连接。在本实施例中,弹性件353为弹簧,弹簧的一端与限位件331抵接,另一端固定于推杆34靠近电机351一端的外壁的凸缘上。随着丝杆352的转动,推杆34向靠近活塞24的方向运动,弹性件353被压缩,弹性件353施加给推杆34一个与其运动方向相反的力,消除丝杆352上的螺纹与推杆34上的螺纹之间的间隙,使得丝杆352上的螺纹与推杆34上的螺纹配合更紧密,使得推杆34不会晃动,实现对推杆34移动距离的精准控制。在其他实施方式中,弹性件353也可以为其它能够发生形变且能恢复原状的元件,满足需要即可。
本申请中的电子雾化装置包括微孔雾化片和针管;针管的一端与微孔雾化片间隔设置,另一端插入储液组件中;针管用于将储液组件中的液体输送到微孔雾化片上形成待雾化液体,微孔雾化片用于雾化待雾化液体,待雾化液体通过表面张力吸附在微孔雾化片与针管之间。通过使 用针管将储液组件中的液体输送到微孔雾化片上,实现对雾化剂量的精准控制,能够避免患者吸食过多药液或吸食药液的剂量不够,使得雾化吸入治疗达到预期的治疗效果。
在上述过程中,为了达到良好的治疗效果,需要对雾化剂量进行严格控制,一般以微升作为计量单位,且雾化剂量的精度范围在±5%,因此对雾化液的剂量的精度控制一直是困扰业界的难题。
为解决该难题,本申请发明人研究发现,在理想情况下,每次雾化时,从储液组件2中推出的药液剂量等于微孔雾化片12与针管13之间的待雾化剂量。但是,在实际使用中,每次雾化之后微孔雾化片12反喷的药液会积累在针管13上,或者,每两次雾化之间间隔时间过长,使针管13内靠近微孔雾化片12一端内的药液被蒸发;以上原因会造成储液组件2中推出的药液剂量,与微孔雾化片12和针管13之间的待雾化剂量不相等,影响雾化精度。因此,为降低雾化偏差,提高雾化精度,本申请发明人做出以下改进。
具体请参阅图14,为本申请控制组件的第一实施例的功能模块结构示意图。
控制组件3包括驱动组件30和控制器31,驱动组件30与控制器31连接,其中,驱动组件30将储液组件2中的液体提供给雾化组件1形成待雾化液体,控制器31控制驱动组件30工作,以及检测雾化仓14内是否具有待雾化液体。
具体的,请参阅图1和图2,雾化组件1包括微孔雾化片12,且雾化组件1和部分储液组件2容置于安装腔321,储液组件2设置有密封塞23的一端朝向安装腔321的开口,雾化组件1中的针管13插入储液组件2,储液组件2设置有活塞24的一端朝向安装腔321的底部,驱动组件30的部件推动活塞24,将储液组件2中的液体传送到针管13中,进而到达微孔雾化片12上。
进一步的,请再参阅2,雾化组件1还包括雾化外壳10、雾化座11和针管13,微孔雾化片12中的金属基片通过导线与控制器31电连接,针管13通过导通件132和导线与控制器31电连接,针管13与金属基片形成阻抗传感器,即针管13与微孔雾化片12中的金属基片相当于两个金属电极,控制器31通过检测针管13与微孔雾化片12之间是否通过待雾化液体导通,判断雾化仓14内是否具有待雾化液体。
可以理解为,微孔雾化片12中的金属基片与针管13为导通状态,微孔雾化片12中的金属基片与针管13之间的阻值很小约为0,微孔雾化片12中的金属基片与针管13为开路状态,微孔雾化片12中的金属基片与针管13之间的阻值远远大于0,控制器31通过阻值判断雾化仓14是否具有待雾化液体。
理想情况下,当一次雾化完成后,微孔雾化片12与针管13之间的待雾化液体被全部雾化,针管13内的药液与针管13的端部平齐。而实际上,请参阅图15,当一次雾化完成后,待雾化液体会积累在针管13靠近微孔雾化片12的一端部,进而造成残留;或者,请参阅图16,两次雾化之间间隔时间较长时,针管13内的药液发生一定量的蒸发。以上情况,会使微孔雾化片12中的金属基片与针管13处于开路状态。
请参阅图17,在针管13的端部残留有待雾化液体,或者,针管13内的液体存在有蒸发时,即微孔雾化片12中的金属基片与针管13处于开路状态时,控制器31先接收到供液信号,控制器31控制驱动组件30 开始第一阶段供液,第一阶段供液持续到控制器31检测到针管13与微孔雾化片12之间通过待雾化液体导通;之后控制器31控制驱动组件30开始第二阶段供液,第二阶段供液过程中,控制器31控制驱动组件30从储液组件2流出恒定剂量的待雾化液体。
可以理解为,请再请参阅2,微孔雾化片12设置于雾化座11的一端,并与雾化座11的端部配合形成雾化仓14,针管13的一端设置于雾化仓14内且与微孔雾化片12间隔,该间隔距离一定,在未导通的状态下,控制器31先控制驱动组件30将储液组件2中的液体提供给雾化仓14形成待雾化液体,待雾化液体可以通过表面张力吸附在微孔雾化片12与针管13之间,以使得控制器31检测到微孔雾化片12与针管13导通。
第一阶段供液完成,此时雾化仓14内存在待雾化剂量V1,该待雾化剂量V1小于1微升;之后控制器31控制驱动组件30进行第二阶段供液,第二阶段供液量为恒定剂量,该恒定剂量为待雾化剂量V2。
进一步对第一阶段供液进行理解,本申请中由于存在待雾化液体的存留和蒸发,第一阶段供液的剂量不是恒定量,故只需实现从储液组件2中推出的药液量使针管13与微孔雾化片12的金属基片导通即可。如此设计,是因为相同的材质表面张力是一样的,而受到表面张力影响,无论雾化片12与针管13呈任意角度放置,雾化片12与针管13之间的待雾化液体V1的剂量都是近似相等的,其误差精度小于±5%。所以从储液组件2中泵出的液体吸附在雾化片12与针管13之间被控制器31检测到时,此时雾化片12上已经存在待雾化液体V1。
参阅图18,为本申请提供的控制组件的第二实施例的功能模块示意图。
控制组件包括驱动组件30和控制器31,其中,驱动组件30包括电机351和推杆34,其中,电机351与控制器31电连接,推杆34的一端通过丝杆352与电机351连接,推杆34另一端与储液组件2抵接。
控制器31包括信号接收单元、检测单元、雾化控制单元以及供液控制单元;其中,信号接收单元用于接收用户提供的供液信号;检测单元检测针管13与微孔雾化片12之间是否通过待雾化液体到导通;雾化控制单元控制微孔雾化片12开始或停止雾化操作;供液控制单元控制驱动组件30推动活塞。
请参照图6和图7,在一实施例中,驱动组件30包括推杆34和驱动件35,驱动件35包括电机351以及与电机351转动连接的丝杆352。
使用时,信号接收单元收到用户提供的供液信号后,供液控制单元控制电机351转动,电机351驱动丝杆352转动,丝杆352驱动推杆34向靠近储液组件2的方向运动,以使储液组件2中的活塞24向靠近雾化组件1的方向运动,将储液组件2中的液体输送到微孔雾化片12上,此时,检测单元检测开始检测雾化仓14内是否具有待雾化液体,即,针管13与微孔雾化片12的金属基片之间是否导通;以及检测单元检测到雾化仓14内具有待雾化液体,供液控制单元控制电机351继续向雾化仓14内提供恒定剂量的待雾化液体。
本申请中,为了精确控制供液量,将推杆34的行程分为两个阶段,第一阶段为:控制器31控制推杆34的行程为L1,以使得储液组件2向雾化仓14内提供待雾化剂量V1;第二阶段为:控制器31控制推杆34的行程为L2,以使得储液组件2向雾化仓14内提供待雾化剂量V2, 此时L0=L1+L2,V0=V1+V2,其中,供液剂量V0可以为几微升到几十微升,行程L0的单位为微米级。
在进行第一阶段的供液时,若针管内的液体处于第一状态,推杆移动第一行程。第一状态为针管上的液体处于残留状态,如图16所示,残留状态时,液体会凸出于针管的端部。若针管内的液体处于第二状态,推杆移动第二行程。第二状态为针管内的液体处于蒸发状态,如图15所示,蒸发状态时,液体会低于针管的端部。若针管内的液体处于第三状态,推杆移动第三行程。第三状态为理想状态,也即第三状态时,针管内的液体与针管的端部大约平齐,不存在图15所示的蒸发或者图16所示的残留的情况。具体的,第二行程大于第三行程,第三行程大于第一行程,第三行程为L1。
可以理解为,因针管内存在液体蒸发或残留,在进行第一阶段供液时,控制器31对电机351的记步数不是恒定值。
具体的,在针管内液体处于蒸发状态时,第一阶段的供液量为V1,推杆34的行程为L3,L3>L1。
具体的,针管13上的液体处于残留状态时,第一阶段的供液量为V1,但是因为具有残留,假设残留的液体量为V3,此时只需要在第一阶段供液V4,V3+V4=V1,此时推杆34的行程为L4,L4<L1<L3。
因此,在本申请采用在第一阶段供液时,控制器31先控制电机351和丝杆352驱动推杆34移动,直至检测单元检测到待雾化液体,使雾化仓14内存在待雾化液体剂量V1,降低误差。之后控制器31对电机351的步进数计步清零,然后再重新开始计步,使驱动推杆34完成第二阶段的行程,即移动恒定行程L2,向雾化仓14内提供恒定剂量的待雾化液体V2,使V1+V2=V0恒定,实现对雾化剂量的精准控制。
进一步的,参阅图17,在储液组件2中的液体输送到微孔雾化片12上,将微孔雾化片12中的金属基片与针管13导通,微孔雾化片12中的金属基片与针管13之间的阻值很小约为0,检测单元检测到雾化仓14内具有待雾化液体,雾化控制单元控制微孔雾化片12开始雾化操作,与此同时,供液控制单元控制电机351、丝杆352以及推杆34继续向雾化仓14内提供待雾化液体,并检测单元继续检测针管13与微孔雾化片12之间的状态。
再进一步的,参阅图15和图16,储液组件2中的液体未输送到微孔雾化片12上,即微孔雾化片12中的金属基片与针管13处于开路状态,微孔雾化片12中的金属基片与针管13之间的阻值远大于0,检测单元检测到雾化仓14内具有待雾化液体,供液控制单元控制电机351、丝杆352以及推杆34继续向雾化仓14内提供待雾化液体,直至检测单元检测到待雾化液体之后,雾化控制单元控制微孔雾化片12开始雾化操作,与此同时,供液控制单元控制驱动组件30继续向雾化仓14内提供定量的待雾化液体,并检测单元继续检测针管13与微孔雾化片12之间的状态。
以上所述仅为本申请的部分实施例,并非因此限制本申请的保护范围,凡是利用本申请说明书及附图内容所作的等效装置或等效流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本申请的专利保护范围内。
Claims (12)
- 一种控制组件,用于电子雾化装置,其中,包括:驱动组件,用于将储液组件中的液体提供给雾化组件以形成待雾化液体;控制器,用于控制所述驱动组件工作,以及检测所述雾化组件是否具有所述待雾化液体;其中,响应于所述控制器接收到供液信号,所述控制器控制所述驱动组件向所述雾化组件供液,并检测所述雾化组件是否具有所述待雾化液体;以及响应于所述控制器检测到所述雾化组件具有所述待雾化液体,所述控制器控制所述驱动组件继续供液以提供恒定剂量的所述待雾化液体。
- 根据权利要求1所述的控制组件,其中,所述雾化组件包括针管和微孔雾化片,所述控制器分别与所述针管与所述微孔雾化片电连接,所述控制器通过检测所述针管与所述微孔雾化片之间是否通过所述待雾化液体导通,判断所述雾化组件是否具有所述待雾化液体。
- 根据权利要求2所述的控制组件,其中,响应于所述控制器接收到供液信号,所述控制器控制所述驱动组件进行第一阶段供液,所述第一阶段供液持续到所述控制器检测到所述针管与所述微孔雾化片导通;以及响应于所述控制器检测到所述针管与所述微孔雾化片之间导通,所述控制器控制所述驱动组件进行第二阶段供液,所述第二阶段供液过程中,所述控制器控制所述驱动组件从所述储液组件流出恒定剂量的所述待雾化液体。
- 根据权利要求3所述的控制组件,其中,在所述控制器控制所述驱动组件进行第一阶段供液时,所述待雾化液体通过表面张力吸附在所述微孔雾化片与所述针管之间,以使得所述控制器检测到所述微孔雾化片与所述针管导通。
- 根据权利要求4所述的控制组件,其中,所述第一阶段的供液量小于1微升。
- 根据权利要求3所述的控制组件,其中,所述驱动组件包括:电机,与所述控制器连接;推杆,所述推杆的一端连接所述电机,另一端与所述储液组件抵接,用于在所述电机的驱动下将所述储液组件内的液体推入所述针管内,并通过所述针管导入所述针管与所述微孔雾化片之间。
- 根据权利要求6所述的控制组件,其中,响应于所述控制器接收到供液信号,所述控制器控制所述电机驱动所述推杆移动直到所述控制器检测到所述针管与所述微孔雾化片导通;响应于所述控制器检测到所述针管与所述微孔雾化片之间导通,所述控制器控制所述电机计步清零后重新计恒定步,从而驱动所述推杆移动恒定行程。
- 根据权利要求7所述的控制组件,其中,在第一阶段供液时,若所述针管内的液体处于第一状态,所述推杆移动第一行程;若所述针管内的液体处于第二状态,所述推杆移动第二行程;若所述针管内的液体处于第三状态,所述推杆移动第三行程;所述第二行程大于所述第三行程,所述第三行程大于所述第一行程。
- 根据权利要求7所述的控制组件,其中,响应于所述控制器检 测到所述针管与所述微孔雾化片之间导通,所述控制器进一步控制所述微孔雾化片进行雾化操作。
- 根据权利要求7所述的控制组件,其中,响应于所述控制器检测到所述针管与所述微孔雾化片之间断开,所述控制器控制所述微孔雾化片停止雾化操作。
- 一种电子雾化装置,其中,包括:雾化组件;控制组件,用于将储液组件中的液体提供给所述雾化组件,所述控制组件如权利要求1~10任一项所述控制组件。
- 根据权利要求11所述的电子雾化装置,其中,所述雾化组件包括:微孔雾化片;针管,所述针管的一端与所述微孔雾化片间隔设置,另一端与所述液体连通;所述控制组件用于将所述储液组件中的液体通过所述针管输送到所述微孔雾化片以形成待雾化液体。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110673230.4A CN115487383B (zh) | 2021-06-17 | 2021-06-17 | 控制组件及电子雾化装置 |
CN202110673230.4 | 2021-06-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022262520A1 true WO2022262520A1 (zh) | 2022-12-22 |
Family
ID=84464732
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/093946 WO2022262520A1 (zh) | 2021-06-17 | 2022-05-19 | 控制组件及电子雾化装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115487383B (zh) |
WO (1) | WO2022262520A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5950619A (en) * | 1995-03-14 | 1999-09-14 | Siemens Aktiengesellschaft | Ultrasonic atomizer device with removable precision dosating unit |
CN1468119A (zh) * | 2000-10-05 | 2004-01-14 | 欧姆龙株式会社 | 液体雾化装置 |
CN110420369A (zh) * | 2019-08-08 | 2019-11-08 | 苏州艾丽迪医疗科技有限公司 | 一种雾化式呼吸系统给药装置 |
CN111215283A (zh) * | 2020-03-19 | 2020-06-02 | 湖南嘉业达电子有限公司 | 一种新型超声雾化片 |
CN111375515A (zh) * | 2020-04-09 | 2020-07-07 | 佛山市南海科日超声电子有限公司 | 雾汽上喷的雾化设备 |
CN111888592A (zh) * | 2020-07-21 | 2020-11-06 | 深圳麦克韦尔科技有限公司 | 医疗雾化装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6540154B1 (en) * | 1991-04-24 | 2003-04-01 | Aerogen, Inc. | Systems and methods for controlling fluid feed to an aerosol generator |
CN203660013U (zh) * | 2013-09-29 | 2014-06-18 | 刘秋明 | 一种电子烟的电池组件、雾化组件以及电子烟 |
CA3030101C (en) * | 2016-07-27 | 2021-05-25 | Japan Tobacco Inc. | Flavor inhaler, cartridge, and flavor unit |
CN106108121A (zh) * | 2016-08-15 | 2016-11-16 | 卓尔悦欧洲控股有限公司 | 一种电子烟 |
CN107183784B (zh) * | 2017-05-19 | 2021-02-26 | 深圳市合元科技有限公司 | 一种雾化装置、电子烟具以及电子烟雾化器的控制方法 |
-
2021
- 2021-06-17 CN CN202110673230.4A patent/CN115487383B/zh active Active
-
2022
- 2022-05-19 WO PCT/CN2022/093946 patent/WO2022262520A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5950619A (en) * | 1995-03-14 | 1999-09-14 | Siemens Aktiengesellschaft | Ultrasonic atomizer device with removable precision dosating unit |
CN1468119A (zh) * | 2000-10-05 | 2004-01-14 | 欧姆龙株式会社 | 液体雾化装置 |
CN110420369A (zh) * | 2019-08-08 | 2019-11-08 | 苏州艾丽迪医疗科技有限公司 | 一种雾化式呼吸系统给药装置 |
CN111215283A (zh) * | 2020-03-19 | 2020-06-02 | 湖南嘉业达电子有限公司 | 一种新型超声雾化片 |
CN111375515A (zh) * | 2020-04-09 | 2020-07-07 | 佛山市南海科日超声电子有限公司 | 雾汽上喷的雾化设备 |
CN111888592A (zh) * | 2020-07-21 | 2020-11-06 | 深圳麦克韦尔科技有限公司 | 医疗雾化装置 |
Also Published As
Publication number | Publication date |
---|---|
CN115487383B (zh) | 2023-09-29 |
CN115487383A (zh) | 2022-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4369062B2 (ja) | 肺疾患用エーロゾル送出装置 | |
US6530370B1 (en) | Nebulizer apparatus | |
WO2022017187A1 (zh) | 医疗雾化装置 | |
TW200404613A (en) | System comprising a nozzle and a fixing means therefor | |
EP1219314B1 (en) | Liquid discharge apparatus having magnetic valve | |
WO2020052674A1 (zh) | 一种液体药物输送装置及药物输送方法 | |
TWM536948U (zh) | 微霧化裝置及微霧化器 | |
CN113018606A (zh) | 一种定时式正压通气雾化机 | |
WO2022262520A1 (zh) | 控制组件及电子雾化装置 | |
CN114470442A (zh) | 一种可用于雾化吸入的笔型给药装置 | |
WO2022126589A1 (zh) | 电子雾化装置 | |
CN107213538B (zh) | 雾化吸入给药用的储药及雾化装置 | |
CN216019087U (zh) | 电子雾化装置 | |
CN114642795B (zh) | 电子雾化装置 | |
CN114642798B (zh) | 电子雾化装置 | |
CN114588417B (zh) | 雾化组件及电子雾化装置 | |
WO2022257919A1 (zh) | 微量雾化装置 | |
CN211910559U (zh) | 雾化器 | |
CN103143086B (zh) | 导引式手持定时微型雾化器 | |
CN114847529A (zh) | 雾化器、电子雾化装置及气溶胶生成基质的雾化方法 | |
TWM554833U (zh) | 噴霧裝置、噴霧裝置套件及面罩式噴霧裝置 | |
TWI653064B (zh) | 霧化器及其噴嘴組件 | |
CN212547862U (zh) | 医疗雾化装置 | |
CN220193721U (zh) | 一种导液雾化一体式雾化头及雾化器 | |
CN111165913A (zh) | 雾化器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22824002 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22824002 Country of ref document: EP Kind code of ref document: A1 |