WO2022262479A1 - 兼具红外、雷达隐身的皮芯结构纤维及其制备方法和应用 - Google Patents

兼具红外、雷达隐身的皮芯结构纤维及其制备方法和应用 Download PDF

Info

Publication number
WO2022262479A1
WO2022262479A1 PCT/CN2022/091935 CN2022091935W WO2022262479A1 WO 2022262479 A1 WO2022262479 A1 WO 2022262479A1 CN 2022091935 W CN2022091935 W CN 2022091935W WO 2022262479 A1 WO2022262479 A1 WO 2022262479A1
Authority
WO
WIPO (PCT)
Prior art keywords
skin
infrared
core
stealth
fiber
Prior art date
Application number
PCT/CN2022/091935
Other languages
English (en)
French (fr)
Inventor
叶伟
张杏
孙启龙
龙啸云
高强
季涛
Original Assignee
南通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通大学 filed Critical 南通大学
Priority to US18/287,189 priority Critical patent/US12104882B2/en
Publication of WO2022262479A1 publication Critical patent/WO2022262479A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/08Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyacrylonitrile as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/04Melting filament-forming substances
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/34Core-skin structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • D01F1/106Radiation shielding agents, e.g. absorbing, reflecting agents
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/06Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyolefin as constituent
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43825Composite fibres
    • D04H1/43828Composite fibres sheath-core
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H3/00Camouflage, i.e. means or methods for concealment or disguise
    • F41H3/02Flexible, e.g. fabric covers, e.g. screens, nets characterised by their material or structure
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/02Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/10Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2507/00Sport; Military

Definitions

  • the present application relates to the technical field of material engineering, in particular to a skin-core structural fiber with both infrared and radar stealth and its preparation method and application.
  • multifunctional stealth materials In many military operations, detection technologies such as radar and infrared are usually used to improve target recognition capabilities. This makes a single stealth technology unable to meet actual needs. Therefore, the development of multifunctional stealth materials has important market prospects. At present, multifunctional composite materials with visible light, infrared, radar and other stealth functions are a development trend and a key development goal of various countries. With the development of nanotechnology and new spinning technology, lightweight and easy-to-form fibrous multifunctional stealth materials have good application prospects. However, at present, stealth protection basically relies on coating or multi-layer structure for use, and the molding is single.
  • Electromagnetic wave absorbing materials such as nano-scale ferroferric oxide, carbon black and ferric oxide intercalated graphene oxide are current research hotspots. Because different materials have mutual interference problems in electromagnetic wave absorption and thermal infrared stealth, it is difficult to solve both electromagnetic wave and infrared stealth.
  • Paraffin is a phase change material with low cost, good wave permeability, large latent heat of phase change and wide range of phase change temperature. At the same time, paraffin wax has good compatibility with ferroferric oxide, carbon black, graphene, etc., and is used as a binder in the dielectric constant test. Therefore, infrared and radar stealth materials with excellent performance can be prepared through suitable processes, but there is a clear lack of related technologies in the prior art.
  • Each exemplary embodiment of the present application provides a skin-core structural fiber with both infrared and radar stealth and its preparation method and application.
  • the obtained fibrous infrared and radar stealth materials can be prepared into fabrics, non-woven fabrics and other products, which are convenient to use and have wide application prospects.
  • the present application provides a skin-core structure fiber with both infrared and radar stealth, wherein the core material of the skin-core structure fiber includes the following raw materials in parts by weight: 10 parts of paraffin wax, 0.7-1.5 parts of electromagnetic wave absorber, high 1 part of molecular polymer, wherein the electromagnetic wave absorber is one or more of iron ferric oxide intercalated graphene oxide, nano ferric oxide, and carbon black;
  • the sheath-core structural fiber is obtained by spinning the core material through the sheath material.
  • the high molecular polymer is one or more of polyethylene, polypropylene, and ethylene-vinyl acetate copolymer.
  • Another aspect of the present application also provides a method for preparing a skin-core structural fiber with both infrared and radar stealth, including the following steps:
  • Step 1) Melting the paraffin, adding an electromagnetic wave absorber and stirring evenly to obtain the melt S1;
  • Step 2 Melting the high molecular polymer, then adding it into the melt S1, fully stirring, stirring evenly and then drying to obtain the core material S2;
  • Step 3 dissolving polyacrylonitrile in N,N-dimethylacetamide, stirring evenly and standing still to obtain the external phase spinning solution;
  • Step 4) The core material S2 is used as the core material, and the outer phase spinning solution is used as the skin layer material to perform solution spinning to obtain the skin-core structure fiber with both infrared and radar stealth.
  • the melting temperature of the paraffin in step 1) is 70°C.
  • the melting temperature of the polymer in step 2) ranges from 130°C to 140°C.
  • the standing time described in step 3) is 10 h.
  • the mass concentration of the polyacrylonitrile in the external spinning solution in step 3) ranges from 20% to 25%.
  • the temperature of the nozzle of the core material in step 4) is controlled between 140°C and 150°C.
  • This application also claims the application of a skin-core structure fiber with both infrared and radar stealth in the preparation of infrared stealth and radar stealth materials.
  • the infrared and radar stealth material is needle felt.
  • this application uses nano-scale ferric oxide, carbon black, and ferric oxide intercalated graphene, which are the latest high-efficiency electromagnetic wave absorbing materials.
  • the loading capacity of the electromagnetic wave absorbing material is finally in the form of fibers for easy molding.
  • This application uses skin-core spinning technology to prepare phase change materials and electromagnetic wave absorbing materials into fiber materials with a skin-core structure, which solves the disadvantages of stealth materials that only have a single infrared stealth or radar stealth.
  • the fiber materials can be formed in various ways. Easy to use. Nanostructured dielectric loss carbon materials and magnetic loss ferrite materials are widely used in various fields of electromagnetic wave absorption, especially in the range of 8-18GHz, they have good electromagnetic wave loss performance.
  • phase change materials have good advantages, and paraffin wax with a melting point in the range of 47-64°C is a low-cost far-infrared stealth material with good protection effect.
  • This application combines nano-electromagnetic wave absorbing materials with paraffin phase-change materials to prepare a fibrous multifunctional stealth material with infrared and radar stealth.
  • the fiber material has the ability to absorb , and has good electromagnetic wave absorption performance in the 8-18GHz radar band, which makes up for the shortcoming of single-function products in the current market.
  • Fig. 1 is an SEM image of a fiber material prepared in an embodiment of the present application.
  • Fig. 2 is a thermal infrared imaging of a human hand of a fiber material needle felt made in an embodiment of the present application.
  • Fig. 3 is the electromagnetic wave absorption performance of the fibrous material needle-punched felt (thickness 10 mm) prepared in an embodiment of the present application.
  • Fig. 4 is a thermal infrared imaging of a human hand of a fiber material needle felt made in an embodiment of the present application.
  • Fig. 5 is the electromagnetic wave absorption performance of the fibrous material needle felt (thickness 10 mm) prepared in an embodiment of the present application.
  • Fig. 6 is a thermal infrared imaging of a human hand of a fiber material needle felt made in an embodiment of the present application.
  • Fig. 7 shows the electromagnetic wave absorption performance of the fibrous material needle felt (thickness 10 mm) prepared in an embodiment of the present application.
  • a skin-core fiber with both infrared and radar stealth the core material of the skin-core fiber includes the following raw materials in parts by weight: 10 parts of paraffin, 0.7-1.5 parts of electromagnetic wave absorber, polymer 1 part of polymer, wherein the electromagnetic wave absorber is one or more of iron ferric oxide intercalated graphene oxide, nano iron ferric oxide, and carbon black;
  • the sheath-core structural fiber is obtained by spinning the core material through the sheath material.
  • the above-mentioned electromagnetic wave absorber is one or more of iron ferric oxide intercalated graphene oxide, nano iron ferric oxide, and carbon black.
  • the above-mentioned high molecular polymer is one or more of polyethylene, polypropylene, and ethylene-vinyl acetate copolymer.
  • a method for preparing a skin-core structural fiber with both infrared and radar stealth the specific steps are as follows:
  • the core material S2 is used as the core material (the core material nozzle is controlled at 150° C.), and the polyacrylonitrile solution is used as the skin layer material for solution spinning to obtain a fiber with a skin-core structure.
  • the core material nozzle is controlled at 150° C.
  • the polyacrylonitrile solution is used as the skin layer material for solution spinning to obtain a fiber with a skin-core structure.
  • Figure 1 under the scanning electron microscope, it can be clearly seen that a skin-core structure is formed, the inner layer is the core layer, and the skin layer is wrapped around the outer ring of the core layer.
  • the fiber material prepared in this example has a phase change enthalpy as high as 95.1 J/g, and has ultra-low infrared transmittance in the infrared band of 3-15 ⁇ m.
  • the fiber is needled into felt and placed on the back of the human hand.
  • the thermal imaging detection image is shown in Figure 2.
  • the absorption efficiency of 10mm thickness can reach below -10dB in the range of 8-18GHz, and the electromagnetic wave absorption performance is shown in Figure 3.
  • a method for preparing a skin-core structural fiber with both infrared and radar stealth the specific steps are as follows:
  • the core material S2 is used as the core material (the core material nozzle is controlled at 140° C.), and the polyacrylonitrile solution is used as the skin layer material for solution spinning to obtain a fiber with a skin-core structure.
  • the fiber material prepared in this example has a phase change enthalpy as high as 100.1J/g, and has ultra-low infrared transmittance in the 3-15 ⁇ m infrared band.
  • the thermal imaging detection image is shown in Figure 4.
  • the absorption efficiency of 10mm thickness can reach below -10dB in the range of 8-18GHz, and the electromagnetic wave absorption performance is shown in Figure 5.
  • a method for preparing a skin-core structural fiber with both infrared and radar stealth the specific steps are as follows:
  • the core material S2 is used as the core material (the core material nozzle is controlled at 150° C.), and the polyacrylonitrile solution is used as the skin layer material for solution spinning to obtain a fiber with a skin-core structure.
  • the fiber material prepared in this example has a phase change enthalpy as high as 99J/g, and has ultra-low infrared transmittance in the 3-15 ⁇ m infrared band.
  • the fiber is needled into felt and placed on the back of the human hand, and the human hand is hot.
  • the imaging detection image is shown in Figure 6, and the absorption frequency band below -10dB in the range of 8-18GHz with a thickness of 10mm is 8.7GHz, and the electromagnetic wave absorption performance is shown in Figure 7.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Multicomponent Fibers (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

一种兼具红外、雷达隐身的皮芯结构纤维及其制备方法和应用,其技术要点是:所述皮芯结构纤维的芯材按重量份包括以下原料:石蜡10份、电磁波吸收剂0.7~1.5份、高分子聚合物1份,其中,所述电磁波吸收剂为四氧化三铁插层氧化石墨烯、纳米四氧化三铁、炭黑中的一种或以上;其中,所述皮芯结构纤维将所述芯材通过皮层材料进行纺丝来获得。

Description

兼具红外、雷达隐身的皮芯结构纤维及其制备方法和应用
相关申请
本申请要求于2021年6月15日提交中国专利局、申请号为202110660239.1、申请名称为“一种兼具红外、雷达隐身的皮芯结构纤维及其制备方法和应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及材料工程技术领域,尤其涉及一种兼具红外、雷达隐身的皮芯结构纤维及其制备方法和应用。
背景技术
在众多军事行动中,通常是采用雷达、红外等探测技术来提高目标识别能力。这使得单一的隐身技术不能满足实际需求。因此,开发多功能隐身材料具有重要的市场前景。目前具备可见光、红外、雷达等隐身功能为一体的多功能复合材料是发展趋势,也是各国重点发展目标。随着纳米技术和新型纺丝技术的发展,重量轻、易成型的纤维状多功能隐身材料具有很好的应用前景。但是目前隐身防护基本是依靠涂覆或者多层结构的方式进行使用,成型单一。
纳米级的四氧化三铁、炭黑和四氧化三铁插层氧化石墨烯等电磁波吸收材料是目前的研究热点。因为不同的材料在电磁波吸收与热红外隐身存在着相互干扰的问题,所以解决兼具电磁波、红外隐身存在着一定的难度。石蜡是一种具有低成本、透波性好、相变潜热大、相变温度范围广的相变材料。同时石蜡与四氧化三铁、炭黑、石墨烯等相容性好,在介电常数测试时被用作粘结剂使用。因此,通过合适的工艺可以制备出性能优异的红外和雷达隐身材料,但现有技术中明显缺乏相关技术。
发明内容
本申请各示例性实施例提供一种兼具红外、雷达隐身的皮芯结构纤维及其制备方法和应用。制得的纤维状红外、雷达隐身材料可以制备成面料、无纺布等产 品,产品使用便利,应用前途广泛。
本申请一方面提供一种兼具红外、雷达隐身的皮芯结构纤维,其中,所述皮芯结构纤维的芯材按重量份包括以下原料:石蜡10份、电磁波吸收剂0.7~1.5份、高分子聚合物1份,其中,所述电磁波吸收剂为四氧化三铁插层氧化石墨烯、纳米四氧化三铁、炭黑中的一种或以上;
其中,所述皮芯结构纤维将所述芯材通过皮层材料进行纺丝来获得。
在一实施例中,所述高分子聚合物为聚乙烯、聚丙烯、乙烯-醋酸乙烯共聚物中的一种或以上。
本申请另一方面还提供一种兼具红外、雷达隐身的皮芯结构纤维的制备方法,包括以下步骤:
步骤1)将石蜡融化,并加入电磁波吸收剂充分搅拌均匀,得到熔液S1;
步骤2)将高分子聚合物熔融,随后加入到所述熔液S1中,进行充分搅拌,搅拌均匀后干燥,得到芯材S2;
步骤3)将聚丙烯腈溶解于N,N-二甲基乙酰胺中,搅拌均匀并静置,得到外相纺丝液;
步骤4)将所述芯材S2作为芯材,所述外相纺丝液作为皮层材料进行溶液纺丝,得到制得所述兼具红外、雷达隐身的皮芯结构纤维。
在一实施例中,步骤1)中所述石蜡的融化温度为70℃。
在一实施例中,步骤2)中所述高分子聚合物的熔融温度范围为130℃至140℃之间。
在一实施例中,步骤3)中所述静置的时间为10h。
在一实施例中,步骤3)中所述外相纺丝液中的所述聚丙烯腈的质量浓度范围为20%至25%之间。
在一实施例中,步骤4)中所述芯材的喷头温度被控制在140℃至150℃之间。
本申请还请求保护一种兼具红外、雷达隐身的皮芯结构纤维在制备红外隐身、雷达隐身材料中的应用。
在一实施例中,所述红外隐身、雷达隐身材料为针刺毡。
本申请的有益效果如下:
1、本申请一方面使用纳米级别的四氧化三铁、炭黑,以及四氧化三铁插层石墨烯,这些都是最新的高效电磁波吸收材料,同时利用了特殊的皮芯结构提高了石蜡及电磁波吸收材料的负载量,最终以纤维状的形式便于成型。
2、本申请利用皮芯纺丝技术将相变材料和电磁波吸收材料制备成皮芯结构的纤维材料,解决了隐身材料仅仅具有单一红外隐身或者雷达隐身的弊端,同时纤维材料的成型方式多样,使用便利。纳米结构的介电损耗碳材料和磁损耗铁氧体材料被广泛的应用到电磁波吸收的各个领域,特别是在8~18GHz范围内都有较好的电磁波损耗性能。在红外隐身材料中,相变材料具有很好的优势,而熔点在47~64℃范围内的石蜡是一种低成本、防护效果好的远红外隐身材料。
3、本申请将纳米电磁波吸收材料和石蜡相变材料相结合,制备出具有红外、雷达隐身的纤维状多功能隐身材料,相比较现有单一功能的隐身材料,该纤维材料具有在远红外吸收,以及在8~18GHz雷达波段内具有良好的电磁波吸收性能,弥补了目前市场产品功能单一的缺点。
附图说明
图1为本申请一实施例制得的纤维材料的SEM图。
图2为本申请一实施例制得的纤维材料针刺毡的人体手部热红外成像。
图3为本申请一实施例制得的纤维材料针刺毡(厚度10mm)的电磁波吸收性能。
图4为本申请一实施例制得的纤维材料针刺毡的人体手部热红外成像。
图5为本申请一实施例制得的纤维材料针刺毡(厚度10mm)的电磁波吸收性能。
图6为本申请一实施例制得的纤维材料针刺毡的人体手部热红外成像。
图7为本申请一实施例制得的纤维材料针刺毡(厚度10mm)的电磁波吸收性能。
具体实施方式
下面结合附图与具体实施例对本申请做进一步详细说明。
在一实施例中,一种兼具红外、雷达隐身的皮芯结构纤维,所述皮芯结构纤 维的芯材按重量份包括以下原料:石蜡10份、电磁波吸收剂0.7~1.5份、高分子聚合物1份,其中,所述电磁波吸收剂为四氧化三铁插层氧化石墨烯、纳米四氧化三铁、炭黑中的一种或以上;
其中,所述皮芯结构纤维将所述芯材通过皮层材料进行纺丝来获得。
上述的电磁波吸收剂为四氧化三铁插层氧化石墨烯、纳米四氧化三铁、炭黑中的一种或以上。
上述的高分子聚合物为聚乙烯、聚丙烯、乙烯-醋酸乙烯共聚物中的一种或以上。
一种兼具红外、雷达隐身的皮芯结构纤维的制备方法,具体步骤如下:
(1)将1000g的石蜡在70℃下融化,并加入50g四氧化三铁插层氧化石墨烯、20g炭黑充分搅拌均匀,制备红外和电磁波吸收材料溶液S1。
(2)将50g聚乙烯、30g聚丙烯、20g乙烯-醋酸乙烯共聚物在140℃下熔融,随后加入到熔液S1中,进行充分搅拌,搅拌均匀后干燥,制备芯材S2。
(3)将聚丙烯腈溶解于N,N-二甲基乙酰胺中,搅拌均匀并静置10h,制得聚丙烯腈质量浓度为25%的外相纺丝液(聚丙烯腈溶液)。
(4)将芯材S2作为芯材,(芯材喷头控制在150℃),聚丙烯腈溶液作为皮层材料进行溶液纺丝,制得皮芯结构的纤维。如图1所示,在扫描电镜下可以明显看出形成了皮芯的结构,内层为芯层,皮层包裹在芯层外圈。
经测试,本实施例制备出来的纤维材料,相变焓高达95.1J/g,在3~15μm红外波段具有超低红外透过率,将纤维针刺成毡并放置于人体手背,人体手部热成像探测图像如图2所示,10mm厚度在8~18GHz范围内都能达到-10dB以下的吸收效率,电磁波吸收性能如图3所示。
在一实施例中,一种兼具红外、雷达隐身的皮芯结构纤维的制备方法,具体步骤如下:
(1)将1000g的石蜡在70℃下融化,并加入100g纳米四氧化三铁、50g炭黑充分搅拌均匀,制备红外和电磁波吸收材料溶液S1。
(2)将50g聚乙烯、30g聚丙烯、20g乙烯-醋酸乙烯共聚物在130℃下熔融,随后加入到熔液S1中,进行充分搅拌,搅拌均匀后干燥,制备芯材S2。
(3)将聚丙烯腈溶解于N,N-二甲基乙酰胺中,搅拌均匀并静置10h,制得 聚丙烯腈质量浓度为20%的外相纺丝液(聚丙烯腈溶液)。
(4)将芯材S2作为芯材(芯材喷头控制在140℃),聚丙烯腈溶液作为皮层材料进行溶液纺丝,制得皮芯结构的纤维。
经测试,本实施例制备出来的纤维材料,相变焓高达100.1J/g,在3~15μm红外波段具有超低红外透过率,将纤维针刺成毡并放置于人体手背,人体手部热成像探测图像如图4所示,10mm厚度在8~18GHz范围内都能达到-10dB以下的吸收效率,电磁波吸收性能如图5所示。
在一实施例中,一种兼具红外、雷达隐身的皮芯结构纤维的制备方法,具体步骤如下:
(1)将1000g的石蜡在70℃下融化,并加入70g四氧化三铁插层氧化石墨烯、30g炭黑充分搅拌均匀,制备红外和电磁波吸收材料溶液S1。
(2)将50g聚乙烯、30g聚丙烯、20g乙烯-醋酸乙烯共聚物在130℃下熔融,随后加入到熔液S1中,进行充分搅拌,搅拌均匀后干燥,制备芯材S2。
(3)将聚丙烯腈溶解于N,N-二甲基乙酰胺中,搅拌均匀并静置10h,制得聚丙烯腈质量浓度为20%的外相纺丝液(聚丙烯腈溶液)。
(4)将芯材S2作为芯材(芯材喷头控制在150℃),聚丙烯腈溶液作为皮层材料进行溶液纺丝,制得皮芯结构的纤维。
经测试,本实施例制备出来的纤维材料,相变焓高达99J/g,在3~15μm红外波段具有超低红外透过率,将纤维针刺成毡并放置于人体手背,人体手部热成像探测图像如图6所示,10mm厚度在8~18GHz范围内达到-10dB以下的吸收频段为8.7GHz,电磁波吸收性能如图7所示。

Claims (10)

  1. 一种兼具红外、雷达隐身的皮芯结构纤维,其中,所述皮芯结构纤维的芯材按重量份包括以下原料:石蜡10份、电磁波吸收剂0.7~1.5份、高分子聚合物1份,其中,所述电磁波吸收剂为四氧化三铁插层氧化石墨烯、纳米四氧化三铁、炭黑中的一种或以上;
    其中,所述皮芯结构纤维将所述芯材通过皮层材料进行纺丝来获得。
  2. 根据权利要求1所述的皮芯结构纤维,其中,所述高分子聚合物为聚乙烯、聚丙烯、乙烯-醋酸乙烯共聚物中的一种或以上。
  3. 一种如权利要求1所述的兼具红外、雷达隐身的皮芯结构纤维的制备方法,包括:
    步骤1)将石蜡融化,并加入电磁波吸收剂充分搅拌均匀,得到熔液S1;
    步骤2)将高分子聚合物熔融,随后加入到所述熔液S1中,进行充分搅拌,搅拌均匀后干燥,得到芯材S2;
    步骤3)将聚丙烯腈溶解于N,N-二甲基乙酰胺中,搅拌均匀并静置,得到外相纺丝液;
    步骤4)将所述芯材S2作为芯材,所述外相纺丝液作为皮层材料进行溶液纺丝,得到所述兼具红外、雷达隐身的皮芯结构纤维。
  4. 根据权利要求3所述的方法,其中,步骤1)中所述石蜡的融化温度为70℃。
  5. 根据权利要求3所述的方法,其中,步骤2)中所述高分子聚合物的熔融温度范围为130℃至140℃之间。
  6. 根据权利要求3所述的方法,其中,步骤3)中所述静置的时间为10h。
  7. 根据权利要求3所述的方法,其中,步骤3)中所述外相纺丝液中的所述聚丙烯腈的质量浓度范围为20%至25%之间。
  8. 根据权利要求3所述的方法,其中,步骤4)中所述芯材的喷头温度被控制在140℃至150℃之间。
  9. 一种如权利要求1所述的兼具红外、雷达隐身的皮芯结构纤维在制备红外隐身、雷达隐身材料中的应用。
  10. 根据权利要求9所述的应用,其中,所述红外隐身、雷达隐身材料为针刺毡。
PCT/CN2022/091935 2021-06-15 2022-05-10 兼具红外、雷达隐身的皮芯结构纤维及其制备方法和应用 WO2022262479A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/287,189 US12104882B2 (en) 2021-06-15 2022-05-10 Skin-core structure fibers with both infrared and radar stealth, preparation method therefor, and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110660239.1 2021-06-15
CN202110660239.1A CN113249821B (zh) 2021-06-15 2021-06-15 一种兼具红外、雷达隐身的皮芯结构纤维及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2022262479A1 true WO2022262479A1 (zh) 2022-12-22

Family

ID=77187987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091935 WO2022262479A1 (zh) 2021-06-15 2022-05-10 兼具红外、雷达隐身的皮芯结构纤维及其制备方法和应用

Country Status (3)

Country Link
US (1) US12104882B2 (zh)
CN (1) CN113249821B (zh)
WO (1) WO2022262479A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116516519A (zh) * 2023-04-19 2023-08-01 东华大学 熔融纺丝制备高吸波剂含量的吸波纤维的方法及其产物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113249821B (zh) * 2021-06-15 2022-03-11 南通大学 一种兼具红外、雷达隐身的皮芯结构纤维及其制备方法和应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5378323A (en) * 1976-12-16 1978-07-11 Asahi Chem Ind Co Ltd Production of hollow acrylonitrile fibers
CN1696360A (zh) * 2005-05-26 2005-11-16 天津工业大学 一种微波屏蔽纤维及其制造方法
CN101205640A (zh) * 2007-12-18 2008-06-25 盛虹集团有限公司 一种熔体直纺生产皮芯结构微波屏蔽功能纤维的方法
CN106801266A (zh) * 2016-12-20 2017-06-06 武汉纺织大学 相变储能纤维及其制备方法
CN108374238A (zh) * 2018-03-16 2018-08-07 中国科学院广州能源研究所 一种利用同轴静电纺丝技术制备的相变储热织物
CN108570766A (zh) * 2018-03-16 2018-09-25 中国科学院广州能源研究所 一种利用同轴静电纺丝技术制备核壳结构的相变储热纤维膜的方法
CN109778344A (zh) * 2019-01-02 2019-05-21 华南理工大学 一种非连续相变调温纤维及其制备方法
CN110129916A (zh) * 2019-04-17 2019-08-16 浙江理工大学 一种石蜡/聚丙烯腈智能调温纳米纤维
CN112928389A (zh) * 2021-03-03 2021-06-08 华中科技大学 一种相变调温隔膜及其制备方法和应用
CN113249821A (zh) * 2021-06-15 2021-08-13 南通大学 一种兼具红外、雷达隐身的皮芯结构纤维及其制备方法和应用
CN113789609A (zh) * 2021-08-30 2021-12-14 武汉理工大学 一种兼具吸热/吸波双效功能的薄膜材料及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101292064A (zh) * 2005-09-15 2008-10-22 纤维创新技术公司 包含相变材料的多组分纤维
KR100663715B1 (ko) * 2005-12-31 2007-01-03 성균관대학교산학협력단 장뇌를 이용한 다공성 탄소나노섬유 제조방법 및 이에 따라제조된 탄소나노섬유

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5378323A (en) * 1976-12-16 1978-07-11 Asahi Chem Ind Co Ltd Production of hollow acrylonitrile fibers
CN1696360A (zh) * 2005-05-26 2005-11-16 天津工业大学 一种微波屏蔽纤维及其制造方法
CN101205640A (zh) * 2007-12-18 2008-06-25 盛虹集团有限公司 一种熔体直纺生产皮芯结构微波屏蔽功能纤维的方法
CN106801266A (zh) * 2016-12-20 2017-06-06 武汉纺织大学 相变储能纤维及其制备方法
CN108374238A (zh) * 2018-03-16 2018-08-07 中国科学院广州能源研究所 一种利用同轴静电纺丝技术制备的相变储热织物
CN108570766A (zh) * 2018-03-16 2018-09-25 中国科学院广州能源研究所 一种利用同轴静电纺丝技术制备核壳结构的相变储热纤维膜的方法
CN109778344A (zh) * 2019-01-02 2019-05-21 华南理工大学 一种非连续相变调温纤维及其制备方法
CN110129916A (zh) * 2019-04-17 2019-08-16 浙江理工大学 一种石蜡/聚丙烯腈智能调温纳米纤维
CN112928389A (zh) * 2021-03-03 2021-06-08 华中科技大学 一种相变调温隔膜及其制备方法和应用
CN113249821A (zh) * 2021-06-15 2021-08-13 南通大学 一种兼具红外、雷达隐身的皮芯结构纤维及其制备方法和应用
CN113789609A (zh) * 2021-08-30 2021-12-14 武汉理工大学 一种兼具吸热/吸波双效功能的薄膜材料及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116516519A (zh) * 2023-04-19 2023-08-01 东华大学 熔融纺丝制备高吸波剂含量的吸波纤维的方法及其产物

Also Published As

Publication number Publication date
US20240175661A1 (en) 2024-05-30
US12104882B2 (en) 2024-10-01
CN113249821A (zh) 2021-08-13
CN113249821B (zh) 2022-03-11

Similar Documents

Publication Publication Date Title
WO2022262479A1 (zh) 兼具红外、雷达隐身的皮芯结构纤维及其制备方法和应用
Guo et al. Electrospun fibrous materials and their applications for electromagnetic interference shielding: A review
Shi et al. Well-matched impedance of polypyrrole-loaded cotton non-woven fabric/polydimethylsiloxane composite for extraordinary microwave absorption
Luo et al. Anisotropic, multifunctional and lightweight CNTs@ CoFe2O4/polyimide aerogels for high efficient electromagnetic wave absorption and thermal insulation
CN104774346B (zh) 一种轻质多孔吸波膜及其制备方法
Li et al. Flexible regulation engineering of titanium nitride nanofibrous membranes for efficient electromagnetic microwave absorption in wide temperature spectrum
Zong et al. Interlocked dual‐network and superelastic electrospun fibrous sponges for efficient low‐frequency noise absorption
CN104674384A (zh) 基于静电纺丝技术的三维油水分离材料及其制备方法
Han et al. Introducing rich heterojunction surfaces to enhance the high-frequency electromagnetic attenuation response of flexible fiber-based wearable absorbers
Zhang et al. Design and electrospun closed cell structured SiO2 nanocomposite fiber by hollow SiO2/TiO2 spheres for thermal insulation
CN103436996B (zh) Ni/C复合纳米纤维微波吸收剂、制备方法及其应用
CN103422192A (zh) Fe-Co合金/C复合纳米纤维微波吸收剂、制备方法及其应用
Dai et al. Carbon fibers with eddy current loss characteristics exhibit different microwave absorption properties in different graphitization states
Mao et al. Highly flexible ceramic nanofibrous membranes for superior thermal insulation and fire retardancy
CN103436994A (zh) Fe-Ni合金/C复合纳米纤维微波吸收剂、制备方法及其应用
CN103436995A (zh) Fe/C复合纳米纤维微波吸收剂、制备方法及其应用
CN103422193A (zh) Co/C复合纳米纤维微波吸收剂、制备方法及其应用
Yin et al. In situ crosslinking of mechanically robust waterproof and moisture permeable cellulose diacetate nanofiber aerogels for warm clothing
CN111100603A (zh) 基于静电纺的高导热相变储能材料及其制备方法
CN110257958A (zh) 一种氮化钒/碳纳米纤维微波吸收剂及其制备方法
Song et al. Novel smart coaxial electrospinning textiles for efficient thermal interface management and electromagnetic compatibility in electronics
Zhang et al. Graphene-doped high-efficiency absorbing material: C-Mn 0.5 Zn 0.5 Fe 2 O 4@ PDA
Wang et al. Reversible fusion and fission of graphene oxide-based fibers
CN114908476A (zh) 一种快速调控人体温度具有皮芯结构的相变调温纤维膜及其制备方法
Zhao et al. Hollow multi-layer bowknot like nanoparticles surface modified by TMDs derived flexible fiber membranes for electromagnetic wave absorption

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22823962

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18287189

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22823962

Country of ref document: EP

Kind code of ref document: A1